xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37 #include "amdgpu_xgmi.h"
38 
39 /**
40  * DOC: GPUVM
41  *
42  * GPUVM is similar to the legacy gart on older asics, however
43  * rather than there being a single global gart table
44  * for the entire GPU, there are multiple VM page tables active
45  * at any given time.  The VM page tables can contain a mix
46  * vram pages and system memory pages and system memory pages
47  * can be mapped as snooped (cached system pages) or unsnooped
48  * (uncached system pages).
49  * Each VM has an ID associated with it and there is a page table
50  * associated with each VMID.  When execting a command buffer,
51  * the kernel tells the the ring what VMID to use for that command
52  * buffer.  VMIDs are allocated dynamically as commands are submitted.
53  * The userspace drivers maintain their own address space and the kernel
54  * sets up their pages tables accordingly when they submit their
55  * command buffers and a VMID is assigned.
56  * Cayman/Trinity support up to 8 active VMs at any given time;
57  * SI supports 16.
58  */
59 
60 #define START(node) ((node)->start)
61 #define LAST(node) ((node)->last)
62 
63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
64 		     START, LAST, static, amdgpu_vm_it)
65 
66 #undef START
67 #undef LAST
68 
69 /**
70  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
71  */
72 struct amdgpu_prt_cb {
73 
74 	/**
75 	 * @adev: amdgpu device
76 	 */
77 	struct amdgpu_device *adev;
78 
79 	/**
80 	 * @cb: callback
81 	 */
82 	struct dma_fence_cb cb;
83 };
84 
85 /**
86  * amdgpu_vm_level_shift - return the addr shift for each level
87  *
88  * @adev: amdgpu_device pointer
89  * @level: VMPT level
90  *
91  * Returns:
92  * The number of bits the pfn needs to be right shifted for a level.
93  */
94 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
95 				      unsigned level)
96 {
97 	unsigned shift = 0xff;
98 
99 	switch (level) {
100 	case AMDGPU_VM_PDB2:
101 	case AMDGPU_VM_PDB1:
102 	case AMDGPU_VM_PDB0:
103 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
104 			adev->vm_manager.block_size;
105 		break;
106 	case AMDGPU_VM_PTB:
107 		shift = 0;
108 		break;
109 	default:
110 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
111 	}
112 
113 	return shift;
114 }
115 
116 /**
117  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
118  *
119  * @adev: amdgpu_device pointer
120  * @level: VMPT level
121  *
122  * Returns:
123  * The number of entries in a page directory or page table.
124  */
125 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
126 				      unsigned level)
127 {
128 	unsigned shift = amdgpu_vm_level_shift(adev,
129 					       adev->vm_manager.root_level);
130 
131 	if (level == adev->vm_manager.root_level)
132 		/* For the root directory */
133 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
134 	else if (level != AMDGPU_VM_PTB)
135 		/* Everything in between */
136 		return 512;
137 	else
138 		/* For the page tables on the leaves */
139 		return AMDGPU_VM_PTE_COUNT(adev);
140 }
141 
142 /**
143  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
144  *
145  * @adev: amdgpu_device pointer
146  *
147  * Returns:
148  * The number of entries in the root page directory which needs the ATS setting.
149  */
150 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
151 {
152 	unsigned shift;
153 
154 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
155 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
156 }
157 
158 /**
159  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
160  *
161  * @adev: amdgpu_device pointer
162  * @level: VMPT level
163  *
164  * Returns:
165  * The mask to extract the entry number of a PD/PT from an address.
166  */
167 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
168 				       unsigned int level)
169 {
170 	if (level <= adev->vm_manager.root_level)
171 		return 0xffffffff;
172 	else if (level != AMDGPU_VM_PTB)
173 		return 0x1ff;
174 	else
175 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
176 }
177 
178 /**
179  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
180  *
181  * @adev: amdgpu_device pointer
182  * @level: VMPT level
183  *
184  * Returns:
185  * The size of the BO for a page directory or page table in bytes.
186  */
187 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
188 {
189 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
190 }
191 
192 /**
193  * amdgpu_vm_bo_evicted - vm_bo is evicted
194  *
195  * @vm_bo: vm_bo which is evicted
196  *
197  * State for PDs/PTs and per VM BOs which are not at the location they should
198  * be.
199  */
200 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
201 {
202 	struct amdgpu_vm *vm = vm_bo->vm;
203 	struct amdgpu_bo *bo = vm_bo->bo;
204 
205 	vm_bo->moved = true;
206 	if (bo->tbo.type == ttm_bo_type_kernel)
207 		list_move(&vm_bo->vm_status, &vm->evicted);
208 	else
209 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
210 }
211 
212 /**
213  * amdgpu_vm_bo_relocated - vm_bo is reloacted
214  *
215  * @vm_bo: vm_bo which is relocated
216  *
217  * State for PDs/PTs which needs to update their parent PD.
218  */
219 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
220 {
221 	list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
222 }
223 
224 /**
225  * amdgpu_vm_bo_moved - vm_bo is moved
226  *
227  * @vm_bo: vm_bo which is moved
228  *
229  * State for per VM BOs which are moved, but that change is not yet reflected
230  * in the page tables.
231  */
232 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
233 {
234 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
235 }
236 
237 /**
238  * amdgpu_vm_bo_idle - vm_bo is idle
239  *
240  * @vm_bo: vm_bo which is now idle
241  *
242  * State for PDs/PTs and per VM BOs which have gone through the state machine
243  * and are now idle.
244  */
245 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
246 {
247 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
248 	vm_bo->moved = false;
249 }
250 
251 /**
252  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
253  *
254  * @vm_bo: vm_bo which is now invalidated
255  *
256  * State for normal BOs which are invalidated and that change not yet reflected
257  * in the PTs.
258  */
259 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	spin_lock(&vm_bo->vm->invalidated_lock);
262 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
263 	spin_unlock(&vm_bo->vm->invalidated_lock);
264 }
265 
266 /**
267  * amdgpu_vm_bo_done - vm_bo is done
268  *
269  * @vm_bo: vm_bo which is now done
270  *
271  * State for normal BOs which are invalidated and that change has been updated
272  * in the PTs.
273  */
274 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
275 {
276 	spin_lock(&vm_bo->vm->invalidated_lock);
277 	list_del_init(&vm_bo->vm_status);
278 	spin_unlock(&vm_bo->vm->invalidated_lock);
279 }
280 
281 /**
282  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
283  *
284  * @base: base structure for tracking BO usage in a VM
285  * @vm: vm to which bo is to be added
286  * @bo: amdgpu buffer object
287  *
288  * Initialize a bo_va_base structure and add it to the appropriate lists
289  *
290  */
291 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
292 				   struct amdgpu_vm *vm,
293 				   struct amdgpu_bo *bo)
294 {
295 	base->vm = vm;
296 	base->bo = bo;
297 	base->next = NULL;
298 	INIT_LIST_HEAD(&base->vm_status);
299 
300 	if (!bo)
301 		return;
302 	base->next = bo->vm_bo;
303 	bo->vm_bo = base;
304 
305 	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
306 		return;
307 
308 	vm->bulk_moveable = false;
309 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
310 		amdgpu_vm_bo_relocated(base);
311 	else
312 		amdgpu_vm_bo_idle(base);
313 
314 	if (bo->preferred_domains &
315 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
316 		return;
317 
318 	/*
319 	 * we checked all the prerequisites, but it looks like this per vm bo
320 	 * is currently evicted. add the bo to the evicted list to make sure it
321 	 * is validated on next vm use to avoid fault.
322 	 * */
323 	amdgpu_vm_bo_evicted(base);
324 }
325 
326 /**
327  * amdgpu_vm_pt_parent - get the parent page directory
328  *
329  * @pt: child page table
330  *
331  * Helper to get the parent entry for the child page table. NULL if we are at
332  * the root page directory.
333  */
334 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
335 {
336 	struct amdgpu_bo *parent = pt->base.bo->parent;
337 
338 	if (!parent)
339 		return NULL;
340 
341 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
342 }
343 
344 /**
345  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
346  */
347 struct amdgpu_vm_pt_cursor {
348 	uint64_t pfn;
349 	struct amdgpu_vm_pt *parent;
350 	struct amdgpu_vm_pt *entry;
351 	unsigned level;
352 };
353 
354 /**
355  * amdgpu_vm_pt_start - start PD/PT walk
356  *
357  * @adev: amdgpu_device pointer
358  * @vm: amdgpu_vm structure
359  * @start: start address of the walk
360  * @cursor: state to initialize
361  *
362  * Initialize a amdgpu_vm_pt_cursor to start a walk.
363  */
364 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
365 			       struct amdgpu_vm *vm, uint64_t start,
366 			       struct amdgpu_vm_pt_cursor *cursor)
367 {
368 	cursor->pfn = start;
369 	cursor->parent = NULL;
370 	cursor->entry = &vm->root;
371 	cursor->level = adev->vm_manager.root_level;
372 }
373 
374 /**
375  * amdgpu_vm_pt_descendant - go to child node
376  *
377  * @adev: amdgpu_device pointer
378  * @cursor: current state
379  *
380  * Walk to the child node of the current node.
381  * Returns:
382  * True if the walk was possible, false otherwise.
383  */
384 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
385 				    struct amdgpu_vm_pt_cursor *cursor)
386 {
387 	unsigned mask, shift, idx;
388 
389 	if (!cursor->entry->entries)
390 		return false;
391 
392 	BUG_ON(!cursor->entry->base.bo);
393 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
394 	shift = amdgpu_vm_level_shift(adev, cursor->level);
395 
396 	++cursor->level;
397 	idx = (cursor->pfn >> shift) & mask;
398 	cursor->parent = cursor->entry;
399 	cursor->entry = &cursor->entry->entries[idx];
400 	return true;
401 }
402 
403 /**
404  * amdgpu_vm_pt_sibling - go to sibling node
405  *
406  * @adev: amdgpu_device pointer
407  * @cursor: current state
408  *
409  * Walk to the sibling node of the current node.
410  * Returns:
411  * True if the walk was possible, false otherwise.
412  */
413 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
414 				 struct amdgpu_vm_pt_cursor *cursor)
415 {
416 	unsigned shift, num_entries;
417 
418 	/* Root doesn't have a sibling */
419 	if (!cursor->parent)
420 		return false;
421 
422 	/* Go to our parents and see if we got a sibling */
423 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
424 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
425 
426 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
427 		return false;
428 
429 	cursor->pfn += 1ULL << shift;
430 	cursor->pfn &= ~((1ULL << shift) - 1);
431 	++cursor->entry;
432 	return true;
433 }
434 
435 /**
436  * amdgpu_vm_pt_ancestor - go to parent node
437  *
438  * @cursor: current state
439  *
440  * Walk to the parent node of the current node.
441  * Returns:
442  * True if the walk was possible, false otherwise.
443  */
444 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	if (!cursor->parent)
447 		return false;
448 
449 	--cursor->level;
450 	cursor->entry = cursor->parent;
451 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
452 	return true;
453 }
454 
455 /**
456  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
457  *
458  * @adev: amdgpu_device pointer
459  * @cursor: current state
460  *
461  * Walk the PD/PT tree to the next node.
462  */
463 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
464 			      struct amdgpu_vm_pt_cursor *cursor)
465 {
466 	/* First try a newborn child */
467 	if (amdgpu_vm_pt_descendant(adev, cursor))
468 		return;
469 
470 	/* If that didn't worked try to find a sibling */
471 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
472 		/* No sibling, go to our parents and grandparents */
473 		if (!amdgpu_vm_pt_ancestor(cursor)) {
474 			cursor->pfn = ~0ll;
475 			return;
476 		}
477 	}
478 }
479 
480 /**
481  * amdgpu_vm_pt_first_dfs - start a deep first search
482  *
483  * @adev: amdgpu_device structure
484  * @vm: amdgpu_vm structure
485  * @cursor: state to initialize
486  *
487  * Starts a deep first traversal of the PD/PT tree.
488  */
489 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
490 				   struct amdgpu_vm *vm,
491 				   struct amdgpu_vm_pt_cursor *start,
492 				   struct amdgpu_vm_pt_cursor *cursor)
493 {
494 	if (start)
495 		*cursor = *start;
496 	else
497 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
498 	while (amdgpu_vm_pt_descendant(adev, cursor));
499 }
500 
501 /**
502  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
503  *
504  * @start: starting point for the search
505  * @entry: current entry
506  *
507  * Returns:
508  * True when the search should continue, false otherwise.
509  */
510 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
511 				      struct amdgpu_vm_pt *entry)
512 {
513 	return entry && (!start || entry != start->entry);
514 }
515 
516 /**
517  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
518  *
519  * @adev: amdgpu_device structure
520  * @cursor: current state
521  *
522  * Move the cursor to the next node in a deep first search.
523  */
524 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
525 				  struct amdgpu_vm_pt_cursor *cursor)
526 {
527 	if (!cursor->entry)
528 		return;
529 
530 	if (!cursor->parent)
531 		cursor->entry = NULL;
532 	else if (amdgpu_vm_pt_sibling(adev, cursor))
533 		while (amdgpu_vm_pt_descendant(adev, cursor));
534 	else
535 		amdgpu_vm_pt_ancestor(cursor);
536 }
537 
538 /**
539  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
540  */
541 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
542 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
543 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
544 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
545 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
546 
547 /**
548  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
549  *
550  * @vm: vm providing the BOs
551  * @validated: head of validation list
552  * @entry: entry to add
553  *
554  * Add the page directory to the list of BOs to
555  * validate for command submission.
556  */
557 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
558 			 struct list_head *validated,
559 			 struct amdgpu_bo_list_entry *entry)
560 {
561 	entry->priority = 0;
562 	entry->tv.bo = &vm->root.base.bo->tbo;
563 	/* One for the VM updates, one for TTM and one for the CS job */
564 	entry->tv.num_shared = 3;
565 	entry->user_pages = NULL;
566 	list_add(&entry->tv.head, validated);
567 }
568 
569 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
570 {
571 	struct amdgpu_bo *abo;
572 	struct amdgpu_vm_bo_base *bo_base;
573 
574 	if (!amdgpu_bo_is_amdgpu_bo(bo))
575 		return;
576 
577 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
578 		return;
579 
580 	abo = ttm_to_amdgpu_bo(bo);
581 	if (!abo->parent)
582 		return;
583 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
584 		struct amdgpu_vm *vm = bo_base->vm;
585 
586 		if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
587 			vm->bulk_moveable = false;
588 	}
589 
590 }
591 /**
592  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
593  *
594  * @adev: amdgpu device pointer
595  * @vm: vm providing the BOs
596  *
597  * Move all BOs to the end of LRU and remember their positions to put them
598  * together.
599  */
600 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
601 				struct amdgpu_vm *vm)
602 {
603 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
604 	struct amdgpu_vm_bo_base *bo_base;
605 
606 #if 0
607 	if (vm->bulk_moveable) {
608 		spin_lock(&glob->lru_lock);
609 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
610 		spin_unlock(&glob->lru_lock);
611 		return;
612 	}
613 #endif
614 
615 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
616 
617 	spin_lock(&glob->lru_lock);
618 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
619 		struct amdgpu_bo *bo = bo_base->bo;
620 
621 		if (!bo->parent)
622 			continue;
623 
624 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
625 		if (bo->shadow)
626 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
627 						&vm->lru_bulk_move);
628 	}
629 	spin_unlock(&glob->lru_lock);
630 
631 	vm->bulk_moveable = true;
632 }
633 
634 /**
635  * amdgpu_vm_validate_pt_bos - validate the page table BOs
636  *
637  * @adev: amdgpu device pointer
638  * @vm: vm providing the BOs
639  * @validate: callback to do the validation
640  * @param: parameter for the validation callback
641  *
642  * Validate the page table BOs on command submission if neccessary.
643  *
644  * Returns:
645  * Validation result.
646  */
647 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
648 			      int (*validate)(void *p, struct amdgpu_bo *bo),
649 			      void *param)
650 {
651 	struct amdgpu_vm_bo_base *bo_base, *tmp;
652 	int r = 0;
653 
654 	vm->bulk_moveable &= list_empty(&vm->evicted);
655 
656 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
657 		struct amdgpu_bo *bo = bo_base->bo;
658 
659 		r = validate(param, bo);
660 		if (r)
661 			break;
662 
663 		if (bo->tbo.type != ttm_bo_type_kernel) {
664 			amdgpu_vm_bo_moved(bo_base);
665 		} else {
666 			vm->update_funcs->map_table(bo);
667 			if (bo->parent)
668 				amdgpu_vm_bo_relocated(bo_base);
669 			else
670 				amdgpu_vm_bo_idle(bo_base);
671 		}
672 	}
673 
674 	return r;
675 }
676 
677 /**
678  * amdgpu_vm_ready - check VM is ready for updates
679  *
680  * @vm: VM to check
681  *
682  * Check if all VM PDs/PTs are ready for updates
683  *
684  * Returns:
685  * True if eviction list is empty.
686  */
687 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
688 {
689 	return list_empty(&vm->evicted);
690 }
691 
692 /**
693  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
694  *
695  * @adev: amdgpu_device pointer
696  * @vm: VM to clear BO from
697  * @bo: BO to clear
698  *
699  * Root PD needs to be reserved when calling this.
700  *
701  * Returns:
702  * 0 on success, errno otherwise.
703  */
704 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
705 			      struct amdgpu_vm *vm,
706 			      struct amdgpu_bo *bo)
707 {
708 	struct ttm_operation_ctx ctx = { true, false };
709 	unsigned level = adev->vm_manager.root_level;
710 	struct amdgpu_vm_update_params params;
711 	struct amdgpu_bo *ancestor = bo;
712 	unsigned entries, ats_entries;
713 	uint64_t addr;
714 	int r;
715 
716 	/* Figure out our place in the hierarchy */
717 	if (ancestor->parent) {
718 		++level;
719 		while (ancestor->parent->parent) {
720 			++level;
721 			ancestor = ancestor->parent;
722 		}
723 	}
724 
725 	entries = amdgpu_bo_size(bo) / 8;
726 	if (!vm->pte_support_ats) {
727 		ats_entries = 0;
728 
729 	} else if (!bo->parent) {
730 		ats_entries = amdgpu_vm_num_ats_entries(adev);
731 		ats_entries = min(ats_entries, entries);
732 		entries -= ats_entries;
733 
734 	} else {
735 		struct amdgpu_vm_pt *pt;
736 
737 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
738 		ats_entries = amdgpu_vm_num_ats_entries(adev);
739 		if ((pt - vm->root.entries) >= ats_entries) {
740 			ats_entries = 0;
741 		} else {
742 			ats_entries = entries;
743 			entries = 0;
744 		}
745 	}
746 
747 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
748 	if (r)
749 		return r;
750 
751 	if (bo->shadow) {
752 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
753 				    &ctx);
754 		if (r)
755 			return r;
756 	}
757 
758 	r = vm->update_funcs->map_table(bo);
759 	if (r)
760 		return r;
761 
762 	memset(&params, 0, sizeof(params));
763 	params.adev = adev;
764 	params.vm = vm;
765 
766 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_KFD, NULL);
767 	if (r)
768 		return r;
769 
770 	addr = 0;
771 	if (ats_entries) {
772 		uint64_t value = 0, flags;
773 
774 		flags = AMDGPU_PTE_DEFAULT_ATC;
775 		if (level != AMDGPU_VM_PTB) {
776 			/* Handle leaf PDEs as PTEs */
777 			flags |= AMDGPU_PDE_PTE;
778 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
779 		}
780 
781 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
782 					     value, flags);
783 		if (r)
784 			return r;
785 
786 		addr += ats_entries * 8;
787 	}
788 
789 	if (entries) {
790 		uint64_t value = 0, flags = 0;
791 
792 		if (adev->asic_type >= CHIP_VEGA10) {
793 			if (level != AMDGPU_VM_PTB) {
794 				/* Handle leaf PDEs as PTEs */
795 				flags |= AMDGPU_PDE_PTE;
796 				amdgpu_gmc_get_vm_pde(adev, level,
797 						      &value, &flags);
798 			} else {
799 				/* Workaround for fault priority problem on GMC9 */
800 				flags = AMDGPU_PTE_EXECUTABLE;
801 			}
802 		}
803 
804 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
805 					     value, flags);
806 		if (r)
807 			return r;
808 	}
809 
810 	return vm->update_funcs->commit(&params, NULL);
811 }
812 
813 /**
814  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
815  *
816  * @adev: amdgpu_device pointer
817  * @vm: requesting vm
818  * @bp: resulting BO allocation parameters
819  */
820 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
821 			       int level, struct amdgpu_bo_param *bp)
822 {
823 	memset(bp, 0, sizeof(*bp));
824 
825 	bp->size = amdgpu_vm_bo_size(adev, level);
826 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
827 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
828 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
829 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
830 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
831 	if (vm->use_cpu_for_update)
832 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
833 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
834 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
835 	bp->type = ttm_bo_type_kernel;
836 	if (vm->root.base.bo)
837 		bp->resv = vm->root.base.bo->tbo.resv;
838 }
839 
840 /**
841  * amdgpu_vm_alloc_pts - Allocate a specific page table
842  *
843  * @adev: amdgpu_device pointer
844  * @vm: VM to allocate page tables for
845  * @cursor: Which page table to allocate
846  *
847  * Make sure a specific page table or directory is allocated.
848  *
849  * Returns:
850  * 1 if page table needed to be allocated, 0 if page table was already
851  * allocated, negative errno if an error occurred.
852  */
853 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
854 			       struct amdgpu_vm *vm,
855 			       struct amdgpu_vm_pt_cursor *cursor)
856 {
857 	struct amdgpu_vm_pt *entry = cursor->entry;
858 	struct amdgpu_bo_param bp;
859 	struct amdgpu_bo *pt;
860 	int r;
861 
862 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
863 		unsigned num_entries;
864 
865 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
866 		entry->entries = kvmalloc_array(num_entries,
867 						sizeof(*entry->entries),
868 						GFP_KERNEL | __GFP_ZERO);
869 		if (!entry->entries)
870 			return -ENOMEM;
871 	}
872 
873 	if (entry->base.bo)
874 		return 0;
875 
876 	amdgpu_vm_bo_param(adev, vm, cursor->level, &bp);
877 
878 	r = amdgpu_bo_create(adev, &bp, &pt);
879 	if (r)
880 		return r;
881 
882 	/* Keep a reference to the root directory to avoid
883 	 * freeing them up in the wrong order.
884 	 */
885 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
886 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
887 
888 	r = amdgpu_vm_clear_bo(adev, vm, pt);
889 	if (r)
890 		goto error_free_pt;
891 
892 	return 0;
893 
894 error_free_pt:
895 	amdgpu_bo_unref(&pt->shadow);
896 	amdgpu_bo_unref(&pt);
897 	return r;
898 }
899 
900 /**
901  * amdgpu_vm_free_table - fre one PD/PT
902  *
903  * @entry: PDE to free
904  */
905 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
906 {
907 	if (entry->base.bo) {
908 		entry->base.bo->vm_bo = NULL;
909 		list_del(&entry->base.vm_status);
910 		amdgpu_bo_unref(&entry->base.bo->shadow);
911 		amdgpu_bo_unref(&entry->base.bo);
912 	}
913 	kvfree(entry->entries);
914 	entry->entries = NULL;
915 }
916 
917 /**
918  * amdgpu_vm_free_pts - free PD/PT levels
919  *
920  * @adev: amdgpu device structure
921  * @vm: amdgpu vm structure
922  * @start: optional cursor where to start freeing PDs/PTs
923  *
924  * Free the page directory or page table level and all sub levels.
925  */
926 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
927 			       struct amdgpu_vm *vm,
928 			       struct amdgpu_vm_pt_cursor *start)
929 {
930 	struct amdgpu_vm_pt_cursor cursor;
931 	struct amdgpu_vm_pt *entry;
932 
933 	vm->bulk_moveable = false;
934 
935 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
936 		amdgpu_vm_free_table(entry);
937 
938 	if (start)
939 		amdgpu_vm_free_table(start->entry);
940 }
941 
942 /**
943  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
944  *
945  * @adev: amdgpu_device pointer
946  */
947 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
948 {
949 	const struct amdgpu_ip_block *ip_block;
950 	bool has_compute_vm_bug;
951 	struct amdgpu_ring *ring;
952 	int i;
953 
954 	has_compute_vm_bug = false;
955 
956 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
957 	if (ip_block) {
958 		/* Compute has a VM bug for GFX version < 7.
959 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
960 		if (ip_block->version->major <= 7)
961 			has_compute_vm_bug = true;
962 		else if (ip_block->version->major == 8)
963 			if (adev->gfx.mec_fw_version < 673)
964 				has_compute_vm_bug = true;
965 	}
966 
967 	for (i = 0; i < adev->num_rings; i++) {
968 		ring = adev->rings[i];
969 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
970 			/* only compute rings */
971 			ring->has_compute_vm_bug = has_compute_vm_bug;
972 		else
973 			ring->has_compute_vm_bug = false;
974 	}
975 }
976 
977 /**
978  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
979  *
980  * @ring: ring on which the job will be submitted
981  * @job: job to submit
982  *
983  * Returns:
984  * True if sync is needed.
985  */
986 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
987 				  struct amdgpu_job *job)
988 {
989 	struct amdgpu_device *adev = ring->adev;
990 	unsigned vmhub = ring->funcs->vmhub;
991 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
992 	struct amdgpu_vmid *id;
993 	bool gds_switch_needed;
994 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
995 
996 	if (job->vmid == 0)
997 		return false;
998 	id = &id_mgr->ids[job->vmid];
999 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1000 		id->gds_base != job->gds_base ||
1001 		id->gds_size != job->gds_size ||
1002 		id->gws_base != job->gws_base ||
1003 		id->gws_size != job->gws_size ||
1004 		id->oa_base != job->oa_base ||
1005 		id->oa_size != job->oa_size);
1006 
1007 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1008 		return true;
1009 
1010 	return vm_flush_needed || gds_switch_needed;
1011 }
1012 
1013 /**
1014  * amdgpu_vm_flush - hardware flush the vm
1015  *
1016  * @ring: ring to use for flush
1017  * @job:  related job
1018  * @need_pipe_sync: is pipe sync needed
1019  *
1020  * Emit a VM flush when it is necessary.
1021  *
1022  * Returns:
1023  * 0 on success, errno otherwise.
1024  */
1025 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1026 {
1027 	struct amdgpu_device *adev = ring->adev;
1028 	unsigned vmhub = ring->funcs->vmhub;
1029 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1030 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1031 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1032 		id->gds_base != job->gds_base ||
1033 		id->gds_size != job->gds_size ||
1034 		id->gws_base != job->gws_base ||
1035 		id->gws_size != job->gws_size ||
1036 		id->oa_base != job->oa_base ||
1037 		id->oa_size != job->oa_size);
1038 	bool vm_flush_needed = job->vm_needs_flush;
1039 	bool pasid_mapping_needed = id->pasid != job->pasid ||
1040 		!id->pasid_mapping ||
1041 		!dma_fence_is_signaled(id->pasid_mapping);
1042 	struct dma_fence *fence = NULL;
1043 	unsigned patch_offset = 0;
1044 	int r;
1045 
1046 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1047 		gds_switch_needed = true;
1048 		vm_flush_needed = true;
1049 		pasid_mapping_needed = true;
1050 	}
1051 
1052 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1053 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1054 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1055 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1056 		ring->funcs->emit_wreg;
1057 
1058 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1059 		return 0;
1060 
1061 	if (ring->funcs->init_cond_exec)
1062 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1063 
1064 	if (need_pipe_sync)
1065 		amdgpu_ring_emit_pipeline_sync(ring);
1066 
1067 	if (vm_flush_needed) {
1068 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1069 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1070 	}
1071 
1072 	if (pasid_mapping_needed)
1073 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1074 
1075 	if (vm_flush_needed || pasid_mapping_needed) {
1076 		r = amdgpu_fence_emit(ring, &fence, 0);
1077 		if (r)
1078 			return r;
1079 	}
1080 
1081 	if (vm_flush_needed) {
1082 		mutex_lock(&id_mgr->lock);
1083 		dma_fence_put(id->last_flush);
1084 		id->last_flush = dma_fence_get(fence);
1085 		id->current_gpu_reset_count =
1086 			atomic_read(&adev->gpu_reset_counter);
1087 		mutex_unlock(&id_mgr->lock);
1088 	}
1089 
1090 	if (pasid_mapping_needed) {
1091 		id->pasid = job->pasid;
1092 		dma_fence_put(id->pasid_mapping);
1093 		id->pasid_mapping = dma_fence_get(fence);
1094 	}
1095 	dma_fence_put(fence);
1096 
1097 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1098 		id->gds_base = job->gds_base;
1099 		id->gds_size = job->gds_size;
1100 		id->gws_base = job->gws_base;
1101 		id->gws_size = job->gws_size;
1102 		id->oa_base = job->oa_base;
1103 		id->oa_size = job->oa_size;
1104 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1105 					    job->gds_size, job->gws_base,
1106 					    job->gws_size, job->oa_base,
1107 					    job->oa_size);
1108 	}
1109 
1110 	if (ring->funcs->patch_cond_exec)
1111 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1112 
1113 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1114 	if (ring->funcs->emit_switch_buffer) {
1115 		amdgpu_ring_emit_switch_buffer(ring);
1116 		amdgpu_ring_emit_switch_buffer(ring);
1117 	}
1118 	return 0;
1119 }
1120 
1121 /**
1122  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1123  *
1124  * @vm: requested vm
1125  * @bo: requested buffer object
1126  *
1127  * Find @bo inside the requested vm.
1128  * Search inside the @bos vm list for the requested vm
1129  * Returns the found bo_va or NULL if none is found
1130  *
1131  * Object has to be reserved!
1132  *
1133  * Returns:
1134  * Found bo_va or NULL.
1135  */
1136 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1137 				       struct amdgpu_bo *bo)
1138 {
1139 	struct amdgpu_vm_bo_base *base;
1140 
1141 	for (base = bo->vm_bo; base; base = base->next) {
1142 		if (base->vm != vm)
1143 			continue;
1144 
1145 		return container_of(base, struct amdgpu_bo_va, base);
1146 	}
1147 	return NULL;
1148 }
1149 
1150 /**
1151  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1152  *
1153  * @pages_addr: optional DMA address to use for lookup
1154  * @addr: the unmapped addr
1155  *
1156  * Look up the physical address of the page that the pte resolves
1157  * to.
1158  *
1159  * Returns:
1160  * The pointer for the page table entry.
1161  */
1162 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1163 {
1164 	uint64_t result;
1165 
1166 	/* page table offset */
1167 	result = pages_addr[addr >> PAGE_SHIFT];
1168 
1169 	/* in case cpu page size != gpu page size*/
1170 	result |= addr & (~PAGE_MASK);
1171 
1172 	result &= 0xFFFFFFFFFFFFF000ULL;
1173 
1174 	return result;
1175 }
1176 
1177 /*
1178  * amdgpu_vm_update_pde - update a single level in the hierarchy
1179  *
1180  * @param: parameters for the update
1181  * @vm: requested vm
1182  * @entry: entry to update
1183  *
1184  * Makes sure the requested entry in parent is up to date.
1185  */
1186 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1187 				struct amdgpu_vm *vm,
1188 				struct amdgpu_vm_pt *entry)
1189 {
1190 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1191 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1192 	uint64_t pde, pt, flags;
1193 	unsigned level;
1194 
1195 	for (level = 0, pbo = bo->parent; pbo; ++level)
1196 		pbo = pbo->parent;
1197 
1198 	level += params->adev->vm_manager.root_level;
1199 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1200 	pde = (entry - parent->entries) * 8;
1201 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1202 }
1203 
1204 /*
1205  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1206  *
1207  * @adev: amdgpu_device pointer
1208  * @vm: related vm
1209  *
1210  * Mark all PD level as invalid after an error.
1211  */
1212 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1213 				     struct amdgpu_vm *vm)
1214 {
1215 	struct amdgpu_vm_pt_cursor cursor;
1216 	struct amdgpu_vm_pt *entry;
1217 
1218 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1219 		if (entry->base.bo && !entry->base.moved)
1220 			amdgpu_vm_bo_relocated(&entry->base);
1221 }
1222 
1223 /*
1224  * amdgpu_vm_update_directories - make sure that all directories are valid
1225  *
1226  * @adev: amdgpu_device pointer
1227  * @vm: requested vm
1228  *
1229  * Makes sure all directories are up to date.
1230  *
1231  * Returns:
1232  * 0 for success, error for failure.
1233  */
1234 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1235 				 struct amdgpu_vm *vm)
1236 {
1237 	struct amdgpu_vm_update_params params;
1238 	int r;
1239 
1240 	if (list_empty(&vm->relocated))
1241 		return 0;
1242 
1243 	memset(&params, 0, sizeof(params));
1244 	params.adev = adev;
1245 	params.vm = vm;
1246 
1247 	r = vm->update_funcs->prepare(&params, AMDGPU_FENCE_OWNER_VM, NULL);
1248 	if (r)
1249 		return r;
1250 
1251 	while (!list_empty(&vm->relocated)) {
1252 		struct amdgpu_vm_pt *entry;
1253 
1254 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1255 					 base.vm_status);
1256 		amdgpu_vm_bo_idle(&entry->base);
1257 
1258 		r = amdgpu_vm_update_pde(&params, vm, entry);
1259 		if (r)
1260 			goto error;
1261 	}
1262 
1263 	r = vm->update_funcs->commit(&params, &vm->last_update);
1264 	if (r)
1265 		goto error;
1266 	return 0;
1267 
1268 error:
1269 	amdgpu_vm_invalidate_pds(adev, vm);
1270 	return r;
1271 }
1272 
1273 /**
1274  * amdgpu_vm_update_flags - figure out flags for PTE updates
1275  *
1276  * Make sure to set the right flags for the PTEs at the desired level.
1277  */
1278 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1279 				   struct amdgpu_bo *bo, unsigned level,
1280 				   uint64_t pe, uint64_t addr,
1281 				   unsigned count, uint32_t incr,
1282 				   uint64_t flags)
1283 
1284 {
1285 	if (level != AMDGPU_VM_PTB) {
1286 		flags |= AMDGPU_PDE_PTE;
1287 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1288 
1289 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1290 		   !(flags & AMDGPU_PTE_VALID) &&
1291 		   !(flags & AMDGPU_PTE_PRT)) {
1292 
1293 		/* Workaround for fault priority problem on GMC9 */
1294 		flags |= AMDGPU_PTE_EXECUTABLE;
1295 	}
1296 
1297 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1298 					 flags);
1299 }
1300 
1301 /**
1302  * amdgpu_vm_fragment - get fragment for PTEs
1303  *
1304  * @params: see amdgpu_vm_update_params definition
1305  * @start: first PTE to handle
1306  * @end: last PTE to handle
1307  * @flags: hw mapping flags
1308  * @frag: resulting fragment size
1309  * @frag_end: end of this fragment
1310  *
1311  * Returns the first possible fragment for the start and end address.
1312  */
1313 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1314 			       uint64_t start, uint64_t end, uint64_t flags,
1315 			       unsigned int *frag, uint64_t *frag_end)
1316 {
1317 	/**
1318 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1319 	 * field in the PTE. When this field is set to a non-zero value, page
1320 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1321 	 * flags are considered valid for all PTEs within the fragment range
1322 	 * and corresponding mappings are assumed to be physically contiguous.
1323 	 *
1324 	 * The L1 TLB can store a single PTE for the whole fragment,
1325 	 * significantly increasing the space available for translation
1326 	 * caching. This leads to large improvements in throughput when the
1327 	 * TLB is under pressure.
1328 	 *
1329 	 * The L2 TLB distributes small and large fragments into two
1330 	 * asymmetric partitions. The large fragment cache is significantly
1331 	 * larger. Thus, we try to use large fragments wherever possible.
1332 	 * Userspace can support this by aligning virtual base address and
1333 	 * allocation size to the fragment size.
1334 	 *
1335 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1336 	 * is now directly feed with small/huge/giant pages from the walker.
1337 	 */
1338 	unsigned max_frag;
1339 
1340 	if (params->adev->asic_type < CHIP_VEGA10)
1341 		max_frag = params->adev->vm_manager.fragment_size;
1342 	else
1343 		max_frag = 31;
1344 
1345 	/* system pages are non continuously */
1346 	if (params->pages_addr) {
1347 		*frag = 0;
1348 		*frag_end = end;
1349 		return;
1350 	}
1351 
1352 	/* This intentionally wraps around if no bit is set */
1353 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1354 	if (*frag >= max_frag) {
1355 		*frag = max_frag;
1356 		*frag_end = end & ~((1ULL << max_frag) - 1);
1357 	} else {
1358 		*frag_end = start + (1 << *frag);
1359 	}
1360 }
1361 
1362 /**
1363  * amdgpu_vm_update_ptes - make sure that page tables are valid
1364  *
1365  * @params: see amdgpu_vm_update_params definition
1366  * @start: start of GPU address range
1367  * @end: end of GPU address range
1368  * @dst: destination address to map to, the next dst inside the function
1369  * @flags: mapping flags
1370  *
1371  * Update the page tables in the range @start - @end.
1372  *
1373  * Returns:
1374  * 0 for success, -EINVAL for failure.
1375  */
1376 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1377 				 uint64_t start, uint64_t end,
1378 				 uint64_t dst, uint64_t flags)
1379 {
1380 	struct amdgpu_device *adev = params->adev;
1381 	struct amdgpu_vm_pt_cursor cursor;
1382 	uint64_t frag_start = start, frag_end;
1383 	unsigned int frag;
1384 	int r;
1385 
1386 	/* figure out the initial fragment */
1387 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1388 
1389 	/* walk over the address space and update the PTs */
1390 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1391 	while (cursor.pfn < end) {
1392 		unsigned shift, parent_shift, mask;
1393 		uint64_t incr, entry_end, pe_start;
1394 		struct amdgpu_bo *pt;
1395 
1396 		r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor);
1397 		if (r)
1398 			return r;
1399 
1400 		pt = cursor.entry->base.bo;
1401 
1402 		/* The root level can't be a huge page */
1403 		if (cursor.level == adev->vm_manager.root_level) {
1404 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1405 				return -ENOENT;
1406 			continue;
1407 		}
1408 
1409 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1410 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1411 		if (adev->asic_type < CHIP_VEGA10 &&
1412 		    (flags & AMDGPU_PTE_VALID)) {
1413 			/* No huge page support before GMC v9 */
1414 			if (cursor.level != AMDGPU_VM_PTB) {
1415 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1416 					return -ENOENT;
1417 				continue;
1418 			}
1419 		} else if (frag < shift) {
1420 			/* We can't use this level when the fragment size is
1421 			 * smaller than the address shift. Go to the next
1422 			 * child entry and try again.
1423 			 */
1424 			if (!amdgpu_vm_pt_descendant(adev, &cursor))
1425 				return -ENOENT;
1426 			continue;
1427 		} else if (frag >= parent_shift &&
1428 			   cursor.level - 1 != adev->vm_manager.root_level) {
1429 			/* If the fragment size is even larger than the parent
1430 			 * shift we should go up one level and check it again
1431 			 * unless one level up is the root level.
1432 			 */
1433 			if (!amdgpu_vm_pt_ancestor(&cursor))
1434 				return -ENOENT;
1435 			continue;
1436 		}
1437 
1438 		/* Looks good so far, calculate parameters for the update */
1439 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1440 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1441 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1442 		entry_end = (uint64_t)(mask + 1) << shift;
1443 		entry_end += cursor.pfn & ~(entry_end - 1);
1444 		entry_end = min(entry_end, end);
1445 
1446 		do {
1447 			uint64_t upd_end = min(entry_end, frag_end);
1448 			unsigned nptes = (upd_end - frag_start) >> shift;
1449 
1450 			amdgpu_vm_update_flags(params, pt, cursor.level,
1451 					       pe_start, dst, nptes, incr,
1452 					       flags | AMDGPU_PTE_FRAG(frag));
1453 
1454 			pe_start += nptes * 8;
1455 			dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1456 
1457 			frag_start = upd_end;
1458 			if (frag_start >= frag_end) {
1459 				/* figure out the next fragment */
1460 				amdgpu_vm_fragment(params, frag_start, end,
1461 						   flags, &frag, &frag_end);
1462 				if (frag < shift)
1463 					break;
1464 			}
1465 		} while (frag_start < entry_end);
1466 
1467 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1468 			/* Free all child entries */
1469 			while (cursor.pfn < frag_start) {
1470 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1471 				amdgpu_vm_pt_next(adev, &cursor);
1472 			}
1473 
1474 		} else if (frag >= shift) {
1475 			/* or just move on to the next on the same level. */
1476 			amdgpu_vm_pt_next(adev, &cursor);
1477 		}
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1485  *
1486  * @adev: amdgpu_device pointer
1487  * @exclusive: fence we need to sync to
1488  * @pages_addr: DMA addresses to use for mapping
1489  * @vm: requested vm
1490  * @start: start of mapped range
1491  * @last: last mapped entry
1492  * @flags: flags for the entries
1493  * @addr: addr to set the area to
1494  * @fence: optional resulting fence
1495  *
1496  * Fill in the page table entries between @start and @last.
1497  *
1498  * Returns:
1499  * 0 for success, -EINVAL for failure.
1500  */
1501 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1502 				       struct dma_fence *exclusive,
1503 				       dma_addr_t *pages_addr,
1504 				       struct amdgpu_vm *vm,
1505 				       uint64_t start, uint64_t last,
1506 				       uint64_t flags, uint64_t addr,
1507 				       struct dma_fence **fence)
1508 {
1509 	struct amdgpu_vm_update_params params;
1510 	void *owner = AMDGPU_FENCE_OWNER_VM;
1511 	int r;
1512 
1513 	memset(&params, 0, sizeof(params));
1514 	params.adev = adev;
1515 	params.vm = vm;
1516 	params.pages_addr = pages_addr;
1517 
1518 	/* sync to everything except eviction fences on unmapping */
1519 	if (!(flags & AMDGPU_PTE_VALID))
1520 		owner = AMDGPU_FENCE_OWNER_KFD;
1521 
1522 	r = vm->update_funcs->prepare(&params, owner, exclusive);
1523 	if (r)
1524 		return r;
1525 
1526 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1527 	if (r)
1528 		return r;
1529 
1530 	return vm->update_funcs->commit(&params, fence);
1531 }
1532 
1533 /**
1534  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1535  *
1536  * @adev: amdgpu_device pointer
1537  * @exclusive: fence we need to sync to
1538  * @pages_addr: DMA addresses to use for mapping
1539  * @vm: requested vm
1540  * @mapping: mapped range and flags to use for the update
1541  * @flags: HW flags for the mapping
1542  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1543  * @nodes: array of drm_mm_nodes with the MC addresses
1544  * @fence: optional resulting fence
1545  *
1546  * Split the mapping into smaller chunks so that each update fits
1547  * into a SDMA IB.
1548  *
1549  * Returns:
1550  * 0 for success, -EINVAL for failure.
1551  */
1552 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1553 				      struct dma_fence *exclusive,
1554 				      dma_addr_t *pages_addr,
1555 				      struct amdgpu_vm *vm,
1556 				      struct amdgpu_bo_va_mapping *mapping,
1557 				      uint64_t flags,
1558 				      struct amdgpu_device *bo_adev,
1559 				      struct drm_mm_node *nodes,
1560 				      struct dma_fence **fence)
1561 {
1562 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1563 	uint64_t pfn, start = mapping->start;
1564 	int r;
1565 
1566 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1567 	 * but in case of something, we filter the flags in first place
1568 	 */
1569 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1570 		flags &= ~AMDGPU_PTE_READABLE;
1571 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1572 		flags &= ~AMDGPU_PTE_WRITEABLE;
1573 
1574 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1575 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1576 
1577 	if (adev->asic_type == CHIP_NAVI10) {
1578 		flags &= ~AMDGPU_PTE_MTYPE_NV10_MASK;
1579 		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_NV10_MASK);
1580 	} else {
1581 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1582 		flags |= (mapping->flags & AMDGPU_PTE_MTYPE_VG10_MASK);
1583 	}
1584 
1585 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1586 	    (adev->asic_type >= CHIP_VEGA10)) {
1587 		flags |= AMDGPU_PTE_PRT;
1588 		if (adev->asic_type >= CHIP_NAVI10) {
1589 			flags |= AMDGPU_PTE_SNOOPED;
1590 			flags |= AMDGPU_PTE_LOG;
1591 			flags |= AMDGPU_PTE_SYSTEM;
1592 		}
1593 		flags &= ~AMDGPU_PTE_VALID;
1594 	}
1595 
1596 	trace_amdgpu_vm_bo_update(mapping);
1597 
1598 	pfn = mapping->offset >> PAGE_SHIFT;
1599 	if (nodes) {
1600 		while (pfn >= nodes->size) {
1601 			pfn -= nodes->size;
1602 			++nodes;
1603 		}
1604 	}
1605 
1606 	do {
1607 		dma_addr_t *dma_addr = NULL;
1608 		uint64_t max_entries;
1609 		uint64_t addr, last;
1610 
1611 		if (nodes) {
1612 			addr = nodes->start << PAGE_SHIFT;
1613 			max_entries = (nodes->size - pfn) *
1614 				AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1615 		} else {
1616 			addr = 0;
1617 			max_entries = S64_MAX;
1618 		}
1619 
1620 		if (pages_addr) {
1621 			uint64_t count;
1622 
1623 			for (count = 1;
1624 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1625 			     ++count) {
1626 				uint64_t idx = pfn + count;
1627 
1628 				if (pages_addr[idx] !=
1629 				    (pages_addr[idx - 1] + PAGE_SIZE))
1630 					break;
1631 			}
1632 
1633 			if (count < min_linear_pages) {
1634 				addr = pfn << PAGE_SHIFT;
1635 				dma_addr = pages_addr;
1636 			} else {
1637 				addr = pages_addr[pfn];
1638 				max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1639 			}
1640 
1641 		} else if (flags & AMDGPU_PTE_VALID) {
1642 			addr += bo_adev->vm_manager.vram_base_offset;
1643 			addr += pfn << PAGE_SHIFT;
1644 		}
1645 
1646 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1647 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1648 						start, last, flags, addr,
1649 						fence);
1650 		if (r)
1651 			return r;
1652 
1653 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1654 		if (nodes && nodes->size == pfn) {
1655 			pfn = 0;
1656 			++nodes;
1657 		}
1658 		start = last + 1;
1659 
1660 	} while (unlikely(start != mapping->last + 1));
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1667  *
1668  * @adev: amdgpu_device pointer
1669  * @bo_va: requested BO and VM object
1670  * @clear: if true clear the entries
1671  *
1672  * Fill in the page table entries for @bo_va.
1673  *
1674  * Returns:
1675  * 0 for success, -EINVAL for failure.
1676  */
1677 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1678 			struct amdgpu_bo_va *bo_va,
1679 			bool clear)
1680 {
1681 	struct amdgpu_bo *bo = bo_va->base.bo;
1682 	struct amdgpu_vm *vm = bo_va->base.vm;
1683 	struct amdgpu_bo_va_mapping *mapping;
1684 	dma_addr_t *pages_addr = NULL;
1685 	struct ttm_mem_reg *mem;
1686 	struct drm_mm_node *nodes;
1687 	struct dma_fence *exclusive, **last_update;
1688 	uint64_t flags;
1689 	struct amdgpu_device *bo_adev = adev;
1690 	int r;
1691 
1692 	if (clear || !bo) {
1693 		mem = NULL;
1694 		nodes = NULL;
1695 		exclusive = NULL;
1696 	} else {
1697 		struct ttm_dma_tt *ttm;
1698 
1699 		mem = &bo->tbo.mem;
1700 		nodes = mem->mm_node;
1701 		if (mem->mem_type == TTM_PL_TT) {
1702 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1703 			pages_addr = ttm->dma_address;
1704 		}
1705 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1706 	}
1707 
1708 	if (bo) {
1709 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1710 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1711 	} else {
1712 		flags = 0x0;
1713 	}
1714 
1715 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1716 		last_update = &vm->last_update;
1717 	else
1718 		last_update = &bo_va->last_pt_update;
1719 
1720 	if (!clear && bo_va->base.moved) {
1721 		bo_va->base.moved = false;
1722 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1723 
1724 	} else if (bo_va->cleared != clear) {
1725 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1726 	}
1727 
1728 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1729 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1730 					       mapping, flags, bo_adev, nodes,
1731 					       last_update);
1732 		if (r)
1733 			return r;
1734 	}
1735 
1736 	if (vm->use_cpu_for_update) {
1737 		/* Flush HDP */
1738 		mb();
1739 		amdgpu_asic_flush_hdp(adev, NULL);
1740 	}
1741 
1742 	/* If the BO is not in its preferred location add it back to
1743 	 * the evicted list so that it gets validated again on the
1744 	 * next command submission.
1745 	 */
1746 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1747 		uint32_t mem_type = bo->tbo.mem.mem_type;
1748 
1749 		if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
1750 			amdgpu_vm_bo_evicted(&bo_va->base);
1751 		else
1752 			amdgpu_vm_bo_idle(&bo_va->base);
1753 	} else {
1754 		amdgpu_vm_bo_done(&bo_va->base);
1755 	}
1756 
1757 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1758 	bo_va->cleared = clear;
1759 
1760 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1761 		list_for_each_entry(mapping, &bo_va->valids, list)
1762 			trace_amdgpu_vm_bo_mapping(mapping);
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 /**
1769  * amdgpu_vm_update_prt_state - update the global PRT state
1770  *
1771  * @adev: amdgpu_device pointer
1772  */
1773 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1774 {
1775 	unsigned long flags;
1776 	bool enable;
1777 
1778 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1779 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1780 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1781 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1782 }
1783 
1784 /**
1785  * amdgpu_vm_prt_get - add a PRT user
1786  *
1787  * @adev: amdgpu_device pointer
1788  */
1789 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1790 {
1791 	if (!adev->gmc.gmc_funcs->set_prt)
1792 		return;
1793 
1794 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1795 		amdgpu_vm_update_prt_state(adev);
1796 }
1797 
1798 /**
1799  * amdgpu_vm_prt_put - drop a PRT user
1800  *
1801  * @adev: amdgpu_device pointer
1802  */
1803 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1804 {
1805 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1806 		amdgpu_vm_update_prt_state(adev);
1807 }
1808 
1809 /**
1810  * amdgpu_vm_prt_cb - callback for updating the PRT status
1811  *
1812  * @fence: fence for the callback
1813  * @_cb: the callback function
1814  */
1815 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1816 {
1817 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1818 
1819 	amdgpu_vm_prt_put(cb->adev);
1820 	kfree(cb);
1821 }
1822 
1823 /**
1824  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1825  *
1826  * @adev: amdgpu_device pointer
1827  * @fence: fence for the callback
1828  */
1829 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1830 				 struct dma_fence *fence)
1831 {
1832 	struct amdgpu_prt_cb *cb;
1833 
1834 	if (!adev->gmc.gmc_funcs->set_prt)
1835 		return;
1836 
1837 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1838 	if (!cb) {
1839 		/* Last resort when we are OOM */
1840 		if (fence)
1841 			dma_fence_wait(fence, false);
1842 
1843 		amdgpu_vm_prt_put(adev);
1844 	} else {
1845 		cb->adev = adev;
1846 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1847 						     amdgpu_vm_prt_cb))
1848 			amdgpu_vm_prt_cb(fence, &cb->cb);
1849 	}
1850 }
1851 
1852 /**
1853  * amdgpu_vm_free_mapping - free a mapping
1854  *
1855  * @adev: amdgpu_device pointer
1856  * @vm: requested vm
1857  * @mapping: mapping to be freed
1858  * @fence: fence of the unmap operation
1859  *
1860  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1861  */
1862 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1863 				   struct amdgpu_vm *vm,
1864 				   struct amdgpu_bo_va_mapping *mapping,
1865 				   struct dma_fence *fence)
1866 {
1867 	if (mapping->flags & AMDGPU_PTE_PRT)
1868 		amdgpu_vm_add_prt_cb(adev, fence);
1869 	kfree(mapping);
1870 }
1871 
1872 /**
1873  * amdgpu_vm_prt_fini - finish all prt mappings
1874  *
1875  * @adev: amdgpu_device pointer
1876  * @vm: requested vm
1877  *
1878  * Register a cleanup callback to disable PRT support after VM dies.
1879  */
1880 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1881 {
1882 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1883 	struct dma_fence *excl, **shared;
1884 	unsigned i, shared_count;
1885 	int r;
1886 
1887 	r = reservation_object_get_fences_rcu(resv, &excl,
1888 					      &shared_count, &shared);
1889 	if (r) {
1890 		/* Not enough memory to grab the fence list, as last resort
1891 		 * block for all the fences to complete.
1892 		 */
1893 		reservation_object_wait_timeout_rcu(resv, true, false,
1894 						    MAX_SCHEDULE_TIMEOUT);
1895 		return;
1896 	}
1897 
1898 	/* Add a callback for each fence in the reservation object */
1899 	amdgpu_vm_prt_get(adev);
1900 	amdgpu_vm_add_prt_cb(adev, excl);
1901 
1902 	for (i = 0; i < shared_count; ++i) {
1903 		amdgpu_vm_prt_get(adev);
1904 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1905 	}
1906 
1907 	kfree(shared);
1908 }
1909 
1910 /**
1911  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1912  *
1913  * @adev: amdgpu_device pointer
1914  * @vm: requested vm
1915  * @fence: optional resulting fence (unchanged if no work needed to be done
1916  * or if an error occurred)
1917  *
1918  * Make sure all freed BOs are cleared in the PT.
1919  * PTs have to be reserved and mutex must be locked!
1920  *
1921  * Returns:
1922  * 0 for success.
1923  *
1924  */
1925 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1926 			  struct amdgpu_vm *vm,
1927 			  struct dma_fence **fence)
1928 {
1929 	struct amdgpu_bo_va_mapping *mapping;
1930 	uint64_t init_pte_value = 0;
1931 	struct dma_fence *f = NULL;
1932 	int r;
1933 
1934 	while (!list_empty(&vm->freed)) {
1935 		mapping = list_first_entry(&vm->freed,
1936 			struct amdgpu_bo_va_mapping, list);
1937 		list_del(&mapping->list);
1938 
1939 		if (vm->pte_support_ats &&
1940 		    mapping->start < AMDGPU_GMC_HOLE_START)
1941 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1942 
1943 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1944 						mapping->start, mapping->last,
1945 						init_pte_value, 0, &f);
1946 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1947 		if (r) {
1948 			dma_fence_put(f);
1949 			return r;
1950 		}
1951 	}
1952 
1953 	if (fence && f) {
1954 		dma_fence_put(*fence);
1955 		*fence = f;
1956 	} else {
1957 		dma_fence_put(f);
1958 	}
1959 
1960 	return 0;
1961 
1962 }
1963 
1964 /**
1965  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1966  *
1967  * @adev: amdgpu_device pointer
1968  * @vm: requested vm
1969  *
1970  * Make sure all BOs which are moved are updated in the PTs.
1971  *
1972  * Returns:
1973  * 0 for success.
1974  *
1975  * PTs have to be reserved!
1976  */
1977 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1978 			   struct amdgpu_vm *vm)
1979 {
1980 	struct amdgpu_bo_va *bo_va, *tmp;
1981 	struct reservation_object *resv;
1982 	bool clear;
1983 	int r;
1984 
1985 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1986 		/* Per VM BOs never need to bo cleared in the page tables */
1987 		r = amdgpu_vm_bo_update(adev, bo_va, false);
1988 		if (r)
1989 			return r;
1990 	}
1991 
1992 	spin_lock(&vm->invalidated_lock);
1993 	while (!list_empty(&vm->invalidated)) {
1994 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
1995 					 base.vm_status);
1996 		resv = bo_va->base.bo->tbo.resv;
1997 		spin_unlock(&vm->invalidated_lock);
1998 
1999 		/* Try to reserve the BO to avoid clearing its ptes */
2000 		if (!amdgpu_vm_debug && reservation_object_trylock(resv))
2001 			clear = false;
2002 		/* Somebody else is using the BO right now */
2003 		else
2004 			clear = true;
2005 
2006 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2007 		if (r)
2008 			return r;
2009 
2010 		if (!clear)
2011 			reservation_object_unlock(resv);
2012 		spin_lock(&vm->invalidated_lock);
2013 	}
2014 	spin_unlock(&vm->invalidated_lock);
2015 
2016 	return 0;
2017 }
2018 
2019 /**
2020  * amdgpu_vm_bo_add - add a bo to a specific vm
2021  *
2022  * @adev: amdgpu_device pointer
2023  * @vm: requested vm
2024  * @bo: amdgpu buffer object
2025  *
2026  * Add @bo into the requested vm.
2027  * Add @bo to the list of bos associated with the vm
2028  *
2029  * Returns:
2030  * Newly added bo_va or NULL for failure
2031  *
2032  * Object has to be reserved!
2033  */
2034 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2035 				      struct amdgpu_vm *vm,
2036 				      struct amdgpu_bo *bo)
2037 {
2038 	struct amdgpu_bo_va *bo_va;
2039 
2040 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2041 	if (bo_va == NULL) {
2042 		return NULL;
2043 	}
2044 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2045 
2046 	bo_va->ref_count = 1;
2047 	INIT_LIST_HEAD(&bo_va->valids);
2048 	INIT_LIST_HEAD(&bo_va->invalids);
2049 
2050 	if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2051 	    (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2052 		bo_va->is_xgmi = true;
2053 		mutex_lock(&adev->vm_manager.lock_pstate);
2054 		/* Power up XGMI if it can be potentially used */
2055 		if (++adev->vm_manager.xgmi_map_counter == 1)
2056 			amdgpu_xgmi_set_pstate(adev, 1);
2057 		mutex_unlock(&adev->vm_manager.lock_pstate);
2058 	}
2059 
2060 	return bo_va;
2061 }
2062 
2063 
2064 /**
2065  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2066  *
2067  * @adev: amdgpu_device pointer
2068  * @bo_va: bo_va to store the address
2069  * @mapping: the mapping to insert
2070  *
2071  * Insert a new mapping into all structures.
2072  */
2073 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2074 				    struct amdgpu_bo_va *bo_va,
2075 				    struct amdgpu_bo_va_mapping *mapping)
2076 {
2077 	struct amdgpu_vm *vm = bo_va->base.vm;
2078 	struct amdgpu_bo *bo = bo_va->base.bo;
2079 
2080 	mapping->bo_va = bo_va;
2081 	list_add(&mapping->list, &bo_va->invalids);
2082 	amdgpu_vm_it_insert(mapping, &vm->va);
2083 
2084 	if (mapping->flags & AMDGPU_PTE_PRT)
2085 		amdgpu_vm_prt_get(adev);
2086 
2087 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2088 	    !bo_va->base.moved) {
2089 		list_move(&bo_va->base.vm_status, &vm->moved);
2090 	}
2091 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2092 }
2093 
2094 /**
2095  * amdgpu_vm_bo_map - map bo inside a vm
2096  *
2097  * @adev: amdgpu_device pointer
2098  * @bo_va: bo_va to store the address
2099  * @saddr: where to map the BO
2100  * @offset: requested offset in the BO
2101  * @size: BO size in bytes
2102  * @flags: attributes of pages (read/write/valid/etc.)
2103  *
2104  * Add a mapping of the BO at the specefied addr into the VM.
2105  *
2106  * Returns:
2107  * 0 for success, error for failure.
2108  *
2109  * Object has to be reserved and unreserved outside!
2110  */
2111 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2112 		     struct amdgpu_bo_va *bo_va,
2113 		     uint64_t saddr, uint64_t offset,
2114 		     uint64_t size, uint64_t flags)
2115 {
2116 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2117 	struct amdgpu_bo *bo = bo_va->base.bo;
2118 	struct amdgpu_vm *vm = bo_va->base.vm;
2119 	uint64_t eaddr;
2120 
2121 	/* validate the parameters */
2122 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2123 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2124 		return -EINVAL;
2125 
2126 	/* make sure object fit at this offset */
2127 	eaddr = saddr + size - 1;
2128 	if (saddr >= eaddr ||
2129 	    (bo && offset + size > amdgpu_bo_size(bo)))
2130 		return -EINVAL;
2131 
2132 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2133 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2134 
2135 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2136 	if (tmp) {
2137 		/* bo and tmp overlap, invalid addr */
2138 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2139 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2140 			tmp->start, tmp->last + 1);
2141 		return -EINVAL;
2142 	}
2143 
2144 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2145 	if (!mapping)
2146 		return -ENOMEM;
2147 
2148 	mapping->start = saddr;
2149 	mapping->last = eaddr;
2150 	mapping->offset = offset;
2151 	mapping->flags = flags;
2152 
2153 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2154 
2155 	return 0;
2156 }
2157 
2158 /**
2159  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2160  *
2161  * @adev: amdgpu_device pointer
2162  * @bo_va: bo_va to store the address
2163  * @saddr: where to map the BO
2164  * @offset: requested offset in the BO
2165  * @size: BO size in bytes
2166  * @flags: attributes of pages (read/write/valid/etc.)
2167  *
2168  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2169  * mappings as we do so.
2170  *
2171  * Returns:
2172  * 0 for success, error for failure.
2173  *
2174  * Object has to be reserved and unreserved outside!
2175  */
2176 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2177 			     struct amdgpu_bo_va *bo_va,
2178 			     uint64_t saddr, uint64_t offset,
2179 			     uint64_t size, uint64_t flags)
2180 {
2181 	struct amdgpu_bo_va_mapping *mapping;
2182 	struct amdgpu_bo *bo = bo_va->base.bo;
2183 	uint64_t eaddr;
2184 	int r;
2185 
2186 	/* validate the parameters */
2187 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2188 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2189 		return -EINVAL;
2190 
2191 	/* make sure object fit at this offset */
2192 	eaddr = saddr + size - 1;
2193 	if (saddr >= eaddr ||
2194 	    (bo && offset + size > amdgpu_bo_size(bo)))
2195 		return -EINVAL;
2196 
2197 	/* Allocate all the needed memory */
2198 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2199 	if (!mapping)
2200 		return -ENOMEM;
2201 
2202 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2203 	if (r) {
2204 		kfree(mapping);
2205 		return r;
2206 	}
2207 
2208 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2209 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2210 
2211 	mapping->start = saddr;
2212 	mapping->last = eaddr;
2213 	mapping->offset = offset;
2214 	mapping->flags = flags;
2215 
2216 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2217 
2218 	return 0;
2219 }
2220 
2221 /**
2222  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2223  *
2224  * @adev: amdgpu_device pointer
2225  * @bo_va: bo_va to remove the address from
2226  * @saddr: where to the BO is mapped
2227  *
2228  * Remove a mapping of the BO at the specefied addr from the VM.
2229  *
2230  * Returns:
2231  * 0 for success, error for failure.
2232  *
2233  * Object has to be reserved and unreserved outside!
2234  */
2235 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2236 		       struct amdgpu_bo_va *bo_va,
2237 		       uint64_t saddr)
2238 {
2239 	struct amdgpu_bo_va_mapping *mapping;
2240 	struct amdgpu_vm *vm = bo_va->base.vm;
2241 	bool valid = true;
2242 
2243 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2244 
2245 	list_for_each_entry(mapping, &bo_va->valids, list) {
2246 		if (mapping->start == saddr)
2247 			break;
2248 	}
2249 
2250 	if (&mapping->list == &bo_va->valids) {
2251 		valid = false;
2252 
2253 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2254 			if (mapping->start == saddr)
2255 				break;
2256 		}
2257 
2258 		if (&mapping->list == &bo_va->invalids)
2259 			return -ENOENT;
2260 	}
2261 
2262 	list_del(&mapping->list);
2263 	amdgpu_vm_it_remove(mapping, &vm->va);
2264 	mapping->bo_va = NULL;
2265 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2266 
2267 	if (valid)
2268 		list_add(&mapping->list, &vm->freed);
2269 	else
2270 		amdgpu_vm_free_mapping(adev, vm, mapping,
2271 				       bo_va->last_pt_update);
2272 
2273 	return 0;
2274 }
2275 
2276 /**
2277  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2278  *
2279  * @adev: amdgpu_device pointer
2280  * @vm: VM structure to use
2281  * @saddr: start of the range
2282  * @size: size of the range
2283  *
2284  * Remove all mappings in a range, split them as appropriate.
2285  *
2286  * Returns:
2287  * 0 for success, error for failure.
2288  */
2289 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2290 				struct amdgpu_vm *vm,
2291 				uint64_t saddr, uint64_t size)
2292 {
2293 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2294 	LIST_HEAD(removed);
2295 	uint64_t eaddr;
2296 
2297 	eaddr = saddr + size - 1;
2298 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2299 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2300 
2301 	/* Allocate all the needed memory */
2302 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2303 	if (!before)
2304 		return -ENOMEM;
2305 	INIT_LIST_HEAD(&before->list);
2306 
2307 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2308 	if (!after) {
2309 		kfree(before);
2310 		return -ENOMEM;
2311 	}
2312 	INIT_LIST_HEAD(&after->list);
2313 
2314 	/* Now gather all removed mappings */
2315 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2316 	while (tmp) {
2317 		/* Remember mapping split at the start */
2318 		if (tmp->start < saddr) {
2319 			before->start = tmp->start;
2320 			before->last = saddr - 1;
2321 			before->offset = tmp->offset;
2322 			before->flags = tmp->flags;
2323 			before->bo_va = tmp->bo_va;
2324 			list_add(&before->list, &tmp->bo_va->invalids);
2325 		}
2326 
2327 		/* Remember mapping split at the end */
2328 		if (tmp->last > eaddr) {
2329 			after->start = eaddr + 1;
2330 			after->last = tmp->last;
2331 			after->offset = tmp->offset;
2332 			after->offset += after->start - tmp->start;
2333 			after->flags = tmp->flags;
2334 			after->bo_va = tmp->bo_va;
2335 			list_add(&after->list, &tmp->bo_va->invalids);
2336 		}
2337 
2338 		list_del(&tmp->list);
2339 		list_add(&tmp->list, &removed);
2340 
2341 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2342 	}
2343 
2344 	/* And free them up */
2345 	list_for_each_entry_safe(tmp, next, &removed, list) {
2346 		amdgpu_vm_it_remove(tmp, &vm->va);
2347 		list_del(&tmp->list);
2348 
2349 		if (tmp->start < saddr)
2350 		    tmp->start = saddr;
2351 		if (tmp->last > eaddr)
2352 		    tmp->last = eaddr;
2353 
2354 		tmp->bo_va = NULL;
2355 		list_add(&tmp->list, &vm->freed);
2356 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2357 	}
2358 
2359 	/* Insert partial mapping before the range */
2360 	if (!list_empty(&before->list)) {
2361 		amdgpu_vm_it_insert(before, &vm->va);
2362 		if (before->flags & AMDGPU_PTE_PRT)
2363 			amdgpu_vm_prt_get(adev);
2364 	} else {
2365 		kfree(before);
2366 	}
2367 
2368 	/* Insert partial mapping after the range */
2369 	if (!list_empty(&after->list)) {
2370 		amdgpu_vm_it_insert(after, &vm->va);
2371 		if (after->flags & AMDGPU_PTE_PRT)
2372 			amdgpu_vm_prt_get(adev);
2373 	} else {
2374 		kfree(after);
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 /**
2381  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2382  *
2383  * @vm: the requested VM
2384  * @addr: the address
2385  *
2386  * Find a mapping by it's address.
2387  *
2388  * Returns:
2389  * The amdgpu_bo_va_mapping matching for addr or NULL
2390  *
2391  */
2392 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2393 							 uint64_t addr)
2394 {
2395 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2396 }
2397 
2398 /**
2399  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2400  *
2401  * @vm: the requested vm
2402  * @ticket: CS ticket
2403  *
2404  * Trace all mappings of BOs reserved during a command submission.
2405  */
2406 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2407 {
2408 	struct amdgpu_bo_va_mapping *mapping;
2409 
2410 	if (!trace_amdgpu_vm_bo_cs_enabled())
2411 		return;
2412 
2413 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2414 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2415 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2416 			struct amdgpu_bo *bo;
2417 
2418 			bo = mapping->bo_va->base.bo;
2419 			if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2420 				continue;
2421 		}
2422 
2423 		trace_amdgpu_vm_bo_cs(mapping);
2424 	}
2425 }
2426 
2427 /**
2428  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2429  *
2430  * @adev: amdgpu_device pointer
2431  * @bo_va: requested bo_va
2432  *
2433  * Remove @bo_va->bo from the requested vm.
2434  *
2435  * Object have to be reserved!
2436  */
2437 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2438 		      struct amdgpu_bo_va *bo_va)
2439 {
2440 	struct amdgpu_bo_va_mapping *mapping, *next;
2441 	struct amdgpu_bo *bo = bo_va->base.bo;
2442 	struct amdgpu_vm *vm = bo_va->base.vm;
2443 	struct amdgpu_vm_bo_base **base;
2444 
2445 	if (bo) {
2446 		if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2447 			vm->bulk_moveable = false;
2448 
2449 		for (base = &bo_va->base.bo->vm_bo; *base;
2450 		     base = &(*base)->next) {
2451 			if (*base != &bo_va->base)
2452 				continue;
2453 
2454 			*base = bo_va->base.next;
2455 			break;
2456 		}
2457 	}
2458 
2459 	spin_lock(&vm->invalidated_lock);
2460 	list_del(&bo_va->base.vm_status);
2461 	spin_unlock(&vm->invalidated_lock);
2462 
2463 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2464 		list_del(&mapping->list);
2465 		amdgpu_vm_it_remove(mapping, &vm->va);
2466 		mapping->bo_va = NULL;
2467 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2468 		list_add(&mapping->list, &vm->freed);
2469 	}
2470 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2471 		list_del(&mapping->list);
2472 		amdgpu_vm_it_remove(mapping, &vm->va);
2473 		amdgpu_vm_free_mapping(adev, vm, mapping,
2474 				       bo_va->last_pt_update);
2475 	}
2476 
2477 	dma_fence_put(bo_va->last_pt_update);
2478 
2479 	if (bo && bo_va->is_xgmi) {
2480 		mutex_lock(&adev->vm_manager.lock_pstate);
2481 		if (--adev->vm_manager.xgmi_map_counter == 0)
2482 			amdgpu_xgmi_set_pstate(adev, 0);
2483 		mutex_unlock(&adev->vm_manager.lock_pstate);
2484 	}
2485 
2486 	kfree(bo_va);
2487 }
2488 
2489 /**
2490  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2491  *
2492  * @adev: amdgpu_device pointer
2493  * @bo: amdgpu buffer object
2494  * @evicted: is the BO evicted
2495  *
2496  * Mark @bo as invalid.
2497  */
2498 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2499 			     struct amdgpu_bo *bo, bool evicted)
2500 {
2501 	struct amdgpu_vm_bo_base *bo_base;
2502 
2503 	/* shadow bo doesn't have bo base, its validation needs its parent */
2504 	if (bo->parent && bo->parent->shadow == bo)
2505 		bo = bo->parent;
2506 
2507 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2508 		struct amdgpu_vm *vm = bo_base->vm;
2509 
2510 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2511 			amdgpu_vm_bo_evicted(bo_base);
2512 			continue;
2513 		}
2514 
2515 		if (bo_base->moved)
2516 			continue;
2517 		bo_base->moved = true;
2518 
2519 		if (bo->tbo.type == ttm_bo_type_kernel)
2520 			amdgpu_vm_bo_relocated(bo_base);
2521 		else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2522 			amdgpu_vm_bo_moved(bo_base);
2523 		else
2524 			amdgpu_vm_bo_invalidated(bo_base);
2525 	}
2526 }
2527 
2528 /**
2529  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2530  *
2531  * @vm_size: VM size
2532  *
2533  * Returns:
2534  * VM page table as power of two
2535  */
2536 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2537 {
2538 	/* Total bits covered by PD + PTs */
2539 	unsigned bits = ilog2(vm_size) + 18;
2540 
2541 	/* Make sure the PD is 4K in size up to 8GB address space.
2542 	   Above that split equal between PD and PTs */
2543 	if (vm_size <= 8)
2544 		return (bits - 9);
2545 	else
2546 		return ((bits + 3) / 2);
2547 }
2548 
2549 /**
2550  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2551  *
2552  * @adev: amdgpu_device pointer
2553  * @min_vm_size: the minimum vm size in GB if it's set auto
2554  * @fragment_size_default: Default PTE fragment size
2555  * @max_level: max VMPT level
2556  * @max_bits: max address space size in bits
2557  *
2558  */
2559 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2560 			   uint32_t fragment_size_default, unsigned max_level,
2561 			   unsigned max_bits)
2562 {
2563 	unsigned int max_size = 1 << (max_bits - 30);
2564 	unsigned int vm_size;
2565 	uint64_t tmp;
2566 
2567 	/* adjust vm size first */
2568 	if (amdgpu_vm_size != -1) {
2569 		vm_size = amdgpu_vm_size;
2570 		if (vm_size > max_size) {
2571 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2572 				 amdgpu_vm_size, max_size);
2573 			vm_size = max_size;
2574 		}
2575 	} else {
2576 		struct sysinfo si;
2577 		unsigned int phys_ram_gb;
2578 
2579 		/* Optimal VM size depends on the amount of physical
2580 		 * RAM available. Underlying requirements and
2581 		 * assumptions:
2582 		 *
2583 		 *  - Need to map system memory and VRAM from all GPUs
2584 		 *     - VRAM from other GPUs not known here
2585 		 *     - Assume VRAM <= system memory
2586 		 *  - On GFX8 and older, VM space can be segmented for
2587 		 *    different MTYPEs
2588 		 *  - Need to allow room for fragmentation, guard pages etc.
2589 		 *
2590 		 * This adds up to a rough guess of system memory x3.
2591 		 * Round up to power of two to maximize the available
2592 		 * VM size with the given page table size.
2593 		 */
2594 		si_meminfo(&si);
2595 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2596 			       (1 << 30) - 1) >> 30;
2597 		vm_size = roundup_pow_of_two(
2598 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2599 	}
2600 
2601 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2602 
2603 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2604 	if (amdgpu_vm_block_size != -1)
2605 		tmp >>= amdgpu_vm_block_size - 9;
2606 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2607 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2608 	switch (adev->vm_manager.num_level) {
2609 	case 3:
2610 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2611 		break;
2612 	case 2:
2613 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2614 		break;
2615 	case 1:
2616 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2617 		break;
2618 	default:
2619 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2620 	}
2621 	/* block size depends on vm size and hw setup*/
2622 	if (amdgpu_vm_block_size != -1)
2623 		adev->vm_manager.block_size =
2624 			min((unsigned)amdgpu_vm_block_size, max_bits
2625 			    - AMDGPU_GPU_PAGE_SHIFT
2626 			    - 9 * adev->vm_manager.num_level);
2627 	else if (adev->vm_manager.num_level > 1)
2628 		adev->vm_manager.block_size = 9;
2629 	else
2630 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2631 
2632 	if (amdgpu_vm_fragment_size == -1)
2633 		adev->vm_manager.fragment_size = fragment_size_default;
2634 	else
2635 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2636 
2637 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2638 		 vm_size, adev->vm_manager.num_level + 1,
2639 		 adev->vm_manager.block_size,
2640 		 adev->vm_manager.fragment_size);
2641 }
2642 
2643 /**
2644  * amdgpu_vm_wait_idle - wait for the VM to become idle
2645  *
2646  * @vm: VM object to wait for
2647  * @timeout: timeout to wait for VM to become idle
2648  */
2649 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2650 {
2651 	return reservation_object_wait_timeout_rcu(vm->root.base.bo->tbo.resv,
2652 						   true, true, timeout);
2653 }
2654 
2655 /**
2656  * amdgpu_vm_init - initialize a vm instance
2657  *
2658  * @adev: amdgpu_device pointer
2659  * @vm: requested vm
2660  * @vm_context: Indicates if it GFX or Compute context
2661  * @pasid: Process address space identifier
2662  *
2663  * Init @vm fields.
2664  *
2665  * Returns:
2666  * 0 for success, error for failure.
2667  */
2668 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2669 		   int vm_context, unsigned int pasid)
2670 {
2671 	struct amdgpu_bo_param bp;
2672 	struct amdgpu_bo *root;
2673 	int r, i;
2674 
2675 	vm->va = RB_ROOT_CACHED;
2676 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2677 		vm->reserved_vmid[i] = NULL;
2678 	INIT_LIST_HEAD(&vm->evicted);
2679 	INIT_LIST_HEAD(&vm->relocated);
2680 	INIT_LIST_HEAD(&vm->moved);
2681 	INIT_LIST_HEAD(&vm->idle);
2682 	INIT_LIST_HEAD(&vm->invalidated);
2683 	spin_lock_init(&vm->invalidated_lock);
2684 	INIT_LIST_HEAD(&vm->freed);
2685 
2686 	/* create scheduler entity for page table updates */
2687 	r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2688 				  adev->vm_manager.vm_pte_num_rqs, NULL);
2689 	if (r)
2690 		return r;
2691 
2692 	vm->pte_support_ats = false;
2693 
2694 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2695 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2696 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2697 
2698 		if (adev->asic_type == CHIP_RAVEN)
2699 			vm->pte_support_ats = true;
2700 	} else {
2701 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2702 						AMDGPU_VM_USE_CPU_FOR_GFX);
2703 	}
2704 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2705 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2706 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2707 		  "CPU update of VM recommended only for large BAR system\n");
2708 
2709 	if (vm->use_cpu_for_update)
2710 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2711 	else
2712 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2713 	vm->last_update = NULL;
2714 
2715 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
2716 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2717 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2718 	r = amdgpu_bo_create(adev, &bp, &root);
2719 	if (r)
2720 		goto error_free_sched_entity;
2721 
2722 	r = amdgpu_bo_reserve(root, true);
2723 	if (r)
2724 		goto error_free_root;
2725 
2726 	r = reservation_object_reserve_shared(root->tbo.resv, 1);
2727 	if (r)
2728 		goto error_unreserve;
2729 
2730 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2731 
2732 	r = amdgpu_vm_clear_bo(adev, vm, root);
2733 	if (r)
2734 		goto error_unreserve;
2735 
2736 	amdgpu_bo_unreserve(vm->root.base.bo);
2737 
2738 	if (pasid) {
2739 		unsigned long flags;
2740 
2741 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2742 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2743 			      GFP_ATOMIC);
2744 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2745 		if (r < 0)
2746 			goto error_free_root;
2747 
2748 		vm->pasid = pasid;
2749 	}
2750 
2751 	INIT_KFIFO(vm->faults);
2752 
2753 	return 0;
2754 
2755 error_unreserve:
2756 	amdgpu_bo_unreserve(vm->root.base.bo);
2757 
2758 error_free_root:
2759 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2760 	amdgpu_bo_unref(&vm->root.base.bo);
2761 	vm->root.base.bo = NULL;
2762 
2763 error_free_sched_entity:
2764 	drm_sched_entity_destroy(&vm->entity);
2765 
2766 	return r;
2767 }
2768 
2769 /**
2770  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2771  *
2772  * @adev: amdgpu_device pointer
2773  * @vm: the VM to check
2774  *
2775  * check all entries of the root PD, if any subsequent PDs are allocated,
2776  * it means there are page table creating and filling, and is no a clean
2777  * VM
2778  *
2779  * Returns:
2780  *	0 if this VM is clean
2781  */
2782 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2783 	struct amdgpu_vm *vm)
2784 {
2785 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2786 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2787 	unsigned int i = 0;
2788 
2789 	if (!(vm->root.entries))
2790 		return 0;
2791 
2792 	for (i = 0; i < entries; i++) {
2793 		if (vm->root.entries[i].base.bo)
2794 			return -EINVAL;
2795 	}
2796 
2797 	return 0;
2798 }
2799 
2800 /**
2801  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2802  *
2803  * @adev: amdgpu_device pointer
2804  * @vm: requested vm
2805  *
2806  * This only works on GFX VMs that don't have any BOs added and no
2807  * page tables allocated yet.
2808  *
2809  * Changes the following VM parameters:
2810  * - use_cpu_for_update
2811  * - pte_supports_ats
2812  * - pasid (old PASID is released, because compute manages its own PASIDs)
2813  *
2814  * Reinitializes the page directory to reflect the changed ATS
2815  * setting.
2816  *
2817  * Returns:
2818  * 0 for success, -errno for errors.
2819  */
2820 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
2821 {
2822 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2823 	int r;
2824 
2825 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2826 	if (r)
2827 		return r;
2828 
2829 	/* Sanity checks */
2830 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2831 	if (r)
2832 		goto unreserve_bo;
2833 
2834 	if (pasid) {
2835 		unsigned long flags;
2836 
2837 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2838 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2839 			      GFP_ATOMIC);
2840 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2841 
2842 		if (r == -ENOSPC)
2843 			goto unreserve_bo;
2844 		r = 0;
2845 	}
2846 
2847 	/* Check if PD needs to be reinitialized and do it before
2848 	 * changing any other state, in case it fails.
2849 	 */
2850 	if (pte_support_ats != vm->pte_support_ats) {
2851 		vm->pte_support_ats = pte_support_ats;
2852 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo);
2853 		if (r)
2854 			goto free_idr;
2855 	}
2856 
2857 	/* Update VM state */
2858 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2859 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2860 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2861 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2862 	WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2863 		  "CPU update of VM recommended only for large BAR system\n");
2864 
2865 	if (vm->pasid) {
2866 		unsigned long flags;
2867 
2868 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2869 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2870 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2871 
2872 		/* Free the original amdgpu allocated pasid
2873 		 * Will be replaced with kfd allocated pasid
2874 		 */
2875 		amdgpu_pasid_free(vm->pasid);
2876 		vm->pasid = 0;
2877 	}
2878 
2879 	/* Free the shadow bo for compute VM */
2880 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2881 
2882 	if (pasid)
2883 		vm->pasid = pasid;
2884 
2885 	goto unreserve_bo;
2886 
2887 free_idr:
2888 	if (pasid) {
2889 		unsigned long flags;
2890 
2891 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2892 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
2893 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2894 	}
2895 unreserve_bo:
2896 	amdgpu_bo_unreserve(vm->root.base.bo);
2897 	return r;
2898 }
2899 
2900 /**
2901  * amdgpu_vm_release_compute - release a compute vm
2902  * @adev: amdgpu_device pointer
2903  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
2904  *
2905  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
2906  * pasid from vm. Compute should stop use of vm after this call.
2907  */
2908 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2909 {
2910 	if (vm->pasid) {
2911 		unsigned long flags;
2912 
2913 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2914 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2915 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2916 	}
2917 	vm->pasid = 0;
2918 }
2919 
2920 /**
2921  * amdgpu_vm_fini - tear down a vm instance
2922  *
2923  * @adev: amdgpu_device pointer
2924  * @vm: requested vm
2925  *
2926  * Tear down @vm.
2927  * Unbind the VM and remove all bos from the vm bo list
2928  */
2929 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2930 {
2931 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2932 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2933 	struct amdgpu_bo *root;
2934 	int i, r;
2935 
2936 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
2937 
2938 	if (vm->pasid) {
2939 		unsigned long flags;
2940 
2941 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2942 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2943 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2944 	}
2945 
2946 	drm_sched_entity_destroy(&vm->entity);
2947 
2948 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2949 		dev_err(adev->dev, "still active bo inside vm\n");
2950 	}
2951 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2952 					     &vm->va.rb_root, rb) {
2953 		/* Don't remove the mapping here, we don't want to trigger a
2954 		 * rebalance and the tree is about to be destroyed anyway.
2955 		 */
2956 		list_del(&mapping->list);
2957 		kfree(mapping);
2958 	}
2959 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2960 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2961 			amdgpu_vm_prt_fini(adev, vm);
2962 			prt_fini_needed = false;
2963 		}
2964 
2965 		list_del(&mapping->list);
2966 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2967 	}
2968 
2969 	root = amdgpu_bo_ref(vm->root.base.bo);
2970 	r = amdgpu_bo_reserve(root, true);
2971 	if (r) {
2972 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2973 	} else {
2974 		amdgpu_vm_free_pts(adev, vm, NULL);
2975 		amdgpu_bo_unreserve(root);
2976 	}
2977 	amdgpu_bo_unref(&root);
2978 	WARN_ON(vm->root.base.bo);
2979 	dma_fence_put(vm->last_update);
2980 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2981 		amdgpu_vmid_free_reserved(adev, vm, i);
2982 }
2983 
2984 /**
2985  * amdgpu_vm_manager_init - init the VM manager
2986  *
2987  * @adev: amdgpu_device pointer
2988  *
2989  * Initialize the VM manager structures
2990  */
2991 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2992 {
2993 	unsigned i;
2994 
2995 	amdgpu_vmid_mgr_init(adev);
2996 
2997 	adev->vm_manager.fence_context =
2998 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2999 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3000 		adev->vm_manager.seqno[i] = 0;
3001 
3002 	spin_lock_init(&adev->vm_manager.prt_lock);
3003 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3004 
3005 	/* If not overridden by the user, by default, only in large BAR systems
3006 	 * Compute VM tables will be updated by CPU
3007 	 */
3008 #ifdef CONFIG_X86_64
3009 	if (amdgpu_vm_update_mode == -1) {
3010 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3011 			adev->vm_manager.vm_update_mode =
3012 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3013 		else
3014 			adev->vm_manager.vm_update_mode = 0;
3015 	} else
3016 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3017 #else
3018 	adev->vm_manager.vm_update_mode = 0;
3019 #endif
3020 
3021 	idr_init(&adev->vm_manager.pasid_idr);
3022 	spin_lock_init(&adev->vm_manager.pasid_lock);
3023 
3024 	adev->vm_manager.xgmi_map_counter = 0;
3025 	mutex_init(&adev->vm_manager.lock_pstate);
3026 }
3027 
3028 /**
3029  * amdgpu_vm_manager_fini - cleanup VM manager
3030  *
3031  * @adev: amdgpu_device pointer
3032  *
3033  * Cleanup the VM manager and free resources.
3034  */
3035 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3036 {
3037 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3038 	idr_destroy(&adev->vm_manager.pasid_idr);
3039 
3040 	amdgpu_vmid_mgr_fini(adev);
3041 }
3042 
3043 /**
3044  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3045  *
3046  * @dev: drm device pointer
3047  * @data: drm_amdgpu_vm
3048  * @filp: drm file pointer
3049  *
3050  * Returns:
3051  * 0 for success, -errno for errors.
3052  */
3053 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3054 {
3055 	union drm_amdgpu_vm *args = data;
3056 	struct amdgpu_device *adev = dev->dev_private;
3057 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3058 	int r;
3059 
3060 	switch (args->in.op) {
3061 	case AMDGPU_VM_OP_RESERVE_VMID:
3062 		/* current, we only have requirement to reserve vmid from gfxhub */
3063 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3064 		if (r)
3065 			return r;
3066 		break;
3067 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3068 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3069 		break;
3070 	default:
3071 		return -EINVAL;
3072 	}
3073 
3074 	return 0;
3075 }
3076 
3077 /**
3078  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3079  *
3080  * @adev: drm device pointer
3081  * @pasid: PASID identifier for VM
3082  * @task_info: task_info to fill.
3083  */
3084 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3085 			 struct amdgpu_task_info *task_info)
3086 {
3087 	struct amdgpu_vm *vm;
3088 	unsigned long flags;
3089 
3090 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3091 
3092 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3093 	if (vm)
3094 		*task_info = vm->task_info;
3095 
3096 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3097 }
3098 
3099 /**
3100  * amdgpu_vm_set_task_info - Sets VMs task info.
3101  *
3102  * @vm: vm for which to set the info
3103  */
3104 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3105 {
3106 	if (!vm->task_info.pid) {
3107 		vm->task_info.pid = current->pid;
3108 		get_task_comm(vm->task_info.task_name, current);
3109 
3110 		if (current->group_leader->mm == current->mm) {
3111 			vm->task_info.tgid = current->group_leader->pid;
3112 			get_task_comm(vm->task_info.process_name, current->group_leader);
3113 		}
3114 	}
3115 }
3116