1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 379 380 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 381 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 382 amdgpu_vm_bo_relocated(base); 383 else 384 amdgpu_vm_bo_idle(base); 385 386 if (bo->preferred_domains & 387 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 388 return; 389 390 /* 391 * we checked all the prerequisites, but it looks like this per vm bo 392 * is currently evicted. add the bo to the evicted list to make sure it 393 * is validated on next vm use to avoid fault. 394 * */ 395 amdgpu_vm_bo_evicted(base); 396 } 397 398 /** 399 * amdgpu_vm_pt_parent - get the parent page directory 400 * 401 * @pt: child page table 402 * 403 * Helper to get the parent entry for the child page table. NULL if we are at 404 * the root page directory. 405 */ 406 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 407 { 408 struct amdgpu_bo *parent = pt->bo->parent; 409 410 if (!parent) 411 return NULL; 412 413 return parent->vm_bo; 414 } 415 416 /* 417 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 418 */ 419 struct amdgpu_vm_pt_cursor { 420 uint64_t pfn; 421 struct amdgpu_vm_bo_base *parent; 422 struct amdgpu_vm_bo_base *entry; 423 unsigned level; 424 }; 425 426 /** 427 * amdgpu_vm_pt_start - start PD/PT walk 428 * 429 * @adev: amdgpu_device pointer 430 * @vm: amdgpu_vm structure 431 * @start: start address of the walk 432 * @cursor: state to initialize 433 * 434 * Initialize a amdgpu_vm_pt_cursor to start a walk. 435 */ 436 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 437 struct amdgpu_vm *vm, uint64_t start, 438 struct amdgpu_vm_pt_cursor *cursor) 439 { 440 cursor->pfn = start; 441 cursor->parent = NULL; 442 cursor->entry = &vm->root; 443 cursor->level = adev->vm_manager.root_level; 444 } 445 446 /** 447 * amdgpu_vm_pt_descendant - go to child node 448 * 449 * @adev: amdgpu_device pointer 450 * @cursor: current state 451 * 452 * Walk to the child node of the current node. 453 * Returns: 454 * True if the walk was possible, false otherwise. 455 */ 456 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 457 struct amdgpu_vm_pt_cursor *cursor) 458 { 459 unsigned mask, shift, idx; 460 461 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 462 !cursor->entry->bo) 463 return false; 464 465 mask = amdgpu_vm_entries_mask(adev, cursor->level); 466 shift = amdgpu_vm_level_shift(adev, cursor->level); 467 468 ++cursor->level; 469 idx = (cursor->pfn >> shift) & mask; 470 cursor->parent = cursor->entry; 471 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 472 return true; 473 } 474 475 /** 476 * amdgpu_vm_pt_sibling - go to sibling node 477 * 478 * @adev: amdgpu_device pointer 479 * @cursor: current state 480 * 481 * Walk to the sibling node of the current node. 482 * Returns: 483 * True if the walk was possible, false otherwise. 484 */ 485 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 486 struct amdgpu_vm_pt_cursor *cursor) 487 { 488 unsigned shift, num_entries; 489 490 /* Root doesn't have a sibling */ 491 if (!cursor->parent) 492 return false; 493 494 /* Go to our parents and see if we got a sibling */ 495 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 496 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 497 498 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 499 return false; 500 501 cursor->pfn += 1ULL << shift; 502 cursor->pfn &= ~((1ULL << shift) - 1); 503 ++cursor->entry; 504 return true; 505 } 506 507 /** 508 * amdgpu_vm_pt_ancestor - go to parent node 509 * 510 * @cursor: current state 511 * 512 * Walk to the parent node of the current node. 513 * Returns: 514 * True if the walk was possible, false otherwise. 515 */ 516 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 517 { 518 if (!cursor->parent) 519 return false; 520 521 --cursor->level; 522 cursor->entry = cursor->parent; 523 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 524 return true; 525 } 526 527 /** 528 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 529 * 530 * @adev: amdgpu_device pointer 531 * @cursor: current state 532 * 533 * Walk the PD/PT tree to the next node. 534 */ 535 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 536 struct amdgpu_vm_pt_cursor *cursor) 537 { 538 /* First try a newborn child */ 539 if (amdgpu_vm_pt_descendant(adev, cursor)) 540 return; 541 542 /* If that didn't worked try to find a sibling */ 543 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 544 /* No sibling, go to our parents and grandparents */ 545 if (!amdgpu_vm_pt_ancestor(cursor)) { 546 cursor->pfn = ~0ll; 547 return; 548 } 549 } 550 } 551 552 /** 553 * amdgpu_vm_pt_first_dfs - start a deep first search 554 * 555 * @adev: amdgpu_device structure 556 * @vm: amdgpu_vm structure 557 * @start: optional cursor to start with 558 * @cursor: state to initialize 559 * 560 * Starts a deep first traversal of the PD/PT tree. 561 */ 562 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 563 struct amdgpu_vm *vm, 564 struct amdgpu_vm_pt_cursor *start, 565 struct amdgpu_vm_pt_cursor *cursor) 566 { 567 if (start) 568 *cursor = *start; 569 else 570 amdgpu_vm_pt_start(adev, vm, 0, cursor); 571 while (amdgpu_vm_pt_descendant(adev, cursor)); 572 } 573 574 /** 575 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 576 * 577 * @start: starting point for the search 578 * @entry: current entry 579 * 580 * Returns: 581 * True when the search should continue, false otherwise. 582 */ 583 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 584 struct amdgpu_vm_bo_base *entry) 585 { 586 return entry && (!start || entry != start->entry); 587 } 588 589 /** 590 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 591 * 592 * @adev: amdgpu_device structure 593 * @cursor: current state 594 * 595 * Move the cursor to the next node in a deep first search. 596 */ 597 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 598 struct amdgpu_vm_pt_cursor *cursor) 599 { 600 if (!cursor->entry) 601 return; 602 603 if (!cursor->parent) 604 cursor->entry = NULL; 605 else if (amdgpu_vm_pt_sibling(adev, cursor)) 606 while (amdgpu_vm_pt_descendant(adev, cursor)); 607 else 608 amdgpu_vm_pt_ancestor(cursor); 609 } 610 611 /* 612 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 613 */ 614 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 615 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 617 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 618 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 619 620 /** 621 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 622 * 623 * @vm: vm providing the BOs 624 * @validated: head of validation list 625 * @entry: entry to add 626 * 627 * Add the page directory to the list of BOs to 628 * validate for command submission. 629 */ 630 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 631 struct list_head *validated, 632 struct amdgpu_bo_list_entry *entry) 633 { 634 entry->priority = 0; 635 entry->tv.bo = &vm->root.bo->tbo; 636 /* Two for VM updates, one for TTM and one for the CS job */ 637 entry->tv.num_shared = 4; 638 entry->user_pages = NULL; 639 list_add(&entry->tv.head, validated); 640 } 641 642 /** 643 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 644 * 645 * @adev: amdgpu device pointer 646 * @vm: vm providing the BOs 647 * 648 * Move all BOs to the end of LRU and remember their positions to put them 649 * together. 650 */ 651 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 652 struct amdgpu_vm *vm) 653 { 654 spin_lock(&adev->mman.bdev.lru_lock); 655 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 656 spin_unlock(&adev->mman.bdev.lru_lock); 657 } 658 659 /** 660 * amdgpu_vm_validate_pt_bos - validate the page table BOs 661 * 662 * @adev: amdgpu device pointer 663 * @vm: vm providing the BOs 664 * @validate: callback to do the validation 665 * @param: parameter for the validation callback 666 * 667 * Validate the page table BOs on command submission if neccessary. 668 * 669 * Returns: 670 * Validation result. 671 */ 672 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 673 int (*validate)(void *p, struct amdgpu_bo *bo), 674 void *param) 675 { 676 struct amdgpu_vm_bo_base *bo_base, *tmp; 677 int r; 678 679 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 680 struct amdgpu_bo *bo = bo_base->bo; 681 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 682 683 r = validate(param, bo); 684 if (r) 685 return r; 686 if (shadow) { 687 r = validate(param, shadow); 688 if (r) 689 return r; 690 } 691 692 if (bo->tbo.type != ttm_bo_type_kernel) { 693 amdgpu_vm_bo_moved(bo_base); 694 } else { 695 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 696 amdgpu_vm_bo_relocated(bo_base); 697 } 698 } 699 700 amdgpu_vm_eviction_lock(vm); 701 vm->evicting = false; 702 amdgpu_vm_eviction_unlock(vm); 703 704 return 0; 705 } 706 707 /** 708 * amdgpu_vm_ready - check VM is ready for updates 709 * 710 * @vm: VM to check 711 * 712 * Check if all VM PDs/PTs are ready for updates 713 * 714 * Returns: 715 * True if VM is not evicting. 716 */ 717 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 718 { 719 bool ret; 720 721 amdgpu_vm_eviction_lock(vm); 722 ret = !vm->evicting; 723 amdgpu_vm_eviction_unlock(vm); 724 725 return ret && list_empty(&vm->evicted); 726 } 727 728 /** 729 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 730 * 731 * @adev: amdgpu_device pointer 732 * @vm: VM to clear BO from 733 * @vmbo: BO to clear 734 * @immediate: use an immediate update 735 * 736 * Root PD needs to be reserved when calling this. 737 * 738 * Returns: 739 * 0 on success, errno otherwise. 740 */ 741 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 742 struct amdgpu_vm *vm, 743 struct amdgpu_bo_vm *vmbo, 744 bool immediate) 745 { 746 struct ttm_operation_ctx ctx = { true, false }; 747 unsigned level = adev->vm_manager.root_level; 748 struct amdgpu_vm_update_params params; 749 struct amdgpu_bo *ancestor = &vmbo->bo; 750 struct amdgpu_bo *bo = &vmbo->bo; 751 unsigned entries, ats_entries; 752 uint64_t addr; 753 int r, idx; 754 755 /* Figure out our place in the hierarchy */ 756 if (ancestor->parent) { 757 ++level; 758 while (ancestor->parent->parent) { 759 ++level; 760 ancestor = ancestor->parent; 761 } 762 } 763 764 entries = amdgpu_bo_size(bo) / 8; 765 if (!vm->pte_support_ats) { 766 ats_entries = 0; 767 768 } else if (!bo->parent) { 769 ats_entries = amdgpu_vm_num_ats_entries(adev); 770 ats_entries = min(ats_entries, entries); 771 entries -= ats_entries; 772 773 } else { 774 struct amdgpu_vm_bo_base *pt; 775 776 pt = ancestor->vm_bo; 777 ats_entries = amdgpu_vm_num_ats_entries(adev); 778 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 779 ats_entries = 0; 780 } else { 781 ats_entries = entries; 782 entries = 0; 783 } 784 } 785 786 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 787 if (r) 788 return r; 789 790 if (vmbo->shadow) { 791 struct amdgpu_bo *shadow = vmbo->shadow; 792 793 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 794 if (r) 795 return r; 796 } 797 798 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 799 return -ENODEV; 800 801 r = vm->update_funcs->map_table(vmbo); 802 if (r) 803 goto exit; 804 805 memset(¶ms, 0, sizeof(params)); 806 params.adev = adev; 807 params.vm = vm; 808 params.immediate = immediate; 809 810 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 811 if (r) 812 goto exit; 813 814 addr = 0; 815 if (ats_entries) { 816 uint64_t value = 0, flags; 817 818 flags = AMDGPU_PTE_DEFAULT_ATC; 819 if (level != AMDGPU_VM_PTB) { 820 /* Handle leaf PDEs as PTEs */ 821 flags |= AMDGPU_PDE_PTE; 822 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 823 } 824 825 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 826 value, flags); 827 if (r) 828 goto exit; 829 830 addr += ats_entries * 8; 831 } 832 833 if (entries) { 834 uint64_t value = 0, flags = 0; 835 836 if (adev->asic_type >= CHIP_VEGA10) { 837 if (level != AMDGPU_VM_PTB) { 838 /* Handle leaf PDEs as PTEs */ 839 flags |= AMDGPU_PDE_PTE; 840 amdgpu_gmc_get_vm_pde(adev, level, 841 &value, &flags); 842 } else { 843 /* Workaround for fault priority problem on GMC9 */ 844 flags = AMDGPU_PTE_EXECUTABLE; 845 } 846 } 847 848 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 849 value, flags); 850 if (r) 851 goto exit; 852 } 853 854 r = vm->update_funcs->commit(¶ms, NULL); 855 exit: 856 drm_dev_exit(idx); 857 return r; 858 } 859 860 /** 861 * amdgpu_vm_pt_create - create bo for PD/PT 862 * 863 * @adev: amdgpu_device pointer 864 * @vm: requesting vm 865 * @level: the page table level 866 * @immediate: use a immediate update 867 * @vmbo: pointer to the buffer object pointer 868 */ 869 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 870 struct amdgpu_vm *vm, 871 int level, bool immediate, 872 struct amdgpu_bo_vm **vmbo) 873 { 874 struct amdgpu_bo_param bp; 875 struct amdgpu_bo *bo; 876 struct dma_resv *resv; 877 unsigned int num_entries; 878 int r; 879 880 memset(&bp, 0, sizeof(bp)); 881 882 bp.size = amdgpu_vm_bo_size(adev, level); 883 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 884 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 885 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 886 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 887 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 888 889 if (level < AMDGPU_VM_PTB) 890 num_entries = amdgpu_vm_num_entries(adev, level); 891 else 892 num_entries = 0; 893 894 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 895 896 if (vm->use_cpu_for_update) 897 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 898 899 bp.type = ttm_bo_type_kernel; 900 bp.no_wait_gpu = immediate; 901 if (vm->root.bo) 902 bp.resv = vm->root.bo->tbo.base.resv; 903 904 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 905 if (r) 906 return r; 907 908 bo = &(*vmbo)->bo; 909 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 910 (*vmbo)->shadow = NULL; 911 return 0; 912 } 913 914 if (!bp.resv) 915 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 916 NULL)); 917 resv = bp.resv; 918 memset(&bp, 0, sizeof(bp)); 919 bp.size = amdgpu_vm_bo_size(adev, level); 920 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 921 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 922 bp.type = ttm_bo_type_kernel; 923 bp.resv = bo->tbo.base.resv; 924 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 925 926 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 927 928 if (!resv) 929 dma_resv_unlock(bo->tbo.base.resv); 930 931 if (r) { 932 amdgpu_bo_unref(&bo); 933 return r; 934 } 935 936 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 937 amdgpu_bo_add_to_shadow_list(*vmbo); 938 939 return 0; 940 } 941 942 /** 943 * amdgpu_vm_alloc_pts - Allocate a specific page table 944 * 945 * @adev: amdgpu_device pointer 946 * @vm: VM to allocate page tables for 947 * @cursor: Which page table to allocate 948 * @immediate: use an immediate update 949 * 950 * Make sure a specific page table or directory is allocated. 951 * 952 * Returns: 953 * 1 if page table needed to be allocated, 0 if page table was already 954 * allocated, negative errno if an error occurred. 955 */ 956 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 957 struct amdgpu_vm *vm, 958 struct amdgpu_vm_pt_cursor *cursor, 959 bool immediate) 960 { 961 struct amdgpu_vm_bo_base *entry = cursor->entry; 962 struct amdgpu_bo *pt_bo; 963 struct amdgpu_bo_vm *pt; 964 int r; 965 966 if (entry->bo) 967 return 0; 968 969 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 970 if (r) 971 return r; 972 973 /* Keep a reference to the root directory to avoid 974 * freeing them up in the wrong order. 975 */ 976 pt_bo = &pt->bo; 977 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 978 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 979 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 980 if (r) 981 goto error_free_pt; 982 983 return 0; 984 985 error_free_pt: 986 amdgpu_bo_unref(&pt->shadow); 987 amdgpu_bo_unref(&pt_bo); 988 return r; 989 } 990 991 /** 992 * amdgpu_vm_free_table - fre one PD/PT 993 * 994 * @entry: PDE to free 995 */ 996 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 997 { 998 struct amdgpu_bo *shadow; 999 1000 if (!entry->bo) 1001 return; 1002 1003 shadow = amdgpu_bo_shadowed(entry->bo); 1004 if (shadow) { 1005 ttm_bo_set_bulk_move(&shadow->tbo, NULL); 1006 amdgpu_bo_unref(&shadow); 1007 } 1008 1009 ttm_bo_set_bulk_move(&entry->bo->tbo, NULL); 1010 entry->bo->vm_bo = NULL; 1011 list_del(&entry->vm_status); 1012 amdgpu_bo_unref(&entry->bo); 1013 } 1014 1015 /** 1016 * amdgpu_vm_free_pts - free PD/PT levels 1017 * 1018 * @adev: amdgpu device structure 1019 * @vm: amdgpu vm structure 1020 * @start: optional cursor where to start freeing PDs/PTs 1021 * 1022 * Free the page directory or page table level and all sub levels. 1023 */ 1024 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1025 struct amdgpu_vm *vm, 1026 struct amdgpu_vm_pt_cursor *start) 1027 { 1028 struct amdgpu_vm_pt_cursor cursor; 1029 struct amdgpu_vm_bo_base *entry; 1030 1031 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1032 amdgpu_vm_free_table(entry); 1033 1034 if (start) 1035 amdgpu_vm_free_table(start->entry); 1036 } 1037 1038 /** 1039 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1040 * 1041 * @adev: amdgpu_device pointer 1042 */ 1043 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1044 { 1045 const struct amdgpu_ip_block *ip_block; 1046 bool has_compute_vm_bug; 1047 struct amdgpu_ring *ring; 1048 int i; 1049 1050 has_compute_vm_bug = false; 1051 1052 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1053 if (ip_block) { 1054 /* Compute has a VM bug for GFX version < 7. 1055 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1056 if (ip_block->version->major <= 7) 1057 has_compute_vm_bug = true; 1058 else if (ip_block->version->major == 8) 1059 if (adev->gfx.mec_fw_version < 673) 1060 has_compute_vm_bug = true; 1061 } 1062 1063 for (i = 0; i < adev->num_rings; i++) { 1064 ring = adev->rings[i]; 1065 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1066 /* only compute rings */ 1067 ring->has_compute_vm_bug = has_compute_vm_bug; 1068 else 1069 ring->has_compute_vm_bug = false; 1070 } 1071 } 1072 1073 /** 1074 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1075 * 1076 * @ring: ring on which the job will be submitted 1077 * @job: job to submit 1078 * 1079 * Returns: 1080 * True if sync is needed. 1081 */ 1082 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1083 struct amdgpu_job *job) 1084 { 1085 struct amdgpu_device *adev = ring->adev; 1086 unsigned vmhub = ring->funcs->vmhub; 1087 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1088 struct amdgpu_vmid *id; 1089 bool gds_switch_needed; 1090 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1091 1092 if (job->vmid == 0) 1093 return false; 1094 id = &id_mgr->ids[job->vmid]; 1095 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1096 id->gds_base != job->gds_base || 1097 id->gds_size != job->gds_size || 1098 id->gws_base != job->gws_base || 1099 id->gws_size != job->gws_size || 1100 id->oa_base != job->oa_base || 1101 id->oa_size != job->oa_size); 1102 1103 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1104 return true; 1105 1106 return vm_flush_needed || gds_switch_needed; 1107 } 1108 1109 /** 1110 * amdgpu_vm_flush - hardware flush the vm 1111 * 1112 * @ring: ring to use for flush 1113 * @job: related job 1114 * @need_pipe_sync: is pipe sync needed 1115 * 1116 * Emit a VM flush when it is necessary. 1117 * 1118 * Returns: 1119 * 0 on success, errno otherwise. 1120 */ 1121 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1122 bool need_pipe_sync) 1123 { 1124 struct amdgpu_device *adev = ring->adev; 1125 unsigned vmhub = ring->funcs->vmhub; 1126 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1127 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1128 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1129 id->gds_base != job->gds_base || 1130 id->gds_size != job->gds_size || 1131 id->gws_base != job->gws_base || 1132 id->gws_size != job->gws_size || 1133 id->oa_base != job->oa_base || 1134 id->oa_size != job->oa_size); 1135 bool vm_flush_needed = job->vm_needs_flush; 1136 struct dma_fence *fence = NULL; 1137 bool pasid_mapping_needed = false; 1138 unsigned patch_offset = 0; 1139 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1140 int r; 1141 1142 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1143 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1144 1145 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1146 gds_switch_needed = true; 1147 vm_flush_needed = true; 1148 pasid_mapping_needed = true; 1149 } 1150 1151 mutex_lock(&id_mgr->lock); 1152 if (id->pasid != job->pasid || !id->pasid_mapping || 1153 !dma_fence_is_signaled(id->pasid_mapping)) 1154 pasid_mapping_needed = true; 1155 mutex_unlock(&id_mgr->lock); 1156 1157 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1158 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1159 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1160 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1161 ring->funcs->emit_wreg; 1162 1163 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1164 return 0; 1165 1166 if (ring->funcs->init_cond_exec) 1167 patch_offset = amdgpu_ring_init_cond_exec(ring); 1168 1169 if (need_pipe_sync) 1170 amdgpu_ring_emit_pipeline_sync(ring); 1171 1172 if (vm_flush_needed) { 1173 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1174 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1175 } 1176 1177 if (pasid_mapping_needed) 1178 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1179 1180 if (vm_flush_needed || pasid_mapping_needed) { 1181 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1182 if (r) 1183 return r; 1184 } 1185 1186 if (vm_flush_needed) { 1187 mutex_lock(&id_mgr->lock); 1188 dma_fence_put(id->last_flush); 1189 id->last_flush = dma_fence_get(fence); 1190 id->current_gpu_reset_count = 1191 atomic_read(&adev->gpu_reset_counter); 1192 mutex_unlock(&id_mgr->lock); 1193 } 1194 1195 if (pasid_mapping_needed) { 1196 mutex_lock(&id_mgr->lock); 1197 id->pasid = job->pasid; 1198 dma_fence_put(id->pasid_mapping); 1199 id->pasid_mapping = dma_fence_get(fence); 1200 mutex_unlock(&id_mgr->lock); 1201 } 1202 dma_fence_put(fence); 1203 1204 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1205 id->gds_base = job->gds_base; 1206 id->gds_size = job->gds_size; 1207 id->gws_base = job->gws_base; 1208 id->gws_size = job->gws_size; 1209 id->oa_base = job->oa_base; 1210 id->oa_size = job->oa_size; 1211 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1212 job->gds_size, job->gws_base, 1213 job->gws_size, job->oa_base, 1214 job->oa_size); 1215 } 1216 1217 if (ring->funcs->patch_cond_exec) 1218 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1219 1220 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1221 if (ring->funcs->emit_switch_buffer) { 1222 amdgpu_ring_emit_switch_buffer(ring); 1223 amdgpu_ring_emit_switch_buffer(ring); 1224 } 1225 return 0; 1226 } 1227 1228 /** 1229 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1230 * 1231 * @vm: requested vm 1232 * @bo: requested buffer object 1233 * 1234 * Find @bo inside the requested vm. 1235 * Search inside the @bos vm list for the requested vm 1236 * Returns the found bo_va or NULL if none is found 1237 * 1238 * Object has to be reserved! 1239 * 1240 * Returns: 1241 * Found bo_va or NULL. 1242 */ 1243 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1244 struct amdgpu_bo *bo) 1245 { 1246 struct amdgpu_vm_bo_base *base; 1247 1248 for (base = bo->vm_bo; base; base = base->next) { 1249 if (base->vm != vm) 1250 continue; 1251 1252 return container_of(base, struct amdgpu_bo_va, base); 1253 } 1254 return NULL; 1255 } 1256 1257 /** 1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1259 * 1260 * @pages_addr: optional DMA address to use for lookup 1261 * @addr: the unmapped addr 1262 * 1263 * Look up the physical address of the page that the pte resolves 1264 * to. 1265 * 1266 * Returns: 1267 * The pointer for the page table entry. 1268 */ 1269 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1270 { 1271 uint64_t result; 1272 1273 /* page table offset */ 1274 result = pages_addr[addr >> PAGE_SHIFT]; 1275 1276 /* in case cpu page size != gpu page size*/ 1277 result |= addr & (~PAGE_MASK); 1278 1279 result &= 0xFFFFFFFFFFFFF000ULL; 1280 1281 return result; 1282 } 1283 1284 /** 1285 * amdgpu_vm_update_pde - update a single level in the hierarchy 1286 * 1287 * @params: parameters for the update 1288 * @vm: requested vm 1289 * @entry: entry to update 1290 * 1291 * Makes sure the requested entry in parent is up to date. 1292 */ 1293 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1294 struct amdgpu_vm *vm, 1295 struct amdgpu_vm_bo_base *entry) 1296 { 1297 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1298 struct amdgpu_bo *bo = parent->bo, *pbo; 1299 uint64_t pde, pt, flags; 1300 unsigned level; 1301 1302 for (level = 0, pbo = bo->parent; pbo; ++level) 1303 pbo = pbo->parent; 1304 1305 level += params->adev->vm_manager.root_level; 1306 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1307 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1308 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1309 1, 0, flags); 1310 } 1311 1312 /** 1313 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1314 * 1315 * @adev: amdgpu_device pointer 1316 * @vm: related vm 1317 * 1318 * Mark all PD level as invalid after an error. 1319 */ 1320 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1321 struct amdgpu_vm *vm) 1322 { 1323 struct amdgpu_vm_pt_cursor cursor; 1324 struct amdgpu_vm_bo_base *entry; 1325 1326 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1327 if (entry->bo && !entry->moved) 1328 amdgpu_vm_bo_relocated(entry); 1329 } 1330 1331 /** 1332 * amdgpu_vm_update_pdes - make sure that all directories are valid 1333 * 1334 * @adev: amdgpu_device pointer 1335 * @vm: requested vm 1336 * @immediate: submit immediately to the paging queue 1337 * 1338 * Makes sure all directories are up to date. 1339 * 1340 * Returns: 1341 * 0 for success, error for failure. 1342 */ 1343 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1344 struct amdgpu_vm *vm, bool immediate) 1345 { 1346 struct amdgpu_vm_update_params params; 1347 int r, idx; 1348 1349 if (list_empty(&vm->relocated)) 1350 return 0; 1351 1352 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1353 return -ENODEV; 1354 1355 memset(¶ms, 0, sizeof(params)); 1356 params.adev = adev; 1357 params.vm = vm; 1358 params.immediate = immediate; 1359 1360 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1361 if (r) 1362 goto exit; 1363 1364 while (!list_empty(&vm->relocated)) { 1365 struct amdgpu_vm_bo_base *entry; 1366 1367 entry = list_first_entry(&vm->relocated, 1368 struct amdgpu_vm_bo_base, 1369 vm_status); 1370 amdgpu_vm_bo_idle(entry); 1371 1372 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1373 if (r) 1374 goto error; 1375 } 1376 1377 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1378 if (r) 1379 goto error; 1380 drm_dev_exit(idx); 1381 return 0; 1382 1383 error: 1384 amdgpu_vm_invalidate_pds(adev, vm); 1385 exit: 1386 drm_dev_exit(idx); 1387 return r; 1388 } 1389 1390 /* 1391 * amdgpu_vm_update_flags - figure out flags for PTE updates 1392 * 1393 * Make sure to set the right flags for the PTEs at the desired level. 1394 */ 1395 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1396 struct amdgpu_bo_vm *pt, unsigned int level, 1397 uint64_t pe, uint64_t addr, 1398 unsigned int count, uint32_t incr, 1399 uint64_t flags) 1400 1401 { 1402 if (level != AMDGPU_VM_PTB) { 1403 flags |= AMDGPU_PDE_PTE; 1404 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1405 1406 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1407 !(flags & AMDGPU_PTE_VALID) && 1408 !(flags & AMDGPU_PTE_PRT)) { 1409 1410 /* Workaround for fault priority problem on GMC9 */ 1411 flags |= AMDGPU_PTE_EXECUTABLE; 1412 } 1413 1414 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1415 flags); 1416 } 1417 1418 /** 1419 * amdgpu_vm_fragment - get fragment for PTEs 1420 * 1421 * @params: see amdgpu_vm_update_params definition 1422 * @start: first PTE to handle 1423 * @end: last PTE to handle 1424 * @flags: hw mapping flags 1425 * @frag: resulting fragment size 1426 * @frag_end: end of this fragment 1427 * 1428 * Returns the first possible fragment for the start and end address. 1429 */ 1430 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1431 uint64_t start, uint64_t end, uint64_t flags, 1432 unsigned int *frag, uint64_t *frag_end) 1433 { 1434 /** 1435 * The MC L1 TLB supports variable sized pages, based on a fragment 1436 * field in the PTE. When this field is set to a non-zero value, page 1437 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1438 * flags are considered valid for all PTEs within the fragment range 1439 * and corresponding mappings are assumed to be physically contiguous. 1440 * 1441 * The L1 TLB can store a single PTE for the whole fragment, 1442 * significantly increasing the space available for translation 1443 * caching. This leads to large improvements in throughput when the 1444 * TLB is under pressure. 1445 * 1446 * The L2 TLB distributes small and large fragments into two 1447 * asymmetric partitions. The large fragment cache is significantly 1448 * larger. Thus, we try to use large fragments wherever possible. 1449 * Userspace can support this by aligning virtual base address and 1450 * allocation size to the fragment size. 1451 * 1452 * Starting with Vega10 the fragment size only controls the L1. The L2 1453 * is now directly feed with small/huge/giant pages from the walker. 1454 */ 1455 unsigned max_frag; 1456 1457 if (params->adev->asic_type < CHIP_VEGA10) 1458 max_frag = params->adev->vm_manager.fragment_size; 1459 else 1460 max_frag = 31; 1461 1462 /* system pages are non continuously */ 1463 if (params->pages_addr) { 1464 *frag = 0; 1465 *frag_end = end; 1466 return; 1467 } 1468 1469 /* This intentionally wraps around if no bit is set */ 1470 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1471 if (*frag >= max_frag) { 1472 *frag = max_frag; 1473 *frag_end = end & ~((1ULL << max_frag) - 1); 1474 } else { 1475 *frag_end = start + (1 << *frag); 1476 } 1477 } 1478 1479 /** 1480 * amdgpu_vm_update_ptes - make sure that page tables are valid 1481 * 1482 * @params: see amdgpu_vm_update_params definition 1483 * @start: start of GPU address range 1484 * @end: end of GPU address range 1485 * @dst: destination address to map to, the next dst inside the function 1486 * @flags: mapping flags 1487 * 1488 * Update the page tables in the range @start - @end. 1489 * 1490 * Returns: 1491 * 0 for success, -EINVAL for failure. 1492 */ 1493 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1494 uint64_t start, uint64_t end, 1495 uint64_t dst, uint64_t flags) 1496 { 1497 struct amdgpu_device *adev = params->adev; 1498 struct amdgpu_vm_pt_cursor cursor; 1499 uint64_t frag_start = start, frag_end; 1500 unsigned int frag; 1501 int r; 1502 1503 /* figure out the initial fragment */ 1504 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1505 1506 /* walk over the address space and update the PTs */ 1507 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1508 while (cursor.pfn < end) { 1509 unsigned shift, parent_shift, mask; 1510 uint64_t incr, entry_end, pe_start; 1511 struct amdgpu_bo *pt; 1512 1513 if (!params->unlocked) { 1514 /* make sure that the page tables covering the 1515 * address range are actually allocated 1516 */ 1517 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1518 &cursor, params->immediate); 1519 if (r) 1520 return r; 1521 } 1522 1523 shift = amdgpu_vm_level_shift(adev, cursor.level); 1524 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1525 if (params->unlocked) { 1526 /* Unlocked updates are only allowed on the leaves */ 1527 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1528 continue; 1529 } else if (adev->asic_type < CHIP_VEGA10 && 1530 (flags & AMDGPU_PTE_VALID)) { 1531 /* No huge page support before GMC v9 */ 1532 if (cursor.level != AMDGPU_VM_PTB) { 1533 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1534 return -ENOENT; 1535 continue; 1536 } 1537 } else if (frag < shift) { 1538 /* We can't use this level when the fragment size is 1539 * smaller than the address shift. Go to the next 1540 * child entry and try again. 1541 */ 1542 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1543 continue; 1544 } else if (frag >= parent_shift) { 1545 /* If the fragment size is even larger than the parent 1546 * shift we should go up one level and check it again. 1547 */ 1548 if (!amdgpu_vm_pt_ancestor(&cursor)) 1549 return -EINVAL; 1550 continue; 1551 } 1552 1553 pt = cursor.entry->bo; 1554 if (!pt) { 1555 /* We need all PDs and PTs for mapping something, */ 1556 if (flags & AMDGPU_PTE_VALID) 1557 return -ENOENT; 1558 1559 /* but unmapping something can happen at a higher 1560 * level. 1561 */ 1562 if (!amdgpu_vm_pt_ancestor(&cursor)) 1563 return -EINVAL; 1564 1565 pt = cursor.entry->bo; 1566 shift = parent_shift; 1567 frag_end = max(frag_end, ALIGN(frag_start + 1, 1568 1ULL << shift)); 1569 } 1570 1571 /* Looks good so far, calculate parameters for the update */ 1572 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1573 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1574 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1575 entry_end = ((uint64_t)mask + 1) << shift; 1576 entry_end += cursor.pfn & ~(entry_end - 1); 1577 entry_end = min(entry_end, end); 1578 1579 do { 1580 struct amdgpu_vm *vm = params->vm; 1581 uint64_t upd_end = min(entry_end, frag_end); 1582 unsigned nptes = (upd_end - frag_start) >> shift; 1583 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1584 1585 /* This can happen when we set higher level PDs to 1586 * silent to stop fault floods. 1587 */ 1588 nptes = max(nptes, 1u); 1589 1590 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1591 min(nptes, 32u), dst, incr, upd_flags, 1592 vm->task_info.pid, 1593 vm->immediate.fence_context); 1594 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1595 cursor.level, pe_start, dst, 1596 nptes, incr, upd_flags); 1597 1598 pe_start += nptes * 8; 1599 dst += nptes * incr; 1600 1601 frag_start = upd_end; 1602 if (frag_start >= frag_end) { 1603 /* figure out the next fragment */ 1604 amdgpu_vm_fragment(params, frag_start, end, 1605 flags, &frag, &frag_end); 1606 if (frag < shift) 1607 break; 1608 } 1609 } while (frag_start < entry_end); 1610 1611 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1612 /* Free all child entries. 1613 * Update the tables with the flags and addresses and free up subsequent 1614 * tables in the case of huge pages or freed up areas. 1615 * This is the maximum you can free, because all other page tables are not 1616 * completely covered by the range and so potentially still in use. 1617 */ 1618 while (cursor.pfn < frag_start) { 1619 /* Make sure previous mapping is freed */ 1620 if (cursor.entry->bo) { 1621 params->table_freed = true; 1622 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1623 } 1624 amdgpu_vm_pt_next(adev, &cursor); 1625 } 1626 1627 } else if (frag >= shift) { 1628 /* or just move on to the next on the same level. */ 1629 amdgpu_vm_pt_next(adev, &cursor); 1630 } 1631 } 1632 1633 return 0; 1634 } 1635 1636 /** 1637 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1638 * 1639 * @adev: amdgpu_device pointer of the VM 1640 * @bo_adev: amdgpu_device pointer of the mapped BO 1641 * @vm: requested vm 1642 * @immediate: immediate submission in a page fault 1643 * @unlocked: unlocked invalidation during MM callback 1644 * @resv: fences we need to sync to 1645 * @start: start of mapped range 1646 * @last: last mapped entry 1647 * @flags: flags for the entries 1648 * @offset: offset into nodes and pages_addr 1649 * @res: ttm_resource to map 1650 * @pages_addr: DMA addresses to use for mapping 1651 * @fence: optional resulting fence 1652 * @table_freed: return true if page table is freed 1653 * 1654 * Fill in the page table entries between @start and @last. 1655 * 1656 * Returns: 1657 * 0 for success, -EINVAL for failure. 1658 */ 1659 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1660 struct amdgpu_device *bo_adev, 1661 struct amdgpu_vm *vm, bool immediate, 1662 bool unlocked, struct dma_resv *resv, 1663 uint64_t start, uint64_t last, 1664 uint64_t flags, uint64_t offset, 1665 struct ttm_resource *res, 1666 dma_addr_t *pages_addr, 1667 struct dma_fence **fence, 1668 bool *table_freed) 1669 { 1670 struct amdgpu_vm_update_params params; 1671 struct amdgpu_res_cursor cursor; 1672 enum amdgpu_sync_mode sync_mode; 1673 int r, idx; 1674 1675 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1676 return -ENODEV; 1677 1678 memset(¶ms, 0, sizeof(params)); 1679 params.adev = adev; 1680 params.vm = vm; 1681 params.immediate = immediate; 1682 params.pages_addr = pages_addr; 1683 params.unlocked = unlocked; 1684 1685 /* Implicitly sync to command submissions in the same VM before 1686 * unmapping. Sync to moving fences before mapping. 1687 */ 1688 if (!(flags & AMDGPU_PTE_VALID)) 1689 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1690 else 1691 sync_mode = AMDGPU_SYNC_EXPLICIT; 1692 1693 amdgpu_vm_eviction_lock(vm); 1694 if (vm->evicting) { 1695 r = -EBUSY; 1696 goto error_unlock; 1697 } 1698 1699 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1700 struct dma_fence *tmp = dma_fence_get_stub(); 1701 1702 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1703 swap(vm->last_unlocked, tmp); 1704 dma_fence_put(tmp); 1705 } 1706 1707 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1708 if (r) 1709 goto error_unlock; 1710 1711 amdgpu_res_first(pages_addr ? NULL : res, offset, 1712 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1713 while (cursor.remaining) { 1714 uint64_t tmp, num_entries, addr; 1715 1716 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1717 if (pages_addr) { 1718 bool contiguous = true; 1719 1720 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1721 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1722 uint64_t count; 1723 1724 contiguous = pages_addr[pfn + 1] == 1725 pages_addr[pfn] + PAGE_SIZE; 1726 1727 tmp = num_entries / 1728 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1729 for (count = 2; count < tmp; ++count) { 1730 uint64_t idx = pfn + count; 1731 1732 if (contiguous != (pages_addr[idx] == 1733 pages_addr[idx - 1] + PAGE_SIZE)) 1734 break; 1735 } 1736 num_entries = count * 1737 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1738 } 1739 1740 if (!contiguous) { 1741 addr = cursor.start; 1742 params.pages_addr = pages_addr; 1743 } else { 1744 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1745 params.pages_addr = NULL; 1746 } 1747 1748 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1749 addr = bo_adev->vm_manager.vram_base_offset + 1750 cursor.start; 1751 } else { 1752 addr = 0; 1753 } 1754 1755 tmp = start + num_entries; 1756 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1757 if (r) 1758 goto error_unlock; 1759 1760 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1761 start = tmp; 1762 } 1763 1764 r = vm->update_funcs->commit(¶ms, fence); 1765 1766 if (table_freed) 1767 *table_freed = *table_freed || params.table_freed; 1768 1769 error_unlock: 1770 amdgpu_vm_eviction_unlock(vm); 1771 drm_dev_exit(idx); 1772 return r; 1773 } 1774 1775 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1776 uint64_t *gtt_mem, uint64_t *cpu_mem) 1777 { 1778 struct amdgpu_bo_va *bo_va, *tmp; 1779 1780 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1781 if (!bo_va->base.bo) 1782 continue; 1783 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1784 gtt_mem, cpu_mem); 1785 } 1786 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1787 if (!bo_va->base.bo) 1788 continue; 1789 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1790 gtt_mem, cpu_mem); 1791 } 1792 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1793 if (!bo_va->base.bo) 1794 continue; 1795 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1796 gtt_mem, cpu_mem); 1797 } 1798 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1799 if (!bo_va->base.bo) 1800 continue; 1801 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1802 gtt_mem, cpu_mem); 1803 } 1804 spin_lock(&vm->invalidated_lock); 1805 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1806 if (!bo_va->base.bo) 1807 continue; 1808 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1809 gtt_mem, cpu_mem); 1810 } 1811 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1812 if (!bo_va->base.bo) 1813 continue; 1814 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1815 gtt_mem, cpu_mem); 1816 } 1817 spin_unlock(&vm->invalidated_lock); 1818 } 1819 /** 1820 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1821 * 1822 * @adev: amdgpu_device pointer 1823 * @bo_va: requested BO and VM object 1824 * @clear: if true clear the entries 1825 * @table_freed: return true if page table is freed 1826 * 1827 * Fill in the page table entries for @bo_va. 1828 * 1829 * Returns: 1830 * 0 for success, -EINVAL for failure. 1831 */ 1832 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1833 bool clear, bool *table_freed) 1834 { 1835 struct amdgpu_bo *bo = bo_va->base.bo; 1836 struct amdgpu_vm *vm = bo_va->base.vm; 1837 struct amdgpu_bo_va_mapping *mapping; 1838 dma_addr_t *pages_addr = NULL; 1839 struct ttm_resource *mem; 1840 struct dma_fence **last_update; 1841 struct dma_resv *resv; 1842 uint64_t flags; 1843 struct amdgpu_device *bo_adev = adev; 1844 int r; 1845 1846 if (clear || !bo) { 1847 mem = NULL; 1848 resv = vm->root.bo->tbo.base.resv; 1849 } else { 1850 struct drm_gem_object *obj = &bo->tbo.base; 1851 1852 resv = bo->tbo.base.resv; 1853 if (obj->import_attach && bo_va->is_xgmi) { 1854 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1855 struct drm_gem_object *gobj = dma_buf->priv; 1856 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1857 1858 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1859 bo = gem_to_amdgpu_bo(gobj); 1860 } 1861 mem = bo->tbo.resource; 1862 if (mem->mem_type == TTM_PL_TT || 1863 mem->mem_type == AMDGPU_PL_PREEMPT) 1864 pages_addr = bo->tbo.ttm->dma_address; 1865 } 1866 1867 if (bo) { 1868 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1869 1870 if (amdgpu_bo_encrypted(bo)) 1871 flags |= AMDGPU_PTE_TMZ; 1872 1873 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1874 } else { 1875 flags = 0x0; 1876 } 1877 1878 if (clear || (bo && bo->tbo.base.resv == 1879 vm->root.bo->tbo.base.resv)) 1880 last_update = &vm->last_update; 1881 else 1882 last_update = &bo_va->last_pt_update; 1883 1884 if (!clear && bo_va->base.moved) { 1885 bo_va->base.moved = false; 1886 list_splice_init(&bo_va->valids, &bo_va->invalids); 1887 1888 } else if (bo_va->cleared != clear) { 1889 list_splice_init(&bo_va->valids, &bo_va->invalids); 1890 } 1891 1892 list_for_each_entry(mapping, &bo_va->invalids, list) { 1893 uint64_t update_flags = flags; 1894 1895 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1896 * but in case of something, we filter the flags in first place 1897 */ 1898 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1899 update_flags &= ~AMDGPU_PTE_READABLE; 1900 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1901 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1902 1903 /* Apply ASIC specific mapping flags */ 1904 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1905 1906 trace_amdgpu_vm_bo_update(mapping); 1907 1908 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1909 resv, mapping->start, 1910 mapping->last, update_flags, 1911 mapping->offset, mem, 1912 pages_addr, last_update, table_freed); 1913 if (r) 1914 return r; 1915 } 1916 1917 /* If the BO is not in its preferred location add it back to 1918 * the evicted list so that it gets validated again on the 1919 * next command submission. 1920 */ 1921 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1922 uint32_t mem_type = bo->tbo.resource->mem_type; 1923 1924 if (!(bo->preferred_domains & 1925 amdgpu_mem_type_to_domain(mem_type))) 1926 amdgpu_vm_bo_evicted(&bo_va->base); 1927 else 1928 amdgpu_vm_bo_idle(&bo_va->base); 1929 } else { 1930 amdgpu_vm_bo_done(&bo_va->base); 1931 } 1932 1933 list_splice_init(&bo_va->invalids, &bo_va->valids); 1934 bo_va->cleared = clear; 1935 1936 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1937 list_for_each_entry(mapping, &bo_va->valids, list) 1938 trace_amdgpu_vm_bo_mapping(mapping); 1939 } 1940 1941 return 0; 1942 } 1943 1944 /** 1945 * amdgpu_vm_update_prt_state - update the global PRT state 1946 * 1947 * @adev: amdgpu_device pointer 1948 */ 1949 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1950 { 1951 unsigned long flags; 1952 bool enable; 1953 1954 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1955 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1956 adev->gmc.gmc_funcs->set_prt(adev, enable); 1957 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1958 } 1959 1960 /** 1961 * amdgpu_vm_prt_get - add a PRT user 1962 * 1963 * @adev: amdgpu_device pointer 1964 */ 1965 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1966 { 1967 if (!adev->gmc.gmc_funcs->set_prt) 1968 return; 1969 1970 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1971 amdgpu_vm_update_prt_state(adev); 1972 } 1973 1974 /** 1975 * amdgpu_vm_prt_put - drop a PRT user 1976 * 1977 * @adev: amdgpu_device pointer 1978 */ 1979 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1980 { 1981 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1982 amdgpu_vm_update_prt_state(adev); 1983 } 1984 1985 /** 1986 * amdgpu_vm_prt_cb - callback for updating the PRT status 1987 * 1988 * @fence: fence for the callback 1989 * @_cb: the callback function 1990 */ 1991 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1992 { 1993 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1994 1995 amdgpu_vm_prt_put(cb->adev); 1996 kfree(cb); 1997 } 1998 1999 /** 2000 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2001 * 2002 * @adev: amdgpu_device pointer 2003 * @fence: fence for the callback 2004 */ 2005 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2006 struct dma_fence *fence) 2007 { 2008 struct amdgpu_prt_cb *cb; 2009 2010 if (!adev->gmc.gmc_funcs->set_prt) 2011 return; 2012 2013 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2014 if (!cb) { 2015 /* Last resort when we are OOM */ 2016 if (fence) 2017 dma_fence_wait(fence, false); 2018 2019 amdgpu_vm_prt_put(adev); 2020 } else { 2021 cb->adev = adev; 2022 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2023 amdgpu_vm_prt_cb)) 2024 amdgpu_vm_prt_cb(fence, &cb->cb); 2025 } 2026 } 2027 2028 /** 2029 * amdgpu_vm_free_mapping - free a mapping 2030 * 2031 * @adev: amdgpu_device pointer 2032 * @vm: requested vm 2033 * @mapping: mapping to be freed 2034 * @fence: fence of the unmap operation 2035 * 2036 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2037 */ 2038 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2039 struct amdgpu_vm *vm, 2040 struct amdgpu_bo_va_mapping *mapping, 2041 struct dma_fence *fence) 2042 { 2043 if (mapping->flags & AMDGPU_PTE_PRT) 2044 amdgpu_vm_add_prt_cb(adev, fence); 2045 kfree(mapping); 2046 } 2047 2048 /** 2049 * amdgpu_vm_prt_fini - finish all prt mappings 2050 * 2051 * @adev: amdgpu_device pointer 2052 * @vm: requested vm 2053 * 2054 * Register a cleanup callback to disable PRT support after VM dies. 2055 */ 2056 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2057 { 2058 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2059 struct dma_resv_iter cursor; 2060 struct dma_fence *fence; 2061 2062 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 2063 /* Add a callback for each fence in the reservation object */ 2064 amdgpu_vm_prt_get(adev); 2065 amdgpu_vm_add_prt_cb(adev, fence); 2066 } 2067 } 2068 2069 /** 2070 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2071 * 2072 * @adev: amdgpu_device pointer 2073 * @vm: requested vm 2074 * @fence: optional resulting fence (unchanged if no work needed to be done 2075 * or if an error occurred) 2076 * 2077 * Make sure all freed BOs are cleared in the PT. 2078 * PTs have to be reserved and mutex must be locked! 2079 * 2080 * Returns: 2081 * 0 for success. 2082 * 2083 */ 2084 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2085 struct amdgpu_vm *vm, 2086 struct dma_fence **fence) 2087 { 2088 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2089 struct amdgpu_bo_va_mapping *mapping; 2090 uint64_t init_pte_value = 0; 2091 struct dma_fence *f = NULL; 2092 int r; 2093 2094 while (!list_empty(&vm->freed)) { 2095 mapping = list_first_entry(&vm->freed, 2096 struct amdgpu_bo_va_mapping, list); 2097 list_del(&mapping->list); 2098 2099 if (vm->pte_support_ats && 2100 mapping->start < AMDGPU_GMC_HOLE_START) 2101 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2102 2103 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2104 resv, mapping->start, 2105 mapping->last, init_pte_value, 2106 0, NULL, NULL, &f, NULL); 2107 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2108 if (r) { 2109 dma_fence_put(f); 2110 return r; 2111 } 2112 } 2113 2114 if (fence && f) { 2115 dma_fence_put(*fence); 2116 *fence = f; 2117 } else { 2118 dma_fence_put(f); 2119 } 2120 2121 return 0; 2122 2123 } 2124 2125 /** 2126 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2127 * 2128 * @adev: amdgpu_device pointer 2129 * @vm: requested vm 2130 * 2131 * Make sure all BOs which are moved are updated in the PTs. 2132 * 2133 * Returns: 2134 * 0 for success. 2135 * 2136 * PTs have to be reserved! 2137 */ 2138 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2139 struct amdgpu_vm *vm) 2140 { 2141 struct amdgpu_bo_va *bo_va, *tmp; 2142 struct dma_resv *resv; 2143 bool clear; 2144 int r; 2145 2146 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2147 /* Per VM BOs never need to bo cleared in the page tables */ 2148 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2149 if (r) 2150 return r; 2151 } 2152 2153 spin_lock(&vm->invalidated_lock); 2154 while (!list_empty(&vm->invalidated)) { 2155 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2156 base.vm_status); 2157 resv = bo_va->base.bo->tbo.base.resv; 2158 spin_unlock(&vm->invalidated_lock); 2159 2160 /* Try to reserve the BO to avoid clearing its ptes */ 2161 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2162 clear = false; 2163 /* Somebody else is using the BO right now */ 2164 else 2165 clear = true; 2166 2167 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2168 if (r) 2169 return r; 2170 2171 if (!clear) 2172 dma_resv_unlock(resv); 2173 spin_lock(&vm->invalidated_lock); 2174 } 2175 spin_unlock(&vm->invalidated_lock); 2176 2177 return 0; 2178 } 2179 2180 /** 2181 * amdgpu_vm_bo_add - add a bo to a specific vm 2182 * 2183 * @adev: amdgpu_device pointer 2184 * @vm: requested vm 2185 * @bo: amdgpu buffer object 2186 * 2187 * Add @bo into the requested vm. 2188 * Add @bo to the list of bos associated with the vm 2189 * 2190 * Returns: 2191 * Newly added bo_va or NULL for failure 2192 * 2193 * Object has to be reserved! 2194 */ 2195 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2196 struct amdgpu_vm *vm, 2197 struct amdgpu_bo *bo) 2198 { 2199 struct amdgpu_bo_va *bo_va; 2200 2201 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2202 if (bo_va == NULL) { 2203 return NULL; 2204 } 2205 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2206 2207 bo_va->ref_count = 1; 2208 INIT_LIST_HEAD(&bo_va->valids); 2209 INIT_LIST_HEAD(&bo_va->invalids); 2210 2211 if (!bo) 2212 return bo_va; 2213 2214 dma_resv_assert_held(bo->tbo.base.resv); 2215 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2216 bo_va->is_xgmi = true; 2217 /* Power up XGMI if it can be potentially used */ 2218 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2219 } 2220 2221 return bo_va; 2222 } 2223 2224 2225 /** 2226 * amdgpu_vm_bo_insert_map - insert a new mapping 2227 * 2228 * @adev: amdgpu_device pointer 2229 * @bo_va: bo_va to store the address 2230 * @mapping: the mapping to insert 2231 * 2232 * Insert a new mapping into all structures. 2233 */ 2234 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2235 struct amdgpu_bo_va *bo_va, 2236 struct amdgpu_bo_va_mapping *mapping) 2237 { 2238 struct amdgpu_vm *vm = bo_va->base.vm; 2239 struct amdgpu_bo *bo = bo_va->base.bo; 2240 2241 mapping->bo_va = bo_va; 2242 list_add(&mapping->list, &bo_va->invalids); 2243 amdgpu_vm_it_insert(mapping, &vm->va); 2244 2245 if (mapping->flags & AMDGPU_PTE_PRT) 2246 amdgpu_vm_prt_get(adev); 2247 2248 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2249 !bo_va->base.moved) { 2250 list_move(&bo_va->base.vm_status, &vm->moved); 2251 } 2252 trace_amdgpu_vm_bo_map(bo_va, mapping); 2253 } 2254 2255 /** 2256 * amdgpu_vm_bo_map - map bo inside a vm 2257 * 2258 * @adev: amdgpu_device pointer 2259 * @bo_va: bo_va to store the address 2260 * @saddr: where to map the BO 2261 * @offset: requested offset in the BO 2262 * @size: BO size in bytes 2263 * @flags: attributes of pages (read/write/valid/etc.) 2264 * 2265 * Add a mapping of the BO at the specefied addr into the VM. 2266 * 2267 * Returns: 2268 * 0 for success, error for failure. 2269 * 2270 * Object has to be reserved and unreserved outside! 2271 */ 2272 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2273 struct amdgpu_bo_va *bo_va, 2274 uint64_t saddr, uint64_t offset, 2275 uint64_t size, uint64_t flags) 2276 { 2277 struct amdgpu_bo_va_mapping *mapping, *tmp; 2278 struct amdgpu_bo *bo = bo_va->base.bo; 2279 struct amdgpu_vm *vm = bo_va->base.vm; 2280 uint64_t eaddr; 2281 2282 /* validate the parameters */ 2283 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2284 size == 0 || size & ~PAGE_MASK) 2285 return -EINVAL; 2286 2287 /* make sure object fit at this offset */ 2288 eaddr = saddr + size - 1; 2289 if (saddr >= eaddr || 2290 (bo && offset + size > amdgpu_bo_size(bo)) || 2291 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2292 return -EINVAL; 2293 2294 saddr /= AMDGPU_GPU_PAGE_SIZE; 2295 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2296 2297 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2298 if (tmp) { 2299 /* bo and tmp overlap, invalid addr */ 2300 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2301 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2302 tmp->start, tmp->last + 1); 2303 return -EINVAL; 2304 } 2305 2306 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2307 if (!mapping) 2308 return -ENOMEM; 2309 2310 mapping->start = saddr; 2311 mapping->last = eaddr; 2312 mapping->offset = offset; 2313 mapping->flags = flags; 2314 2315 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2316 2317 return 0; 2318 } 2319 2320 /** 2321 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2322 * 2323 * @adev: amdgpu_device pointer 2324 * @bo_va: bo_va to store the address 2325 * @saddr: where to map the BO 2326 * @offset: requested offset in the BO 2327 * @size: BO size in bytes 2328 * @flags: attributes of pages (read/write/valid/etc.) 2329 * 2330 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2331 * mappings as we do so. 2332 * 2333 * Returns: 2334 * 0 for success, error for failure. 2335 * 2336 * Object has to be reserved and unreserved outside! 2337 */ 2338 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2339 struct amdgpu_bo_va *bo_va, 2340 uint64_t saddr, uint64_t offset, 2341 uint64_t size, uint64_t flags) 2342 { 2343 struct amdgpu_bo_va_mapping *mapping; 2344 struct amdgpu_bo *bo = bo_va->base.bo; 2345 uint64_t eaddr; 2346 int r; 2347 2348 /* validate the parameters */ 2349 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2350 size == 0 || size & ~PAGE_MASK) 2351 return -EINVAL; 2352 2353 /* make sure object fit at this offset */ 2354 eaddr = saddr + size - 1; 2355 if (saddr >= eaddr || 2356 (bo && offset + size > amdgpu_bo_size(bo)) || 2357 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2358 return -EINVAL; 2359 2360 /* Allocate all the needed memory */ 2361 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2362 if (!mapping) 2363 return -ENOMEM; 2364 2365 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2366 if (r) { 2367 kfree(mapping); 2368 return r; 2369 } 2370 2371 saddr /= AMDGPU_GPU_PAGE_SIZE; 2372 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2373 2374 mapping->start = saddr; 2375 mapping->last = eaddr; 2376 mapping->offset = offset; 2377 mapping->flags = flags; 2378 2379 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2386 * 2387 * @adev: amdgpu_device pointer 2388 * @bo_va: bo_va to remove the address from 2389 * @saddr: where to the BO is mapped 2390 * 2391 * Remove a mapping of the BO at the specefied addr from the VM. 2392 * 2393 * Returns: 2394 * 0 for success, error for failure. 2395 * 2396 * Object has to be reserved and unreserved outside! 2397 */ 2398 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2399 struct amdgpu_bo_va *bo_va, 2400 uint64_t saddr) 2401 { 2402 struct amdgpu_bo_va_mapping *mapping; 2403 struct amdgpu_vm *vm = bo_va->base.vm; 2404 bool valid = true; 2405 2406 saddr /= AMDGPU_GPU_PAGE_SIZE; 2407 2408 list_for_each_entry(mapping, &bo_va->valids, list) { 2409 if (mapping->start == saddr) 2410 break; 2411 } 2412 2413 if (&mapping->list == &bo_va->valids) { 2414 valid = false; 2415 2416 list_for_each_entry(mapping, &bo_va->invalids, list) { 2417 if (mapping->start == saddr) 2418 break; 2419 } 2420 2421 if (&mapping->list == &bo_va->invalids) 2422 return -ENOENT; 2423 } 2424 2425 list_del(&mapping->list); 2426 amdgpu_vm_it_remove(mapping, &vm->va); 2427 mapping->bo_va = NULL; 2428 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2429 2430 if (valid) 2431 list_add(&mapping->list, &vm->freed); 2432 else 2433 amdgpu_vm_free_mapping(adev, vm, mapping, 2434 bo_va->last_pt_update); 2435 2436 return 0; 2437 } 2438 2439 /** 2440 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2441 * 2442 * @adev: amdgpu_device pointer 2443 * @vm: VM structure to use 2444 * @saddr: start of the range 2445 * @size: size of the range 2446 * 2447 * Remove all mappings in a range, split them as appropriate. 2448 * 2449 * Returns: 2450 * 0 for success, error for failure. 2451 */ 2452 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2453 struct amdgpu_vm *vm, 2454 uint64_t saddr, uint64_t size) 2455 { 2456 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2457 LIST_HEAD(removed); 2458 uint64_t eaddr; 2459 2460 eaddr = saddr + size - 1; 2461 saddr /= AMDGPU_GPU_PAGE_SIZE; 2462 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2463 2464 /* Allocate all the needed memory */ 2465 before = kzalloc(sizeof(*before), GFP_KERNEL); 2466 if (!before) 2467 return -ENOMEM; 2468 INIT_LIST_HEAD(&before->list); 2469 2470 after = kzalloc(sizeof(*after), GFP_KERNEL); 2471 if (!after) { 2472 kfree(before); 2473 return -ENOMEM; 2474 } 2475 INIT_LIST_HEAD(&after->list); 2476 2477 /* Now gather all removed mappings */ 2478 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2479 while (tmp) { 2480 /* Remember mapping split at the start */ 2481 if (tmp->start < saddr) { 2482 before->start = tmp->start; 2483 before->last = saddr - 1; 2484 before->offset = tmp->offset; 2485 before->flags = tmp->flags; 2486 before->bo_va = tmp->bo_va; 2487 list_add(&before->list, &tmp->bo_va->invalids); 2488 } 2489 2490 /* Remember mapping split at the end */ 2491 if (tmp->last > eaddr) { 2492 after->start = eaddr + 1; 2493 after->last = tmp->last; 2494 after->offset = tmp->offset; 2495 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2496 after->flags = tmp->flags; 2497 after->bo_va = tmp->bo_va; 2498 list_add(&after->list, &tmp->bo_va->invalids); 2499 } 2500 2501 list_del(&tmp->list); 2502 list_add(&tmp->list, &removed); 2503 2504 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2505 } 2506 2507 /* And free them up */ 2508 list_for_each_entry_safe(tmp, next, &removed, list) { 2509 amdgpu_vm_it_remove(tmp, &vm->va); 2510 list_del(&tmp->list); 2511 2512 if (tmp->start < saddr) 2513 tmp->start = saddr; 2514 if (tmp->last > eaddr) 2515 tmp->last = eaddr; 2516 2517 tmp->bo_va = NULL; 2518 list_add(&tmp->list, &vm->freed); 2519 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2520 } 2521 2522 /* Insert partial mapping before the range */ 2523 if (!list_empty(&before->list)) { 2524 amdgpu_vm_it_insert(before, &vm->va); 2525 if (before->flags & AMDGPU_PTE_PRT) 2526 amdgpu_vm_prt_get(adev); 2527 } else { 2528 kfree(before); 2529 } 2530 2531 /* Insert partial mapping after the range */ 2532 if (!list_empty(&after->list)) { 2533 amdgpu_vm_it_insert(after, &vm->va); 2534 if (after->flags & AMDGPU_PTE_PRT) 2535 amdgpu_vm_prt_get(adev); 2536 } else { 2537 kfree(after); 2538 } 2539 2540 return 0; 2541 } 2542 2543 /** 2544 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2545 * 2546 * @vm: the requested VM 2547 * @addr: the address 2548 * 2549 * Find a mapping by it's address. 2550 * 2551 * Returns: 2552 * The amdgpu_bo_va_mapping matching for addr or NULL 2553 * 2554 */ 2555 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2556 uint64_t addr) 2557 { 2558 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2559 } 2560 2561 /** 2562 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2563 * 2564 * @vm: the requested vm 2565 * @ticket: CS ticket 2566 * 2567 * Trace all mappings of BOs reserved during a command submission. 2568 */ 2569 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2570 { 2571 struct amdgpu_bo_va_mapping *mapping; 2572 2573 if (!trace_amdgpu_vm_bo_cs_enabled()) 2574 return; 2575 2576 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2577 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2578 if (mapping->bo_va && mapping->bo_va->base.bo) { 2579 struct amdgpu_bo *bo; 2580 2581 bo = mapping->bo_va->base.bo; 2582 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2583 ticket) 2584 continue; 2585 } 2586 2587 trace_amdgpu_vm_bo_cs(mapping); 2588 } 2589 } 2590 2591 /** 2592 * amdgpu_vm_bo_del - remove a bo from a specific vm 2593 * 2594 * @adev: amdgpu_device pointer 2595 * @bo_va: requested bo_va 2596 * 2597 * Remove @bo_va->bo from the requested vm. 2598 * 2599 * Object have to be reserved! 2600 */ 2601 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2602 struct amdgpu_bo_va *bo_va) 2603 { 2604 struct amdgpu_bo_va_mapping *mapping, *next; 2605 struct amdgpu_bo *bo = bo_va->base.bo; 2606 struct amdgpu_vm *vm = bo_va->base.vm; 2607 struct amdgpu_vm_bo_base **base; 2608 2609 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2610 2611 if (bo) { 2612 dma_resv_assert_held(bo->tbo.base.resv); 2613 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2614 ttm_bo_set_bulk_move(&bo->tbo, NULL); 2615 2616 for (base = &bo_va->base.bo->vm_bo; *base; 2617 base = &(*base)->next) { 2618 if (*base != &bo_va->base) 2619 continue; 2620 2621 *base = bo_va->base.next; 2622 break; 2623 } 2624 } 2625 2626 spin_lock(&vm->invalidated_lock); 2627 list_del(&bo_va->base.vm_status); 2628 spin_unlock(&vm->invalidated_lock); 2629 2630 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2631 list_del(&mapping->list); 2632 amdgpu_vm_it_remove(mapping, &vm->va); 2633 mapping->bo_va = NULL; 2634 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2635 list_add(&mapping->list, &vm->freed); 2636 } 2637 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2638 list_del(&mapping->list); 2639 amdgpu_vm_it_remove(mapping, &vm->va); 2640 amdgpu_vm_free_mapping(adev, vm, mapping, 2641 bo_va->last_pt_update); 2642 } 2643 2644 dma_fence_put(bo_va->last_pt_update); 2645 2646 if (bo && bo_va->is_xgmi) 2647 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2648 2649 kfree(bo_va); 2650 } 2651 2652 /** 2653 * amdgpu_vm_evictable - check if we can evict a VM 2654 * 2655 * @bo: A page table of the VM. 2656 * 2657 * Check if it is possible to evict a VM. 2658 */ 2659 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2660 { 2661 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2662 2663 /* Page tables of a destroyed VM can go away immediately */ 2664 if (!bo_base || !bo_base->vm) 2665 return true; 2666 2667 /* Don't evict VM page tables while they are busy */ 2668 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 2669 return false; 2670 2671 /* Try to block ongoing updates */ 2672 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2673 return false; 2674 2675 /* Don't evict VM page tables while they are updated */ 2676 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2677 amdgpu_vm_eviction_unlock(bo_base->vm); 2678 return false; 2679 } 2680 2681 bo_base->vm->evicting = true; 2682 amdgpu_vm_eviction_unlock(bo_base->vm); 2683 return true; 2684 } 2685 2686 /** 2687 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2688 * 2689 * @adev: amdgpu_device pointer 2690 * @bo: amdgpu buffer object 2691 * @evicted: is the BO evicted 2692 * 2693 * Mark @bo as invalid. 2694 */ 2695 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2696 struct amdgpu_bo *bo, bool evicted) 2697 { 2698 struct amdgpu_vm_bo_base *bo_base; 2699 2700 /* shadow bo doesn't have bo base, its validation needs its parent */ 2701 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2702 bo = bo->parent; 2703 2704 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2705 struct amdgpu_vm *vm = bo_base->vm; 2706 2707 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2708 amdgpu_vm_bo_evicted(bo_base); 2709 continue; 2710 } 2711 2712 if (bo_base->moved) 2713 continue; 2714 bo_base->moved = true; 2715 2716 if (bo->tbo.type == ttm_bo_type_kernel) 2717 amdgpu_vm_bo_relocated(bo_base); 2718 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2719 amdgpu_vm_bo_moved(bo_base); 2720 else 2721 amdgpu_vm_bo_invalidated(bo_base); 2722 } 2723 } 2724 2725 /** 2726 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2727 * 2728 * @vm_size: VM size 2729 * 2730 * Returns: 2731 * VM page table as power of two 2732 */ 2733 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2734 { 2735 /* Total bits covered by PD + PTs */ 2736 unsigned bits = ilog2(vm_size) + 18; 2737 2738 /* Make sure the PD is 4K in size up to 8GB address space. 2739 Above that split equal between PD and PTs */ 2740 if (vm_size <= 8) 2741 return (bits - 9); 2742 else 2743 return ((bits + 3) / 2); 2744 } 2745 2746 /** 2747 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2748 * 2749 * @adev: amdgpu_device pointer 2750 * @min_vm_size: the minimum vm size in GB if it's set auto 2751 * @fragment_size_default: Default PTE fragment size 2752 * @max_level: max VMPT level 2753 * @max_bits: max address space size in bits 2754 * 2755 */ 2756 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2757 uint32_t fragment_size_default, unsigned max_level, 2758 unsigned max_bits) 2759 { 2760 unsigned int max_size = 1 << (max_bits - 30); 2761 unsigned int vm_size; 2762 uint64_t tmp; 2763 2764 /* adjust vm size first */ 2765 if (amdgpu_vm_size != -1) { 2766 vm_size = amdgpu_vm_size; 2767 if (vm_size > max_size) { 2768 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2769 amdgpu_vm_size, max_size); 2770 vm_size = max_size; 2771 } 2772 } else { 2773 struct sysinfo si; 2774 unsigned int phys_ram_gb; 2775 2776 /* Optimal VM size depends on the amount of physical 2777 * RAM available. Underlying requirements and 2778 * assumptions: 2779 * 2780 * - Need to map system memory and VRAM from all GPUs 2781 * - VRAM from other GPUs not known here 2782 * - Assume VRAM <= system memory 2783 * - On GFX8 and older, VM space can be segmented for 2784 * different MTYPEs 2785 * - Need to allow room for fragmentation, guard pages etc. 2786 * 2787 * This adds up to a rough guess of system memory x3. 2788 * Round up to power of two to maximize the available 2789 * VM size with the given page table size. 2790 */ 2791 si_meminfo(&si); 2792 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2793 (1 << 30) - 1) >> 30; 2794 vm_size = roundup_pow_of_two( 2795 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2796 } 2797 2798 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2799 2800 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2801 if (amdgpu_vm_block_size != -1) 2802 tmp >>= amdgpu_vm_block_size - 9; 2803 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2804 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2805 switch (adev->vm_manager.num_level) { 2806 case 3: 2807 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2808 break; 2809 case 2: 2810 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2811 break; 2812 case 1: 2813 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2814 break; 2815 default: 2816 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2817 } 2818 /* block size depends on vm size and hw setup*/ 2819 if (amdgpu_vm_block_size != -1) 2820 adev->vm_manager.block_size = 2821 min((unsigned)amdgpu_vm_block_size, max_bits 2822 - AMDGPU_GPU_PAGE_SHIFT 2823 - 9 * adev->vm_manager.num_level); 2824 else if (adev->vm_manager.num_level > 1) 2825 adev->vm_manager.block_size = 9; 2826 else 2827 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2828 2829 if (amdgpu_vm_fragment_size == -1) 2830 adev->vm_manager.fragment_size = fragment_size_default; 2831 else 2832 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2833 2834 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2835 vm_size, adev->vm_manager.num_level + 1, 2836 adev->vm_manager.block_size, 2837 adev->vm_manager.fragment_size); 2838 } 2839 2840 /** 2841 * amdgpu_vm_wait_idle - wait for the VM to become idle 2842 * 2843 * @vm: VM object to wait for 2844 * @timeout: timeout to wait for VM to become idle 2845 */ 2846 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2847 { 2848 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2849 DMA_RESV_USAGE_BOOKKEEP, 2850 true, timeout); 2851 if (timeout <= 0) 2852 return timeout; 2853 2854 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2855 } 2856 2857 /** 2858 * amdgpu_vm_init - initialize a vm instance 2859 * 2860 * @adev: amdgpu_device pointer 2861 * @vm: requested vm 2862 * 2863 * Init @vm fields. 2864 * 2865 * Returns: 2866 * 0 for success, error for failure. 2867 */ 2868 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2869 { 2870 struct amdgpu_bo *root_bo; 2871 struct amdgpu_bo_vm *root; 2872 int r, i; 2873 2874 vm->va = RB_ROOT_CACHED; 2875 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2876 vm->reserved_vmid[i] = NULL; 2877 INIT_LIST_HEAD(&vm->evicted); 2878 INIT_LIST_HEAD(&vm->relocated); 2879 INIT_LIST_HEAD(&vm->moved); 2880 INIT_LIST_HEAD(&vm->idle); 2881 INIT_LIST_HEAD(&vm->invalidated); 2882 spin_lock_init(&vm->invalidated_lock); 2883 INIT_LIST_HEAD(&vm->freed); 2884 INIT_LIST_HEAD(&vm->done); 2885 2886 /* create scheduler entities for page table updates */ 2887 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2888 adev->vm_manager.vm_pte_scheds, 2889 adev->vm_manager.vm_pte_num_scheds, NULL); 2890 if (r) 2891 return r; 2892 2893 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2894 adev->vm_manager.vm_pte_scheds, 2895 adev->vm_manager.vm_pte_num_scheds, NULL); 2896 if (r) 2897 goto error_free_immediate; 2898 2899 vm->pte_support_ats = false; 2900 vm->is_compute_context = false; 2901 2902 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2903 AMDGPU_VM_USE_CPU_FOR_GFX); 2904 2905 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2906 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2907 WARN_ONCE((vm->use_cpu_for_update && 2908 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2909 "CPU update of VM recommended only for large BAR system\n"); 2910 2911 if (vm->use_cpu_for_update) 2912 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2913 else 2914 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2915 vm->last_update = NULL; 2916 vm->last_unlocked = dma_fence_get_stub(); 2917 2918 mutex_init(&vm->eviction_lock); 2919 vm->evicting = false; 2920 2921 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2922 false, &root); 2923 if (r) 2924 goto error_free_delayed; 2925 root_bo = &root->bo; 2926 r = amdgpu_bo_reserve(root_bo, true); 2927 if (r) 2928 goto error_free_root; 2929 2930 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2931 if (r) 2932 goto error_unreserve; 2933 2934 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2935 2936 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2937 if (r) 2938 goto error_unreserve; 2939 2940 amdgpu_bo_unreserve(vm->root.bo); 2941 2942 INIT_KFIFO(vm->faults); 2943 2944 return 0; 2945 2946 error_unreserve: 2947 amdgpu_bo_unreserve(vm->root.bo); 2948 2949 error_free_root: 2950 amdgpu_bo_unref(&root->shadow); 2951 amdgpu_bo_unref(&root_bo); 2952 vm->root.bo = NULL; 2953 2954 error_free_delayed: 2955 dma_fence_put(vm->last_unlocked); 2956 drm_sched_entity_destroy(&vm->delayed); 2957 2958 error_free_immediate: 2959 drm_sched_entity_destroy(&vm->immediate); 2960 2961 return r; 2962 } 2963 2964 /** 2965 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2966 * 2967 * @adev: amdgpu_device pointer 2968 * @vm: the VM to check 2969 * 2970 * check all entries of the root PD, if any subsequent PDs are allocated, 2971 * it means there are page table creating and filling, and is no a clean 2972 * VM 2973 * 2974 * Returns: 2975 * 0 if this VM is clean 2976 */ 2977 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2978 struct amdgpu_vm *vm) 2979 { 2980 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2981 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2982 unsigned int i = 0; 2983 2984 for (i = 0; i < entries; i++) { 2985 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 2986 return -EINVAL; 2987 } 2988 2989 return 0; 2990 } 2991 2992 /** 2993 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2994 * 2995 * @adev: amdgpu_device pointer 2996 * @vm: requested vm 2997 * 2998 * This only works on GFX VMs that don't have any BOs added and no 2999 * page tables allocated yet. 3000 * 3001 * Changes the following VM parameters: 3002 * - use_cpu_for_update 3003 * - pte_supports_ats 3004 * 3005 * Reinitializes the page directory to reflect the changed ATS 3006 * setting. 3007 * 3008 * Returns: 3009 * 0 for success, -errno for errors. 3010 */ 3011 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3012 { 3013 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3014 int r; 3015 3016 r = amdgpu_bo_reserve(vm->root.bo, true); 3017 if (r) 3018 return r; 3019 3020 /* Sanity checks */ 3021 r = amdgpu_vm_check_clean_reserved(adev, vm); 3022 if (r) 3023 goto unreserve_bo; 3024 3025 /* Check if PD needs to be reinitialized and do it before 3026 * changing any other state, in case it fails. 3027 */ 3028 if (pte_support_ats != vm->pte_support_ats) { 3029 vm->pte_support_ats = pte_support_ats; 3030 r = amdgpu_vm_clear_bo(adev, vm, 3031 to_amdgpu_bo_vm(vm->root.bo), 3032 false); 3033 if (r) 3034 goto unreserve_bo; 3035 } 3036 3037 /* Update VM state */ 3038 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3039 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3040 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3041 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3042 WARN_ONCE((vm->use_cpu_for_update && 3043 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3044 "CPU update of VM recommended only for large BAR system\n"); 3045 3046 if (vm->use_cpu_for_update) { 3047 /* Sync with last SDMA update/clear before switching to CPU */ 3048 r = amdgpu_bo_sync_wait(vm->root.bo, 3049 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3050 if (r) 3051 goto unreserve_bo; 3052 3053 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3054 } else { 3055 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3056 } 3057 dma_fence_put(vm->last_update); 3058 vm->last_update = NULL; 3059 vm->is_compute_context = true; 3060 3061 /* Free the shadow bo for compute VM */ 3062 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3063 3064 goto unreserve_bo; 3065 3066 unreserve_bo: 3067 amdgpu_bo_unreserve(vm->root.bo); 3068 return r; 3069 } 3070 3071 /** 3072 * amdgpu_vm_release_compute - release a compute vm 3073 * @adev: amdgpu_device pointer 3074 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3075 * 3076 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3077 * pasid from vm. Compute should stop use of vm after this call. 3078 */ 3079 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3080 { 3081 amdgpu_vm_set_pasid(adev, vm, 0); 3082 vm->is_compute_context = false; 3083 } 3084 3085 /** 3086 * amdgpu_vm_fini - tear down a vm instance 3087 * 3088 * @adev: amdgpu_device pointer 3089 * @vm: requested vm 3090 * 3091 * Tear down @vm. 3092 * Unbind the VM and remove all bos from the vm bo list 3093 */ 3094 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3095 { 3096 struct amdgpu_bo_va_mapping *mapping, *tmp; 3097 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3098 struct amdgpu_bo *root; 3099 int i; 3100 3101 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3102 3103 root = amdgpu_bo_ref(vm->root.bo); 3104 amdgpu_bo_reserve(root, true); 3105 amdgpu_vm_set_pasid(adev, vm, 0); 3106 dma_fence_wait(vm->last_unlocked, false); 3107 dma_fence_put(vm->last_unlocked); 3108 3109 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3110 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3111 amdgpu_vm_prt_fini(adev, vm); 3112 prt_fini_needed = false; 3113 } 3114 3115 list_del(&mapping->list); 3116 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3117 } 3118 3119 amdgpu_vm_free_pts(adev, vm, NULL); 3120 amdgpu_bo_unreserve(root); 3121 amdgpu_bo_unref(&root); 3122 WARN_ON(vm->root.bo); 3123 3124 drm_sched_entity_destroy(&vm->immediate); 3125 drm_sched_entity_destroy(&vm->delayed); 3126 3127 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3128 dev_err(adev->dev, "still active bo inside vm\n"); 3129 } 3130 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3131 &vm->va.rb_root, rb) { 3132 /* Don't remove the mapping here, we don't want to trigger a 3133 * rebalance and the tree is about to be destroyed anyway. 3134 */ 3135 list_del(&mapping->list); 3136 kfree(mapping); 3137 } 3138 3139 dma_fence_put(vm->last_update); 3140 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3141 amdgpu_vmid_free_reserved(adev, vm, i); 3142 } 3143 3144 /** 3145 * amdgpu_vm_manager_init - init the VM manager 3146 * 3147 * @adev: amdgpu_device pointer 3148 * 3149 * Initialize the VM manager structures 3150 */ 3151 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3152 { 3153 unsigned i; 3154 3155 /* Concurrent flushes are only possible starting with Vega10 and 3156 * are broken on Navi10 and Navi14. 3157 */ 3158 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3159 adev->asic_type == CHIP_NAVI10 || 3160 adev->asic_type == CHIP_NAVI14); 3161 amdgpu_vmid_mgr_init(adev); 3162 3163 adev->vm_manager.fence_context = 3164 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3165 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3166 adev->vm_manager.seqno[i] = 0; 3167 3168 spin_lock_init(&adev->vm_manager.prt_lock); 3169 atomic_set(&adev->vm_manager.num_prt_users, 0); 3170 3171 /* If not overridden by the user, by default, only in large BAR systems 3172 * Compute VM tables will be updated by CPU 3173 */ 3174 #ifdef CONFIG_X86_64 3175 if (amdgpu_vm_update_mode == -1) { 3176 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3177 adev->vm_manager.vm_update_mode = 3178 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3179 else 3180 adev->vm_manager.vm_update_mode = 0; 3181 } else 3182 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3183 #else 3184 adev->vm_manager.vm_update_mode = 0; 3185 #endif 3186 3187 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3188 } 3189 3190 /** 3191 * amdgpu_vm_manager_fini - cleanup VM manager 3192 * 3193 * @adev: amdgpu_device pointer 3194 * 3195 * Cleanup the VM manager and free resources. 3196 */ 3197 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3198 { 3199 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3200 xa_destroy(&adev->vm_manager.pasids); 3201 3202 amdgpu_vmid_mgr_fini(adev); 3203 } 3204 3205 /** 3206 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3207 * 3208 * @dev: drm device pointer 3209 * @data: drm_amdgpu_vm 3210 * @filp: drm file pointer 3211 * 3212 * Returns: 3213 * 0 for success, -errno for errors. 3214 */ 3215 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3216 { 3217 union drm_amdgpu_vm *args = data; 3218 struct amdgpu_device *adev = drm_to_adev(dev); 3219 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3220 long timeout = msecs_to_jiffies(2000); 3221 int r; 3222 3223 switch (args->in.op) { 3224 case AMDGPU_VM_OP_RESERVE_VMID: 3225 /* We only have requirement to reserve vmid from gfxhub */ 3226 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3227 AMDGPU_GFXHUB_0); 3228 if (r) 3229 return r; 3230 break; 3231 case AMDGPU_VM_OP_UNRESERVE_VMID: 3232 if (amdgpu_sriov_runtime(adev)) 3233 timeout = 8 * timeout; 3234 3235 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3236 * not referenced anymore. 3237 */ 3238 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3239 if (r) 3240 return r; 3241 3242 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3243 if (r < 0) 3244 return r; 3245 3246 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3247 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3248 break; 3249 default: 3250 return -EINVAL; 3251 } 3252 3253 return 0; 3254 } 3255 3256 /** 3257 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3258 * 3259 * @adev: drm device pointer 3260 * @pasid: PASID identifier for VM 3261 * @task_info: task_info to fill. 3262 */ 3263 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3264 struct amdgpu_task_info *task_info) 3265 { 3266 struct amdgpu_vm *vm; 3267 unsigned long flags; 3268 3269 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3270 3271 vm = xa_load(&adev->vm_manager.pasids, pasid); 3272 if (vm) 3273 *task_info = vm->task_info; 3274 3275 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3276 } 3277 3278 /** 3279 * amdgpu_vm_set_task_info - Sets VMs task info. 3280 * 3281 * @vm: vm for which to set the info 3282 */ 3283 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3284 { 3285 if (vm->task_info.pid) 3286 return; 3287 3288 vm->task_info.pid = current->pid; 3289 get_task_comm(vm->task_info.task_name, current); 3290 3291 if (current->group_leader->mm != current->mm) 3292 return; 3293 3294 vm->task_info.tgid = current->group_leader->pid; 3295 get_task_comm(vm->task_info.process_name, current->group_leader); 3296 } 3297 3298 /** 3299 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3300 * @adev: amdgpu device pointer 3301 * @pasid: PASID of the VM 3302 * @addr: Address of the fault 3303 * @write_fault: true is write fault, false is read fault 3304 * 3305 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3306 * shouldn't be reported any more. 3307 */ 3308 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3309 uint64_t addr, bool write_fault) 3310 { 3311 bool is_compute_context = false; 3312 struct amdgpu_bo *root; 3313 unsigned long irqflags; 3314 uint64_t value, flags; 3315 struct amdgpu_vm *vm; 3316 int r; 3317 3318 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3319 vm = xa_load(&adev->vm_manager.pasids, pasid); 3320 if (vm) { 3321 root = amdgpu_bo_ref(vm->root.bo); 3322 is_compute_context = vm->is_compute_context; 3323 } else { 3324 root = NULL; 3325 } 3326 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3327 3328 if (!root) 3329 return false; 3330 3331 addr /= AMDGPU_GPU_PAGE_SIZE; 3332 3333 if (is_compute_context && 3334 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3335 amdgpu_bo_unref(&root); 3336 return true; 3337 } 3338 3339 r = amdgpu_bo_reserve(root, true); 3340 if (r) 3341 goto error_unref; 3342 3343 /* Double check that the VM still exists */ 3344 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3345 vm = xa_load(&adev->vm_manager.pasids, pasid); 3346 if (vm && vm->root.bo != root) 3347 vm = NULL; 3348 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3349 if (!vm) 3350 goto error_unlock; 3351 3352 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3353 AMDGPU_PTE_SYSTEM; 3354 3355 if (is_compute_context) { 3356 /* Intentionally setting invalid PTE flag 3357 * combination to force a no-retry-fault 3358 */ 3359 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3360 AMDGPU_PTE_TF; 3361 value = 0; 3362 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3363 /* Redirect the access to the dummy page */ 3364 value = adev->dummy_page_addr; 3365 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3366 AMDGPU_PTE_WRITEABLE; 3367 3368 } else { 3369 /* Let the hw retry silently on the PTE */ 3370 value = 0; 3371 } 3372 3373 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 3374 if (r) { 3375 pr_debug("failed %d to reserve fence slot\n", r); 3376 goto error_unlock; 3377 } 3378 3379 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3380 addr, flags, value, NULL, NULL, NULL, 3381 NULL); 3382 if (r) 3383 goto error_unlock; 3384 3385 r = amdgpu_vm_update_pdes(adev, vm, true); 3386 3387 error_unlock: 3388 amdgpu_bo_unreserve(root); 3389 if (r < 0) 3390 DRM_ERROR("Can't handle page fault (%d)\n", r); 3391 3392 error_unref: 3393 amdgpu_bo_unref(&root); 3394 3395 return false; 3396 } 3397 3398 #if defined(CONFIG_DEBUG_FS) 3399 /** 3400 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3401 * 3402 * @vm: Requested VM for printing BO info 3403 * @m: debugfs file 3404 * 3405 * Print BO information in debugfs file for the VM 3406 */ 3407 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3408 { 3409 struct amdgpu_bo_va *bo_va, *tmp; 3410 u64 total_idle = 0; 3411 u64 total_evicted = 0; 3412 u64 total_relocated = 0; 3413 u64 total_moved = 0; 3414 u64 total_invalidated = 0; 3415 u64 total_done = 0; 3416 unsigned int total_idle_objs = 0; 3417 unsigned int total_evicted_objs = 0; 3418 unsigned int total_relocated_objs = 0; 3419 unsigned int total_moved_objs = 0; 3420 unsigned int total_invalidated_objs = 0; 3421 unsigned int total_done_objs = 0; 3422 unsigned int id = 0; 3423 3424 seq_puts(m, "\tIdle BOs:\n"); 3425 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3426 if (!bo_va->base.bo) 3427 continue; 3428 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3429 } 3430 total_idle_objs = id; 3431 id = 0; 3432 3433 seq_puts(m, "\tEvicted BOs:\n"); 3434 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3435 if (!bo_va->base.bo) 3436 continue; 3437 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3438 } 3439 total_evicted_objs = id; 3440 id = 0; 3441 3442 seq_puts(m, "\tRelocated BOs:\n"); 3443 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3444 if (!bo_va->base.bo) 3445 continue; 3446 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3447 } 3448 total_relocated_objs = id; 3449 id = 0; 3450 3451 seq_puts(m, "\tMoved BOs:\n"); 3452 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3453 if (!bo_va->base.bo) 3454 continue; 3455 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3456 } 3457 total_moved_objs = id; 3458 id = 0; 3459 3460 seq_puts(m, "\tInvalidated BOs:\n"); 3461 spin_lock(&vm->invalidated_lock); 3462 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3463 if (!bo_va->base.bo) 3464 continue; 3465 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3466 } 3467 total_invalidated_objs = id; 3468 id = 0; 3469 3470 seq_puts(m, "\tDone BOs:\n"); 3471 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3472 if (!bo_va->base.bo) 3473 continue; 3474 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3475 } 3476 spin_unlock(&vm->invalidated_lock); 3477 total_done_objs = id; 3478 3479 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3480 total_idle_objs); 3481 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3482 total_evicted_objs); 3483 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3484 total_relocated_objs); 3485 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3486 total_moved_objs); 3487 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3488 total_invalidated_objs); 3489 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3490 total_done_objs); 3491 } 3492 #endif 3493