1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 #include "amdgpu_xgmi.h" 38 39 /** 40 * DOC: GPUVM 41 * 42 * GPUVM is similar to the legacy gart on older asics, however 43 * rather than there being a single global gart table 44 * for the entire GPU, there are multiple VM page tables active 45 * at any given time. The VM page tables can contain a mix 46 * vram pages and system memory pages and system memory pages 47 * can be mapped as snooped (cached system pages) or unsnooped 48 * (uncached system pages). 49 * Each VM has an ID associated with it and there is a page table 50 * associated with each VMID. When execting a command buffer, 51 * the kernel tells the the ring what VMID to use for that command 52 * buffer. VMIDs are allocated dynamically as commands are submitted. 53 * The userspace drivers maintain their own address space and the kernel 54 * sets up their pages tables accordingly when they submit their 55 * command buffers and a VMID is assigned. 56 * Cayman/Trinity support up to 8 active VMs at any given time; 57 * SI supports 16. 58 */ 59 60 #define START(node) ((node)->start) 61 #define LAST(node) ((node)->last) 62 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 66 #undef START 67 #undef LAST 68 69 /** 70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 71 */ 72 struct amdgpu_prt_cb { 73 74 /** 75 * @adev: amdgpu device 76 */ 77 struct amdgpu_device *adev; 78 79 /** 80 * @cb: callback 81 */ 82 struct dma_fence_cb cb; 83 }; 84 85 /** 86 * amdgpu_vm_level_shift - return the addr shift for each level 87 * 88 * @adev: amdgpu_device pointer 89 * @level: VMPT level 90 * 91 * Returns: 92 * The number of bits the pfn needs to be right shifted for a level. 93 */ 94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 95 unsigned level) 96 { 97 unsigned shift = 0xff; 98 99 switch (level) { 100 case AMDGPU_VM_PDB2: 101 case AMDGPU_VM_PDB1: 102 case AMDGPU_VM_PDB0: 103 shift = 9 * (AMDGPU_VM_PDB0 - level) + 104 adev->vm_manager.block_size; 105 break; 106 case AMDGPU_VM_PTB: 107 shift = 0; 108 break; 109 default: 110 dev_err(adev->dev, "the level%d isn't supported.\n", level); 111 } 112 113 return shift; 114 } 115 116 /** 117 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 118 * 119 * @adev: amdgpu_device pointer 120 * @level: VMPT level 121 * 122 * Returns: 123 * The number of entries in a page directory or page table. 124 */ 125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 126 unsigned level) 127 { 128 unsigned shift = amdgpu_vm_level_shift(adev, 129 adev->vm_manager.root_level); 130 131 if (level == adev->vm_manager.root_level) 132 /* For the root directory */ 133 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 134 else if (level != AMDGPU_VM_PTB) 135 /* Everything in between */ 136 return 512; 137 else 138 /* For the page tables on the leaves */ 139 return AMDGPU_VM_PTE_COUNT(adev); 140 } 141 142 /** 143 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 144 * 145 * @adev: amdgpu_device pointer 146 * 147 * Returns: 148 * The number of entries in the root page directory which needs the ATS setting. 149 */ 150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 151 { 152 unsigned shift; 153 154 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 155 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 156 } 157 158 /** 159 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 160 * 161 * @adev: amdgpu_device pointer 162 * @level: VMPT level 163 * 164 * Returns: 165 * The mask to extract the entry number of a PD/PT from an address. 166 */ 167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 168 unsigned int level) 169 { 170 if (level <= adev->vm_manager.root_level) 171 return 0xffffffff; 172 else if (level != AMDGPU_VM_PTB) 173 return 0x1ff; 174 else 175 return AMDGPU_VM_PTE_COUNT(adev) - 1; 176 } 177 178 /** 179 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 180 * 181 * @adev: amdgpu_device pointer 182 * @level: VMPT level 183 * 184 * Returns: 185 * The size of the BO for a page directory or page table in bytes. 186 */ 187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 188 { 189 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 190 } 191 192 /** 193 * amdgpu_vm_bo_evicted - vm_bo is evicted 194 * 195 * @vm_bo: vm_bo which is evicted 196 * 197 * State for PDs/PTs and per VM BOs which are not at the location they should 198 * be. 199 */ 200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 201 { 202 struct amdgpu_vm *vm = vm_bo->vm; 203 struct amdgpu_bo *bo = vm_bo->bo; 204 205 vm_bo->moved = true; 206 if (bo->tbo.type == ttm_bo_type_kernel) 207 list_move(&vm_bo->vm_status, &vm->evicted); 208 else 209 list_move_tail(&vm_bo->vm_status, &vm->evicted); 210 } 211 212 /** 213 * amdgpu_vm_bo_relocated - vm_bo is reloacted 214 * 215 * @vm_bo: vm_bo which is relocated 216 * 217 * State for PDs/PTs which needs to update their parent PD. 218 */ 219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 220 { 221 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 222 } 223 224 /** 225 * amdgpu_vm_bo_moved - vm_bo is moved 226 * 227 * @vm_bo: vm_bo which is moved 228 * 229 * State for per VM BOs which are moved, but that change is not yet reflected 230 * in the page tables. 231 */ 232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 233 { 234 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 235 } 236 237 /** 238 * amdgpu_vm_bo_idle - vm_bo is idle 239 * 240 * @vm_bo: vm_bo which is now idle 241 * 242 * State for PDs/PTs and per VM BOs which have gone through the state machine 243 * and are now idle. 244 */ 245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 246 { 247 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 248 vm_bo->moved = false; 249 } 250 251 /** 252 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 253 * 254 * @vm_bo: vm_bo which is now invalidated 255 * 256 * State for normal BOs which are invalidated and that change not yet reflected 257 * in the PTs. 258 */ 259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 spin_lock(&vm_bo->vm->invalidated_lock); 262 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 263 spin_unlock(&vm_bo->vm->invalidated_lock); 264 } 265 266 /** 267 * amdgpu_vm_bo_done - vm_bo is done 268 * 269 * @vm_bo: vm_bo which is now done 270 * 271 * State for normal BOs which are invalidated and that change has been updated 272 * in the PTs. 273 */ 274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 275 { 276 spin_lock(&vm_bo->vm->invalidated_lock); 277 list_del_init(&vm_bo->vm_status); 278 spin_unlock(&vm_bo->vm->invalidated_lock); 279 } 280 281 /** 282 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 283 * 284 * @base: base structure for tracking BO usage in a VM 285 * @vm: vm to which bo is to be added 286 * @bo: amdgpu buffer object 287 * 288 * Initialize a bo_va_base structure and add it to the appropriate lists 289 * 290 */ 291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 292 struct amdgpu_vm *vm, 293 struct amdgpu_bo *bo) 294 { 295 base->vm = vm; 296 base->bo = bo; 297 base->next = NULL; 298 INIT_LIST_HEAD(&base->vm_status); 299 300 if (!bo) 301 return; 302 base->next = bo->vm_bo; 303 bo->vm_bo = base; 304 305 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 306 return; 307 308 vm->bulk_moveable = false; 309 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 310 amdgpu_vm_bo_relocated(base); 311 else 312 amdgpu_vm_bo_idle(base); 313 314 if (bo->preferred_domains & 315 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 316 return; 317 318 /* 319 * we checked all the prerequisites, but it looks like this per vm bo 320 * is currently evicted. add the bo to the evicted list to make sure it 321 * is validated on next vm use to avoid fault. 322 * */ 323 amdgpu_vm_bo_evicted(base); 324 } 325 326 /** 327 * amdgpu_vm_pt_parent - get the parent page directory 328 * 329 * @pt: child page table 330 * 331 * Helper to get the parent entry for the child page table. NULL if we are at 332 * the root page directory. 333 */ 334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 335 { 336 struct amdgpu_bo *parent = pt->base.bo->parent; 337 338 if (!parent) 339 return NULL; 340 341 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 342 } 343 344 /** 345 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 346 */ 347 struct amdgpu_vm_pt_cursor { 348 uint64_t pfn; 349 struct amdgpu_vm_pt *parent; 350 struct amdgpu_vm_pt *entry; 351 unsigned level; 352 }; 353 354 /** 355 * amdgpu_vm_pt_start - start PD/PT walk 356 * 357 * @adev: amdgpu_device pointer 358 * @vm: amdgpu_vm structure 359 * @start: start address of the walk 360 * @cursor: state to initialize 361 * 362 * Initialize a amdgpu_vm_pt_cursor to start a walk. 363 */ 364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 365 struct amdgpu_vm *vm, uint64_t start, 366 struct amdgpu_vm_pt_cursor *cursor) 367 { 368 cursor->pfn = start; 369 cursor->parent = NULL; 370 cursor->entry = &vm->root; 371 cursor->level = adev->vm_manager.root_level; 372 } 373 374 /** 375 * amdgpu_vm_pt_descendant - go to child node 376 * 377 * @adev: amdgpu_device pointer 378 * @cursor: current state 379 * 380 * Walk to the child node of the current node. 381 * Returns: 382 * True if the walk was possible, false otherwise. 383 */ 384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 385 struct amdgpu_vm_pt_cursor *cursor) 386 { 387 unsigned mask, shift, idx; 388 389 if (!cursor->entry->entries) 390 return false; 391 392 BUG_ON(!cursor->entry->base.bo); 393 mask = amdgpu_vm_entries_mask(adev, cursor->level); 394 shift = amdgpu_vm_level_shift(adev, cursor->level); 395 396 ++cursor->level; 397 idx = (cursor->pfn >> shift) & mask; 398 cursor->parent = cursor->entry; 399 cursor->entry = &cursor->entry->entries[idx]; 400 return true; 401 } 402 403 /** 404 * amdgpu_vm_pt_sibling - go to sibling node 405 * 406 * @adev: amdgpu_device pointer 407 * @cursor: current state 408 * 409 * Walk to the sibling node of the current node. 410 * Returns: 411 * True if the walk was possible, false otherwise. 412 */ 413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 414 struct amdgpu_vm_pt_cursor *cursor) 415 { 416 unsigned shift, num_entries; 417 418 /* Root doesn't have a sibling */ 419 if (!cursor->parent) 420 return false; 421 422 /* Go to our parents and see if we got a sibling */ 423 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 424 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 425 426 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 427 return false; 428 429 cursor->pfn += 1ULL << shift; 430 cursor->pfn &= ~((1ULL << shift) - 1); 431 ++cursor->entry; 432 return true; 433 } 434 435 /** 436 * amdgpu_vm_pt_ancestor - go to parent node 437 * 438 * @cursor: current state 439 * 440 * Walk to the parent node of the current node. 441 * Returns: 442 * True if the walk was possible, false otherwise. 443 */ 444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 445 { 446 if (!cursor->parent) 447 return false; 448 449 --cursor->level; 450 cursor->entry = cursor->parent; 451 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 452 return true; 453 } 454 455 /** 456 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 457 * 458 * @adev: amdgpu_device pointer 459 * @cursor: current state 460 * 461 * Walk the PD/PT tree to the next node. 462 */ 463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 464 struct amdgpu_vm_pt_cursor *cursor) 465 { 466 /* First try a newborn child */ 467 if (amdgpu_vm_pt_descendant(adev, cursor)) 468 return; 469 470 /* If that didn't worked try to find a sibling */ 471 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 472 /* No sibling, go to our parents and grandparents */ 473 if (!amdgpu_vm_pt_ancestor(cursor)) { 474 cursor->pfn = ~0ll; 475 return; 476 } 477 } 478 } 479 480 /** 481 * amdgpu_vm_pt_first_dfs - start a deep first search 482 * 483 * @adev: amdgpu_device structure 484 * @vm: amdgpu_vm structure 485 * @cursor: state to initialize 486 * 487 * Starts a deep first traversal of the PD/PT tree. 488 */ 489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 490 struct amdgpu_vm *vm, 491 struct amdgpu_vm_pt_cursor *start, 492 struct amdgpu_vm_pt_cursor *cursor) 493 { 494 if (start) 495 *cursor = *start; 496 else 497 amdgpu_vm_pt_start(adev, vm, 0, cursor); 498 while (amdgpu_vm_pt_descendant(adev, cursor)); 499 } 500 501 /** 502 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 503 * 504 * @start: starting point for the search 505 * @entry: current entry 506 * 507 * Returns: 508 * True when the search should continue, false otherwise. 509 */ 510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 511 struct amdgpu_vm_pt *entry) 512 { 513 return entry && (!start || entry != start->entry); 514 } 515 516 /** 517 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 518 * 519 * @adev: amdgpu_device structure 520 * @cursor: current state 521 * 522 * Move the cursor to the next node in a deep first search. 523 */ 524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 525 struct amdgpu_vm_pt_cursor *cursor) 526 { 527 if (!cursor->entry) 528 return; 529 530 if (!cursor->parent) 531 cursor->entry = NULL; 532 else if (amdgpu_vm_pt_sibling(adev, cursor)) 533 while (amdgpu_vm_pt_descendant(adev, cursor)); 534 else 535 amdgpu_vm_pt_ancestor(cursor); 536 } 537 538 /** 539 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 540 */ 541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 542 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 543 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 544 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 545 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 546 547 /** 548 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 549 * 550 * @vm: vm providing the BOs 551 * @validated: head of validation list 552 * @entry: entry to add 553 * 554 * Add the page directory to the list of BOs to 555 * validate for command submission. 556 */ 557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 558 struct list_head *validated, 559 struct amdgpu_bo_list_entry *entry) 560 { 561 entry->priority = 0; 562 entry->tv.bo = &vm->root.base.bo->tbo; 563 /* One for the VM updates, one for TTM and one for the CS job */ 564 entry->tv.num_shared = 3; 565 entry->user_pages = NULL; 566 list_add(&entry->tv.head, validated); 567 } 568 569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 570 { 571 struct amdgpu_bo *abo; 572 struct amdgpu_vm_bo_base *bo_base; 573 574 if (!amdgpu_bo_is_amdgpu_bo(bo)) 575 return; 576 577 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 578 return; 579 580 abo = ttm_to_amdgpu_bo(bo); 581 if (!abo->parent) 582 return; 583 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 584 struct amdgpu_vm *vm = bo_base->vm; 585 586 if (abo->tbo.resv == vm->root.base.bo->tbo.resv) 587 vm->bulk_moveable = false; 588 } 589 590 } 591 /** 592 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 593 * 594 * @adev: amdgpu device pointer 595 * @vm: vm providing the BOs 596 * 597 * Move all BOs to the end of LRU and remember their positions to put them 598 * together. 599 */ 600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 601 struct amdgpu_vm *vm) 602 { 603 struct ttm_bo_global *glob = adev->mman.bdev.glob; 604 struct amdgpu_vm_bo_base *bo_base; 605 606 #if 0 607 if (vm->bulk_moveable) { 608 spin_lock(&glob->lru_lock); 609 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 610 spin_unlock(&glob->lru_lock); 611 return; 612 } 613 #endif 614 615 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 616 617 spin_lock(&glob->lru_lock); 618 list_for_each_entry(bo_base, &vm->idle, vm_status) { 619 struct amdgpu_bo *bo = bo_base->bo; 620 621 if (!bo->parent) 622 continue; 623 624 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 625 if (bo->shadow) 626 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 627 &vm->lru_bulk_move); 628 } 629 spin_unlock(&glob->lru_lock); 630 631 vm->bulk_moveable = true; 632 } 633 634 /** 635 * amdgpu_vm_validate_pt_bos - validate the page table BOs 636 * 637 * @adev: amdgpu device pointer 638 * @vm: vm providing the BOs 639 * @validate: callback to do the validation 640 * @param: parameter for the validation callback 641 * 642 * Validate the page table BOs on command submission if neccessary. 643 * 644 * Returns: 645 * Validation result. 646 */ 647 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 648 int (*validate)(void *p, struct amdgpu_bo *bo), 649 void *param) 650 { 651 struct amdgpu_vm_bo_base *bo_base, *tmp; 652 int r = 0; 653 654 vm->bulk_moveable &= list_empty(&vm->evicted); 655 656 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 657 struct amdgpu_bo *bo = bo_base->bo; 658 659 r = validate(param, bo); 660 if (r) 661 break; 662 663 if (bo->tbo.type != ttm_bo_type_kernel) { 664 amdgpu_vm_bo_moved(bo_base); 665 } else { 666 vm->update_funcs->map_table(bo); 667 if (bo->parent) 668 amdgpu_vm_bo_relocated(bo_base); 669 else 670 amdgpu_vm_bo_idle(bo_base); 671 } 672 } 673 674 return r; 675 } 676 677 /** 678 * amdgpu_vm_ready - check VM is ready for updates 679 * 680 * @vm: VM to check 681 * 682 * Check if all VM PDs/PTs are ready for updates 683 * 684 * Returns: 685 * True if eviction list is empty. 686 */ 687 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 688 { 689 return list_empty(&vm->evicted); 690 } 691 692 /** 693 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 694 * 695 * @adev: amdgpu_device pointer 696 * @vm: VM to clear BO from 697 * @bo: BO to clear 698 * 699 * Root PD needs to be reserved when calling this. 700 * 701 * Returns: 702 * 0 on success, errno otherwise. 703 */ 704 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 705 struct amdgpu_vm *vm, 706 struct amdgpu_bo *bo) 707 { 708 struct ttm_operation_ctx ctx = { true, false }; 709 unsigned level = adev->vm_manager.root_level; 710 struct amdgpu_vm_update_params params; 711 struct amdgpu_bo *ancestor = bo; 712 unsigned entries, ats_entries; 713 uint64_t addr; 714 int r; 715 716 /* Figure out our place in the hierarchy */ 717 if (ancestor->parent) { 718 ++level; 719 while (ancestor->parent->parent) { 720 ++level; 721 ancestor = ancestor->parent; 722 } 723 } 724 725 entries = amdgpu_bo_size(bo) / 8; 726 if (!vm->pte_support_ats) { 727 ats_entries = 0; 728 729 } else if (!bo->parent) { 730 ats_entries = amdgpu_vm_num_ats_entries(adev); 731 ats_entries = min(ats_entries, entries); 732 entries -= ats_entries; 733 734 } else { 735 struct amdgpu_vm_pt *pt; 736 737 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 738 ats_entries = amdgpu_vm_num_ats_entries(adev); 739 if ((pt - vm->root.entries) >= ats_entries) { 740 ats_entries = 0; 741 } else { 742 ats_entries = entries; 743 entries = 0; 744 } 745 } 746 747 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 748 if (r) 749 return r; 750 751 if (bo->shadow) { 752 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 753 &ctx); 754 if (r) 755 return r; 756 } 757 758 r = vm->update_funcs->map_table(bo); 759 if (r) 760 return r; 761 762 memset(¶ms, 0, sizeof(params)); 763 params.adev = adev; 764 params.vm = vm; 765 766 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL); 767 if (r) 768 return r; 769 770 addr = 0; 771 if (ats_entries) { 772 uint64_t ats_value; 773 774 ats_value = AMDGPU_PTE_DEFAULT_ATC; 775 if (level != AMDGPU_VM_PTB) 776 ats_value |= AMDGPU_PDE_PTE; 777 778 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 779 0, ats_value); 780 if (r) 781 return r; 782 783 addr += ats_entries * 8; 784 } 785 786 if (entries) { 787 uint64_t value = 0; 788 789 /* Workaround for fault priority problem on GMC9 */ 790 if (level == AMDGPU_VM_PTB && 791 adev->asic_type >= CHIP_VEGA10) 792 value = AMDGPU_PTE_EXECUTABLE; 793 794 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 795 0, value); 796 if (r) 797 return r; 798 } 799 800 return vm->update_funcs->commit(¶ms, NULL); 801 } 802 803 /** 804 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 805 * 806 * @adev: amdgpu_device pointer 807 * @vm: requesting vm 808 * @bp: resulting BO allocation parameters 809 */ 810 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 811 int level, struct amdgpu_bo_param *bp) 812 { 813 memset(bp, 0, sizeof(*bp)); 814 815 bp->size = amdgpu_vm_bo_size(adev, level); 816 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 817 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 818 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 819 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 820 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 821 if (vm->use_cpu_for_update) 822 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 823 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 824 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 825 bp->type = ttm_bo_type_kernel; 826 if (vm->root.base.bo) 827 bp->resv = vm->root.base.bo->tbo.resv; 828 } 829 830 /** 831 * amdgpu_vm_alloc_pts - Allocate a specific page table 832 * 833 * @adev: amdgpu_device pointer 834 * @vm: VM to allocate page tables for 835 * @cursor: Which page table to allocate 836 * 837 * Make sure a specific page table or directory is allocated. 838 * 839 * Returns: 840 * 1 if page table needed to be allocated, 0 if page table was already 841 * allocated, negative errno if an error occurred. 842 */ 843 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 844 struct amdgpu_vm *vm, 845 struct amdgpu_vm_pt_cursor *cursor) 846 { 847 struct amdgpu_vm_pt *entry = cursor->entry; 848 struct amdgpu_bo_param bp; 849 struct amdgpu_bo *pt; 850 int r; 851 852 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 853 unsigned num_entries; 854 855 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 856 entry->entries = kvmalloc_array(num_entries, 857 sizeof(*entry->entries), 858 GFP_KERNEL | __GFP_ZERO); 859 if (!entry->entries) 860 return -ENOMEM; 861 } 862 863 if (entry->base.bo) 864 return 0; 865 866 amdgpu_vm_bo_param(adev, vm, cursor->level, &bp); 867 868 r = amdgpu_bo_create(adev, &bp, &pt); 869 if (r) 870 return r; 871 872 /* Keep a reference to the root directory to avoid 873 * freeing them up in the wrong order. 874 */ 875 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 876 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 877 878 r = amdgpu_vm_clear_bo(adev, vm, pt); 879 if (r) 880 goto error_free_pt; 881 882 return 0; 883 884 error_free_pt: 885 amdgpu_bo_unref(&pt->shadow); 886 amdgpu_bo_unref(&pt); 887 return r; 888 } 889 890 /** 891 * amdgpu_vm_free_table - fre one PD/PT 892 * 893 * @entry: PDE to free 894 */ 895 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 896 { 897 if (entry->base.bo) { 898 entry->base.bo->vm_bo = NULL; 899 list_del(&entry->base.vm_status); 900 amdgpu_bo_unref(&entry->base.bo->shadow); 901 amdgpu_bo_unref(&entry->base.bo); 902 } 903 kvfree(entry->entries); 904 entry->entries = NULL; 905 } 906 907 /** 908 * amdgpu_vm_free_pts - free PD/PT levels 909 * 910 * @adev: amdgpu device structure 911 * @vm: amdgpu vm structure 912 * @start: optional cursor where to start freeing PDs/PTs 913 * 914 * Free the page directory or page table level and all sub levels. 915 */ 916 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 917 struct amdgpu_vm *vm, 918 struct amdgpu_vm_pt_cursor *start) 919 { 920 struct amdgpu_vm_pt_cursor cursor; 921 struct amdgpu_vm_pt *entry; 922 923 vm->bulk_moveable = false; 924 925 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 926 amdgpu_vm_free_table(entry); 927 928 if (start) 929 amdgpu_vm_free_table(start->entry); 930 } 931 932 /** 933 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 934 * 935 * @adev: amdgpu_device pointer 936 */ 937 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 938 { 939 const struct amdgpu_ip_block *ip_block; 940 bool has_compute_vm_bug; 941 struct amdgpu_ring *ring; 942 int i; 943 944 has_compute_vm_bug = false; 945 946 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 947 if (ip_block) { 948 /* Compute has a VM bug for GFX version < 7. 949 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 950 if (ip_block->version->major <= 7) 951 has_compute_vm_bug = true; 952 else if (ip_block->version->major == 8) 953 if (adev->gfx.mec_fw_version < 673) 954 has_compute_vm_bug = true; 955 } 956 957 for (i = 0; i < adev->num_rings; i++) { 958 ring = adev->rings[i]; 959 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 960 /* only compute rings */ 961 ring->has_compute_vm_bug = has_compute_vm_bug; 962 else 963 ring->has_compute_vm_bug = false; 964 } 965 } 966 967 /** 968 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 969 * 970 * @ring: ring on which the job will be submitted 971 * @job: job to submit 972 * 973 * Returns: 974 * True if sync is needed. 975 */ 976 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 977 struct amdgpu_job *job) 978 { 979 struct amdgpu_device *adev = ring->adev; 980 unsigned vmhub = ring->funcs->vmhub; 981 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 982 struct amdgpu_vmid *id; 983 bool gds_switch_needed; 984 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 985 986 if (job->vmid == 0) 987 return false; 988 id = &id_mgr->ids[job->vmid]; 989 gds_switch_needed = ring->funcs->emit_gds_switch && ( 990 id->gds_base != job->gds_base || 991 id->gds_size != job->gds_size || 992 id->gws_base != job->gws_base || 993 id->gws_size != job->gws_size || 994 id->oa_base != job->oa_base || 995 id->oa_size != job->oa_size); 996 997 if (amdgpu_vmid_had_gpu_reset(adev, id)) 998 return true; 999 1000 return vm_flush_needed || gds_switch_needed; 1001 } 1002 1003 /** 1004 * amdgpu_vm_flush - hardware flush the vm 1005 * 1006 * @ring: ring to use for flush 1007 * @job: related job 1008 * @need_pipe_sync: is pipe sync needed 1009 * 1010 * Emit a VM flush when it is necessary. 1011 * 1012 * Returns: 1013 * 0 on success, errno otherwise. 1014 */ 1015 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1016 { 1017 struct amdgpu_device *adev = ring->adev; 1018 unsigned vmhub = ring->funcs->vmhub; 1019 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1020 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1021 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1022 id->gds_base != job->gds_base || 1023 id->gds_size != job->gds_size || 1024 id->gws_base != job->gws_base || 1025 id->gws_size != job->gws_size || 1026 id->oa_base != job->oa_base || 1027 id->oa_size != job->oa_size); 1028 bool vm_flush_needed = job->vm_needs_flush; 1029 bool pasid_mapping_needed = id->pasid != job->pasid || 1030 !id->pasid_mapping || 1031 !dma_fence_is_signaled(id->pasid_mapping); 1032 struct dma_fence *fence = NULL; 1033 unsigned patch_offset = 0; 1034 int r; 1035 1036 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1037 gds_switch_needed = true; 1038 vm_flush_needed = true; 1039 pasid_mapping_needed = true; 1040 } 1041 1042 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1043 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1044 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1045 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1046 ring->funcs->emit_wreg; 1047 1048 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1049 return 0; 1050 1051 if (ring->funcs->init_cond_exec) 1052 patch_offset = amdgpu_ring_init_cond_exec(ring); 1053 1054 if (need_pipe_sync) 1055 amdgpu_ring_emit_pipeline_sync(ring); 1056 1057 if (vm_flush_needed) { 1058 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1059 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1060 } 1061 1062 if (pasid_mapping_needed) 1063 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1064 1065 if (vm_flush_needed || pasid_mapping_needed) { 1066 r = amdgpu_fence_emit(ring, &fence, 0); 1067 if (r) 1068 return r; 1069 } 1070 1071 if (vm_flush_needed) { 1072 mutex_lock(&id_mgr->lock); 1073 dma_fence_put(id->last_flush); 1074 id->last_flush = dma_fence_get(fence); 1075 id->current_gpu_reset_count = 1076 atomic_read(&adev->gpu_reset_counter); 1077 mutex_unlock(&id_mgr->lock); 1078 } 1079 1080 if (pasid_mapping_needed) { 1081 id->pasid = job->pasid; 1082 dma_fence_put(id->pasid_mapping); 1083 id->pasid_mapping = dma_fence_get(fence); 1084 } 1085 dma_fence_put(fence); 1086 1087 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1088 id->gds_base = job->gds_base; 1089 id->gds_size = job->gds_size; 1090 id->gws_base = job->gws_base; 1091 id->gws_size = job->gws_size; 1092 id->oa_base = job->oa_base; 1093 id->oa_size = job->oa_size; 1094 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1095 job->gds_size, job->gws_base, 1096 job->gws_size, job->oa_base, 1097 job->oa_size); 1098 } 1099 1100 if (ring->funcs->patch_cond_exec) 1101 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1102 1103 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1104 if (ring->funcs->emit_switch_buffer) { 1105 amdgpu_ring_emit_switch_buffer(ring); 1106 amdgpu_ring_emit_switch_buffer(ring); 1107 } 1108 return 0; 1109 } 1110 1111 /** 1112 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1113 * 1114 * @vm: requested vm 1115 * @bo: requested buffer object 1116 * 1117 * Find @bo inside the requested vm. 1118 * Search inside the @bos vm list for the requested vm 1119 * Returns the found bo_va or NULL if none is found 1120 * 1121 * Object has to be reserved! 1122 * 1123 * Returns: 1124 * Found bo_va or NULL. 1125 */ 1126 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1127 struct amdgpu_bo *bo) 1128 { 1129 struct amdgpu_vm_bo_base *base; 1130 1131 for (base = bo->vm_bo; base; base = base->next) { 1132 if (base->vm != vm) 1133 continue; 1134 1135 return container_of(base, struct amdgpu_bo_va, base); 1136 } 1137 return NULL; 1138 } 1139 1140 /** 1141 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1142 * 1143 * @pages_addr: optional DMA address to use for lookup 1144 * @addr: the unmapped addr 1145 * 1146 * Look up the physical address of the page that the pte resolves 1147 * to. 1148 * 1149 * Returns: 1150 * The pointer for the page table entry. 1151 */ 1152 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1153 { 1154 uint64_t result; 1155 1156 /* page table offset */ 1157 result = pages_addr[addr >> PAGE_SHIFT]; 1158 1159 /* in case cpu page size != gpu page size*/ 1160 result |= addr & (~PAGE_MASK); 1161 1162 result &= 0xFFFFFFFFFFFFF000ULL; 1163 1164 return result; 1165 } 1166 1167 /* 1168 * amdgpu_vm_update_pde - update a single level in the hierarchy 1169 * 1170 * @param: parameters for the update 1171 * @vm: requested vm 1172 * @entry: entry to update 1173 * 1174 * Makes sure the requested entry in parent is up to date. 1175 */ 1176 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1177 struct amdgpu_vm *vm, 1178 struct amdgpu_vm_pt *entry) 1179 { 1180 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1181 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1182 uint64_t pde, pt, flags; 1183 unsigned level; 1184 1185 for (level = 0, pbo = bo->parent; pbo; ++level) 1186 pbo = pbo->parent; 1187 1188 level += params->adev->vm_manager.root_level; 1189 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1190 pde = (entry - parent->entries) * 8; 1191 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1192 } 1193 1194 /* 1195 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1196 * 1197 * @adev: amdgpu_device pointer 1198 * @vm: related vm 1199 * 1200 * Mark all PD level as invalid after an error. 1201 */ 1202 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1203 struct amdgpu_vm *vm) 1204 { 1205 struct amdgpu_vm_pt_cursor cursor; 1206 struct amdgpu_vm_pt *entry; 1207 1208 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1209 if (entry->base.bo && !entry->base.moved) 1210 amdgpu_vm_bo_relocated(&entry->base); 1211 } 1212 1213 /* 1214 * amdgpu_vm_update_directories - make sure that all directories are valid 1215 * 1216 * @adev: amdgpu_device pointer 1217 * @vm: requested vm 1218 * 1219 * Makes sure all directories are up to date. 1220 * 1221 * Returns: 1222 * 0 for success, error for failure. 1223 */ 1224 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1225 struct amdgpu_vm *vm) 1226 { 1227 struct amdgpu_vm_update_params params; 1228 int r; 1229 1230 if (list_empty(&vm->relocated)) 1231 return 0; 1232 1233 memset(¶ms, 0, sizeof(params)); 1234 params.adev = adev; 1235 params.vm = vm; 1236 1237 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL); 1238 if (r) 1239 return r; 1240 1241 while (!list_empty(&vm->relocated)) { 1242 struct amdgpu_vm_pt *entry; 1243 1244 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1245 base.vm_status); 1246 amdgpu_vm_bo_idle(&entry->base); 1247 1248 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1249 if (r) 1250 goto error; 1251 } 1252 1253 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1254 if (r) 1255 goto error; 1256 return 0; 1257 1258 error: 1259 amdgpu_vm_invalidate_pds(adev, vm); 1260 return r; 1261 } 1262 1263 /** 1264 * amdgpu_vm_update_flags - figure out flags for PTE updates 1265 * 1266 * Make sure to set the right flags for the PTEs at the desired level. 1267 */ 1268 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1269 struct amdgpu_bo *bo, unsigned level, 1270 uint64_t pe, uint64_t addr, 1271 unsigned count, uint32_t incr, 1272 uint64_t flags) 1273 1274 { 1275 if (level != AMDGPU_VM_PTB) { 1276 flags |= AMDGPU_PDE_PTE; 1277 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1278 1279 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1280 !(flags & AMDGPU_PTE_VALID) && 1281 !(flags & AMDGPU_PTE_PRT)) { 1282 1283 /* Workaround for fault priority problem on GMC9 */ 1284 flags |= AMDGPU_PTE_EXECUTABLE; 1285 } 1286 1287 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1288 flags); 1289 } 1290 1291 /** 1292 * amdgpu_vm_fragment - get fragment for PTEs 1293 * 1294 * @params: see amdgpu_vm_update_params definition 1295 * @start: first PTE to handle 1296 * @end: last PTE to handle 1297 * @flags: hw mapping flags 1298 * @frag: resulting fragment size 1299 * @frag_end: end of this fragment 1300 * 1301 * Returns the first possible fragment for the start and end address. 1302 */ 1303 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1304 uint64_t start, uint64_t end, uint64_t flags, 1305 unsigned int *frag, uint64_t *frag_end) 1306 { 1307 /** 1308 * The MC L1 TLB supports variable sized pages, based on a fragment 1309 * field in the PTE. When this field is set to a non-zero value, page 1310 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1311 * flags are considered valid for all PTEs within the fragment range 1312 * and corresponding mappings are assumed to be physically contiguous. 1313 * 1314 * The L1 TLB can store a single PTE for the whole fragment, 1315 * significantly increasing the space available for translation 1316 * caching. This leads to large improvements in throughput when the 1317 * TLB is under pressure. 1318 * 1319 * The L2 TLB distributes small and large fragments into two 1320 * asymmetric partitions. The large fragment cache is significantly 1321 * larger. Thus, we try to use large fragments wherever possible. 1322 * Userspace can support this by aligning virtual base address and 1323 * allocation size to the fragment size. 1324 * 1325 * Starting with Vega10 the fragment size only controls the L1. The L2 1326 * is now directly feed with small/huge/giant pages from the walker. 1327 */ 1328 unsigned max_frag; 1329 1330 if (params->adev->asic_type < CHIP_VEGA10) 1331 max_frag = params->adev->vm_manager.fragment_size; 1332 else 1333 max_frag = 31; 1334 1335 /* system pages are non continuously */ 1336 if (params->pages_addr) { 1337 *frag = 0; 1338 *frag_end = end; 1339 return; 1340 } 1341 1342 /* This intentionally wraps around if no bit is set */ 1343 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1344 if (*frag >= max_frag) { 1345 *frag = max_frag; 1346 *frag_end = end & ~((1ULL << max_frag) - 1); 1347 } else { 1348 *frag_end = start + (1 << *frag); 1349 } 1350 } 1351 1352 /** 1353 * amdgpu_vm_update_ptes - make sure that page tables are valid 1354 * 1355 * @params: see amdgpu_vm_update_params definition 1356 * @start: start of GPU address range 1357 * @end: end of GPU address range 1358 * @dst: destination address to map to, the next dst inside the function 1359 * @flags: mapping flags 1360 * 1361 * Update the page tables in the range @start - @end. 1362 * 1363 * Returns: 1364 * 0 for success, -EINVAL for failure. 1365 */ 1366 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1367 uint64_t start, uint64_t end, 1368 uint64_t dst, uint64_t flags) 1369 { 1370 struct amdgpu_device *adev = params->adev; 1371 struct amdgpu_vm_pt_cursor cursor; 1372 uint64_t frag_start = start, frag_end; 1373 unsigned int frag; 1374 int r; 1375 1376 /* figure out the initial fragment */ 1377 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1378 1379 /* walk over the address space and update the PTs */ 1380 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1381 while (cursor.pfn < end) { 1382 unsigned shift, parent_shift, mask; 1383 uint64_t incr, entry_end, pe_start; 1384 struct amdgpu_bo *pt; 1385 1386 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor); 1387 if (r) 1388 return r; 1389 1390 pt = cursor.entry->base.bo; 1391 1392 /* The root level can't be a huge page */ 1393 if (cursor.level == adev->vm_manager.root_level) { 1394 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1395 return -ENOENT; 1396 continue; 1397 } 1398 1399 shift = amdgpu_vm_level_shift(adev, cursor.level); 1400 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1401 if (adev->asic_type < CHIP_VEGA10 && 1402 (flags & AMDGPU_PTE_VALID)) { 1403 /* No huge page support before GMC v9 */ 1404 if (cursor.level != AMDGPU_VM_PTB) { 1405 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1406 return -ENOENT; 1407 continue; 1408 } 1409 } else if (frag < shift) { 1410 /* We can't use this level when the fragment size is 1411 * smaller than the address shift. Go to the next 1412 * child entry and try again. 1413 */ 1414 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1415 return -ENOENT; 1416 continue; 1417 } else if (frag >= parent_shift && 1418 cursor.level - 1 != adev->vm_manager.root_level) { 1419 /* If the fragment size is even larger than the parent 1420 * shift we should go up one level and check it again 1421 * unless one level up is the root level. 1422 */ 1423 if (!amdgpu_vm_pt_ancestor(&cursor)) 1424 return -ENOENT; 1425 continue; 1426 } 1427 1428 /* Looks good so far, calculate parameters for the update */ 1429 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1430 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1431 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1432 entry_end = (uint64_t)(mask + 1) << shift; 1433 entry_end += cursor.pfn & ~(entry_end - 1); 1434 entry_end = min(entry_end, end); 1435 1436 do { 1437 uint64_t upd_end = min(entry_end, frag_end); 1438 unsigned nptes = (upd_end - frag_start) >> shift; 1439 1440 amdgpu_vm_update_flags(params, pt, cursor.level, 1441 pe_start, dst, nptes, incr, 1442 flags | AMDGPU_PTE_FRAG(frag)); 1443 1444 pe_start += nptes * 8; 1445 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1446 1447 frag_start = upd_end; 1448 if (frag_start >= frag_end) { 1449 /* figure out the next fragment */ 1450 amdgpu_vm_fragment(params, frag_start, end, 1451 flags, &frag, &frag_end); 1452 if (frag < shift) 1453 break; 1454 } 1455 } while (frag_start < entry_end); 1456 1457 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1458 /* Free all child entries */ 1459 while (cursor.pfn < frag_start) { 1460 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1461 amdgpu_vm_pt_next(adev, &cursor); 1462 } 1463 1464 } else if (frag >= shift) { 1465 /* or just move on to the next on the same level. */ 1466 amdgpu_vm_pt_next(adev, &cursor); 1467 } 1468 } 1469 1470 return 0; 1471 } 1472 1473 /** 1474 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1475 * 1476 * @adev: amdgpu_device pointer 1477 * @exclusive: fence we need to sync to 1478 * @pages_addr: DMA addresses to use for mapping 1479 * @vm: requested vm 1480 * @start: start of mapped range 1481 * @last: last mapped entry 1482 * @flags: flags for the entries 1483 * @addr: addr to set the area to 1484 * @fence: optional resulting fence 1485 * 1486 * Fill in the page table entries between @start and @last. 1487 * 1488 * Returns: 1489 * 0 for success, -EINVAL for failure. 1490 */ 1491 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1492 struct dma_fence *exclusive, 1493 dma_addr_t *pages_addr, 1494 struct amdgpu_vm *vm, 1495 uint64_t start, uint64_t last, 1496 uint64_t flags, uint64_t addr, 1497 struct dma_fence **fence) 1498 { 1499 struct amdgpu_vm_update_params params; 1500 void *owner = AMDGPU_FENCE_OWNER_VM; 1501 int r; 1502 1503 memset(¶ms, 0, sizeof(params)); 1504 params.adev = adev; 1505 params.vm = vm; 1506 params.pages_addr = pages_addr; 1507 1508 /* sync to everything except eviction fences on unmapping */ 1509 if (!(flags & AMDGPU_PTE_VALID)) 1510 owner = AMDGPU_FENCE_OWNER_KFD; 1511 1512 r = vm->update_funcs->prepare(¶ms, owner, exclusive); 1513 if (r) 1514 return r; 1515 1516 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1517 if (r) 1518 return r; 1519 1520 return vm->update_funcs->commit(¶ms, fence); 1521 } 1522 1523 /** 1524 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1525 * 1526 * @adev: amdgpu_device pointer 1527 * @exclusive: fence we need to sync to 1528 * @pages_addr: DMA addresses to use for mapping 1529 * @vm: requested vm 1530 * @mapping: mapped range and flags to use for the update 1531 * @flags: HW flags for the mapping 1532 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1533 * @nodes: array of drm_mm_nodes with the MC addresses 1534 * @fence: optional resulting fence 1535 * 1536 * Split the mapping into smaller chunks so that each update fits 1537 * into a SDMA IB. 1538 * 1539 * Returns: 1540 * 0 for success, -EINVAL for failure. 1541 */ 1542 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1543 struct dma_fence *exclusive, 1544 dma_addr_t *pages_addr, 1545 struct amdgpu_vm *vm, 1546 struct amdgpu_bo_va_mapping *mapping, 1547 uint64_t flags, 1548 struct amdgpu_device *bo_adev, 1549 struct drm_mm_node *nodes, 1550 struct dma_fence **fence) 1551 { 1552 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1553 uint64_t pfn, start = mapping->start; 1554 int r; 1555 1556 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1557 * but in case of something, we filter the flags in first place 1558 */ 1559 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1560 flags &= ~AMDGPU_PTE_READABLE; 1561 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1562 flags &= ~AMDGPU_PTE_WRITEABLE; 1563 1564 flags &= ~AMDGPU_PTE_EXECUTABLE; 1565 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1566 1567 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1568 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1569 1570 if ((mapping->flags & AMDGPU_PTE_PRT) && 1571 (adev->asic_type >= CHIP_VEGA10)) { 1572 flags |= AMDGPU_PTE_PRT; 1573 flags &= ~AMDGPU_PTE_VALID; 1574 } 1575 1576 trace_amdgpu_vm_bo_update(mapping); 1577 1578 pfn = mapping->offset >> PAGE_SHIFT; 1579 if (nodes) { 1580 while (pfn >= nodes->size) { 1581 pfn -= nodes->size; 1582 ++nodes; 1583 } 1584 } 1585 1586 do { 1587 dma_addr_t *dma_addr = NULL; 1588 uint64_t max_entries; 1589 uint64_t addr, last; 1590 1591 if (nodes) { 1592 addr = nodes->start << PAGE_SHIFT; 1593 max_entries = (nodes->size - pfn) * 1594 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1595 } else { 1596 addr = 0; 1597 max_entries = S64_MAX; 1598 } 1599 1600 if (pages_addr) { 1601 uint64_t count; 1602 1603 for (count = 1; 1604 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1605 ++count) { 1606 uint64_t idx = pfn + count; 1607 1608 if (pages_addr[idx] != 1609 (pages_addr[idx - 1] + PAGE_SIZE)) 1610 break; 1611 } 1612 1613 if (count < min_linear_pages) { 1614 addr = pfn << PAGE_SHIFT; 1615 dma_addr = pages_addr; 1616 } else { 1617 addr = pages_addr[pfn]; 1618 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1619 } 1620 1621 } else if (flags & AMDGPU_PTE_VALID) { 1622 addr += bo_adev->vm_manager.vram_base_offset; 1623 addr += pfn << PAGE_SHIFT; 1624 } 1625 1626 last = min((uint64_t)mapping->last, start + max_entries - 1); 1627 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1628 start, last, flags, addr, 1629 fence); 1630 if (r) 1631 return r; 1632 1633 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1634 if (nodes && nodes->size == pfn) { 1635 pfn = 0; 1636 ++nodes; 1637 } 1638 start = last + 1; 1639 1640 } while (unlikely(start != mapping->last + 1)); 1641 1642 return 0; 1643 } 1644 1645 /** 1646 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1647 * 1648 * @adev: amdgpu_device pointer 1649 * @bo_va: requested BO and VM object 1650 * @clear: if true clear the entries 1651 * 1652 * Fill in the page table entries for @bo_va. 1653 * 1654 * Returns: 1655 * 0 for success, -EINVAL for failure. 1656 */ 1657 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1658 struct amdgpu_bo_va *bo_va, 1659 bool clear) 1660 { 1661 struct amdgpu_bo *bo = bo_va->base.bo; 1662 struct amdgpu_vm *vm = bo_va->base.vm; 1663 struct amdgpu_bo_va_mapping *mapping; 1664 dma_addr_t *pages_addr = NULL; 1665 struct ttm_mem_reg *mem; 1666 struct drm_mm_node *nodes; 1667 struct dma_fence *exclusive, **last_update; 1668 uint64_t flags; 1669 struct amdgpu_device *bo_adev = adev; 1670 int r; 1671 1672 if (clear || !bo) { 1673 mem = NULL; 1674 nodes = NULL; 1675 exclusive = NULL; 1676 } else { 1677 struct ttm_dma_tt *ttm; 1678 1679 mem = &bo->tbo.mem; 1680 nodes = mem->mm_node; 1681 if (mem->mem_type == TTM_PL_TT) { 1682 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1683 pages_addr = ttm->dma_address; 1684 } 1685 exclusive = reservation_object_get_excl(bo->tbo.resv); 1686 } 1687 1688 if (bo) { 1689 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1690 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1691 } else { 1692 flags = 0x0; 1693 } 1694 1695 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1696 last_update = &vm->last_update; 1697 else 1698 last_update = &bo_va->last_pt_update; 1699 1700 if (!clear && bo_va->base.moved) { 1701 bo_va->base.moved = false; 1702 list_splice_init(&bo_va->valids, &bo_va->invalids); 1703 1704 } else if (bo_va->cleared != clear) { 1705 list_splice_init(&bo_va->valids, &bo_va->invalids); 1706 } 1707 1708 list_for_each_entry(mapping, &bo_va->invalids, list) { 1709 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1710 mapping, flags, bo_adev, nodes, 1711 last_update); 1712 if (r) 1713 return r; 1714 } 1715 1716 if (vm->use_cpu_for_update) { 1717 /* Flush HDP */ 1718 mb(); 1719 amdgpu_asic_flush_hdp(adev, NULL); 1720 } 1721 1722 /* If the BO is not in its preferred location add it back to 1723 * the evicted list so that it gets validated again on the 1724 * next command submission. 1725 */ 1726 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1727 uint32_t mem_type = bo->tbo.mem.mem_type; 1728 1729 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1730 amdgpu_vm_bo_evicted(&bo_va->base); 1731 else 1732 amdgpu_vm_bo_idle(&bo_va->base); 1733 } else { 1734 amdgpu_vm_bo_done(&bo_va->base); 1735 } 1736 1737 list_splice_init(&bo_va->invalids, &bo_va->valids); 1738 bo_va->cleared = clear; 1739 1740 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1741 list_for_each_entry(mapping, &bo_va->valids, list) 1742 trace_amdgpu_vm_bo_mapping(mapping); 1743 } 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * amdgpu_vm_update_prt_state - update the global PRT state 1750 * 1751 * @adev: amdgpu_device pointer 1752 */ 1753 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1754 { 1755 unsigned long flags; 1756 bool enable; 1757 1758 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1759 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1760 adev->gmc.gmc_funcs->set_prt(adev, enable); 1761 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1762 } 1763 1764 /** 1765 * amdgpu_vm_prt_get - add a PRT user 1766 * 1767 * @adev: amdgpu_device pointer 1768 */ 1769 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1770 { 1771 if (!adev->gmc.gmc_funcs->set_prt) 1772 return; 1773 1774 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1775 amdgpu_vm_update_prt_state(adev); 1776 } 1777 1778 /** 1779 * amdgpu_vm_prt_put - drop a PRT user 1780 * 1781 * @adev: amdgpu_device pointer 1782 */ 1783 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1784 { 1785 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1786 amdgpu_vm_update_prt_state(adev); 1787 } 1788 1789 /** 1790 * amdgpu_vm_prt_cb - callback for updating the PRT status 1791 * 1792 * @fence: fence for the callback 1793 * @_cb: the callback function 1794 */ 1795 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1796 { 1797 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1798 1799 amdgpu_vm_prt_put(cb->adev); 1800 kfree(cb); 1801 } 1802 1803 /** 1804 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1805 * 1806 * @adev: amdgpu_device pointer 1807 * @fence: fence for the callback 1808 */ 1809 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1810 struct dma_fence *fence) 1811 { 1812 struct amdgpu_prt_cb *cb; 1813 1814 if (!adev->gmc.gmc_funcs->set_prt) 1815 return; 1816 1817 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1818 if (!cb) { 1819 /* Last resort when we are OOM */ 1820 if (fence) 1821 dma_fence_wait(fence, false); 1822 1823 amdgpu_vm_prt_put(adev); 1824 } else { 1825 cb->adev = adev; 1826 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1827 amdgpu_vm_prt_cb)) 1828 amdgpu_vm_prt_cb(fence, &cb->cb); 1829 } 1830 } 1831 1832 /** 1833 * amdgpu_vm_free_mapping - free a mapping 1834 * 1835 * @adev: amdgpu_device pointer 1836 * @vm: requested vm 1837 * @mapping: mapping to be freed 1838 * @fence: fence of the unmap operation 1839 * 1840 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1841 */ 1842 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1843 struct amdgpu_vm *vm, 1844 struct amdgpu_bo_va_mapping *mapping, 1845 struct dma_fence *fence) 1846 { 1847 if (mapping->flags & AMDGPU_PTE_PRT) 1848 amdgpu_vm_add_prt_cb(adev, fence); 1849 kfree(mapping); 1850 } 1851 1852 /** 1853 * amdgpu_vm_prt_fini - finish all prt mappings 1854 * 1855 * @adev: amdgpu_device pointer 1856 * @vm: requested vm 1857 * 1858 * Register a cleanup callback to disable PRT support after VM dies. 1859 */ 1860 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1861 { 1862 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1863 struct dma_fence *excl, **shared; 1864 unsigned i, shared_count; 1865 int r; 1866 1867 r = reservation_object_get_fences_rcu(resv, &excl, 1868 &shared_count, &shared); 1869 if (r) { 1870 /* Not enough memory to grab the fence list, as last resort 1871 * block for all the fences to complete. 1872 */ 1873 reservation_object_wait_timeout_rcu(resv, true, false, 1874 MAX_SCHEDULE_TIMEOUT); 1875 return; 1876 } 1877 1878 /* Add a callback for each fence in the reservation object */ 1879 amdgpu_vm_prt_get(adev); 1880 amdgpu_vm_add_prt_cb(adev, excl); 1881 1882 for (i = 0; i < shared_count; ++i) { 1883 amdgpu_vm_prt_get(adev); 1884 amdgpu_vm_add_prt_cb(adev, shared[i]); 1885 } 1886 1887 kfree(shared); 1888 } 1889 1890 /** 1891 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1892 * 1893 * @adev: amdgpu_device pointer 1894 * @vm: requested vm 1895 * @fence: optional resulting fence (unchanged if no work needed to be done 1896 * or if an error occurred) 1897 * 1898 * Make sure all freed BOs are cleared in the PT. 1899 * PTs have to be reserved and mutex must be locked! 1900 * 1901 * Returns: 1902 * 0 for success. 1903 * 1904 */ 1905 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1906 struct amdgpu_vm *vm, 1907 struct dma_fence **fence) 1908 { 1909 struct amdgpu_bo_va_mapping *mapping; 1910 uint64_t init_pte_value = 0; 1911 struct dma_fence *f = NULL; 1912 int r; 1913 1914 while (!list_empty(&vm->freed)) { 1915 mapping = list_first_entry(&vm->freed, 1916 struct amdgpu_bo_va_mapping, list); 1917 list_del(&mapping->list); 1918 1919 if (vm->pte_support_ats && 1920 mapping->start < AMDGPU_GMC_HOLE_START) 1921 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1922 1923 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1924 mapping->start, mapping->last, 1925 init_pte_value, 0, &f); 1926 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1927 if (r) { 1928 dma_fence_put(f); 1929 return r; 1930 } 1931 } 1932 1933 if (fence && f) { 1934 dma_fence_put(*fence); 1935 *fence = f; 1936 } else { 1937 dma_fence_put(f); 1938 } 1939 1940 return 0; 1941 1942 } 1943 1944 /** 1945 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1946 * 1947 * @adev: amdgpu_device pointer 1948 * @vm: requested vm 1949 * 1950 * Make sure all BOs which are moved are updated in the PTs. 1951 * 1952 * Returns: 1953 * 0 for success. 1954 * 1955 * PTs have to be reserved! 1956 */ 1957 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1958 struct amdgpu_vm *vm) 1959 { 1960 struct amdgpu_bo_va *bo_va, *tmp; 1961 struct reservation_object *resv; 1962 bool clear; 1963 int r; 1964 1965 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1966 /* Per VM BOs never need to bo cleared in the page tables */ 1967 r = amdgpu_vm_bo_update(adev, bo_va, false); 1968 if (r) 1969 return r; 1970 } 1971 1972 spin_lock(&vm->invalidated_lock); 1973 while (!list_empty(&vm->invalidated)) { 1974 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1975 base.vm_status); 1976 resv = bo_va->base.bo->tbo.resv; 1977 spin_unlock(&vm->invalidated_lock); 1978 1979 /* Try to reserve the BO to avoid clearing its ptes */ 1980 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1981 clear = false; 1982 /* Somebody else is using the BO right now */ 1983 else 1984 clear = true; 1985 1986 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1987 if (r) 1988 return r; 1989 1990 if (!clear) 1991 reservation_object_unlock(resv); 1992 spin_lock(&vm->invalidated_lock); 1993 } 1994 spin_unlock(&vm->invalidated_lock); 1995 1996 return 0; 1997 } 1998 1999 /** 2000 * amdgpu_vm_bo_add - add a bo to a specific vm 2001 * 2002 * @adev: amdgpu_device pointer 2003 * @vm: requested vm 2004 * @bo: amdgpu buffer object 2005 * 2006 * Add @bo into the requested vm. 2007 * Add @bo to the list of bos associated with the vm 2008 * 2009 * Returns: 2010 * Newly added bo_va or NULL for failure 2011 * 2012 * Object has to be reserved! 2013 */ 2014 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2015 struct amdgpu_vm *vm, 2016 struct amdgpu_bo *bo) 2017 { 2018 struct amdgpu_bo_va *bo_va; 2019 2020 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2021 if (bo_va == NULL) { 2022 return NULL; 2023 } 2024 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2025 2026 bo_va->ref_count = 1; 2027 INIT_LIST_HEAD(&bo_va->valids); 2028 INIT_LIST_HEAD(&bo_va->invalids); 2029 2030 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev))) { 2031 bo_va->is_xgmi = true; 2032 mutex_lock(&adev->vm_manager.lock_pstate); 2033 /* Power up XGMI if it can be potentially used */ 2034 if (++adev->vm_manager.xgmi_map_counter == 1) 2035 amdgpu_xgmi_set_pstate(adev, 1); 2036 mutex_unlock(&adev->vm_manager.lock_pstate); 2037 } 2038 2039 return bo_va; 2040 } 2041 2042 2043 /** 2044 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2045 * 2046 * @adev: amdgpu_device pointer 2047 * @bo_va: bo_va to store the address 2048 * @mapping: the mapping to insert 2049 * 2050 * Insert a new mapping into all structures. 2051 */ 2052 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2053 struct amdgpu_bo_va *bo_va, 2054 struct amdgpu_bo_va_mapping *mapping) 2055 { 2056 struct amdgpu_vm *vm = bo_va->base.vm; 2057 struct amdgpu_bo *bo = bo_va->base.bo; 2058 2059 mapping->bo_va = bo_va; 2060 list_add(&mapping->list, &bo_va->invalids); 2061 amdgpu_vm_it_insert(mapping, &vm->va); 2062 2063 if (mapping->flags & AMDGPU_PTE_PRT) 2064 amdgpu_vm_prt_get(adev); 2065 2066 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2067 !bo_va->base.moved) { 2068 list_move(&bo_va->base.vm_status, &vm->moved); 2069 } 2070 trace_amdgpu_vm_bo_map(bo_va, mapping); 2071 } 2072 2073 /** 2074 * amdgpu_vm_bo_map - map bo inside a vm 2075 * 2076 * @adev: amdgpu_device pointer 2077 * @bo_va: bo_va to store the address 2078 * @saddr: where to map the BO 2079 * @offset: requested offset in the BO 2080 * @size: BO size in bytes 2081 * @flags: attributes of pages (read/write/valid/etc.) 2082 * 2083 * Add a mapping of the BO at the specefied addr into the VM. 2084 * 2085 * Returns: 2086 * 0 for success, error for failure. 2087 * 2088 * Object has to be reserved and unreserved outside! 2089 */ 2090 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2091 struct amdgpu_bo_va *bo_va, 2092 uint64_t saddr, uint64_t offset, 2093 uint64_t size, uint64_t flags) 2094 { 2095 struct amdgpu_bo_va_mapping *mapping, *tmp; 2096 struct amdgpu_bo *bo = bo_va->base.bo; 2097 struct amdgpu_vm *vm = bo_va->base.vm; 2098 uint64_t eaddr; 2099 2100 /* validate the parameters */ 2101 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2102 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2103 return -EINVAL; 2104 2105 /* make sure object fit at this offset */ 2106 eaddr = saddr + size - 1; 2107 if (saddr >= eaddr || 2108 (bo && offset + size > amdgpu_bo_size(bo))) 2109 return -EINVAL; 2110 2111 saddr /= AMDGPU_GPU_PAGE_SIZE; 2112 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2113 2114 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2115 if (tmp) { 2116 /* bo and tmp overlap, invalid addr */ 2117 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2118 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2119 tmp->start, tmp->last + 1); 2120 return -EINVAL; 2121 } 2122 2123 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2124 if (!mapping) 2125 return -ENOMEM; 2126 2127 mapping->start = saddr; 2128 mapping->last = eaddr; 2129 mapping->offset = offset; 2130 mapping->flags = flags; 2131 2132 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2133 2134 return 0; 2135 } 2136 2137 /** 2138 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2139 * 2140 * @adev: amdgpu_device pointer 2141 * @bo_va: bo_va to store the address 2142 * @saddr: where to map the BO 2143 * @offset: requested offset in the BO 2144 * @size: BO size in bytes 2145 * @flags: attributes of pages (read/write/valid/etc.) 2146 * 2147 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2148 * mappings as we do so. 2149 * 2150 * Returns: 2151 * 0 for success, error for failure. 2152 * 2153 * Object has to be reserved and unreserved outside! 2154 */ 2155 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2156 struct amdgpu_bo_va *bo_va, 2157 uint64_t saddr, uint64_t offset, 2158 uint64_t size, uint64_t flags) 2159 { 2160 struct amdgpu_bo_va_mapping *mapping; 2161 struct amdgpu_bo *bo = bo_va->base.bo; 2162 uint64_t eaddr; 2163 int r; 2164 2165 /* validate the parameters */ 2166 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2167 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2168 return -EINVAL; 2169 2170 /* make sure object fit at this offset */ 2171 eaddr = saddr + size - 1; 2172 if (saddr >= eaddr || 2173 (bo && offset + size > amdgpu_bo_size(bo))) 2174 return -EINVAL; 2175 2176 /* Allocate all the needed memory */ 2177 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2178 if (!mapping) 2179 return -ENOMEM; 2180 2181 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2182 if (r) { 2183 kfree(mapping); 2184 return r; 2185 } 2186 2187 saddr /= AMDGPU_GPU_PAGE_SIZE; 2188 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2189 2190 mapping->start = saddr; 2191 mapping->last = eaddr; 2192 mapping->offset = offset; 2193 mapping->flags = flags; 2194 2195 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2196 2197 return 0; 2198 } 2199 2200 /** 2201 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2202 * 2203 * @adev: amdgpu_device pointer 2204 * @bo_va: bo_va to remove the address from 2205 * @saddr: where to the BO is mapped 2206 * 2207 * Remove a mapping of the BO at the specefied addr from the VM. 2208 * 2209 * Returns: 2210 * 0 for success, error for failure. 2211 * 2212 * Object has to be reserved and unreserved outside! 2213 */ 2214 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2215 struct amdgpu_bo_va *bo_va, 2216 uint64_t saddr) 2217 { 2218 struct amdgpu_bo_va_mapping *mapping; 2219 struct amdgpu_vm *vm = bo_va->base.vm; 2220 bool valid = true; 2221 2222 saddr /= AMDGPU_GPU_PAGE_SIZE; 2223 2224 list_for_each_entry(mapping, &bo_va->valids, list) { 2225 if (mapping->start == saddr) 2226 break; 2227 } 2228 2229 if (&mapping->list == &bo_va->valids) { 2230 valid = false; 2231 2232 list_for_each_entry(mapping, &bo_va->invalids, list) { 2233 if (mapping->start == saddr) 2234 break; 2235 } 2236 2237 if (&mapping->list == &bo_va->invalids) 2238 return -ENOENT; 2239 } 2240 2241 list_del(&mapping->list); 2242 amdgpu_vm_it_remove(mapping, &vm->va); 2243 mapping->bo_va = NULL; 2244 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2245 2246 if (valid) 2247 list_add(&mapping->list, &vm->freed); 2248 else 2249 amdgpu_vm_free_mapping(adev, vm, mapping, 2250 bo_va->last_pt_update); 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2257 * 2258 * @adev: amdgpu_device pointer 2259 * @vm: VM structure to use 2260 * @saddr: start of the range 2261 * @size: size of the range 2262 * 2263 * Remove all mappings in a range, split them as appropriate. 2264 * 2265 * Returns: 2266 * 0 for success, error for failure. 2267 */ 2268 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2269 struct amdgpu_vm *vm, 2270 uint64_t saddr, uint64_t size) 2271 { 2272 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2273 LIST_HEAD(removed); 2274 uint64_t eaddr; 2275 2276 eaddr = saddr + size - 1; 2277 saddr /= AMDGPU_GPU_PAGE_SIZE; 2278 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2279 2280 /* Allocate all the needed memory */ 2281 before = kzalloc(sizeof(*before), GFP_KERNEL); 2282 if (!before) 2283 return -ENOMEM; 2284 INIT_LIST_HEAD(&before->list); 2285 2286 after = kzalloc(sizeof(*after), GFP_KERNEL); 2287 if (!after) { 2288 kfree(before); 2289 return -ENOMEM; 2290 } 2291 INIT_LIST_HEAD(&after->list); 2292 2293 /* Now gather all removed mappings */ 2294 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2295 while (tmp) { 2296 /* Remember mapping split at the start */ 2297 if (tmp->start < saddr) { 2298 before->start = tmp->start; 2299 before->last = saddr - 1; 2300 before->offset = tmp->offset; 2301 before->flags = tmp->flags; 2302 before->bo_va = tmp->bo_va; 2303 list_add(&before->list, &tmp->bo_va->invalids); 2304 } 2305 2306 /* Remember mapping split at the end */ 2307 if (tmp->last > eaddr) { 2308 after->start = eaddr + 1; 2309 after->last = tmp->last; 2310 after->offset = tmp->offset; 2311 after->offset += after->start - tmp->start; 2312 after->flags = tmp->flags; 2313 after->bo_va = tmp->bo_va; 2314 list_add(&after->list, &tmp->bo_va->invalids); 2315 } 2316 2317 list_del(&tmp->list); 2318 list_add(&tmp->list, &removed); 2319 2320 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2321 } 2322 2323 /* And free them up */ 2324 list_for_each_entry_safe(tmp, next, &removed, list) { 2325 amdgpu_vm_it_remove(tmp, &vm->va); 2326 list_del(&tmp->list); 2327 2328 if (tmp->start < saddr) 2329 tmp->start = saddr; 2330 if (tmp->last > eaddr) 2331 tmp->last = eaddr; 2332 2333 tmp->bo_va = NULL; 2334 list_add(&tmp->list, &vm->freed); 2335 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2336 } 2337 2338 /* Insert partial mapping before the range */ 2339 if (!list_empty(&before->list)) { 2340 amdgpu_vm_it_insert(before, &vm->va); 2341 if (before->flags & AMDGPU_PTE_PRT) 2342 amdgpu_vm_prt_get(adev); 2343 } else { 2344 kfree(before); 2345 } 2346 2347 /* Insert partial mapping after the range */ 2348 if (!list_empty(&after->list)) { 2349 amdgpu_vm_it_insert(after, &vm->va); 2350 if (after->flags & AMDGPU_PTE_PRT) 2351 amdgpu_vm_prt_get(adev); 2352 } else { 2353 kfree(after); 2354 } 2355 2356 return 0; 2357 } 2358 2359 /** 2360 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2361 * 2362 * @vm: the requested VM 2363 * @addr: the address 2364 * 2365 * Find a mapping by it's address. 2366 * 2367 * Returns: 2368 * The amdgpu_bo_va_mapping matching for addr or NULL 2369 * 2370 */ 2371 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2372 uint64_t addr) 2373 { 2374 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2375 } 2376 2377 /** 2378 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2379 * 2380 * @vm: the requested vm 2381 * @ticket: CS ticket 2382 * 2383 * Trace all mappings of BOs reserved during a command submission. 2384 */ 2385 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2386 { 2387 struct amdgpu_bo_va_mapping *mapping; 2388 2389 if (!trace_amdgpu_vm_bo_cs_enabled()) 2390 return; 2391 2392 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2393 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2394 if (mapping->bo_va && mapping->bo_va->base.bo) { 2395 struct amdgpu_bo *bo; 2396 2397 bo = mapping->bo_va->base.bo; 2398 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2399 continue; 2400 } 2401 2402 trace_amdgpu_vm_bo_cs(mapping); 2403 } 2404 } 2405 2406 /** 2407 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2408 * 2409 * @adev: amdgpu_device pointer 2410 * @bo_va: requested bo_va 2411 * 2412 * Remove @bo_va->bo from the requested vm. 2413 * 2414 * Object have to be reserved! 2415 */ 2416 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2417 struct amdgpu_bo_va *bo_va) 2418 { 2419 struct amdgpu_bo_va_mapping *mapping, *next; 2420 struct amdgpu_bo *bo = bo_va->base.bo; 2421 struct amdgpu_vm *vm = bo_va->base.vm; 2422 struct amdgpu_vm_bo_base **base; 2423 2424 if (bo) { 2425 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2426 vm->bulk_moveable = false; 2427 2428 for (base = &bo_va->base.bo->vm_bo; *base; 2429 base = &(*base)->next) { 2430 if (*base != &bo_va->base) 2431 continue; 2432 2433 *base = bo_va->base.next; 2434 break; 2435 } 2436 } 2437 2438 spin_lock(&vm->invalidated_lock); 2439 list_del(&bo_va->base.vm_status); 2440 spin_unlock(&vm->invalidated_lock); 2441 2442 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2443 list_del(&mapping->list); 2444 amdgpu_vm_it_remove(mapping, &vm->va); 2445 mapping->bo_va = NULL; 2446 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2447 list_add(&mapping->list, &vm->freed); 2448 } 2449 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2450 list_del(&mapping->list); 2451 amdgpu_vm_it_remove(mapping, &vm->va); 2452 amdgpu_vm_free_mapping(adev, vm, mapping, 2453 bo_va->last_pt_update); 2454 } 2455 2456 dma_fence_put(bo_va->last_pt_update); 2457 2458 if (bo && bo_va->is_xgmi) { 2459 mutex_lock(&adev->vm_manager.lock_pstate); 2460 if (--adev->vm_manager.xgmi_map_counter == 0) 2461 amdgpu_xgmi_set_pstate(adev, 0); 2462 mutex_unlock(&adev->vm_manager.lock_pstate); 2463 } 2464 2465 kfree(bo_va); 2466 } 2467 2468 /** 2469 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2470 * 2471 * @adev: amdgpu_device pointer 2472 * @bo: amdgpu buffer object 2473 * @evicted: is the BO evicted 2474 * 2475 * Mark @bo as invalid. 2476 */ 2477 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2478 struct amdgpu_bo *bo, bool evicted) 2479 { 2480 struct amdgpu_vm_bo_base *bo_base; 2481 2482 /* shadow bo doesn't have bo base, its validation needs its parent */ 2483 if (bo->parent && bo->parent->shadow == bo) 2484 bo = bo->parent; 2485 2486 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2487 struct amdgpu_vm *vm = bo_base->vm; 2488 2489 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2490 amdgpu_vm_bo_evicted(bo_base); 2491 continue; 2492 } 2493 2494 if (bo_base->moved) 2495 continue; 2496 bo_base->moved = true; 2497 2498 if (bo->tbo.type == ttm_bo_type_kernel) 2499 amdgpu_vm_bo_relocated(bo_base); 2500 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2501 amdgpu_vm_bo_moved(bo_base); 2502 else 2503 amdgpu_vm_bo_invalidated(bo_base); 2504 } 2505 } 2506 2507 /** 2508 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2509 * 2510 * @vm_size: VM size 2511 * 2512 * Returns: 2513 * VM page table as power of two 2514 */ 2515 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2516 { 2517 /* Total bits covered by PD + PTs */ 2518 unsigned bits = ilog2(vm_size) + 18; 2519 2520 /* Make sure the PD is 4K in size up to 8GB address space. 2521 Above that split equal between PD and PTs */ 2522 if (vm_size <= 8) 2523 return (bits - 9); 2524 else 2525 return ((bits + 3) / 2); 2526 } 2527 2528 /** 2529 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2530 * 2531 * @adev: amdgpu_device pointer 2532 * @min_vm_size: the minimum vm size in GB if it's set auto 2533 * @fragment_size_default: Default PTE fragment size 2534 * @max_level: max VMPT level 2535 * @max_bits: max address space size in bits 2536 * 2537 */ 2538 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2539 uint32_t fragment_size_default, unsigned max_level, 2540 unsigned max_bits) 2541 { 2542 unsigned int max_size = 1 << (max_bits - 30); 2543 unsigned int vm_size; 2544 uint64_t tmp; 2545 2546 /* adjust vm size first */ 2547 if (amdgpu_vm_size != -1) { 2548 vm_size = amdgpu_vm_size; 2549 if (vm_size > max_size) { 2550 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2551 amdgpu_vm_size, max_size); 2552 vm_size = max_size; 2553 } 2554 } else { 2555 struct sysinfo si; 2556 unsigned int phys_ram_gb; 2557 2558 /* Optimal VM size depends on the amount of physical 2559 * RAM available. Underlying requirements and 2560 * assumptions: 2561 * 2562 * - Need to map system memory and VRAM from all GPUs 2563 * - VRAM from other GPUs not known here 2564 * - Assume VRAM <= system memory 2565 * - On GFX8 and older, VM space can be segmented for 2566 * different MTYPEs 2567 * - Need to allow room for fragmentation, guard pages etc. 2568 * 2569 * This adds up to a rough guess of system memory x3. 2570 * Round up to power of two to maximize the available 2571 * VM size with the given page table size. 2572 */ 2573 si_meminfo(&si); 2574 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2575 (1 << 30) - 1) >> 30; 2576 vm_size = roundup_pow_of_two( 2577 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2578 } 2579 2580 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2581 2582 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2583 if (amdgpu_vm_block_size != -1) 2584 tmp >>= amdgpu_vm_block_size - 9; 2585 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2586 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2587 switch (adev->vm_manager.num_level) { 2588 case 3: 2589 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2590 break; 2591 case 2: 2592 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2593 break; 2594 case 1: 2595 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2596 break; 2597 default: 2598 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2599 } 2600 /* block size depends on vm size and hw setup*/ 2601 if (amdgpu_vm_block_size != -1) 2602 adev->vm_manager.block_size = 2603 min((unsigned)amdgpu_vm_block_size, max_bits 2604 - AMDGPU_GPU_PAGE_SHIFT 2605 - 9 * adev->vm_manager.num_level); 2606 else if (adev->vm_manager.num_level > 1) 2607 adev->vm_manager.block_size = 9; 2608 else 2609 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2610 2611 if (amdgpu_vm_fragment_size == -1) 2612 adev->vm_manager.fragment_size = fragment_size_default; 2613 else 2614 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2615 2616 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2617 vm_size, adev->vm_manager.num_level + 1, 2618 adev->vm_manager.block_size, 2619 adev->vm_manager.fragment_size); 2620 } 2621 2622 /** 2623 * amdgpu_vm_wait_idle - wait for the VM to become idle 2624 * 2625 * @vm: VM object to wait for 2626 * @timeout: timeout to wait for VM to become idle 2627 */ 2628 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2629 { 2630 return reservation_object_wait_timeout_rcu(vm->root.base.bo->tbo.resv, 2631 true, true, timeout); 2632 } 2633 2634 /** 2635 * amdgpu_vm_init - initialize a vm instance 2636 * 2637 * @adev: amdgpu_device pointer 2638 * @vm: requested vm 2639 * @vm_context: Indicates if it GFX or Compute context 2640 * @pasid: Process address space identifier 2641 * 2642 * Init @vm fields. 2643 * 2644 * Returns: 2645 * 0 for success, error for failure. 2646 */ 2647 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2648 int vm_context, unsigned int pasid) 2649 { 2650 struct amdgpu_bo_param bp; 2651 struct amdgpu_bo *root; 2652 int r, i; 2653 2654 vm->va = RB_ROOT_CACHED; 2655 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2656 vm->reserved_vmid[i] = NULL; 2657 INIT_LIST_HEAD(&vm->evicted); 2658 INIT_LIST_HEAD(&vm->relocated); 2659 INIT_LIST_HEAD(&vm->moved); 2660 INIT_LIST_HEAD(&vm->idle); 2661 INIT_LIST_HEAD(&vm->invalidated); 2662 spin_lock_init(&vm->invalidated_lock); 2663 INIT_LIST_HEAD(&vm->freed); 2664 2665 /* create scheduler entity for page table updates */ 2666 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2667 adev->vm_manager.vm_pte_num_rqs, NULL); 2668 if (r) 2669 return r; 2670 2671 vm->pte_support_ats = false; 2672 2673 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2674 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2675 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2676 2677 if (adev->asic_type == CHIP_RAVEN) 2678 vm->pte_support_ats = true; 2679 } else { 2680 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2681 AMDGPU_VM_USE_CPU_FOR_GFX); 2682 } 2683 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2684 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2685 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2686 "CPU update of VM recommended only for large BAR system\n"); 2687 2688 if (vm->use_cpu_for_update) 2689 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2690 else 2691 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2692 vm->last_update = NULL; 2693 2694 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 2695 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2696 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2697 r = amdgpu_bo_create(adev, &bp, &root); 2698 if (r) 2699 goto error_free_sched_entity; 2700 2701 r = amdgpu_bo_reserve(root, true); 2702 if (r) 2703 goto error_free_root; 2704 2705 r = reservation_object_reserve_shared(root->tbo.resv, 1); 2706 if (r) 2707 goto error_unreserve; 2708 2709 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2710 2711 r = amdgpu_vm_clear_bo(adev, vm, root); 2712 if (r) 2713 goto error_unreserve; 2714 2715 amdgpu_bo_unreserve(vm->root.base.bo); 2716 2717 if (pasid) { 2718 unsigned long flags; 2719 2720 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2721 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2722 GFP_ATOMIC); 2723 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2724 if (r < 0) 2725 goto error_free_root; 2726 2727 vm->pasid = pasid; 2728 } 2729 2730 INIT_KFIFO(vm->faults); 2731 2732 return 0; 2733 2734 error_unreserve: 2735 amdgpu_bo_unreserve(vm->root.base.bo); 2736 2737 error_free_root: 2738 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2739 amdgpu_bo_unref(&vm->root.base.bo); 2740 vm->root.base.bo = NULL; 2741 2742 error_free_sched_entity: 2743 drm_sched_entity_destroy(&vm->entity); 2744 2745 return r; 2746 } 2747 2748 /** 2749 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2750 * 2751 * @adev: amdgpu_device pointer 2752 * @vm: requested vm 2753 * 2754 * This only works on GFX VMs that don't have any BOs added and no 2755 * page tables allocated yet. 2756 * 2757 * Changes the following VM parameters: 2758 * - use_cpu_for_update 2759 * - pte_supports_ats 2760 * - pasid (old PASID is released, because compute manages its own PASIDs) 2761 * 2762 * Reinitializes the page directory to reflect the changed ATS 2763 * setting. 2764 * 2765 * Returns: 2766 * 0 for success, -errno for errors. 2767 */ 2768 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 2769 { 2770 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2771 int r; 2772 2773 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2774 if (r) 2775 return r; 2776 2777 /* Sanity checks */ 2778 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2779 r = -EINVAL; 2780 goto unreserve_bo; 2781 } 2782 2783 if (pasid) { 2784 unsigned long flags; 2785 2786 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2787 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2788 GFP_ATOMIC); 2789 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2790 2791 if (r == -ENOSPC) 2792 goto unreserve_bo; 2793 r = 0; 2794 } 2795 2796 /* Check if PD needs to be reinitialized and do it before 2797 * changing any other state, in case it fails. 2798 */ 2799 if (pte_support_ats != vm->pte_support_ats) { 2800 vm->pte_support_ats = pte_support_ats; 2801 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo); 2802 if (r) 2803 goto free_idr; 2804 } 2805 2806 /* Update VM state */ 2807 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2808 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2809 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2810 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2811 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2812 "CPU update of VM recommended only for large BAR system\n"); 2813 2814 if (vm->pasid) { 2815 unsigned long flags; 2816 2817 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2818 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2819 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2820 2821 /* Free the original amdgpu allocated pasid 2822 * Will be replaced with kfd allocated pasid 2823 */ 2824 amdgpu_pasid_free(vm->pasid); 2825 vm->pasid = 0; 2826 } 2827 2828 /* Free the shadow bo for compute VM */ 2829 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2830 2831 if (pasid) 2832 vm->pasid = pasid; 2833 2834 goto unreserve_bo; 2835 2836 free_idr: 2837 if (pasid) { 2838 unsigned long flags; 2839 2840 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2841 idr_remove(&adev->vm_manager.pasid_idr, pasid); 2842 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2843 } 2844 unreserve_bo: 2845 amdgpu_bo_unreserve(vm->root.base.bo); 2846 return r; 2847 } 2848 2849 /** 2850 * amdgpu_vm_release_compute - release a compute vm 2851 * @adev: amdgpu_device pointer 2852 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2853 * 2854 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2855 * pasid from vm. Compute should stop use of vm after this call. 2856 */ 2857 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2858 { 2859 if (vm->pasid) { 2860 unsigned long flags; 2861 2862 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2863 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2864 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2865 } 2866 vm->pasid = 0; 2867 } 2868 2869 /** 2870 * amdgpu_vm_fini - tear down a vm instance 2871 * 2872 * @adev: amdgpu_device pointer 2873 * @vm: requested vm 2874 * 2875 * Tear down @vm. 2876 * Unbind the VM and remove all bos from the vm bo list 2877 */ 2878 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2879 { 2880 struct amdgpu_bo_va_mapping *mapping, *tmp; 2881 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2882 struct amdgpu_bo *root; 2883 int i, r; 2884 2885 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2886 2887 if (vm->pasid) { 2888 unsigned long flags; 2889 2890 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2891 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2892 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2893 } 2894 2895 drm_sched_entity_destroy(&vm->entity); 2896 2897 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2898 dev_err(adev->dev, "still active bo inside vm\n"); 2899 } 2900 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2901 &vm->va.rb_root, rb) { 2902 /* Don't remove the mapping here, we don't want to trigger a 2903 * rebalance and the tree is about to be destroyed anyway. 2904 */ 2905 list_del(&mapping->list); 2906 kfree(mapping); 2907 } 2908 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2909 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2910 amdgpu_vm_prt_fini(adev, vm); 2911 prt_fini_needed = false; 2912 } 2913 2914 list_del(&mapping->list); 2915 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2916 } 2917 2918 root = amdgpu_bo_ref(vm->root.base.bo); 2919 r = amdgpu_bo_reserve(root, true); 2920 if (r) { 2921 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2922 } else { 2923 amdgpu_vm_free_pts(adev, vm, NULL); 2924 amdgpu_bo_unreserve(root); 2925 } 2926 amdgpu_bo_unref(&root); 2927 WARN_ON(vm->root.base.bo); 2928 dma_fence_put(vm->last_update); 2929 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2930 amdgpu_vmid_free_reserved(adev, vm, i); 2931 } 2932 2933 /** 2934 * amdgpu_vm_manager_init - init the VM manager 2935 * 2936 * @adev: amdgpu_device pointer 2937 * 2938 * Initialize the VM manager structures 2939 */ 2940 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2941 { 2942 unsigned i; 2943 2944 amdgpu_vmid_mgr_init(adev); 2945 2946 adev->vm_manager.fence_context = 2947 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2948 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2949 adev->vm_manager.seqno[i] = 0; 2950 2951 spin_lock_init(&adev->vm_manager.prt_lock); 2952 atomic_set(&adev->vm_manager.num_prt_users, 0); 2953 2954 /* If not overridden by the user, by default, only in large BAR systems 2955 * Compute VM tables will be updated by CPU 2956 */ 2957 #ifdef CONFIG_X86_64 2958 if (amdgpu_vm_update_mode == -1) { 2959 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 2960 adev->vm_manager.vm_update_mode = 2961 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2962 else 2963 adev->vm_manager.vm_update_mode = 0; 2964 } else 2965 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2966 #else 2967 adev->vm_manager.vm_update_mode = 0; 2968 #endif 2969 2970 idr_init(&adev->vm_manager.pasid_idr); 2971 spin_lock_init(&adev->vm_manager.pasid_lock); 2972 2973 adev->vm_manager.xgmi_map_counter = 0; 2974 mutex_init(&adev->vm_manager.lock_pstate); 2975 } 2976 2977 /** 2978 * amdgpu_vm_manager_fini - cleanup VM manager 2979 * 2980 * @adev: amdgpu_device pointer 2981 * 2982 * Cleanup the VM manager and free resources. 2983 */ 2984 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2985 { 2986 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2987 idr_destroy(&adev->vm_manager.pasid_idr); 2988 2989 amdgpu_vmid_mgr_fini(adev); 2990 } 2991 2992 /** 2993 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2994 * 2995 * @dev: drm device pointer 2996 * @data: drm_amdgpu_vm 2997 * @filp: drm file pointer 2998 * 2999 * Returns: 3000 * 0 for success, -errno for errors. 3001 */ 3002 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3003 { 3004 union drm_amdgpu_vm *args = data; 3005 struct amdgpu_device *adev = dev->dev_private; 3006 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3007 int r; 3008 3009 switch (args->in.op) { 3010 case AMDGPU_VM_OP_RESERVE_VMID: 3011 /* current, we only have requirement to reserve vmid from gfxhub */ 3012 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3013 if (r) 3014 return r; 3015 break; 3016 case AMDGPU_VM_OP_UNRESERVE_VMID: 3017 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3018 break; 3019 default: 3020 return -EINVAL; 3021 } 3022 3023 return 0; 3024 } 3025 3026 /** 3027 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3028 * 3029 * @adev: drm device pointer 3030 * @pasid: PASID identifier for VM 3031 * @task_info: task_info to fill. 3032 */ 3033 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3034 struct amdgpu_task_info *task_info) 3035 { 3036 struct amdgpu_vm *vm; 3037 unsigned long flags; 3038 3039 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3040 3041 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3042 if (vm) 3043 *task_info = vm->task_info; 3044 3045 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3046 } 3047 3048 /** 3049 * amdgpu_vm_set_task_info - Sets VMs task info. 3050 * 3051 * @vm: vm for which to set the info 3052 */ 3053 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3054 { 3055 if (!vm->task_info.pid) { 3056 vm->task_info.pid = current->pid; 3057 get_task_comm(vm->task_info.task_name, current); 3058 3059 if (current->group_leader->mm == current->mm) { 3060 vm->task_info.tgid = current->group_leader->pid; 3061 get_task_comm(vm->task_info.process_name, current->group_leader); 3062 } 3063 } 3064 } 3065