xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is the MMU functionality provided on the GPU.
49  * GPUVM is similar to the legacy GART on older asics, however
50  * rather than there being a single global GART table
51  * for the entire GPU, there can be multiple GPUVM page tables active
52  * at any given time.  The GPUVM page tables can contain a mix
53  * VRAM pages and system pages (both memory and MMIO) and system pages
54  * can be mapped as snooped (cached system pages) or unsnooped
55  * (uncached system pages).
56  *
57  * Each active GPUVM has an ID associated with it and there is a page table
58  * linked with each VMID.  When executing a command buffer,
59  * the kernel tells the engine what VMID to use for that command
60  * buffer.  VMIDs are allocated dynamically as commands are submitted.
61  * The userspace drivers maintain their own address space and the kernel
62  * sets up their pages tables accordingly when they submit their
63  * command buffers and a VMID is assigned.
64  * The hardware supports up to 16 active GPUVMs at any given time.
65  *
66  * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending
67  * on the ASIC family.  GPUVM supports RWX attributes on each page as well
68  * as other features such as encryption and caching attributes.
69  *
70  * VMID 0 is special.  It is the GPUVM used for the kernel driver.  In
71  * addition to an aperture managed by a page table, VMID 0 also has
72  * several other apertures.  There is an aperture for direct access to VRAM
73  * and there is a legacy AGP aperture which just forwards accesses directly
74  * to the matching system physical addresses (or IOVAs when an IOMMU is
75  * present).  These apertures provide direct access to these memories without
76  * incurring the overhead of a page table.  VMID 0 is used by the kernel
77  * driver for tasks like memory management.
78  *
79  * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory.
80  * For user applications, each application can have their own unique GPUVM
81  * address space.  The application manages the address space and the kernel
82  * driver manages the GPUVM page tables for each process.  If an GPU client
83  * accesses an invalid page, it will generate a GPU page fault, similar to
84  * accessing an invalid page on a CPU.
85  */
86 
87 #define START(node) ((node)->start)
88 #define LAST(node) ((node)->last)
89 
90 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
91 		     START, LAST, static, amdgpu_vm_it)
92 
93 #undef START
94 #undef LAST
95 
96 /**
97  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
98  */
99 struct amdgpu_prt_cb {
100 
101 	/**
102 	 * @adev: amdgpu device
103 	 */
104 	struct amdgpu_device *adev;
105 
106 	/**
107 	 * @cb: callback
108 	 */
109 	struct dma_fence_cb cb;
110 };
111 
112 /**
113  * struct amdgpu_vm_tlb_seq_cb - Helper to increment the TLB flush sequence
114  */
115 struct amdgpu_vm_tlb_seq_cb {
116 	/**
117 	 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on
118 	 */
119 	struct amdgpu_vm *vm;
120 
121 	/**
122 	 * @cb: callback
123 	 */
124 	struct dma_fence_cb cb;
125 };
126 
127 /**
128  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
129  *
130  * @adev: amdgpu_device pointer
131  * @vm: amdgpu_vm pointer
132  * @pasid: the pasid the VM is using on this GPU
133  *
134  * Set the pasid this VM is using on this GPU, can also be used to remove the
135  * pasid by passing in zero.
136  *
137  */
138 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
139 			u32 pasid)
140 {
141 	int r;
142 
143 	if (vm->pasid == pasid)
144 		return 0;
145 
146 	if (vm->pasid) {
147 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
148 		if (r < 0)
149 			return r;
150 
151 		vm->pasid = 0;
152 	}
153 
154 	if (pasid) {
155 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
156 					GFP_KERNEL));
157 		if (r < 0)
158 			return r;
159 
160 		vm->pasid = pasid;
161 	}
162 
163 
164 	return 0;
165 }
166 
167 /**
168  * amdgpu_vm_bo_evicted - vm_bo is evicted
169  *
170  * @vm_bo: vm_bo which is evicted
171  *
172  * State for PDs/PTs and per VM BOs which are not at the location they should
173  * be.
174  */
175 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
176 {
177 	struct amdgpu_vm *vm = vm_bo->vm;
178 	struct amdgpu_bo *bo = vm_bo->bo;
179 
180 	vm_bo->moved = true;
181 	spin_lock(&vm_bo->vm->status_lock);
182 	if (bo->tbo.type == ttm_bo_type_kernel)
183 		list_move(&vm_bo->vm_status, &vm->evicted);
184 	else
185 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
186 	spin_unlock(&vm_bo->vm->status_lock);
187 }
188 /**
189  * amdgpu_vm_bo_moved - vm_bo is moved
190  *
191  * @vm_bo: vm_bo which is moved
192  *
193  * State for per VM BOs which are moved, but that change is not yet reflected
194  * in the page tables.
195  */
196 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
197 {
198 	spin_lock(&vm_bo->vm->status_lock);
199 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
200 	spin_unlock(&vm_bo->vm->status_lock);
201 }
202 
203 /**
204  * amdgpu_vm_bo_idle - vm_bo is idle
205  *
206  * @vm_bo: vm_bo which is now idle
207  *
208  * State for PDs/PTs and per VM BOs which have gone through the state machine
209  * and are now idle.
210  */
211 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
212 {
213 	spin_lock(&vm_bo->vm->status_lock);
214 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
215 	spin_unlock(&vm_bo->vm->status_lock);
216 	vm_bo->moved = false;
217 }
218 
219 /**
220  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
221  *
222  * @vm_bo: vm_bo which is now invalidated
223  *
224  * State for normal BOs which are invalidated and that change not yet reflected
225  * in the PTs.
226  */
227 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	spin_lock(&vm_bo->vm->status_lock);
230 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
231 	spin_unlock(&vm_bo->vm->status_lock);
232 }
233 
234 /**
235  * amdgpu_vm_bo_relocated - vm_bo is reloacted
236  *
237  * @vm_bo: vm_bo which is relocated
238  *
239  * State for PDs/PTs which needs to update their parent PD.
240  * For the root PD, just move to idle state.
241  */
242 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 	if (vm_bo->bo->parent) {
245 		spin_lock(&vm_bo->vm->status_lock);
246 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
247 		spin_unlock(&vm_bo->vm->status_lock);
248 	} else {
249 		amdgpu_vm_bo_idle(vm_bo);
250 	}
251 }
252 
253 /**
254  * amdgpu_vm_bo_done - vm_bo is done
255  *
256  * @vm_bo: vm_bo which is now done
257  *
258  * State for normal BOs which are invalidated and that change has been updated
259  * in the PTs.
260  */
261 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
262 {
263 	spin_lock(&vm_bo->vm->status_lock);
264 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
265 	spin_unlock(&vm_bo->vm->status_lock);
266 }
267 
268 /**
269  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
270  *
271  * @base: base structure for tracking BO usage in a VM
272  * @vm: vm to which bo is to be added
273  * @bo: amdgpu buffer object
274  *
275  * Initialize a bo_va_base structure and add it to the appropriate lists
276  *
277  */
278 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
279 			    struct amdgpu_vm *vm, struct amdgpu_bo *bo)
280 {
281 	base->vm = vm;
282 	base->bo = bo;
283 	base->next = NULL;
284 	INIT_LIST_HEAD(&base->vm_status);
285 
286 	if (!bo)
287 		return;
288 	base->next = bo->vm_bo;
289 	bo->vm_bo = base;
290 
291 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
292 		return;
293 
294 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
295 
296 	ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move);
297 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
298 		amdgpu_vm_bo_relocated(base);
299 	else
300 		amdgpu_vm_bo_idle(base);
301 
302 	if (bo->preferred_domains &
303 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
304 		return;
305 
306 	/*
307 	 * we checked all the prerequisites, but it looks like this per vm bo
308 	 * is currently evicted. add the bo to the evicted list to make sure it
309 	 * is validated on next vm use to avoid fault.
310 	 * */
311 	amdgpu_vm_bo_evicted(base);
312 }
313 
314 /**
315  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
316  *
317  * @vm: vm providing the BOs
318  * @validated: head of validation list
319  * @entry: entry to add
320  *
321  * Add the page directory to the list of BOs to
322  * validate for command submission.
323  */
324 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
325 			 struct list_head *validated,
326 			 struct amdgpu_bo_list_entry *entry)
327 {
328 	entry->priority = 0;
329 	entry->tv.bo = &vm->root.bo->tbo;
330 	/* Two for VM updates, one for TTM and one for the CS job */
331 	entry->tv.num_shared = 4;
332 	entry->user_pages = NULL;
333 	list_add(&entry->tv.head, validated);
334 }
335 
336 /**
337  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
338  *
339  * @adev: amdgpu device pointer
340  * @vm: vm providing the BOs
341  *
342  * Move all BOs to the end of LRU and remember their positions to put them
343  * together.
344  */
345 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
346 				struct amdgpu_vm *vm)
347 {
348 	spin_lock(&adev->mman.bdev.lru_lock);
349 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
350 	spin_unlock(&adev->mman.bdev.lru_lock);
351 }
352 
353 /**
354  * amdgpu_vm_validate_pt_bos - validate the page table BOs
355  *
356  * @adev: amdgpu device pointer
357  * @vm: vm providing the BOs
358  * @validate: callback to do the validation
359  * @param: parameter for the validation callback
360  *
361  * Validate the page table BOs on command submission if neccessary.
362  *
363  * Returns:
364  * Validation result.
365  */
366 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
367 			      int (*validate)(void *p, struct amdgpu_bo *bo),
368 			      void *param)
369 {
370 	struct amdgpu_vm_bo_base *bo_base;
371 	struct amdgpu_bo *shadow;
372 	struct amdgpu_bo *bo;
373 	int r;
374 
375 	spin_lock(&vm->status_lock);
376 	while (!list_empty(&vm->evicted)) {
377 		bo_base = list_first_entry(&vm->evicted,
378 					   struct amdgpu_vm_bo_base,
379 					   vm_status);
380 		spin_unlock(&vm->status_lock);
381 
382 		bo = bo_base->bo;
383 		shadow = amdgpu_bo_shadowed(bo);
384 
385 		r = validate(param, bo);
386 		if (r)
387 			return r;
388 		if (shadow) {
389 			r = validate(param, shadow);
390 			if (r)
391 				return r;
392 		}
393 
394 		if (bo->tbo.type != ttm_bo_type_kernel) {
395 			amdgpu_vm_bo_moved(bo_base);
396 		} else {
397 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
398 			amdgpu_vm_bo_relocated(bo_base);
399 		}
400 		spin_lock(&vm->status_lock);
401 	}
402 	spin_unlock(&vm->status_lock);
403 
404 	amdgpu_vm_eviction_lock(vm);
405 	vm->evicting = false;
406 	amdgpu_vm_eviction_unlock(vm);
407 
408 	return 0;
409 }
410 
411 /**
412  * amdgpu_vm_ready - check VM is ready for updates
413  *
414  * @vm: VM to check
415  *
416  * Check if all VM PDs/PTs are ready for updates
417  *
418  * Returns:
419  * True if VM is not evicting.
420  */
421 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
422 {
423 	bool empty;
424 	bool ret;
425 
426 	amdgpu_vm_eviction_lock(vm);
427 	ret = !vm->evicting;
428 	amdgpu_vm_eviction_unlock(vm);
429 
430 	spin_lock(&vm->status_lock);
431 	empty = list_empty(&vm->evicted);
432 	spin_unlock(&vm->status_lock);
433 
434 	return ret && empty;
435 }
436 
437 /**
438  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
439  *
440  * @adev: amdgpu_device pointer
441  */
442 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
443 {
444 	const struct amdgpu_ip_block *ip_block;
445 	bool has_compute_vm_bug;
446 	struct amdgpu_ring *ring;
447 	int i;
448 
449 	has_compute_vm_bug = false;
450 
451 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
452 	if (ip_block) {
453 		/* Compute has a VM bug for GFX version < 7.
454 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
455 		if (ip_block->version->major <= 7)
456 			has_compute_vm_bug = true;
457 		else if (ip_block->version->major == 8)
458 			if (adev->gfx.mec_fw_version < 673)
459 				has_compute_vm_bug = true;
460 	}
461 
462 	for (i = 0; i < adev->num_rings; i++) {
463 		ring = adev->rings[i];
464 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
465 			/* only compute rings */
466 			ring->has_compute_vm_bug = has_compute_vm_bug;
467 		else
468 			ring->has_compute_vm_bug = false;
469 	}
470 }
471 
472 /**
473  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
474  *
475  * @ring: ring on which the job will be submitted
476  * @job: job to submit
477  *
478  * Returns:
479  * True if sync is needed.
480  */
481 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
482 				  struct amdgpu_job *job)
483 {
484 	struct amdgpu_device *adev = ring->adev;
485 	unsigned vmhub = ring->funcs->vmhub;
486 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
487 
488 	if (job->vmid == 0)
489 		return false;
490 
491 	if (job->vm_needs_flush || ring->has_compute_vm_bug)
492 		return true;
493 
494 	if (ring->funcs->emit_gds_switch && job->gds_switch_needed)
495 		return true;
496 
497 	if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid]))
498 		return true;
499 
500 	return false;
501 }
502 
503 /**
504  * amdgpu_vm_flush - hardware flush the vm
505  *
506  * @ring: ring to use for flush
507  * @job:  related job
508  * @need_pipe_sync: is pipe sync needed
509  *
510  * Emit a VM flush when it is necessary.
511  *
512  * Returns:
513  * 0 on success, errno otherwise.
514  */
515 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
516 		    bool need_pipe_sync)
517 {
518 	struct amdgpu_device *adev = ring->adev;
519 	unsigned vmhub = ring->funcs->vmhub;
520 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
521 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
522 	bool spm_update_needed = job->spm_update_needed;
523 	bool gds_switch_needed = ring->funcs->emit_gds_switch &&
524 		job->gds_switch_needed;
525 	bool vm_flush_needed = job->vm_needs_flush;
526 	struct dma_fence *fence = NULL;
527 	bool pasid_mapping_needed = false;
528 	unsigned patch_offset = 0;
529 	int r;
530 
531 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
532 		gds_switch_needed = true;
533 		vm_flush_needed = true;
534 		pasid_mapping_needed = true;
535 		spm_update_needed = true;
536 	}
537 
538 	mutex_lock(&id_mgr->lock);
539 	if (id->pasid != job->pasid || !id->pasid_mapping ||
540 	    !dma_fence_is_signaled(id->pasid_mapping))
541 		pasid_mapping_needed = true;
542 	mutex_unlock(&id_mgr->lock);
543 
544 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
545 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
546 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
547 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
548 		ring->funcs->emit_wreg;
549 
550 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
551 		return 0;
552 
553 	amdgpu_ring_ib_begin(ring);
554 	if (ring->funcs->init_cond_exec)
555 		patch_offset = amdgpu_ring_init_cond_exec(ring);
556 
557 	if (need_pipe_sync)
558 		amdgpu_ring_emit_pipeline_sync(ring);
559 
560 	if (vm_flush_needed) {
561 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
562 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
563 	}
564 
565 	if (pasid_mapping_needed)
566 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
567 
568 	if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid)
569 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
570 
571 	if (!ring->is_mes_queue && ring->funcs->emit_gds_switch &&
572 	    gds_switch_needed) {
573 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
574 					    job->gds_size, job->gws_base,
575 					    job->gws_size, job->oa_base,
576 					    job->oa_size);
577 	}
578 
579 	if (vm_flush_needed || pasid_mapping_needed) {
580 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
581 		if (r)
582 			return r;
583 	}
584 
585 	if (vm_flush_needed) {
586 		mutex_lock(&id_mgr->lock);
587 		dma_fence_put(id->last_flush);
588 		id->last_flush = dma_fence_get(fence);
589 		id->current_gpu_reset_count =
590 			atomic_read(&adev->gpu_reset_counter);
591 		mutex_unlock(&id_mgr->lock);
592 	}
593 
594 	if (pasid_mapping_needed) {
595 		mutex_lock(&id_mgr->lock);
596 		id->pasid = job->pasid;
597 		dma_fence_put(id->pasid_mapping);
598 		id->pasid_mapping = dma_fence_get(fence);
599 		mutex_unlock(&id_mgr->lock);
600 	}
601 	dma_fence_put(fence);
602 
603 	if (ring->funcs->patch_cond_exec)
604 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
605 
606 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
607 	if (ring->funcs->emit_switch_buffer) {
608 		amdgpu_ring_emit_switch_buffer(ring);
609 		amdgpu_ring_emit_switch_buffer(ring);
610 	}
611 	amdgpu_ring_ib_end(ring);
612 	return 0;
613 }
614 
615 /**
616  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
617  *
618  * @vm: requested vm
619  * @bo: requested buffer object
620  *
621  * Find @bo inside the requested vm.
622  * Search inside the @bos vm list for the requested vm
623  * Returns the found bo_va or NULL if none is found
624  *
625  * Object has to be reserved!
626  *
627  * Returns:
628  * Found bo_va or NULL.
629  */
630 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
631 				       struct amdgpu_bo *bo)
632 {
633 	struct amdgpu_vm_bo_base *base;
634 
635 	for (base = bo->vm_bo; base; base = base->next) {
636 		if (base->vm != vm)
637 			continue;
638 
639 		return container_of(base, struct amdgpu_bo_va, base);
640 	}
641 	return NULL;
642 }
643 
644 /**
645  * amdgpu_vm_map_gart - Resolve gart mapping of addr
646  *
647  * @pages_addr: optional DMA address to use for lookup
648  * @addr: the unmapped addr
649  *
650  * Look up the physical address of the page that the pte resolves
651  * to.
652  *
653  * Returns:
654  * The pointer for the page table entry.
655  */
656 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
657 {
658 	uint64_t result;
659 
660 	/* page table offset */
661 	result = pages_addr[addr >> PAGE_SHIFT];
662 
663 	/* in case cpu page size != gpu page size*/
664 	result |= addr & (~PAGE_MASK);
665 
666 	result &= 0xFFFFFFFFFFFFF000ULL;
667 
668 	return result;
669 }
670 
671 /**
672  * amdgpu_vm_update_pdes - make sure that all directories are valid
673  *
674  * @adev: amdgpu_device pointer
675  * @vm: requested vm
676  * @immediate: submit immediately to the paging queue
677  *
678  * Makes sure all directories are up to date.
679  *
680  * Returns:
681  * 0 for success, error for failure.
682  */
683 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
684 			  struct amdgpu_vm *vm, bool immediate)
685 {
686 	struct amdgpu_vm_update_params params;
687 	struct amdgpu_vm_bo_base *entry;
688 	bool flush_tlb_needed = false;
689 	LIST_HEAD(relocated);
690 	int r, idx;
691 
692 	spin_lock(&vm->status_lock);
693 	list_splice_init(&vm->relocated, &relocated);
694 	spin_unlock(&vm->status_lock);
695 
696 	if (list_empty(&relocated))
697 		return 0;
698 
699 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
700 		return -ENODEV;
701 
702 	memset(&params, 0, sizeof(params));
703 	params.adev = adev;
704 	params.vm = vm;
705 	params.immediate = immediate;
706 
707 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
708 	if (r)
709 		goto error;
710 
711 	list_for_each_entry(entry, &relocated, vm_status) {
712 		/* vm_flush_needed after updating moved PDEs */
713 		flush_tlb_needed |= entry->moved;
714 
715 		r = amdgpu_vm_pde_update(&params, entry);
716 		if (r)
717 			goto error;
718 	}
719 
720 	r = vm->update_funcs->commit(&params, &vm->last_update);
721 	if (r)
722 		goto error;
723 
724 	if (flush_tlb_needed)
725 		atomic64_inc(&vm->tlb_seq);
726 
727 	while (!list_empty(&relocated)) {
728 		entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base,
729 					 vm_status);
730 		amdgpu_vm_bo_idle(entry);
731 	}
732 
733 error:
734 	drm_dev_exit(idx);
735 	return r;
736 }
737 
738 /**
739  * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence
740  * @fence: unused
741  * @cb: the callback structure
742  *
743  * Increments the tlb sequence to make sure that future CS execute a VM flush.
744  */
745 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence,
746 				 struct dma_fence_cb *cb)
747 {
748 	struct amdgpu_vm_tlb_seq_cb *tlb_cb;
749 
750 	tlb_cb = container_of(cb, typeof(*tlb_cb), cb);
751 	atomic64_inc(&tlb_cb->vm->tlb_seq);
752 	kfree(tlb_cb);
753 }
754 
755 /**
756  * amdgpu_vm_update_range - update a range in the vm page table
757  *
758  * @adev: amdgpu_device pointer to use for commands
759  * @vm: the VM to update the range
760  * @immediate: immediate submission in a page fault
761  * @unlocked: unlocked invalidation during MM callback
762  * @flush_tlb: trigger tlb invalidation after update completed
763  * @resv: fences we need to sync to
764  * @start: start of mapped range
765  * @last: last mapped entry
766  * @flags: flags for the entries
767  * @offset: offset into nodes and pages_addr
768  * @vram_base: base for vram mappings
769  * @res: ttm_resource to map
770  * @pages_addr: DMA addresses to use for mapping
771  * @fence: optional resulting fence
772  *
773  * Fill in the page table entries between @start and @last.
774  *
775  * Returns:
776  * 0 for success, negative erro code for failure.
777  */
778 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm,
779 			   bool immediate, bool unlocked, bool flush_tlb,
780 			   struct dma_resv *resv, uint64_t start, uint64_t last,
781 			   uint64_t flags, uint64_t offset, uint64_t vram_base,
782 			   struct ttm_resource *res, dma_addr_t *pages_addr,
783 			   struct dma_fence **fence)
784 {
785 	struct amdgpu_vm_update_params params;
786 	struct amdgpu_vm_tlb_seq_cb *tlb_cb;
787 	struct amdgpu_res_cursor cursor;
788 	enum amdgpu_sync_mode sync_mode;
789 	int r, idx;
790 
791 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
792 		return -ENODEV;
793 
794 	tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL);
795 	if (!tlb_cb) {
796 		r = -ENOMEM;
797 		goto error_unlock;
798 	}
799 
800 	/* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache,
801 	 * heavy-weight flush TLB unconditionally.
802 	 */
803 	flush_tlb |= adev->gmc.xgmi.num_physical_nodes &&
804 		     adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0);
805 
806 	/*
807 	 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB
808 	 */
809 	flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0);
810 
811 	memset(&params, 0, sizeof(params));
812 	params.adev = adev;
813 	params.vm = vm;
814 	params.immediate = immediate;
815 	params.pages_addr = pages_addr;
816 	params.unlocked = unlocked;
817 
818 	/* Implicitly sync to command submissions in the same VM before
819 	 * unmapping. Sync to moving fences before mapping.
820 	 */
821 	if (!(flags & AMDGPU_PTE_VALID))
822 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
823 	else
824 		sync_mode = AMDGPU_SYNC_EXPLICIT;
825 
826 	amdgpu_vm_eviction_lock(vm);
827 	if (vm->evicting) {
828 		r = -EBUSY;
829 		goto error_free;
830 	}
831 
832 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
833 		struct dma_fence *tmp = dma_fence_get_stub();
834 
835 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
836 		swap(vm->last_unlocked, tmp);
837 		dma_fence_put(tmp);
838 	}
839 
840 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
841 	if (r)
842 		goto error_free;
843 
844 	amdgpu_res_first(pages_addr ? NULL : res, offset,
845 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
846 	while (cursor.remaining) {
847 		uint64_t tmp, num_entries, addr;
848 
849 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
850 		if (pages_addr) {
851 			bool contiguous = true;
852 
853 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
854 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
855 				uint64_t count;
856 
857 				contiguous = pages_addr[pfn + 1] ==
858 					pages_addr[pfn] + PAGE_SIZE;
859 
860 				tmp = num_entries /
861 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
862 				for (count = 2; count < tmp; ++count) {
863 					uint64_t idx = pfn + count;
864 
865 					if (contiguous != (pages_addr[idx] ==
866 					    pages_addr[idx - 1] + PAGE_SIZE))
867 						break;
868 				}
869 				num_entries = count *
870 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
871 			}
872 
873 			if (!contiguous) {
874 				addr = cursor.start;
875 				params.pages_addr = pages_addr;
876 			} else {
877 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
878 				params.pages_addr = NULL;
879 			}
880 
881 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
882 			addr = vram_base + cursor.start;
883 		} else {
884 			addr = 0;
885 		}
886 
887 		tmp = start + num_entries;
888 		r = amdgpu_vm_ptes_update(&params, start, tmp, addr, flags);
889 		if (r)
890 			goto error_free;
891 
892 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
893 		start = tmp;
894 	}
895 
896 	r = vm->update_funcs->commit(&params, fence);
897 
898 	if (flush_tlb || params.table_freed) {
899 		tlb_cb->vm = vm;
900 		if (fence && *fence &&
901 		    !dma_fence_add_callback(*fence, &tlb_cb->cb,
902 					   amdgpu_vm_tlb_seq_cb)) {
903 			dma_fence_put(vm->last_tlb_flush);
904 			vm->last_tlb_flush = dma_fence_get(*fence);
905 		} else {
906 			amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb);
907 		}
908 		tlb_cb = NULL;
909 	}
910 
911 error_free:
912 	kfree(tlb_cb);
913 
914 error_unlock:
915 	amdgpu_vm_eviction_unlock(vm);
916 	drm_dev_exit(idx);
917 	return r;
918 }
919 
920 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
921 				uint64_t *gtt_mem, uint64_t *cpu_mem)
922 {
923 	struct amdgpu_bo_va *bo_va, *tmp;
924 
925 	spin_lock(&vm->status_lock);
926 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
927 		if (!bo_va->base.bo)
928 			continue;
929 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
930 				gtt_mem, cpu_mem);
931 	}
932 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
933 		if (!bo_va->base.bo)
934 			continue;
935 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
936 				gtt_mem, cpu_mem);
937 	}
938 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
939 		if (!bo_va->base.bo)
940 			continue;
941 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
942 				gtt_mem, cpu_mem);
943 	}
944 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
945 		if (!bo_va->base.bo)
946 			continue;
947 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
948 				gtt_mem, cpu_mem);
949 	}
950 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
951 		if (!bo_va->base.bo)
952 			continue;
953 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
954 				gtt_mem, cpu_mem);
955 	}
956 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
957 		if (!bo_va->base.bo)
958 			continue;
959 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
960 				gtt_mem, cpu_mem);
961 	}
962 	spin_unlock(&vm->status_lock);
963 }
964 /**
965  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
966  *
967  * @adev: amdgpu_device pointer
968  * @bo_va: requested BO and VM object
969  * @clear: if true clear the entries
970  *
971  * Fill in the page table entries for @bo_va.
972  *
973  * Returns:
974  * 0 for success, -EINVAL for failure.
975  */
976 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
977 			bool clear)
978 {
979 	struct amdgpu_bo *bo = bo_va->base.bo;
980 	struct amdgpu_vm *vm = bo_va->base.vm;
981 	struct amdgpu_bo_va_mapping *mapping;
982 	dma_addr_t *pages_addr = NULL;
983 	struct ttm_resource *mem;
984 	struct dma_fence **last_update;
985 	bool flush_tlb = clear;
986 	struct dma_resv *resv;
987 	uint64_t vram_base;
988 	uint64_t flags;
989 	int r;
990 
991 	if (clear || !bo) {
992 		mem = NULL;
993 		resv = vm->root.bo->tbo.base.resv;
994 	} else {
995 		struct drm_gem_object *obj = &bo->tbo.base;
996 
997 		resv = bo->tbo.base.resv;
998 		if (obj->import_attach && bo_va->is_xgmi) {
999 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1000 			struct drm_gem_object *gobj = dma_buf->priv;
1001 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1002 
1003 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1004 				bo = gem_to_amdgpu_bo(gobj);
1005 		}
1006 		mem = bo->tbo.resource;
1007 		if (mem->mem_type == TTM_PL_TT ||
1008 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1009 			pages_addr = bo->tbo.ttm->dma_address;
1010 	}
1011 
1012 	if (bo) {
1013 		struct amdgpu_device *bo_adev;
1014 
1015 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1016 
1017 		if (amdgpu_bo_encrypted(bo))
1018 			flags |= AMDGPU_PTE_TMZ;
1019 
1020 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1021 		vram_base = bo_adev->vm_manager.vram_base_offset;
1022 	} else {
1023 		flags = 0x0;
1024 		vram_base = 0;
1025 	}
1026 
1027 	if (clear || (bo && bo->tbo.base.resv ==
1028 		      vm->root.bo->tbo.base.resv))
1029 		last_update = &vm->last_update;
1030 	else
1031 		last_update = &bo_va->last_pt_update;
1032 
1033 	if (!clear && bo_va->base.moved) {
1034 		flush_tlb = true;
1035 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1036 
1037 	} else if (bo_va->cleared != clear) {
1038 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1039 	}
1040 
1041 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1042 		uint64_t update_flags = flags;
1043 
1044 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1045 		 * but in case of something, we filter the flags in first place
1046 		 */
1047 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1048 			update_flags &= ~AMDGPU_PTE_READABLE;
1049 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1050 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1051 
1052 		/* Apply ASIC specific mapping flags */
1053 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1054 
1055 		trace_amdgpu_vm_bo_update(mapping);
1056 
1057 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb,
1058 					   resv, mapping->start, mapping->last,
1059 					   update_flags, mapping->offset,
1060 					   vram_base, mem, pages_addr,
1061 					   last_update);
1062 		if (r)
1063 			return r;
1064 	}
1065 
1066 	/* If the BO is not in its preferred location add it back to
1067 	 * the evicted list so that it gets validated again on the
1068 	 * next command submission.
1069 	 */
1070 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1071 		uint32_t mem_type = bo->tbo.resource->mem_type;
1072 
1073 		if (!(bo->preferred_domains &
1074 		      amdgpu_mem_type_to_domain(mem_type)))
1075 			amdgpu_vm_bo_evicted(&bo_va->base);
1076 		else
1077 			amdgpu_vm_bo_idle(&bo_va->base);
1078 	} else {
1079 		amdgpu_vm_bo_done(&bo_va->base);
1080 	}
1081 
1082 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1083 	bo_va->cleared = clear;
1084 	bo_va->base.moved = false;
1085 
1086 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1087 		list_for_each_entry(mapping, &bo_va->valids, list)
1088 			trace_amdgpu_vm_bo_mapping(mapping);
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /**
1095  * amdgpu_vm_update_prt_state - update the global PRT state
1096  *
1097  * @adev: amdgpu_device pointer
1098  */
1099 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1100 {
1101 	unsigned long flags;
1102 	bool enable;
1103 
1104 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1105 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1106 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1107 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1108 }
1109 
1110 /**
1111  * amdgpu_vm_prt_get - add a PRT user
1112  *
1113  * @adev: amdgpu_device pointer
1114  */
1115 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1116 {
1117 	if (!adev->gmc.gmc_funcs->set_prt)
1118 		return;
1119 
1120 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1121 		amdgpu_vm_update_prt_state(adev);
1122 }
1123 
1124 /**
1125  * amdgpu_vm_prt_put - drop a PRT user
1126  *
1127  * @adev: amdgpu_device pointer
1128  */
1129 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1130 {
1131 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1132 		amdgpu_vm_update_prt_state(adev);
1133 }
1134 
1135 /**
1136  * amdgpu_vm_prt_cb - callback for updating the PRT status
1137  *
1138  * @fence: fence for the callback
1139  * @_cb: the callback function
1140  */
1141 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1142 {
1143 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1144 
1145 	amdgpu_vm_prt_put(cb->adev);
1146 	kfree(cb);
1147 }
1148 
1149 /**
1150  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1151  *
1152  * @adev: amdgpu_device pointer
1153  * @fence: fence for the callback
1154  */
1155 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1156 				 struct dma_fence *fence)
1157 {
1158 	struct amdgpu_prt_cb *cb;
1159 
1160 	if (!adev->gmc.gmc_funcs->set_prt)
1161 		return;
1162 
1163 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1164 	if (!cb) {
1165 		/* Last resort when we are OOM */
1166 		if (fence)
1167 			dma_fence_wait(fence, false);
1168 
1169 		amdgpu_vm_prt_put(adev);
1170 	} else {
1171 		cb->adev = adev;
1172 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1173 						     amdgpu_vm_prt_cb))
1174 			amdgpu_vm_prt_cb(fence, &cb->cb);
1175 	}
1176 }
1177 
1178 /**
1179  * amdgpu_vm_free_mapping - free a mapping
1180  *
1181  * @adev: amdgpu_device pointer
1182  * @vm: requested vm
1183  * @mapping: mapping to be freed
1184  * @fence: fence of the unmap operation
1185  *
1186  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1187  */
1188 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1189 				   struct amdgpu_vm *vm,
1190 				   struct amdgpu_bo_va_mapping *mapping,
1191 				   struct dma_fence *fence)
1192 {
1193 	if (mapping->flags & AMDGPU_PTE_PRT)
1194 		amdgpu_vm_add_prt_cb(adev, fence);
1195 	kfree(mapping);
1196 }
1197 
1198 /**
1199  * amdgpu_vm_prt_fini - finish all prt mappings
1200  *
1201  * @adev: amdgpu_device pointer
1202  * @vm: requested vm
1203  *
1204  * Register a cleanup callback to disable PRT support after VM dies.
1205  */
1206 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1207 {
1208 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1209 	struct dma_resv_iter cursor;
1210 	struct dma_fence *fence;
1211 
1212 	dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) {
1213 		/* Add a callback for each fence in the reservation object */
1214 		amdgpu_vm_prt_get(adev);
1215 		amdgpu_vm_add_prt_cb(adev, fence);
1216 	}
1217 }
1218 
1219 /**
1220  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1221  *
1222  * @adev: amdgpu_device pointer
1223  * @vm: requested vm
1224  * @fence: optional resulting fence (unchanged if no work needed to be done
1225  * or if an error occurred)
1226  *
1227  * Make sure all freed BOs are cleared in the PT.
1228  * PTs have to be reserved and mutex must be locked!
1229  *
1230  * Returns:
1231  * 0 for success.
1232  *
1233  */
1234 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1235 			  struct amdgpu_vm *vm,
1236 			  struct dma_fence **fence)
1237 {
1238 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
1239 	struct amdgpu_bo_va_mapping *mapping;
1240 	uint64_t init_pte_value = 0;
1241 	struct dma_fence *f = NULL;
1242 	int r;
1243 
1244 	while (!list_empty(&vm->freed)) {
1245 		mapping = list_first_entry(&vm->freed,
1246 			struct amdgpu_bo_va_mapping, list);
1247 		list_del(&mapping->list);
1248 
1249 		if (vm->pte_support_ats &&
1250 		    mapping->start < AMDGPU_GMC_HOLE_START)
1251 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1252 
1253 		r = amdgpu_vm_update_range(adev, vm, false, false, true, resv,
1254 					   mapping->start, mapping->last,
1255 					   init_pte_value, 0, 0, NULL, NULL,
1256 					   &f);
1257 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1258 		if (r) {
1259 			dma_fence_put(f);
1260 			return r;
1261 		}
1262 	}
1263 
1264 	if (fence && f) {
1265 		dma_fence_put(*fence);
1266 		*fence = f;
1267 	} else {
1268 		dma_fence_put(f);
1269 	}
1270 
1271 	return 0;
1272 
1273 }
1274 
1275 /**
1276  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1277  *
1278  * @adev: amdgpu_device pointer
1279  * @vm: requested vm
1280  *
1281  * Make sure all BOs which are moved are updated in the PTs.
1282  *
1283  * Returns:
1284  * 0 for success.
1285  *
1286  * PTs have to be reserved!
1287  */
1288 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1289 			   struct amdgpu_vm *vm)
1290 {
1291 	struct amdgpu_bo_va *bo_va;
1292 	struct dma_resv *resv;
1293 	bool clear;
1294 	int r;
1295 
1296 	spin_lock(&vm->status_lock);
1297 	while (!list_empty(&vm->moved)) {
1298 		bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va,
1299 					 base.vm_status);
1300 		spin_unlock(&vm->status_lock);
1301 
1302 		/* Per VM BOs never need to bo cleared in the page tables */
1303 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1304 		if (r)
1305 			return r;
1306 		spin_lock(&vm->status_lock);
1307 	}
1308 
1309 	while (!list_empty(&vm->invalidated)) {
1310 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1311 					 base.vm_status);
1312 		resv = bo_va->base.bo->tbo.base.resv;
1313 		spin_unlock(&vm->status_lock);
1314 
1315 		/* Try to reserve the BO to avoid clearing its ptes */
1316 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
1317 			clear = false;
1318 		/* Somebody else is using the BO right now */
1319 		else
1320 			clear = true;
1321 
1322 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1323 		if (r)
1324 			return r;
1325 
1326 		if (!clear)
1327 			dma_resv_unlock(resv);
1328 		spin_lock(&vm->status_lock);
1329 	}
1330 	spin_unlock(&vm->status_lock);
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * amdgpu_vm_bo_add - add a bo to a specific vm
1337  *
1338  * @adev: amdgpu_device pointer
1339  * @vm: requested vm
1340  * @bo: amdgpu buffer object
1341  *
1342  * Add @bo into the requested vm.
1343  * Add @bo to the list of bos associated with the vm
1344  *
1345  * Returns:
1346  * Newly added bo_va or NULL for failure
1347  *
1348  * Object has to be reserved!
1349  */
1350 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1351 				      struct amdgpu_vm *vm,
1352 				      struct amdgpu_bo *bo)
1353 {
1354 	struct amdgpu_bo_va *bo_va;
1355 
1356 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1357 	if (bo_va == NULL) {
1358 		return NULL;
1359 	}
1360 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
1361 
1362 	bo_va->ref_count = 1;
1363 	INIT_LIST_HEAD(&bo_va->valids);
1364 	INIT_LIST_HEAD(&bo_va->invalids);
1365 
1366 	if (!bo)
1367 		return bo_va;
1368 
1369 	dma_resv_assert_held(bo->tbo.base.resv);
1370 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
1371 		bo_va->is_xgmi = true;
1372 		/* Power up XGMI if it can be potentially used */
1373 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
1374 	}
1375 
1376 	return bo_va;
1377 }
1378 
1379 
1380 /**
1381  * amdgpu_vm_bo_insert_map - insert a new mapping
1382  *
1383  * @adev: amdgpu_device pointer
1384  * @bo_va: bo_va to store the address
1385  * @mapping: the mapping to insert
1386  *
1387  * Insert a new mapping into all structures.
1388  */
1389 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1390 				    struct amdgpu_bo_va *bo_va,
1391 				    struct amdgpu_bo_va_mapping *mapping)
1392 {
1393 	struct amdgpu_vm *vm = bo_va->base.vm;
1394 	struct amdgpu_bo *bo = bo_va->base.bo;
1395 
1396 	mapping->bo_va = bo_va;
1397 	list_add(&mapping->list, &bo_va->invalids);
1398 	amdgpu_vm_it_insert(mapping, &vm->va);
1399 
1400 	if (mapping->flags & AMDGPU_PTE_PRT)
1401 		amdgpu_vm_prt_get(adev);
1402 
1403 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
1404 	    !bo_va->base.moved) {
1405 		amdgpu_vm_bo_moved(&bo_va->base);
1406 	}
1407 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1408 }
1409 
1410 /**
1411  * amdgpu_vm_bo_map - map bo inside a vm
1412  *
1413  * @adev: amdgpu_device pointer
1414  * @bo_va: bo_va to store the address
1415  * @saddr: where to map the BO
1416  * @offset: requested offset in the BO
1417  * @size: BO size in bytes
1418  * @flags: attributes of pages (read/write/valid/etc.)
1419  *
1420  * Add a mapping of the BO at the specefied addr into the VM.
1421  *
1422  * Returns:
1423  * 0 for success, error for failure.
1424  *
1425  * Object has to be reserved and unreserved outside!
1426  */
1427 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1428 		     struct amdgpu_bo_va *bo_va,
1429 		     uint64_t saddr, uint64_t offset,
1430 		     uint64_t size, uint64_t flags)
1431 {
1432 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1433 	struct amdgpu_bo *bo = bo_va->base.bo;
1434 	struct amdgpu_vm *vm = bo_va->base.vm;
1435 	uint64_t eaddr;
1436 
1437 	/* validate the parameters */
1438 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
1439 	    size == 0 || size & ~PAGE_MASK)
1440 		return -EINVAL;
1441 
1442 	/* make sure object fit at this offset */
1443 	eaddr = saddr + size - 1;
1444 	if (saddr >= eaddr ||
1445 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
1446 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1447 		return -EINVAL;
1448 
1449 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1450 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1451 
1452 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1453 	if (tmp) {
1454 		/* bo and tmp overlap, invalid addr */
1455 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1456 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1457 			tmp->start, tmp->last + 1);
1458 		return -EINVAL;
1459 	}
1460 
1461 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1462 	if (!mapping)
1463 		return -ENOMEM;
1464 
1465 	mapping->start = saddr;
1466 	mapping->last = eaddr;
1467 	mapping->offset = offset;
1468 	mapping->flags = flags;
1469 
1470 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1471 
1472 	return 0;
1473 }
1474 
1475 /**
1476  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1477  *
1478  * @adev: amdgpu_device pointer
1479  * @bo_va: bo_va to store the address
1480  * @saddr: where to map the BO
1481  * @offset: requested offset in the BO
1482  * @size: BO size in bytes
1483  * @flags: attributes of pages (read/write/valid/etc.)
1484  *
1485  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1486  * mappings as we do so.
1487  *
1488  * Returns:
1489  * 0 for success, error for failure.
1490  *
1491  * Object has to be reserved and unreserved outside!
1492  */
1493 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1494 			     struct amdgpu_bo_va *bo_va,
1495 			     uint64_t saddr, uint64_t offset,
1496 			     uint64_t size, uint64_t flags)
1497 {
1498 	struct amdgpu_bo_va_mapping *mapping;
1499 	struct amdgpu_bo *bo = bo_va->base.bo;
1500 	uint64_t eaddr;
1501 	int r;
1502 
1503 	/* validate the parameters */
1504 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
1505 	    size == 0 || size & ~PAGE_MASK)
1506 		return -EINVAL;
1507 
1508 	/* make sure object fit at this offset */
1509 	eaddr = saddr + size - 1;
1510 	if (saddr >= eaddr ||
1511 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
1512 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
1513 		return -EINVAL;
1514 
1515 	/* Allocate all the needed memory */
1516 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1517 	if (!mapping)
1518 		return -ENOMEM;
1519 
1520 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1521 	if (r) {
1522 		kfree(mapping);
1523 		return r;
1524 	}
1525 
1526 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1527 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1528 
1529 	mapping->start = saddr;
1530 	mapping->last = eaddr;
1531 	mapping->offset = offset;
1532 	mapping->flags = flags;
1533 
1534 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1535 
1536 	return 0;
1537 }
1538 
1539 /**
1540  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1541  *
1542  * @adev: amdgpu_device pointer
1543  * @bo_va: bo_va to remove the address from
1544  * @saddr: where to the BO is mapped
1545  *
1546  * Remove a mapping of the BO at the specefied addr from the VM.
1547  *
1548  * Returns:
1549  * 0 for success, error for failure.
1550  *
1551  * Object has to be reserved and unreserved outside!
1552  */
1553 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1554 		       struct amdgpu_bo_va *bo_va,
1555 		       uint64_t saddr)
1556 {
1557 	struct amdgpu_bo_va_mapping *mapping;
1558 	struct amdgpu_vm *vm = bo_va->base.vm;
1559 	bool valid = true;
1560 
1561 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1562 
1563 	list_for_each_entry(mapping, &bo_va->valids, list) {
1564 		if (mapping->start == saddr)
1565 			break;
1566 	}
1567 
1568 	if (&mapping->list == &bo_va->valids) {
1569 		valid = false;
1570 
1571 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1572 			if (mapping->start == saddr)
1573 				break;
1574 		}
1575 
1576 		if (&mapping->list == &bo_va->invalids)
1577 			return -ENOENT;
1578 	}
1579 
1580 	list_del(&mapping->list);
1581 	amdgpu_vm_it_remove(mapping, &vm->va);
1582 	mapping->bo_va = NULL;
1583 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1584 
1585 	if (valid)
1586 		list_add(&mapping->list, &vm->freed);
1587 	else
1588 		amdgpu_vm_free_mapping(adev, vm, mapping,
1589 				       bo_va->last_pt_update);
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1596  *
1597  * @adev: amdgpu_device pointer
1598  * @vm: VM structure to use
1599  * @saddr: start of the range
1600  * @size: size of the range
1601  *
1602  * Remove all mappings in a range, split them as appropriate.
1603  *
1604  * Returns:
1605  * 0 for success, error for failure.
1606  */
1607 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1608 				struct amdgpu_vm *vm,
1609 				uint64_t saddr, uint64_t size)
1610 {
1611 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1612 	LIST_HEAD(removed);
1613 	uint64_t eaddr;
1614 
1615 	eaddr = saddr + size - 1;
1616 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1617 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1618 
1619 	/* Allocate all the needed memory */
1620 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1621 	if (!before)
1622 		return -ENOMEM;
1623 	INIT_LIST_HEAD(&before->list);
1624 
1625 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1626 	if (!after) {
1627 		kfree(before);
1628 		return -ENOMEM;
1629 	}
1630 	INIT_LIST_HEAD(&after->list);
1631 
1632 	/* Now gather all removed mappings */
1633 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1634 	while (tmp) {
1635 		/* Remember mapping split at the start */
1636 		if (tmp->start < saddr) {
1637 			before->start = tmp->start;
1638 			before->last = saddr - 1;
1639 			before->offset = tmp->offset;
1640 			before->flags = tmp->flags;
1641 			before->bo_va = tmp->bo_va;
1642 			list_add(&before->list, &tmp->bo_va->invalids);
1643 		}
1644 
1645 		/* Remember mapping split at the end */
1646 		if (tmp->last > eaddr) {
1647 			after->start = eaddr + 1;
1648 			after->last = tmp->last;
1649 			after->offset = tmp->offset;
1650 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
1651 			after->flags = tmp->flags;
1652 			after->bo_va = tmp->bo_va;
1653 			list_add(&after->list, &tmp->bo_va->invalids);
1654 		}
1655 
1656 		list_del(&tmp->list);
1657 		list_add(&tmp->list, &removed);
1658 
1659 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
1660 	}
1661 
1662 	/* And free them up */
1663 	list_for_each_entry_safe(tmp, next, &removed, list) {
1664 		amdgpu_vm_it_remove(tmp, &vm->va);
1665 		list_del(&tmp->list);
1666 
1667 		if (tmp->start < saddr)
1668 		    tmp->start = saddr;
1669 		if (tmp->last > eaddr)
1670 		    tmp->last = eaddr;
1671 
1672 		tmp->bo_va = NULL;
1673 		list_add(&tmp->list, &vm->freed);
1674 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
1675 	}
1676 
1677 	/* Insert partial mapping before the range */
1678 	if (!list_empty(&before->list)) {
1679 		amdgpu_vm_it_insert(before, &vm->va);
1680 		if (before->flags & AMDGPU_PTE_PRT)
1681 			amdgpu_vm_prt_get(adev);
1682 	} else {
1683 		kfree(before);
1684 	}
1685 
1686 	/* Insert partial mapping after the range */
1687 	if (!list_empty(&after->list)) {
1688 		amdgpu_vm_it_insert(after, &vm->va);
1689 		if (after->flags & AMDGPU_PTE_PRT)
1690 			amdgpu_vm_prt_get(adev);
1691 	} else {
1692 		kfree(after);
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * amdgpu_vm_bo_lookup_mapping - find mapping by address
1700  *
1701  * @vm: the requested VM
1702  * @addr: the address
1703  *
1704  * Find a mapping by it's address.
1705  *
1706  * Returns:
1707  * The amdgpu_bo_va_mapping matching for addr or NULL
1708  *
1709  */
1710 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
1711 							 uint64_t addr)
1712 {
1713 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
1714 }
1715 
1716 /**
1717  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
1718  *
1719  * @vm: the requested vm
1720  * @ticket: CS ticket
1721  *
1722  * Trace all mappings of BOs reserved during a command submission.
1723  */
1724 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
1725 {
1726 	struct amdgpu_bo_va_mapping *mapping;
1727 
1728 	if (!trace_amdgpu_vm_bo_cs_enabled())
1729 		return;
1730 
1731 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
1732 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
1733 		if (mapping->bo_va && mapping->bo_va->base.bo) {
1734 			struct amdgpu_bo *bo;
1735 
1736 			bo = mapping->bo_va->base.bo;
1737 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
1738 			    ticket)
1739 				continue;
1740 		}
1741 
1742 		trace_amdgpu_vm_bo_cs(mapping);
1743 	}
1744 }
1745 
1746 /**
1747  * amdgpu_vm_bo_del - remove a bo from a specific vm
1748  *
1749  * @adev: amdgpu_device pointer
1750  * @bo_va: requested bo_va
1751  *
1752  * Remove @bo_va->bo from the requested vm.
1753  *
1754  * Object have to be reserved!
1755  */
1756 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
1757 		      struct amdgpu_bo_va *bo_va)
1758 {
1759 	struct amdgpu_bo_va_mapping *mapping, *next;
1760 	struct amdgpu_bo *bo = bo_va->base.bo;
1761 	struct amdgpu_vm *vm = bo_va->base.vm;
1762 	struct amdgpu_vm_bo_base **base;
1763 
1764 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
1765 
1766 	if (bo) {
1767 		dma_resv_assert_held(bo->tbo.base.resv);
1768 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1769 			ttm_bo_set_bulk_move(&bo->tbo, NULL);
1770 
1771 		for (base = &bo_va->base.bo->vm_bo; *base;
1772 		     base = &(*base)->next) {
1773 			if (*base != &bo_va->base)
1774 				continue;
1775 
1776 			*base = bo_va->base.next;
1777 			break;
1778 		}
1779 	}
1780 
1781 	spin_lock(&vm->status_lock);
1782 	list_del(&bo_va->base.vm_status);
1783 	spin_unlock(&vm->status_lock);
1784 
1785 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1786 		list_del(&mapping->list);
1787 		amdgpu_vm_it_remove(mapping, &vm->va);
1788 		mapping->bo_va = NULL;
1789 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1790 		list_add(&mapping->list, &vm->freed);
1791 	}
1792 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1793 		list_del(&mapping->list);
1794 		amdgpu_vm_it_remove(mapping, &vm->va);
1795 		amdgpu_vm_free_mapping(adev, vm, mapping,
1796 				       bo_va->last_pt_update);
1797 	}
1798 
1799 	dma_fence_put(bo_va->last_pt_update);
1800 
1801 	if (bo && bo_va->is_xgmi)
1802 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
1803 
1804 	kfree(bo_va);
1805 }
1806 
1807 /**
1808  * amdgpu_vm_evictable - check if we can evict a VM
1809  *
1810  * @bo: A page table of the VM.
1811  *
1812  * Check if it is possible to evict a VM.
1813  */
1814 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
1815 {
1816 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
1817 
1818 	/* Page tables of a destroyed VM can go away immediately */
1819 	if (!bo_base || !bo_base->vm)
1820 		return true;
1821 
1822 	/* Don't evict VM page tables while they are busy */
1823 	if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP))
1824 		return false;
1825 
1826 	/* Try to block ongoing updates */
1827 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
1828 		return false;
1829 
1830 	/* Don't evict VM page tables while they are updated */
1831 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
1832 		amdgpu_vm_eviction_unlock(bo_base->vm);
1833 		return false;
1834 	}
1835 
1836 	bo_base->vm->evicting = true;
1837 	amdgpu_vm_eviction_unlock(bo_base->vm);
1838 	return true;
1839 }
1840 
1841 /**
1842  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1843  *
1844  * @adev: amdgpu_device pointer
1845  * @bo: amdgpu buffer object
1846  * @evicted: is the BO evicted
1847  *
1848  * Mark @bo as invalid.
1849  */
1850 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1851 			     struct amdgpu_bo *bo, bool evicted)
1852 {
1853 	struct amdgpu_vm_bo_base *bo_base;
1854 
1855 	/* shadow bo doesn't have bo base, its validation needs its parent */
1856 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
1857 		bo = bo->parent;
1858 
1859 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
1860 		struct amdgpu_vm *vm = bo_base->vm;
1861 
1862 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1863 			amdgpu_vm_bo_evicted(bo_base);
1864 			continue;
1865 		}
1866 
1867 		if (bo_base->moved)
1868 			continue;
1869 		bo_base->moved = true;
1870 
1871 		if (bo->tbo.type == ttm_bo_type_kernel)
1872 			amdgpu_vm_bo_relocated(bo_base);
1873 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
1874 			amdgpu_vm_bo_moved(bo_base);
1875 		else
1876 			amdgpu_vm_bo_invalidated(bo_base);
1877 	}
1878 }
1879 
1880 /**
1881  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
1882  *
1883  * @vm_size: VM size
1884  *
1885  * Returns:
1886  * VM page table as power of two
1887  */
1888 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
1889 {
1890 	/* Total bits covered by PD + PTs */
1891 	unsigned bits = ilog2(vm_size) + 18;
1892 
1893 	/* Make sure the PD is 4K in size up to 8GB address space.
1894 	   Above that split equal between PD and PTs */
1895 	if (vm_size <= 8)
1896 		return (bits - 9);
1897 	else
1898 		return ((bits + 3) / 2);
1899 }
1900 
1901 /**
1902  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
1903  *
1904  * @adev: amdgpu_device pointer
1905  * @min_vm_size: the minimum vm size in GB if it's set auto
1906  * @fragment_size_default: Default PTE fragment size
1907  * @max_level: max VMPT level
1908  * @max_bits: max address space size in bits
1909  *
1910  */
1911 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
1912 			   uint32_t fragment_size_default, unsigned max_level,
1913 			   unsigned max_bits)
1914 {
1915 	unsigned int max_size = 1 << (max_bits - 30);
1916 	unsigned int vm_size;
1917 	uint64_t tmp;
1918 
1919 	/* adjust vm size first */
1920 	if (amdgpu_vm_size != -1) {
1921 		vm_size = amdgpu_vm_size;
1922 		if (vm_size > max_size) {
1923 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
1924 				 amdgpu_vm_size, max_size);
1925 			vm_size = max_size;
1926 		}
1927 	} else {
1928 		struct sysinfo si;
1929 		unsigned int phys_ram_gb;
1930 
1931 		/* Optimal VM size depends on the amount of physical
1932 		 * RAM available. Underlying requirements and
1933 		 * assumptions:
1934 		 *
1935 		 *  - Need to map system memory and VRAM from all GPUs
1936 		 *     - VRAM from other GPUs not known here
1937 		 *     - Assume VRAM <= system memory
1938 		 *  - On GFX8 and older, VM space can be segmented for
1939 		 *    different MTYPEs
1940 		 *  - Need to allow room for fragmentation, guard pages etc.
1941 		 *
1942 		 * This adds up to a rough guess of system memory x3.
1943 		 * Round up to power of two to maximize the available
1944 		 * VM size with the given page table size.
1945 		 */
1946 		si_meminfo(&si);
1947 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
1948 			       (1 << 30) - 1) >> 30;
1949 		vm_size = roundup_pow_of_two(
1950 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
1951 	}
1952 
1953 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
1954 
1955 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
1956 	if (amdgpu_vm_block_size != -1)
1957 		tmp >>= amdgpu_vm_block_size - 9;
1958 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
1959 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
1960 	switch (adev->vm_manager.num_level) {
1961 	case 3:
1962 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
1963 		break;
1964 	case 2:
1965 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
1966 		break;
1967 	case 1:
1968 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
1969 		break;
1970 	default:
1971 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
1972 	}
1973 	/* block size depends on vm size and hw setup*/
1974 	if (amdgpu_vm_block_size != -1)
1975 		adev->vm_manager.block_size =
1976 			min((unsigned)amdgpu_vm_block_size, max_bits
1977 			    - AMDGPU_GPU_PAGE_SHIFT
1978 			    - 9 * adev->vm_manager.num_level);
1979 	else if (adev->vm_manager.num_level > 1)
1980 		adev->vm_manager.block_size = 9;
1981 	else
1982 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
1983 
1984 	if (amdgpu_vm_fragment_size == -1)
1985 		adev->vm_manager.fragment_size = fragment_size_default;
1986 	else
1987 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
1988 
1989 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
1990 		 vm_size, adev->vm_manager.num_level + 1,
1991 		 adev->vm_manager.block_size,
1992 		 adev->vm_manager.fragment_size);
1993 }
1994 
1995 /**
1996  * amdgpu_vm_wait_idle - wait for the VM to become idle
1997  *
1998  * @vm: VM object to wait for
1999  * @timeout: timeout to wait for VM to become idle
2000  */
2001 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2002 {
2003 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv,
2004 					DMA_RESV_USAGE_BOOKKEEP,
2005 					true, timeout);
2006 	if (timeout <= 0)
2007 		return timeout;
2008 
2009 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2010 }
2011 
2012 /**
2013  * amdgpu_vm_init - initialize a vm instance
2014  *
2015  * @adev: amdgpu_device pointer
2016  * @vm: requested vm
2017  *
2018  * Init @vm fields.
2019  *
2020  * Returns:
2021  * 0 for success, error for failure.
2022  */
2023 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2024 {
2025 	struct amdgpu_bo *root_bo;
2026 	struct amdgpu_bo_vm *root;
2027 	int r, i;
2028 
2029 	vm->va = RB_ROOT_CACHED;
2030 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2031 		vm->reserved_vmid[i] = NULL;
2032 	INIT_LIST_HEAD(&vm->evicted);
2033 	INIT_LIST_HEAD(&vm->relocated);
2034 	INIT_LIST_HEAD(&vm->moved);
2035 	INIT_LIST_HEAD(&vm->idle);
2036 	INIT_LIST_HEAD(&vm->invalidated);
2037 	spin_lock_init(&vm->status_lock);
2038 	INIT_LIST_HEAD(&vm->freed);
2039 	INIT_LIST_HEAD(&vm->done);
2040 	INIT_LIST_HEAD(&vm->pt_freed);
2041 	INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work);
2042 
2043 	/* create scheduler entities for page table updates */
2044 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2045 				  adev->vm_manager.vm_pte_scheds,
2046 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2047 	if (r)
2048 		return r;
2049 
2050 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2051 				  adev->vm_manager.vm_pte_scheds,
2052 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2053 	if (r)
2054 		goto error_free_immediate;
2055 
2056 	vm->pte_support_ats = false;
2057 	vm->is_compute_context = false;
2058 
2059 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2060 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2061 
2062 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2063 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2064 	WARN_ONCE((vm->use_cpu_for_update &&
2065 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2066 		  "CPU update of VM recommended only for large BAR system\n");
2067 
2068 	if (vm->use_cpu_for_update)
2069 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2070 	else
2071 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2072 	vm->last_update = NULL;
2073 	vm->last_unlocked = dma_fence_get_stub();
2074 	vm->last_tlb_flush = dma_fence_get_stub();
2075 
2076 	mutex_init(&vm->eviction_lock);
2077 	vm->evicting = false;
2078 
2079 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2080 				false, &root);
2081 	if (r)
2082 		goto error_free_delayed;
2083 	root_bo = &root->bo;
2084 	r = amdgpu_bo_reserve(root_bo, true);
2085 	if (r)
2086 		goto error_free_root;
2087 
2088 	r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1);
2089 	if (r)
2090 		goto error_unreserve;
2091 
2092 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2093 
2094 	r = amdgpu_vm_pt_clear(adev, vm, root, false);
2095 	if (r)
2096 		goto error_unreserve;
2097 
2098 	amdgpu_bo_unreserve(vm->root.bo);
2099 
2100 	INIT_KFIFO(vm->faults);
2101 
2102 	return 0;
2103 
2104 error_unreserve:
2105 	amdgpu_bo_unreserve(vm->root.bo);
2106 
2107 error_free_root:
2108 	amdgpu_bo_unref(&root->shadow);
2109 	amdgpu_bo_unref(&root_bo);
2110 	vm->root.bo = NULL;
2111 
2112 error_free_delayed:
2113 	dma_fence_put(vm->last_tlb_flush);
2114 	dma_fence_put(vm->last_unlocked);
2115 	drm_sched_entity_destroy(&vm->delayed);
2116 
2117 error_free_immediate:
2118 	drm_sched_entity_destroy(&vm->immediate);
2119 
2120 	return r;
2121 }
2122 
2123 /**
2124  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2125  *
2126  * @adev: amdgpu_device pointer
2127  * @vm: requested vm
2128  *
2129  * This only works on GFX VMs that don't have any BOs added and no
2130  * page tables allocated yet.
2131  *
2132  * Changes the following VM parameters:
2133  * - use_cpu_for_update
2134  * - pte_supports_ats
2135  *
2136  * Reinitializes the page directory to reflect the changed ATS
2137  * setting.
2138  *
2139  * Returns:
2140  * 0 for success, -errno for errors.
2141  */
2142 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2143 {
2144 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2145 	int r;
2146 
2147 	r = amdgpu_bo_reserve(vm->root.bo, true);
2148 	if (r)
2149 		return r;
2150 
2151 	/* Sanity checks */
2152 	if (!amdgpu_vm_pt_is_root_clean(adev, vm)) {
2153 		r = -EINVAL;
2154 		goto unreserve_bo;
2155 	}
2156 
2157 	/* Check if PD needs to be reinitialized and do it before
2158 	 * changing any other state, in case it fails.
2159 	 */
2160 	if (pte_support_ats != vm->pte_support_ats) {
2161 		vm->pte_support_ats = pte_support_ats;
2162 		r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo),
2163 				       false);
2164 		if (r)
2165 			goto unreserve_bo;
2166 	}
2167 
2168 	/* Update VM state */
2169 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2170 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2171 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2172 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2173 	WARN_ONCE((vm->use_cpu_for_update &&
2174 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2175 		  "CPU update of VM recommended only for large BAR system\n");
2176 
2177 	if (vm->use_cpu_for_update) {
2178 		/* Sync with last SDMA update/clear before switching to CPU */
2179 		r = amdgpu_bo_sync_wait(vm->root.bo,
2180 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
2181 		if (r)
2182 			goto unreserve_bo;
2183 
2184 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2185 	} else {
2186 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2187 	}
2188 	/*
2189 	 * Make sure root PD gets mapped. As vm_update_mode could be changed
2190 	 * when turning a GFX VM into a compute VM.
2191 	 */
2192 	r = vm->update_funcs->map_table(to_amdgpu_bo_vm(vm->root.bo));
2193 	if (r)
2194 		goto unreserve_bo;
2195 
2196 	dma_fence_put(vm->last_update);
2197 	vm->last_update = NULL;
2198 	vm->is_compute_context = true;
2199 
2200 	/* Free the shadow bo for compute VM */
2201 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
2202 
2203 	goto unreserve_bo;
2204 
2205 unreserve_bo:
2206 	amdgpu_bo_unreserve(vm->root.bo);
2207 	return r;
2208 }
2209 
2210 /**
2211  * amdgpu_vm_release_compute - release a compute vm
2212  * @adev: amdgpu_device pointer
2213  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2214  *
2215  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2216  * pasid from vm. Compute should stop use of vm after this call.
2217  */
2218 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2219 {
2220 	amdgpu_vm_set_pasid(adev, vm, 0);
2221 	vm->is_compute_context = false;
2222 }
2223 
2224 /**
2225  * amdgpu_vm_fini - tear down a vm instance
2226  *
2227  * @adev: amdgpu_device pointer
2228  * @vm: requested vm
2229  *
2230  * Tear down @vm.
2231  * Unbind the VM and remove all bos from the vm bo list
2232  */
2233 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2234 {
2235 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2236 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2237 	struct amdgpu_bo *root;
2238 	unsigned long flags;
2239 	int i;
2240 
2241 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2242 
2243 	flush_work(&vm->pt_free_work);
2244 
2245 	root = amdgpu_bo_ref(vm->root.bo);
2246 	amdgpu_bo_reserve(root, true);
2247 	amdgpu_vm_set_pasid(adev, vm, 0);
2248 	dma_fence_wait(vm->last_unlocked, false);
2249 	dma_fence_put(vm->last_unlocked);
2250 	dma_fence_wait(vm->last_tlb_flush, false);
2251 	/* Make sure that all fence callbacks have completed */
2252 	spin_lock_irqsave(vm->last_tlb_flush->lock, flags);
2253 	spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags);
2254 	dma_fence_put(vm->last_tlb_flush);
2255 
2256 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2257 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2258 			amdgpu_vm_prt_fini(adev, vm);
2259 			prt_fini_needed = false;
2260 		}
2261 
2262 		list_del(&mapping->list);
2263 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2264 	}
2265 
2266 	amdgpu_vm_pt_free_root(adev, vm);
2267 	amdgpu_bo_unreserve(root);
2268 	amdgpu_bo_unref(&root);
2269 	WARN_ON(vm->root.bo);
2270 
2271 	drm_sched_entity_destroy(&vm->immediate);
2272 	drm_sched_entity_destroy(&vm->delayed);
2273 
2274 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2275 		dev_err(adev->dev, "still active bo inside vm\n");
2276 	}
2277 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2278 					     &vm->va.rb_root, rb) {
2279 		/* Don't remove the mapping here, we don't want to trigger a
2280 		 * rebalance and the tree is about to be destroyed anyway.
2281 		 */
2282 		list_del(&mapping->list);
2283 		kfree(mapping);
2284 	}
2285 
2286 	dma_fence_put(vm->last_update);
2287 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2288 		amdgpu_vmid_free_reserved(adev, vm, i);
2289 }
2290 
2291 /**
2292  * amdgpu_vm_manager_init - init the VM manager
2293  *
2294  * @adev: amdgpu_device pointer
2295  *
2296  * Initialize the VM manager structures
2297  */
2298 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2299 {
2300 	unsigned i;
2301 
2302 	/* Concurrent flushes are only possible starting with Vega10 and
2303 	 * are broken on Navi10 and Navi14.
2304 	 */
2305 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
2306 					      adev->asic_type == CHIP_NAVI10 ||
2307 					      adev->asic_type == CHIP_NAVI14);
2308 	amdgpu_vmid_mgr_init(adev);
2309 
2310 	adev->vm_manager.fence_context =
2311 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2312 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2313 		adev->vm_manager.seqno[i] = 0;
2314 
2315 	spin_lock_init(&adev->vm_manager.prt_lock);
2316 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2317 
2318 	/* If not overridden by the user, by default, only in large BAR systems
2319 	 * Compute VM tables will be updated by CPU
2320 	 */
2321 #ifdef CONFIG_X86_64
2322 	if (amdgpu_vm_update_mode == -1) {
2323 		/* For asic with VF MMIO access protection
2324 		 * avoid using CPU for VM table updates
2325 		 */
2326 		if (amdgpu_gmc_vram_full_visible(&adev->gmc) &&
2327 		    !amdgpu_sriov_vf_mmio_access_protection(adev))
2328 			adev->vm_manager.vm_update_mode =
2329 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2330 		else
2331 			adev->vm_manager.vm_update_mode = 0;
2332 	} else
2333 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2334 #else
2335 	adev->vm_manager.vm_update_mode = 0;
2336 #endif
2337 
2338 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
2339 }
2340 
2341 /**
2342  * amdgpu_vm_manager_fini - cleanup VM manager
2343  *
2344  * @adev: amdgpu_device pointer
2345  *
2346  * Cleanup the VM manager and free resources.
2347  */
2348 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2349 {
2350 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
2351 	xa_destroy(&adev->vm_manager.pasids);
2352 
2353 	amdgpu_vmid_mgr_fini(adev);
2354 }
2355 
2356 /**
2357  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
2358  *
2359  * @dev: drm device pointer
2360  * @data: drm_amdgpu_vm
2361  * @filp: drm file pointer
2362  *
2363  * Returns:
2364  * 0 for success, -errno for errors.
2365  */
2366 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2367 {
2368 	union drm_amdgpu_vm *args = data;
2369 	struct amdgpu_device *adev = drm_to_adev(dev);
2370 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2371 	int r;
2372 
2373 	switch (args->in.op) {
2374 	case AMDGPU_VM_OP_RESERVE_VMID:
2375 		/* We only have requirement to reserve vmid from gfxhub */
2376 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
2377 					       AMDGPU_GFXHUB_0);
2378 		if (r)
2379 			return r;
2380 		break;
2381 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2382 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
2383 		break;
2384 	default:
2385 		return -EINVAL;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 /**
2392  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
2393  *
2394  * @adev: drm device pointer
2395  * @pasid: PASID identifier for VM
2396  * @task_info: task_info to fill.
2397  */
2398 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
2399 			 struct amdgpu_task_info *task_info)
2400 {
2401 	struct amdgpu_vm *vm;
2402 	unsigned long flags;
2403 
2404 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
2405 
2406 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2407 	if (vm)
2408 		*task_info = vm->task_info;
2409 
2410 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
2411 }
2412 
2413 /**
2414  * amdgpu_vm_set_task_info - Sets VMs task info.
2415  *
2416  * @vm: vm for which to set the info
2417  */
2418 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
2419 {
2420 	if (vm->task_info.pid)
2421 		return;
2422 
2423 	vm->task_info.pid = current->pid;
2424 	get_task_comm(vm->task_info.task_name, current);
2425 
2426 	if (current->group_leader->mm != current->mm)
2427 		return;
2428 
2429 	vm->task_info.tgid = current->group_leader->pid;
2430 	get_task_comm(vm->task_info.process_name, current->group_leader);
2431 }
2432 
2433 /**
2434  * amdgpu_vm_handle_fault - graceful handling of VM faults.
2435  * @adev: amdgpu device pointer
2436  * @pasid: PASID of the VM
2437  * @addr: Address of the fault
2438  * @write_fault: true is write fault, false is read fault
2439  *
2440  * Try to gracefully handle a VM fault. Return true if the fault was handled and
2441  * shouldn't be reported any more.
2442  */
2443 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
2444 			    uint64_t addr, bool write_fault)
2445 {
2446 	bool is_compute_context = false;
2447 	struct amdgpu_bo *root;
2448 	unsigned long irqflags;
2449 	uint64_t value, flags;
2450 	struct amdgpu_vm *vm;
2451 	int r;
2452 
2453 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2454 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2455 	if (vm) {
2456 		root = amdgpu_bo_ref(vm->root.bo);
2457 		is_compute_context = vm->is_compute_context;
2458 	} else {
2459 		root = NULL;
2460 	}
2461 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2462 
2463 	if (!root)
2464 		return false;
2465 
2466 	addr /= AMDGPU_GPU_PAGE_SIZE;
2467 
2468 	if (is_compute_context &&
2469 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
2470 		amdgpu_bo_unref(&root);
2471 		return true;
2472 	}
2473 
2474 	r = amdgpu_bo_reserve(root, true);
2475 	if (r)
2476 		goto error_unref;
2477 
2478 	/* Double check that the VM still exists */
2479 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
2480 	vm = xa_load(&adev->vm_manager.pasids, pasid);
2481 	if (vm && vm->root.bo != root)
2482 		vm = NULL;
2483 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
2484 	if (!vm)
2485 		goto error_unlock;
2486 
2487 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
2488 		AMDGPU_PTE_SYSTEM;
2489 
2490 	if (is_compute_context) {
2491 		/* Intentionally setting invalid PTE flag
2492 		 * combination to force a no-retry-fault
2493 		 */
2494 		flags = AMDGPU_PTE_SNOOPED | AMDGPU_PTE_PRT;
2495 		value = 0;
2496 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
2497 		/* Redirect the access to the dummy page */
2498 		value = adev->dummy_page_addr;
2499 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
2500 			AMDGPU_PTE_WRITEABLE;
2501 
2502 	} else {
2503 		/* Let the hw retry silently on the PTE */
2504 		value = 0;
2505 	}
2506 
2507 	r = dma_resv_reserve_fences(root->tbo.base.resv, 1);
2508 	if (r) {
2509 		pr_debug("failed %d to reserve fence slot\n", r);
2510 		goto error_unlock;
2511 	}
2512 
2513 	r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr,
2514 				   addr, flags, value, 0, NULL, NULL, NULL);
2515 	if (r)
2516 		goto error_unlock;
2517 
2518 	r = amdgpu_vm_update_pdes(adev, vm, true);
2519 
2520 error_unlock:
2521 	amdgpu_bo_unreserve(root);
2522 	if (r < 0)
2523 		DRM_ERROR("Can't handle page fault (%d)\n", r);
2524 
2525 error_unref:
2526 	amdgpu_bo_unref(&root);
2527 
2528 	return false;
2529 }
2530 
2531 #if defined(CONFIG_DEBUG_FS)
2532 /**
2533  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
2534  *
2535  * @vm: Requested VM for printing BO info
2536  * @m: debugfs file
2537  *
2538  * Print BO information in debugfs file for the VM
2539  */
2540 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
2541 {
2542 	struct amdgpu_bo_va *bo_va, *tmp;
2543 	u64 total_idle = 0;
2544 	u64 total_evicted = 0;
2545 	u64 total_relocated = 0;
2546 	u64 total_moved = 0;
2547 	u64 total_invalidated = 0;
2548 	u64 total_done = 0;
2549 	unsigned int total_idle_objs = 0;
2550 	unsigned int total_evicted_objs = 0;
2551 	unsigned int total_relocated_objs = 0;
2552 	unsigned int total_moved_objs = 0;
2553 	unsigned int total_invalidated_objs = 0;
2554 	unsigned int total_done_objs = 0;
2555 	unsigned int id = 0;
2556 
2557 	spin_lock(&vm->status_lock);
2558 	seq_puts(m, "\tIdle BOs:\n");
2559 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
2560 		if (!bo_va->base.bo)
2561 			continue;
2562 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2563 	}
2564 	total_idle_objs = id;
2565 	id = 0;
2566 
2567 	seq_puts(m, "\tEvicted BOs:\n");
2568 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
2569 		if (!bo_va->base.bo)
2570 			continue;
2571 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2572 	}
2573 	total_evicted_objs = id;
2574 	id = 0;
2575 
2576 	seq_puts(m, "\tRelocated BOs:\n");
2577 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
2578 		if (!bo_va->base.bo)
2579 			continue;
2580 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2581 	}
2582 	total_relocated_objs = id;
2583 	id = 0;
2584 
2585 	seq_puts(m, "\tMoved BOs:\n");
2586 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2587 		if (!bo_va->base.bo)
2588 			continue;
2589 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2590 	}
2591 	total_moved_objs = id;
2592 	id = 0;
2593 
2594 	seq_puts(m, "\tInvalidated BOs:\n");
2595 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
2596 		if (!bo_va->base.bo)
2597 			continue;
2598 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
2599 	}
2600 	total_invalidated_objs = id;
2601 	id = 0;
2602 
2603 	seq_puts(m, "\tDone BOs:\n");
2604 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
2605 		if (!bo_va->base.bo)
2606 			continue;
2607 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
2608 	}
2609 	spin_unlock(&vm->status_lock);
2610 	total_done_objs = id;
2611 
2612 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
2613 		   total_idle_objs);
2614 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
2615 		   total_evicted_objs);
2616 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
2617 		   total_relocated_objs);
2618 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
2619 		   total_moved_objs);
2620 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
2621 		   total_invalidated_objs);
2622 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
2623 		   total_done_objs);
2624 }
2625 #endif
2626