xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /**
54  * amdgpu_vm_num_pde - return the number of page directory entries
55  *
56  * @adev: amdgpu_device pointer
57  *
58  * Calculate the number of page directory entries.
59  */
60 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
61 {
62 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
63 }
64 
65 /**
66  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
67  *
68  * @adev: amdgpu_device pointer
69  *
70  * Calculate the size of the page directory in bytes.
71  */
72 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
73 {
74 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
75 }
76 
77 /**
78  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
79  *
80  * @vm: vm providing the BOs
81  * @validated: head of validation list
82  * @entry: entry to add
83  *
84  * Add the page directory to the list of BOs to
85  * validate for command submission.
86  */
87 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
88 			 struct list_head *validated,
89 			 struct amdgpu_bo_list_entry *entry)
90 {
91 	entry->robj = vm->page_directory;
92 	entry->priority = 0;
93 	entry->tv.bo = &vm->page_directory->tbo;
94 	entry->tv.shared = true;
95 	list_add(&entry->tv.head, validated);
96 }
97 
98 /**
99  * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
100  *
101  * @vm: vm providing the BOs
102  * @duplicates: head of duplicates list
103  *
104  * Add the page directory to the BO duplicates list
105  * for command submission.
106  */
107 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
108 {
109 	unsigned i;
110 
111 	/* add the vm page table to the list */
112 	for (i = 0; i <= vm->max_pde_used; ++i) {
113 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
114 
115 		if (!entry->robj)
116 			continue;
117 
118 		list_add(&entry->tv.head, duplicates);
119 	}
120 
121 }
122 
123 /**
124  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
125  *
126  * @adev: amdgpu device instance
127  * @vm: vm providing the BOs
128  *
129  * Move the PT BOs to the tail of the LRU.
130  */
131 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
132 				  struct amdgpu_vm *vm)
133 {
134 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
135 	unsigned i;
136 
137 	spin_lock(&glob->lru_lock);
138 	for (i = 0; i <= vm->max_pde_used; ++i) {
139 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
140 
141 		if (!entry->robj)
142 			continue;
143 
144 		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
145 	}
146 	spin_unlock(&glob->lru_lock);
147 }
148 
149 /**
150  * amdgpu_vm_grab_id - allocate the next free VMID
151  *
152  * @vm: vm to allocate id for
153  * @ring: ring we want to submit job to
154  * @sync: sync object where we add dependencies
155  * @fence: fence protecting ID from reuse
156  *
157  * Allocate an id for the vm, adding fences to the sync obj as necessary.
158  */
159 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
160 		      struct amdgpu_sync *sync, struct fence *fence)
161 {
162 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
163 	struct amdgpu_device *adev = ring->adev;
164 	struct amdgpu_vm_manager_id *id;
165 	int r;
166 
167 	mutex_lock(&adev->vm_manager.lock);
168 
169 	/* check if the id is still valid */
170 	if (vm_id->id) {
171 		long owner;
172 
173 		id = &adev->vm_manager.ids[vm_id->id];
174 		owner = atomic_long_read(&id->owner);
175 		if (owner == (long)vm) {
176 			list_move_tail(&id->list, &adev->vm_manager.ids_lru);
177 			trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
178 
179 			fence_put(id->active);
180 			id->active = fence_get(fence);
181 
182 			mutex_unlock(&adev->vm_manager.lock);
183 			return 0;
184 		}
185 	}
186 
187 	/* we definately need to flush */
188 	vm_id->pd_gpu_addr = ~0ll;
189 
190 	id = list_first_entry(&adev->vm_manager.ids_lru,
191 			      struct amdgpu_vm_manager_id,
192 			      list);
193 	list_move_tail(&id->list, &adev->vm_manager.ids_lru);
194 	atomic_long_set(&id->owner, (long)vm);
195 
196 	vm_id->id = id - adev->vm_manager.ids;
197 	trace_amdgpu_vm_grab_id(vm, vm_id->id, ring->idx);
198 
199 	r = amdgpu_sync_fence(ring->adev, sync, id->active);
200 
201 	if (!r) {
202 		fence_put(id->active);
203 		id->active = fence_get(fence);
204 	}
205 
206 	mutex_unlock(&adev->vm_manager.lock);
207 	return r;
208 }
209 
210 /**
211  * amdgpu_vm_flush - hardware flush the vm
212  *
213  * @ring: ring to use for flush
214  * @vm: vm we want to flush
215  * @updates: last vm update that we waited for
216  *
217  * Flush the vm.
218  */
219 void amdgpu_vm_flush(struct amdgpu_ring *ring,
220 		     struct amdgpu_vm *vm,
221 		     struct fence *updates)
222 {
223 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
224 	struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
225 	struct fence *flushed_updates = vm_id->flushed_updates;
226 	bool is_later;
227 
228 	if (!flushed_updates)
229 		is_later = true;
230 	else if (!updates)
231 		is_later = false;
232 	else
233 		is_later = fence_is_later(updates, flushed_updates);
234 
235 	if (pd_addr != vm_id->pd_gpu_addr || is_later) {
236 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
237 		if (is_later) {
238 			vm_id->flushed_updates = fence_get(updates);
239 			fence_put(flushed_updates);
240 		}
241 		vm_id->pd_gpu_addr = pd_addr;
242 		amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
243 	}
244 }
245 
246 /**
247  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
248  *
249  * @vm: requested vm
250  * @bo: requested buffer object
251  *
252  * Find @bo inside the requested vm.
253  * Search inside the @bos vm list for the requested vm
254  * Returns the found bo_va or NULL if none is found
255  *
256  * Object has to be reserved!
257  */
258 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
259 				       struct amdgpu_bo *bo)
260 {
261 	struct amdgpu_bo_va *bo_va;
262 
263 	list_for_each_entry(bo_va, &bo->va, bo_list) {
264 		if (bo_va->vm == vm) {
265 			return bo_va;
266 		}
267 	}
268 	return NULL;
269 }
270 
271 /**
272  * amdgpu_vm_update_pages - helper to call the right asic function
273  *
274  * @adev: amdgpu_device pointer
275  * @gtt: GART instance to use for mapping
276  * @gtt_flags: GTT hw access flags
277  * @ib: indirect buffer to fill with commands
278  * @pe: addr of the page entry
279  * @addr: dst addr to write into pe
280  * @count: number of page entries to update
281  * @incr: increase next addr by incr bytes
282  * @flags: hw access flags
283  *
284  * Traces the parameters and calls the right asic functions
285  * to setup the page table using the DMA.
286  */
287 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
288 				   struct amdgpu_gart *gtt,
289 				   uint32_t gtt_flags,
290 				   struct amdgpu_ib *ib,
291 				   uint64_t pe, uint64_t addr,
292 				   unsigned count, uint32_t incr,
293 				   uint32_t flags)
294 {
295 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
296 
297 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
298 		uint64_t src = gtt->table_addr + (addr >> 12) * 8;
299 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
300 
301 	} else if (gtt) {
302 		dma_addr_t *pages_addr = gtt->pages_addr;
303 		amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
304 				    count, incr, flags);
305 
306 	} else if (count < 3) {
307 		amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
308 				    count, incr, flags);
309 
310 	} else {
311 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
312 				      count, incr, flags);
313 	}
314 }
315 
316 /**
317  * amdgpu_vm_clear_bo - initially clear the page dir/table
318  *
319  * @adev: amdgpu_device pointer
320  * @bo: bo to clear
321  *
322  * need to reserve bo first before calling it.
323  */
324 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
325 			      struct amdgpu_bo *bo)
326 {
327 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
328 	struct fence *fence = NULL;
329 	struct amdgpu_job *job;
330 	unsigned entries;
331 	uint64_t addr;
332 	int r;
333 
334 	r = reservation_object_reserve_shared(bo->tbo.resv);
335 	if (r)
336 		return r;
337 
338 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
339 	if (r)
340 		goto error;
341 
342 	addr = amdgpu_bo_gpu_offset(bo);
343 	entries = amdgpu_bo_size(bo) / 8;
344 
345 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
346 	if (r)
347 		goto error;
348 
349 	amdgpu_vm_update_pages(adev, NULL, 0, &job->ibs[0], addr, 0, entries,
350 			       0, 0);
351 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
352 
353 	WARN_ON(job->ibs[0].length_dw > 64);
354 	r = amdgpu_job_submit(job, ring, AMDGPU_FENCE_OWNER_VM, &fence);
355 	if (r)
356 		goto error_free;
357 
358 	amdgpu_bo_fence(bo, fence, true);
359 	fence_put(fence);
360 	return 0;
361 
362 error_free:
363 	amdgpu_job_free(job);
364 
365 error:
366 	return r;
367 }
368 
369 /**
370  * amdgpu_vm_map_gart - Resolve gart mapping of addr
371  *
372  * @pages_addr: optional DMA address to use for lookup
373  * @addr: the unmapped addr
374  *
375  * Look up the physical address of the page that the pte resolves
376  * to and return the pointer for the page table entry.
377  */
378 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
379 {
380 	uint64_t result;
381 
382 	if (pages_addr) {
383 		/* page table offset */
384 		result = pages_addr[addr >> PAGE_SHIFT];
385 
386 		/* in case cpu page size != gpu page size*/
387 		result |= addr & (~PAGE_MASK);
388 
389 	} else {
390 		/* No mapping required */
391 		result = addr;
392 	}
393 
394 	result &= 0xFFFFFFFFFFFFF000ULL;
395 
396 	return result;
397 }
398 
399 /**
400  * amdgpu_vm_update_pdes - make sure that page directory is valid
401  *
402  * @adev: amdgpu_device pointer
403  * @vm: requested vm
404  * @start: start of GPU address range
405  * @end: end of GPU address range
406  *
407  * Allocates new page tables if necessary
408  * and updates the page directory.
409  * Returns 0 for success, error for failure.
410  */
411 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
412 				    struct amdgpu_vm *vm)
413 {
414 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
415 	struct amdgpu_bo *pd = vm->page_directory;
416 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
417 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
418 	uint64_t last_pde = ~0, last_pt = ~0;
419 	unsigned count = 0, pt_idx, ndw;
420 	struct amdgpu_job *job;
421 	struct amdgpu_ib *ib;
422 	struct fence *fence = NULL;
423 
424 	int r;
425 
426 	/* padding, etc. */
427 	ndw = 64;
428 
429 	/* assume the worst case */
430 	ndw += vm->max_pde_used * 6;
431 
432 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
433 	if (r)
434 		return r;
435 
436 	ib = &job->ibs[0];
437 
438 	/* walk over the address space and update the page directory */
439 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
440 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
441 		uint64_t pde, pt;
442 
443 		if (bo == NULL)
444 			continue;
445 
446 		pt = amdgpu_bo_gpu_offset(bo);
447 		if (vm->page_tables[pt_idx].addr == pt)
448 			continue;
449 		vm->page_tables[pt_idx].addr = pt;
450 
451 		pde = pd_addr + pt_idx * 8;
452 		if (((last_pde + 8 * count) != pde) ||
453 		    ((last_pt + incr * count) != pt)) {
454 
455 			if (count) {
456 				amdgpu_vm_update_pages(adev, NULL, 0, ib,
457 						       last_pde, last_pt,
458 						       count, incr,
459 						       AMDGPU_PTE_VALID);
460 			}
461 
462 			count = 1;
463 			last_pde = pde;
464 			last_pt = pt;
465 		} else {
466 			++count;
467 		}
468 	}
469 
470 	if (count)
471 		amdgpu_vm_update_pages(adev, NULL, 0, ib, last_pde, last_pt,
472 				       count, incr, AMDGPU_PTE_VALID);
473 
474 	if (ib->length_dw != 0) {
475 		amdgpu_ring_pad_ib(ring, ib);
476 		amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
477 				 AMDGPU_FENCE_OWNER_VM);
478 		WARN_ON(ib->length_dw > ndw);
479 		r = amdgpu_job_submit(job, ring, AMDGPU_FENCE_OWNER_VM, &fence);
480 		if (r)
481 			goto error_free;
482 
483 		amdgpu_bo_fence(pd, fence, true);
484 		fence_put(vm->page_directory_fence);
485 		vm->page_directory_fence = fence_get(fence);
486 		fence_put(fence);
487 
488 	} else {
489 		amdgpu_job_free(job);
490 	}
491 
492 	return 0;
493 
494 error_free:
495 	amdgpu_job_free(job);
496 	return r;
497 }
498 
499 /**
500  * amdgpu_vm_frag_ptes - add fragment information to PTEs
501  *
502  * @adev: amdgpu_device pointer
503  * @gtt: GART instance to use for mapping
504  * @gtt_flags: GTT hw mapping flags
505  * @ib: IB for the update
506  * @pe_start: first PTE to handle
507  * @pe_end: last PTE to handle
508  * @addr: addr those PTEs should point to
509  * @flags: hw mapping flags
510  */
511 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
512 				struct amdgpu_gart *gtt,
513 				uint32_t gtt_flags,
514 				struct amdgpu_ib *ib,
515 				uint64_t pe_start, uint64_t pe_end,
516 				uint64_t addr, uint32_t flags)
517 {
518 	/**
519 	 * The MC L1 TLB supports variable sized pages, based on a fragment
520 	 * field in the PTE. When this field is set to a non-zero value, page
521 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
522 	 * flags are considered valid for all PTEs within the fragment range
523 	 * and corresponding mappings are assumed to be physically contiguous.
524 	 *
525 	 * The L1 TLB can store a single PTE for the whole fragment,
526 	 * significantly increasing the space available for translation
527 	 * caching. This leads to large improvements in throughput when the
528 	 * TLB is under pressure.
529 	 *
530 	 * The L2 TLB distributes small and large fragments into two
531 	 * asymmetric partitions. The large fragment cache is significantly
532 	 * larger. Thus, we try to use large fragments wherever possible.
533 	 * Userspace can support this by aligning virtual base address and
534 	 * allocation size to the fragment size.
535 	 */
536 
537 	/* SI and newer are optimized for 64KB */
538 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
539 	uint64_t frag_align = 0x80;
540 
541 	uint64_t frag_start = ALIGN(pe_start, frag_align);
542 	uint64_t frag_end = pe_end & ~(frag_align - 1);
543 
544 	unsigned count;
545 
546 	/* Abort early if there isn't anything to do */
547 	if (pe_start == pe_end)
548 		return;
549 
550 	/* system pages are non continuously */
551 	if (gtt || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
552 
553 		count = (pe_end - pe_start) / 8;
554 		amdgpu_vm_update_pages(adev, gtt, gtt_flags, ib, pe_start,
555 				       addr, count, AMDGPU_GPU_PAGE_SIZE,
556 				       flags);
557 		return;
558 	}
559 
560 	/* handle the 4K area at the beginning */
561 	if (pe_start != frag_start) {
562 		count = (frag_start - pe_start) / 8;
563 		amdgpu_vm_update_pages(adev, NULL, 0, ib, pe_start, addr,
564 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
565 		addr += AMDGPU_GPU_PAGE_SIZE * count;
566 	}
567 
568 	/* handle the area in the middle */
569 	count = (frag_end - frag_start) / 8;
570 	amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_start, addr, count,
571 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
572 
573 	/* handle the 4K area at the end */
574 	if (frag_end != pe_end) {
575 		addr += AMDGPU_GPU_PAGE_SIZE * count;
576 		count = (pe_end - frag_end) / 8;
577 		amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_end, addr,
578 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
579 	}
580 }
581 
582 /**
583  * amdgpu_vm_update_ptes - make sure that page tables are valid
584  *
585  * @adev: amdgpu_device pointer
586  * @gtt: GART instance to use for mapping
587  * @gtt_flags: GTT hw mapping flags
588  * @vm: requested vm
589  * @start: start of GPU address range
590  * @end: end of GPU address range
591  * @dst: destination address to map to
592  * @flags: mapping flags
593  *
594  * Update the page tables in the range @start - @end.
595  */
596 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
597 				  struct amdgpu_gart *gtt,
598 				  uint32_t gtt_flags,
599 				  struct amdgpu_vm *vm,
600 				  struct amdgpu_ib *ib,
601 				  uint64_t start, uint64_t end,
602 				  uint64_t dst, uint32_t flags)
603 {
604 	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
605 
606 	uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
607 	uint64_t addr;
608 
609 	/* walk over the address space and update the page tables */
610 	for (addr = start; addr < end; ) {
611 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
612 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
613 		unsigned nptes;
614 		uint64_t pe_start;
615 
616 		if ((addr & ~mask) == (end & ~mask))
617 			nptes = end - addr;
618 		else
619 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
620 
621 		pe_start = amdgpu_bo_gpu_offset(pt);
622 		pe_start += (addr & mask) * 8;
623 
624 		if (last_pe_end != pe_start) {
625 
626 			amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
627 					    last_pe_start, last_pe_end,
628 					    last_dst, flags);
629 
630 			last_pe_start = pe_start;
631 			last_pe_end = pe_start + 8 * nptes;
632 			last_dst = dst;
633 		} else {
634 			last_pe_end += 8 * nptes;
635 		}
636 
637 		addr += nptes;
638 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
639 	}
640 
641 	amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
642 			    last_pe_start, last_pe_end,
643 			    last_dst, flags);
644 }
645 
646 /**
647  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
648  *
649  * @adev: amdgpu_device pointer
650  * @gtt: GART instance to use for mapping
651  * @gtt_flags: flags as they are used for GTT
652  * @vm: requested vm
653  * @start: start of mapped range
654  * @last: last mapped entry
655  * @flags: flags for the entries
656  * @addr: addr to set the area to
657  * @fence: optional resulting fence
658  *
659  * Fill in the page table entries between @start and @last.
660  * Returns 0 for success, -EINVAL for failure.
661  */
662 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
663 				       struct amdgpu_gart *gtt,
664 				       uint32_t gtt_flags,
665 				       struct amdgpu_vm *vm,
666 				       uint64_t start, uint64_t last,
667 				       uint32_t flags, uint64_t addr,
668 				       struct fence **fence)
669 {
670 	struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
671 	void *owner = AMDGPU_FENCE_OWNER_VM;
672 	unsigned nptes, ncmds, ndw;
673 	struct amdgpu_job *job;
674 	struct amdgpu_ib *ib;
675 	struct fence *f = NULL;
676 	int r;
677 
678 	/* sync to everything on unmapping */
679 	if (!(flags & AMDGPU_PTE_VALID))
680 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
681 
682 	nptes = last - start + 1;
683 
684 	/*
685 	 * reserve space for one command every (1 << BLOCK_SIZE)
686 	 *  entries or 2k dwords (whatever is smaller)
687 	 */
688 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
689 
690 	/* padding, etc. */
691 	ndw = 64;
692 
693 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
694 		/* only copy commands needed */
695 		ndw += ncmds * 7;
696 
697 	} else if (gtt) {
698 		/* header for write data commands */
699 		ndw += ncmds * 4;
700 
701 		/* body of write data command */
702 		ndw += nptes * 2;
703 
704 	} else {
705 		/* set page commands needed */
706 		ndw += ncmds * 10;
707 
708 		/* two extra commands for begin/end of fragment */
709 		ndw += 2 * 10;
710 	}
711 
712 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
713 	if (r)
714 		return r;
715 
716 	ib = &job->ibs[0];
717 
718 	r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
719 			     owner);
720 	if (r)
721 		goto error_free;
722 
723 	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
724 	if (r)
725 		goto error_free;
726 
727 	amdgpu_vm_update_ptes(adev, gtt, gtt_flags, vm, ib, start, last + 1,
728 			      addr, flags);
729 
730 	amdgpu_ring_pad_ib(ring, ib);
731 	WARN_ON(ib->length_dw > ndw);
732 	r = amdgpu_job_submit(job, ring, AMDGPU_FENCE_OWNER_VM, &f);
733 	if (r)
734 		goto error_free;
735 
736 	amdgpu_bo_fence(vm->page_directory, f, true);
737 	if (fence) {
738 		fence_put(*fence);
739 		*fence = fence_get(f);
740 	}
741 	fence_put(f);
742 	return 0;
743 
744 error_free:
745 	amdgpu_job_free(job);
746 	return r;
747 }
748 
749 /**
750  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
751  *
752  * @adev: amdgpu_device pointer
753  * @gtt: GART instance to use for mapping
754  * @vm: requested vm
755  * @mapping: mapped range and flags to use for the update
756  * @addr: addr to set the area to
757  * @gtt_flags: flags as they are used for GTT
758  * @fence: optional resulting fence
759  *
760  * Split the mapping into smaller chunks so that each update fits
761  * into a SDMA IB.
762  * Returns 0 for success, -EINVAL for failure.
763  */
764 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
765 				      struct amdgpu_gart *gtt,
766 				      uint32_t gtt_flags,
767 				      struct amdgpu_vm *vm,
768 				      struct amdgpu_bo_va_mapping *mapping,
769 				      uint64_t addr, struct fence **fence)
770 {
771 	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
772 
773 	uint64_t start = mapping->it.start;
774 	uint32_t flags = gtt_flags;
775 	int r;
776 
777 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
778 	 * but in case of something, we filter the flags in first place
779 	 */
780 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
781 		flags &= ~AMDGPU_PTE_READABLE;
782 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
783 		flags &= ~AMDGPU_PTE_WRITEABLE;
784 
785 	trace_amdgpu_vm_bo_update(mapping);
786 
787 	addr += mapping->offset;
788 
789 	if (!gtt || ((gtt == &adev->gart) && (flags == gtt_flags)))
790 		return amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
791 						   start, mapping->it.last,
792 						   flags, addr, fence);
793 
794 	while (start != mapping->it.last + 1) {
795 		uint64_t last;
796 
797 		last = min((uint64_t)mapping->it.last, start + max_size);
798 		r = amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
799 						start, last, flags, addr,
800 						fence);
801 		if (r)
802 			return r;
803 
804 		start = last + 1;
805 		addr += max_size;
806 	}
807 
808 	return 0;
809 }
810 
811 /**
812  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
813  *
814  * @adev: amdgpu_device pointer
815  * @bo_va: requested BO and VM object
816  * @mem: ttm mem
817  *
818  * Fill in the page table entries for @bo_va.
819  * Returns 0 for success, -EINVAL for failure.
820  *
821  * Object have to be reserved and mutex must be locked!
822  */
823 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
824 			struct amdgpu_bo_va *bo_va,
825 			struct ttm_mem_reg *mem)
826 {
827 	struct amdgpu_vm *vm = bo_va->vm;
828 	struct amdgpu_bo_va_mapping *mapping;
829 	struct amdgpu_gart *gtt = NULL;
830 	uint32_t flags;
831 	uint64_t addr;
832 	int r;
833 
834 	if (mem) {
835 		addr = (u64)mem->start << PAGE_SHIFT;
836 		switch (mem->mem_type) {
837 		case TTM_PL_TT:
838 			gtt = &bo_va->bo->adev->gart;
839 			break;
840 
841 		case TTM_PL_VRAM:
842 			addr += adev->vm_manager.vram_base_offset;
843 			break;
844 
845 		default:
846 			break;
847 		}
848 	} else {
849 		addr = 0;
850 	}
851 
852 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
853 
854 	spin_lock(&vm->status_lock);
855 	if (!list_empty(&bo_va->vm_status))
856 		list_splice_init(&bo_va->valids, &bo_va->invalids);
857 	spin_unlock(&vm->status_lock);
858 
859 	list_for_each_entry(mapping, &bo_va->invalids, list) {
860 		r = amdgpu_vm_bo_split_mapping(adev, gtt, flags, vm, mapping, addr,
861 					       &bo_va->last_pt_update);
862 		if (r)
863 			return r;
864 	}
865 
866 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
867 		list_for_each_entry(mapping, &bo_va->valids, list)
868 			trace_amdgpu_vm_bo_mapping(mapping);
869 
870 		list_for_each_entry(mapping, &bo_va->invalids, list)
871 			trace_amdgpu_vm_bo_mapping(mapping);
872 	}
873 
874 	spin_lock(&vm->status_lock);
875 	list_splice_init(&bo_va->invalids, &bo_va->valids);
876 	list_del_init(&bo_va->vm_status);
877 	if (!mem)
878 		list_add(&bo_va->vm_status, &vm->cleared);
879 	spin_unlock(&vm->status_lock);
880 
881 	return 0;
882 }
883 
884 /**
885  * amdgpu_vm_clear_freed - clear freed BOs in the PT
886  *
887  * @adev: amdgpu_device pointer
888  * @vm: requested vm
889  *
890  * Make sure all freed BOs are cleared in the PT.
891  * Returns 0 for success.
892  *
893  * PTs have to be reserved and mutex must be locked!
894  */
895 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
896 			  struct amdgpu_vm *vm)
897 {
898 	struct amdgpu_bo_va_mapping *mapping;
899 	int r;
900 
901 	spin_lock(&vm->freed_lock);
902 	while (!list_empty(&vm->freed)) {
903 		mapping = list_first_entry(&vm->freed,
904 			struct amdgpu_bo_va_mapping, list);
905 		list_del(&mapping->list);
906 		spin_unlock(&vm->freed_lock);
907 		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, vm, mapping,
908 					       0, NULL);
909 		kfree(mapping);
910 		if (r)
911 			return r;
912 
913 		spin_lock(&vm->freed_lock);
914 	}
915 	spin_unlock(&vm->freed_lock);
916 
917 	return 0;
918 
919 }
920 
921 /**
922  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
923  *
924  * @adev: amdgpu_device pointer
925  * @vm: requested vm
926  *
927  * Make sure all invalidated BOs are cleared in the PT.
928  * Returns 0 for success.
929  *
930  * PTs have to be reserved and mutex must be locked!
931  */
932 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
933 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
934 {
935 	struct amdgpu_bo_va *bo_va = NULL;
936 	int r = 0;
937 
938 	spin_lock(&vm->status_lock);
939 	while (!list_empty(&vm->invalidated)) {
940 		bo_va = list_first_entry(&vm->invalidated,
941 			struct amdgpu_bo_va, vm_status);
942 		spin_unlock(&vm->status_lock);
943 		mutex_lock(&bo_va->mutex);
944 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
945 		mutex_unlock(&bo_va->mutex);
946 		if (r)
947 			return r;
948 
949 		spin_lock(&vm->status_lock);
950 	}
951 	spin_unlock(&vm->status_lock);
952 
953 	if (bo_va)
954 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
955 
956 	return r;
957 }
958 
959 /**
960  * amdgpu_vm_bo_add - add a bo to a specific vm
961  *
962  * @adev: amdgpu_device pointer
963  * @vm: requested vm
964  * @bo: amdgpu buffer object
965  *
966  * Add @bo into the requested vm.
967  * Add @bo to the list of bos associated with the vm
968  * Returns newly added bo_va or NULL for failure
969  *
970  * Object has to be reserved!
971  */
972 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
973 				      struct amdgpu_vm *vm,
974 				      struct amdgpu_bo *bo)
975 {
976 	struct amdgpu_bo_va *bo_va;
977 
978 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
979 	if (bo_va == NULL) {
980 		return NULL;
981 	}
982 	bo_va->vm = vm;
983 	bo_va->bo = bo;
984 	bo_va->ref_count = 1;
985 	INIT_LIST_HEAD(&bo_va->bo_list);
986 	INIT_LIST_HEAD(&bo_va->valids);
987 	INIT_LIST_HEAD(&bo_va->invalids);
988 	INIT_LIST_HEAD(&bo_va->vm_status);
989 	mutex_init(&bo_va->mutex);
990 	list_add_tail(&bo_va->bo_list, &bo->va);
991 
992 	return bo_va;
993 }
994 
995 /**
996  * amdgpu_vm_bo_map - map bo inside a vm
997  *
998  * @adev: amdgpu_device pointer
999  * @bo_va: bo_va to store the address
1000  * @saddr: where to map the BO
1001  * @offset: requested offset in the BO
1002  * @flags: attributes of pages (read/write/valid/etc.)
1003  *
1004  * Add a mapping of the BO at the specefied addr into the VM.
1005  * Returns 0 for success, error for failure.
1006  *
1007  * Object has to be reserved and unreserved outside!
1008  */
1009 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1010 		     struct amdgpu_bo_va *bo_va,
1011 		     uint64_t saddr, uint64_t offset,
1012 		     uint64_t size, uint32_t flags)
1013 {
1014 	struct amdgpu_bo_va_mapping *mapping;
1015 	struct amdgpu_vm *vm = bo_va->vm;
1016 	struct interval_tree_node *it;
1017 	unsigned last_pfn, pt_idx;
1018 	uint64_t eaddr;
1019 	int r;
1020 
1021 	/* validate the parameters */
1022 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1023 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1024 		return -EINVAL;
1025 
1026 	/* make sure object fit at this offset */
1027 	eaddr = saddr + size - 1;
1028 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1029 		return -EINVAL;
1030 
1031 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1032 	if (last_pfn >= adev->vm_manager.max_pfn) {
1033 		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1034 			last_pfn, adev->vm_manager.max_pfn);
1035 		return -EINVAL;
1036 	}
1037 
1038 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1039 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1040 
1041 	spin_lock(&vm->it_lock);
1042 	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1043 	spin_unlock(&vm->it_lock);
1044 	if (it) {
1045 		struct amdgpu_bo_va_mapping *tmp;
1046 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1047 		/* bo and tmp overlap, invalid addr */
1048 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1049 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1050 			tmp->it.start, tmp->it.last + 1);
1051 		r = -EINVAL;
1052 		goto error;
1053 	}
1054 
1055 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1056 	if (!mapping) {
1057 		r = -ENOMEM;
1058 		goto error;
1059 	}
1060 
1061 	INIT_LIST_HEAD(&mapping->list);
1062 	mapping->it.start = saddr;
1063 	mapping->it.last = eaddr;
1064 	mapping->offset = offset;
1065 	mapping->flags = flags;
1066 
1067 	mutex_lock(&bo_va->mutex);
1068 	list_add(&mapping->list, &bo_va->invalids);
1069 	mutex_unlock(&bo_va->mutex);
1070 	spin_lock(&vm->it_lock);
1071 	interval_tree_insert(&mapping->it, &vm->va);
1072 	spin_unlock(&vm->it_lock);
1073 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1074 
1075 	/* Make sure the page tables are allocated */
1076 	saddr >>= amdgpu_vm_block_size;
1077 	eaddr >>= amdgpu_vm_block_size;
1078 
1079 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1080 
1081 	if (eaddr > vm->max_pde_used)
1082 		vm->max_pde_used = eaddr;
1083 
1084 	/* walk over the address space and allocate the page tables */
1085 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1086 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1087 		struct amdgpu_bo_list_entry *entry;
1088 		struct amdgpu_bo *pt;
1089 
1090 		entry = &vm->page_tables[pt_idx].entry;
1091 		if (entry->robj)
1092 			continue;
1093 
1094 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1095 				     AMDGPU_GPU_PAGE_SIZE, true,
1096 				     AMDGPU_GEM_DOMAIN_VRAM,
1097 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1098 				     NULL, resv, &pt);
1099 		if (r)
1100 			goto error_free;
1101 
1102 		/* Keep a reference to the page table to avoid freeing
1103 		 * them up in the wrong order.
1104 		 */
1105 		pt->parent = amdgpu_bo_ref(vm->page_directory);
1106 
1107 		r = amdgpu_vm_clear_bo(adev, pt);
1108 		if (r) {
1109 			amdgpu_bo_unref(&pt);
1110 			goto error_free;
1111 		}
1112 
1113 		entry->robj = pt;
1114 		entry->priority = 0;
1115 		entry->tv.bo = &entry->robj->tbo;
1116 		entry->tv.shared = true;
1117 		vm->page_tables[pt_idx].addr = 0;
1118 	}
1119 
1120 	return 0;
1121 
1122 error_free:
1123 	list_del(&mapping->list);
1124 	spin_lock(&vm->it_lock);
1125 	interval_tree_remove(&mapping->it, &vm->va);
1126 	spin_unlock(&vm->it_lock);
1127 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1128 	kfree(mapping);
1129 
1130 error:
1131 	return r;
1132 }
1133 
1134 /**
1135  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1136  *
1137  * @adev: amdgpu_device pointer
1138  * @bo_va: bo_va to remove the address from
1139  * @saddr: where to the BO is mapped
1140  *
1141  * Remove a mapping of the BO at the specefied addr from the VM.
1142  * Returns 0 for success, error for failure.
1143  *
1144  * Object has to be reserved and unreserved outside!
1145  */
1146 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1147 		       struct amdgpu_bo_va *bo_va,
1148 		       uint64_t saddr)
1149 {
1150 	struct amdgpu_bo_va_mapping *mapping;
1151 	struct amdgpu_vm *vm = bo_va->vm;
1152 	bool valid = true;
1153 
1154 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1155 	mutex_lock(&bo_va->mutex);
1156 	list_for_each_entry(mapping, &bo_va->valids, list) {
1157 		if (mapping->it.start == saddr)
1158 			break;
1159 	}
1160 
1161 	if (&mapping->list == &bo_va->valids) {
1162 		valid = false;
1163 
1164 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1165 			if (mapping->it.start == saddr)
1166 				break;
1167 		}
1168 
1169 		if (&mapping->list == &bo_va->invalids) {
1170 			mutex_unlock(&bo_va->mutex);
1171 			return -ENOENT;
1172 		}
1173 	}
1174 	mutex_unlock(&bo_va->mutex);
1175 	list_del(&mapping->list);
1176 	spin_lock(&vm->it_lock);
1177 	interval_tree_remove(&mapping->it, &vm->va);
1178 	spin_unlock(&vm->it_lock);
1179 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1180 
1181 	if (valid) {
1182 		spin_lock(&vm->freed_lock);
1183 		list_add(&mapping->list, &vm->freed);
1184 		spin_unlock(&vm->freed_lock);
1185 	} else {
1186 		kfree(mapping);
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1194  *
1195  * @adev: amdgpu_device pointer
1196  * @bo_va: requested bo_va
1197  *
1198  * Remove @bo_va->bo from the requested vm.
1199  *
1200  * Object have to be reserved!
1201  */
1202 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1203 		      struct amdgpu_bo_va *bo_va)
1204 {
1205 	struct amdgpu_bo_va_mapping *mapping, *next;
1206 	struct amdgpu_vm *vm = bo_va->vm;
1207 
1208 	list_del(&bo_va->bo_list);
1209 
1210 	spin_lock(&vm->status_lock);
1211 	list_del(&bo_va->vm_status);
1212 	spin_unlock(&vm->status_lock);
1213 
1214 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1215 		list_del(&mapping->list);
1216 		spin_lock(&vm->it_lock);
1217 		interval_tree_remove(&mapping->it, &vm->va);
1218 		spin_unlock(&vm->it_lock);
1219 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1220 		spin_lock(&vm->freed_lock);
1221 		list_add(&mapping->list, &vm->freed);
1222 		spin_unlock(&vm->freed_lock);
1223 	}
1224 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1225 		list_del(&mapping->list);
1226 		spin_lock(&vm->it_lock);
1227 		interval_tree_remove(&mapping->it, &vm->va);
1228 		spin_unlock(&vm->it_lock);
1229 		kfree(mapping);
1230 	}
1231 	fence_put(bo_va->last_pt_update);
1232 	mutex_destroy(&bo_va->mutex);
1233 	kfree(bo_va);
1234 }
1235 
1236 /**
1237  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1238  *
1239  * @adev: amdgpu_device pointer
1240  * @vm: requested vm
1241  * @bo: amdgpu buffer object
1242  *
1243  * Mark @bo as invalid.
1244  */
1245 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1246 			     struct amdgpu_bo *bo)
1247 {
1248 	struct amdgpu_bo_va *bo_va;
1249 
1250 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1251 		spin_lock(&bo_va->vm->status_lock);
1252 		if (list_empty(&bo_va->vm_status))
1253 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1254 		spin_unlock(&bo_va->vm->status_lock);
1255 	}
1256 }
1257 
1258 /**
1259  * amdgpu_vm_init - initialize a vm instance
1260  *
1261  * @adev: amdgpu_device pointer
1262  * @vm: requested vm
1263  *
1264  * Init @vm fields.
1265  */
1266 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1267 {
1268 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1269 		AMDGPU_VM_PTE_COUNT * 8);
1270 	unsigned pd_size, pd_entries;
1271 	int i, r;
1272 
1273 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1274 		vm->ids[i].id = 0;
1275 		vm->ids[i].flushed_updates = NULL;
1276 	}
1277 	vm->va = RB_ROOT;
1278 	spin_lock_init(&vm->status_lock);
1279 	INIT_LIST_HEAD(&vm->invalidated);
1280 	INIT_LIST_HEAD(&vm->cleared);
1281 	INIT_LIST_HEAD(&vm->freed);
1282 	spin_lock_init(&vm->it_lock);
1283 	spin_lock_init(&vm->freed_lock);
1284 	pd_size = amdgpu_vm_directory_size(adev);
1285 	pd_entries = amdgpu_vm_num_pdes(adev);
1286 
1287 	/* allocate page table array */
1288 	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1289 	if (vm->page_tables == NULL) {
1290 		DRM_ERROR("Cannot allocate memory for page table array\n");
1291 		return -ENOMEM;
1292 	}
1293 
1294 	vm->page_directory_fence = NULL;
1295 
1296 	r = amdgpu_bo_create(adev, pd_size, align, true,
1297 			     AMDGPU_GEM_DOMAIN_VRAM,
1298 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1299 			     NULL, NULL, &vm->page_directory);
1300 	if (r)
1301 		return r;
1302 	r = amdgpu_bo_reserve(vm->page_directory, false);
1303 	if (r) {
1304 		amdgpu_bo_unref(&vm->page_directory);
1305 		vm->page_directory = NULL;
1306 		return r;
1307 	}
1308 	r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1309 	amdgpu_bo_unreserve(vm->page_directory);
1310 	if (r) {
1311 		amdgpu_bo_unref(&vm->page_directory);
1312 		vm->page_directory = NULL;
1313 		return r;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * amdgpu_vm_fini - tear down a vm instance
1321  *
1322  * @adev: amdgpu_device pointer
1323  * @vm: requested vm
1324  *
1325  * Tear down @vm.
1326  * Unbind the VM and remove all bos from the vm bo list
1327  */
1328 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1329 {
1330 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1331 	int i;
1332 
1333 	if (!RB_EMPTY_ROOT(&vm->va)) {
1334 		dev_err(adev->dev, "still active bo inside vm\n");
1335 	}
1336 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1337 		list_del(&mapping->list);
1338 		interval_tree_remove(&mapping->it, &vm->va);
1339 		kfree(mapping);
1340 	}
1341 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1342 		list_del(&mapping->list);
1343 		kfree(mapping);
1344 	}
1345 
1346 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1347 		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1348 	drm_free_large(vm->page_tables);
1349 
1350 	amdgpu_bo_unref(&vm->page_directory);
1351 	fence_put(vm->page_directory_fence);
1352 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1353 		unsigned id = vm->ids[i].id;
1354 
1355 		atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1356 				    (long)vm, 0);
1357 		fence_put(vm->ids[i].flushed_updates);
1358 	}
1359 
1360 }
1361 
1362 /**
1363  * amdgpu_vm_manager_init - init the VM manager
1364  *
1365  * @adev: amdgpu_device pointer
1366  *
1367  * Initialize the VM manager structures
1368  */
1369 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1370 {
1371 	unsigned i;
1372 
1373 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1374 
1375 	/* skip over VMID 0, since it is the system VM */
1376 	for (i = 1; i < adev->vm_manager.num_ids; ++i)
1377 		list_add_tail(&adev->vm_manager.ids[i].list,
1378 			      &adev->vm_manager.ids_lru);
1379 }
1380 
1381 /**
1382  * amdgpu_vm_manager_fini - cleanup VM manager
1383  *
1384  * @adev: amdgpu_device pointer
1385  *
1386  * Cleanup the VM manager and free resources.
1387  */
1388 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1389 {
1390 	unsigned i;
1391 
1392 	for (i = 0; i < AMDGPU_NUM_VM; ++i)
1393 		fence_put(adev->vm_manager.ids[i].active);
1394 }
1395