1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <drm/drmP.h>
31 #include <drm/amdgpu_drm.h>
32 #include "amdgpu.h"
33 #include "amdgpu_trace.h"
34 
35 /*
36  * GPUVM
37  * GPUVM is similar to the legacy gart on older asics, however
38  * rather than there being a single global gart table
39  * for the entire GPU, there are multiple VM page tables active
40  * at any given time.  The VM page tables can contain a mix
41  * vram pages and system memory pages and system memory pages
42  * can be mapped as snooped (cached system pages) or unsnooped
43  * (uncached system pages).
44  * Each VM has an ID associated with it and there is a page table
45  * associated with each VMID.  When execting a command buffer,
46  * the kernel tells the the ring what VMID to use for that command
47  * buffer.  VMIDs are allocated dynamically as commands are submitted.
48  * The userspace drivers maintain their own address space and the kernel
49  * sets up their pages tables accordingly when they submit their
50  * command buffers and a VMID is assigned.
51  * Cayman/Trinity support up to 8 active VMs at any given time;
52  * SI supports 16.
53  */
54 
55 #define START(node) ((node)->start)
56 #define LAST(node) ((node)->last)
57 
58 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
59 		     START, LAST, static, amdgpu_vm_it)
60 
61 #undef START
62 #undef LAST
63 
64 /* Local structure. Encapsulate some VM table update parameters to reduce
65  * the number of function parameters
66  */
67 struct amdgpu_pte_update_params {
68 	/* amdgpu device we do this update for */
69 	struct amdgpu_device *adev;
70 	/* optional amdgpu_vm we do this update for */
71 	struct amdgpu_vm *vm;
72 	/* address where to copy page table entries from */
73 	uint64_t src;
74 	/* indirect buffer to fill with commands */
75 	struct amdgpu_ib *ib;
76 	/* Function which actually does the update */
77 	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
78 		     uint64_t addr, unsigned count, uint32_t incr,
79 		     uint64_t flags);
80 	/* The next two are used during VM update by CPU
81 	 *  DMA addresses to use for mapping
82 	 *  Kernel pointer of PD/PT BO that needs to be updated
83 	 */
84 	dma_addr_t *pages_addr;
85 	void *kptr;
86 };
87 
88 /* Helper to disable partial resident texture feature from a fence callback */
89 struct amdgpu_prt_cb {
90 	struct amdgpu_device *adev;
91 	struct dma_fence_cb cb;
92 };
93 
94 /**
95  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
96  *
97  * @adev: amdgpu_device pointer
98  *
99  * Calculate the number of entries in a page directory or page table.
100  */
101 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
102 				      unsigned level)
103 {
104 	if (level == 0)
105 		/* For the root directory */
106 		return adev->vm_manager.max_pfn >>
107 			(adev->vm_manager.block_size *
108 			 adev->vm_manager.num_level);
109 	else if (level == adev->vm_manager.num_level)
110 		/* For the page tables on the leaves */
111 		return AMDGPU_VM_PTE_COUNT(adev);
112 	else
113 		/* Everything in between */
114 		return 1 << adev->vm_manager.block_size;
115 }
116 
117 /**
118  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
119  *
120  * @adev: amdgpu_device pointer
121  *
122  * Calculate the size of the BO for a page directory or page table in bytes.
123  */
124 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
125 {
126 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
127 }
128 
129 /**
130  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
131  *
132  * @vm: vm providing the BOs
133  * @validated: head of validation list
134  * @entry: entry to add
135  *
136  * Add the page directory to the list of BOs to
137  * validate for command submission.
138  */
139 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
140 			 struct list_head *validated,
141 			 struct amdgpu_bo_list_entry *entry)
142 {
143 	entry->robj = vm->root.bo;
144 	entry->priority = 0;
145 	entry->tv.bo = &entry->robj->tbo;
146 	entry->tv.shared = true;
147 	entry->user_pages = NULL;
148 	list_add(&entry->tv.head, validated);
149 }
150 
151 /**
152  * amdgpu_vm_validate_layer - validate a single page table level
153  *
154  * @parent: parent page table level
155  * @validate: callback to do the validation
156  * @param: parameter for the validation callback
157  *
158  * Validate the page table BOs on command submission if neccessary.
159  */
160 static int amdgpu_vm_validate_level(struct amdgpu_vm_pt *parent,
161 				    int (*validate)(void *, struct amdgpu_bo *),
162 				    void *param, bool use_cpu_for_update,
163 				    struct ttm_bo_global *glob)
164 {
165 	unsigned i;
166 	int r;
167 
168 	if (use_cpu_for_update) {
169 		r = amdgpu_bo_kmap(parent->bo, NULL);
170 		if (r)
171 			return r;
172 	}
173 
174 	if (!parent->entries)
175 		return 0;
176 
177 	for (i = 0; i <= parent->last_entry_used; ++i) {
178 		struct amdgpu_vm_pt *entry = &parent->entries[i];
179 
180 		if (!entry->bo)
181 			continue;
182 
183 		r = validate(param, entry->bo);
184 		if (r)
185 			return r;
186 
187 		spin_lock(&glob->lru_lock);
188 		ttm_bo_move_to_lru_tail(&entry->bo->tbo);
189 		if (entry->bo->shadow)
190 			ttm_bo_move_to_lru_tail(&entry->bo->shadow->tbo);
191 		spin_unlock(&glob->lru_lock);
192 
193 		/*
194 		 * Recurse into the sub directory. This is harmless because we
195 		 * have only a maximum of 5 layers.
196 		 */
197 		r = amdgpu_vm_validate_level(entry, validate, param,
198 					     use_cpu_for_update, glob);
199 		if (r)
200 			return r;
201 	}
202 
203 	return r;
204 }
205 
206 /**
207  * amdgpu_vm_validate_pt_bos - validate the page table BOs
208  *
209  * @adev: amdgpu device pointer
210  * @vm: vm providing the BOs
211  * @validate: callback to do the validation
212  * @param: parameter for the validation callback
213  *
214  * Validate the page table BOs on command submission if neccessary.
215  */
216 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
217 			      int (*validate)(void *p, struct amdgpu_bo *bo),
218 			      void *param)
219 {
220 	uint64_t num_evictions;
221 
222 	/* We only need to validate the page tables
223 	 * if they aren't already valid.
224 	 */
225 	num_evictions = atomic64_read(&adev->num_evictions);
226 	if (num_evictions == vm->last_eviction_counter)
227 		return 0;
228 
229 	return amdgpu_vm_validate_level(&vm->root, validate, param,
230 					vm->use_cpu_for_update,
231 					adev->mman.bdev.glob);
232 }
233 
234 /**
235  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
236  *
237  * @adev: amdgpu_device pointer
238  * @vm: requested vm
239  * @saddr: start of the address range
240  * @eaddr: end of the address range
241  *
242  * Make sure the page directories and page tables are allocated
243  */
244 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
245 				  struct amdgpu_vm *vm,
246 				  struct amdgpu_vm_pt *parent,
247 				  uint64_t saddr, uint64_t eaddr,
248 				  unsigned level)
249 {
250 	unsigned shift = (adev->vm_manager.num_level - level) *
251 		adev->vm_manager.block_size;
252 	unsigned pt_idx, from, to;
253 	int r;
254 	u64 flags;
255 	uint64_t init_value = 0;
256 
257 	if (!parent->entries) {
258 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
259 
260 		parent->entries = kvmalloc_array(num_entries,
261 						   sizeof(struct amdgpu_vm_pt),
262 						   GFP_KERNEL | __GFP_ZERO);
263 		if (!parent->entries)
264 			return -ENOMEM;
265 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
266 	}
267 
268 	from = saddr >> shift;
269 	to = eaddr >> shift;
270 	if (from >= amdgpu_vm_num_entries(adev, level) ||
271 	    to >= amdgpu_vm_num_entries(adev, level))
272 		return -EINVAL;
273 
274 	if (to > parent->last_entry_used)
275 		parent->last_entry_used = to;
276 
277 	++level;
278 	saddr = saddr & ((1 << shift) - 1);
279 	eaddr = eaddr & ((1 << shift) - 1);
280 
281 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
282 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
283 	if (vm->use_cpu_for_update)
284 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
285 	else
286 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
287 				AMDGPU_GEM_CREATE_SHADOW);
288 
289 	if (vm->pte_support_ats) {
290 		init_value = AMDGPU_PTE_SYSTEM;
291 		if (level != adev->vm_manager.num_level - 1)
292 			init_value |= AMDGPU_PDE_PTE;
293 	}
294 
295 	/* walk over the address space and allocate the page tables */
296 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
297 		struct reservation_object *resv = vm->root.bo->tbo.resv;
298 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
299 		struct amdgpu_bo *pt;
300 
301 		if (!entry->bo) {
302 			r = amdgpu_bo_create(adev,
303 					     amdgpu_vm_bo_size(adev, level),
304 					     AMDGPU_GPU_PAGE_SIZE, true,
305 					     AMDGPU_GEM_DOMAIN_VRAM,
306 					     flags,
307 					     NULL, resv, init_value, &pt);
308 			if (r)
309 				return r;
310 
311 			if (vm->use_cpu_for_update) {
312 				r = amdgpu_bo_kmap(pt, NULL);
313 				if (r) {
314 					amdgpu_bo_unref(&pt);
315 					return r;
316 				}
317 			}
318 
319 			/* Keep a reference to the root directory to avoid
320 			* freeing them up in the wrong order.
321 			*/
322 			pt->parent = amdgpu_bo_ref(vm->root.bo);
323 
324 			entry->bo = pt;
325 			entry->addr = 0;
326 		}
327 
328 		if (level < adev->vm_manager.num_level) {
329 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
330 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
331 				((1 << shift) - 1);
332 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
333 						   sub_eaddr, level);
334 			if (r)
335 				return r;
336 		}
337 	}
338 
339 	return 0;
340 }
341 
342 /**
343  * amdgpu_vm_alloc_pts - Allocate page tables.
344  *
345  * @adev: amdgpu_device pointer
346  * @vm: VM to allocate page tables for
347  * @saddr: Start address which needs to be allocated
348  * @size: Size from start address we need.
349  *
350  * Make sure the page tables are allocated.
351  */
352 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
353 			struct amdgpu_vm *vm,
354 			uint64_t saddr, uint64_t size)
355 {
356 	uint64_t last_pfn;
357 	uint64_t eaddr;
358 
359 	/* validate the parameters */
360 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
361 		return -EINVAL;
362 
363 	eaddr = saddr + size - 1;
364 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
365 	if (last_pfn >= adev->vm_manager.max_pfn) {
366 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
367 			last_pfn, adev->vm_manager.max_pfn);
368 		return -EINVAL;
369 	}
370 
371 	saddr /= AMDGPU_GPU_PAGE_SIZE;
372 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
373 
374 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
375 }
376 
377 /**
378  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
379  *
380  * @adev: amdgpu_device pointer
381  * @id: VMID structure
382  *
383  * Check if GPU reset occured since last use of the VMID.
384  */
385 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
386 				    struct amdgpu_vm_id *id)
387 {
388 	return id->current_gpu_reset_count !=
389 		atomic_read(&adev->gpu_reset_counter);
390 }
391 
392 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
393 {
394 	return !!vm->reserved_vmid[vmhub];
395 }
396 
397 /* idr_mgr->lock must be held */
398 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
399 					       struct amdgpu_ring *ring,
400 					       struct amdgpu_sync *sync,
401 					       struct dma_fence *fence,
402 					       struct amdgpu_job *job)
403 {
404 	struct amdgpu_device *adev = ring->adev;
405 	unsigned vmhub = ring->funcs->vmhub;
406 	uint64_t fence_context = adev->fence_context + ring->idx;
407 	struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
408 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
409 	struct dma_fence *updates = sync->last_vm_update;
410 	int r = 0;
411 	struct dma_fence *flushed, *tmp;
412 	bool needs_flush = vm->use_cpu_for_update;
413 
414 	flushed  = id->flushed_updates;
415 	if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
416 	    (atomic64_read(&id->owner) != vm->client_id) ||
417 	    (job->vm_pd_addr != id->pd_gpu_addr) ||
418 	    (updates && (!flushed || updates->context != flushed->context ||
419 			dma_fence_is_later(updates, flushed))) ||
420 	    (!id->last_flush || (id->last_flush->context != fence_context &&
421 				 !dma_fence_is_signaled(id->last_flush)))) {
422 		needs_flush = true;
423 		/* to prevent one context starved by another context */
424 		id->pd_gpu_addr = 0;
425 		tmp = amdgpu_sync_peek_fence(&id->active, ring);
426 		if (tmp) {
427 			r = amdgpu_sync_fence(adev, sync, tmp);
428 			return r;
429 		}
430 	}
431 
432 	/* Good we can use this VMID. Remember this submission as
433 	* user of the VMID.
434 	*/
435 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
436 	if (r)
437 		goto out;
438 
439 	if (updates && (!flushed || updates->context != flushed->context ||
440 			dma_fence_is_later(updates, flushed))) {
441 		dma_fence_put(id->flushed_updates);
442 		id->flushed_updates = dma_fence_get(updates);
443 	}
444 	id->pd_gpu_addr = job->vm_pd_addr;
445 	atomic64_set(&id->owner, vm->client_id);
446 	job->vm_needs_flush = needs_flush;
447 	if (needs_flush) {
448 		dma_fence_put(id->last_flush);
449 		id->last_flush = NULL;
450 	}
451 	job->vm_id = id - id_mgr->ids;
452 	trace_amdgpu_vm_grab_id(vm, ring, job);
453 out:
454 	return r;
455 }
456 
457 /**
458  * amdgpu_vm_grab_id - allocate the next free VMID
459  *
460  * @vm: vm to allocate id for
461  * @ring: ring we want to submit job to
462  * @sync: sync object where we add dependencies
463  * @fence: fence protecting ID from reuse
464  *
465  * Allocate an id for the vm, adding fences to the sync obj as necessary.
466  */
467 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
468 		      struct amdgpu_sync *sync, struct dma_fence *fence,
469 		      struct amdgpu_job *job)
470 {
471 	struct amdgpu_device *adev = ring->adev;
472 	unsigned vmhub = ring->funcs->vmhub;
473 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
474 	uint64_t fence_context = adev->fence_context + ring->idx;
475 	struct dma_fence *updates = sync->last_vm_update;
476 	struct amdgpu_vm_id *id, *idle;
477 	struct dma_fence **fences;
478 	unsigned i;
479 	int r = 0;
480 
481 	mutex_lock(&id_mgr->lock);
482 	if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
483 		r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
484 		mutex_unlock(&id_mgr->lock);
485 		return r;
486 	}
487 	fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
488 	if (!fences) {
489 		mutex_unlock(&id_mgr->lock);
490 		return -ENOMEM;
491 	}
492 	/* Check if we have an idle VMID */
493 	i = 0;
494 	list_for_each_entry(idle, &id_mgr->ids_lru, list) {
495 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
496 		if (!fences[i])
497 			break;
498 		++i;
499 	}
500 
501 	/* If we can't find a idle VMID to use, wait till one becomes available */
502 	if (&idle->list == &id_mgr->ids_lru) {
503 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
504 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
505 		struct dma_fence_array *array;
506 		unsigned j;
507 
508 		for (j = 0; j < i; ++j)
509 			dma_fence_get(fences[j]);
510 
511 		array = dma_fence_array_create(i, fences, fence_context,
512 					   seqno, true);
513 		if (!array) {
514 			for (j = 0; j < i; ++j)
515 				dma_fence_put(fences[j]);
516 			kfree(fences);
517 			r = -ENOMEM;
518 			goto error;
519 		}
520 
521 
522 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
523 		dma_fence_put(&array->base);
524 		if (r)
525 			goto error;
526 
527 		mutex_unlock(&id_mgr->lock);
528 		return 0;
529 
530 	}
531 	kfree(fences);
532 
533 	job->vm_needs_flush = vm->use_cpu_for_update;
534 	/* Check if we can use a VMID already assigned to this VM */
535 	list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
536 		struct dma_fence *flushed;
537 		bool needs_flush = vm->use_cpu_for_update;
538 
539 		/* Check all the prerequisites to using this VMID */
540 		if (amdgpu_vm_had_gpu_reset(adev, id))
541 			continue;
542 
543 		if (atomic64_read(&id->owner) != vm->client_id)
544 			continue;
545 
546 		if (job->vm_pd_addr != id->pd_gpu_addr)
547 			continue;
548 
549 		if (!id->last_flush ||
550 		    (id->last_flush->context != fence_context &&
551 		     !dma_fence_is_signaled(id->last_flush)))
552 			needs_flush = true;
553 
554 		flushed  = id->flushed_updates;
555 		if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
556 			needs_flush = true;
557 
558 		/* Concurrent flushes are only possible starting with Vega10 */
559 		if (adev->asic_type < CHIP_VEGA10 && needs_flush)
560 			continue;
561 
562 		/* Good we can use this VMID. Remember this submission as
563 		 * user of the VMID.
564 		 */
565 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
566 		if (r)
567 			goto error;
568 
569 		if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
570 			dma_fence_put(id->flushed_updates);
571 			id->flushed_updates = dma_fence_get(updates);
572 		}
573 
574 		if (needs_flush)
575 			goto needs_flush;
576 		else
577 			goto no_flush_needed;
578 
579 	};
580 
581 	/* Still no ID to use? Then use the idle one found earlier */
582 	id = idle;
583 
584 	/* Remember this submission as user of the VMID */
585 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
586 	if (r)
587 		goto error;
588 
589 	id->pd_gpu_addr = job->vm_pd_addr;
590 	dma_fence_put(id->flushed_updates);
591 	id->flushed_updates = dma_fence_get(updates);
592 	atomic64_set(&id->owner, vm->client_id);
593 
594 needs_flush:
595 	job->vm_needs_flush = true;
596 	dma_fence_put(id->last_flush);
597 	id->last_flush = NULL;
598 
599 no_flush_needed:
600 	list_move_tail(&id->list, &id_mgr->ids_lru);
601 
602 	job->vm_id = id - id_mgr->ids;
603 	trace_amdgpu_vm_grab_id(vm, ring, job);
604 
605 error:
606 	mutex_unlock(&id_mgr->lock);
607 	return r;
608 }
609 
610 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
611 					  struct amdgpu_vm *vm,
612 					  unsigned vmhub)
613 {
614 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
615 
616 	mutex_lock(&id_mgr->lock);
617 	if (vm->reserved_vmid[vmhub]) {
618 		list_add(&vm->reserved_vmid[vmhub]->list,
619 			&id_mgr->ids_lru);
620 		vm->reserved_vmid[vmhub] = NULL;
621 		atomic_dec(&id_mgr->reserved_vmid_num);
622 	}
623 	mutex_unlock(&id_mgr->lock);
624 }
625 
626 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
627 					 struct amdgpu_vm *vm,
628 					 unsigned vmhub)
629 {
630 	struct amdgpu_vm_id_manager *id_mgr;
631 	struct amdgpu_vm_id *idle;
632 	int r = 0;
633 
634 	id_mgr = &adev->vm_manager.id_mgr[vmhub];
635 	mutex_lock(&id_mgr->lock);
636 	if (vm->reserved_vmid[vmhub])
637 		goto unlock;
638 	if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
639 	    AMDGPU_VM_MAX_RESERVED_VMID) {
640 		DRM_ERROR("Over limitation of reserved vmid\n");
641 		atomic_dec(&id_mgr->reserved_vmid_num);
642 		r = -EINVAL;
643 		goto unlock;
644 	}
645 	/* Select the first entry VMID */
646 	idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
647 	list_del_init(&idle->list);
648 	vm->reserved_vmid[vmhub] = idle;
649 	mutex_unlock(&id_mgr->lock);
650 
651 	return 0;
652 unlock:
653 	mutex_unlock(&id_mgr->lock);
654 	return r;
655 }
656 
657 /**
658  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
659  *
660  * @adev: amdgpu_device pointer
661  */
662 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
663 {
664 	const struct amdgpu_ip_block *ip_block;
665 	bool has_compute_vm_bug;
666 	struct amdgpu_ring *ring;
667 	int i;
668 
669 	has_compute_vm_bug = false;
670 
671 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
672 	if (ip_block) {
673 		/* Compute has a VM bug for GFX version < 7.
674 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
675 		if (ip_block->version->major <= 7)
676 			has_compute_vm_bug = true;
677 		else if (ip_block->version->major == 8)
678 			if (adev->gfx.mec_fw_version < 673)
679 				has_compute_vm_bug = true;
680 	}
681 
682 	for (i = 0; i < adev->num_rings; i++) {
683 		ring = adev->rings[i];
684 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
685 			/* only compute rings */
686 			ring->has_compute_vm_bug = has_compute_vm_bug;
687 		else
688 			ring->has_compute_vm_bug = false;
689 	}
690 }
691 
692 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
693 				  struct amdgpu_job *job)
694 {
695 	struct amdgpu_device *adev = ring->adev;
696 	unsigned vmhub = ring->funcs->vmhub;
697 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
698 	struct amdgpu_vm_id *id;
699 	bool gds_switch_needed;
700 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
701 
702 	if (job->vm_id == 0)
703 		return false;
704 	id = &id_mgr->ids[job->vm_id];
705 	gds_switch_needed = ring->funcs->emit_gds_switch && (
706 		id->gds_base != job->gds_base ||
707 		id->gds_size != job->gds_size ||
708 		id->gws_base != job->gws_base ||
709 		id->gws_size != job->gws_size ||
710 		id->oa_base != job->oa_base ||
711 		id->oa_size != job->oa_size);
712 
713 	if (amdgpu_vm_had_gpu_reset(adev, id))
714 		return true;
715 
716 	return vm_flush_needed || gds_switch_needed;
717 }
718 
719 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
720 {
721 	return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
722 }
723 
724 /**
725  * amdgpu_vm_flush - hardware flush the vm
726  *
727  * @ring: ring to use for flush
728  * @vm_id: vmid number to use
729  * @pd_addr: address of the page directory
730  *
731  * Emit a VM flush when it is necessary.
732  */
733 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
734 {
735 	struct amdgpu_device *adev = ring->adev;
736 	unsigned vmhub = ring->funcs->vmhub;
737 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
738 	struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
739 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
740 		id->gds_base != job->gds_base ||
741 		id->gds_size != job->gds_size ||
742 		id->gws_base != job->gws_base ||
743 		id->gws_size != job->gws_size ||
744 		id->oa_base != job->oa_base ||
745 		id->oa_size != job->oa_size);
746 	bool vm_flush_needed = job->vm_needs_flush;
747 	unsigned patch_offset = 0;
748 	int r;
749 
750 	if (amdgpu_vm_had_gpu_reset(adev, id)) {
751 		gds_switch_needed = true;
752 		vm_flush_needed = true;
753 	}
754 
755 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
756 		return 0;
757 
758 	if (ring->funcs->init_cond_exec)
759 		patch_offset = amdgpu_ring_init_cond_exec(ring);
760 
761 	if (need_pipe_sync)
762 		amdgpu_ring_emit_pipeline_sync(ring);
763 
764 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
765 		struct dma_fence *fence;
766 
767 		trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
768 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
769 
770 		r = amdgpu_fence_emit(ring, &fence);
771 		if (r)
772 			return r;
773 
774 		mutex_lock(&id_mgr->lock);
775 		dma_fence_put(id->last_flush);
776 		id->last_flush = fence;
777 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
778 		mutex_unlock(&id_mgr->lock);
779 	}
780 
781 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
782 		id->gds_base = job->gds_base;
783 		id->gds_size = job->gds_size;
784 		id->gws_base = job->gws_base;
785 		id->gws_size = job->gws_size;
786 		id->oa_base = job->oa_base;
787 		id->oa_size = job->oa_size;
788 		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
789 					    job->gds_size, job->gws_base,
790 					    job->gws_size, job->oa_base,
791 					    job->oa_size);
792 	}
793 
794 	if (ring->funcs->patch_cond_exec)
795 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
796 
797 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
798 	if (ring->funcs->emit_switch_buffer) {
799 		amdgpu_ring_emit_switch_buffer(ring);
800 		amdgpu_ring_emit_switch_buffer(ring);
801 	}
802 	return 0;
803 }
804 
805 /**
806  * amdgpu_vm_reset_id - reset VMID to zero
807  *
808  * @adev: amdgpu device structure
809  * @vm_id: vmid number to use
810  *
811  * Reset saved GDW, GWS and OA to force switch on next flush.
812  */
813 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
814 			unsigned vmid)
815 {
816 	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
817 	struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
818 
819 	atomic64_set(&id->owner, 0);
820 	id->gds_base = 0;
821 	id->gds_size = 0;
822 	id->gws_base = 0;
823 	id->gws_size = 0;
824 	id->oa_base = 0;
825 	id->oa_size = 0;
826 }
827 
828 /**
829  * amdgpu_vm_reset_all_id - reset VMID to zero
830  *
831  * @adev: amdgpu device structure
832  *
833  * Reset VMID to force flush on next use
834  */
835 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
836 {
837 	unsigned i, j;
838 
839 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
840 		struct amdgpu_vm_id_manager *id_mgr =
841 			&adev->vm_manager.id_mgr[i];
842 
843 		for (j = 1; j < id_mgr->num_ids; ++j)
844 			amdgpu_vm_reset_id(adev, i, j);
845 	}
846 }
847 
848 /**
849  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
850  *
851  * @vm: requested vm
852  * @bo: requested buffer object
853  *
854  * Find @bo inside the requested vm.
855  * Search inside the @bos vm list for the requested vm
856  * Returns the found bo_va or NULL if none is found
857  *
858  * Object has to be reserved!
859  */
860 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
861 				       struct amdgpu_bo *bo)
862 {
863 	struct amdgpu_bo_va *bo_va;
864 
865 	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
866 		if (bo_va->base.vm == vm) {
867 			return bo_va;
868 		}
869 	}
870 	return NULL;
871 }
872 
873 /**
874  * amdgpu_vm_do_set_ptes - helper to call the right asic function
875  *
876  * @params: see amdgpu_pte_update_params definition
877  * @pe: addr of the page entry
878  * @addr: dst addr to write into pe
879  * @count: number of page entries to update
880  * @incr: increase next addr by incr bytes
881  * @flags: hw access flags
882  *
883  * Traces the parameters and calls the right asic functions
884  * to setup the page table using the DMA.
885  */
886 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
887 				  uint64_t pe, uint64_t addr,
888 				  unsigned count, uint32_t incr,
889 				  uint64_t flags)
890 {
891 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
892 
893 	if (count < 3) {
894 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
895 				    addr | flags, count, incr);
896 
897 	} else {
898 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
899 				      count, incr, flags);
900 	}
901 }
902 
903 /**
904  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
905  *
906  * @params: see amdgpu_pte_update_params definition
907  * @pe: addr of the page entry
908  * @addr: dst addr to write into pe
909  * @count: number of page entries to update
910  * @incr: increase next addr by incr bytes
911  * @flags: hw access flags
912  *
913  * Traces the parameters and calls the DMA function to copy the PTEs.
914  */
915 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
916 				   uint64_t pe, uint64_t addr,
917 				   unsigned count, uint32_t incr,
918 				   uint64_t flags)
919 {
920 	uint64_t src = (params->src + (addr >> 12) * 8);
921 
922 
923 	trace_amdgpu_vm_copy_ptes(pe, src, count);
924 
925 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
926 }
927 
928 /**
929  * amdgpu_vm_map_gart - Resolve gart mapping of addr
930  *
931  * @pages_addr: optional DMA address to use for lookup
932  * @addr: the unmapped addr
933  *
934  * Look up the physical address of the page that the pte resolves
935  * to and return the pointer for the page table entry.
936  */
937 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
938 {
939 	uint64_t result;
940 
941 	/* page table offset */
942 	result = pages_addr[addr >> PAGE_SHIFT];
943 
944 	/* in case cpu page size != gpu page size*/
945 	result |= addr & (~PAGE_MASK);
946 
947 	result &= 0xFFFFFFFFFFFFF000ULL;
948 
949 	return result;
950 }
951 
952 /**
953  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
954  *
955  * @params: see amdgpu_pte_update_params definition
956  * @pe: kmap addr of the page entry
957  * @addr: dst addr to write into pe
958  * @count: number of page entries to update
959  * @incr: increase next addr by incr bytes
960  * @flags: hw access flags
961  *
962  * Write count number of PT/PD entries directly.
963  */
964 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
965 				   uint64_t pe, uint64_t addr,
966 				   unsigned count, uint32_t incr,
967 				   uint64_t flags)
968 {
969 	unsigned int i;
970 	uint64_t value;
971 
972 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
973 
974 	for (i = 0; i < count; i++) {
975 		value = params->pages_addr ?
976 			amdgpu_vm_map_gart(params->pages_addr, addr) :
977 			addr;
978 		amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
979 					i, value, flags);
980 		addr += incr;
981 	}
982 }
983 
984 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
985 			     void *owner)
986 {
987 	struct amdgpu_sync sync;
988 	int r;
989 
990 	amdgpu_sync_create(&sync);
991 	amdgpu_sync_resv(adev, &sync, vm->root.bo->tbo.resv, owner);
992 	r = amdgpu_sync_wait(&sync, true);
993 	amdgpu_sync_free(&sync);
994 
995 	return r;
996 }
997 
998 /*
999  * amdgpu_vm_update_level - update a single level in the hierarchy
1000  *
1001  * @adev: amdgpu_device pointer
1002  * @vm: requested vm
1003  * @parent: parent directory
1004  *
1005  * Makes sure all entries in @parent are up to date.
1006  * Returns 0 for success, error for failure.
1007  */
1008 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1009 				  struct amdgpu_vm *vm,
1010 				  struct amdgpu_vm_pt *parent,
1011 				  unsigned level)
1012 {
1013 	struct amdgpu_bo *shadow;
1014 	struct amdgpu_ring *ring = NULL;
1015 	uint64_t pd_addr, shadow_addr = 0;
1016 	uint32_t incr = amdgpu_vm_bo_size(adev, level + 1);
1017 	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1018 	unsigned count = 0, pt_idx, ndw = 0;
1019 	struct amdgpu_job *job;
1020 	struct amdgpu_pte_update_params params;
1021 	struct dma_fence *fence = NULL;
1022 
1023 	int r;
1024 
1025 	if (!parent->entries)
1026 		return 0;
1027 
1028 	memset(&params, 0, sizeof(params));
1029 	params.adev = adev;
1030 	shadow = parent->bo->shadow;
1031 
1032 	if (vm->use_cpu_for_update) {
1033 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1034 		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1035 		if (unlikely(r))
1036 			return r;
1037 
1038 		params.func = amdgpu_vm_cpu_set_ptes;
1039 	} else {
1040 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
1041 				    sched);
1042 
1043 		/* padding, etc. */
1044 		ndw = 64;
1045 
1046 		/* assume the worst case */
1047 		ndw += parent->last_entry_used * 6;
1048 
1049 		pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1050 
1051 		if (shadow) {
1052 			shadow_addr = amdgpu_bo_gpu_offset(shadow);
1053 			ndw *= 2;
1054 		} else {
1055 			shadow_addr = 0;
1056 		}
1057 
1058 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1059 		if (r)
1060 			return r;
1061 
1062 		params.ib = &job->ibs[0];
1063 		params.func = amdgpu_vm_do_set_ptes;
1064 	}
1065 
1066 
1067 	/* walk over the address space and update the directory */
1068 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1069 		struct amdgpu_bo *bo = parent->entries[pt_idx].bo;
1070 		uint64_t pde, pt;
1071 
1072 		if (bo == NULL)
1073 			continue;
1074 
1075 		pt = amdgpu_bo_gpu_offset(bo);
1076 		pt = amdgpu_gart_get_vm_pde(adev, pt);
1077 		/* Don't update huge pages here */
1078 		if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1079 		    parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1080 			continue;
1081 
1082 		parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1083 
1084 		pde = pd_addr + pt_idx * 8;
1085 		if (((last_pde + 8 * count) != pde) ||
1086 		    ((last_pt + incr * count) != pt) ||
1087 		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1088 
1089 			if (count) {
1090 				if (shadow)
1091 					params.func(&params,
1092 						    last_shadow,
1093 						    last_pt, count,
1094 						    incr,
1095 						    AMDGPU_PTE_VALID);
1096 
1097 				params.func(&params, last_pde,
1098 					    last_pt, count, incr,
1099 					    AMDGPU_PTE_VALID);
1100 			}
1101 
1102 			count = 1;
1103 			last_pde = pde;
1104 			last_shadow = shadow_addr + pt_idx * 8;
1105 			last_pt = pt;
1106 		} else {
1107 			++count;
1108 		}
1109 	}
1110 
1111 	if (count) {
1112 		if (vm->root.bo->shadow)
1113 			params.func(&params, last_shadow, last_pt,
1114 				    count, incr, AMDGPU_PTE_VALID);
1115 
1116 		params.func(&params, last_pde, last_pt,
1117 			    count, incr, AMDGPU_PTE_VALID);
1118 	}
1119 
1120 	if (!vm->use_cpu_for_update) {
1121 		if (params.ib->length_dw == 0) {
1122 			amdgpu_job_free(job);
1123 		} else {
1124 			amdgpu_ring_pad_ib(ring, params.ib);
1125 			amdgpu_sync_resv(adev, &job->sync, parent->bo->tbo.resv,
1126 					 AMDGPU_FENCE_OWNER_VM);
1127 			if (shadow)
1128 				amdgpu_sync_resv(adev, &job->sync,
1129 						 shadow->tbo.resv,
1130 						 AMDGPU_FENCE_OWNER_VM);
1131 
1132 			WARN_ON(params.ib->length_dw > ndw);
1133 			r = amdgpu_job_submit(job, ring, &vm->entity,
1134 					AMDGPU_FENCE_OWNER_VM, &fence);
1135 			if (r)
1136 				goto error_free;
1137 
1138 			amdgpu_bo_fence(parent->bo, fence, true);
1139 			dma_fence_put(vm->last_dir_update);
1140 			vm->last_dir_update = dma_fence_get(fence);
1141 			dma_fence_put(fence);
1142 		}
1143 	}
1144 	/*
1145 	 * Recurse into the subdirectories. This recursion is harmless because
1146 	 * we only have a maximum of 5 layers.
1147 	 */
1148 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1149 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1150 
1151 		if (!entry->bo)
1152 			continue;
1153 
1154 		r = amdgpu_vm_update_level(adev, vm, entry, level + 1);
1155 		if (r)
1156 			return r;
1157 	}
1158 
1159 	return 0;
1160 
1161 error_free:
1162 	amdgpu_job_free(job);
1163 	return r;
1164 }
1165 
1166 /*
1167  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1168  *
1169  * @parent: parent PD
1170  *
1171  * Mark all PD level as invalid after an error.
1172  */
1173 static void amdgpu_vm_invalidate_level(struct amdgpu_vm_pt *parent)
1174 {
1175 	unsigned pt_idx;
1176 
1177 	/*
1178 	 * Recurse into the subdirectories. This recursion is harmless because
1179 	 * we only have a maximum of 5 layers.
1180 	 */
1181 	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1182 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1183 
1184 		if (!entry->bo)
1185 			continue;
1186 
1187 		entry->addr = ~0ULL;
1188 		amdgpu_vm_invalidate_level(entry);
1189 	}
1190 }
1191 
1192 /*
1193  * amdgpu_vm_update_directories - make sure that all directories are valid
1194  *
1195  * @adev: amdgpu_device pointer
1196  * @vm: requested vm
1197  *
1198  * Makes sure all directories are up to date.
1199  * Returns 0 for success, error for failure.
1200  */
1201 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1202 				 struct amdgpu_vm *vm)
1203 {
1204 	int r;
1205 
1206 	r = amdgpu_vm_update_level(adev, vm, &vm->root, 0);
1207 	if (r)
1208 		amdgpu_vm_invalidate_level(&vm->root);
1209 
1210 	if (vm->use_cpu_for_update) {
1211 		/* Flush HDP */
1212 		mb();
1213 		amdgpu_gart_flush_gpu_tlb(adev, 0);
1214 	}
1215 
1216 	return r;
1217 }
1218 
1219 /**
1220  * amdgpu_vm_find_entry - find the entry for an address
1221  *
1222  * @p: see amdgpu_pte_update_params definition
1223  * @addr: virtual address in question
1224  * @entry: resulting entry or NULL
1225  * @parent: parent entry
1226  *
1227  * Find the vm_pt entry and it's parent for the given address.
1228  */
1229 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1230 			 struct amdgpu_vm_pt **entry,
1231 			 struct amdgpu_vm_pt **parent)
1232 {
1233 	unsigned idx, level = p->adev->vm_manager.num_level;
1234 
1235 	*parent = NULL;
1236 	*entry = &p->vm->root;
1237 	while ((*entry)->entries) {
1238 		idx = addr >> (p->adev->vm_manager.block_size * level--);
1239 		idx %= amdgpu_bo_size((*entry)->bo) / 8;
1240 		*parent = *entry;
1241 		*entry = &(*entry)->entries[idx];
1242 	}
1243 
1244 	if (level)
1245 		*entry = NULL;
1246 }
1247 
1248 /**
1249  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1250  *
1251  * @p: see amdgpu_pte_update_params definition
1252  * @entry: vm_pt entry to check
1253  * @parent: parent entry
1254  * @nptes: number of PTEs updated with this operation
1255  * @dst: destination address where the PTEs should point to
1256  * @flags: access flags fro the PTEs
1257  *
1258  * Check if we can update the PD with a huge page.
1259  */
1260 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1261 					struct amdgpu_vm_pt *entry,
1262 					struct amdgpu_vm_pt *parent,
1263 					unsigned nptes, uint64_t dst,
1264 					uint64_t flags)
1265 {
1266 	bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1267 	uint64_t pd_addr, pde;
1268 
1269 	/* In the case of a mixed PT the PDE must point to it*/
1270 	if (p->adev->asic_type < CHIP_VEGA10 ||
1271 	    nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1272 	    p->src ||
1273 	    !(flags & AMDGPU_PTE_VALID)) {
1274 
1275 		dst = amdgpu_bo_gpu_offset(entry->bo);
1276 		dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1277 		flags = AMDGPU_PTE_VALID;
1278 	} else {
1279 		/* Set the huge page flag to stop scanning at this PDE */
1280 		flags |= AMDGPU_PDE_PTE;
1281 	}
1282 
1283 	if (entry->addr == (dst | flags))
1284 		return;
1285 
1286 	entry->addr = (dst | flags);
1287 
1288 	if (use_cpu_update) {
1289 		/* In case a huge page is replaced with a system
1290 		 * memory mapping, p->pages_addr != NULL and
1291 		 * amdgpu_vm_cpu_set_ptes would try to translate dst
1292 		 * through amdgpu_vm_map_gart. But dst is already a
1293 		 * GPU address (of the page table). Disable
1294 		 * amdgpu_vm_map_gart temporarily.
1295 		 */
1296 		dma_addr_t *tmp;
1297 
1298 		tmp = p->pages_addr;
1299 		p->pages_addr = NULL;
1300 
1301 		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->bo);
1302 		pde = pd_addr + (entry - parent->entries) * 8;
1303 		amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1304 
1305 		p->pages_addr = tmp;
1306 	} else {
1307 		if (parent->bo->shadow) {
1308 			pd_addr = amdgpu_bo_gpu_offset(parent->bo->shadow);
1309 			pde = pd_addr + (entry - parent->entries) * 8;
1310 			amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1311 		}
1312 		pd_addr = amdgpu_bo_gpu_offset(parent->bo);
1313 		pde = pd_addr + (entry - parent->entries) * 8;
1314 		amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1315 	}
1316 }
1317 
1318 /**
1319  * amdgpu_vm_update_ptes - make sure that page tables are valid
1320  *
1321  * @params: see amdgpu_pte_update_params definition
1322  * @vm: requested vm
1323  * @start: start of GPU address range
1324  * @end: end of GPU address range
1325  * @dst: destination address to map to, the next dst inside the function
1326  * @flags: mapping flags
1327  *
1328  * Update the page tables in the range @start - @end.
1329  * Returns 0 for success, -EINVAL for failure.
1330  */
1331 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1332 				  uint64_t start, uint64_t end,
1333 				  uint64_t dst, uint64_t flags)
1334 {
1335 	struct amdgpu_device *adev = params->adev;
1336 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1337 
1338 	uint64_t addr, pe_start;
1339 	struct amdgpu_bo *pt;
1340 	unsigned nptes;
1341 	bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1342 
1343 	/* walk over the address space and update the page tables */
1344 	for (addr = start; addr < end; addr += nptes,
1345 	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1346 		struct amdgpu_vm_pt *entry, *parent;
1347 
1348 		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1349 		if (!entry)
1350 			return -ENOENT;
1351 
1352 		if ((addr & ~mask) == (end & ~mask))
1353 			nptes = end - addr;
1354 		else
1355 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1356 
1357 		amdgpu_vm_handle_huge_pages(params, entry, parent,
1358 					    nptes, dst, flags);
1359 		/* We don't need to update PTEs for huge pages */
1360 		if (entry->addr & AMDGPU_PDE_PTE)
1361 			continue;
1362 
1363 		pt = entry->bo;
1364 		if (use_cpu_update) {
1365 			pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1366 		} else {
1367 			if (pt->shadow) {
1368 				pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1369 				pe_start += (addr & mask) * 8;
1370 				params->func(params, pe_start, dst, nptes,
1371 					     AMDGPU_GPU_PAGE_SIZE, flags);
1372 			}
1373 			pe_start = amdgpu_bo_gpu_offset(pt);
1374 		}
1375 
1376 		pe_start += (addr & mask) * 8;
1377 		params->func(params, pe_start, dst, nptes,
1378 			     AMDGPU_GPU_PAGE_SIZE, flags);
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1386  *
1387  * @params: see amdgpu_pte_update_params definition
1388  * @vm: requested vm
1389  * @start: first PTE to handle
1390  * @end: last PTE to handle
1391  * @dst: addr those PTEs should point to
1392  * @flags: hw mapping flags
1393  * Returns 0 for success, -EINVAL for failure.
1394  */
1395 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1396 				uint64_t start, uint64_t end,
1397 				uint64_t dst, uint64_t flags)
1398 {
1399 	int r;
1400 
1401 	/**
1402 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1403 	 * field in the PTE. When this field is set to a non-zero value, page
1404 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1405 	 * flags are considered valid for all PTEs within the fragment range
1406 	 * and corresponding mappings are assumed to be physically contiguous.
1407 	 *
1408 	 * The L1 TLB can store a single PTE for the whole fragment,
1409 	 * significantly increasing the space available for translation
1410 	 * caching. This leads to large improvements in throughput when the
1411 	 * TLB is under pressure.
1412 	 *
1413 	 * The L2 TLB distributes small and large fragments into two
1414 	 * asymmetric partitions. The large fragment cache is significantly
1415 	 * larger. Thus, we try to use large fragments wherever possible.
1416 	 * Userspace can support this by aligning virtual base address and
1417 	 * allocation size to the fragment size.
1418 	 */
1419 	unsigned pages_per_frag = params->adev->vm_manager.fragment_size;
1420 	uint64_t frag_flags = AMDGPU_PTE_FRAG(pages_per_frag);
1421 	uint64_t frag_align = 1 << pages_per_frag;
1422 
1423 	uint64_t frag_start = ALIGN(start, frag_align);
1424 	uint64_t frag_end = end & ~(frag_align - 1);
1425 
1426 	/* system pages are non continuously */
1427 	if (params->src || !(flags & AMDGPU_PTE_VALID) ||
1428 	    (frag_start >= frag_end))
1429 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1430 
1431 	/* handle the 4K area at the beginning */
1432 	if (start != frag_start) {
1433 		r = amdgpu_vm_update_ptes(params, start, frag_start,
1434 					  dst, flags);
1435 		if (r)
1436 			return r;
1437 		dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
1438 	}
1439 
1440 	/* handle the area in the middle */
1441 	r = amdgpu_vm_update_ptes(params, frag_start, frag_end, dst,
1442 				  flags | frag_flags);
1443 	if (r)
1444 		return r;
1445 
1446 	/* handle the 4K area at the end */
1447 	if (frag_end != end) {
1448 		dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
1449 		r = amdgpu_vm_update_ptes(params, frag_end, end, dst, flags);
1450 	}
1451 	return r;
1452 }
1453 
1454 /**
1455  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1456  *
1457  * @adev: amdgpu_device pointer
1458  * @exclusive: fence we need to sync to
1459  * @src: address where to copy page table entries from
1460  * @pages_addr: DMA addresses to use for mapping
1461  * @vm: requested vm
1462  * @start: start of mapped range
1463  * @last: last mapped entry
1464  * @flags: flags for the entries
1465  * @addr: addr to set the area to
1466  * @fence: optional resulting fence
1467  *
1468  * Fill in the page table entries between @start and @last.
1469  * Returns 0 for success, -EINVAL for failure.
1470  */
1471 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1472 				       struct dma_fence *exclusive,
1473 				       uint64_t src,
1474 				       dma_addr_t *pages_addr,
1475 				       struct amdgpu_vm *vm,
1476 				       uint64_t start, uint64_t last,
1477 				       uint64_t flags, uint64_t addr,
1478 				       struct dma_fence **fence)
1479 {
1480 	struct amdgpu_ring *ring;
1481 	void *owner = AMDGPU_FENCE_OWNER_VM;
1482 	unsigned nptes, ncmds, ndw;
1483 	struct amdgpu_job *job;
1484 	struct amdgpu_pte_update_params params;
1485 	struct dma_fence *f = NULL;
1486 	int r;
1487 
1488 	memset(&params, 0, sizeof(params));
1489 	params.adev = adev;
1490 	params.vm = vm;
1491 	params.src = src;
1492 
1493 	/* sync to everything on unmapping */
1494 	if (!(flags & AMDGPU_PTE_VALID))
1495 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1496 
1497 	if (vm->use_cpu_for_update) {
1498 		/* params.src is used as flag to indicate system Memory */
1499 		if (pages_addr)
1500 			params.src = ~0;
1501 
1502 		/* Wait for PT BOs to be free. PTs share the same resv. object
1503 		 * as the root PD BO
1504 		 */
1505 		r = amdgpu_vm_wait_pd(adev, vm, owner);
1506 		if (unlikely(r))
1507 			return r;
1508 
1509 		params.func = amdgpu_vm_cpu_set_ptes;
1510 		params.pages_addr = pages_addr;
1511 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1512 					   addr, flags);
1513 	}
1514 
1515 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1516 
1517 	nptes = last - start + 1;
1518 
1519 	/*
1520 	 * reserve space for one command every (1 << BLOCK_SIZE)
1521 	 *  entries or 2k dwords (whatever is smaller)
1522 	 */
1523 	ncmds = (nptes >> min(adev->vm_manager.block_size, 11u)) + 1;
1524 
1525 	/* padding, etc. */
1526 	ndw = 64;
1527 
1528 	/* one PDE write for each huge page */
1529 	ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1530 
1531 	if (src) {
1532 		/* only copy commands needed */
1533 		ndw += ncmds * 7;
1534 
1535 		params.func = amdgpu_vm_do_copy_ptes;
1536 
1537 	} else if (pages_addr) {
1538 		/* copy commands needed */
1539 		ndw += ncmds * 7;
1540 
1541 		/* and also PTEs */
1542 		ndw += nptes * 2;
1543 
1544 		params.func = amdgpu_vm_do_copy_ptes;
1545 
1546 	} else {
1547 		/* set page commands needed */
1548 		ndw += ncmds * 10;
1549 
1550 		/* two extra commands for begin/end of fragment */
1551 		ndw += 2 * 10;
1552 
1553 		params.func = amdgpu_vm_do_set_ptes;
1554 	}
1555 
1556 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1557 	if (r)
1558 		return r;
1559 
1560 	params.ib = &job->ibs[0];
1561 
1562 	if (!src && pages_addr) {
1563 		uint64_t *pte;
1564 		unsigned i;
1565 
1566 		/* Put the PTEs at the end of the IB. */
1567 		i = ndw - nptes * 2;
1568 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1569 		params.src = job->ibs->gpu_addr + i * 4;
1570 
1571 		for (i = 0; i < nptes; ++i) {
1572 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1573 						    AMDGPU_GPU_PAGE_SIZE);
1574 			pte[i] |= flags;
1575 		}
1576 		addr = 0;
1577 	}
1578 
1579 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1580 	if (r)
1581 		goto error_free;
1582 
1583 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.bo->tbo.resv,
1584 			     owner);
1585 	if (r)
1586 		goto error_free;
1587 
1588 	r = reservation_object_reserve_shared(vm->root.bo->tbo.resv);
1589 	if (r)
1590 		goto error_free;
1591 
1592 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1593 	if (r)
1594 		goto error_free;
1595 
1596 	amdgpu_ring_pad_ib(ring, params.ib);
1597 	WARN_ON(params.ib->length_dw > ndw);
1598 	r = amdgpu_job_submit(job, ring, &vm->entity,
1599 			      AMDGPU_FENCE_OWNER_VM, &f);
1600 	if (r)
1601 		goto error_free;
1602 
1603 	amdgpu_bo_fence(vm->root.bo, f, true);
1604 	dma_fence_put(*fence);
1605 	*fence = f;
1606 	return 0;
1607 
1608 error_free:
1609 	amdgpu_job_free(job);
1610 	amdgpu_vm_invalidate_level(&vm->root);
1611 	return r;
1612 }
1613 
1614 /**
1615  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1616  *
1617  * @adev: amdgpu_device pointer
1618  * @exclusive: fence we need to sync to
1619  * @pages_addr: DMA addresses to use for mapping
1620  * @vm: requested vm
1621  * @mapping: mapped range and flags to use for the update
1622  * @flags: HW flags for the mapping
1623  * @nodes: array of drm_mm_nodes with the MC addresses
1624  * @fence: optional resulting fence
1625  *
1626  * Split the mapping into smaller chunks so that each update fits
1627  * into a SDMA IB.
1628  * Returns 0 for success, -EINVAL for failure.
1629  */
1630 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1631 				      struct dma_fence *exclusive,
1632 				      dma_addr_t *pages_addr,
1633 				      struct amdgpu_vm *vm,
1634 				      struct amdgpu_bo_va_mapping *mapping,
1635 				      uint64_t flags,
1636 				      struct drm_mm_node *nodes,
1637 				      struct dma_fence **fence)
1638 {
1639 	uint64_t pfn, src = 0, start = mapping->start;
1640 	int r;
1641 
1642 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1643 	 * but in case of something, we filter the flags in first place
1644 	 */
1645 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1646 		flags &= ~AMDGPU_PTE_READABLE;
1647 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1648 		flags &= ~AMDGPU_PTE_WRITEABLE;
1649 
1650 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1651 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1652 
1653 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1654 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1655 
1656 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1657 	    (adev->asic_type >= CHIP_VEGA10)) {
1658 		flags |= AMDGPU_PTE_PRT;
1659 		flags &= ~AMDGPU_PTE_VALID;
1660 	}
1661 
1662 	trace_amdgpu_vm_bo_update(mapping);
1663 
1664 	pfn = mapping->offset >> PAGE_SHIFT;
1665 	if (nodes) {
1666 		while (pfn >= nodes->size) {
1667 			pfn -= nodes->size;
1668 			++nodes;
1669 		}
1670 	}
1671 
1672 	do {
1673 		uint64_t max_entries;
1674 		uint64_t addr, last;
1675 
1676 		if (nodes) {
1677 			addr = nodes->start << PAGE_SHIFT;
1678 			max_entries = (nodes->size - pfn) *
1679 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1680 		} else {
1681 			addr = 0;
1682 			max_entries = S64_MAX;
1683 		}
1684 
1685 		if (pages_addr) {
1686 			max_entries = min(max_entries, 16ull * 1024ull);
1687 			addr = 0;
1688 		} else if (flags & AMDGPU_PTE_VALID) {
1689 			addr += adev->vm_manager.vram_base_offset;
1690 		}
1691 		addr += pfn << PAGE_SHIFT;
1692 
1693 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1694 		r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1695 						src, pages_addr, vm,
1696 						start, last, flags, addr,
1697 						fence);
1698 		if (r)
1699 			return r;
1700 
1701 		pfn += last - start + 1;
1702 		if (nodes && nodes->size == pfn) {
1703 			pfn = 0;
1704 			++nodes;
1705 		}
1706 		start = last + 1;
1707 
1708 	} while (unlikely(start != mapping->last + 1));
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1715  *
1716  * @adev: amdgpu_device pointer
1717  * @bo_va: requested BO and VM object
1718  * @clear: if true clear the entries
1719  *
1720  * Fill in the page table entries for @bo_va.
1721  * Returns 0 for success, -EINVAL for failure.
1722  */
1723 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1724 			struct amdgpu_bo_va *bo_va,
1725 			bool clear)
1726 {
1727 	struct amdgpu_bo *bo = bo_va->base.bo;
1728 	struct amdgpu_vm *vm = bo_va->base.vm;
1729 	struct amdgpu_bo_va_mapping *mapping;
1730 	dma_addr_t *pages_addr = NULL;
1731 	struct ttm_mem_reg *mem;
1732 	struct drm_mm_node *nodes;
1733 	struct dma_fence *exclusive;
1734 	uint64_t flags;
1735 	int r;
1736 
1737 	if (clear || !bo_va->base.bo) {
1738 		mem = NULL;
1739 		nodes = NULL;
1740 		exclusive = NULL;
1741 	} else {
1742 		struct ttm_dma_tt *ttm;
1743 
1744 		mem = &bo_va->base.bo->tbo.mem;
1745 		nodes = mem->mm_node;
1746 		if (mem->mem_type == TTM_PL_TT) {
1747 			ttm = container_of(bo_va->base.bo->tbo.ttm,
1748 					   struct ttm_dma_tt, ttm);
1749 			pages_addr = ttm->dma_address;
1750 		}
1751 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1752 	}
1753 
1754 	if (bo)
1755 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1756 	else
1757 		flags = 0x0;
1758 
1759 	spin_lock(&vm->status_lock);
1760 	if (!list_empty(&bo_va->base.vm_status))
1761 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1762 	spin_unlock(&vm->status_lock);
1763 
1764 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1765 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1766 					       mapping, flags, nodes,
1767 					       &bo_va->last_pt_update);
1768 		if (r)
1769 			return r;
1770 	}
1771 
1772 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1773 		list_for_each_entry(mapping, &bo_va->valids, list)
1774 			trace_amdgpu_vm_bo_mapping(mapping);
1775 
1776 		list_for_each_entry(mapping, &bo_va->invalids, list)
1777 			trace_amdgpu_vm_bo_mapping(mapping);
1778 	}
1779 
1780 	spin_lock(&vm->status_lock);
1781 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1782 	list_del_init(&bo_va->base.vm_status);
1783 	if (clear)
1784 		list_add(&bo_va->base.vm_status, &vm->cleared);
1785 	spin_unlock(&vm->status_lock);
1786 
1787 	if (vm->use_cpu_for_update) {
1788 		/* Flush HDP */
1789 		mb();
1790 		amdgpu_gart_flush_gpu_tlb(adev, 0);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * amdgpu_vm_update_prt_state - update the global PRT state
1798  */
1799 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1800 {
1801 	unsigned long flags;
1802 	bool enable;
1803 
1804 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1805 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1806 	adev->gart.gart_funcs->set_prt(adev, enable);
1807 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1808 }
1809 
1810 /**
1811  * amdgpu_vm_prt_get - add a PRT user
1812  */
1813 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1814 {
1815 	if (!adev->gart.gart_funcs->set_prt)
1816 		return;
1817 
1818 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1819 		amdgpu_vm_update_prt_state(adev);
1820 }
1821 
1822 /**
1823  * amdgpu_vm_prt_put - drop a PRT user
1824  */
1825 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1826 {
1827 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1828 		amdgpu_vm_update_prt_state(adev);
1829 }
1830 
1831 /**
1832  * amdgpu_vm_prt_cb - callback for updating the PRT status
1833  */
1834 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1835 {
1836 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1837 
1838 	amdgpu_vm_prt_put(cb->adev);
1839 	kfree(cb);
1840 }
1841 
1842 /**
1843  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1844  */
1845 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1846 				 struct dma_fence *fence)
1847 {
1848 	struct amdgpu_prt_cb *cb;
1849 
1850 	if (!adev->gart.gart_funcs->set_prt)
1851 		return;
1852 
1853 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1854 	if (!cb) {
1855 		/* Last resort when we are OOM */
1856 		if (fence)
1857 			dma_fence_wait(fence, false);
1858 
1859 		amdgpu_vm_prt_put(adev);
1860 	} else {
1861 		cb->adev = adev;
1862 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1863 						     amdgpu_vm_prt_cb))
1864 			amdgpu_vm_prt_cb(fence, &cb->cb);
1865 	}
1866 }
1867 
1868 /**
1869  * amdgpu_vm_free_mapping - free a mapping
1870  *
1871  * @adev: amdgpu_device pointer
1872  * @vm: requested vm
1873  * @mapping: mapping to be freed
1874  * @fence: fence of the unmap operation
1875  *
1876  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1877  */
1878 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1879 				   struct amdgpu_vm *vm,
1880 				   struct amdgpu_bo_va_mapping *mapping,
1881 				   struct dma_fence *fence)
1882 {
1883 	if (mapping->flags & AMDGPU_PTE_PRT)
1884 		amdgpu_vm_add_prt_cb(adev, fence);
1885 	kfree(mapping);
1886 }
1887 
1888 /**
1889  * amdgpu_vm_prt_fini - finish all prt mappings
1890  *
1891  * @adev: amdgpu_device pointer
1892  * @vm: requested vm
1893  *
1894  * Register a cleanup callback to disable PRT support after VM dies.
1895  */
1896 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1897 {
1898 	struct reservation_object *resv = vm->root.bo->tbo.resv;
1899 	struct dma_fence *excl, **shared;
1900 	unsigned i, shared_count;
1901 	int r;
1902 
1903 	r = reservation_object_get_fences_rcu(resv, &excl,
1904 					      &shared_count, &shared);
1905 	if (r) {
1906 		/* Not enough memory to grab the fence list, as last resort
1907 		 * block for all the fences to complete.
1908 		 */
1909 		reservation_object_wait_timeout_rcu(resv, true, false,
1910 						    MAX_SCHEDULE_TIMEOUT);
1911 		return;
1912 	}
1913 
1914 	/* Add a callback for each fence in the reservation object */
1915 	amdgpu_vm_prt_get(adev);
1916 	amdgpu_vm_add_prt_cb(adev, excl);
1917 
1918 	for (i = 0; i < shared_count; ++i) {
1919 		amdgpu_vm_prt_get(adev);
1920 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1921 	}
1922 
1923 	kfree(shared);
1924 }
1925 
1926 /**
1927  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1928  *
1929  * @adev: amdgpu_device pointer
1930  * @vm: requested vm
1931  * @fence: optional resulting fence (unchanged if no work needed to be done
1932  * or if an error occurred)
1933  *
1934  * Make sure all freed BOs are cleared in the PT.
1935  * Returns 0 for success.
1936  *
1937  * PTs have to be reserved and mutex must be locked!
1938  */
1939 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1940 			  struct amdgpu_vm *vm,
1941 			  struct dma_fence **fence)
1942 {
1943 	struct amdgpu_bo_va_mapping *mapping;
1944 	struct dma_fence *f = NULL;
1945 	int r;
1946 	uint64_t init_pte_value = 0;
1947 
1948 	while (!list_empty(&vm->freed)) {
1949 		mapping = list_first_entry(&vm->freed,
1950 			struct amdgpu_bo_va_mapping, list);
1951 		list_del(&mapping->list);
1952 
1953 		if (vm->pte_support_ats)
1954 			init_pte_value = AMDGPU_PTE_SYSTEM;
1955 
1956 		r = amdgpu_vm_bo_update_mapping(adev, NULL, 0, NULL, vm,
1957 						mapping->start, mapping->last,
1958 						init_pte_value, 0, &f);
1959 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1960 		if (r) {
1961 			dma_fence_put(f);
1962 			return r;
1963 		}
1964 	}
1965 
1966 	if (fence && f) {
1967 		dma_fence_put(*fence);
1968 		*fence = f;
1969 	} else {
1970 		dma_fence_put(f);
1971 	}
1972 
1973 	return 0;
1974 
1975 }
1976 
1977 /**
1978  * amdgpu_vm_clear_moved - clear moved BOs in the PT
1979  *
1980  * @adev: amdgpu_device pointer
1981  * @vm: requested vm
1982  *
1983  * Make sure all moved BOs are cleared in the PT.
1984  * Returns 0 for success.
1985  *
1986  * PTs have to be reserved and mutex must be locked!
1987  */
1988 int amdgpu_vm_clear_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1989 			    struct amdgpu_sync *sync)
1990 {
1991 	struct amdgpu_bo_va *bo_va = NULL;
1992 	int r = 0;
1993 
1994 	spin_lock(&vm->status_lock);
1995 	while (!list_empty(&vm->moved)) {
1996 		bo_va = list_first_entry(&vm->moved,
1997 			struct amdgpu_bo_va, base.vm_status);
1998 		spin_unlock(&vm->status_lock);
1999 
2000 		r = amdgpu_vm_bo_update(adev, bo_va, true);
2001 		if (r)
2002 			return r;
2003 
2004 		spin_lock(&vm->status_lock);
2005 	}
2006 	spin_unlock(&vm->status_lock);
2007 
2008 	if (bo_va)
2009 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
2010 
2011 	return r;
2012 }
2013 
2014 /**
2015  * amdgpu_vm_bo_add - add a bo to a specific vm
2016  *
2017  * @adev: amdgpu_device pointer
2018  * @vm: requested vm
2019  * @bo: amdgpu buffer object
2020  *
2021  * Add @bo into the requested vm.
2022  * Add @bo to the list of bos associated with the vm
2023  * Returns newly added bo_va or NULL for failure
2024  *
2025  * Object has to be reserved!
2026  */
2027 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2028 				      struct amdgpu_vm *vm,
2029 				      struct amdgpu_bo *bo)
2030 {
2031 	struct amdgpu_bo_va *bo_va;
2032 
2033 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2034 	if (bo_va == NULL) {
2035 		return NULL;
2036 	}
2037 	bo_va->base.vm = vm;
2038 	bo_va->base.bo = bo;
2039 	INIT_LIST_HEAD(&bo_va->base.bo_list);
2040 	INIT_LIST_HEAD(&bo_va->base.vm_status);
2041 
2042 	bo_va->ref_count = 1;
2043 	INIT_LIST_HEAD(&bo_va->valids);
2044 	INIT_LIST_HEAD(&bo_va->invalids);
2045 
2046 	if (bo)
2047 		list_add_tail(&bo_va->base.bo_list, &bo->va);
2048 
2049 	return bo_va;
2050 }
2051 
2052 /**
2053  * amdgpu_vm_bo_map - map bo inside a vm
2054  *
2055  * @adev: amdgpu_device pointer
2056  * @bo_va: bo_va to store the address
2057  * @saddr: where to map the BO
2058  * @offset: requested offset in the BO
2059  * @flags: attributes of pages (read/write/valid/etc.)
2060  *
2061  * Add a mapping of the BO at the specefied addr into the VM.
2062  * Returns 0 for success, error for failure.
2063  *
2064  * Object has to be reserved and unreserved outside!
2065  */
2066 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2067 		     struct amdgpu_bo_va *bo_va,
2068 		     uint64_t saddr, uint64_t offset,
2069 		     uint64_t size, uint64_t flags)
2070 {
2071 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2072 	struct amdgpu_bo *bo = bo_va->base.bo;
2073 	struct amdgpu_vm *vm = bo_va->base.vm;
2074 	uint64_t eaddr;
2075 
2076 	/* validate the parameters */
2077 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2078 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2079 		return -EINVAL;
2080 
2081 	/* make sure object fit at this offset */
2082 	eaddr = saddr + size - 1;
2083 	if (saddr >= eaddr ||
2084 	    (bo && offset + size > amdgpu_bo_size(bo)))
2085 		return -EINVAL;
2086 
2087 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2088 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2089 
2090 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2091 	if (tmp) {
2092 		/* bo and tmp overlap, invalid addr */
2093 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2094 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2095 			tmp->start, tmp->last + 1);
2096 		return -EINVAL;
2097 	}
2098 
2099 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2100 	if (!mapping)
2101 		return -ENOMEM;
2102 
2103 	INIT_LIST_HEAD(&mapping->list);
2104 	mapping->start = saddr;
2105 	mapping->last = eaddr;
2106 	mapping->offset = offset;
2107 	mapping->flags = flags;
2108 
2109 	list_add(&mapping->list, &bo_va->invalids);
2110 	amdgpu_vm_it_insert(mapping, &vm->va);
2111 
2112 	if (flags & AMDGPU_PTE_PRT)
2113 		amdgpu_vm_prt_get(adev);
2114 
2115 	return 0;
2116 }
2117 
2118 /**
2119  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2120  *
2121  * @adev: amdgpu_device pointer
2122  * @bo_va: bo_va to store the address
2123  * @saddr: where to map the BO
2124  * @offset: requested offset in the BO
2125  * @flags: attributes of pages (read/write/valid/etc.)
2126  *
2127  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2128  * mappings as we do so.
2129  * Returns 0 for success, error for failure.
2130  *
2131  * Object has to be reserved and unreserved outside!
2132  */
2133 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2134 			     struct amdgpu_bo_va *bo_va,
2135 			     uint64_t saddr, uint64_t offset,
2136 			     uint64_t size, uint64_t flags)
2137 {
2138 	struct amdgpu_bo_va_mapping *mapping;
2139 	struct amdgpu_bo *bo = bo_va->base.bo;
2140 	struct amdgpu_vm *vm = bo_va->base.vm;
2141 	uint64_t eaddr;
2142 	int r;
2143 
2144 	/* validate the parameters */
2145 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2146 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2147 		return -EINVAL;
2148 
2149 	/* make sure object fit at this offset */
2150 	eaddr = saddr + size - 1;
2151 	if (saddr >= eaddr ||
2152 	    (bo && offset + size > amdgpu_bo_size(bo)))
2153 		return -EINVAL;
2154 
2155 	/* Allocate all the needed memory */
2156 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2157 	if (!mapping)
2158 		return -ENOMEM;
2159 
2160 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2161 	if (r) {
2162 		kfree(mapping);
2163 		return r;
2164 	}
2165 
2166 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2167 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2168 
2169 	mapping->start = saddr;
2170 	mapping->last = eaddr;
2171 	mapping->offset = offset;
2172 	mapping->flags = flags;
2173 
2174 	list_add(&mapping->list, &bo_va->invalids);
2175 	amdgpu_vm_it_insert(mapping, &vm->va);
2176 
2177 	if (flags & AMDGPU_PTE_PRT)
2178 		amdgpu_vm_prt_get(adev);
2179 
2180 	return 0;
2181 }
2182 
2183 /**
2184  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2185  *
2186  * @adev: amdgpu_device pointer
2187  * @bo_va: bo_va to remove the address from
2188  * @saddr: where to the BO is mapped
2189  *
2190  * Remove a mapping of the BO at the specefied addr from the VM.
2191  * Returns 0 for success, error for failure.
2192  *
2193  * Object has to be reserved and unreserved outside!
2194  */
2195 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2196 		       struct amdgpu_bo_va *bo_va,
2197 		       uint64_t saddr)
2198 {
2199 	struct amdgpu_bo_va_mapping *mapping;
2200 	struct amdgpu_vm *vm = bo_va->base.vm;
2201 	bool valid = true;
2202 
2203 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2204 
2205 	list_for_each_entry(mapping, &bo_va->valids, list) {
2206 		if (mapping->start == saddr)
2207 			break;
2208 	}
2209 
2210 	if (&mapping->list == &bo_va->valids) {
2211 		valid = false;
2212 
2213 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2214 			if (mapping->start == saddr)
2215 				break;
2216 		}
2217 
2218 		if (&mapping->list == &bo_va->invalids)
2219 			return -ENOENT;
2220 	}
2221 
2222 	list_del(&mapping->list);
2223 	amdgpu_vm_it_remove(mapping, &vm->va);
2224 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2225 
2226 	if (valid)
2227 		list_add(&mapping->list, &vm->freed);
2228 	else
2229 		amdgpu_vm_free_mapping(adev, vm, mapping,
2230 				       bo_va->last_pt_update);
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2237  *
2238  * @adev: amdgpu_device pointer
2239  * @vm: VM structure to use
2240  * @saddr: start of the range
2241  * @size: size of the range
2242  *
2243  * Remove all mappings in a range, split them as appropriate.
2244  * Returns 0 for success, error for failure.
2245  */
2246 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2247 				struct amdgpu_vm *vm,
2248 				uint64_t saddr, uint64_t size)
2249 {
2250 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2251 	LIST_HEAD(removed);
2252 	uint64_t eaddr;
2253 
2254 	eaddr = saddr + size - 1;
2255 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2256 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2257 
2258 	/* Allocate all the needed memory */
2259 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2260 	if (!before)
2261 		return -ENOMEM;
2262 	INIT_LIST_HEAD(&before->list);
2263 
2264 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2265 	if (!after) {
2266 		kfree(before);
2267 		return -ENOMEM;
2268 	}
2269 	INIT_LIST_HEAD(&after->list);
2270 
2271 	/* Now gather all removed mappings */
2272 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2273 	while (tmp) {
2274 		/* Remember mapping split at the start */
2275 		if (tmp->start < saddr) {
2276 			before->start = tmp->start;
2277 			before->last = saddr - 1;
2278 			before->offset = tmp->offset;
2279 			before->flags = tmp->flags;
2280 			list_add(&before->list, &tmp->list);
2281 		}
2282 
2283 		/* Remember mapping split at the end */
2284 		if (tmp->last > eaddr) {
2285 			after->start = eaddr + 1;
2286 			after->last = tmp->last;
2287 			after->offset = tmp->offset;
2288 			after->offset += after->start - tmp->start;
2289 			after->flags = tmp->flags;
2290 			list_add(&after->list, &tmp->list);
2291 		}
2292 
2293 		list_del(&tmp->list);
2294 		list_add(&tmp->list, &removed);
2295 
2296 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2297 	}
2298 
2299 	/* And free them up */
2300 	list_for_each_entry_safe(tmp, next, &removed, list) {
2301 		amdgpu_vm_it_remove(tmp, &vm->va);
2302 		list_del(&tmp->list);
2303 
2304 		if (tmp->start < saddr)
2305 		    tmp->start = saddr;
2306 		if (tmp->last > eaddr)
2307 		    tmp->last = eaddr;
2308 
2309 		list_add(&tmp->list, &vm->freed);
2310 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2311 	}
2312 
2313 	/* Insert partial mapping before the range */
2314 	if (!list_empty(&before->list)) {
2315 		amdgpu_vm_it_insert(before, &vm->va);
2316 		if (before->flags & AMDGPU_PTE_PRT)
2317 			amdgpu_vm_prt_get(adev);
2318 	} else {
2319 		kfree(before);
2320 	}
2321 
2322 	/* Insert partial mapping after the range */
2323 	if (!list_empty(&after->list)) {
2324 		amdgpu_vm_it_insert(after, &vm->va);
2325 		if (after->flags & AMDGPU_PTE_PRT)
2326 			amdgpu_vm_prt_get(adev);
2327 	} else {
2328 		kfree(after);
2329 	}
2330 
2331 	return 0;
2332 }
2333 
2334 /**
2335  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2336  *
2337  * @adev: amdgpu_device pointer
2338  * @bo_va: requested bo_va
2339  *
2340  * Remove @bo_va->bo from the requested vm.
2341  *
2342  * Object have to be reserved!
2343  */
2344 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2345 		      struct amdgpu_bo_va *bo_va)
2346 {
2347 	struct amdgpu_bo_va_mapping *mapping, *next;
2348 	struct amdgpu_vm *vm = bo_va->base.vm;
2349 
2350 	list_del(&bo_va->base.bo_list);
2351 
2352 	spin_lock(&vm->status_lock);
2353 	list_del(&bo_va->base.vm_status);
2354 	spin_unlock(&vm->status_lock);
2355 
2356 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2357 		list_del(&mapping->list);
2358 		amdgpu_vm_it_remove(mapping, &vm->va);
2359 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2360 		list_add(&mapping->list, &vm->freed);
2361 	}
2362 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2363 		list_del(&mapping->list);
2364 		amdgpu_vm_it_remove(mapping, &vm->va);
2365 		amdgpu_vm_free_mapping(adev, vm, mapping,
2366 				       bo_va->last_pt_update);
2367 	}
2368 
2369 	dma_fence_put(bo_va->last_pt_update);
2370 	kfree(bo_va);
2371 }
2372 
2373 /**
2374  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2375  *
2376  * @adev: amdgpu_device pointer
2377  * @vm: requested vm
2378  * @bo: amdgpu buffer object
2379  *
2380  * Mark @bo as invalid.
2381  */
2382 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2383 			     struct amdgpu_bo *bo)
2384 {
2385 	struct amdgpu_vm_bo_base *bo_base;
2386 
2387 	list_for_each_entry(bo_base, &bo->va, bo_list) {
2388 		spin_lock(&bo_base->vm->status_lock);
2389 		if (list_empty(&bo_base->vm_status))
2390 			list_add(&bo_base->vm_status,
2391 				 &bo_base->vm->moved);
2392 		spin_unlock(&bo_base->vm->status_lock);
2393 	}
2394 }
2395 
2396 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2397 {
2398 	/* Total bits covered by PD + PTs */
2399 	unsigned bits = ilog2(vm_size) + 18;
2400 
2401 	/* Make sure the PD is 4K in size up to 8GB address space.
2402 	   Above that split equal between PD and PTs */
2403 	if (vm_size <= 8)
2404 		return (bits - 9);
2405 	else
2406 		return ((bits + 3) / 2);
2407 }
2408 
2409 /**
2410  * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2411  *
2412  * @adev: amdgpu_device pointer
2413  * @fragment_size_default: the default fragment size if it's set auto
2414  */
2415 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
2416 {
2417 	if (amdgpu_vm_fragment_size == -1)
2418 		adev->vm_manager.fragment_size = fragment_size_default;
2419 	else
2420 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2421 }
2422 
2423 /**
2424  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2425  *
2426  * @adev: amdgpu_device pointer
2427  * @vm_size: the default vm size if it's set auto
2428  */
2429 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
2430 {
2431 	/* adjust vm size firstly */
2432 	if (amdgpu_vm_size == -1)
2433 		adev->vm_manager.vm_size = vm_size;
2434 	else
2435 		adev->vm_manager.vm_size = amdgpu_vm_size;
2436 
2437 	/* block size depends on vm size */
2438 	if (amdgpu_vm_block_size == -1)
2439 		adev->vm_manager.block_size =
2440 			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2441 	else
2442 		adev->vm_manager.block_size = amdgpu_vm_block_size;
2443 
2444 	amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2445 
2446 	DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2447 		adev->vm_manager.vm_size, adev->vm_manager.block_size,
2448 		adev->vm_manager.fragment_size);
2449 }
2450 
2451 /**
2452  * amdgpu_vm_init - initialize a vm instance
2453  *
2454  * @adev: amdgpu_device pointer
2455  * @vm: requested vm
2456  * @vm_context: Indicates if it GFX or Compute context
2457  *
2458  * Init @vm fields.
2459  */
2460 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2461 		   int vm_context)
2462 {
2463 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2464 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2465 	unsigned ring_instance;
2466 	struct amdgpu_ring *ring;
2467 	struct amd_sched_rq *rq;
2468 	int r, i;
2469 	u64 flags;
2470 	uint64_t init_pde_value = 0;
2471 
2472 	vm->va = RB_ROOT_CACHED;
2473 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2474 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2475 		vm->reserved_vmid[i] = NULL;
2476 	spin_lock_init(&vm->status_lock);
2477 	INIT_LIST_HEAD(&vm->moved);
2478 	INIT_LIST_HEAD(&vm->cleared);
2479 	INIT_LIST_HEAD(&vm->freed);
2480 
2481 	/* create scheduler entity for page table updates */
2482 
2483 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2484 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2485 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2486 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2487 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
2488 				  rq, amdgpu_sched_jobs);
2489 	if (r)
2490 		return r;
2491 
2492 	vm->pte_support_ats = false;
2493 
2494 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2495 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2496 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2497 
2498 		if (adev->asic_type == CHIP_RAVEN) {
2499 			vm->pte_support_ats = true;
2500 			init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
2501 		}
2502 	} else
2503 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2504 						AMDGPU_VM_USE_CPU_FOR_GFX);
2505 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2506 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2507 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2508 		  "CPU update of VM recommended only for large BAR system\n");
2509 	vm->last_dir_update = NULL;
2510 
2511 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2512 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
2513 	if (vm->use_cpu_for_update)
2514 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2515 	else
2516 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2517 				AMDGPU_GEM_CREATE_SHADOW);
2518 
2519 	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2520 			     AMDGPU_GEM_DOMAIN_VRAM,
2521 			     flags,
2522 			     NULL, NULL, init_pde_value, &vm->root.bo);
2523 	if (r)
2524 		goto error_free_sched_entity;
2525 
2526 	r = amdgpu_bo_reserve(vm->root.bo, false);
2527 	if (r)
2528 		goto error_free_root;
2529 
2530 	vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
2531 
2532 	if (vm->use_cpu_for_update) {
2533 		r = amdgpu_bo_kmap(vm->root.bo, NULL);
2534 		if (r)
2535 			goto error_free_root;
2536 	}
2537 
2538 	amdgpu_bo_unreserve(vm->root.bo);
2539 
2540 	return 0;
2541 
2542 error_free_root:
2543 	amdgpu_bo_unref(&vm->root.bo->shadow);
2544 	amdgpu_bo_unref(&vm->root.bo);
2545 	vm->root.bo = NULL;
2546 
2547 error_free_sched_entity:
2548 	amd_sched_entity_fini(&ring->sched, &vm->entity);
2549 
2550 	return r;
2551 }
2552 
2553 /**
2554  * amdgpu_vm_free_levels - free PD/PT levels
2555  *
2556  * @level: PD/PT starting level to free
2557  *
2558  * Free the page directory or page table level and all sub levels.
2559  */
2560 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2561 {
2562 	unsigned i;
2563 
2564 	if (level->bo) {
2565 		amdgpu_bo_unref(&level->bo->shadow);
2566 		amdgpu_bo_unref(&level->bo);
2567 	}
2568 
2569 	if (level->entries)
2570 		for (i = 0; i <= level->last_entry_used; i++)
2571 			amdgpu_vm_free_levels(&level->entries[i]);
2572 
2573 	kvfree(level->entries);
2574 }
2575 
2576 /**
2577  * amdgpu_vm_fini - tear down a vm instance
2578  *
2579  * @adev: amdgpu_device pointer
2580  * @vm: requested vm
2581  *
2582  * Tear down @vm.
2583  * Unbind the VM and remove all bos from the vm bo list
2584  */
2585 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2586 {
2587 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2588 	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2589 	int i;
2590 
2591 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2592 
2593 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2594 		dev_err(adev->dev, "still active bo inside vm\n");
2595 	}
2596 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2597 					     &vm->va.rb_root, rb) {
2598 		list_del(&mapping->list);
2599 		amdgpu_vm_it_remove(mapping, &vm->va);
2600 		kfree(mapping);
2601 	}
2602 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2603 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2604 			amdgpu_vm_prt_fini(adev, vm);
2605 			prt_fini_needed = false;
2606 		}
2607 
2608 		list_del(&mapping->list);
2609 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2610 	}
2611 
2612 	amdgpu_vm_free_levels(&vm->root);
2613 	dma_fence_put(vm->last_dir_update);
2614 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2615 		amdgpu_vm_free_reserved_vmid(adev, vm, i);
2616 }
2617 
2618 /**
2619  * amdgpu_vm_manager_init - init the VM manager
2620  *
2621  * @adev: amdgpu_device pointer
2622  *
2623  * Initialize the VM manager structures
2624  */
2625 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2626 {
2627 	unsigned i, j;
2628 
2629 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2630 		struct amdgpu_vm_id_manager *id_mgr =
2631 			&adev->vm_manager.id_mgr[i];
2632 
2633 		mutex_init(&id_mgr->lock);
2634 		INIT_LIST_HEAD(&id_mgr->ids_lru);
2635 		atomic_set(&id_mgr->reserved_vmid_num, 0);
2636 
2637 		/* skip over VMID 0, since it is the system VM */
2638 		for (j = 1; j < id_mgr->num_ids; ++j) {
2639 			amdgpu_vm_reset_id(adev, i, j);
2640 			amdgpu_sync_create(&id_mgr->ids[i].active);
2641 			list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2642 		}
2643 	}
2644 
2645 	adev->vm_manager.fence_context =
2646 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2647 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2648 		adev->vm_manager.seqno[i] = 0;
2649 
2650 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2651 	atomic64_set(&adev->vm_manager.client_counter, 0);
2652 	spin_lock_init(&adev->vm_manager.prt_lock);
2653 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2654 
2655 	/* If not overridden by the user, by default, only in large BAR systems
2656 	 * Compute VM tables will be updated by CPU
2657 	 */
2658 #ifdef CONFIG_X86_64
2659 	if (amdgpu_vm_update_mode == -1) {
2660 		if (amdgpu_vm_is_large_bar(adev))
2661 			adev->vm_manager.vm_update_mode =
2662 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2663 		else
2664 			adev->vm_manager.vm_update_mode = 0;
2665 	} else
2666 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2667 #else
2668 	adev->vm_manager.vm_update_mode = 0;
2669 #endif
2670 
2671 }
2672 
2673 /**
2674  * amdgpu_vm_manager_fini - cleanup VM manager
2675  *
2676  * @adev: amdgpu_device pointer
2677  *
2678  * Cleanup the VM manager and free resources.
2679  */
2680 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2681 {
2682 	unsigned i, j;
2683 
2684 	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2685 		struct amdgpu_vm_id_manager *id_mgr =
2686 			&adev->vm_manager.id_mgr[i];
2687 
2688 		mutex_destroy(&id_mgr->lock);
2689 		for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2690 			struct amdgpu_vm_id *id = &id_mgr->ids[j];
2691 
2692 			amdgpu_sync_free(&id->active);
2693 			dma_fence_put(id->flushed_updates);
2694 			dma_fence_put(id->last_flush);
2695 		}
2696 	}
2697 }
2698 
2699 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2700 {
2701 	union drm_amdgpu_vm *args = data;
2702 	struct amdgpu_device *adev = dev->dev_private;
2703 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2704 	int r;
2705 
2706 	switch (args->in.op) {
2707 	case AMDGPU_VM_OP_RESERVE_VMID:
2708 		/* current, we only have requirement to reserve vmid from gfxhub */
2709 		r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2710 						  AMDGPU_GFXHUB);
2711 		if (r)
2712 			return r;
2713 		break;
2714 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2715 		amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2716 		break;
2717 	default:
2718 		return -EINVAL;
2719 	}
2720 
2721 	return 0;
2722 }
2723