xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 
36 /*
37  * GPUVM
38  * GPUVM is similar to the legacy gart on older asics, however
39  * rather than there being a single global gart table
40  * for the entire GPU, there are multiple VM page tables active
41  * at any given time.  The VM page tables can contain a mix
42  * vram pages and system memory pages and system memory pages
43  * can be mapped as snooped (cached system pages) or unsnooped
44  * (uncached system pages).
45  * Each VM has an ID associated with it and there is a page table
46  * associated with each VMID.  When execting a command buffer,
47  * the kernel tells the the ring what VMID to use for that command
48  * buffer.  VMIDs are allocated dynamically as commands are submitted.
49  * The userspace drivers maintain their own address space and the kernel
50  * sets up their pages tables accordingly when they submit their
51  * command buffers and a VMID is assigned.
52  * Cayman/Trinity support up to 8 active VMs at any given time;
53  * SI supports 16.
54  */
55 
56 #define START(node) ((node)->start)
57 #define LAST(node) ((node)->last)
58 
59 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
60 		     START, LAST, static, amdgpu_vm_it)
61 
62 #undef START
63 #undef LAST
64 
65 /* Local structure. Encapsulate some VM table update parameters to reduce
66  * the number of function parameters
67  */
68 struct amdgpu_pte_update_params {
69 	/* amdgpu device we do this update for */
70 	struct amdgpu_device *adev;
71 	/* optional amdgpu_vm we do this update for */
72 	struct amdgpu_vm *vm;
73 	/* address where to copy page table entries from */
74 	uint64_t src;
75 	/* indirect buffer to fill with commands */
76 	struct amdgpu_ib *ib;
77 	/* Function which actually does the update */
78 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
79 		     uint64_t addr, unsigned count, uint32_t incr,
80 		     uint64_t flags);
81 	/* The next two are used during VM update by CPU
82 	 *  DMA addresses to use for mapping
83 	 *  Kernel pointer of PD/PT BO that needs to be updated
84 	 */
85 	dma_addr_t *pages_addr;
86 	void *kptr;
87 };
88 
89 /* Helper to disable partial resident texture feature from a fence callback */
90 struct amdgpu_prt_cb {
91 	struct amdgpu_device *adev;
92 	struct dma_fence_cb cb;
93 };
94 
95 /**
96  * amdgpu_vm_level_shift - return the addr shift for each level
97  *
98  * @adev: amdgpu_device pointer
99  *
100  * Returns the number of bits the pfn needs to be right shifted for a level.
101  */
102 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
103 				      unsigned level)
104 {
105 	unsigned shift = 0xff;
106 
107 	switch (level) {
108 	case AMDGPU_VM_PDB2:
109 	case AMDGPU_VM_PDB1:
110 	case AMDGPU_VM_PDB0:
111 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
112 			adev->vm_manager.block_size;
113 		break;
114 	case AMDGPU_VM_PTB:
115 		shift = 0;
116 		break;
117 	default:
118 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
119 	}
120 
121 	return shift;
122 }
123 
124 /**
125  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
126  *
127  * @adev: amdgpu_device pointer
128  *
129  * Calculate the number of entries in a page directory or page table.
130  */
131 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
132 				      unsigned level)
133 {
134 	unsigned shift = amdgpu_vm_level_shift(adev,
135 					       adev->vm_manager.root_level);
136 
137 	if (level == adev->vm_manager.root_level)
138 		/* For the root directory */
139 		return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift;
140 	else if (level != AMDGPU_VM_PTB)
141 		/* Everything in between */
142 		return 512;
143 	else
144 		/* For the page tables on the leaves */
145 		return AMDGPU_VM_PTE_COUNT(adev);
146 }
147 
148 /**
149  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
150  *
151  * @adev: amdgpu_device pointer
152  *
153  * Calculate the size of the BO for a page directory or page table in bytes.
154  */
155 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
156 {
157 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
158 }
159 
160 /**
161  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
162  *
163  * @vm: vm providing the BOs
164  * @validated: head of validation list
165  * @entry: entry to add
166  *
167  * Add the page directory to the list of BOs to
168  * validate for command submission.
169  */
170 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
171 			 struct list_head *validated,
172 			 struct amdgpu_bo_list_entry *entry)
173 {
174 	entry->robj = vm->root.base.bo;
175 	entry->priority = 0;
176 	entry->tv.bo = &entry->robj->tbo;
177 	entry->tv.shared = true;
178 	entry->user_pages = NULL;
179 	list_add(&entry->tv.head, validated);
180 }
181 
182 /**
183  * amdgpu_vm_validate_pt_bos - validate the page table BOs
184  *
185  * @adev: amdgpu device pointer
186  * @vm: vm providing the BOs
187  * @validate: callback to do the validation
188  * @param: parameter for the validation callback
189  *
190  * Validate the page table BOs on command submission if neccessary.
191  */
192 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
193 			      int (*validate)(void *p, struct amdgpu_bo *bo),
194 			      void *param)
195 {
196 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
197 	int r;
198 
199 	spin_lock(&vm->status_lock);
200 	while (!list_empty(&vm->evicted)) {
201 		struct amdgpu_vm_bo_base *bo_base;
202 		struct amdgpu_bo *bo;
203 
204 		bo_base = list_first_entry(&vm->evicted,
205 					   struct amdgpu_vm_bo_base,
206 					   vm_status);
207 		spin_unlock(&vm->status_lock);
208 
209 		bo = bo_base->bo;
210 		BUG_ON(!bo);
211 		if (bo->parent) {
212 			r = validate(param, bo);
213 			if (r)
214 				return r;
215 
216 			spin_lock(&glob->lru_lock);
217 			ttm_bo_move_to_lru_tail(&bo->tbo);
218 			if (bo->shadow)
219 				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
220 			spin_unlock(&glob->lru_lock);
221 		}
222 
223 		if (bo->tbo.type == ttm_bo_type_kernel &&
224 		    vm->use_cpu_for_update) {
225 			r = amdgpu_bo_kmap(bo, NULL);
226 			if (r)
227 				return r;
228 		}
229 
230 		spin_lock(&vm->status_lock);
231 		if (bo->tbo.type != ttm_bo_type_kernel)
232 			list_move(&bo_base->vm_status, &vm->moved);
233 		else
234 			list_move(&bo_base->vm_status, &vm->relocated);
235 	}
236 	spin_unlock(&vm->status_lock);
237 
238 	return 0;
239 }
240 
241 /**
242  * amdgpu_vm_ready - check VM is ready for updates
243  *
244  * @vm: VM to check
245  *
246  * Check if all VM PDs/PTs are ready for updates
247  */
248 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
249 {
250 	bool ready;
251 
252 	spin_lock(&vm->status_lock);
253 	ready = list_empty(&vm->evicted);
254 	spin_unlock(&vm->status_lock);
255 
256 	return ready;
257 }
258 
259 /**
260  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
261  *
262  * @adev: amdgpu_device pointer
263  * @vm: requested vm
264  * @saddr: start of the address range
265  * @eaddr: end of the address range
266  *
267  * Make sure the page directories and page tables are allocated
268  */
269 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
270 				  struct amdgpu_vm *vm,
271 				  struct amdgpu_vm_pt *parent,
272 				  uint64_t saddr, uint64_t eaddr,
273 				  unsigned level)
274 {
275 	unsigned shift = amdgpu_vm_level_shift(adev, level);
276 	unsigned pt_idx, from, to;
277 	int r;
278 	u64 flags;
279 	uint64_t init_value = 0;
280 
281 	if (!parent->entries) {
282 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
283 
284 		parent->entries = kvmalloc_array(num_entries,
285 						   sizeof(struct amdgpu_vm_pt),
286 						   GFP_KERNEL | __GFP_ZERO);
287 		if (!parent->entries)
288 			return -ENOMEM;
289 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
290 	}
291 
292 	from = saddr >> shift;
293 	to = eaddr >> shift;
294 	if (from >= amdgpu_vm_num_entries(adev, level) ||
295 	    to >= amdgpu_vm_num_entries(adev, level))
296 		return -EINVAL;
297 
298 	++level;
299 	saddr = saddr & ((1 << shift) - 1);
300 	eaddr = eaddr & ((1 << shift) - 1);
301 
302 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
303 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
304 	if (vm->use_cpu_for_update)
305 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
306 	else
307 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
308 				AMDGPU_GEM_CREATE_SHADOW);
309 
310 	if (vm->pte_support_ats) {
311 		init_value = AMDGPU_PTE_DEFAULT_ATC;
312 		if (level != AMDGPU_VM_PTB)
313 			init_value |= AMDGPU_PDE_PTE;
314 
315 	}
316 
317 	/* walk over the address space and allocate the page tables */
318 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
319 		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
320 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
321 		struct amdgpu_bo *pt;
322 
323 		if (!entry->base.bo) {
324 			r = amdgpu_bo_create(adev,
325 					     amdgpu_vm_bo_size(adev, level),
326 					     AMDGPU_GPU_PAGE_SIZE, true,
327 					     AMDGPU_GEM_DOMAIN_VRAM,
328 					     flags,
329 					     NULL, resv, init_value, &pt);
330 			if (r)
331 				return r;
332 
333 			if (vm->use_cpu_for_update) {
334 				r = amdgpu_bo_kmap(pt, NULL);
335 				if (r) {
336 					amdgpu_bo_unref(&pt);
337 					return r;
338 				}
339 			}
340 
341 			/* Keep a reference to the root directory to avoid
342 			* freeing them up in the wrong order.
343 			*/
344 			pt->parent = amdgpu_bo_ref(parent->base.bo);
345 
346 			entry->base.vm = vm;
347 			entry->base.bo = pt;
348 			list_add_tail(&entry->base.bo_list, &pt->va);
349 			spin_lock(&vm->status_lock);
350 			list_add(&entry->base.vm_status, &vm->relocated);
351 			spin_unlock(&vm->status_lock);
352 		}
353 
354 		if (level < AMDGPU_VM_PTB) {
355 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
356 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
357 				((1 << shift) - 1);
358 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
359 						   sub_eaddr, level);
360 			if (r)
361 				return r;
362 		}
363 	}
364 
365 	return 0;
366 }
367 
368 /**
369  * amdgpu_vm_alloc_pts - Allocate page tables.
370  *
371  * @adev: amdgpu_device pointer
372  * @vm: VM to allocate page tables for
373  * @saddr: Start address which needs to be allocated
374  * @size: Size from start address we need.
375  *
376  * Make sure the page tables are allocated.
377  */
378 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
379 			struct amdgpu_vm *vm,
380 			uint64_t saddr, uint64_t size)
381 {
382 	uint64_t last_pfn;
383 	uint64_t eaddr;
384 
385 	/* validate the parameters */
386 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
387 		return -EINVAL;
388 
389 	eaddr = saddr + size - 1;
390 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
391 	if (last_pfn >= adev->vm_manager.max_pfn) {
392 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
393 			last_pfn, adev->vm_manager.max_pfn);
394 		return -EINVAL;
395 	}
396 
397 	saddr /= AMDGPU_GPU_PAGE_SIZE;
398 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
399 
400 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr,
401 				      adev->vm_manager.root_level);
402 }
403 
404 /**
405  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
406  *
407  * @adev: amdgpu_device pointer
408  */
409 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
410 {
411 	const struct amdgpu_ip_block *ip_block;
412 	bool has_compute_vm_bug;
413 	struct amdgpu_ring *ring;
414 	int i;
415 
416 	has_compute_vm_bug = false;
417 
418 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
419 	if (ip_block) {
420 		/* Compute has a VM bug for GFX version < 7.
421 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
422 		if (ip_block->version->major <= 7)
423 			has_compute_vm_bug = true;
424 		else if (ip_block->version->major == 8)
425 			if (adev->gfx.mec_fw_version < 673)
426 				has_compute_vm_bug = true;
427 	}
428 
429 	for (i = 0; i < adev->num_rings; i++) {
430 		ring = adev->rings[i];
431 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
432 			/* only compute rings */
433 			ring->has_compute_vm_bug = has_compute_vm_bug;
434 		else
435 			ring->has_compute_vm_bug = false;
436 	}
437 }
438 
439 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
440 				  struct amdgpu_job *job)
441 {
442 	struct amdgpu_device *adev = ring->adev;
443 	unsigned vmhub = ring->funcs->vmhub;
444 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
445 	struct amdgpu_vmid *id;
446 	bool gds_switch_needed;
447 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
448 
449 	if (job->vmid == 0)
450 		return false;
451 	id = &id_mgr->ids[job->vmid];
452 	gds_switch_needed = ring->funcs->emit_gds_switch && (
453 		id->gds_base != job->gds_base ||
454 		id->gds_size != job->gds_size ||
455 		id->gws_base != job->gws_base ||
456 		id->gws_size != job->gws_size ||
457 		id->oa_base != job->oa_base ||
458 		id->oa_size != job->oa_size);
459 
460 	if (amdgpu_vmid_had_gpu_reset(adev, id))
461 		return true;
462 
463 	return vm_flush_needed || gds_switch_needed;
464 }
465 
466 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
467 {
468 	return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
469 }
470 
471 /**
472  * amdgpu_vm_flush - hardware flush the vm
473  *
474  * @ring: ring to use for flush
475  * @vmid: vmid number to use
476  * @pd_addr: address of the page directory
477  *
478  * Emit a VM flush when it is necessary.
479  */
480 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
481 {
482 	struct amdgpu_device *adev = ring->adev;
483 	unsigned vmhub = ring->funcs->vmhub;
484 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
485 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
486 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
487 		id->gds_base != job->gds_base ||
488 		id->gds_size != job->gds_size ||
489 		id->gws_base != job->gws_base ||
490 		id->gws_size != job->gws_size ||
491 		id->oa_base != job->oa_base ||
492 		id->oa_size != job->oa_size);
493 	bool vm_flush_needed = job->vm_needs_flush;
494 	unsigned patch_offset = 0;
495 	int r;
496 
497 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
498 		gds_switch_needed = true;
499 		vm_flush_needed = true;
500 	}
501 
502 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
503 		return 0;
504 
505 	if (ring->funcs->init_cond_exec)
506 		patch_offset = amdgpu_ring_init_cond_exec(ring);
507 
508 	if (need_pipe_sync)
509 		amdgpu_ring_emit_pipeline_sync(ring);
510 
511 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
512 		struct dma_fence *fence;
513 
514 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
515 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
516 
517 		r = amdgpu_fence_emit(ring, &fence);
518 		if (r)
519 			return r;
520 
521 		mutex_lock(&id_mgr->lock);
522 		dma_fence_put(id->last_flush);
523 		id->last_flush = fence;
524 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
525 		mutex_unlock(&id_mgr->lock);
526 	}
527 
528 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
529 		id->gds_base = job->gds_base;
530 		id->gds_size = job->gds_size;
531 		id->gws_base = job->gws_base;
532 		id->gws_size = job->gws_size;
533 		id->oa_base = job->oa_base;
534 		id->oa_size = job->oa_size;
535 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
536 					    job->gds_size, job->gws_base,
537 					    job->gws_size, job->oa_base,
538 					    job->oa_size);
539 	}
540 
541 	if (ring->funcs->patch_cond_exec)
542 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
543 
544 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
545 	if (ring->funcs->emit_switch_buffer) {
546 		amdgpu_ring_emit_switch_buffer(ring);
547 		amdgpu_ring_emit_switch_buffer(ring);
548 	}
549 	return 0;
550 }
551 
552 /**
553  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
554  *
555  * @vm: requested vm
556  * @bo: requested buffer object
557  *
558  * Find @bo inside the requested vm.
559  * Search inside the @bos vm list for the requested vm
560  * Returns the found bo_va or NULL if none is found
561  *
562  * Object has to be reserved!
563  */
564 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
565 				       struct amdgpu_bo *bo)
566 {
567 	struct amdgpu_bo_va *bo_va;
568 
569 	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
570 		if (bo_va->base.vm == vm) {
571 			return bo_va;
572 		}
573 	}
574 	return NULL;
575 }
576 
577 /**
578  * amdgpu_vm_do_set_ptes - helper to call the right asic function
579  *
580  * @params: see amdgpu_pte_update_params definition
581  * @pe: addr of the page entry
582  * @addr: dst addr to write into pe
583  * @count: number of page entries to update
584  * @incr: increase next addr by incr bytes
585  * @flags: hw access flags
586  *
587  * Traces the parameters and calls the right asic functions
588  * to setup the page table using the DMA.
589  */
590 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
591 				  uint64_t pe, uint64_t addr,
592 				  unsigned count, uint32_t incr,
593 				  uint64_t flags)
594 {
595 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
596 
597 	if (count < 3) {
598 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
599 				    addr | flags, count, incr);
600 
601 	} else {
602 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
603 				      count, incr, flags);
604 	}
605 }
606 
607 /**
608  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
609  *
610  * @params: see amdgpu_pte_update_params definition
611  * @pe: addr of the page entry
612  * @addr: dst addr to write into pe
613  * @count: number of page entries to update
614  * @incr: increase next addr by incr bytes
615  * @flags: hw access flags
616  *
617  * Traces the parameters and calls the DMA function to copy the PTEs.
618  */
619 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
620 				   uint64_t pe, uint64_t addr,
621 				   unsigned count, uint32_t incr,
622 				   uint64_t flags)
623 {
624 	uint64_t src = (params->src + (addr >> 12) * 8);
625 
626 
627 	trace_amdgpu_vm_copy_ptes(pe, src, count);
628 
629 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
630 }
631 
632 /**
633  * amdgpu_vm_map_gart - Resolve gart mapping of addr
634  *
635  * @pages_addr: optional DMA address to use for lookup
636  * @addr: the unmapped addr
637  *
638  * Look up the physical address of the page that the pte resolves
639  * to and return the pointer for the page table entry.
640  */
641 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
642 {
643 	uint64_t result;
644 
645 	/* page table offset */
646 	result = pages_addr[addr >> PAGE_SHIFT];
647 
648 	/* in case cpu page size != gpu page size*/
649 	result |= addr & (~PAGE_MASK);
650 
651 	result &= 0xFFFFFFFFFFFFF000ULL;
652 
653 	return result;
654 }
655 
656 /**
657  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
658  *
659  * @params: see amdgpu_pte_update_params definition
660  * @pe: kmap addr of the page entry
661  * @addr: dst addr to write into pe
662  * @count: number of page entries to update
663  * @incr: increase next addr by incr bytes
664  * @flags: hw access flags
665  *
666  * Write count number of PT/PD entries directly.
667  */
668 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
669 				   uint64_t pe, uint64_t addr,
670 				   unsigned count, uint32_t incr,
671 				   uint64_t flags)
672 {
673 	unsigned int i;
674 	uint64_t value;
675 
676 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
677 
678 	for (i = 0; i < count; i++) {
679 		value = params->pages_addr ?
680 			amdgpu_vm_map_gart(params->pages_addr, addr) :
681 			addr;
682 		amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
683 					i, value, flags);
684 		addr += incr;
685 	}
686 }
687 
688 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
689 			     void *owner)
690 {
691 	struct amdgpu_sync sync;
692 	int r;
693 
694 	amdgpu_sync_create(&sync);
695 	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
696 	r = amdgpu_sync_wait(&sync, true);
697 	amdgpu_sync_free(&sync);
698 
699 	return r;
700 }
701 
702 /*
703  * amdgpu_vm_update_pde - update a single level in the hierarchy
704  *
705  * @param: parameters for the update
706  * @vm: requested vm
707  * @parent: parent directory
708  * @entry: entry to update
709  *
710  * Makes sure the requested entry in parent is up to date.
711  */
712 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
713 				 struct amdgpu_vm *vm,
714 				 struct amdgpu_vm_pt *parent,
715 				 struct amdgpu_vm_pt *entry)
716 {
717 	struct amdgpu_bo *bo = entry->base.bo, *shadow = NULL, *pbo;
718 	uint64_t pd_addr, shadow_addr = 0;
719 	uint64_t pde, pt, flags;
720 	unsigned level;
721 
722 	/* Don't update huge pages here */
723 	if (entry->huge)
724 		return;
725 
726 	if (vm->use_cpu_for_update) {
727 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
728 	} else {
729 		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
730 		shadow = parent->base.bo->shadow;
731 		if (shadow)
732 			shadow_addr = amdgpu_bo_gpu_offset(shadow);
733 	}
734 
735 	for (level = 0, pbo = parent->base.bo->parent; pbo; ++level)
736 		pbo = pbo->parent;
737 
738 	level += params->adev->vm_manager.root_level;
739 	pt = amdgpu_bo_gpu_offset(bo);
740 	flags = AMDGPU_PTE_VALID;
741 	amdgpu_gart_get_vm_pde(params->adev, level, &pt, &flags);
742 	if (shadow) {
743 		pde = shadow_addr + (entry - parent->entries) * 8;
744 		params->func(params, pde, pt, 1, 0, flags);
745 	}
746 
747 	pde = pd_addr + (entry - parent->entries) * 8;
748 	params->func(params, pde, pt, 1, 0, flags);
749 }
750 
751 /*
752  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
753  *
754  * @parent: parent PD
755  *
756  * Mark all PD level as invalid after an error.
757  */
758 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev,
759 				       struct amdgpu_vm *vm,
760 				       struct amdgpu_vm_pt *parent,
761 				       unsigned level)
762 {
763 	unsigned pt_idx, num_entries;
764 
765 	/*
766 	 * Recurse into the subdirectories. This recursion is harmless because
767 	 * we only have a maximum of 5 layers.
768 	 */
769 	num_entries = amdgpu_vm_num_entries(adev, level);
770 	for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) {
771 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
772 
773 		if (!entry->base.bo)
774 			continue;
775 
776 		spin_lock(&vm->status_lock);
777 		if (list_empty(&entry->base.vm_status))
778 			list_add(&entry->base.vm_status, &vm->relocated);
779 		spin_unlock(&vm->status_lock);
780 		amdgpu_vm_invalidate_level(adev, vm, entry, level + 1);
781 	}
782 }
783 
784 /*
785  * amdgpu_vm_update_directories - make sure that all directories are valid
786  *
787  * @adev: amdgpu_device pointer
788  * @vm: requested vm
789  *
790  * Makes sure all directories are up to date.
791  * Returns 0 for success, error for failure.
792  */
793 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
794 				 struct amdgpu_vm *vm)
795 {
796 	struct amdgpu_pte_update_params params;
797 	struct amdgpu_job *job;
798 	unsigned ndw = 0;
799 	int r = 0;
800 
801 	if (list_empty(&vm->relocated))
802 		return 0;
803 
804 restart:
805 	memset(&params, 0, sizeof(params));
806 	params.adev = adev;
807 
808 	if (vm->use_cpu_for_update) {
809 		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
810 		if (unlikely(r))
811 			return r;
812 
813 		params.func = amdgpu_vm_cpu_set_ptes;
814 	} else {
815 		ndw = 512 * 8;
816 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
817 		if (r)
818 			return r;
819 
820 		params.ib = &job->ibs[0];
821 		params.func = amdgpu_vm_do_set_ptes;
822 	}
823 
824 	spin_lock(&vm->status_lock);
825 	while (!list_empty(&vm->relocated)) {
826 		struct amdgpu_vm_bo_base *bo_base, *parent;
827 		struct amdgpu_vm_pt *pt, *entry;
828 		struct amdgpu_bo *bo;
829 
830 		bo_base = list_first_entry(&vm->relocated,
831 					   struct amdgpu_vm_bo_base,
832 					   vm_status);
833 		list_del_init(&bo_base->vm_status);
834 		spin_unlock(&vm->status_lock);
835 
836 		bo = bo_base->bo->parent;
837 		if (!bo) {
838 			spin_lock(&vm->status_lock);
839 			continue;
840 		}
841 
842 		parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base,
843 					  bo_list);
844 		pt = container_of(parent, struct amdgpu_vm_pt, base);
845 		entry = container_of(bo_base, struct amdgpu_vm_pt, base);
846 
847 		amdgpu_vm_update_pde(&params, vm, pt, entry);
848 
849 		spin_lock(&vm->status_lock);
850 		if (!vm->use_cpu_for_update &&
851 		    (ndw - params.ib->length_dw) < 32)
852 			break;
853 	}
854 	spin_unlock(&vm->status_lock);
855 
856 	if (vm->use_cpu_for_update) {
857 		/* Flush HDP */
858 		mb();
859 		amdgpu_gart_flush_gpu_tlb(adev, 0);
860 	} else if (params.ib->length_dw == 0) {
861 		amdgpu_job_free(job);
862 	} else {
863 		struct amdgpu_bo *root = vm->root.base.bo;
864 		struct amdgpu_ring *ring;
865 		struct dma_fence *fence;
866 
867 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
868 				    sched);
869 
870 		amdgpu_ring_pad_ib(ring, params.ib);
871 		amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
872 				 AMDGPU_FENCE_OWNER_VM, false);
873 		if (root->shadow)
874 			amdgpu_sync_resv(adev, &job->sync,
875 					 root->shadow->tbo.resv,
876 					 AMDGPU_FENCE_OWNER_VM, false);
877 
878 		WARN_ON(params.ib->length_dw > ndw);
879 		r = amdgpu_job_submit(job, ring, &vm->entity,
880 				      AMDGPU_FENCE_OWNER_VM, &fence);
881 		if (r)
882 			goto error;
883 
884 		amdgpu_bo_fence(root, fence, true);
885 		dma_fence_put(vm->last_update);
886 		vm->last_update = fence;
887 	}
888 
889 	if (!list_empty(&vm->relocated))
890 		goto restart;
891 
892 	return 0;
893 
894 error:
895 	amdgpu_vm_invalidate_level(adev, vm, &vm->root,
896 				   adev->vm_manager.root_level);
897 	amdgpu_job_free(job);
898 	return r;
899 }
900 
901 /**
902  * amdgpu_vm_find_entry - find the entry for an address
903  *
904  * @p: see amdgpu_pte_update_params definition
905  * @addr: virtual address in question
906  * @entry: resulting entry or NULL
907  * @parent: parent entry
908  *
909  * Find the vm_pt entry and it's parent for the given address.
910  */
911 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
912 			 struct amdgpu_vm_pt **entry,
913 			 struct amdgpu_vm_pt **parent)
914 {
915 	unsigned level = p->adev->vm_manager.root_level;
916 
917 	*parent = NULL;
918 	*entry = &p->vm->root;
919 	while ((*entry)->entries) {
920 		unsigned shift = amdgpu_vm_level_shift(p->adev, level++);
921 
922 		*parent = *entry;
923 		*entry = &(*entry)->entries[addr >> shift];
924 		addr &= (1ULL << shift) - 1;
925 	}
926 
927 	if (level != AMDGPU_VM_PTB)
928 		*entry = NULL;
929 }
930 
931 /**
932  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
933  *
934  * @p: see amdgpu_pte_update_params definition
935  * @entry: vm_pt entry to check
936  * @parent: parent entry
937  * @nptes: number of PTEs updated with this operation
938  * @dst: destination address where the PTEs should point to
939  * @flags: access flags fro the PTEs
940  *
941  * Check if we can update the PD with a huge page.
942  */
943 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
944 					struct amdgpu_vm_pt *entry,
945 					struct amdgpu_vm_pt *parent,
946 					unsigned nptes, uint64_t dst,
947 					uint64_t flags)
948 {
949 	uint64_t pd_addr, pde;
950 
951 	/* In the case of a mixed PT the PDE must point to it*/
952 	if (p->adev->asic_type >= CHIP_VEGA10 && !p->src &&
953 	    nptes == AMDGPU_VM_PTE_COUNT(p->adev)) {
954 		/* Set the huge page flag to stop scanning at this PDE */
955 		flags |= AMDGPU_PDE_PTE;
956 	}
957 
958 	if (!(flags & AMDGPU_PDE_PTE)) {
959 		if (entry->huge) {
960 			/* Add the entry to the relocated list to update it. */
961 			entry->huge = false;
962 			spin_lock(&p->vm->status_lock);
963 			list_move(&entry->base.vm_status, &p->vm->relocated);
964 			spin_unlock(&p->vm->status_lock);
965 		}
966 		return;
967 	}
968 
969 	entry->huge = true;
970 	amdgpu_gart_get_vm_pde(p->adev, AMDGPU_VM_PDB0,
971 			       &dst, &flags);
972 
973 	if (p->func == amdgpu_vm_cpu_set_ptes) {
974 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
975 	} else {
976 		if (parent->base.bo->shadow) {
977 			pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow);
978 			pde = pd_addr + (entry - parent->entries) * 8;
979 			p->func(p, pde, dst, 1, 0, flags);
980 		}
981 		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
982 	}
983 	pde = pd_addr + (entry - parent->entries) * 8;
984 	p->func(p, pde, dst, 1, 0, flags);
985 }
986 
987 /**
988  * amdgpu_vm_update_ptes - make sure that page tables are valid
989  *
990  * @params: see amdgpu_pte_update_params definition
991  * @vm: requested vm
992  * @start: start of GPU address range
993  * @end: end of GPU address range
994  * @dst: destination address to map to, the next dst inside the function
995  * @flags: mapping flags
996  *
997  * Update the page tables in the range @start - @end.
998  * Returns 0 for success, -EINVAL for failure.
999  */
1000 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1001 				  uint64_t start, uint64_t end,
1002 				  uint64_t dst, uint64_t flags)
1003 {
1004 	struct amdgpu_device *adev = params->adev;
1005 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1006 
1007 	uint64_t addr, pe_start;
1008 	struct amdgpu_bo *pt;
1009 	unsigned nptes;
1010 	bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1011 
1012 	/* walk over the address space and update the page tables */
1013 	for (addr = start; addr < end; addr += nptes,
1014 	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1015 		struct amdgpu_vm_pt *entry, *parent;
1016 
1017 		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1018 		if (!entry)
1019 			return -ENOENT;
1020 
1021 		if ((addr & ~mask) == (end & ~mask))
1022 			nptes = end - addr;
1023 		else
1024 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1025 
1026 		amdgpu_vm_handle_huge_pages(params, entry, parent,
1027 					    nptes, dst, flags);
1028 		/* We don't need to update PTEs for huge pages */
1029 		if (entry->huge)
1030 			continue;
1031 
1032 		pt = entry->base.bo;
1033 		if (use_cpu_update) {
1034 			pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1035 		} else {
1036 			if (pt->shadow) {
1037 				pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1038 				pe_start += (addr & mask) * 8;
1039 				params->func(params, pe_start, dst, nptes,
1040 					     AMDGPU_GPU_PAGE_SIZE, flags);
1041 			}
1042 			pe_start = amdgpu_bo_gpu_offset(pt);
1043 		}
1044 
1045 		pe_start += (addr & mask) * 8;
1046 		params->func(params, pe_start, dst, nptes,
1047 			     AMDGPU_GPU_PAGE_SIZE, flags);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /*
1054  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1055  *
1056  * @params: see amdgpu_pte_update_params definition
1057  * @vm: requested vm
1058  * @start: first PTE to handle
1059  * @end: last PTE to handle
1060  * @dst: addr those PTEs should point to
1061  * @flags: hw mapping flags
1062  * Returns 0 for success, -EINVAL for failure.
1063  */
1064 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1065 				uint64_t start, uint64_t end,
1066 				uint64_t dst, uint64_t flags)
1067 {
1068 	/**
1069 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1070 	 * field in the PTE. When this field is set to a non-zero value, page
1071 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1072 	 * flags are considered valid for all PTEs within the fragment range
1073 	 * and corresponding mappings are assumed to be physically contiguous.
1074 	 *
1075 	 * The L1 TLB can store a single PTE for the whole fragment,
1076 	 * significantly increasing the space available for translation
1077 	 * caching. This leads to large improvements in throughput when the
1078 	 * TLB is under pressure.
1079 	 *
1080 	 * The L2 TLB distributes small and large fragments into two
1081 	 * asymmetric partitions. The large fragment cache is significantly
1082 	 * larger. Thus, we try to use large fragments wherever possible.
1083 	 * Userspace can support this by aligning virtual base address and
1084 	 * allocation size to the fragment size.
1085 	 */
1086 	unsigned max_frag = params->adev->vm_manager.fragment_size;
1087 	int r;
1088 
1089 	/* system pages are non continuously */
1090 	if (params->src || !(flags & AMDGPU_PTE_VALID))
1091 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1092 
1093 	while (start != end) {
1094 		uint64_t frag_flags, frag_end;
1095 		unsigned frag;
1096 
1097 		/* This intentionally wraps around if no bit is set */
1098 		frag = min((unsigned)ffs(start) - 1,
1099 			   (unsigned)fls64(end - start) - 1);
1100 		if (frag >= max_frag) {
1101 			frag_flags = AMDGPU_PTE_FRAG(max_frag);
1102 			frag_end = end & ~((1ULL << max_frag) - 1);
1103 		} else {
1104 			frag_flags = AMDGPU_PTE_FRAG(frag);
1105 			frag_end = start + (1 << frag);
1106 		}
1107 
1108 		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1109 					  flags | frag_flags);
1110 		if (r)
1111 			return r;
1112 
1113 		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1114 		start = frag_end;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1122  *
1123  * @adev: amdgpu_device pointer
1124  * @exclusive: fence we need to sync to
1125  * @pages_addr: DMA addresses to use for mapping
1126  * @vm: requested vm
1127  * @start: start of mapped range
1128  * @last: last mapped entry
1129  * @flags: flags for the entries
1130  * @addr: addr to set the area to
1131  * @fence: optional resulting fence
1132  *
1133  * Fill in the page table entries between @start and @last.
1134  * Returns 0 for success, -EINVAL for failure.
1135  */
1136 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1137 				       struct dma_fence *exclusive,
1138 				       dma_addr_t *pages_addr,
1139 				       struct amdgpu_vm *vm,
1140 				       uint64_t start, uint64_t last,
1141 				       uint64_t flags, uint64_t addr,
1142 				       struct dma_fence **fence)
1143 {
1144 	struct amdgpu_ring *ring;
1145 	void *owner = AMDGPU_FENCE_OWNER_VM;
1146 	unsigned nptes, ncmds, ndw;
1147 	struct amdgpu_job *job;
1148 	struct amdgpu_pte_update_params params;
1149 	struct dma_fence *f = NULL;
1150 	int r;
1151 
1152 	memset(&params, 0, sizeof(params));
1153 	params.adev = adev;
1154 	params.vm = vm;
1155 
1156 	/* sync to everything on unmapping */
1157 	if (!(flags & AMDGPU_PTE_VALID))
1158 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1159 
1160 	if (vm->use_cpu_for_update) {
1161 		/* params.src is used as flag to indicate system Memory */
1162 		if (pages_addr)
1163 			params.src = ~0;
1164 
1165 		/* Wait for PT BOs to be free. PTs share the same resv. object
1166 		 * as the root PD BO
1167 		 */
1168 		r = amdgpu_vm_wait_pd(adev, vm, owner);
1169 		if (unlikely(r))
1170 			return r;
1171 
1172 		params.func = amdgpu_vm_cpu_set_ptes;
1173 		params.pages_addr = pages_addr;
1174 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1175 					   addr, flags);
1176 	}
1177 
1178 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1179 
1180 	nptes = last - start + 1;
1181 
1182 	/*
1183 	 * reserve space for two commands every (1 << BLOCK_SIZE)
1184 	 *  entries or 2k dwords (whatever is smaller)
1185          *
1186          * The second command is for the shadow pagetables.
1187 	 */
1188 	if (vm->root.base.bo->shadow)
1189 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1190 	else
1191 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1192 
1193 	/* padding, etc. */
1194 	ndw = 64;
1195 
1196 	if (pages_addr) {
1197 		/* copy commands needed */
1198 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1199 
1200 		/* and also PTEs */
1201 		ndw += nptes * 2;
1202 
1203 		params.func = amdgpu_vm_do_copy_ptes;
1204 
1205 	} else {
1206 		/* set page commands needed */
1207 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
1208 
1209 		/* extra commands for begin/end fragments */
1210 		ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
1211 				* adev->vm_manager.fragment_size;
1212 
1213 		params.func = amdgpu_vm_do_set_ptes;
1214 	}
1215 
1216 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1217 	if (r)
1218 		return r;
1219 
1220 	params.ib = &job->ibs[0];
1221 
1222 	if (pages_addr) {
1223 		uint64_t *pte;
1224 		unsigned i;
1225 
1226 		/* Put the PTEs at the end of the IB. */
1227 		i = ndw - nptes * 2;
1228 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1229 		params.src = job->ibs->gpu_addr + i * 4;
1230 
1231 		for (i = 0; i < nptes; ++i) {
1232 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1233 						    AMDGPU_GPU_PAGE_SIZE);
1234 			pte[i] |= flags;
1235 		}
1236 		addr = 0;
1237 	}
1238 
1239 	r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1240 	if (r)
1241 		goto error_free;
1242 
1243 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1244 			     owner, false);
1245 	if (r)
1246 		goto error_free;
1247 
1248 	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1249 	if (r)
1250 		goto error_free;
1251 
1252 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1253 	if (r)
1254 		goto error_free;
1255 
1256 	amdgpu_ring_pad_ib(ring, params.ib);
1257 	WARN_ON(params.ib->length_dw > ndw);
1258 	r = amdgpu_job_submit(job, ring, &vm->entity,
1259 			      AMDGPU_FENCE_OWNER_VM, &f);
1260 	if (r)
1261 		goto error_free;
1262 
1263 	amdgpu_bo_fence(vm->root.base.bo, f, true);
1264 	dma_fence_put(*fence);
1265 	*fence = f;
1266 	return 0;
1267 
1268 error_free:
1269 	amdgpu_job_free(job);
1270 	return r;
1271 }
1272 
1273 /**
1274  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1275  *
1276  * @adev: amdgpu_device pointer
1277  * @exclusive: fence we need to sync to
1278  * @pages_addr: DMA addresses to use for mapping
1279  * @vm: requested vm
1280  * @mapping: mapped range and flags to use for the update
1281  * @flags: HW flags for the mapping
1282  * @nodes: array of drm_mm_nodes with the MC addresses
1283  * @fence: optional resulting fence
1284  *
1285  * Split the mapping into smaller chunks so that each update fits
1286  * into a SDMA IB.
1287  * Returns 0 for success, -EINVAL for failure.
1288  */
1289 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1290 				      struct dma_fence *exclusive,
1291 				      dma_addr_t *pages_addr,
1292 				      struct amdgpu_vm *vm,
1293 				      struct amdgpu_bo_va_mapping *mapping,
1294 				      uint64_t flags,
1295 				      struct drm_mm_node *nodes,
1296 				      struct dma_fence **fence)
1297 {
1298 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1299 	uint64_t pfn, start = mapping->start;
1300 	int r;
1301 
1302 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1303 	 * but in case of something, we filter the flags in first place
1304 	 */
1305 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1306 		flags &= ~AMDGPU_PTE_READABLE;
1307 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1308 		flags &= ~AMDGPU_PTE_WRITEABLE;
1309 
1310 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1311 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1312 
1313 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1314 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1315 
1316 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1317 	    (adev->asic_type >= CHIP_VEGA10)) {
1318 		flags |= AMDGPU_PTE_PRT;
1319 		flags &= ~AMDGPU_PTE_VALID;
1320 	}
1321 
1322 	trace_amdgpu_vm_bo_update(mapping);
1323 
1324 	pfn = mapping->offset >> PAGE_SHIFT;
1325 	if (nodes) {
1326 		while (pfn >= nodes->size) {
1327 			pfn -= nodes->size;
1328 			++nodes;
1329 		}
1330 	}
1331 
1332 	do {
1333 		dma_addr_t *dma_addr = NULL;
1334 		uint64_t max_entries;
1335 		uint64_t addr, last;
1336 
1337 		if (nodes) {
1338 			addr = nodes->start << PAGE_SHIFT;
1339 			max_entries = (nodes->size - pfn) *
1340 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1341 		} else {
1342 			addr = 0;
1343 			max_entries = S64_MAX;
1344 		}
1345 
1346 		if (pages_addr) {
1347 			uint64_t count;
1348 
1349 			max_entries = min(max_entries, 16ull * 1024ull);
1350 			for (count = 1; count < max_entries; ++count) {
1351 				uint64_t idx = pfn + count;
1352 
1353 				if (pages_addr[idx] !=
1354 				    (pages_addr[idx - 1] + PAGE_SIZE))
1355 					break;
1356 			}
1357 
1358 			if (count < min_linear_pages) {
1359 				addr = pfn << PAGE_SHIFT;
1360 				dma_addr = pages_addr;
1361 			} else {
1362 				addr = pages_addr[pfn];
1363 				max_entries = count;
1364 			}
1365 
1366 		} else if (flags & AMDGPU_PTE_VALID) {
1367 			addr += adev->vm_manager.vram_base_offset;
1368 			addr += pfn << PAGE_SHIFT;
1369 		}
1370 
1371 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1372 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1373 						start, last, flags, addr,
1374 						fence);
1375 		if (r)
1376 			return r;
1377 
1378 		pfn += last - start + 1;
1379 		if (nodes && nodes->size == pfn) {
1380 			pfn = 0;
1381 			++nodes;
1382 		}
1383 		start = last + 1;
1384 
1385 	} while (unlikely(start != mapping->last + 1));
1386 
1387 	return 0;
1388 }
1389 
1390 /**
1391  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1392  *
1393  * @adev: amdgpu_device pointer
1394  * @bo_va: requested BO and VM object
1395  * @clear: if true clear the entries
1396  *
1397  * Fill in the page table entries for @bo_va.
1398  * Returns 0 for success, -EINVAL for failure.
1399  */
1400 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1401 			struct amdgpu_bo_va *bo_va,
1402 			bool clear)
1403 {
1404 	struct amdgpu_bo *bo = bo_va->base.bo;
1405 	struct amdgpu_vm *vm = bo_va->base.vm;
1406 	struct amdgpu_bo_va_mapping *mapping;
1407 	dma_addr_t *pages_addr = NULL;
1408 	struct ttm_mem_reg *mem;
1409 	struct drm_mm_node *nodes;
1410 	struct dma_fence *exclusive, **last_update;
1411 	uint64_t flags;
1412 	int r;
1413 
1414 	if (clear || !bo_va->base.bo) {
1415 		mem = NULL;
1416 		nodes = NULL;
1417 		exclusive = NULL;
1418 	} else {
1419 		struct ttm_dma_tt *ttm;
1420 
1421 		mem = &bo_va->base.bo->tbo.mem;
1422 		nodes = mem->mm_node;
1423 		if (mem->mem_type == TTM_PL_TT) {
1424 			ttm = container_of(bo_va->base.bo->tbo.ttm,
1425 					   struct ttm_dma_tt, ttm);
1426 			pages_addr = ttm->dma_address;
1427 		}
1428 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1429 	}
1430 
1431 	if (bo)
1432 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1433 	else
1434 		flags = 0x0;
1435 
1436 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1437 		last_update = &vm->last_update;
1438 	else
1439 		last_update = &bo_va->last_pt_update;
1440 
1441 	if (!clear && bo_va->base.moved) {
1442 		bo_va->base.moved = false;
1443 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1444 
1445 	} else if (bo_va->cleared != clear) {
1446 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1447 	}
1448 
1449 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1450 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1451 					       mapping, flags, nodes,
1452 					       last_update);
1453 		if (r)
1454 			return r;
1455 	}
1456 
1457 	if (vm->use_cpu_for_update) {
1458 		/* Flush HDP */
1459 		mb();
1460 		amdgpu_gart_flush_gpu_tlb(adev, 0);
1461 	}
1462 
1463 	spin_lock(&vm->status_lock);
1464 	list_del_init(&bo_va->base.vm_status);
1465 	spin_unlock(&vm->status_lock);
1466 
1467 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1468 	bo_va->cleared = clear;
1469 
1470 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1471 		list_for_each_entry(mapping, &bo_va->valids, list)
1472 			trace_amdgpu_vm_bo_mapping(mapping);
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  * amdgpu_vm_update_prt_state - update the global PRT state
1480  */
1481 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1482 {
1483 	unsigned long flags;
1484 	bool enable;
1485 
1486 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1487 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1488 	adev->gart.gart_funcs->set_prt(adev, enable);
1489 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1490 }
1491 
1492 /**
1493  * amdgpu_vm_prt_get - add a PRT user
1494  */
1495 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1496 {
1497 	if (!adev->gart.gart_funcs->set_prt)
1498 		return;
1499 
1500 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1501 		amdgpu_vm_update_prt_state(adev);
1502 }
1503 
1504 /**
1505  * amdgpu_vm_prt_put - drop a PRT user
1506  */
1507 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1508 {
1509 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1510 		amdgpu_vm_update_prt_state(adev);
1511 }
1512 
1513 /**
1514  * amdgpu_vm_prt_cb - callback for updating the PRT status
1515  */
1516 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1517 {
1518 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1519 
1520 	amdgpu_vm_prt_put(cb->adev);
1521 	kfree(cb);
1522 }
1523 
1524 /**
1525  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1526  */
1527 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1528 				 struct dma_fence *fence)
1529 {
1530 	struct amdgpu_prt_cb *cb;
1531 
1532 	if (!adev->gart.gart_funcs->set_prt)
1533 		return;
1534 
1535 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1536 	if (!cb) {
1537 		/* Last resort when we are OOM */
1538 		if (fence)
1539 			dma_fence_wait(fence, false);
1540 
1541 		amdgpu_vm_prt_put(adev);
1542 	} else {
1543 		cb->adev = adev;
1544 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1545 						     amdgpu_vm_prt_cb))
1546 			amdgpu_vm_prt_cb(fence, &cb->cb);
1547 	}
1548 }
1549 
1550 /**
1551  * amdgpu_vm_free_mapping - free a mapping
1552  *
1553  * @adev: amdgpu_device pointer
1554  * @vm: requested vm
1555  * @mapping: mapping to be freed
1556  * @fence: fence of the unmap operation
1557  *
1558  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1559  */
1560 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1561 				   struct amdgpu_vm *vm,
1562 				   struct amdgpu_bo_va_mapping *mapping,
1563 				   struct dma_fence *fence)
1564 {
1565 	if (mapping->flags & AMDGPU_PTE_PRT)
1566 		amdgpu_vm_add_prt_cb(adev, fence);
1567 	kfree(mapping);
1568 }
1569 
1570 /**
1571  * amdgpu_vm_prt_fini - finish all prt mappings
1572  *
1573  * @adev: amdgpu_device pointer
1574  * @vm: requested vm
1575  *
1576  * Register a cleanup callback to disable PRT support after VM dies.
1577  */
1578 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1579 {
1580 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1581 	struct dma_fence *excl, **shared;
1582 	unsigned i, shared_count;
1583 	int r;
1584 
1585 	r = reservation_object_get_fences_rcu(resv, &excl,
1586 					      &shared_count, &shared);
1587 	if (r) {
1588 		/* Not enough memory to grab the fence list, as last resort
1589 		 * block for all the fences to complete.
1590 		 */
1591 		reservation_object_wait_timeout_rcu(resv, true, false,
1592 						    MAX_SCHEDULE_TIMEOUT);
1593 		return;
1594 	}
1595 
1596 	/* Add a callback for each fence in the reservation object */
1597 	amdgpu_vm_prt_get(adev);
1598 	amdgpu_vm_add_prt_cb(adev, excl);
1599 
1600 	for (i = 0; i < shared_count; ++i) {
1601 		amdgpu_vm_prt_get(adev);
1602 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1603 	}
1604 
1605 	kfree(shared);
1606 }
1607 
1608 /**
1609  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1610  *
1611  * @adev: amdgpu_device pointer
1612  * @vm: requested vm
1613  * @fence: optional resulting fence (unchanged if no work needed to be done
1614  * or if an error occurred)
1615  *
1616  * Make sure all freed BOs are cleared in the PT.
1617  * Returns 0 for success.
1618  *
1619  * PTs have to be reserved and mutex must be locked!
1620  */
1621 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1622 			  struct amdgpu_vm *vm,
1623 			  struct dma_fence **fence)
1624 {
1625 	struct amdgpu_bo_va_mapping *mapping;
1626 	struct dma_fence *f = NULL;
1627 	int r;
1628 	uint64_t init_pte_value = 0;
1629 
1630 	while (!list_empty(&vm->freed)) {
1631 		mapping = list_first_entry(&vm->freed,
1632 			struct amdgpu_bo_va_mapping, list);
1633 		list_del(&mapping->list);
1634 
1635 		if (vm->pte_support_ats)
1636 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1637 
1638 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1639 						mapping->start, mapping->last,
1640 						init_pte_value, 0, &f);
1641 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1642 		if (r) {
1643 			dma_fence_put(f);
1644 			return r;
1645 		}
1646 	}
1647 
1648 	if (fence && f) {
1649 		dma_fence_put(*fence);
1650 		*fence = f;
1651 	} else {
1652 		dma_fence_put(f);
1653 	}
1654 
1655 	return 0;
1656 
1657 }
1658 
1659 /**
1660  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1661  *
1662  * @adev: amdgpu_device pointer
1663  * @vm: requested vm
1664  * @sync: sync object to add fences to
1665  *
1666  * Make sure all BOs which are moved are updated in the PTs.
1667  * Returns 0 for success.
1668  *
1669  * PTs have to be reserved!
1670  */
1671 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1672 			   struct amdgpu_vm *vm)
1673 {
1674 	bool clear;
1675 	int r = 0;
1676 
1677 	spin_lock(&vm->status_lock);
1678 	while (!list_empty(&vm->moved)) {
1679 		struct amdgpu_bo_va *bo_va;
1680 		struct reservation_object *resv;
1681 
1682 		bo_va = list_first_entry(&vm->moved,
1683 			struct amdgpu_bo_va, base.vm_status);
1684 		spin_unlock(&vm->status_lock);
1685 
1686 		resv = bo_va->base.bo->tbo.resv;
1687 
1688 		/* Per VM BOs never need to bo cleared in the page tables */
1689 		if (resv == vm->root.base.bo->tbo.resv)
1690 			clear = false;
1691 		/* Try to reserve the BO to avoid clearing its ptes */
1692 		else if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1693 			clear = false;
1694 		/* Somebody else is using the BO right now */
1695 		else
1696 			clear = true;
1697 
1698 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1699 		if (r)
1700 			return r;
1701 
1702 		if (!clear && resv != vm->root.base.bo->tbo.resv)
1703 			reservation_object_unlock(resv);
1704 
1705 		spin_lock(&vm->status_lock);
1706 	}
1707 	spin_unlock(&vm->status_lock);
1708 
1709 	return r;
1710 }
1711 
1712 /**
1713  * amdgpu_vm_bo_add - add a bo to a specific vm
1714  *
1715  * @adev: amdgpu_device pointer
1716  * @vm: requested vm
1717  * @bo: amdgpu buffer object
1718  *
1719  * Add @bo into the requested vm.
1720  * Add @bo to the list of bos associated with the vm
1721  * Returns newly added bo_va or NULL for failure
1722  *
1723  * Object has to be reserved!
1724  */
1725 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1726 				      struct amdgpu_vm *vm,
1727 				      struct amdgpu_bo *bo)
1728 {
1729 	struct amdgpu_bo_va *bo_va;
1730 
1731 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1732 	if (bo_va == NULL) {
1733 		return NULL;
1734 	}
1735 	bo_va->base.vm = vm;
1736 	bo_va->base.bo = bo;
1737 	INIT_LIST_HEAD(&bo_va->base.bo_list);
1738 	INIT_LIST_HEAD(&bo_va->base.vm_status);
1739 
1740 	bo_va->ref_count = 1;
1741 	INIT_LIST_HEAD(&bo_va->valids);
1742 	INIT_LIST_HEAD(&bo_va->invalids);
1743 
1744 	if (!bo)
1745 		return bo_va;
1746 
1747 	list_add_tail(&bo_va->base.bo_list, &bo->va);
1748 
1749 	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
1750 		return bo_va;
1751 
1752 	if (bo->preferred_domains &
1753 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
1754 		return bo_va;
1755 
1756 	/*
1757 	 * We checked all the prerequisites, but it looks like this per VM BO
1758 	 * is currently evicted. add the BO to the evicted list to make sure it
1759 	 * is validated on next VM use to avoid fault.
1760 	 * */
1761 	spin_lock(&vm->status_lock);
1762 	list_move_tail(&bo_va->base.vm_status, &vm->evicted);
1763 	spin_unlock(&vm->status_lock);
1764 
1765 	return bo_va;
1766 }
1767 
1768 
1769 /**
1770  * amdgpu_vm_bo_insert_mapping - insert a new mapping
1771  *
1772  * @adev: amdgpu_device pointer
1773  * @bo_va: bo_va to store the address
1774  * @mapping: the mapping to insert
1775  *
1776  * Insert a new mapping into all structures.
1777  */
1778 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1779 				    struct amdgpu_bo_va *bo_va,
1780 				    struct amdgpu_bo_va_mapping *mapping)
1781 {
1782 	struct amdgpu_vm *vm = bo_va->base.vm;
1783 	struct amdgpu_bo *bo = bo_va->base.bo;
1784 
1785 	mapping->bo_va = bo_va;
1786 	list_add(&mapping->list, &bo_va->invalids);
1787 	amdgpu_vm_it_insert(mapping, &vm->va);
1788 
1789 	if (mapping->flags & AMDGPU_PTE_PRT)
1790 		amdgpu_vm_prt_get(adev);
1791 
1792 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1793 		spin_lock(&vm->status_lock);
1794 		if (list_empty(&bo_va->base.vm_status))
1795 			list_add(&bo_va->base.vm_status, &vm->moved);
1796 		spin_unlock(&vm->status_lock);
1797 	}
1798 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1799 }
1800 
1801 /**
1802  * amdgpu_vm_bo_map - map bo inside a vm
1803  *
1804  * @adev: amdgpu_device pointer
1805  * @bo_va: bo_va to store the address
1806  * @saddr: where to map the BO
1807  * @offset: requested offset in the BO
1808  * @flags: attributes of pages (read/write/valid/etc.)
1809  *
1810  * Add a mapping of the BO at the specefied addr into the VM.
1811  * Returns 0 for success, error for failure.
1812  *
1813  * Object has to be reserved and unreserved outside!
1814  */
1815 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1816 		     struct amdgpu_bo_va *bo_va,
1817 		     uint64_t saddr, uint64_t offset,
1818 		     uint64_t size, uint64_t flags)
1819 {
1820 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1821 	struct amdgpu_bo *bo = bo_va->base.bo;
1822 	struct amdgpu_vm *vm = bo_va->base.vm;
1823 	uint64_t eaddr;
1824 
1825 	/* validate the parameters */
1826 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1827 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1828 		return -EINVAL;
1829 
1830 	/* make sure object fit at this offset */
1831 	eaddr = saddr + size - 1;
1832 	if (saddr >= eaddr ||
1833 	    (bo && offset + size > amdgpu_bo_size(bo)))
1834 		return -EINVAL;
1835 
1836 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1837 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1838 
1839 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1840 	if (tmp) {
1841 		/* bo and tmp overlap, invalid addr */
1842 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1843 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1844 			tmp->start, tmp->last + 1);
1845 		return -EINVAL;
1846 	}
1847 
1848 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1849 	if (!mapping)
1850 		return -ENOMEM;
1851 
1852 	mapping->start = saddr;
1853 	mapping->last = eaddr;
1854 	mapping->offset = offset;
1855 	mapping->flags = flags;
1856 
1857 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1864  *
1865  * @adev: amdgpu_device pointer
1866  * @bo_va: bo_va to store the address
1867  * @saddr: where to map the BO
1868  * @offset: requested offset in the BO
1869  * @flags: attributes of pages (read/write/valid/etc.)
1870  *
1871  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1872  * mappings as we do so.
1873  * Returns 0 for success, error for failure.
1874  *
1875  * Object has to be reserved and unreserved outside!
1876  */
1877 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1878 			     struct amdgpu_bo_va *bo_va,
1879 			     uint64_t saddr, uint64_t offset,
1880 			     uint64_t size, uint64_t flags)
1881 {
1882 	struct amdgpu_bo_va_mapping *mapping;
1883 	struct amdgpu_bo *bo = bo_va->base.bo;
1884 	uint64_t eaddr;
1885 	int r;
1886 
1887 	/* validate the parameters */
1888 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1889 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1890 		return -EINVAL;
1891 
1892 	/* make sure object fit at this offset */
1893 	eaddr = saddr + size - 1;
1894 	if (saddr >= eaddr ||
1895 	    (bo && offset + size > amdgpu_bo_size(bo)))
1896 		return -EINVAL;
1897 
1898 	/* Allocate all the needed memory */
1899 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1900 	if (!mapping)
1901 		return -ENOMEM;
1902 
1903 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1904 	if (r) {
1905 		kfree(mapping);
1906 		return r;
1907 	}
1908 
1909 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1910 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1911 
1912 	mapping->start = saddr;
1913 	mapping->last = eaddr;
1914 	mapping->offset = offset;
1915 	mapping->flags = flags;
1916 
1917 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1918 
1919 	return 0;
1920 }
1921 
1922 /**
1923  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1924  *
1925  * @adev: amdgpu_device pointer
1926  * @bo_va: bo_va to remove the address from
1927  * @saddr: where to the BO is mapped
1928  *
1929  * Remove a mapping of the BO at the specefied addr from the VM.
1930  * Returns 0 for success, error for failure.
1931  *
1932  * Object has to be reserved and unreserved outside!
1933  */
1934 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1935 		       struct amdgpu_bo_va *bo_va,
1936 		       uint64_t saddr)
1937 {
1938 	struct amdgpu_bo_va_mapping *mapping;
1939 	struct amdgpu_vm *vm = bo_va->base.vm;
1940 	bool valid = true;
1941 
1942 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1943 
1944 	list_for_each_entry(mapping, &bo_va->valids, list) {
1945 		if (mapping->start == saddr)
1946 			break;
1947 	}
1948 
1949 	if (&mapping->list == &bo_va->valids) {
1950 		valid = false;
1951 
1952 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1953 			if (mapping->start == saddr)
1954 				break;
1955 		}
1956 
1957 		if (&mapping->list == &bo_va->invalids)
1958 			return -ENOENT;
1959 	}
1960 
1961 	list_del(&mapping->list);
1962 	amdgpu_vm_it_remove(mapping, &vm->va);
1963 	mapping->bo_va = NULL;
1964 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1965 
1966 	if (valid)
1967 		list_add(&mapping->list, &vm->freed);
1968 	else
1969 		amdgpu_vm_free_mapping(adev, vm, mapping,
1970 				       bo_va->last_pt_update);
1971 
1972 	return 0;
1973 }
1974 
1975 /**
1976  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1977  *
1978  * @adev: amdgpu_device pointer
1979  * @vm: VM structure to use
1980  * @saddr: start of the range
1981  * @size: size of the range
1982  *
1983  * Remove all mappings in a range, split them as appropriate.
1984  * Returns 0 for success, error for failure.
1985  */
1986 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1987 				struct amdgpu_vm *vm,
1988 				uint64_t saddr, uint64_t size)
1989 {
1990 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1991 	LIST_HEAD(removed);
1992 	uint64_t eaddr;
1993 
1994 	eaddr = saddr + size - 1;
1995 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1996 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1997 
1998 	/* Allocate all the needed memory */
1999 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2000 	if (!before)
2001 		return -ENOMEM;
2002 	INIT_LIST_HEAD(&before->list);
2003 
2004 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2005 	if (!after) {
2006 		kfree(before);
2007 		return -ENOMEM;
2008 	}
2009 	INIT_LIST_HEAD(&after->list);
2010 
2011 	/* Now gather all removed mappings */
2012 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2013 	while (tmp) {
2014 		/* Remember mapping split at the start */
2015 		if (tmp->start < saddr) {
2016 			before->start = tmp->start;
2017 			before->last = saddr - 1;
2018 			before->offset = tmp->offset;
2019 			before->flags = tmp->flags;
2020 			list_add(&before->list, &tmp->list);
2021 		}
2022 
2023 		/* Remember mapping split at the end */
2024 		if (tmp->last > eaddr) {
2025 			after->start = eaddr + 1;
2026 			after->last = tmp->last;
2027 			after->offset = tmp->offset;
2028 			after->offset += after->start - tmp->start;
2029 			after->flags = tmp->flags;
2030 			list_add(&after->list, &tmp->list);
2031 		}
2032 
2033 		list_del(&tmp->list);
2034 		list_add(&tmp->list, &removed);
2035 
2036 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2037 	}
2038 
2039 	/* And free them up */
2040 	list_for_each_entry_safe(tmp, next, &removed, list) {
2041 		amdgpu_vm_it_remove(tmp, &vm->va);
2042 		list_del(&tmp->list);
2043 
2044 		if (tmp->start < saddr)
2045 		    tmp->start = saddr;
2046 		if (tmp->last > eaddr)
2047 		    tmp->last = eaddr;
2048 
2049 		tmp->bo_va = NULL;
2050 		list_add(&tmp->list, &vm->freed);
2051 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2052 	}
2053 
2054 	/* Insert partial mapping before the range */
2055 	if (!list_empty(&before->list)) {
2056 		amdgpu_vm_it_insert(before, &vm->va);
2057 		if (before->flags & AMDGPU_PTE_PRT)
2058 			amdgpu_vm_prt_get(adev);
2059 	} else {
2060 		kfree(before);
2061 	}
2062 
2063 	/* Insert partial mapping after the range */
2064 	if (!list_empty(&after->list)) {
2065 		amdgpu_vm_it_insert(after, &vm->va);
2066 		if (after->flags & AMDGPU_PTE_PRT)
2067 			amdgpu_vm_prt_get(adev);
2068 	} else {
2069 		kfree(after);
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2077  *
2078  * @vm: the requested VM
2079  *
2080  * Find a mapping by it's address.
2081  */
2082 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2083 							 uint64_t addr)
2084 {
2085 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2086 }
2087 
2088 /**
2089  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2090  *
2091  * @adev: amdgpu_device pointer
2092  * @bo_va: requested bo_va
2093  *
2094  * Remove @bo_va->bo from the requested vm.
2095  *
2096  * Object have to be reserved!
2097  */
2098 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2099 		      struct amdgpu_bo_va *bo_va)
2100 {
2101 	struct amdgpu_bo_va_mapping *mapping, *next;
2102 	struct amdgpu_vm *vm = bo_va->base.vm;
2103 
2104 	list_del(&bo_va->base.bo_list);
2105 
2106 	spin_lock(&vm->status_lock);
2107 	list_del(&bo_va->base.vm_status);
2108 	spin_unlock(&vm->status_lock);
2109 
2110 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2111 		list_del(&mapping->list);
2112 		amdgpu_vm_it_remove(mapping, &vm->va);
2113 		mapping->bo_va = NULL;
2114 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2115 		list_add(&mapping->list, &vm->freed);
2116 	}
2117 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2118 		list_del(&mapping->list);
2119 		amdgpu_vm_it_remove(mapping, &vm->va);
2120 		amdgpu_vm_free_mapping(adev, vm, mapping,
2121 				       bo_va->last_pt_update);
2122 	}
2123 
2124 	dma_fence_put(bo_va->last_pt_update);
2125 	kfree(bo_va);
2126 }
2127 
2128 /**
2129  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2130  *
2131  * @adev: amdgpu_device pointer
2132  * @vm: requested vm
2133  * @bo: amdgpu buffer object
2134  *
2135  * Mark @bo as invalid.
2136  */
2137 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2138 			     struct amdgpu_bo *bo, bool evicted)
2139 {
2140 	struct amdgpu_vm_bo_base *bo_base;
2141 
2142 	list_for_each_entry(bo_base, &bo->va, bo_list) {
2143 		struct amdgpu_vm *vm = bo_base->vm;
2144 
2145 		bo_base->moved = true;
2146 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2147 			spin_lock(&bo_base->vm->status_lock);
2148 			if (bo->tbo.type == ttm_bo_type_kernel)
2149 				list_move(&bo_base->vm_status, &vm->evicted);
2150 			else
2151 				list_move_tail(&bo_base->vm_status,
2152 					       &vm->evicted);
2153 			spin_unlock(&bo_base->vm->status_lock);
2154 			continue;
2155 		}
2156 
2157 		if (bo->tbo.type == ttm_bo_type_kernel) {
2158 			spin_lock(&bo_base->vm->status_lock);
2159 			if (list_empty(&bo_base->vm_status))
2160 				list_add(&bo_base->vm_status, &vm->relocated);
2161 			spin_unlock(&bo_base->vm->status_lock);
2162 			continue;
2163 		}
2164 
2165 		spin_lock(&bo_base->vm->status_lock);
2166 		if (list_empty(&bo_base->vm_status))
2167 			list_add(&bo_base->vm_status, &vm->moved);
2168 		spin_unlock(&bo_base->vm->status_lock);
2169 	}
2170 }
2171 
2172 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2173 {
2174 	/* Total bits covered by PD + PTs */
2175 	unsigned bits = ilog2(vm_size) + 18;
2176 
2177 	/* Make sure the PD is 4K in size up to 8GB address space.
2178 	   Above that split equal between PD and PTs */
2179 	if (vm_size <= 8)
2180 		return (bits - 9);
2181 	else
2182 		return ((bits + 3) / 2);
2183 }
2184 
2185 /**
2186  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2187  *
2188  * @adev: amdgpu_device pointer
2189  * @vm_size: the default vm size if it's set auto
2190  */
2191 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size,
2192 			   uint32_t fragment_size_default, unsigned max_level,
2193 			   unsigned max_bits)
2194 {
2195 	uint64_t tmp;
2196 
2197 	/* adjust vm size first */
2198 	if (amdgpu_vm_size != -1) {
2199 		unsigned max_size = 1 << (max_bits - 30);
2200 
2201 		vm_size = amdgpu_vm_size;
2202 		if (vm_size > max_size) {
2203 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2204 				 amdgpu_vm_size, max_size);
2205 			vm_size = max_size;
2206 		}
2207 	}
2208 
2209 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2210 
2211 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2212 	if (amdgpu_vm_block_size != -1)
2213 		tmp >>= amdgpu_vm_block_size - 9;
2214 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2215 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2216 	switch (adev->vm_manager.num_level) {
2217 	case 3:
2218 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2219 		break;
2220 	case 2:
2221 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2222 		break;
2223 	case 1:
2224 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2225 		break;
2226 	default:
2227 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2228 	}
2229 	/* block size depends on vm size and hw setup*/
2230 	if (amdgpu_vm_block_size != -1)
2231 		adev->vm_manager.block_size =
2232 			min((unsigned)amdgpu_vm_block_size, max_bits
2233 			    - AMDGPU_GPU_PAGE_SHIFT
2234 			    - 9 * adev->vm_manager.num_level);
2235 	else if (adev->vm_manager.num_level > 1)
2236 		adev->vm_manager.block_size = 9;
2237 	else
2238 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2239 
2240 	if (amdgpu_vm_fragment_size == -1)
2241 		adev->vm_manager.fragment_size = fragment_size_default;
2242 	else
2243 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2244 
2245 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2246 		 vm_size, adev->vm_manager.num_level + 1,
2247 		 adev->vm_manager.block_size,
2248 		 adev->vm_manager.fragment_size);
2249 }
2250 
2251 /**
2252  * amdgpu_vm_init - initialize a vm instance
2253  *
2254  * @adev: amdgpu_device pointer
2255  * @vm: requested vm
2256  * @vm_context: Indicates if it GFX or Compute context
2257  *
2258  * Init @vm fields.
2259  */
2260 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2261 		   int vm_context, unsigned int pasid)
2262 {
2263 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2264 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2265 	uint64_t init_pde_value = 0, flags;
2266 	unsigned ring_instance;
2267 	struct amdgpu_ring *ring;
2268 	struct drm_sched_rq *rq;
2269 	unsigned long size;
2270 	int r, i;
2271 
2272 	vm->va = RB_ROOT_CACHED;
2273 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2274 		vm->reserved_vmid[i] = NULL;
2275 	spin_lock_init(&vm->status_lock);
2276 	INIT_LIST_HEAD(&vm->evicted);
2277 	INIT_LIST_HEAD(&vm->relocated);
2278 	INIT_LIST_HEAD(&vm->moved);
2279 	INIT_LIST_HEAD(&vm->freed);
2280 
2281 	/* create scheduler entity for page table updates */
2282 
2283 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2284 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2285 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2286 	rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2287 	r = drm_sched_entity_init(&ring->sched, &vm->entity,
2288 				  rq, amdgpu_sched_jobs, NULL);
2289 	if (r)
2290 		return r;
2291 
2292 	vm->pte_support_ats = false;
2293 
2294 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2295 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2296 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2297 
2298 		if (adev->asic_type == CHIP_RAVEN) {
2299 			vm->pte_support_ats = true;
2300 			init_pde_value = AMDGPU_PTE_DEFAULT_ATC
2301 					| AMDGPU_PDE_PTE;
2302 
2303 		}
2304 	} else
2305 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2306 						AMDGPU_VM_USE_CPU_FOR_GFX);
2307 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2308 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2309 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2310 		  "CPU update of VM recommended only for large BAR system\n");
2311 	vm->last_update = NULL;
2312 
2313 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2314 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
2315 	if (vm->use_cpu_for_update)
2316 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2317 	else
2318 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2319 				AMDGPU_GEM_CREATE_SHADOW);
2320 
2321 	size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level);
2322 	r = amdgpu_bo_create(adev, size, align, true, AMDGPU_GEM_DOMAIN_VRAM,
2323 			     flags, NULL, NULL, init_pde_value,
2324 			     &vm->root.base.bo);
2325 	if (r)
2326 		goto error_free_sched_entity;
2327 
2328 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2329 	if (r)
2330 		goto error_free_root;
2331 
2332 	vm->root.base.vm = vm;
2333 	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2334 	list_add_tail(&vm->root.base.vm_status, &vm->evicted);
2335 	amdgpu_bo_unreserve(vm->root.base.bo);
2336 
2337 	if (pasid) {
2338 		unsigned long flags;
2339 
2340 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2341 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2342 			      GFP_ATOMIC);
2343 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2344 		if (r < 0)
2345 			goto error_free_root;
2346 
2347 		vm->pasid = pasid;
2348 	}
2349 
2350 	INIT_KFIFO(vm->faults);
2351 	vm->fault_credit = 16;
2352 
2353 	return 0;
2354 
2355 error_free_root:
2356 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2357 	amdgpu_bo_unref(&vm->root.base.bo);
2358 	vm->root.base.bo = NULL;
2359 
2360 error_free_sched_entity:
2361 	drm_sched_entity_fini(&ring->sched, &vm->entity);
2362 
2363 	return r;
2364 }
2365 
2366 /**
2367  * amdgpu_vm_free_levels - free PD/PT levels
2368  *
2369  * @adev: amdgpu device structure
2370  * @parent: PD/PT starting level to free
2371  * @level: level of parent structure
2372  *
2373  * Free the page directory or page table level and all sub levels.
2374  */
2375 static void amdgpu_vm_free_levels(struct amdgpu_device *adev,
2376 				  struct amdgpu_vm_pt *parent,
2377 				  unsigned level)
2378 {
2379 	unsigned i, num_entries = amdgpu_vm_num_entries(adev, level);
2380 
2381 	if (parent->base.bo) {
2382 		list_del(&parent->base.bo_list);
2383 		list_del(&parent->base.vm_status);
2384 		amdgpu_bo_unref(&parent->base.bo->shadow);
2385 		amdgpu_bo_unref(&parent->base.bo);
2386 	}
2387 
2388 	if (parent->entries)
2389 		for (i = 0; i < num_entries; i++)
2390 			amdgpu_vm_free_levels(adev, &parent->entries[i],
2391 					      level + 1);
2392 
2393 	kvfree(parent->entries);
2394 }
2395 
2396 /**
2397  * amdgpu_vm_fini - tear down a vm instance
2398  *
2399  * @adev: amdgpu_device pointer
2400  * @vm: requested vm
2401  *
2402  * Tear down @vm.
2403  * Unbind the VM and remove all bos from the vm bo list
2404  */
2405 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2406 {
2407 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2408 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2409 	struct amdgpu_bo *root;
2410 	u64 fault;
2411 	int i, r;
2412 
2413 	/* Clear pending page faults from IH when the VM is destroyed */
2414 	while (kfifo_get(&vm->faults, &fault))
2415 		amdgpu_ih_clear_fault(adev, fault);
2416 
2417 	if (vm->pasid) {
2418 		unsigned long flags;
2419 
2420 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2421 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2422 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2423 	}
2424 
2425 	drm_sched_entity_fini(vm->entity.sched, &vm->entity);
2426 
2427 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2428 		dev_err(adev->dev, "still active bo inside vm\n");
2429 	}
2430 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2431 					     &vm->va.rb_root, rb) {
2432 		list_del(&mapping->list);
2433 		amdgpu_vm_it_remove(mapping, &vm->va);
2434 		kfree(mapping);
2435 	}
2436 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2437 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2438 			amdgpu_vm_prt_fini(adev, vm);
2439 			prt_fini_needed = false;
2440 		}
2441 
2442 		list_del(&mapping->list);
2443 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2444 	}
2445 
2446 	root = amdgpu_bo_ref(vm->root.base.bo);
2447 	r = amdgpu_bo_reserve(root, true);
2448 	if (r) {
2449 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2450 	} else {
2451 		amdgpu_vm_free_levels(adev, &vm->root,
2452 				      adev->vm_manager.root_level);
2453 		amdgpu_bo_unreserve(root);
2454 	}
2455 	amdgpu_bo_unref(&root);
2456 	dma_fence_put(vm->last_update);
2457 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2458 		amdgpu_vmid_free_reserved(adev, vm, i);
2459 }
2460 
2461 /**
2462  * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
2463  *
2464  * @adev: amdgpu_device pointer
2465  * @pasid: PASID do identify the VM
2466  *
2467  * This function is expected to be called in interrupt context. Returns
2468  * true if there was fault credit, false otherwise
2469  */
2470 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
2471 				  unsigned int pasid)
2472 {
2473 	struct amdgpu_vm *vm;
2474 
2475 	spin_lock(&adev->vm_manager.pasid_lock);
2476 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
2477 	if (!vm) {
2478 		/* VM not found, can't track fault credit */
2479 		spin_unlock(&adev->vm_manager.pasid_lock);
2480 		return true;
2481 	}
2482 
2483 	/* No lock needed. only accessed by IRQ handler */
2484 	if (!vm->fault_credit) {
2485 		/* Too many faults in this VM */
2486 		spin_unlock(&adev->vm_manager.pasid_lock);
2487 		return false;
2488 	}
2489 
2490 	vm->fault_credit--;
2491 	spin_unlock(&adev->vm_manager.pasid_lock);
2492 	return true;
2493 }
2494 
2495 /**
2496  * amdgpu_vm_manager_init - init the VM manager
2497  *
2498  * @adev: amdgpu_device pointer
2499  *
2500  * Initialize the VM manager structures
2501  */
2502 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2503 {
2504 	unsigned i;
2505 
2506 	amdgpu_vmid_mgr_init(adev);
2507 
2508 	adev->vm_manager.fence_context =
2509 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2510 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2511 		adev->vm_manager.seqno[i] = 0;
2512 
2513 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2514 	spin_lock_init(&adev->vm_manager.prt_lock);
2515 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2516 
2517 	/* If not overridden by the user, by default, only in large BAR systems
2518 	 * Compute VM tables will be updated by CPU
2519 	 */
2520 #ifdef CONFIG_X86_64
2521 	if (amdgpu_vm_update_mode == -1) {
2522 		if (amdgpu_vm_is_large_bar(adev))
2523 			adev->vm_manager.vm_update_mode =
2524 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2525 		else
2526 			adev->vm_manager.vm_update_mode = 0;
2527 	} else
2528 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2529 #else
2530 	adev->vm_manager.vm_update_mode = 0;
2531 #endif
2532 
2533 	idr_init(&adev->vm_manager.pasid_idr);
2534 	spin_lock_init(&adev->vm_manager.pasid_lock);
2535 }
2536 
2537 /**
2538  * amdgpu_vm_manager_fini - cleanup VM manager
2539  *
2540  * @adev: amdgpu_device pointer
2541  *
2542  * Cleanup the VM manager and free resources.
2543  */
2544 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2545 {
2546 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2547 	idr_destroy(&adev->vm_manager.pasid_idr);
2548 
2549 	amdgpu_vmid_mgr_fini(adev);
2550 }
2551 
2552 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2553 {
2554 	union drm_amdgpu_vm *args = data;
2555 	struct amdgpu_device *adev = dev->dev_private;
2556 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2557 	int r;
2558 
2559 	switch (args->in.op) {
2560 	case AMDGPU_VM_OP_RESERVE_VMID:
2561 		/* current, we only have requirement to reserve vmid from gfxhub */
2562 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2563 		if (r)
2564 			return r;
2565 		break;
2566 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2567 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2568 		break;
2569 	default:
2570 		return -EINVAL;
2571 	}
2572 
2573 	return 0;
2574 }
2575