1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <drm/drmP.h> 31 #include <drm/amdgpu_drm.h> 32 #include "amdgpu.h" 33 #include "amdgpu_trace.h" 34 35 /* 36 * GPUVM 37 * GPUVM is similar to the legacy gart on older asics, however 38 * rather than there being a single global gart table 39 * for the entire GPU, there are multiple VM page tables active 40 * at any given time. The VM page tables can contain a mix 41 * vram pages and system memory pages and system memory pages 42 * can be mapped as snooped (cached system pages) or unsnooped 43 * (uncached system pages). 44 * Each VM has an ID associated with it and there is a page table 45 * associated with each VMID. When execting a command buffer, 46 * the kernel tells the the ring what VMID to use for that command 47 * buffer. VMIDs are allocated dynamically as commands are submitted. 48 * The userspace drivers maintain their own address space and the kernel 49 * sets up their pages tables accordingly when they submit their 50 * command buffers and a VMID is assigned. 51 * Cayman/Trinity support up to 8 active VMs at any given time; 52 * SI supports 16. 53 */ 54 55 #define START(node) ((node)->start) 56 #define LAST(node) ((node)->last) 57 58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 59 START, LAST, static, amdgpu_vm_it) 60 61 #undef START 62 #undef LAST 63 64 /* Local structure. Encapsulate some VM table update parameters to reduce 65 * the number of function parameters 66 */ 67 struct amdgpu_pte_update_params { 68 /* amdgpu device we do this update for */ 69 struct amdgpu_device *adev; 70 /* optional amdgpu_vm we do this update for */ 71 struct amdgpu_vm *vm; 72 /* address where to copy page table entries from */ 73 uint64_t src; 74 /* indirect buffer to fill with commands */ 75 struct amdgpu_ib *ib; 76 /* Function which actually does the update */ 77 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, 78 uint64_t addr, unsigned count, uint32_t incr, 79 uint64_t flags); 80 /* The next two are used during VM update by CPU 81 * DMA addresses to use for mapping 82 * Kernel pointer of PD/PT BO that needs to be updated 83 */ 84 dma_addr_t *pages_addr; 85 void *kptr; 86 }; 87 88 /* Helper to disable partial resident texture feature from a fence callback */ 89 struct amdgpu_prt_cb { 90 struct amdgpu_device *adev; 91 struct dma_fence_cb cb; 92 }; 93 94 /** 95 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 96 * 97 * @adev: amdgpu_device pointer 98 * 99 * Calculate the number of entries in a page directory or page table. 100 */ 101 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 102 unsigned level) 103 { 104 if (level == 0) 105 /* For the root directory */ 106 return adev->vm_manager.max_pfn >> 107 (adev->vm_manager.block_size * 108 adev->vm_manager.num_level); 109 else if (level == adev->vm_manager.num_level) 110 /* For the page tables on the leaves */ 111 return AMDGPU_VM_PTE_COUNT(adev); 112 else 113 /* Everything in between */ 114 return 1 << adev->vm_manager.block_size; 115 } 116 117 /** 118 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 119 * 120 * @adev: amdgpu_device pointer 121 * 122 * Calculate the size of the BO for a page directory or page table in bytes. 123 */ 124 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 125 { 126 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 127 } 128 129 /** 130 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 131 * 132 * @vm: vm providing the BOs 133 * @validated: head of validation list 134 * @entry: entry to add 135 * 136 * Add the page directory to the list of BOs to 137 * validate for command submission. 138 */ 139 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 140 struct list_head *validated, 141 struct amdgpu_bo_list_entry *entry) 142 { 143 entry->robj = vm->root.bo; 144 entry->priority = 0; 145 entry->tv.bo = &entry->robj->tbo; 146 entry->tv.shared = true; 147 entry->user_pages = NULL; 148 list_add(&entry->tv.head, validated); 149 } 150 151 /** 152 * amdgpu_vm_validate_layer - validate a single page table level 153 * 154 * @parent: parent page table level 155 * @validate: callback to do the validation 156 * @param: parameter for the validation callback 157 * 158 * Validate the page table BOs on command submission if neccessary. 159 */ 160 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent, 161 int (*validate)(void *, struct amdgpu_bo *), 162 void *param, bool use_cpu_for_update, 163 struct ttm_bo_global *glob) 164 { 165 unsigned i; 166 int r; 167 168 if (parent->bo->shadow) { 169 struct amdgpu_bo *shadow = parent->bo->shadow; 170 171 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem); 172 if (r) 173 return r; 174 } 175 176 if (use_cpu_for_update) { 177 r = amdgpu_bo_kmap(parent->bo, NULL); 178 if (r) 179 return r; 180 } 181 182 if (!parent->entries) 183 return 0; 184 185 for (i = 0; i <= parent->last_entry_used; ++i) { 186 struct amdgpu_vm_pt *entry = &parent->entries[i]; 187 188 if (!entry->bo) 189 continue; 190 191 r = validate(param, entry->bo); 192 if (r) 193 return r; 194 195 spin_lock(&glob->lru_lock); 196 ttm_bo_move_to_lru_tail(&entry->bo->tbo); 197 if (entry->bo->shadow) 198 ttm_bo_move_to_lru_tail(&entry->bo->shadow->tbo); 199 spin_unlock(&glob->lru_lock); 200 201 /* 202 * Recurse into the sub directory. This is harmless because we 203 * have only a maximum of 5 layers. 204 */ 205 r = amdgpu_vm_validate_level(entry, validate, param, 206 use_cpu_for_update, glob); 207 if (r) 208 return r; 209 } 210 211 return r; 212 } 213 214 /** 215 * amdgpu_vm_validate_pt_bos - validate the page table BOs 216 * 217 * @adev: amdgpu device pointer 218 * @vm: vm providing the BOs 219 * @validate: callback to do the validation 220 * @param: parameter for the validation callback 221 * 222 * Validate the page table BOs on command submission if neccessary. 223 */ 224 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 225 int (*validate)(void *p, struct amdgpu_bo *bo), 226 void *param) 227 { 228 uint64_t num_evictions; 229 230 /* We only need to validate the page tables 231 * if they aren't already valid. 232 */ 233 num_evictions = atomic64_read(&adev->num_evictions); 234 if (num_evictions == vm->last_eviction_counter) 235 return 0; 236 237 return amdgpu_vm_validate_level(&vm->root, validate, param, 238 vm->use_cpu_for_update, 239 adev->mman.bdev.glob); 240 } 241 242 /** 243 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 244 * 245 * @adev: amdgpu_device pointer 246 * @vm: requested vm 247 * @saddr: start of the address range 248 * @eaddr: end of the address range 249 * 250 * Make sure the page directories and page tables are allocated 251 */ 252 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 253 struct amdgpu_vm *vm, 254 struct amdgpu_vm_pt *parent, 255 uint64_t saddr, uint64_t eaddr, 256 unsigned level) 257 { 258 unsigned shift = (adev->vm_manager.num_level - level) * 259 adev->vm_manager.block_size; 260 unsigned pt_idx, from, to; 261 int r; 262 u64 flags; 263 uint64_t init_value = 0; 264 265 if (!parent->entries) { 266 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 267 268 parent->entries = kvmalloc_array(num_entries, 269 sizeof(struct amdgpu_vm_pt), 270 GFP_KERNEL | __GFP_ZERO); 271 if (!parent->entries) 272 return -ENOMEM; 273 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 274 } 275 276 from = saddr >> shift; 277 to = eaddr >> shift; 278 if (from >= amdgpu_vm_num_entries(adev, level) || 279 to >= amdgpu_vm_num_entries(adev, level)) 280 return -EINVAL; 281 282 if (to > parent->last_entry_used) 283 parent->last_entry_used = to; 284 285 ++level; 286 saddr = saddr & ((1 << shift) - 1); 287 eaddr = eaddr & ((1 << shift) - 1); 288 289 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 290 AMDGPU_GEM_CREATE_VRAM_CLEARED; 291 if (vm->use_cpu_for_update) 292 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 293 else 294 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 295 AMDGPU_GEM_CREATE_SHADOW); 296 297 if (vm->pte_support_ats) { 298 init_value = AMDGPU_PTE_SYSTEM; 299 if (level != adev->vm_manager.num_level - 1) 300 init_value |= AMDGPU_PDE_PTE; 301 } 302 303 /* walk over the address space and allocate the page tables */ 304 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 305 struct reservation_object *resv = vm->root.bo->tbo.resv; 306 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 307 struct amdgpu_bo *pt; 308 309 if (!entry->bo) { 310 r = amdgpu_bo_create(adev, 311 amdgpu_vm_bo_size(adev, level), 312 AMDGPU_GPU_PAGE_SIZE, true, 313 AMDGPU_GEM_DOMAIN_VRAM, 314 flags, 315 NULL, resv, init_value, &pt); 316 if (r) 317 return r; 318 319 if (vm->use_cpu_for_update) { 320 r = amdgpu_bo_kmap(pt, NULL); 321 if (r) { 322 amdgpu_bo_unref(&pt); 323 return r; 324 } 325 } 326 327 /* Keep a reference to the root directory to avoid 328 * freeing them up in the wrong order. 329 */ 330 pt->parent = amdgpu_bo_ref(vm->root.bo); 331 332 entry->bo = pt; 333 entry->addr = 0; 334 } 335 336 if (level < adev->vm_manager.num_level) { 337 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 338 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 339 ((1 << shift) - 1); 340 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 341 sub_eaddr, level); 342 if (r) 343 return r; 344 } 345 } 346 347 return 0; 348 } 349 350 /** 351 * amdgpu_vm_alloc_pts - Allocate page tables. 352 * 353 * @adev: amdgpu_device pointer 354 * @vm: VM to allocate page tables for 355 * @saddr: Start address which needs to be allocated 356 * @size: Size from start address we need. 357 * 358 * Make sure the page tables are allocated. 359 */ 360 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 361 struct amdgpu_vm *vm, 362 uint64_t saddr, uint64_t size) 363 { 364 uint64_t last_pfn; 365 uint64_t eaddr; 366 367 /* validate the parameters */ 368 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 369 return -EINVAL; 370 371 eaddr = saddr + size - 1; 372 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 373 if (last_pfn >= adev->vm_manager.max_pfn) { 374 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 375 last_pfn, adev->vm_manager.max_pfn); 376 return -EINVAL; 377 } 378 379 saddr /= AMDGPU_GPU_PAGE_SIZE; 380 eaddr /= AMDGPU_GPU_PAGE_SIZE; 381 382 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); 383 } 384 385 /** 386 * amdgpu_vm_had_gpu_reset - check if reset occured since last use 387 * 388 * @adev: amdgpu_device pointer 389 * @id: VMID structure 390 * 391 * Check if GPU reset occured since last use of the VMID. 392 */ 393 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, 394 struct amdgpu_vm_id *id) 395 { 396 return id->current_gpu_reset_count != 397 atomic_read(&adev->gpu_reset_counter); 398 } 399 400 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub) 401 { 402 return !!vm->reserved_vmid[vmhub]; 403 } 404 405 /* idr_mgr->lock must be held */ 406 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm, 407 struct amdgpu_ring *ring, 408 struct amdgpu_sync *sync, 409 struct dma_fence *fence, 410 struct amdgpu_job *job) 411 { 412 struct amdgpu_device *adev = ring->adev; 413 unsigned vmhub = ring->funcs->vmhub; 414 uint64_t fence_context = adev->fence_context + ring->idx; 415 struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub]; 416 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 417 struct dma_fence *updates = sync->last_vm_update; 418 int r = 0; 419 struct dma_fence *flushed, *tmp; 420 bool needs_flush = vm->use_cpu_for_update; 421 422 flushed = id->flushed_updates; 423 if ((amdgpu_vm_had_gpu_reset(adev, id)) || 424 (atomic64_read(&id->owner) != vm->client_id) || 425 (job->vm_pd_addr != id->pd_gpu_addr) || 426 (updates && (!flushed || updates->context != flushed->context || 427 dma_fence_is_later(updates, flushed))) || 428 (!id->last_flush || (id->last_flush->context != fence_context && 429 !dma_fence_is_signaled(id->last_flush)))) { 430 needs_flush = true; 431 /* to prevent one context starved by another context */ 432 id->pd_gpu_addr = 0; 433 tmp = amdgpu_sync_peek_fence(&id->active, ring); 434 if (tmp) { 435 r = amdgpu_sync_fence(adev, sync, tmp); 436 return r; 437 } 438 } 439 440 /* Good we can use this VMID. Remember this submission as 441 * user of the VMID. 442 */ 443 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 444 if (r) 445 goto out; 446 447 if (updates && (!flushed || updates->context != flushed->context || 448 dma_fence_is_later(updates, flushed))) { 449 dma_fence_put(id->flushed_updates); 450 id->flushed_updates = dma_fence_get(updates); 451 } 452 id->pd_gpu_addr = job->vm_pd_addr; 453 atomic64_set(&id->owner, vm->client_id); 454 job->vm_needs_flush = needs_flush; 455 if (needs_flush) { 456 dma_fence_put(id->last_flush); 457 id->last_flush = NULL; 458 } 459 job->vm_id = id - id_mgr->ids; 460 trace_amdgpu_vm_grab_id(vm, ring, job); 461 out: 462 return r; 463 } 464 465 /** 466 * amdgpu_vm_grab_id - allocate the next free VMID 467 * 468 * @vm: vm to allocate id for 469 * @ring: ring we want to submit job to 470 * @sync: sync object where we add dependencies 471 * @fence: fence protecting ID from reuse 472 * 473 * Allocate an id for the vm, adding fences to the sync obj as necessary. 474 */ 475 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, 476 struct amdgpu_sync *sync, struct dma_fence *fence, 477 struct amdgpu_job *job) 478 { 479 struct amdgpu_device *adev = ring->adev; 480 unsigned vmhub = ring->funcs->vmhub; 481 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 482 uint64_t fence_context = adev->fence_context + ring->idx; 483 struct dma_fence *updates = sync->last_vm_update; 484 struct amdgpu_vm_id *id, *idle; 485 struct dma_fence **fences; 486 unsigned i; 487 int r = 0; 488 489 mutex_lock(&id_mgr->lock); 490 if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) { 491 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job); 492 mutex_unlock(&id_mgr->lock); 493 return r; 494 } 495 fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); 496 if (!fences) { 497 mutex_unlock(&id_mgr->lock); 498 return -ENOMEM; 499 } 500 /* Check if we have an idle VMID */ 501 i = 0; 502 list_for_each_entry(idle, &id_mgr->ids_lru, list) { 503 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); 504 if (!fences[i]) 505 break; 506 ++i; 507 } 508 509 /* If we can't find a idle VMID to use, wait till one becomes available */ 510 if (&idle->list == &id_mgr->ids_lru) { 511 u64 fence_context = adev->vm_manager.fence_context + ring->idx; 512 unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; 513 struct dma_fence_array *array; 514 unsigned j; 515 516 for (j = 0; j < i; ++j) 517 dma_fence_get(fences[j]); 518 519 array = dma_fence_array_create(i, fences, fence_context, 520 seqno, true); 521 if (!array) { 522 for (j = 0; j < i; ++j) 523 dma_fence_put(fences[j]); 524 kfree(fences); 525 r = -ENOMEM; 526 goto error; 527 } 528 529 530 r = amdgpu_sync_fence(ring->adev, sync, &array->base); 531 dma_fence_put(&array->base); 532 if (r) 533 goto error; 534 535 mutex_unlock(&id_mgr->lock); 536 return 0; 537 538 } 539 kfree(fences); 540 541 job->vm_needs_flush = vm->use_cpu_for_update; 542 /* Check if we can use a VMID already assigned to this VM */ 543 list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { 544 struct dma_fence *flushed; 545 bool needs_flush = vm->use_cpu_for_update; 546 547 /* Check all the prerequisites to using this VMID */ 548 if (amdgpu_vm_had_gpu_reset(adev, id)) 549 continue; 550 551 if (atomic64_read(&id->owner) != vm->client_id) 552 continue; 553 554 if (job->vm_pd_addr != id->pd_gpu_addr) 555 continue; 556 557 if (!id->last_flush || 558 (id->last_flush->context != fence_context && 559 !dma_fence_is_signaled(id->last_flush))) 560 needs_flush = true; 561 562 flushed = id->flushed_updates; 563 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) 564 needs_flush = true; 565 566 /* Concurrent flushes are only possible starting with Vega10 */ 567 if (adev->asic_type < CHIP_VEGA10 && needs_flush) 568 continue; 569 570 /* Good we can use this VMID. Remember this submission as 571 * user of the VMID. 572 */ 573 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 574 if (r) 575 goto error; 576 577 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { 578 dma_fence_put(id->flushed_updates); 579 id->flushed_updates = dma_fence_get(updates); 580 } 581 582 if (needs_flush) 583 goto needs_flush; 584 else 585 goto no_flush_needed; 586 587 }; 588 589 /* Still no ID to use? Then use the idle one found earlier */ 590 id = idle; 591 592 /* Remember this submission as user of the VMID */ 593 r = amdgpu_sync_fence(ring->adev, &id->active, fence); 594 if (r) 595 goto error; 596 597 id->pd_gpu_addr = job->vm_pd_addr; 598 dma_fence_put(id->flushed_updates); 599 id->flushed_updates = dma_fence_get(updates); 600 atomic64_set(&id->owner, vm->client_id); 601 602 needs_flush: 603 job->vm_needs_flush = true; 604 dma_fence_put(id->last_flush); 605 id->last_flush = NULL; 606 607 no_flush_needed: 608 list_move_tail(&id->list, &id_mgr->ids_lru); 609 610 job->vm_id = id - id_mgr->ids; 611 trace_amdgpu_vm_grab_id(vm, ring, job); 612 613 error: 614 mutex_unlock(&id_mgr->lock); 615 return r; 616 } 617 618 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev, 619 struct amdgpu_vm *vm, 620 unsigned vmhub) 621 { 622 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 623 624 mutex_lock(&id_mgr->lock); 625 if (vm->reserved_vmid[vmhub]) { 626 list_add(&vm->reserved_vmid[vmhub]->list, 627 &id_mgr->ids_lru); 628 vm->reserved_vmid[vmhub] = NULL; 629 atomic_dec(&id_mgr->reserved_vmid_num); 630 } 631 mutex_unlock(&id_mgr->lock); 632 } 633 634 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev, 635 struct amdgpu_vm *vm, 636 unsigned vmhub) 637 { 638 struct amdgpu_vm_id_manager *id_mgr; 639 struct amdgpu_vm_id *idle; 640 int r = 0; 641 642 id_mgr = &adev->vm_manager.id_mgr[vmhub]; 643 mutex_lock(&id_mgr->lock); 644 if (vm->reserved_vmid[vmhub]) 645 goto unlock; 646 if (atomic_inc_return(&id_mgr->reserved_vmid_num) > 647 AMDGPU_VM_MAX_RESERVED_VMID) { 648 DRM_ERROR("Over limitation of reserved vmid\n"); 649 atomic_dec(&id_mgr->reserved_vmid_num); 650 r = -EINVAL; 651 goto unlock; 652 } 653 /* Select the first entry VMID */ 654 idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list); 655 list_del_init(&idle->list); 656 vm->reserved_vmid[vmhub] = idle; 657 mutex_unlock(&id_mgr->lock); 658 659 return 0; 660 unlock: 661 mutex_unlock(&id_mgr->lock); 662 return r; 663 } 664 665 /** 666 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 667 * 668 * @adev: amdgpu_device pointer 669 */ 670 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 671 { 672 const struct amdgpu_ip_block *ip_block; 673 bool has_compute_vm_bug; 674 struct amdgpu_ring *ring; 675 int i; 676 677 has_compute_vm_bug = false; 678 679 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 680 if (ip_block) { 681 /* Compute has a VM bug for GFX version < 7. 682 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 683 if (ip_block->version->major <= 7) 684 has_compute_vm_bug = true; 685 else if (ip_block->version->major == 8) 686 if (adev->gfx.mec_fw_version < 673) 687 has_compute_vm_bug = true; 688 } 689 690 for (i = 0; i < adev->num_rings; i++) { 691 ring = adev->rings[i]; 692 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 693 /* only compute rings */ 694 ring->has_compute_vm_bug = has_compute_vm_bug; 695 else 696 ring->has_compute_vm_bug = false; 697 } 698 } 699 700 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 701 struct amdgpu_job *job) 702 { 703 struct amdgpu_device *adev = ring->adev; 704 unsigned vmhub = ring->funcs->vmhub; 705 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 706 struct amdgpu_vm_id *id; 707 bool gds_switch_needed; 708 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 709 710 if (job->vm_id == 0) 711 return false; 712 id = &id_mgr->ids[job->vm_id]; 713 gds_switch_needed = ring->funcs->emit_gds_switch && ( 714 id->gds_base != job->gds_base || 715 id->gds_size != job->gds_size || 716 id->gws_base != job->gws_base || 717 id->gws_size != job->gws_size || 718 id->oa_base != job->oa_base || 719 id->oa_size != job->oa_size); 720 721 if (amdgpu_vm_had_gpu_reset(adev, id)) 722 return true; 723 724 return vm_flush_needed || gds_switch_needed; 725 } 726 727 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 728 { 729 return (adev->mc.real_vram_size == adev->mc.visible_vram_size); 730 } 731 732 /** 733 * amdgpu_vm_flush - hardware flush the vm 734 * 735 * @ring: ring to use for flush 736 * @vm_id: vmid number to use 737 * @pd_addr: address of the page directory 738 * 739 * Emit a VM flush when it is necessary. 740 */ 741 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 742 { 743 struct amdgpu_device *adev = ring->adev; 744 unsigned vmhub = ring->funcs->vmhub; 745 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 746 struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; 747 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 748 id->gds_base != job->gds_base || 749 id->gds_size != job->gds_size || 750 id->gws_base != job->gws_base || 751 id->gws_size != job->gws_size || 752 id->oa_base != job->oa_base || 753 id->oa_size != job->oa_size); 754 bool vm_flush_needed = job->vm_needs_flush; 755 unsigned patch_offset = 0; 756 int r; 757 758 if (amdgpu_vm_had_gpu_reset(adev, id)) { 759 gds_switch_needed = true; 760 vm_flush_needed = true; 761 } 762 763 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 764 return 0; 765 766 if (ring->funcs->init_cond_exec) 767 patch_offset = amdgpu_ring_init_cond_exec(ring); 768 769 if (need_pipe_sync) 770 amdgpu_ring_emit_pipeline_sync(ring); 771 772 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 773 struct dma_fence *fence; 774 775 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr); 776 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); 777 778 r = amdgpu_fence_emit(ring, &fence); 779 if (r) 780 return r; 781 782 mutex_lock(&id_mgr->lock); 783 dma_fence_put(id->last_flush); 784 id->last_flush = fence; 785 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 786 mutex_unlock(&id_mgr->lock); 787 } 788 789 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 790 id->gds_base = job->gds_base; 791 id->gds_size = job->gds_size; 792 id->gws_base = job->gws_base; 793 id->gws_size = job->gws_size; 794 id->oa_base = job->oa_base; 795 id->oa_size = job->oa_size; 796 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, 797 job->gds_size, job->gws_base, 798 job->gws_size, job->oa_base, 799 job->oa_size); 800 } 801 802 if (ring->funcs->patch_cond_exec) 803 amdgpu_ring_patch_cond_exec(ring, patch_offset); 804 805 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 806 if (ring->funcs->emit_switch_buffer) { 807 amdgpu_ring_emit_switch_buffer(ring); 808 amdgpu_ring_emit_switch_buffer(ring); 809 } 810 return 0; 811 } 812 813 /** 814 * amdgpu_vm_reset_id - reset VMID to zero 815 * 816 * @adev: amdgpu device structure 817 * @vm_id: vmid number to use 818 * 819 * Reset saved GDW, GWS and OA to force switch on next flush. 820 */ 821 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, 822 unsigned vmid) 823 { 824 struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 825 struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; 826 827 atomic64_set(&id->owner, 0); 828 id->gds_base = 0; 829 id->gds_size = 0; 830 id->gws_base = 0; 831 id->gws_size = 0; 832 id->oa_base = 0; 833 id->oa_size = 0; 834 } 835 836 /** 837 * amdgpu_vm_reset_all_id - reset VMID to zero 838 * 839 * @adev: amdgpu device structure 840 * 841 * Reset VMID to force flush on next use 842 */ 843 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev) 844 { 845 unsigned i, j; 846 847 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 848 struct amdgpu_vm_id_manager *id_mgr = 849 &adev->vm_manager.id_mgr[i]; 850 851 for (j = 1; j < id_mgr->num_ids; ++j) 852 amdgpu_vm_reset_id(adev, i, j); 853 } 854 } 855 856 /** 857 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 858 * 859 * @vm: requested vm 860 * @bo: requested buffer object 861 * 862 * Find @bo inside the requested vm. 863 * Search inside the @bos vm list for the requested vm 864 * Returns the found bo_va or NULL if none is found 865 * 866 * Object has to be reserved! 867 */ 868 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 869 struct amdgpu_bo *bo) 870 { 871 struct amdgpu_bo_va *bo_va; 872 873 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 874 if (bo_va->base.vm == vm) { 875 return bo_va; 876 } 877 } 878 return NULL; 879 } 880 881 /** 882 * amdgpu_vm_do_set_ptes - helper to call the right asic function 883 * 884 * @params: see amdgpu_pte_update_params definition 885 * @pe: addr of the page entry 886 * @addr: dst addr to write into pe 887 * @count: number of page entries to update 888 * @incr: increase next addr by incr bytes 889 * @flags: hw access flags 890 * 891 * Traces the parameters and calls the right asic functions 892 * to setup the page table using the DMA. 893 */ 894 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 895 uint64_t pe, uint64_t addr, 896 unsigned count, uint32_t incr, 897 uint64_t flags) 898 { 899 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 900 901 if (count < 3) { 902 amdgpu_vm_write_pte(params->adev, params->ib, pe, 903 addr | flags, count, incr); 904 905 } else { 906 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 907 count, incr, flags); 908 } 909 } 910 911 /** 912 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 913 * 914 * @params: see amdgpu_pte_update_params definition 915 * @pe: addr of the page entry 916 * @addr: dst addr to write into pe 917 * @count: number of page entries to update 918 * @incr: increase next addr by incr bytes 919 * @flags: hw access flags 920 * 921 * Traces the parameters and calls the DMA function to copy the PTEs. 922 */ 923 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 924 uint64_t pe, uint64_t addr, 925 unsigned count, uint32_t incr, 926 uint64_t flags) 927 { 928 uint64_t src = (params->src + (addr >> 12) * 8); 929 930 931 trace_amdgpu_vm_copy_ptes(pe, src, count); 932 933 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 934 } 935 936 /** 937 * amdgpu_vm_map_gart - Resolve gart mapping of addr 938 * 939 * @pages_addr: optional DMA address to use for lookup 940 * @addr: the unmapped addr 941 * 942 * Look up the physical address of the page that the pte resolves 943 * to and return the pointer for the page table entry. 944 */ 945 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 946 { 947 uint64_t result; 948 949 /* page table offset */ 950 result = pages_addr[addr >> PAGE_SHIFT]; 951 952 /* in case cpu page size != gpu page size*/ 953 result |= addr & (~PAGE_MASK); 954 955 result &= 0xFFFFFFFFFFFFF000ULL; 956 957 return result; 958 } 959 960 /** 961 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 962 * 963 * @params: see amdgpu_pte_update_params definition 964 * @pe: kmap addr of the page entry 965 * @addr: dst addr to write into pe 966 * @count: number of page entries to update 967 * @incr: increase next addr by incr bytes 968 * @flags: hw access flags 969 * 970 * Write count number of PT/PD entries directly. 971 */ 972 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 973 uint64_t pe, uint64_t addr, 974 unsigned count, uint32_t incr, 975 uint64_t flags) 976 { 977 unsigned int i; 978 uint64_t value; 979 980 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 981 982 for (i = 0; i < count; i++) { 983 value = params->pages_addr ? 984 amdgpu_vm_map_gart(params->pages_addr, addr) : 985 addr; 986 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 987 i, value, flags); 988 addr += incr; 989 } 990 } 991 992 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 993 void *owner) 994 { 995 struct amdgpu_sync sync; 996 int r; 997 998 amdgpu_sync_create(&sync); 999 amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.resv, owner); 1000 r = amdgpu_sync_wait(&sync, true); 1001 amdgpu_sync_free(&sync); 1002 1003 return r; 1004 } 1005 1006 /* 1007 * amdgpu_vm_update_level - update a single level in the hierarchy 1008 * 1009 * @adev: amdgpu_device pointer 1010 * @vm: requested vm 1011 * @parent: parent directory 1012 * 1013 * Makes sure all entries in @parent are up to date. 1014 * Returns 0 for success, error for failure. 1015 */ 1016 static int amdgpu_vm_update_level(struct amdgpu_device *adev, 1017 struct amdgpu_vm *vm, 1018 struct amdgpu_vm_pt *parent, 1019 unsigned level) 1020 { 1021 struct amdgpu_bo *shadow; 1022 struct amdgpu_ring *ring = NULL; 1023 uint64_t pd_addr, shadow_addr = 0; 1024 uint32_t incr = amdgpu_vm_bo_size(adev, level + 1); 1025 uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; 1026 unsigned count = 0, pt_idx, ndw = 0; 1027 struct amdgpu_job *job; 1028 struct amdgpu_pte_update_params params; 1029 struct dma_fence *fence = NULL; 1030 1031 int r; 1032 1033 if (!parent->entries) 1034 return 0; 1035 1036 memset(¶ms, 0, sizeof(params)); 1037 params.adev = adev; 1038 shadow = parent->bo->shadow; 1039 1040 if (vm->use_cpu_for_update) { 1041 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo); 1042 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1043 if (unlikely(r)) 1044 return r; 1045 1046 params.func = amdgpu_vm_cpu_set_ptes; 1047 } else { 1048 ring = container_of(vm->entity.sched, struct amdgpu_ring, 1049 sched); 1050 1051 /* padding, etc. */ 1052 ndw = 64; 1053 1054 /* assume the worst case */ 1055 ndw += parent->last_entry_used * 6; 1056 1057 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 1058 1059 if (shadow) { 1060 shadow_addr = amdgpu_bo_gpu_offset(shadow); 1061 ndw *= 2; 1062 } else { 1063 shadow_addr = 0; 1064 } 1065 1066 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1067 if (r) 1068 return r; 1069 1070 params.ib = &job->ibs[0]; 1071 params.func = amdgpu_vm_do_set_ptes; 1072 } 1073 1074 1075 /* walk over the address space and update the directory */ 1076 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1077 struct amdgpu_bo *bo = parent->entries[pt_idx].bo; 1078 uint64_t pde, pt; 1079 1080 if (bo == NULL) 1081 continue; 1082 1083 pt = amdgpu_bo_gpu_offset(bo); 1084 pt = amdgpu_gart_get_vm_pde(adev, pt); 1085 /* Don't update huge pages here */ 1086 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) || 1087 parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID)) 1088 continue; 1089 1090 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID; 1091 1092 pde = pd_addr + pt_idx * 8; 1093 if (((last_pde + 8 * count) != pde) || 1094 ((last_pt + incr * count) != pt) || 1095 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { 1096 1097 if (count) { 1098 if (shadow) 1099 params.func(¶ms, 1100 last_shadow, 1101 last_pt, count, 1102 incr, 1103 AMDGPU_PTE_VALID); 1104 1105 params.func(¶ms, last_pde, 1106 last_pt, count, incr, 1107 AMDGPU_PTE_VALID); 1108 } 1109 1110 count = 1; 1111 last_pde = pde; 1112 last_shadow = shadow_addr + pt_idx * 8; 1113 last_pt = pt; 1114 } else { 1115 ++count; 1116 } 1117 } 1118 1119 if (count) { 1120 if (vm->root.bo->shadow) 1121 params.func(¶ms, last_shadow, last_pt, 1122 count, incr, AMDGPU_PTE_VALID); 1123 1124 params.func(¶ms, last_pde, last_pt, 1125 count, incr, AMDGPU_PTE_VALID); 1126 } 1127 1128 if (!vm->use_cpu_for_update) { 1129 if (params.ib->length_dw == 0) { 1130 amdgpu_job_free(job); 1131 } else { 1132 amdgpu_ring_pad_ib(ring, params.ib); 1133 amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv, 1134 AMDGPU_FENCE_OWNER_VM); 1135 if (shadow) 1136 amdgpu_sync_resv(adev, &job->sync, 1137 shadow->tbo.resv, 1138 AMDGPU_FENCE_OWNER_VM); 1139 1140 WARN_ON(params.ib->length_dw > ndw); 1141 r = amdgpu_job_submit(job, ring, &vm->entity, 1142 AMDGPU_FENCE_OWNER_VM, &fence); 1143 if (r) 1144 goto error_free; 1145 1146 amdgpu_bo_fence(parent->bo, fence, true); 1147 dma_fence_put(vm->last_dir_update); 1148 vm->last_dir_update = dma_fence_get(fence); 1149 dma_fence_put(fence); 1150 } 1151 } 1152 /* 1153 * Recurse into the subdirectories. This recursion is harmless because 1154 * we only have a maximum of 5 layers. 1155 */ 1156 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1157 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1158 1159 if (!entry->bo) 1160 continue; 1161 1162 r = amdgpu_vm_update_level(adev, vm, entry, level + 1); 1163 if (r) 1164 return r; 1165 } 1166 1167 return 0; 1168 1169 error_free: 1170 amdgpu_job_free(job); 1171 return r; 1172 } 1173 1174 /* 1175 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 1176 * 1177 * @parent: parent PD 1178 * 1179 * Mark all PD level as invalid after an error. 1180 */ 1181 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent) 1182 { 1183 unsigned pt_idx; 1184 1185 /* 1186 * Recurse into the subdirectories. This recursion is harmless because 1187 * we only have a maximum of 5 layers. 1188 */ 1189 for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { 1190 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1191 1192 if (!entry->bo) 1193 continue; 1194 1195 entry->addr = ~0ULL; 1196 amdgpu_vm_invalidate_level(entry); 1197 } 1198 } 1199 1200 /* 1201 * amdgpu_vm_update_directories - make sure that all directories are valid 1202 * 1203 * @adev: amdgpu_device pointer 1204 * @vm: requested vm 1205 * 1206 * Makes sure all directories are up to date. 1207 * Returns 0 for success, error for failure. 1208 */ 1209 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1210 struct amdgpu_vm *vm) 1211 { 1212 int r; 1213 1214 r = amdgpu_vm_update_level(adev, vm, &vm->root, 0); 1215 if (r) 1216 amdgpu_vm_invalidate_level(&vm->root); 1217 1218 if (vm->use_cpu_for_update) { 1219 /* Flush HDP */ 1220 mb(); 1221 amdgpu_gart_flush_gpu_tlb(adev, 0); 1222 } 1223 1224 return r; 1225 } 1226 1227 /** 1228 * amdgpu_vm_find_entry - find the entry for an address 1229 * 1230 * @p: see amdgpu_pte_update_params definition 1231 * @addr: virtual address in question 1232 * @entry: resulting entry or NULL 1233 * @parent: parent entry 1234 * 1235 * Find the vm_pt entry and it's parent for the given address. 1236 */ 1237 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1238 struct amdgpu_vm_pt **entry, 1239 struct amdgpu_vm_pt **parent) 1240 { 1241 unsigned idx, level = p->adev->vm_manager.num_level; 1242 1243 *parent = NULL; 1244 *entry = &p->vm->root; 1245 while ((*entry)->entries) { 1246 idx = addr >> (p->adev->vm_manager.block_size * level--); 1247 idx %= amdgpu_bo_size((*entry)->bo) / 8; 1248 *parent = *entry; 1249 *entry = &(*entry)->entries[idx]; 1250 } 1251 1252 if (level) 1253 *entry = NULL; 1254 } 1255 1256 /** 1257 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1258 * 1259 * @p: see amdgpu_pte_update_params definition 1260 * @entry: vm_pt entry to check 1261 * @parent: parent entry 1262 * @nptes: number of PTEs updated with this operation 1263 * @dst: destination address where the PTEs should point to 1264 * @flags: access flags fro the PTEs 1265 * 1266 * Check if we can update the PD with a huge page. 1267 */ 1268 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1269 struct amdgpu_vm_pt *entry, 1270 struct amdgpu_vm_pt *parent, 1271 unsigned nptes, uint64_t dst, 1272 uint64_t flags) 1273 { 1274 bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes); 1275 uint64_t pd_addr, pde; 1276 1277 /* In the case of a mixed PT the PDE must point to it*/ 1278 if (p->adev->asic_type < CHIP_VEGA10 || 1279 nptes != AMDGPU_VM_PTE_COUNT(p->adev) || 1280 p->func == amdgpu_vm_do_copy_ptes || 1281 !(flags & AMDGPU_PTE_VALID)) { 1282 1283 dst = amdgpu_bo_gpu_offset(entry->bo); 1284 dst = amdgpu_gart_get_vm_pde(p->adev, dst); 1285 flags = AMDGPU_PTE_VALID; 1286 } else { 1287 /* Set the huge page flag to stop scanning at this PDE */ 1288 flags |= AMDGPU_PDE_PTE; 1289 } 1290 1291 if (entry->addr == (dst | flags)) 1292 return; 1293 1294 entry->addr = (dst | flags); 1295 1296 if (use_cpu_update) { 1297 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo); 1298 pde = pd_addr + (entry - parent->entries) * 8; 1299 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags); 1300 } else { 1301 if (parent->bo->shadow) { 1302 pd_addr = amdgpu_bo_gpu_offset(parent->bo->shadow); 1303 pde = pd_addr + (entry - parent->entries) * 8; 1304 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); 1305 } 1306 pd_addr = amdgpu_bo_gpu_offset(parent->bo); 1307 pde = pd_addr + (entry - parent->entries) * 8; 1308 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); 1309 } 1310 } 1311 1312 /** 1313 * amdgpu_vm_update_ptes - make sure that page tables are valid 1314 * 1315 * @params: see amdgpu_pte_update_params definition 1316 * @vm: requested vm 1317 * @start: start of GPU address range 1318 * @end: end of GPU address range 1319 * @dst: destination address to map to, the next dst inside the function 1320 * @flags: mapping flags 1321 * 1322 * Update the page tables in the range @start - @end. 1323 * Returns 0 for success, -EINVAL for failure. 1324 */ 1325 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1326 uint64_t start, uint64_t end, 1327 uint64_t dst, uint64_t flags) 1328 { 1329 struct amdgpu_device *adev = params->adev; 1330 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1331 1332 uint64_t addr, pe_start; 1333 struct amdgpu_bo *pt; 1334 unsigned nptes; 1335 bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes); 1336 1337 /* walk over the address space and update the page tables */ 1338 for (addr = start; addr < end; addr += nptes, 1339 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1340 struct amdgpu_vm_pt *entry, *parent; 1341 1342 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1343 if (!entry) 1344 return -ENOENT; 1345 1346 if ((addr & ~mask) == (end & ~mask)) 1347 nptes = end - addr; 1348 else 1349 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1350 1351 amdgpu_vm_handle_huge_pages(params, entry, parent, 1352 nptes, dst, flags); 1353 /* We don't need to update PTEs for huge pages */ 1354 if (entry->addr & AMDGPU_PDE_PTE) 1355 continue; 1356 1357 pt = entry->bo; 1358 if (use_cpu_update) { 1359 pe_start = (unsigned long)amdgpu_bo_kptr(pt); 1360 } else { 1361 if (pt->shadow) { 1362 pe_start = amdgpu_bo_gpu_offset(pt->shadow); 1363 pe_start += (addr & mask) * 8; 1364 params->func(params, pe_start, dst, nptes, 1365 AMDGPU_GPU_PAGE_SIZE, flags); 1366 } 1367 pe_start = amdgpu_bo_gpu_offset(pt); 1368 } 1369 1370 pe_start += (addr & mask) * 8; 1371 params->func(params, pe_start, dst, nptes, 1372 AMDGPU_GPU_PAGE_SIZE, flags); 1373 } 1374 1375 return 0; 1376 } 1377 1378 /* 1379 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1380 * 1381 * @params: see amdgpu_pte_update_params definition 1382 * @vm: requested vm 1383 * @start: first PTE to handle 1384 * @end: last PTE to handle 1385 * @dst: addr those PTEs should point to 1386 * @flags: hw mapping flags 1387 * Returns 0 for success, -EINVAL for failure. 1388 */ 1389 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1390 uint64_t start, uint64_t end, 1391 uint64_t dst, uint64_t flags) 1392 { 1393 int r; 1394 1395 /** 1396 * The MC L1 TLB supports variable sized pages, based on a fragment 1397 * field in the PTE. When this field is set to a non-zero value, page 1398 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1399 * flags are considered valid for all PTEs within the fragment range 1400 * and corresponding mappings are assumed to be physically contiguous. 1401 * 1402 * The L1 TLB can store a single PTE for the whole fragment, 1403 * significantly increasing the space available for translation 1404 * caching. This leads to large improvements in throughput when the 1405 * TLB is under pressure. 1406 * 1407 * The L2 TLB distributes small and large fragments into two 1408 * asymmetric partitions. The large fragment cache is significantly 1409 * larger. Thus, we try to use large fragments wherever possible. 1410 * Userspace can support this by aligning virtual base address and 1411 * allocation size to the fragment size. 1412 */ 1413 unsigned pages_per_frag = params->adev->vm_manager.fragment_size; 1414 uint64_t frag_flags = AMDGPU_PTE_FRAG(pages_per_frag); 1415 uint64_t frag_align = 1 << pages_per_frag; 1416 1417 uint64_t frag_start = ALIGN(start, frag_align); 1418 uint64_t frag_end = end & ~(frag_align - 1); 1419 1420 /* system pages are non continuously */ 1421 if (params->src || !(flags & AMDGPU_PTE_VALID) || 1422 (frag_start >= frag_end)) 1423 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1424 1425 /* handle the 4K area at the beginning */ 1426 if (start != frag_start) { 1427 r = amdgpu_vm_update_ptes(params, start, frag_start, 1428 dst, flags); 1429 if (r) 1430 return r; 1431 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE; 1432 } 1433 1434 /* handle the area in the middle */ 1435 r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst, 1436 flags | frag_flags); 1437 if (r) 1438 return r; 1439 1440 /* handle the 4K area at the end */ 1441 if (frag_end != end) { 1442 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE; 1443 r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags); 1444 } 1445 return r; 1446 } 1447 1448 /** 1449 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1450 * 1451 * @adev: amdgpu_device pointer 1452 * @exclusive: fence we need to sync to 1453 * @src: address where to copy page table entries from 1454 * @pages_addr: DMA addresses to use for mapping 1455 * @vm: requested vm 1456 * @start: start of mapped range 1457 * @last: last mapped entry 1458 * @flags: flags for the entries 1459 * @addr: addr to set the area to 1460 * @fence: optional resulting fence 1461 * 1462 * Fill in the page table entries between @start and @last. 1463 * Returns 0 for success, -EINVAL for failure. 1464 */ 1465 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1466 struct dma_fence *exclusive, 1467 uint64_t src, 1468 dma_addr_t *pages_addr, 1469 struct amdgpu_vm *vm, 1470 uint64_t start, uint64_t last, 1471 uint64_t flags, uint64_t addr, 1472 struct dma_fence **fence) 1473 { 1474 struct amdgpu_ring *ring; 1475 void *owner = AMDGPU_FENCE_OWNER_VM; 1476 unsigned nptes, ncmds, ndw; 1477 struct amdgpu_job *job; 1478 struct amdgpu_pte_update_params params; 1479 struct dma_fence *f = NULL; 1480 int r; 1481 1482 memset(¶ms, 0, sizeof(params)); 1483 params.adev = adev; 1484 params.vm = vm; 1485 params.src = src; 1486 1487 /* sync to everything on unmapping */ 1488 if (!(flags & AMDGPU_PTE_VALID)) 1489 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1490 1491 if (vm->use_cpu_for_update) { 1492 /* params.src is used as flag to indicate system Memory */ 1493 if (pages_addr) 1494 params.src = ~0; 1495 1496 /* Wait for PT BOs to be free. PTs share the same resv. object 1497 * as the root PD BO 1498 */ 1499 r = amdgpu_vm_wait_pd(adev, vm, owner); 1500 if (unlikely(r)) 1501 return r; 1502 1503 params.func = amdgpu_vm_cpu_set_ptes; 1504 params.pages_addr = pages_addr; 1505 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1506 addr, flags); 1507 } 1508 1509 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1510 1511 nptes = last - start + 1; 1512 1513 /* 1514 * reserve space for one command every (1 << BLOCK_SIZE) 1515 * entries or 2k dwords (whatever is smaller) 1516 */ 1517 ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1; 1518 1519 /* padding, etc. */ 1520 ndw = 64; 1521 1522 /* one PDE write for each huge page */ 1523 ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6; 1524 1525 if (src) { 1526 /* only copy commands needed */ 1527 ndw += ncmds * 7; 1528 1529 params.func = amdgpu_vm_do_copy_ptes; 1530 1531 } else if (pages_addr) { 1532 /* copy commands needed */ 1533 ndw += ncmds * 7; 1534 1535 /* and also PTEs */ 1536 ndw += nptes * 2; 1537 1538 params.func = amdgpu_vm_do_copy_ptes; 1539 1540 } else { 1541 /* set page commands needed */ 1542 ndw += ncmds * 10; 1543 1544 /* two extra commands for begin/end of fragment */ 1545 ndw += 2 * 10; 1546 1547 params.func = amdgpu_vm_do_set_ptes; 1548 } 1549 1550 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1551 if (r) 1552 return r; 1553 1554 params.ib = &job->ibs[0]; 1555 1556 if (!src && pages_addr) { 1557 uint64_t *pte; 1558 unsigned i; 1559 1560 /* Put the PTEs at the end of the IB. */ 1561 i = ndw - nptes * 2; 1562 pte= (uint64_t *)&(job->ibs->ptr[i]); 1563 params.src = job->ibs->gpu_addr + i * 4; 1564 1565 for (i = 0; i < nptes; ++i) { 1566 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1567 AMDGPU_GPU_PAGE_SIZE); 1568 pte[i] |= flags; 1569 } 1570 addr = 0; 1571 } 1572 1573 r = amdgpu_sync_fence(adev, &job->sync, exclusive); 1574 if (r) 1575 goto error_free; 1576 1577 r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv, 1578 owner); 1579 if (r) 1580 goto error_free; 1581 1582 r = reservation_object_reserve_shared(vm->root.bo->tbo.resv); 1583 if (r) 1584 goto error_free; 1585 1586 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1587 if (r) 1588 goto error_free; 1589 1590 amdgpu_ring_pad_ib(ring, params.ib); 1591 WARN_ON(params.ib->length_dw > ndw); 1592 r = amdgpu_job_submit(job, ring, &vm->entity, 1593 AMDGPU_FENCE_OWNER_VM, &f); 1594 if (r) 1595 goto error_free; 1596 1597 amdgpu_bo_fence(vm->root.bo, f, true); 1598 dma_fence_put(*fence); 1599 *fence = f; 1600 return 0; 1601 1602 error_free: 1603 amdgpu_job_free(job); 1604 amdgpu_vm_invalidate_level(&vm->root); 1605 return r; 1606 } 1607 1608 /** 1609 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1610 * 1611 * @adev: amdgpu_device pointer 1612 * @exclusive: fence we need to sync to 1613 * @gtt_flags: flags as they are used for GTT 1614 * @pages_addr: DMA addresses to use for mapping 1615 * @vm: requested vm 1616 * @mapping: mapped range and flags to use for the update 1617 * @flags: HW flags for the mapping 1618 * @nodes: array of drm_mm_nodes with the MC addresses 1619 * @fence: optional resulting fence 1620 * 1621 * Split the mapping into smaller chunks so that each update fits 1622 * into a SDMA IB. 1623 * Returns 0 for success, -EINVAL for failure. 1624 */ 1625 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1626 struct dma_fence *exclusive, 1627 uint64_t gtt_flags, 1628 dma_addr_t *pages_addr, 1629 struct amdgpu_vm *vm, 1630 struct amdgpu_bo_va_mapping *mapping, 1631 uint64_t flags, 1632 struct drm_mm_node *nodes, 1633 struct dma_fence **fence) 1634 { 1635 uint64_t pfn, src = 0, start = mapping->start; 1636 int r; 1637 1638 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1639 * but in case of something, we filter the flags in first place 1640 */ 1641 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1642 flags &= ~AMDGPU_PTE_READABLE; 1643 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1644 flags &= ~AMDGPU_PTE_WRITEABLE; 1645 1646 flags &= ~AMDGPU_PTE_EXECUTABLE; 1647 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1648 1649 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1650 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1651 1652 if ((mapping->flags & AMDGPU_PTE_PRT) && 1653 (adev->asic_type >= CHIP_VEGA10)) { 1654 flags |= AMDGPU_PTE_PRT; 1655 flags &= ~AMDGPU_PTE_VALID; 1656 } 1657 1658 trace_amdgpu_vm_bo_update(mapping); 1659 1660 pfn = mapping->offset >> PAGE_SHIFT; 1661 if (nodes) { 1662 while (pfn >= nodes->size) { 1663 pfn -= nodes->size; 1664 ++nodes; 1665 } 1666 } 1667 1668 do { 1669 uint64_t max_entries; 1670 uint64_t addr, last; 1671 1672 if (nodes) { 1673 addr = nodes->start << PAGE_SHIFT; 1674 max_entries = (nodes->size - pfn) * 1675 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1676 } else { 1677 addr = 0; 1678 max_entries = S64_MAX; 1679 } 1680 1681 if (pages_addr) { 1682 if (flags == gtt_flags) 1683 src = adev->gart.table_addr + 1684 (addr >> AMDGPU_GPU_PAGE_SHIFT) * 8; 1685 else 1686 max_entries = min(max_entries, 16ull * 1024ull); 1687 addr = 0; 1688 } else if (flags & AMDGPU_PTE_VALID) { 1689 addr += adev->vm_manager.vram_base_offset; 1690 } 1691 addr += pfn << PAGE_SHIFT; 1692 1693 last = min((uint64_t)mapping->last, start + max_entries - 1); 1694 r = amdgpu_vm_bo_update_mapping(adev, exclusive, 1695 src, pages_addr, vm, 1696 start, last, flags, addr, 1697 fence); 1698 if (r) 1699 return r; 1700 1701 pfn += last - start + 1; 1702 if (nodes && nodes->size == pfn) { 1703 pfn = 0; 1704 ++nodes; 1705 } 1706 start = last + 1; 1707 1708 } while (unlikely(start != mapping->last + 1)); 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1715 * 1716 * @adev: amdgpu_device pointer 1717 * @bo_va: requested BO and VM object 1718 * @clear: if true clear the entries 1719 * 1720 * Fill in the page table entries for @bo_va. 1721 * Returns 0 for success, -EINVAL for failure. 1722 */ 1723 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1724 struct amdgpu_bo_va *bo_va, 1725 bool clear) 1726 { 1727 struct amdgpu_bo *bo = bo_va->base.bo; 1728 struct amdgpu_vm *vm = bo_va->base.vm; 1729 struct amdgpu_bo_va_mapping *mapping; 1730 dma_addr_t *pages_addr = NULL; 1731 uint64_t gtt_flags, flags; 1732 struct ttm_mem_reg *mem; 1733 struct drm_mm_node *nodes; 1734 struct dma_fence *exclusive; 1735 int r; 1736 1737 if (clear || !bo_va->base.bo) { 1738 mem = NULL; 1739 nodes = NULL; 1740 exclusive = NULL; 1741 } else { 1742 struct ttm_dma_tt *ttm; 1743 1744 mem = &bo_va->base.bo->tbo.mem; 1745 nodes = mem->mm_node; 1746 if (mem->mem_type == TTM_PL_TT) { 1747 ttm = container_of(bo_va->base.bo->tbo.ttm, 1748 struct ttm_dma_tt, ttm); 1749 pages_addr = ttm->dma_address; 1750 } 1751 exclusive = reservation_object_get_excl(bo->tbo.resv); 1752 } 1753 1754 if (bo) { 1755 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1756 gtt_flags = (amdgpu_ttm_is_bound(bo->tbo.ttm) && 1757 adev == amdgpu_ttm_adev(bo->tbo.bdev)) ? 1758 flags : 0; 1759 } else { 1760 flags = 0x0; 1761 gtt_flags = ~0x0; 1762 } 1763 1764 spin_lock(&vm->status_lock); 1765 if (!list_empty(&bo_va->base.vm_status)) 1766 list_splice_init(&bo_va->valids, &bo_va->invalids); 1767 spin_unlock(&vm->status_lock); 1768 1769 list_for_each_entry(mapping, &bo_va->invalids, list) { 1770 r = amdgpu_vm_bo_split_mapping(adev, exclusive, 1771 gtt_flags, pages_addr, vm, 1772 mapping, flags, nodes, 1773 &bo_va->last_pt_update); 1774 if (r) 1775 return r; 1776 } 1777 1778 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1779 list_for_each_entry(mapping, &bo_va->valids, list) 1780 trace_amdgpu_vm_bo_mapping(mapping); 1781 1782 list_for_each_entry(mapping, &bo_va->invalids, list) 1783 trace_amdgpu_vm_bo_mapping(mapping); 1784 } 1785 1786 spin_lock(&vm->status_lock); 1787 list_splice_init(&bo_va->invalids, &bo_va->valids); 1788 list_del_init(&bo_va->base.vm_status); 1789 if (clear) 1790 list_add(&bo_va->base.vm_status, &vm->cleared); 1791 spin_unlock(&vm->status_lock); 1792 1793 if (vm->use_cpu_for_update) { 1794 /* Flush HDP */ 1795 mb(); 1796 amdgpu_gart_flush_gpu_tlb(adev, 0); 1797 } 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * amdgpu_vm_update_prt_state - update the global PRT state 1804 */ 1805 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1806 { 1807 unsigned long flags; 1808 bool enable; 1809 1810 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1811 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1812 adev->gart.gart_funcs->set_prt(adev, enable); 1813 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1814 } 1815 1816 /** 1817 * amdgpu_vm_prt_get - add a PRT user 1818 */ 1819 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1820 { 1821 if (!adev->gart.gart_funcs->set_prt) 1822 return; 1823 1824 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1825 amdgpu_vm_update_prt_state(adev); 1826 } 1827 1828 /** 1829 * amdgpu_vm_prt_put - drop a PRT user 1830 */ 1831 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1832 { 1833 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1834 amdgpu_vm_update_prt_state(adev); 1835 } 1836 1837 /** 1838 * amdgpu_vm_prt_cb - callback for updating the PRT status 1839 */ 1840 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1841 { 1842 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1843 1844 amdgpu_vm_prt_put(cb->adev); 1845 kfree(cb); 1846 } 1847 1848 /** 1849 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1850 */ 1851 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1852 struct dma_fence *fence) 1853 { 1854 struct amdgpu_prt_cb *cb; 1855 1856 if (!adev->gart.gart_funcs->set_prt) 1857 return; 1858 1859 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1860 if (!cb) { 1861 /* Last resort when we are OOM */ 1862 if (fence) 1863 dma_fence_wait(fence, false); 1864 1865 amdgpu_vm_prt_put(adev); 1866 } else { 1867 cb->adev = adev; 1868 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1869 amdgpu_vm_prt_cb)) 1870 amdgpu_vm_prt_cb(fence, &cb->cb); 1871 } 1872 } 1873 1874 /** 1875 * amdgpu_vm_free_mapping - free a mapping 1876 * 1877 * @adev: amdgpu_device pointer 1878 * @vm: requested vm 1879 * @mapping: mapping to be freed 1880 * @fence: fence of the unmap operation 1881 * 1882 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1883 */ 1884 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1885 struct amdgpu_vm *vm, 1886 struct amdgpu_bo_va_mapping *mapping, 1887 struct dma_fence *fence) 1888 { 1889 if (mapping->flags & AMDGPU_PTE_PRT) 1890 amdgpu_vm_add_prt_cb(adev, fence); 1891 kfree(mapping); 1892 } 1893 1894 /** 1895 * amdgpu_vm_prt_fini - finish all prt mappings 1896 * 1897 * @adev: amdgpu_device pointer 1898 * @vm: requested vm 1899 * 1900 * Register a cleanup callback to disable PRT support after VM dies. 1901 */ 1902 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1903 { 1904 struct reservation_object *resv = vm->root.bo->tbo.resv; 1905 struct dma_fence *excl, **shared; 1906 unsigned i, shared_count; 1907 int r; 1908 1909 r = reservation_object_get_fences_rcu(resv, &excl, 1910 &shared_count, &shared); 1911 if (r) { 1912 /* Not enough memory to grab the fence list, as last resort 1913 * block for all the fences to complete. 1914 */ 1915 reservation_object_wait_timeout_rcu(resv, true, false, 1916 MAX_SCHEDULE_TIMEOUT); 1917 return; 1918 } 1919 1920 /* Add a callback for each fence in the reservation object */ 1921 amdgpu_vm_prt_get(adev); 1922 amdgpu_vm_add_prt_cb(adev, excl); 1923 1924 for (i = 0; i < shared_count; ++i) { 1925 amdgpu_vm_prt_get(adev); 1926 amdgpu_vm_add_prt_cb(adev, shared[i]); 1927 } 1928 1929 kfree(shared); 1930 } 1931 1932 /** 1933 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1934 * 1935 * @adev: amdgpu_device pointer 1936 * @vm: requested vm 1937 * @fence: optional resulting fence (unchanged if no work needed to be done 1938 * or if an error occurred) 1939 * 1940 * Make sure all freed BOs are cleared in the PT. 1941 * Returns 0 for success. 1942 * 1943 * PTs have to be reserved and mutex must be locked! 1944 */ 1945 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1946 struct amdgpu_vm *vm, 1947 struct dma_fence **fence) 1948 { 1949 struct amdgpu_bo_va_mapping *mapping; 1950 struct dma_fence *f = NULL; 1951 int r; 1952 uint64_t init_pte_value = 0; 1953 1954 while (!list_empty(&vm->freed)) { 1955 mapping = list_first_entry(&vm->freed, 1956 struct amdgpu_bo_va_mapping, list); 1957 list_del(&mapping->list); 1958 1959 if (vm->pte_support_ats) 1960 init_pte_value = AMDGPU_PTE_SYSTEM; 1961 1962 r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm, 1963 mapping->start, mapping->last, 1964 init_pte_value, 0, &f); 1965 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1966 if (r) { 1967 dma_fence_put(f); 1968 return r; 1969 } 1970 } 1971 1972 if (fence && f) { 1973 dma_fence_put(*fence); 1974 *fence = f; 1975 } else { 1976 dma_fence_put(f); 1977 } 1978 1979 return 0; 1980 1981 } 1982 1983 /** 1984 * amdgpu_vm_clear_moved - clear moved BOs in the PT 1985 * 1986 * @adev: amdgpu_device pointer 1987 * @vm: requested vm 1988 * 1989 * Make sure all moved BOs are cleared in the PT. 1990 * Returns 0 for success. 1991 * 1992 * PTs have to be reserved and mutex must be locked! 1993 */ 1994 int amdgpu_vm_clear_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1995 struct amdgpu_sync *sync) 1996 { 1997 struct amdgpu_bo_va *bo_va = NULL; 1998 int r = 0; 1999 2000 spin_lock(&vm->status_lock); 2001 while (!list_empty(&vm->moved)) { 2002 bo_va = list_first_entry(&vm->moved, 2003 struct amdgpu_bo_va, base.vm_status); 2004 spin_unlock(&vm->status_lock); 2005 2006 r = amdgpu_vm_bo_update(adev, bo_va, true); 2007 if (r) 2008 return r; 2009 2010 spin_lock(&vm->status_lock); 2011 } 2012 spin_unlock(&vm->status_lock); 2013 2014 if (bo_va) 2015 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update); 2016 2017 return r; 2018 } 2019 2020 /** 2021 * amdgpu_vm_bo_add - add a bo to a specific vm 2022 * 2023 * @adev: amdgpu_device pointer 2024 * @vm: requested vm 2025 * @bo: amdgpu buffer object 2026 * 2027 * Add @bo into the requested vm. 2028 * Add @bo to the list of bos associated with the vm 2029 * Returns newly added bo_va or NULL for failure 2030 * 2031 * Object has to be reserved! 2032 */ 2033 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2034 struct amdgpu_vm *vm, 2035 struct amdgpu_bo *bo) 2036 { 2037 struct amdgpu_bo_va *bo_va; 2038 2039 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2040 if (bo_va == NULL) { 2041 return NULL; 2042 } 2043 bo_va->base.vm = vm; 2044 bo_va->base.bo = bo; 2045 INIT_LIST_HEAD(&bo_va->base.bo_list); 2046 INIT_LIST_HEAD(&bo_va->base.vm_status); 2047 2048 bo_va->ref_count = 1; 2049 INIT_LIST_HEAD(&bo_va->valids); 2050 INIT_LIST_HEAD(&bo_va->invalids); 2051 2052 if (bo) 2053 list_add_tail(&bo_va->base.bo_list, &bo->va); 2054 2055 return bo_va; 2056 } 2057 2058 /** 2059 * amdgpu_vm_bo_map - map bo inside a vm 2060 * 2061 * @adev: amdgpu_device pointer 2062 * @bo_va: bo_va to store the address 2063 * @saddr: where to map the BO 2064 * @offset: requested offset in the BO 2065 * @flags: attributes of pages (read/write/valid/etc.) 2066 * 2067 * Add a mapping of the BO at the specefied addr into the VM. 2068 * Returns 0 for success, error for failure. 2069 * 2070 * Object has to be reserved and unreserved outside! 2071 */ 2072 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2073 struct amdgpu_bo_va *bo_va, 2074 uint64_t saddr, uint64_t offset, 2075 uint64_t size, uint64_t flags) 2076 { 2077 struct amdgpu_bo_va_mapping *mapping, *tmp; 2078 struct amdgpu_bo *bo = bo_va->base.bo; 2079 struct amdgpu_vm *vm = bo_va->base.vm; 2080 uint64_t eaddr; 2081 2082 /* validate the parameters */ 2083 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2084 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2085 return -EINVAL; 2086 2087 /* make sure object fit at this offset */ 2088 eaddr = saddr + size - 1; 2089 if (saddr >= eaddr || 2090 (bo && offset + size > amdgpu_bo_size(bo))) 2091 return -EINVAL; 2092 2093 saddr /= AMDGPU_GPU_PAGE_SIZE; 2094 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2095 2096 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2097 if (tmp) { 2098 /* bo and tmp overlap, invalid addr */ 2099 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2100 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2101 tmp->start, tmp->last + 1); 2102 return -EINVAL; 2103 } 2104 2105 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2106 if (!mapping) 2107 return -ENOMEM; 2108 2109 INIT_LIST_HEAD(&mapping->list); 2110 mapping->start = saddr; 2111 mapping->last = eaddr; 2112 mapping->offset = offset; 2113 mapping->flags = flags; 2114 2115 list_add(&mapping->list, &bo_va->invalids); 2116 amdgpu_vm_it_insert(mapping, &vm->va); 2117 2118 if (flags & AMDGPU_PTE_PRT) 2119 amdgpu_vm_prt_get(adev); 2120 2121 return 0; 2122 } 2123 2124 /** 2125 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2126 * 2127 * @adev: amdgpu_device pointer 2128 * @bo_va: bo_va to store the address 2129 * @saddr: where to map the BO 2130 * @offset: requested offset in the BO 2131 * @flags: attributes of pages (read/write/valid/etc.) 2132 * 2133 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2134 * mappings as we do so. 2135 * Returns 0 for success, error for failure. 2136 * 2137 * Object has to be reserved and unreserved outside! 2138 */ 2139 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2140 struct amdgpu_bo_va *bo_va, 2141 uint64_t saddr, uint64_t offset, 2142 uint64_t size, uint64_t flags) 2143 { 2144 struct amdgpu_bo_va_mapping *mapping; 2145 struct amdgpu_bo *bo = bo_va->base.bo; 2146 struct amdgpu_vm *vm = bo_va->base.vm; 2147 uint64_t eaddr; 2148 int r; 2149 2150 /* validate the parameters */ 2151 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2152 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2153 return -EINVAL; 2154 2155 /* make sure object fit at this offset */ 2156 eaddr = saddr + size - 1; 2157 if (saddr >= eaddr || 2158 (bo && offset + size > amdgpu_bo_size(bo))) 2159 return -EINVAL; 2160 2161 /* Allocate all the needed memory */ 2162 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2163 if (!mapping) 2164 return -ENOMEM; 2165 2166 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2167 if (r) { 2168 kfree(mapping); 2169 return r; 2170 } 2171 2172 saddr /= AMDGPU_GPU_PAGE_SIZE; 2173 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2174 2175 mapping->start = saddr; 2176 mapping->last = eaddr; 2177 mapping->offset = offset; 2178 mapping->flags = flags; 2179 2180 list_add(&mapping->list, &bo_va->invalids); 2181 amdgpu_vm_it_insert(mapping, &vm->va); 2182 2183 if (flags & AMDGPU_PTE_PRT) 2184 amdgpu_vm_prt_get(adev); 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2191 * 2192 * @adev: amdgpu_device pointer 2193 * @bo_va: bo_va to remove the address from 2194 * @saddr: where to the BO is mapped 2195 * 2196 * Remove a mapping of the BO at the specefied addr from the VM. 2197 * Returns 0 for success, error for failure. 2198 * 2199 * Object has to be reserved and unreserved outside! 2200 */ 2201 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2202 struct amdgpu_bo_va *bo_va, 2203 uint64_t saddr) 2204 { 2205 struct amdgpu_bo_va_mapping *mapping; 2206 struct amdgpu_vm *vm = bo_va->base.vm; 2207 bool valid = true; 2208 2209 saddr /= AMDGPU_GPU_PAGE_SIZE; 2210 2211 list_for_each_entry(mapping, &bo_va->valids, list) { 2212 if (mapping->start == saddr) 2213 break; 2214 } 2215 2216 if (&mapping->list == &bo_va->valids) { 2217 valid = false; 2218 2219 list_for_each_entry(mapping, &bo_va->invalids, list) { 2220 if (mapping->start == saddr) 2221 break; 2222 } 2223 2224 if (&mapping->list == &bo_va->invalids) 2225 return -ENOENT; 2226 } 2227 2228 list_del(&mapping->list); 2229 amdgpu_vm_it_remove(mapping, &vm->va); 2230 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2231 2232 if (valid) 2233 list_add(&mapping->list, &vm->freed); 2234 else 2235 amdgpu_vm_free_mapping(adev, vm, mapping, 2236 bo_va->last_pt_update); 2237 2238 return 0; 2239 } 2240 2241 /** 2242 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2243 * 2244 * @adev: amdgpu_device pointer 2245 * @vm: VM structure to use 2246 * @saddr: start of the range 2247 * @size: size of the range 2248 * 2249 * Remove all mappings in a range, split them as appropriate. 2250 * Returns 0 for success, error for failure. 2251 */ 2252 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2253 struct amdgpu_vm *vm, 2254 uint64_t saddr, uint64_t size) 2255 { 2256 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2257 LIST_HEAD(removed); 2258 uint64_t eaddr; 2259 2260 eaddr = saddr + size - 1; 2261 saddr /= AMDGPU_GPU_PAGE_SIZE; 2262 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2263 2264 /* Allocate all the needed memory */ 2265 before = kzalloc(sizeof(*before), GFP_KERNEL); 2266 if (!before) 2267 return -ENOMEM; 2268 INIT_LIST_HEAD(&before->list); 2269 2270 after = kzalloc(sizeof(*after), GFP_KERNEL); 2271 if (!after) { 2272 kfree(before); 2273 return -ENOMEM; 2274 } 2275 INIT_LIST_HEAD(&after->list); 2276 2277 /* Now gather all removed mappings */ 2278 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2279 while (tmp) { 2280 /* Remember mapping split at the start */ 2281 if (tmp->start < saddr) { 2282 before->start = tmp->start; 2283 before->last = saddr - 1; 2284 before->offset = tmp->offset; 2285 before->flags = tmp->flags; 2286 list_add(&before->list, &tmp->list); 2287 } 2288 2289 /* Remember mapping split at the end */ 2290 if (tmp->last > eaddr) { 2291 after->start = eaddr + 1; 2292 after->last = tmp->last; 2293 after->offset = tmp->offset; 2294 after->offset += after->start - tmp->start; 2295 after->flags = tmp->flags; 2296 list_add(&after->list, &tmp->list); 2297 } 2298 2299 list_del(&tmp->list); 2300 list_add(&tmp->list, &removed); 2301 2302 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2303 } 2304 2305 /* And free them up */ 2306 list_for_each_entry_safe(tmp, next, &removed, list) { 2307 amdgpu_vm_it_remove(tmp, &vm->va); 2308 list_del(&tmp->list); 2309 2310 if (tmp->start < saddr) 2311 tmp->start = saddr; 2312 if (tmp->last > eaddr) 2313 tmp->last = eaddr; 2314 2315 list_add(&tmp->list, &vm->freed); 2316 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2317 } 2318 2319 /* Insert partial mapping before the range */ 2320 if (!list_empty(&before->list)) { 2321 amdgpu_vm_it_insert(before, &vm->va); 2322 if (before->flags & AMDGPU_PTE_PRT) 2323 amdgpu_vm_prt_get(adev); 2324 } else { 2325 kfree(before); 2326 } 2327 2328 /* Insert partial mapping after the range */ 2329 if (!list_empty(&after->list)) { 2330 amdgpu_vm_it_insert(after, &vm->va); 2331 if (after->flags & AMDGPU_PTE_PRT) 2332 amdgpu_vm_prt_get(adev); 2333 } else { 2334 kfree(after); 2335 } 2336 2337 return 0; 2338 } 2339 2340 /** 2341 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2342 * 2343 * @adev: amdgpu_device pointer 2344 * @bo_va: requested bo_va 2345 * 2346 * Remove @bo_va->bo from the requested vm. 2347 * 2348 * Object have to be reserved! 2349 */ 2350 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2351 struct amdgpu_bo_va *bo_va) 2352 { 2353 struct amdgpu_bo_va_mapping *mapping, *next; 2354 struct amdgpu_vm *vm = bo_va->base.vm; 2355 2356 list_del(&bo_va->base.bo_list); 2357 2358 spin_lock(&vm->status_lock); 2359 list_del(&bo_va->base.vm_status); 2360 spin_unlock(&vm->status_lock); 2361 2362 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2363 list_del(&mapping->list); 2364 amdgpu_vm_it_remove(mapping, &vm->va); 2365 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2366 list_add(&mapping->list, &vm->freed); 2367 } 2368 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2369 list_del(&mapping->list); 2370 amdgpu_vm_it_remove(mapping, &vm->va); 2371 amdgpu_vm_free_mapping(adev, vm, mapping, 2372 bo_va->last_pt_update); 2373 } 2374 2375 dma_fence_put(bo_va->last_pt_update); 2376 kfree(bo_va); 2377 } 2378 2379 /** 2380 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2381 * 2382 * @adev: amdgpu_device pointer 2383 * @vm: requested vm 2384 * @bo: amdgpu buffer object 2385 * 2386 * Mark @bo as invalid. 2387 */ 2388 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2389 struct amdgpu_bo *bo) 2390 { 2391 struct amdgpu_vm_bo_base *bo_base; 2392 2393 list_for_each_entry(bo_base, &bo->va, bo_list) { 2394 spin_lock(&bo_base->vm->status_lock); 2395 if (list_empty(&bo_base->vm_status)) 2396 list_add(&bo_base->vm_status, 2397 &bo_base->vm->moved); 2398 spin_unlock(&bo_base->vm->status_lock); 2399 } 2400 } 2401 2402 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2403 { 2404 /* Total bits covered by PD + PTs */ 2405 unsigned bits = ilog2(vm_size) + 18; 2406 2407 /* Make sure the PD is 4K in size up to 8GB address space. 2408 Above that split equal between PD and PTs */ 2409 if (vm_size <= 8) 2410 return (bits - 9); 2411 else 2412 return ((bits + 3) / 2); 2413 } 2414 2415 /** 2416 * amdgpu_vm_set_fragment_size - adjust fragment size in PTE 2417 * 2418 * @adev: amdgpu_device pointer 2419 * @fragment_size_default: the default fragment size if it's set auto 2420 */ 2421 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default) 2422 { 2423 if (amdgpu_vm_fragment_size == -1) 2424 adev->vm_manager.fragment_size = fragment_size_default; 2425 else 2426 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2427 } 2428 2429 /** 2430 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2431 * 2432 * @adev: amdgpu_device pointer 2433 * @vm_size: the default vm size if it's set auto 2434 */ 2435 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default) 2436 { 2437 /* adjust vm size firstly */ 2438 if (amdgpu_vm_size == -1) 2439 adev->vm_manager.vm_size = vm_size; 2440 else 2441 adev->vm_manager.vm_size = amdgpu_vm_size; 2442 2443 /* block size depends on vm size */ 2444 if (amdgpu_vm_block_size == -1) 2445 adev->vm_manager.block_size = 2446 amdgpu_vm_get_block_size(adev->vm_manager.vm_size); 2447 else 2448 adev->vm_manager.block_size = amdgpu_vm_block_size; 2449 2450 amdgpu_vm_set_fragment_size(adev, fragment_size_default); 2451 2452 DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n", 2453 adev->vm_manager.vm_size, adev->vm_manager.block_size, 2454 adev->vm_manager.fragment_size); 2455 } 2456 2457 /** 2458 * amdgpu_vm_init - initialize a vm instance 2459 * 2460 * @adev: amdgpu_device pointer 2461 * @vm: requested vm 2462 * @vm_context: Indicates if it GFX or Compute context 2463 * 2464 * Init @vm fields. 2465 */ 2466 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2467 int vm_context) 2468 { 2469 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2470 AMDGPU_VM_PTE_COUNT(adev) * 8); 2471 unsigned ring_instance; 2472 struct amdgpu_ring *ring; 2473 struct amd_sched_rq *rq; 2474 int r, i; 2475 u64 flags; 2476 uint64_t init_pde_value = 0; 2477 2478 vm->va = RB_ROOT_CACHED; 2479 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); 2480 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2481 vm->reserved_vmid[i] = NULL; 2482 spin_lock_init(&vm->status_lock); 2483 INIT_LIST_HEAD(&vm->moved); 2484 INIT_LIST_HEAD(&vm->cleared); 2485 INIT_LIST_HEAD(&vm->freed); 2486 2487 /* create scheduler entity for page table updates */ 2488 2489 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2490 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2491 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2492 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; 2493 r = amd_sched_entity_init(&ring->sched, &vm->entity, 2494 rq, amdgpu_sched_jobs); 2495 if (r) 2496 return r; 2497 2498 vm->pte_support_ats = false; 2499 2500 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2501 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2502 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2503 2504 if (adev->asic_type == CHIP_RAVEN) { 2505 vm->pte_support_ats = true; 2506 init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE; 2507 } 2508 } else 2509 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2510 AMDGPU_VM_USE_CPU_FOR_GFX); 2511 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2512 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2513 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2514 "CPU update of VM recommended only for large BAR system\n"); 2515 vm->last_dir_update = NULL; 2516 2517 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2518 AMDGPU_GEM_CREATE_VRAM_CLEARED; 2519 if (vm->use_cpu_for_update) 2520 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2521 else 2522 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2523 AMDGPU_GEM_CREATE_SHADOW); 2524 2525 r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, 2526 AMDGPU_GEM_DOMAIN_VRAM, 2527 flags, 2528 NULL, NULL, init_pde_value, &vm->root.bo); 2529 if (r) 2530 goto error_free_sched_entity; 2531 2532 r = amdgpu_bo_reserve(vm->root.bo, false); 2533 if (r) 2534 goto error_free_root; 2535 2536 vm->last_eviction_counter = atomic64_read(&adev->num_evictions); 2537 2538 if (vm->use_cpu_for_update) { 2539 r = amdgpu_bo_kmap(vm->root.bo, NULL); 2540 if (r) 2541 goto error_free_root; 2542 } 2543 2544 amdgpu_bo_unreserve(vm->root.bo); 2545 2546 return 0; 2547 2548 error_free_root: 2549 amdgpu_bo_unref(&vm->root.bo->shadow); 2550 amdgpu_bo_unref(&vm->root.bo); 2551 vm->root.bo = NULL; 2552 2553 error_free_sched_entity: 2554 amd_sched_entity_fini(&ring->sched, &vm->entity); 2555 2556 return r; 2557 } 2558 2559 /** 2560 * amdgpu_vm_free_levels - free PD/PT levels 2561 * 2562 * @level: PD/PT starting level to free 2563 * 2564 * Free the page directory or page table level and all sub levels. 2565 */ 2566 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) 2567 { 2568 unsigned i; 2569 2570 if (level->bo) { 2571 amdgpu_bo_unref(&level->bo->shadow); 2572 amdgpu_bo_unref(&level->bo); 2573 } 2574 2575 if (level->entries) 2576 for (i = 0; i <= level->last_entry_used; i++) 2577 amdgpu_vm_free_levels(&level->entries[i]); 2578 2579 kvfree(level->entries); 2580 } 2581 2582 /** 2583 * amdgpu_vm_fini - tear down a vm instance 2584 * 2585 * @adev: amdgpu_device pointer 2586 * @vm: requested vm 2587 * 2588 * Tear down @vm. 2589 * Unbind the VM and remove all bos from the vm bo list 2590 */ 2591 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2592 { 2593 struct amdgpu_bo_va_mapping *mapping, *tmp; 2594 bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; 2595 int i; 2596 2597 amd_sched_entity_fini(vm->entity.sched, &vm->entity); 2598 2599 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2600 dev_err(adev->dev, "still active bo inside vm\n"); 2601 } 2602 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2603 &vm->va.rb_root, rb) { 2604 list_del(&mapping->list); 2605 amdgpu_vm_it_remove(mapping, &vm->va); 2606 kfree(mapping); 2607 } 2608 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2609 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2610 amdgpu_vm_prt_fini(adev, vm); 2611 prt_fini_needed = false; 2612 } 2613 2614 list_del(&mapping->list); 2615 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2616 } 2617 2618 amdgpu_vm_free_levels(&vm->root); 2619 dma_fence_put(vm->last_dir_update); 2620 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2621 amdgpu_vm_free_reserved_vmid(adev, vm, i); 2622 } 2623 2624 /** 2625 * amdgpu_vm_manager_init - init the VM manager 2626 * 2627 * @adev: amdgpu_device pointer 2628 * 2629 * Initialize the VM manager structures 2630 */ 2631 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2632 { 2633 unsigned i, j; 2634 2635 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2636 struct amdgpu_vm_id_manager *id_mgr = 2637 &adev->vm_manager.id_mgr[i]; 2638 2639 mutex_init(&id_mgr->lock); 2640 INIT_LIST_HEAD(&id_mgr->ids_lru); 2641 atomic_set(&id_mgr->reserved_vmid_num, 0); 2642 2643 /* skip over VMID 0, since it is the system VM */ 2644 for (j = 1; j < id_mgr->num_ids; ++j) { 2645 amdgpu_vm_reset_id(adev, i, j); 2646 amdgpu_sync_create(&id_mgr->ids[i].active); 2647 list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); 2648 } 2649 } 2650 2651 adev->vm_manager.fence_context = 2652 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2653 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2654 adev->vm_manager.seqno[i] = 0; 2655 2656 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2657 atomic64_set(&adev->vm_manager.client_counter, 0); 2658 spin_lock_init(&adev->vm_manager.prt_lock); 2659 atomic_set(&adev->vm_manager.num_prt_users, 0); 2660 2661 /* If not overridden by the user, by default, only in large BAR systems 2662 * Compute VM tables will be updated by CPU 2663 */ 2664 #ifdef CONFIG_X86_64 2665 if (amdgpu_vm_update_mode == -1) { 2666 if (amdgpu_vm_is_large_bar(adev)) 2667 adev->vm_manager.vm_update_mode = 2668 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2669 else 2670 adev->vm_manager.vm_update_mode = 0; 2671 } else 2672 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2673 #else 2674 adev->vm_manager.vm_update_mode = 0; 2675 #endif 2676 2677 } 2678 2679 /** 2680 * amdgpu_vm_manager_fini - cleanup VM manager 2681 * 2682 * @adev: amdgpu_device pointer 2683 * 2684 * Cleanup the VM manager and free resources. 2685 */ 2686 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2687 { 2688 unsigned i, j; 2689 2690 for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { 2691 struct amdgpu_vm_id_manager *id_mgr = 2692 &adev->vm_manager.id_mgr[i]; 2693 2694 mutex_destroy(&id_mgr->lock); 2695 for (j = 0; j < AMDGPU_NUM_VM; ++j) { 2696 struct amdgpu_vm_id *id = &id_mgr->ids[j]; 2697 2698 amdgpu_sync_free(&id->active); 2699 dma_fence_put(id->flushed_updates); 2700 dma_fence_put(id->last_flush); 2701 } 2702 } 2703 } 2704 2705 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2706 { 2707 union drm_amdgpu_vm *args = data; 2708 struct amdgpu_device *adev = dev->dev_private; 2709 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2710 int r; 2711 2712 switch (args->in.op) { 2713 case AMDGPU_VM_OP_RESERVE_VMID: 2714 /* current, we only have requirement to reserve vmid from gfxhub */ 2715 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm, 2716 AMDGPU_GFXHUB); 2717 if (r) 2718 return r; 2719 break; 2720 case AMDGPU_VM_OP_UNRESERVE_VMID: 2721 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB); 2722 break; 2723 default: 2724 return -EINVAL; 2725 } 2726 2727 return 0; 2728 } 2729