1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 138 * 139 * @base: base structure for tracking BO usage in a VM 140 * @vm: vm to which bo is to be added 141 * @bo: amdgpu buffer object 142 * 143 * Initialize a bo_va_base structure and add it to the appropriate lists 144 * 145 */ 146 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 147 struct amdgpu_vm *vm, 148 struct amdgpu_bo *bo) 149 { 150 base->vm = vm; 151 base->bo = bo; 152 INIT_LIST_HEAD(&base->bo_list); 153 INIT_LIST_HEAD(&base->vm_status); 154 155 if (!bo) 156 return; 157 list_add_tail(&base->bo_list, &bo->va); 158 159 if (bo->tbo.type == ttm_bo_type_kernel) 160 list_move(&base->vm_status, &vm->relocated); 161 162 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 163 return; 164 165 if (bo->preferred_domains & 166 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 167 return; 168 169 /* 170 * we checked all the prerequisites, but it looks like this per vm bo 171 * is currently evicted. add the bo to the evicted list to make sure it 172 * is validated on next vm use to avoid fault. 173 * */ 174 list_move_tail(&base->vm_status, &vm->evicted); 175 base->moved = true; 176 } 177 178 /** 179 * amdgpu_vm_level_shift - return the addr shift for each level 180 * 181 * @adev: amdgpu_device pointer 182 * @level: VMPT level 183 * 184 * Returns: 185 * The number of bits the pfn needs to be right shifted for a level. 186 */ 187 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 188 unsigned level) 189 { 190 unsigned shift = 0xff; 191 192 switch (level) { 193 case AMDGPU_VM_PDB2: 194 case AMDGPU_VM_PDB1: 195 case AMDGPU_VM_PDB0: 196 shift = 9 * (AMDGPU_VM_PDB0 - level) + 197 adev->vm_manager.block_size; 198 break; 199 case AMDGPU_VM_PTB: 200 shift = 0; 201 break; 202 default: 203 dev_err(adev->dev, "the level%d isn't supported.\n", level); 204 } 205 206 return shift; 207 } 208 209 /** 210 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 211 * 212 * @adev: amdgpu_device pointer 213 * @level: VMPT level 214 * 215 * Returns: 216 * The number of entries in a page directory or page table. 217 */ 218 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 219 unsigned level) 220 { 221 unsigned shift = amdgpu_vm_level_shift(adev, 222 adev->vm_manager.root_level); 223 224 if (level == adev->vm_manager.root_level) 225 /* For the root directory */ 226 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 227 else if (level != AMDGPU_VM_PTB) 228 /* Everything in between */ 229 return 512; 230 else 231 /* For the page tables on the leaves */ 232 return AMDGPU_VM_PTE_COUNT(adev); 233 } 234 235 /** 236 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 237 * 238 * @adev: amdgpu_device pointer 239 * @level: VMPT level 240 * 241 * Returns: 242 * The size of the BO for a page directory or page table in bytes. 243 */ 244 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 245 { 246 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 247 } 248 249 /** 250 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 251 * 252 * @vm: vm providing the BOs 253 * @validated: head of validation list 254 * @entry: entry to add 255 * 256 * Add the page directory to the list of BOs to 257 * validate for command submission. 258 */ 259 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 260 struct list_head *validated, 261 struct amdgpu_bo_list_entry *entry) 262 { 263 entry->robj = vm->root.base.bo; 264 entry->priority = 0; 265 entry->tv.bo = &entry->robj->tbo; 266 entry->tv.shared = true; 267 entry->user_pages = NULL; 268 list_add(&entry->tv.head, validated); 269 } 270 271 /** 272 * amdgpu_vm_validate_pt_bos - validate the page table BOs 273 * 274 * @adev: amdgpu device pointer 275 * @vm: vm providing the BOs 276 * @validate: callback to do the validation 277 * @param: parameter for the validation callback 278 * 279 * Validate the page table BOs on command submission if neccessary. 280 * 281 * Returns: 282 * Validation result. 283 */ 284 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 285 int (*validate)(void *p, struct amdgpu_bo *bo), 286 void *param) 287 { 288 struct ttm_bo_global *glob = adev->mman.bdev.glob; 289 struct amdgpu_vm_bo_base *bo_base, *tmp; 290 int r = 0; 291 292 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 293 struct amdgpu_bo *bo = bo_base->bo; 294 295 if (bo->parent) { 296 r = validate(param, bo); 297 if (r) 298 break; 299 300 spin_lock(&glob->lru_lock); 301 ttm_bo_move_to_lru_tail(&bo->tbo); 302 if (bo->shadow) 303 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 304 spin_unlock(&glob->lru_lock); 305 } 306 307 if (bo->tbo.type != ttm_bo_type_kernel) { 308 spin_lock(&vm->moved_lock); 309 list_move(&bo_base->vm_status, &vm->moved); 310 spin_unlock(&vm->moved_lock); 311 } else { 312 list_move(&bo_base->vm_status, &vm->relocated); 313 } 314 } 315 316 spin_lock(&glob->lru_lock); 317 list_for_each_entry(bo_base, &vm->idle, vm_status) { 318 struct amdgpu_bo *bo = bo_base->bo; 319 320 if (!bo->parent) 321 continue; 322 323 ttm_bo_move_to_lru_tail(&bo->tbo); 324 if (bo->shadow) 325 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 326 } 327 spin_unlock(&glob->lru_lock); 328 329 return r; 330 } 331 332 /** 333 * amdgpu_vm_ready - check VM is ready for updates 334 * 335 * @vm: VM to check 336 * 337 * Check if all VM PDs/PTs are ready for updates 338 * 339 * Returns: 340 * True if eviction list is empty. 341 */ 342 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 343 { 344 return list_empty(&vm->evicted); 345 } 346 347 /** 348 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 349 * 350 * @adev: amdgpu_device pointer 351 * @vm: VM to clear BO from 352 * @bo: BO to clear 353 * @level: level this BO is at 354 * @pte_support_ats: indicate ATS support from PTE 355 * 356 * Root PD needs to be reserved when calling this. 357 * 358 * Returns: 359 * 0 on success, errno otherwise. 360 */ 361 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 362 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 363 unsigned level, bool pte_support_ats) 364 { 365 struct ttm_operation_ctx ctx = { true, false }; 366 struct dma_fence *fence = NULL; 367 unsigned entries, ats_entries; 368 struct amdgpu_ring *ring; 369 struct amdgpu_job *job; 370 uint64_t addr; 371 int r; 372 373 entries = amdgpu_bo_size(bo) / 8; 374 375 if (pte_support_ats) { 376 if (level == adev->vm_manager.root_level) { 377 ats_entries = amdgpu_vm_level_shift(adev, level); 378 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 379 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 380 ats_entries = min(ats_entries, entries); 381 entries -= ats_entries; 382 } else { 383 ats_entries = entries; 384 entries = 0; 385 } 386 } else { 387 ats_entries = 0; 388 } 389 390 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 391 392 r = reservation_object_reserve_shared(bo->tbo.resv); 393 if (r) 394 return r; 395 396 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 397 if (r) 398 goto error; 399 400 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 401 if (r) 402 goto error; 403 404 addr = amdgpu_bo_gpu_offset(bo); 405 if (ats_entries) { 406 uint64_t ats_value; 407 408 ats_value = AMDGPU_PTE_DEFAULT_ATC; 409 if (level != AMDGPU_VM_PTB) 410 ats_value |= AMDGPU_PDE_PTE; 411 412 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 413 ats_entries, 0, ats_value); 414 addr += ats_entries * 8; 415 } 416 417 if (entries) 418 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 419 entries, 0, 0); 420 421 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 422 423 WARN_ON(job->ibs[0].length_dw > 64); 424 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 425 AMDGPU_FENCE_OWNER_UNDEFINED, false); 426 if (r) 427 goto error_free; 428 429 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 430 &fence); 431 if (r) 432 goto error_free; 433 434 amdgpu_bo_fence(bo, fence, true); 435 dma_fence_put(fence); 436 437 if (bo->shadow) 438 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 439 level, pte_support_ats); 440 441 return 0; 442 443 error_free: 444 amdgpu_job_free(job); 445 446 error: 447 return r; 448 } 449 450 /** 451 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 452 * 453 * @adev: amdgpu_device pointer 454 * @vm: requested vm 455 * @parent: parent PT 456 * @saddr: start of the address range 457 * @eaddr: end of the address range 458 * @level: VMPT level 459 * @ats: indicate ATS support from PTE 460 * 461 * Make sure the page directories and page tables are allocated 462 * 463 * Returns: 464 * 0 on success, errno otherwise. 465 */ 466 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 467 struct amdgpu_vm *vm, 468 struct amdgpu_vm_pt *parent, 469 uint64_t saddr, uint64_t eaddr, 470 unsigned level, bool ats) 471 { 472 unsigned shift = amdgpu_vm_level_shift(adev, level); 473 unsigned pt_idx, from, to; 474 u64 flags; 475 int r; 476 477 if (!parent->entries) { 478 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 479 480 parent->entries = kvmalloc_array(num_entries, 481 sizeof(struct amdgpu_vm_pt), 482 GFP_KERNEL | __GFP_ZERO); 483 if (!parent->entries) 484 return -ENOMEM; 485 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 486 } 487 488 from = saddr >> shift; 489 to = eaddr >> shift; 490 if (from >= amdgpu_vm_num_entries(adev, level) || 491 to >= amdgpu_vm_num_entries(adev, level)) 492 return -EINVAL; 493 494 ++level; 495 saddr = saddr & ((1 << shift) - 1); 496 eaddr = eaddr & ((1 << shift) - 1); 497 498 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 499 if (vm->root.base.bo->shadow) 500 flags |= AMDGPU_GEM_CREATE_SHADOW; 501 if (vm->use_cpu_for_update) 502 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 503 else 504 flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS; 505 506 /* walk over the address space and allocate the page tables */ 507 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 508 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 509 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 510 struct amdgpu_bo *pt; 511 512 if (!entry->base.bo) { 513 struct amdgpu_bo_param bp; 514 515 memset(&bp, 0, sizeof(bp)); 516 bp.size = amdgpu_vm_bo_size(adev, level); 517 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 518 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 519 bp.flags = flags; 520 bp.type = ttm_bo_type_kernel; 521 bp.resv = resv; 522 r = amdgpu_bo_create(adev, &bp, &pt); 523 if (r) 524 return r; 525 526 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 527 if (r) { 528 amdgpu_bo_unref(&pt->shadow); 529 amdgpu_bo_unref(&pt); 530 return r; 531 } 532 533 if (vm->use_cpu_for_update) { 534 r = amdgpu_bo_kmap(pt, NULL); 535 if (r) { 536 amdgpu_bo_unref(&pt->shadow); 537 amdgpu_bo_unref(&pt); 538 return r; 539 } 540 } 541 542 /* Keep a reference to the root directory to avoid 543 * freeing them up in the wrong order. 544 */ 545 pt->parent = amdgpu_bo_ref(parent->base.bo); 546 547 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 548 } 549 550 if (level < AMDGPU_VM_PTB) { 551 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 552 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 553 ((1 << shift) - 1); 554 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 555 sub_eaddr, level, ats); 556 if (r) 557 return r; 558 } 559 } 560 561 return 0; 562 } 563 564 /** 565 * amdgpu_vm_alloc_pts - Allocate page tables. 566 * 567 * @adev: amdgpu_device pointer 568 * @vm: VM to allocate page tables for 569 * @saddr: Start address which needs to be allocated 570 * @size: Size from start address we need. 571 * 572 * Make sure the page tables are allocated. 573 * 574 * Returns: 575 * 0 on success, errno otherwise. 576 */ 577 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 578 struct amdgpu_vm *vm, 579 uint64_t saddr, uint64_t size) 580 { 581 uint64_t eaddr; 582 bool ats = false; 583 584 /* validate the parameters */ 585 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 586 return -EINVAL; 587 588 eaddr = saddr + size - 1; 589 590 if (vm->pte_support_ats) 591 ats = saddr < AMDGPU_VA_HOLE_START; 592 593 saddr /= AMDGPU_GPU_PAGE_SIZE; 594 eaddr /= AMDGPU_GPU_PAGE_SIZE; 595 596 if (eaddr >= adev->vm_manager.max_pfn) { 597 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 598 eaddr, adev->vm_manager.max_pfn); 599 return -EINVAL; 600 } 601 602 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 603 adev->vm_manager.root_level, ats); 604 } 605 606 /** 607 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 608 * 609 * @adev: amdgpu_device pointer 610 */ 611 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 612 { 613 const struct amdgpu_ip_block *ip_block; 614 bool has_compute_vm_bug; 615 struct amdgpu_ring *ring; 616 int i; 617 618 has_compute_vm_bug = false; 619 620 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 621 if (ip_block) { 622 /* Compute has a VM bug for GFX version < 7. 623 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 624 if (ip_block->version->major <= 7) 625 has_compute_vm_bug = true; 626 else if (ip_block->version->major == 8) 627 if (adev->gfx.mec_fw_version < 673) 628 has_compute_vm_bug = true; 629 } 630 631 for (i = 0; i < adev->num_rings; i++) { 632 ring = adev->rings[i]; 633 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 634 /* only compute rings */ 635 ring->has_compute_vm_bug = has_compute_vm_bug; 636 else 637 ring->has_compute_vm_bug = false; 638 } 639 } 640 641 /** 642 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 643 * 644 * @ring: ring on which the job will be submitted 645 * @job: job to submit 646 * 647 * Returns: 648 * True if sync is needed. 649 */ 650 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 651 struct amdgpu_job *job) 652 { 653 struct amdgpu_device *adev = ring->adev; 654 unsigned vmhub = ring->funcs->vmhub; 655 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 656 struct amdgpu_vmid *id; 657 bool gds_switch_needed; 658 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 659 660 if (job->vmid == 0) 661 return false; 662 id = &id_mgr->ids[job->vmid]; 663 gds_switch_needed = ring->funcs->emit_gds_switch && ( 664 id->gds_base != job->gds_base || 665 id->gds_size != job->gds_size || 666 id->gws_base != job->gws_base || 667 id->gws_size != job->gws_size || 668 id->oa_base != job->oa_base || 669 id->oa_size != job->oa_size); 670 671 if (amdgpu_vmid_had_gpu_reset(adev, id)) 672 return true; 673 674 return vm_flush_needed || gds_switch_needed; 675 } 676 677 /** 678 * amdgpu_vm_flush - hardware flush the vm 679 * 680 * @ring: ring to use for flush 681 * @job: related job 682 * @need_pipe_sync: is pipe sync needed 683 * 684 * Emit a VM flush when it is necessary. 685 * 686 * Returns: 687 * 0 on success, errno otherwise. 688 */ 689 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 690 { 691 struct amdgpu_device *adev = ring->adev; 692 unsigned vmhub = ring->funcs->vmhub; 693 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 694 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 695 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 696 id->gds_base != job->gds_base || 697 id->gds_size != job->gds_size || 698 id->gws_base != job->gws_base || 699 id->gws_size != job->gws_size || 700 id->oa_base != job->oa_base || 701 id->oa_size != job->oa_size); 702 bool vm_flush_needed = job->vm_needs_flush; 703 bool pasid_mapping_needed = id->pasid != job->pasid || 704 !id->pasid_mapping || 705 !dma_fence_is_signaled(id->pasid_mapping); 706 struct dma_fence *fence = NULL; 707 unsigned patch_offset = 0; 708 int r; 709 710 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 711 gds_switch_needed = true; 712 vm_flush_needed = true; 713 pasid_mapping_needed = true; 714 } 715 716 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 717 vm_flush_needed &= !!ring->funcs->emit_vm_flush; 718 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 719 ring->funcs->emit_wreg; 720 721 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 722 return 0; 723 724 if (ring->funcs->init_cond_exec) 725 patch_offset = amdgpu_ring_init_cond_exec(ring); 726 727 if (need_pipe_sync) 728 amdgpu_ring_emit_pipeline_sync(ring); 729 730 if (vm_flush_needed) { 731 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 732 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 733 } 734 735 if (pasid_mapping_needed) 736 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 737 738 if (vm_flush_needed || pasid_mapping_needed) { 739 r = amdgpu_fence_emit(ring, &fence, 0); 740 if (r) 741 return r; 742 } 743 744 if (vm_flush_needed) { 745 mutex_lock(&id_mgr->lock); 746 dma_fence_put(id->last_flush); 747 id->last_flush = dma_fence_get(fence); 748 id->current_gpu_reset_count = 749 atomic_read(&adev->gpu_reset_counter); 750 mutex_unlock(&id_mgr->lock); 751 } 752 753 if (pasid_mapping_needed) { 754 id->pasid = job->pasid; 755 dma_fence_put(id->pasid_mapping); 756 id->pasid_mapping = dma_fence_get(fence); 757 } 758 dma_fence_put(fence); 759 760 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 761 id->gds_base = job->gds_base; 762 id->gds_size = job->gds_size; 763 id->gws_base = job->gws_base; 764 id->gws_size = job->gws_size; 765 id->oa_base = job->oa_base; 766 id->oa_size = job->oa_size; 767 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 768 job->gds_size, job->gws_base, 769 job->gws_size, job->oa_base, 770 job->oa_size); 771 } 772 773 if (ring->funcs->patch_cond_exec) 774 amdgpu_ring_patch_cond_exec(ring, patch_offset); 775 776 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 777 if (ring->funcs->emit_switch_buffer) { 778 amdgpu_ring_emit_switch_buffer(ring); 779 amdgpu_ring_emit_switch_buffer(ring); 780 } 781 return 0; 782 } 783 784 /** 785 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 786 * 787 * @vm: requested vm 788 * @bo: requested buffer object 789 * 790 * Find @bo inside the requested vm. 791 * Search inside the @bos vm list for the requested vm 792 * Returns the found bo_va or NULL if none is found 793 * 794 * Object has to be reserved! 795 * 796 * Returns: 797 * Found bo_va or NULL. 798 */ 799 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 800 struct amdgpu_bo *bo) 801 { 802 struct amdgpu_bo_va *bo_va; 803 804 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 805 if (bo_va->base.vm == vm) { 806 return bo_va; 807 } 808 } 809 return NULL; 810 } 811 812 /** 813 * amdgpu_vm_do_set_ptes - helper to call the right asic function 814 * 815 * @params: see amdgpu_pte_update_params definition 816 * @bo: PD/PT to update 817 * @pe: addr of the page entry 818 * @addr: dst addr to write into pe 819 * @count: number of page entries to update 820 * @incr: increase next addr by incr bytes 821 * @flags: hw access flags 822 * 823 * Traces the parameters and calls the right asic functions 824 * to setup the page table using the DMA. 825 */ 826 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 827 struct amdgpu_bo *bo, 828 uint64_t pe, uint64_t addr, 829 unsigned count, uint32_t incr, 830 uint64_t flags) 831 { 832 pe += amdgpu_bo_gpu_offset(bo); 833 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 834 835 if (count < 3) { 836 amdgpu_vm_write_pte(params->adev, params->ib, pe, 837 addr | flags, count, incr); 838 839 } else { 840 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 841 count, incr, flags); 842 } 843 } 844 845 /** 846 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 847 * 848 * @params: see amdgpu_pte_update_params definition 849 * @bo: PD/PT to update 850 * @pe: addr of the page entry 851 * @addr: dst addr to write into pe 852 * @count: number of page entries to update 853 * @incr: increase next addr by incr bytes 854 * @flags: hw access flags 855 * 856 * Traces the parameters and calls the DMA function to copy the PTEs. 857 */ 858 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 859 struct amdgpu_bo *bo, 860 uint64_t pe, uint64_t addr, 861 unsigned count, uint32_t incr, 862 uint64_t flags) 863 { 864 uint64_t src = (params->src + (addr >> 12) * 8); 865 866 pe += amdgpu_bo_gpu_offset(bo); 867 trace_amdgpu_vm_copy_ptes(pe, src, count); 868 869 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 870 } 871 872 /** 873 * amdgpu_vm_map_gart - Resolve gart mapping of addr 874 * 875 * @pages_addr: optional DMA address to use for lookup 876 * @addr: the unmapped addr 877 * 878 * Look up the physical address of the page that the pte resolves 879 * to. 880 * 881 * Returns: 882 * The pointer for the page table entry. 883 */ 884 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 885 { 886 uint64_t result; 887 888 /* page table offset */ 889 result = pages_addr[addr >> PAGE_SHIFT]; 890 891 /* in case cpu page size != gpu page size*/ 892 result |= addr & (~PAGE_MASK); 893 894 result &= 0xFFFFFFFFFFFFF000ULL; 895 896 return result; 897 } 898 899 /** 900 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 901 * 902 * @params: see amdgpu_pte_update_params definition 903 * @bo: PD/PT to update 904 * @pe: kmap addr of the page entry 905 * @addr: dst addr to write into pe 906 * @count: number of page entries to update 907 * @incr: increase next addr by incr bytes 908 * @flags: hw access flags 909 * 910 * Write count number of PT/PD entries directly. 911 */ 912 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 913 struct amdgpu_bo *bo, 914 uint64_t pe, uint64_t addr, 915 unsigned count, uint32_t incr, 916 uint64_t flags) 917 { 918 unsigned int i; 919 uint64_t value; 920 921 pe += (unsigned long)amdgpu_bo_kptr(bo); 922 923 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 924 925 for (i = 0; i < count; i++) { 926 value = params->pages_addr ? 927 amdgpu_vm_map_gart(params->pages_addr, addr) : 928 addr; 929 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 930 i, value, flags); 931 addr += incr; 932 } 933 } 934 935 936 /** 937 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 938 * 939 * @adev: amdgpu_device pointer 940 * @vm: related vm 941 * @owner: fence owner 942 * 943 * Returns: 944 * 0 on success, errno otherwise. 945 */ 946 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 947 void *owner) 948 { 949 struct amdgpu_sync sync; 950 int r; 951 952 amdgpu_sync_create(&sync); 953 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 954 r = amdgpu_sync_wait(&sync, true); 955 amdgpu_sync_free(&sync); 956 957 return r; 958 } 959 960 /* 961 * amdgpu_vm_update_pde - update a single level in the hierarchy 962 * 963 * @param: parameters for the update 964 * @vm: requested vm 965 * @parent: parent directory 966 * @entry: entry to update 967 * 968 * Makes sure the requested entry in parent is up to date. 969 */ 970 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 971 struct amdgpu_vm *vm, 972 struct amdgpu_vm_pt *parent, 973 struct amdgpu_vm_pt *entry) 974 { 975 struct amdgpu_bo *bo = parent->base.bo, *pbo; 976 uint64_t pde, pt, flags; 977 unsigned level; 978 979 /* Don't update huge pages here */ 980 if (entry->huge) 981 return; 982 983 for (level = 0, pbo = bo->parent; pbo; ++level) 984 pbo = pbo->parent; 985 986 level += params->adev->vm_manager.root_level; 987 pt = amdgpu_bo_gpu_offset(entry->base.bo); 988 flags = AMDGPU_PTE_VALID; 989 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 990 pde = (entry - parent->entries) * 8; 991 if (bo->shadow) 992 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 993 params->func(params, bo, pde, pt, 1, 0, flags); 994 } 995 996 /* 997 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 998 * 999 * @adev: amdgpu_device pointer 1000 * @vm: related vm 1001 * @parent: parent PD 1002 * @level: VMPT level 1003 * 1004 * Mark all PD level as invalid after an error. 1005 */ 1006 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 1007 struct amdgpu_vm *vm, 1008 struct amdgpu_vm_pt *parent, 1009 unsigned level) 1010 { 1011 unsigned pt_idx, num_entries; 1012 1013 /* 1014 * Recurse into the subdirectories. This recursion is harmless because 1015 * we only have a maximum of 5 layers. 1016 */ 1017 num_entries = amdgpu_vm_num_entries(adev, level); 1018 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 1019 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 1020 1021 if (!entry->base.bo) 1022 continue; 1023 1024 if (!entry->base.moved) 1025 list_move(&entry->base.vm_status, &vm->relocated); 1026 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 1027 } 1028 } 1029 1030 /* 1031 * amdgpu_vm_update_directories - make sure that all directories are valid 1032 * 1033 * @adev: amdgpu_device pointer 1034 * @vm: requested vm 1035 * 1036 * Makes sure all directories are up to date. 1037 * 1038 * Returns: 1039 * 0 for success, error for failure. 1040 */ 1041 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1042 struct amdgpu_vm *vm) 1043 { 1044 struct amdgpu_pte_update_params params; 1045 struct amdgpu_job *job; 1046 unsigned ndw = 0; 1047 int r = 0; 1048 1049 if (list_empty(&vm->relocated)) 1050 return 0; 1051 1052 restart: 1053 memset(¶ms, 0, sizeof(params)); 1054 params.adev = adev; 1055 1056 if (vm->use_cpu_for_update) { 1057 struct amdgpu_vm_bo_base *bo_base; 1058 1059 list_for_each_entry(bo_base, &vm->relocated, vm_status) { 1060 r = amdgpu_bo_kmap(bo_base->bo, NULL); 1061 if (unlikely(r)) 1062 return r; 1063 } 1064 1065 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1066 if (unlikely(r)) 1067 return r; 1068 1069 params.func = amdgpu_vm_cpu_set_ptes; 1070 } else { 1071 ndw = 512 * 8; 1072 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1073 if (r) 1074 return r; 1075 1076 params.ib = &job->ibs[0]; 1077 params.func = amdgpu_vm_do_set_ptes; 1078 } 1079 1080 while (!list_empty(&vm->relocated)) { 1081 struct amdgpu_vm_bo_base *bo_base, *parent; 1082 struct amdgpu_vm_pt *pt, *entry; 1083 struct amdgpu_bo *bo; 1084 1085 bo_base = list_first_entry(&vm->relocated, 1086 struct amdgpu_vm_bo_base, 1087 vm_status); 1088 bo_base->moved = false; 1089 list_del_init(&bo_base->vm_status); 1090 1091 bo = bo_base->bo->parent; 1092 if (!bo) 1093 continue; 1094 1095 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 1096 bo_list); 1097 pt = container_of(parent, struct amdgpu_vm_pt, base); 1098 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 1099 1100 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1101 1102 if (!vm->use_cpu_for_update && 1103 (ndw - params.ib->length_dw) < 32) 1104 break; 1105 } 1106 1107 if (vm->use_cpu_for_update) { 1108 /* Flush HDP */ 1109 mb(); 1110 amdgpu_asic_flush_hdp(adev, NULL); 1111 } else if (params.ib->length_dw == 0) { 1112 amdgpu_job_free(job); 1113 } else { 1114 struct amdgpu_bo *root = vm->root.base.bo; 1115 struct amdgpu_ring *ring; 1116 struct dma_fence *fence; 1117 1118 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1119 sched); 1120 1121 amdgpu_ring_pad_ib(ring, params.ib); 1122 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1123 AMDGPU_FENCE_OWNER_VM, false); 1124 WARN_ON(params.ib->length_dw > ndw); 1125 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1126 &fence); 1127 if (r) 1128 goto error; 1129 1130 amdgpu_bo_fence(root, fence, true); 1131 dma_fence_put(vm->last_update); 1132 vm->last_update = fence; 1133 } 1134 1135 if (!list_empty(&vm->relocated)) 1136 goto restart; 1137 1138 return 0; 1139 1140 error: 1141 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1142 adev->vm_manager.root_level); 1143 amdgpu_job_free(job); 1144 return r; 1145 } 1146 1147 /** 1148 * amdgpu_vm_find_entry - find the entry for an address 1149 * 1150 * @p: see amdgpu_pte_update_params definition 1151 * @addr: virtual address in question 1152 * @entry: resulting entry or NULL 1153 * @parent: parent entry 1154 * 1155 * Find the vm_pt entry and it's parent for the given address. 1156 */ 1157 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1158 struct amdgpu_vm_pt **entry, 1159 struct amdgpu_vm_pt **parent) 1160 { 1161 unsigned level = p->adev->vm_manager.root_level; 1162 1163 *parent = NULL; 1164 *entry = &p->vm->root; 1165 while ((*entry)->entries) { 1166 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1167 1168 *parent = *entry; 1169 *entry = &(*entry)->entries[addr >> shift]; 1170 addr &= (1ULL << shift) - 1; 1171 } 1172 1173 if (level != AMDGPU_VM_PTB) 1174 *entry = NULL; 1175 } 1176 1177 /** 1178 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1179 * 1180 * @p: see amdgpu_pte_update_params definition 1181 * @entry: vm_pt entry to check 1182 * @parent: parent entry 1183 * @nptes: number of PTEs updated with this operation 1184 * @dst: destination address where the PTEs should point to 1185 * @flags: access flags fro the PTEs 1186 * 1187 * Check if we can update the PD with a huge page. 1188 */ 1189 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1190 struct amdgpu_vm_pt *entry, 1191 struct amdgpu_vm_pt *parent, 1192 unsigned nptes, uint64_t dst, 1193 uint64_t flags) 1194 { 1195 uint64_t pde; 1196 1197 /* In the case of a mixed PT the PDE must point to it*/ 1198 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1199 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1200 /* Set the huge page flag to stop scanning at this PDE */ 1201 flags |= AMDGPU_PDE_PTE; 1202 } 1203 1204 if (!(flags & AMDGPU_PDE_PTE)) { 1205 if (entry->huge) { 1206 /* Add the entry to the relocated list to update it. */ 1207 entry->huge = false; 1208 list_move(&entry->base.vm_status, &p->vm->relocated); 1209 } 1210 return; 1211 } 1212 1213 entry->huge = true; 1214 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1215 1216 pde = (entry - parent->entries) * 8; 1217 if (parent->base.bo->shadow) 1218 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1219 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1220 } 1221 1222 /** 1223 * amdgpu_vm_update_ptes - make sure that page tables are valid 1224 * 1225 * @params: see amdgpu_pte_update_params definition 1226 * @start: start of GPU address range 1227 * @end: end of GPU address range 1228 * @dst: destination address to map to, the next dst inside the function 1229 * @flags: mapping flags 1230 * 1231 * Update the page tables in the range @start - @end. 1232 * 1233 * Returns: 1234 * 0 for success, -EINVAL for failure. 1235 */ 1236 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1237 uint64_t start, uint64_t end, 1238 uint64_t dst, uint64_t flags) 1239 { 1240 struct amdgpu_device *adev = params->adev; 1241 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1242 1243 uint64_t addr, pe_start; 1244 struct amdgpu_bo *pt; 1245 unsigned nptes; 1246 1247 /* walk over the address space and update the page tables */ 1248 for (addr = start; addr < end; addr += nptes, 1249 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1250 struct amdgpu_vm_pt *entry, *parent; 1251 1252 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1253 if (!entry) 1254 return -ENOENT; 1255 1256 if ((addr & ~mask) == (end & ~mask)) 1257 nptes = end - addr; 1258 else 1259 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1260 1261 amdgpu_vm_handle_huge_pages(params, entry, parent, 1262 nptes, dst, flags); 1263 /* We don't need to update PTEs for huge pages */ 1264 if (entry->huge) 1265 continue; 1266 1267 pt = entry->base.bo; 1268 pe_start = (addr & mask) * 8; 1269 if (pt->shadow) 1270 params->func(params, pt->shadow, pe_start, dst, nptes, 1271 AMDGPU_GPU_PAGE_SIZE, flags); 1272 params->func(params, pt, pe_start, dst, nptes, 1273 AMDGPU_GPU_PAGE_SIZE, flags); 1274 } 1275 1276 return 0; 1277 } 1278 1279 /* 1280 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1281 * 1282 * @params: see amdgpu_pte_update_params definition 1283 * @vm: requested vm 1284 * @start: first PTE to handle 1285 * @end: last PTE to handle 1286 * @dst: addr those PTEs should point to 1287 * @flags: hw mapping flags 1288 * 1289 * Returns: 1290 * 0 for success, -EINVAL for failure. 1291 */ 1292 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1293 uint64_t start, uint64_t end, 1294 uint64_t dst, uint64_t flags) 1295 { 1296 /** 1297 * The MC L1 TLB supports variable sized pages, based on a fragment 1298 * field in the PTE. When this field is set to a non-zero value, page 1299 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1300 * flags are considered valid for all PTEs within the fragment range 1301 * and corresponding mappings are assumed to be physically contiguous. 1302 * 1303 * The L1 TLB can store a single PTE for the whole fragment, 1304 * significantly increasing the space available for translation 1305 * caching. This leads to large improvements in throughput when the 1306 * TLB is under pressure. 1307 * 1308 * The L2 TLB distributes small and large fragments into two 1309 * asymmetric partitions. The large fragment cache is significantly 1310 * larger. Thus, we try to use large fragments wherever possible. 1311 * Userspace can support this by aligning virtual base address and 1312 * allocation size to the fragment size. 1313 */ 1314 unsigned max_frag = params->adev->vm_manager.fragment_size; 1315 int r; 1316 1317 /* system pages are non continuously */ 1318 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1319 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1320 1321 while (start != end) { 1322 uint64_t frag_flags, frag_end; 1323 unsigned frag; 1324 1325 /* This intentionally wraps around if no bit is set */ 1326 frag = min((unsigned)ffs(start) - 1, 1327 (unsigned)fls64(end - start) - 1); 1328 if (frag >= max_frag) { 1329 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1330 frag_end = end & ~((1ULL << max_frag) - 1); 1331 } else { 1332 frag_flags = AMDGPU_PTE_FRAG(frag); 1333 frag_end = start + (1 << frag); 1334 } 1335 1336 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1337 flags | frag_flags); 1338 if (r) 1339 return r; 1340 1341 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1342 start = frag_end; 1343 } 1344 1345 return 0; 1346 } 1347 1348 /** 1349 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @exclusive: fence we need to sync to 1353 * @pages_addr: DMA addresses to use for mapping 1354 * @vm: requested vm 1355 * @start: start of mapped range 1356 * @last: last mapped entry 1357 * @flags: flags for the entries 1358 * @addr: addr to set the area to 1359 * @fence: optional resulting fence 1360 * 1361 * Fill in the page table entries between @start and @last. 1362 * 1363 * Returns: 1364 * 0 for success, -EINVAL for failure. 1365 */ 1366 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1367 struct dma_fence *exclusive, 1368 dma_addr_t *pages_addr, 1369 struct amdgpu_vm *vm, 1370 uint64_t start, uint64_t last, 1371 uint64_t flags, uint64_t addr, 1372 struct dma_fence **fence) 1373 { 1374 struct amdgpu_ring *ring; 1375 void *owner = AMDGPU_FENCE_OWNER_VM; 1376 unsigned nptes, ncmds, ndw; 1377 struct amdgpu_job *job; 1378 struct amdgpu_pte_update_params params; 1379 struct dma_fence *f = NULL; 1380 int r; 1381 1382 memset(¶ms, 0, sizeof(params)); 1383 params.adev = adev; 1384 params.vm = vm; 1385 1386 /* sync to everything on unmapping */ 1387 if (!(flags & AMDGPU_PTE_VALID)) 1388 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1389 1390 if (vm->use_cpu_for_update) { 1391 /* params.src is used as flag to indicate system Memory */ 1392 if (pages_addr) 1393 params.src = ~0; 1394 1395 /* Wait for PT BOs to be free. PTs share the same resv. object 1396 * as the root PD BO 1397 */ 1398 r = amdgpu_vm_wait_pd(adev, vm, owner); 1399 if (unlikely(r)) 1400 return r; 1401 1402 params.func = amdgpu_vm_cpu_set_ptes; 1403 params.pages_addr = pages_addr; 1404 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1405 addr, flags); 1406 } 1407 1408 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1409 1410 nptes = last - start + 1; 1411 1412 /* 1413 * reserve space for two commands every (1 << BLOCK_SIZE) 1414 * entries or 2k dwords (whatever is smaller) 1415 * 1416 * The second command is for the shadow pagetables. 1417 */ 1418 if (vm->root.base.bo->shadow) 1419 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1420 else 1421 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1422 1423 /* padding, etc. */ 1424 ndw = 64; 1425 1426 if (pages_addr) { 1427 /* copy commands needed */ 1428 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1429 1430 /* and also PTEs */ 1431 ndw += nptes * 2; 1432 1433 params.func = amdgpu_vm_do_copy_ptes; 1434 1435 } else { 1436 /* set page commands needed */ 1437 ndw += ncmds * 10; 1438 1439 /* extra commands for begin/end fragments */ 1440 if (vm->root.base.bo->shadow) 1441 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1442 else 1443 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1444 1445 params.func = amdgpu_vm_do_set_ptes; 1446 } 1447 1448 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1449 if (r) 1450 return r; 1451 1452 params.ib = &job->ibs[0]; 1453 1454 if (pages_addr) { 1455 uint64_t *pte; 1456 unsigned i; 1457 1458 /* Put the PTEs at the end of the IB. */ 1459 i = ndw - nptes * 2; 1460 pte= (uint64_t *)&(job->ibs->ptr[i]); 1461 params.src = job->ibs->gpu_addr + i * 4; 1462 1463 for (i = 0; i < nptes; ++i) { 1464 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1465 AMDGPU_GPU_PAGE_SIZE); 1466 pte[i] |= flags; 1467 } 1468 addr = 0; 1469 } 1470 1471 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1472 if (r) 1473 goto error_free; 1474 1475 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1476 owner, false); 1477 if (r) 1478 goto error_free; 1479 1480 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1481 if (r) 1482 goto error_free; 1483 1484 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1485 if (r) 1486 goto error_free; 1487 1488 amdgpu_ring_pad_ib(ring, params.ib); 1489 WARN_ON(params.ib->length_dw > ndw); 1490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1491 if (r) 1492 goto error_free; 1493 1494 amdgpu_bo_fence(vm->root.base.bo, f, true); 1495 dma_fence_put(*fence); 1496 *fence = f; 1497 return 0; 1498 1499 error_free: 1500 amdgpu_job_free(job); 1501 return r; 1502 } 1503 1504 /** 1505 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1506 * 1507 * @adev: amdgpu_device pointer 1508 * @exclusive: fence we need to sync to 1509 * @pages_addr: DMA addresses to use for mapping 1510 * @vm: requested vm 1511 * @mapping: mapped range and flags to use for the update 1512 * @flags: HW flags for the mapping 1513 * @nodes: array of drm_mm_nodes with the MC addresses 1514 * @fence: optional resulting fence 1515 * 1516 * Split the mapping into smaller chunks so that each update fits 1517 * into a SDMA IB. 1518 * 1519 * Returns: 1520 * 0 for success, -EINVAL for failure. 1521 */ 1522 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1523 struct dma_fence *exclusive, 1524 dma_addr_t *pages_addr, 1525 struct amdgpu_vm *vm, 1526 struct amdgpu_bo_va_mapping *mapping, 1527 uint64_t flags, 1528 struct drm_mm_node *nodes, 1529 struct dma_fence **fence) 1530 { 1531 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1532 uint64_t pfn, start = mapping->start; 1533 int r; 1534 1535 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1536 * but in case of something, we filter the flags in first place 1537 */ 1538 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1539 flags &= ~AMDGPU_PTE_READABLE; 1540 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1541 flags &= ~AMDGPU_PTE_WRITEABLE; 1542 1543 flags &= ~AMDGPU_PTE_EXECUTABLE; 1544 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1545 1546 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1547 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1548 1549 if ((mapping->flags & AMDGPU_PTE_PRT) && 1550 (adev->asic_type >= CHIP_VEGA10)) { 1551 flags |= AMDGPU_PTE_PRT; 1552 flags &= ~AMDGPU_PTE_VALID; 1553 } 1554 1555 trace_amdgpu_vm_bo_update(mapping); 1556 1557 pfn = mapping->offset >> PAGE_SHIFT; 1558 if (nodes) { 1559 while (pfn >= nodes->size) { 1560 pfn -= nodes->size; 1561 ++nodes; 1562 } 1563 } 1564 1565 do { 1566 dma_addr_t *dma_addr = NULL; 1567 uint64_t max_entries; 1568 uint64_t addr, last; 1569 1570 if (nodes) { 1571 addr = nodes->start << PAGE_SHIFT; 1572 max_entries = (nodes->size - pfn) * 1573 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1574 } else { 1575 addr = 0; 1576 max_entries = S64_MAX; 1577 } 1578 1579 if (pages_addr) { 1580 uint64_t count; 1581 1582 max_entries = min(max_entries, 16ull * 1024ull); 1583 for (count = 1; 1584 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1585 ++count) { 1586 uint64_t idx = pfn + count; 1587 1588 if (pages_addr[idx] != 1589 (pages_addr[idx - 1] + PAGE_SIZE)) 1590 break; 1591 } 1592 1593 if (count < min_linear_pages) { 1594 addr = pfn << PAGE_SHIFT; 1595 dma_addr = pages_addr; 1596 } else { 1597 addr = pages_addr[pfn]; 1598 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1599 } 1600 1601 } else if (flags & AMDGPU_PTE_VALID) { 1602 addr += adev->vm_manager.vram_base_offset; 1603 addr += pfn << PAGE_SHIFT; 1604 } 1605 1606 last = min((uint64_t)mapping->last, start + max_entries - 1); 1607 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1608 start, last, flags, addr, 1609 fence); 1610 if (r) 1611 return r; 1612 1613 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1614 if (nodes && nodes->size == pfn) { 1615 pfn = 0; 1616 ++nodes; 1617 } 1618 start = last + 1; 1619 1620 } while (unlikely(start != mapping->last + 1)); 1621 1622 return 0; 1623 } 1624 1625 /** 1626 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1627 * 1628 * @adev: amdgpu_device pointer 1629 * @bo_va: requested BO and VM object 1630 * @clear: if true clear the entries 1631 * 1632 * Fill in the page table entries for @bo_va. 1633 * 1634 * Returns: 1635 * 0 for success, -EINVAL for failure. 1636 */ 1637 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1638 struct amdgpu_bo_va *bo_va, 1639 bool clear) 1640 { 1641 struct amdgpu_bo *bo = bo_va->base.bo; 1642 struct amdgpu_vm *vm = bo_va->base.vm; 1643 struct amdgpu_bo_va_mapping *mapping; 1644 dma_addr_t *pages_addr = NULL; 1645 struct ttm_mem_reg *mem; 1646 struct drm_mm_node *nodes; 1647 struct dma_fence *exclusive, **last_update; 1648 uint64_t flags; 1649 int r; 1650 1651 if (clear || !bo) { 1652 mem = NULL; 1653 nodes = NULL; 1654 exclusive = NULL; 1655 } else { 1656 struct ttm_dma_tt *ttm; 1657 1658 mem = &bo->tbo.mem; 1659 nodes = mem->mm_node; 1660 if (mem->mem_type == TTM_PL_TT) { 1661 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1662 pages_addr = ttm->dma_address; 1663 } 1664 exclusive = reservation_object_get_excl(bo->tbo.resv); 1665 } 1666 1667 if (bo) 1668 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1669 else 1670 flags = 0x0; 1671 1672 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1673 last_update = &vm->last_update; 1674 else 1675 last_update = &bo_va->last_pt_update; 1676 1677 if (!clear && bo_va->base.moved) { 1678 bo_va->base.moved = false; 1679 list_splice_init(&bo_va->valids, &bo_va->invalids); 1680 1681 } else if (bo_va->cleared != clear) { 1682 list_splice_init(&bo_va->valids, &bo_va->invalids); 1683 } 1684 1685 list_for_each_entry(mapping, &bo_va->invalids, list) { 1686 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1687 mapping, flags, nodes, 1688 last_update); 1689 if (r) 1690 return r; 1691 } 1692 1693 if (vm->use_cpu_for_update) { 1694 /* Flush HDP */ 1695 mb(); 1696 amdgpu_asic_flush_hdp(adev, NULL); 1697 } 1698 1699 spin_lock(&vm->moved_lock); 1700 list_del_init(&bo_va->base.vm_status); 1701 spin_unlock(&vm->moved_lock); 1702 1703 /* If the BO is not in its preferred location add it back to 1704 * the evicted list so that it gets validated again on the 1705 * next command submission. 1706 */ 1707 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1708 uint32_t mem_type = bo->tbo.mem.mem_type; 1709 1710 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 1711 list_add_tail(&bo_va->base.vm_status, &vm->evicted); 1712 else 1713 list_add(&bo_va->base.vm_status, &vm->idle); 1714 } 1715 1716 list_splice_init(&bo_va->invalids, &bo_va->valids); 1717 bo_va->cleared = clear; 1718 1719 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1720 list_for_each_entry(mapping, &bo_va->valids, list) 1721 trace_amdgpu_vm_bo_mapping(mapping); 1722 } 1723 1724 return 0; 1725 } 1726 1727 /** 1728 * amdgpu_vm_update_prt_state - update the global PRT state 1729 * 1730 * @adev: amdgpu_device pointer 1731 */ 1732 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1733 { 1734 unsigned long flags; 1735 bool enable; 1736 1737 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1738 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1739 adev->gmc.gmc_funcs->set_prt(adev, enable); 1740 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1741 } 1742 1743 /** 1744 * amdgpu_vm_prt_get - add a PRT user 1745 * 1746 * @adev: amdgpu_device pointer 1747 */ 1748 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1749 { 1750 if (!adev->gmc.gmc_funcs->set_prt) 1751 return; 1752 1753 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1754 amdgpu_vm_update_prt_state(adev); 1755 } 1756 1757 /** 1758 * amdgpu_vm_prt_put - drop a PRT user 1759 * 1760 * @adev: amdgpu_device pointer 1761 */ 1762 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1763 { 1764 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1765 amdgpu_vm_update_prt_state(adev); 1766 } 1767 1768 /** 1769 * amdgpu_vm_prt_cb - callback for updating the PRT status 1770 * 1771 * @fence: fence for the callback 1772 * @_cb: the callback function 1773 */ 1774 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1775 { 1776 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1777 1778 amdgpu_vm_prt_put(cb->adev); 1779 kfree(cb); 1780 } 1781 1782 /** 1783 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1784 * 1785 * @adev: amdgpu_device pointer 1786 * @fence: fence for the callback 1787 */ 1788 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1789 struct dma_fence *fence) 1790 { 1791 struct amdgpu_prt_cb *cb; 1792 1793 if (!adev->gmc.gmc_funcs->set_prt) 1794 return; 1795 1796 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1797 if (!cb) { 1798 /* Last resort when we are OOM */ 1799 if (fence) 1800 dma_fence_wait(fence, false); 1801 1802 amdgpu_vm_prt_put(adev); 1803 } else { 1804 cb->adev = adev; 1805 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1806 amdgpu_vm_prt_cb)) 1807 amdgpu_vm_prt_cb(fence, &cb->cb); 1808 } 1809 } 1810 1811 /** 1812 * amdgpu_vm_free_mapping - free a mapping 1813 * 1814 * @adev: amdgpu_device pointer 1815 * @vm: requested vm 1816 * @mapping: mapping to be freed 1817 * @fence: fence of the unmap operation 1818 * 1819 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1820 */ 1821 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1822 struct amdgpu_vm *vm, 1823 struct amdgpu_bo_va_mapping *mapping, 1824 struct dma_fence *fence) 1825 { 1826 if (mapping->flags & AMDGPU_PTE_PRT) 1827 amdgpu_vm_add_prt_cb(adev, fence); 1828 kfree(mapping); 1829 } 1830 1831 /** 1832 * amdgpu_vm_prt_fini - finish all prt mappings 1833 * 1834 * @adev: amdgpu_device pointer 1835 * @vm: requested vm 1836 * 1837 * Register a cleanup callback to disable PRT support after VM dies. 1838 */ 1839 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1840 { 1841 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1842 struct dma_fence *excl, **shared; 1843 unsigned i, shared_count; 1844 int r; 1845 1846 r = reservation_object_get_fences_rcu(resv, &excl, 1847 &shared_count, &shared); 1848 if (r) { 1849 /* Not enough memory to grab the fence list, as last resort 1850 * block for all the fences to complete. 1851 */ 1852 reservation_object_wait_timeout_rcu(resv, true, false, 1853 MAX_SCHEDULE_TIMEOUT); 1854 return; 1855 } 1856 1857 /* Add a callback for each fence in the reservation object */ 1858 amdgpu_vm_prt_get(adev); 1859 amdgpu_vm_add_prt_cb(adev, excl); 1860 1861 for (i = 0; i < shared_count; ++i) { 1862 amdgpu_vm_prt_get(adev); 1863 amdgpu_vm_add_prt_cb(adev, shared[i]); 1864 } 1865 1866 kfree(shared); 1867 } 1868 1869 /** 1870 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1871 * 1872 * @adev: amdgpu_device pointer 1873 * @vm: requested vm 1874 * @fence: optional resulting fence (unchanged if no work needed to be done 1875 * or if an error occurred) 1876 * 1877 * Make sure all freed BOs are cleared in the PT. 1878 * PTs have to be reserved and mutex must be locked! 1879 * 1880 * Returns: 1881 * 0 for success. 1882 * 1883 */ 1884 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1885 struct amdgpu_vm *vm, 1886 struct dma_fence **fence) 1887 { 1888 struct amdgpu_bo_va_mapping *mapping; 1889 uint64_t init_pte_value = 0; 1890 struct dma_fence *f = NULL; 1891 int r; 1892 1893 while (!list_empty(&vm->freed)) { 1894 mapping = list_first_entry(&vm->freed, 1895 struct amdgpu_bo_va_mapping, list); 1896 list_del(&mapping->list); 1897 1898 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1899 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1900 1901 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1902 mapping->start, mapping->last, 1903 init_pte_value, 0, &f); 1904 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1905 if (r) { 1906 dma_fence_put(f); 1907 return r; 1908 } 1909 } 1910 1911 if (fence && f) { 1912 dma_fence_put(*fence); 1913 *fence = f; 1914 } else { 1915 dma_fence_put(f); 1916 } 1917 1918 return 0; 1919 1920 } 1921 1922 /** 1923 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1924 * 1925 * @adev: amdgpu_device pointer 1926 * @vm: requested vm 1927 * 1928 * Make sure all BOs which are moved are updated in the PTs. 1929 * 1930 * Returns: 1931 * 0 for success. 1932 * 1933 * PTs have to be reserved! 1934 */ 1935 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1936 struct amdgpu_vm *vm) 1937 { 1938 struct amdgpu_bo_va *bo_va, *tmp; 1939 struct list_head moved; 1940 bool clear; 1941 int r; 1942 1943 INIT_LIST_HEAD(&moved); 1944 spin_lock(&vm->moved_lock); 1945 list_splice_init(&vm->moved, &moved); 1946 spin_unlock(&vm->moved_lock); 1947 1948 list_for_each_entry_safe(bo_va, tmp, &moved, base.vm_status) { 1949 struct reservation_object *resv = bo_va->base.bo->tbo.resv; 1950 1951 /* Per VM BOs never need to bo cleared in the page tables */ 1952 if (resv == vm->root.base.bo->tbo.resv) 1953 clear = false; 1954 /* Try to reserve the BO to avoid clearing its ptes */ 1955 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1956 clear = false; 1957 /* Somebody else is using the BO right now */ 1958 else 1959 clear = true; 1960 1961 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1962 if (r) { 1963 spin_lock(&vm->moved_lock); 1964 list_splice(&moved, &vm->moved); 1965 spin_unlock(&vm->moved_lock); 1966 return r; 1967 } 1968 1969 if (!clear && resv != vm->root.base.bo->tbo.resv) 1970 reservation_object_unlock(resv); 1971 1972 } 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * amdgpu_vm_bo_add - add a bo to a specific vm 1979 * 1980 * @adev: amdgpu_device pointer 1981 * @vm: requested vm 1982 * @bo: amdgpu buffer object 1983 * 1984 * Add @bo into the requested vm. 1985 * Add @bo to the list of bos associated with the vm 1986 * 1987 * Returns: 1988 * Newly added bo_va or NULL for failure 1989 * 1990 * Object has to be reserved! 1991 */ 1992 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1993 struct amdgpu_vm *vm, 1994 struct amdgpu_bo *bo) 1995 { 1996 struct amdgpu_bo_va *bo_va; 1997 1998 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1999 if (bo_va == NULL) { 2000 return NULL; 2001 } 2002 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2003 2004 bo_va->ref_count = 1; 2005 INIT_LIST_HEAD(&bo_va->valids); 2006 INIT_LIST_HEAD(&bo_va->invalids); 2007 2008 return bo_va; 2009 } 2010 2011 2012 /** 2013 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2014 * 2015 * @adev: amdgpu_device pointer 2016 * @bo_va: bo_va to store the address 2017 * @mapping: the mapping to insert 2018 * 2019 * Insert a new mapping into all structures. 2020 */ 2021 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2022 struct amdgpu_bo_va *bo_va, 2023 struct amdgpu_bo_va_mapping *mapping) 2024 { 2025 struct amdgpu_vm *vm = bo_va->base.vm; 2026 struct amdgpu_bo *bo = bo_va->base.bo; 2027 2028 mapping->bo_va = bo_va; 2029 list_add(&mapping->list, &bo_va->invalids); 2030 amdgpu_vm_it_insert(mapping, &vm->va); 2031 2032 if (mapping->flags & AMDGPU_PTE_PRT) 2033 amdgpu_vm_prt_get(adev); 2034 2035 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2036 !bo_va->base.moved) { 2037 spin_lock(&vm->moved_lock); 2038 list_move(&bo_va->base.vm_status, &vm->moved); 2039 spin_unlock(&vm->moved_lock); 2040 } 2041 trace_amdgpu_vm_bo_map(bo_va, mapping); 2042 } 2043 2044 /** 2045 * amdgpu_vm_bo_map - map bo inside a vm 2046 * 2047 * @adev: amdgpu_device pointer 2048 * @bo_va: bo_va to store the address 2049 * @saddr: where to map the BO 2050 * @offset: requested offset in the BO 2051 * @size: BO size in bytes 2052 * @flags: attributes of pages (read/write/valid/etc.) 2053 * 2054 * Add a mapping of the BO at the specefied addr into the VM. 2055 * 2056 * Returns: 2057 * 0 for success, error for failure. 2058 * 2059 * Object has to be reserved and unreserved outside! 2060 */ 2061 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2062 struct amdgpu_bo_va *bo_va, 2063 uint64_t saddr, uint64_t offset, 2064 uint64_t size, uint64_t flags) 2065 { 2066 struct amdgpu_bo_va_mapping *mapping, *tmp; 2067 struct amdgpu_bo *bo = bo_va->base.bo; 2068 struct amdgpu_vm *vm = bo_va->base.vm; 2069 uint64_t eaddr; 2070 2071 /* validate the parameters */ 2072 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2073 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2074 return -EINVAL; 2075 2076 /* make sure object fit at this offset */ 2077 eaddr = saddr + size - 1; 2078 if (saddr >= eaddr || 2079 (bo && offset + size > amdgpu_bo_size(bo))) 2080 return -EINVAL; 2081 2082 saddr /= AMDGPU_GPU_PAGE_SIZE; 2083 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2084 2085 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2086 if (tmp) { 2087 /* bo and tmp overlap, invalid addr */ 2088 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2089 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2090 tmp->start, tmp->last + 1); 2091 return -EINVAL; 2092 } 2093 2094 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2095 if (!mapping) 2096 return -ENOMEM; 2097 2098 mapping->start = saddr; 2099 mapping->last = eaddr; 2100 mapping->offset = offset; 2101 mapping->flags = flags; 2102 2103 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2104 2105 return 0; 2106 } 2107 2108 /** 2109 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2110 * 2111 * @adev: amdgpu_device pointer 2112 * @bo_va: bo_va to store the address 2113 * @saddr: where to map the BO 2114 * @offset: requested offset in the BO 2115 * @size: BO size in bytes 2116 * @flags: attributes of pages (read/write/valid/etc.) 2117 * 2118 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2119 * mappings as we do so. 2120 * 2121 * Returns: 2122 * 0 for success, error for failure. 2123 * 2124 * Object has to be reserved and unreserved outside! 2125 */ 2126 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2127 struct amdgpu_bo_va *bo_va, 2128 uint64_t saddr, uint64_t offset, 2129 uint64_t size, uint64_t flags) 2130 { 2131 struct amdgpu_bo_va_mapping *mapping; 2132 struct amdgpu_bo *bo = bo_va->base.bo; 2133 uint64_t eaddr; 2134 int r; 2135 2136 /* validate the parameters */ 2137 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2138 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2139 return -EINVAL; 2140 2141 /* make sure object fit at this offset */ 2142 eaddr = saddr + size - 1; 2143 if (saddr >= eaddr || 2144 (bo && offset + size > amdgpu_bo_size(bo))) 2145 return -EINVAL; 2146 2147 /* Allocate all the needed memory */ 2148 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2149 if (!mapping) 2150 return -ENOMEM; 2151 2152 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2153 if (r) { 2154 kfree(mapping); 2155 return r; 2156 } 2157 2158 saddr /= AMDGPU_GPU_PAGE_SIZE; 2159 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2160 2161 mapping->start = saddr; 2162 mapping->last = eaddr; 2163 mapping->offset = offset; 2164 mapping->flags = flags; 2165 2166 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2167 2168 return 0; 2169 } 2170 2171 /** 2172 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2173 * 2174 * @adev: amdgpu_device pointer 2175 * @bo_va: bo_va to remove the address from 2176 * @saddr: where to the BO is mapped 2177 * 2178 * Remove a mapping of the BO at the specefied addr from the VM. 2179 * 2180 * Returns: 2181 * 0 for success, error for failure. 2182 * 2183 * Object has to be reserved and unreserved outside! 2184 */ 2185 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2186 struct amdgpu_bo_va *bo_va, 2187 uint64_t saddr) 2188 { 2189 struct amdgpu_bo_va_mapping *mapping; 2190 struct amdgpu_vm *vm = bo_va->base.vm; 2191 bool valid = true; 2192 2193 saddr /= AMDGPU_GPU_PAGE_SIZE; 2194 2195 list_for_each_entry(mapping, &bo_va->valids, list) { 2196 if (mapping->start == saddr) 2197 break; 2198 } 2199 2200 if (&mapping->list == &bo_va->valids) { 2201 valid = false; 2202 2203 list_for_each_entry(mapping, &bo_va->invalids, list) { 2204 if (mapping->start == saddr) 2205 break; 2206 } 2207 2208 if (&mapping->list == &bo_va->invalids) 2209 return -ENOENT; 2210 } 2211 2212 list_del(&mapping->list); 2213 amdgpu_vm_it_remove(mapping, &vm->va); 2214 mapping->bo_va = NULL; 2215 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2216 2217 if (valid) 2218 list_add(&mapping->list, &vm->freed); 2219 else 2220 amdgpu_vm_free_mapping(adev, vm, mapping, 2221 bo_va->last_pt_update); 2222 2223 return 0; 2224 } 2225 2226 /** 2227 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2228 * 2229 * @adev: amdgpu_device pointer 2230 * @vm: VM structure to use 2231 * @saddr: start of the range 2232 * @size: size of the range 2233 * 2234 * Remove all mappings in a range, split them as appropriate. 2235 * 2236 * Returns: 2237 * 0 for success, error for failure. 2238 */ 2239 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2240 struct amdgpu_vm *vm, 2241 uint64_t saddr, uint64_t size) 2242 { 2243 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2244 LIST_HEAD(removed); 2245 uint64_t eaddr; 2246 2247 eaddr = saddr + size - 1; 2248 saddr /= AMDGPU_GPU_PAGE_SIZE; 2249 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2250 2251 /* Allocate all the needed memory */ 2252 before = kzalloc(sizeof(*before), GFP_KERNEL); 2253 if (!before) 2254 return -ENOMEM; 2255 INIT_LIST_HEAD(&before->list); 2256 2257 after = kzalloc(sizeof(*after), GFP_KERNEL); 2258 if (!after) { 2259 kfree(before); 2260 return -ENOMEM; 2261 } 2262 INIT_LIST_HEAD(&after->list); 2263 2264 /* Now gather all removed mappings */ 2265 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2266 while (tmp) { 2267 /* Remember mapping split at the start */ 2268 if (tmp->start < saddr) { 2269 before->start = tmp->start; 2270 before->last = saddr - 1; 2271 before->offset = tmp->offset; 2272 before->flags = tmp->flags; 2273 before->bo_va = tmp->bo_va; 2274 list_add(&before->list, &tmp->bo_va->invalids); 2275 } 2276 2277 /* Remember mapping split at the end */ 2278 if (tmp->last > eaddr) { 2279 after->start = eaddr + 1; 2280 after->last = tmp->last; 2281 after->offset = tmp->offset; 2282 after->offset += after->start - tmp->start; 2283 after->flags = tmp->flags; 2284 after->bo_va = tmp->bo_va; 2285 list_add(&after->list, &tmp->bo_va->invalids); 2286 } 2287 2288 list_del(&tmp->list); 2289 list_add(&tmp->list, &removed); 2290 2291 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2292 } 2293 2294 /* And free them up */ 2295 list_for_each_entry_safe(tmp, next, &removed, list) { 2296 amdgpu_vm_it_remove(tmp, &vm->va); 2297 list_del(&tmp->list); 2298 2299 if (tmp->start < saddr) 2300 tmp->start = saddr; 2301 if (tmp->last > eaddr) 2302 tmp->last = eaddr; 2303 2304 tmp->bo_va = NULL; 2305 list_add(&tmp->list, &vm->freed); 2306 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2307 } 2308 2309 /* Insert partial mapping before the range */ 2310 if (!list_empty(&before->list)) { 2311 amdgpu_vm_it_insert(before, &vm->va); 2312 if (before->flags & AMDGPU_PTE_PRT) 2313 amdgpu_vm_prt_get(adev); 2314 } else { 2315 kfree(before); 2316 } 2317 2318 /* Insert partial mapping after the range */ 2319 if (!list_empty(&after->list)) { 2320 amdgpu_vm_it_insert(after, &vm->va); 2321 if (after->flags & AMDGPU_PTE_PRT) 2322 amdgpu_vm_prt_get(adev); 2323 } else { 2324 kfree(after); 2325 } 2326 2327 return 0; 2328 } 2329 2330 /** 2331 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2332 * 2333 * @vm: the requested VM 2334 * @addr: the address 2335 * 2336 * Find a mapping by it's address. 2337 * 2338 * Returns: 2339 * The amdgpu_bo_va_mapping matching for addr or NULL 2340 * 2341 */ 2342 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2343 uint64_t addr) 2344 { 2345 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2346 } 2347 2348 /** 2349 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2350 * 2351 * @vm: the requested vm 2352 * @ticket: CS ticket 2353 * 2354 * Trace all mappings of BOs reserved during a command submission. 2355 */ 2356 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2357 { 2358 struct amdgpu_bo_va_mapping *mapping; 2359 2360 if (!trace_amdgpu_vm_bo_cs_enabled()) 2361 return; 2362 2363 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2364 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2365 if (mapping->bo_va && mapping->bo_va->base.bo) { 2366 struct amdgpu_bo *bo; 2367 2368 bo = mapping->bo_va->base.bo; 2369 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2370 continue; 2371 } 2372 2373 trace_amdgpu_vm_bo_cs(mapping); 2374 } 2375 } 2376 2377 /** 2378 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2379 * 2380 * @adev: amdgpu_device pointer 2381 * @bo_va: requested bo_va 2382 * 2383 * Remove @bo_va->bo from the requested vm. 2384 * 2385 * Object have to be reserved! 2386 */ 2387 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2388 struct amdgpu_bo_va *bo_va) 2389 { 2390 struct amdgpu_bo_va_mapping *mapping, *next; 2391 struct amdgpu_vm *vm = bo_va->base.vm; 2392 2393 list_del(&bo_va->base.bo_list); 2394 2395 spin_lock(&vm->moved_lock); 2396 list_del(&bo_va->base.vm_status); 2397 spin_unlock(&vm->moved_lock); 2398 2399 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2400 list_del(&mapping->list); 2401 amdgpu_vm_it_remove(mapping, &vm->va); 2402 mapping->bo_va = NULL; 2403 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2404 list_add(&mapping->list, &vm->freed); 2405 } 2406 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2407 list_del(&mapping->list); 2408 amdgpu_vm_it_remove(mapping, &vm->va); 2409 amdgpu_vm_free_mapping(adev, vm, mapping, 2410 bo_va->last_pt_update); 2411 } 2412 2413 dma_fence_put(bo_va->last_pt_update); 2414 kfree(bo_va); 2415 } 2416 2417 /** 2418 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2419 * 2420 * @adev: amdgpu_device pointer 2421 * @bo: amdgpu buffer object 2422 * @evicted: is the BO evicted 2423 * 2424 * Mark @bo as invalid. 2425 */ 2426 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2427 struct amdgpu_bo *bo, bool evicted) 2428 { 2429 struct amdgpu_vm_bo_base *bo_base; 2430 2431 /* shadow bo doesn't have bo base, its validation needs its parent */ 2432 if (bo->parent && bo->parent->shadow == bo) 2433 bo = bo->parent; 2434 2435 list_for_each_entry(bo_base, &bo->va, bo_list) { 2436 struct amdgpu_vm *vm = bo_base->vm; 2437 bool was_moved = bo_base->moved; 2438 2439 bo_base->moved = true; 2440 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2441 if (bo->tbo.type == ttm_bo_type_kernel) 2442 list_move(&bo_base->vm_status, &vm->evicted); 2443 else 2444 list_move_tail(&bo_base->vm_status, 2445 &vm->evicted); 2446 continue; 2447 } 2448 2449 if (was_moved) 2450 continue; 2451 2452 if (bo->tbo.type == ttm_bo_type_kernel) { 2453 list_move(&bo_base->vm_status, &vm->relocated); 2454 } else { 2455 spin_lock(&bo_base->vm->moved_lock); 2456 list_move(&bo_base->vm_status, &vm->moved); 2457 spin_unlock(&bo_base->vm->moved_lock); 2458 } 2459 } 2460 } 2461 2462 /** 2463 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2464 * 2465 * @vm_size: VM size 2466 * 2467 * Returns: 2468 * VM page table as power of two 2469 */ 2470 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2471 { 2472 /* Total bits covered by PD + PTs */ 2473 unsigned bits = ilog2(vm_size) + 18; 2474 2475 /* Make sure the PD is 4K in size up to 8GB address space. 2476 Above that split equal between PD and PTs */ 2477 if (vm_size <= 8) 2478 return (bits - 9); 2479 else 2480 return ((bits + 3) / 2); 2481 } 2482 2483 /** 2484 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2485 * 2486 * @adev: amdgpu_device pointer 2487 * @min_vm_size: the minimum vm size in GB if it's set auto 2488 * @fragment_size_default: Default PTE fragment size 2489 * @max_level: max VMPT level 2490 * @max_bits: max address space size in bits 2491 * 2492 */ 2493 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2494 uint32_t fragment_size_default, unsigned max_level, 2495 unsigned max_bits) 2496 { 2497 unsigned int max_size = 1 << (max_bits - 30); 2498 unsigned int vm_size; 2499 uint64_t tmp; 2500 2501 /* adjust vm size first */ 2502 if (amdgpu_vm_size != -1) { 2503 vm_size = amdgpu_vm_size; 2504 if (vm_size > max_size) { 2505 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2506 amdgpu_vm_size, max_size); 2507 vm_size = max_size; 2508 } 2509 } else { 2510 struct sysinfo si; 2511 unsigned int phys_ram_gb; 2512 2513 /* Optimal VM size depends on the amount of physical 2514 * RAM available. Underlying requirements and 2515 * assumptions: 2516 * 2517 * - Need to map system memory and VRAM from all GPUs 2518 * - VRAM from other GPUs not known here 2519 * - Assume VRAM <= system memory 2520 * - On GFX8 and older, VM space can be segmented for 2521 * different MTYPEs 2522 * - Need to allow room for fragmentation, guard pages etc. 2523 * 2524 * This adds up to a rough guess of system memory x3. 2525 * Round up to power of two to maximize the available 2526 * VM size with the given page table size. 2527 */ 2528 si_meminfo(&si); 2529 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2530 (1 << 30) - 1) >> 30; 2531 vm_size = roundup_pow_of_two( 2532 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2533 } 2534 2535 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2536 2537 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2538 if (amdgpu_vm_block_size != -1) 2539 tmp >>= amdgpu_vm_block_size - 9; 2540 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2541 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2542 switch (adev->vm_manager.num_level) { 2543 case 3: 2544 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2545 break; 2546 case 2: 2547 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2548 break; 2549 case 1: 2550 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2551 break; 2552 default: 2553 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2554 } 2555 /* block size depends on vm size and hw setup*/ 2556 if (amdgpu_vm_block_size != -1) 2557 adev->vm_manager.block_size = 2558 min((unsigned)amdgpu_vm_block_size, max_bits 2559 - AMDGPU_GPU_PAGE_SHIFT 2560 - 9 * adev->vm_manager.num_level); 2561 else if (adev->vm_manager.num_level > 1) 2562 adev->vm_manager.block_size = 9; 2563 else 2564 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2565 2566 if (amdgpu_vm_fragment_size == -1) 2567 adev->vm_manager.fragment_size = fragment_size_default; 2568 else 2569 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2570 2571 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2572 vm_size, adev->vm_manager.num_level + 1, 2573 adev->vm_manager.block_size, 2574 adev->vm_manager.fragment_size); 2575 } 2576 2577 /** 2578 * amdgpu_vm_init - initialize a vm instance 2579 * 2580 * @adev: amdgpu_device pointer 2581 * @vm: requested vm 2582 * @vm_context: Indicates if it GFX or Compute context 2583 * @pasid: Process address space identifier 2584 * 2585 * Init @vm fields. 2586 * 2587 * Returns: 2588 * 0 for success, error for failure. 2589 */ 2590 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2591 int vm_context, unsigned int pasid) 2592 { 2593 struct amdgpu_bo_param bp; 2594 struct amdgpu_bo *root; 2595 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2596 AMDGPU_VM_PTE_COUNT(adev) * 8); 2597 unsigned ring_instance; 2598 struct amdgpu_ring *ring; 2599 struct drm_sched_rq *rq; 2600 unsigned long size; 2601 uint64_t flags; 2602 int r, i; 2603 2604 vm->va = RB_ROOT_CACHED; 2605 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2606 vm->reserved_vmid[i] = NULL; 2607 INIT_LIST_HEAD(&vm->evicted); 2608 INIT_LIST_HEAD(&vm->relocated); 2609 spin_lock_init(&vm->moved_lock); 2610 INIT_LIST_HEAD(&vm->moved); 2611 INIT_LIST_HEAD(&vm->idle); 2612 INIT_LIST_HEAD(&vm->freed); 2613 2614 /* create scheduler entity for page table updates */ 2615 2616 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2617 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2618 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2619 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2620 r = drm_sched_entity_init(&vm->entity, &rq, 1, NULL); 2621 if (r) 2622 return r; 2623 2624 vm->pte_support_ats = false; 2625 2626 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2627 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2628 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2629 2630 if (adev->asic_type == CHIP_RAVEN) 2631 vm->pte_support_ats = true; 2632 } else { 2633 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2634 AMDGPU_VM_USE_CPU_FOR_GFX); 2635 } 2636 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2637 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2638 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2639 "CPU update of VM recommended only for large BAR system\n"); 2640 vm->last_update = NULL; 2641 2642 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2643 if (vm->use_cpu_for_update) 2644 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2645 else if (vm_context != AMDGPU_VM_CONTEXT_COMPUTE) 2646 flags |= AMDGPU_GEM_CREATE_SHADOW; 2647 2648 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2649 memset(&bp, 0, sizeof(bp)); 2650 bp.size = size; 2651 bp.byte_align = align; 2652 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 2653 bp.flags = flags; 2654 bp.type = ttm_bo_type_kernel; 2655 bp.resv = NULL; 2656 r = amdgpu_bo_create(adev, &bp, &root); 2657 if (r) 2658 goto error_free_sched_entity; 2659 2660 r = amdgpu_bo_reserve(root, true); 2661 if (r) 2662 goto error_free_root; 2663 2664 r = amdgpu_vm_clear_bo(adev, vm, root, 2665 adev->vm_manager.root_level, 2666 vm->pte_support_ats); 2667 if (r) 2668 goto error_unreserve; 2669 2670 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2671 amdgpu_bo_unreserve(vm->root.base.bo); 2672 2673 if (pasid) { 2674 unsigned long flags; 2675 2676 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2677 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2678 GFP_ATOMIC); 2679 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2680 if (r < 0) 2681 goto error_free_root; 2682 2683 vm->pasid = pasid; 2684 } 2685 2686 INIT_KFIFO(vm->faults); 2687 vm->fault_credit = 16; 2688 2689 return 0; 2690 2691 error_unreserve: 2692 amdgpu_bo_unreserve(vm->root.base.bo); 2693 2694 error_free_root: 2695 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2696 amdgpu_bo_unref(&vm->root.base.bo); 2697 vm->root.base.bo = NULL; 2698 2699 error_free_sched_entity: 2700 drm_sched_entity_destroy(&vm->entity); 2701 2702 return r; 2703 } 2704 2705 /** 2706 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2707 * 2708 * @adev: amdgpu_device pointer 2709 * @vm: requested vm 2710 * 2711 * This only works on GFX VMs that don't have any BOs added and no 2712 * page tables allocated yet. 2713 * 2714 * Changes the following VM parameters: 2715 * - use_cpu_for_update 2716 * - pte_supports_ats 2717 * - pasid (old PASID is released, because compute manages its own PASIDs) 2718 * 2719 * Reinitializes the page directory to reflect the changed ATS 2720 * setting. 2721 * 2722 * Returns: 2723 * 0 for success, -errno for errors. 2724 */ 2725 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2726 { 2727 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2728 int r; 2729 2730 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2731 if (r) 2732 return r; 2733 2734 /* Sanity checks */ 2735 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 2736 r = -EINVAL; 2737 goto error; 2738 } 2739 2740 /* Check if PD needs to be reinitialized and do it before 2741 * changing any other state, in case it fails. 2742 */ 2743 if (pte_support_ats != vm->pte_support_ats) { 2744 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2745 adev->vm_manager.root_level, 2746 pte_support_ats); 2747 if (r) 2748 goto error; 2749 } 2750 2751 /* Update VM state */ 2752 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2753 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2754 vm->pte_support_ats = pte_support_ats; 2755 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2756 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2757 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2758 "CPU update of VM recommended only for large BAR system\n"); 2759 2760 if (vm->pasid) { 2761 unsigned long flags; 2762 2763 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2764 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2765 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2766 2767 vm->pasid = 0; 2768 } 2769 2770 /* Free the shadow bo for compute VM */ 2771 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2772 2773 error: 2774 amdgpu_bo_unreserve(vm->root.base.bo); 2775 return r; 2776 } 2777 2778 /** 2779 * amdgpu_vm_free_levels - free PD/PT levels 2780 * 2781 * @adev: amdgpu device structure 2782 * @parent: PD/PT starting level to free 2783 * @level: level of parent structure 2784 * 2785 * Free the page directory or page table level and all sub levels. 2786 */ 2787 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2788 struct amdgpu_vm_pt *parent, 2789 unsigned level) 2790 { 2791 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2792 2793 if (parent->base.bo) { 2794 list_del(&parent->base.bo_list); 2795 list_del(&parent->base.vm_status); 2796 amdgpu_bo_unref(&parent->base.bo->shadow); 2797 amdgpu_bo_unref(&parent->base.bo); 2798 } 2799 2800 if (parent->entries) 2801 for (i = 0; i < num_entries; i++) 2802 amdgpu_vm_free_levels(adev, &parent->entries[i], 2803 level + 1); 2804 2805 kvfree(parent->entries); 2806 } 2807 2808 /** 2809 * amdgpu_vm_fini - tear down a vm instance 2810 * 2811 * @adev: amdgpu_device pointer 2812 * @vm: requested vm 2813 * 2814 * Tear down @vm. 2815 * Unbind the VM and remove all bos from the vm bo list 2816 */ 2817 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2818 { 2819 struct amdgpu_bo_va_mapping *mapping, *tmp; 2820 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2821 struct amdgpu_bo *root; 2822 u64 fault; 2823 int i, r; 2824 2825 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2826 2827 /* Clear pending page faults from IH when the VM is destroyed */ 2828 while (kfifo_get(&vm->faults, &fault)) 2829 amdgpu_ih_clear_fault(adev, fault); 2830 2831 if (vm->pasid) { 2832 unsigned long flags; 2833 2834 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2835 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2836 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2837 } 2838 2839 drm_sched_entity_destroy(&vm->entity); 2840 2841 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2842 dev_err(adev->dev, "still active bo inside vm\n"); 2843 } 2844 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2845 &vm->va.rb_root, rb) { 2846 list_del(&mapping->list); 2847 amdgpu_vm_it_remove(mapping, &vm->va); 2848 kfree(mapping); 2849 } 2850 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2851 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2852 amdgpu_vm_prt_fini(adev, vm); 2853 prt_fini_needed = false; 2854 } 2855 2856 list_del(&mapping->list); 2857 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2858 } 2859 2860 root = amdgpu_bo_ref(vm->root.base.bo); 2861 r = amdgpu_bo_reserve(root, true); 2862 if (r) { 2863 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2864 } else { 2865 amdgpu_vm_free_levels(adev, &vm->root, 2866 adev->vm_manager.root_level); 2867 amdgpu_bo_unreserve(root); 2868 } 2869 amdgpu_bo_unref(&root); 2870 dma_fence_put(vm->last_update); 2871 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2872 amdgpu_vmid_free_reserved(adev, vm, i); 2873 } 2874 2875 /** 2876 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2877 * 2878 * @adev: amdgpu_device pointer 2879 * @pasid: PASID do identify the VM 2880 * 2881 * This function is expected to be called in interrupt context. 2882 * 2883 * Returns: 2884 * True if there was fault credit, false otherwise 2885 */ 2886 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2887 unsigned int pasid) 2888 { 2889 struct amdgpu_vm *vm; 2890 2891 spin_lock(&adev->vm_manager.pasid_lock); 2892 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2893 if (!vm) { 2894 /* VM not found, can't track fault credit */ 2895 spin_unlock(&adev->vm_manager.pasid_lock); 2896 return true; 2897 } 2898 2899 /* No lock needed. only accessed by IRQ handler */ 2900 if (!vm->fault_credit) { 2901 /* Too many faults in this VM */ 2902 spin_unlock(&adev->vm_manager.pasid_lock); 2903 return false; 2904 } 2905 2906 vm->fault_credit--; 2907 spin_unlock(&adev->vm_manager.pasid_lock); 2908 return true; 2909 } 2910 2911 /** 2912 * amdgpu_vm_manager_init - init the VM manager 2913 * 2914 * @adev: amdgpu_device pointer 2915 * 2916 * Initialize the VM manager structures 2917 */ 2918 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2919 { 2920 unsigned i; 2921 2922 amdgpu_vmid_mgr_init(adev); 2923 2924 adev->vm_manager.fence_context = 2925 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2926 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2927 adev->vm_manager.seqno[i] = 0; 2928 2929 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2930 spin_lock_init(&adev->vm_manager.prt_lock); 2931 atomic_set(&adev->vm_manager.num_prt_users, 0); 2932 2933 /* If not overridden by the user, by default, only in large BAR systems 2934 * Compute VM tables will be updated by CPU 2935 */ 2936 #ifdef CONFIG_X86_64 2937 if (amdgpu_vm_update_mode == -1) { 2938 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 2939 adev->vm_manager.vm_update_mode = 2940 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2941 else 2942 adev->vm_manager.vm_update_mode = 0; 2943 } else 2944 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2945 #else 2946 adev->vm_manager.vm_update_mode = 0; 2947 #endif 2948 2949 idr_init(&adev->vm_manager.pasid_idr); 2950 spin_lock_init(&adev->vm_manager.pasid_lock); 2951 } 2952 2953 /** 2954 * amdgpu_vm_manager_fini - cleanup VM manager 2955 * 2956 * @adev: amdgpu_device pointer 2957 * 2958 * Cleanup the VM manager and free resources. 2959 */ 2960 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2961 { 2962 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2963 idr_destroy(&adev->vm_manager.pasid_idr); 2964 2965 amdgpu_vmid_mgr_fini(adev); 2966 } 2967 2968 /** 2969 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2970 * 2971 * @dev: drm device pointer 2972 * @data: drm_amdgpu_vm 2973 * @filp: drm file pointer 2974 * 2975 * Returns: 2976 * 0 for success, -errno for errors. 2977 */ 2978 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2979 { 2980 union drm_amdgpu_vm *args = data; 2981 struct amdgpu_device *adev = dev->dev_private; 2982 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2983 int r; 2984 2985 switch (args->in.op) { 2986 case AMDGPU_VM_OP_RESERVE_VMID: 2987 /* current, we only have requirement to reserve vmid from gfxhub */ 2988 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2989 if (r) 2990 return r; 2991 break; 2992 case AMDGPU_VM_OP_UNRESERVE_VMID: 2993 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2994 break; 2995 default: 2996 return -EINVAL; 2997 } 2998 2999 return 0; 3000 } 3001 3002 /** 3003 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3004 * 3005 * @dev: drm device pointer 3006 * @pasid: PASID identifier for VM 3007 * @task_info: task_info to fill. 3008 */ 3009 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3010 struct amdgpu_task_info *task_info) 3011 { 3012 struct amdgpu_vm *vm; 3013 3014 spin_lock(&adev->vm_manager.pasid_lock); 3015 3016 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3017 if (vm) 3018 *task_info = vm->task_info; 3019 3020 spin_unlock(&adev->vm_manager.pasid_lock); 3021 } 3022 3023 /** 3024 * amdgpu_vm_set_task_info - Sets VMs task info. 3025 * 3026 * @vm: vm for which to set the info 3027 */ 3028 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3029 { 3030 if (!vm->task_info.pid) { 3031 vm->task_info.pid = current->pid; 3032 get_task_comm(vm->task_info.task_name, current); 3033 3034 if (current->group_leader->mm == current->mm) { 3035 vm->task_info.tgid = current->group_leader->pid; 3036 get_task_comm(vm->task_info.process_name, current->group_leader); 3037 } 3038 } 3039 } 3040