1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 entry->tv.shared = true; 621 entry->user_pages = NULL; 622 list_add(&entry->tv.head, validated); 623 } 624 625 /** 626 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 627 * 628 * @adev: amdgpu device pointer 629 * @vm: vm providing the BOs 630 * 631 * Move all BOs to the end of LRU and remember their positions to put them 632 * together. 633 */ 634 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 635 struct amdgpu_vm *vm) 636 { 637 struct ttm_bo_global *glob = adev->mman.bdev.glob; 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&glob->lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&glob->lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&glob->lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&glob->lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r = 0; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 break; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 if (vm->use_cpu_for_update) 699 r = amdgpu_bo_kmap(bo, NULL); 700 else 701 r = amdgpu_ttm_alloc_gart(&bo->tbo); 702 if (r) 703 break; 704 if (bo->shadow) { 705 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 706 if (r) 707 break; 708 } 709 amdgpu_vm_bo_relocated(bo_base); 710 } 711 } 712 713 return r; 714 } 715 716 /** 717 * amdgpu_vm_ready - check VM is ready for updates 718 * 719 * @vm: VM to check 720 * 721 * Check if all VM PDs/PTs are ready for updates 722 * 723 * Returns: 724 * True if eviction list is empty. 725 */ 726 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 727 { 728 return list_empty(&vm->evicted); 729 } 730 731 /** 732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 733 * 734 * @adev: amdgpu_device pointer 735 * @vm: VM to clear BO from 736 * @bo: BO to clear 737 * @level: level this BO is at 738 * @pte_support_ats: indicate ATS support from PTE 739 * 740 * Root PD needs to be reserved when calling this. 741 * 742 * Returns: 743 * 0 on success, errno otherwise. 744 */ 745 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 746 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 747 unsigned level, bool pte_support_ats) 748 { 749 struct ttm_operation_ctx ctx = { true, false }; 750 struct dma_fence *fence = NULL; 751 unsigned entries, ats_entries; 752 struct amdgpu_ring *ring; 753 struct amdgpu_job *job; 754 uint64_t addr; 755 int r; 756 757 entries = amdgpu_bo_size(bo) / 8; 758 759 if (pte_support_ats) { 760 if (level == adev->vm_manager.root_level) { 761 ats_entries = amdgpu_vm_level_shift(adev, level); 762 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 763 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 764 ats_entries = min(ats_entries, entries); 765 entries -= ats_entries; 766 } else { 767 ats_entries = entries; 768 entries = 0; 769 } 770 } else { 771 ats_entries = 0; 772 } 773 774 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 775 776 r = reservation_object_reserve_shared(bo->tbo.resv); 777 if (r) 778 return r; 779 780 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 781 if (r) 782 goto error; 783 784 r = amdgpu_ttm_alloc_gart(&bo->tbo); 785 if (r) 786 return r; 787 788 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 789 if (r) 790 goto error; 791 792 addr = amdgpu_bo_gpu_offset(bo); 793 if (ats_entries) { 794 uint64_t ats_value; 795 796 ats_value = AMDGPU_PTE_DEFAULT_ATC; 797 if (level != AMDGPU_VM_PTB) 798 ats_value |= AMDGPU_PDE_PTE; 799 800 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 801 ats_entries, 0, ats_value); 802 addr += ats_entries * 8; 803 } 804 805 if (entries) 806 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 807 entries, 0, 0); 808 809 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 810 811 WARN_ON(job->ibs[0].length_dw > 64); 812 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 813 AMDGPU_FENCE_OWNER_UNDEFINED, false); 814 if (r) 815 goto error_free; 816 817 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 818 &fence); 819 if (r) 820 goto error_free; 821 822 amdgpu_bo_fence(bo, fence, true); 823 dma_fence_put(fence); 824 825 if (bo->shadow) 826 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 827 level, pte_support_ats); 828 829 return 0; 830 831 error_free: 832 amdgpu_job_free(job); 833 834 error: 835 return r; 836 } 837 838 /** 839 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 840 * 841 * @adev: amdgpu_device pointer 842 * @vm: requesting vm 843 * @bp: resulting BO allocation parameters 844 */ 845 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 846 int level, struct amdgpu_bo_param *bp) 847 { 848 memset(bp, 0, sizeof(*bp)); 849 850 bp->size = amdgpu_vm_bo_size(adev, level); 851 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 852 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 853 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 && 854 adev->flags & AMD_IS_APU) 855 bp->domain |= AMDGPU_GEM_DOMAIN_GTT; 856 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 857 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 858 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 859 if (vm->use_cpu_for_update) 860 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 861 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 862 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 863 bp->type = ttm_bo_type_kernel; 864 if (vm->root.base.bo) 865 bp->resv = vm->root.base.bo->tbo.resv; 866 } 867 868 /** 869 * amdgpu_vm_alloc_pts - Allocate page tables. 870 * 871 * @adev: amdgpu_device pointer 872 * @vm: VM to allocate page tables for 873 * @saddr: Start address which needs to be allocated 874 * @size: Size from start address we need. 875 * 876 * Make sure the page directories and page tables are allocated 877 * 878 * Returns: 879 * 0 on success, errno otherwise. 880 */ 881 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 882 struct amdgpu_vm *vm, 883 uint64_t saddr, uint64_t size) 884 { 885 struct amdgpu_vm_pt_cursor cursor; 886 struct amdgpu_bo *pt; 887 bool ats = false; 888 uint64_t eaddr; 889 int r; 890 891 /* validate the parameters */ 892 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 893 return -EINVAL; 894 895 eaddr = saddr + size - 1; 896 897 if (vm->pte_support_ats) 898 ats = saddr < AMDGPU_GMC_HOLE_START; 899 900 saddr /= AMDGPU_GPU_PAGE_SIZE; 901 eaddr /= AMDGPU_GPU_PAGE_SIZE; 902 903 if (eaddr >= adev->vm_manager.max_pfn) { 904 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 905 eaddr, adev->vm_manager.max_pfn); 906 return -EINVAL; 907 } 908 909 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 910 struct amdgpu_vm_pt *entry = cursor.entry; 911 struct amdgpu_bo_param bp; 912 913 if (cursor.level < AMDGPU_VM_PTB) { 914 unsigned num_entries; 915 916 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 917 entry->entries = kvmalloc_array(num_entries, 918 sizeof(*entry->entries), 919 GFP_KERNEL | 920 __GFP_ZERO); 921 if (!entry->entries) 922 return -ENOMEM; 923 } 924 925 926 if (entry->base.bo) 927 continue; 928 929 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 930 931 r = amdgpu_bo_create(adev, &bp, &pt); 932 if (r) 933 return r; 934 935 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 936 if (r) 937 goto error_free_pt; 938 939 if (vm->use_cpu_for_update) { 940 r = amdgpu_bo_kmap(pt, NULL); 941 if (r) 942 goto error_free_pt; 943 } 944 945 /* Keep a reference to the root directory to avoid 946 * freeing them up in the wrong order. 947 */ 948 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 949 950 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 951 } 952 953 return 0; 954 955 error_free_pt: 956 amdgpu_bo_unref(&pt->shadow); 957 amdgpu_bo_unref(&pt); 958 return r; 959 } 960 961 /** 962 * amdgpu_vm_free_pts - free PD/PT levels 963 * 964 * @adev: amdgpu device structure 965 * @vm: amdgpu vm structure 966 * 967 * Free the page directory or page table level and all sub levels. 968 */ 969 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 970 struct amdgpu_vm *vm) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 976 977 if (entry->base.bo) { 978 entry->base.bo->vm_bo = NULL; 979 list_del(&entry->base.vm_status); 980 amdgpu_bo_unref(&entry->base.bo->shadow); 981 amdgpu_bo_unref(&entry->base.bo); 982 } 983 kvfree(entry->entries); 984 } 985 986 BUG_ON(vm->root.base.bo); 987 } 988 989 /** 990 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 991 * 992 * @adev: amdgpu_device pointer 993 */ 994 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 995 { 996 const struct amdgpu_ip_block *ip_block; 997 bool has_compute_vm_bug; 998 struct amdgpu_ring *ring; 999 int i; 1000 1001 has_compute_vm_bug = false; 1002 1003 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1004 if (ip_block) { 1005 /* Compute has a VM bug for GFX version < 7. 1006 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1007 if (ip_block->version->major <= 7) 1008 has_compute_vm_bug = true; 1009 else if (ip_block->version->major == 8) 1010 if (adev->gfx.mec_fw_version < 673) 1011 has_compute_vm_bug = true; 1012 } 1013 1014 for (i = 0; i < adev->num_rings; i++) { 1015 ring = adev->rings[i]; 1016 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1017 /* only compute rings */ 1018 ring->has_compute_vm_bug = has_compute_vm_bug; 1019 else 1020 ring->has_compute_vm_bug = false; 1021 } 1022 } 1023 1024 /** 1025 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1026 * 1027 * @ring: ring on which the job will be submitted 1028 * @job: job to submit 1029 * 1030 * Returns: 1031 * True if sync is needed. 1032 */ 1033 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1034 struct amdgpu_job *job) 1035 { 1036 struct amdgpu_device *adev = ring->adev; 1037 unsigned vmhub = ring->funcs->vmhub; 1038 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1039 struct amdgpu_vmid *id; 1040 bool gds_switch_needed; 1041 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1042 1043 if (job->vmid == 0) 1044 return false; 1045 id = &id_mgr->ids[job->vmid]; 1046 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1047 id->gds_base != job->gds_base || 1048 id->gds_size != job->gds_size || 1049 id->gws_base != job->gws_base || 1050 id->gws_size != job->gws_size || 1051 id->oa_base != job->oa_base || 1052 id->oa_size != job->oa_size); 1053 1054 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1055 return true; 1056 1057 return vm_flush_needed || gds_switch_needed; 1058 } 1059 1060 /** 1061 * amdgpu_vm_flush - hardware flush the vm 1062 * 1063 * @ring: ring to use for flush 1064 * @job: related job 1065 * @need_pipe_sync: is pipe sync needed 1066 * 1067 * Emit a VM flush when it is necessary. 1068 * 1069 * Returns: 1070 * 0 on success, errno otherwise. 1071 */ 1072 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1073 { 1074 struct amdgpu_device *adev = ring->adev; 1075 unsigned vmhub = ring->funcs->vmhub; 1076 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1077 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1078 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1079 id->gds_base != job->gds_base || 1080 id->gds_size != job->gds_size || 1081 id->gws_base != job->gws_base || 1082 id->gws_size != job->gws_size || 1083 id->oa_base != job->oa_base || 1084 id->oa_size != job->oa_size); 1085 bool vm_flush_needed = job->vm_needs_flush; 1086 bool pasid_mapping_needed = id->pasid != job->pasid || 1087 !id->pasid_mapping || 1088 !dma_fence_is_signaled(id->pasid_mapping); 1089 struct dma_fence *fence = NULL; 1090 unsigned patch_offset = 0; 1091 int r; 1092 1093 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1094 gds_switch_needed = true; 1095 vm_flush_needed = true; 1096 pasid_mapping_needed = true; 1097 } 1098 1099 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1100 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1101 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1102 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1103 ring->funcs->emit_wreg; 1104 1105 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1106 return 0; 1107 1108 if (ring->funcs->init_cond_exec) 1109 patch_offset = amdgpu_ring_init_cond_exec(ring); 1110 1111 if (need_pipe_sync) 1112 amdgpu_ring_emit_pipeline_sync(ring); 1113 1114 if (vm_flush_needed) { 1115 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1116 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1117 } 1118 1119 if (pasid_mapping_needed) 1120 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1121 1122 if (vm_flush_needed || pasid_mapping_needed) { 1123 r = amdgpu_fence_emit(ring, &fence, 0); 1124 if (r) 1125 return r; 1126 } 1127 1128 if (vm_flush_needed) { 1129 mutex_lock(&id_mgr->lock); 1130 dma_fence_put(id->last_flush); 1131 id->last_flush = dma_fence_get(fence); 1132 id->current_gpu_reset_count = 1133 atomic_read(&adev->gpu_reset_counter); 1134 mutex_unlock(&id_mgr->lock); 1135 } 1136 1137 if (pasid_mapping_needed) { 1138 id->pasid = job->pasid; 1139 dma_fence_put(id->pasid_mapping); 1140 id->pasid_mapping = dma_fence_get(fence); 1141 } 1142 dma_fence_put(fence); 1143 1144 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1145 id->gds_base = job->gds_base; 1146 id->gds_size = job->gds_size; 1147 id->gws_base = job->gws_base; 1148 id->gws_size = job->gws_size; 1149 id->oa_base = job->oa_base; 1150 id->oa_size = job->oa_size; 1151 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1152 job->gds_size, job->gws_base, 1153 job->gws_size, job->oa_base, 1154 job->oa_size); 1155 } 1156 1157 if (ring->funcs->patch_cond_exec) 1158 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1159 1160 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1161 if (ring->funcs->emit_switch_buffer) { 1162 amdgpu_ring_emit_switch_buffer(ring); 1163 amdgpu_ring_emit_switch_buffer(ring); 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1170 * 1171 * @vm: requested vm 1172 * @bo: requested buffer object 1173 * 1174 * Find @bo inside the requested vm. 1175 * Search inside the @bos vm list for the requested vm 1176 * Returns the found bo_va or NULL if none is found 1177 * 1178 * Object has to be reserved! 1179 * 1180 * Returns: 1181 * Found bo_va or NULL. 1182 */ 1183 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1184 struct amdgpu_bo *bo) 1185 { 1186 struct amdgpu_vm_bo_base *base; 1187 1188 for (base = bo->vm_bo; base; base = base->next) { 1189 if (base->vm != vm) 1190 continue; 1191 1192 return container_of(base, struct amdgpu_bo_va, base); 1193 } 1194 return NULL; 1195 } 1196 1197 /** 1198 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1199 * 1200 * @params: see amdgpu_pte_update_params definition 1201 * @bo: PD/PT to update 1202 * @pe: addr of the page entry 1203 * @addr: dst addr to write into pe 1204 * @count: number of page entries to update 1205 * @incr: increase next addr by incr bytes 1206 * @flags: hw access flags 1207 * 1208 * Traces the parameters and calls the right asic functions 1209 * to setup the page table using the DMA. 1210 */ 1211 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1212 struct amdgpu_bo *bo, 1213 uint64_t pe, uint64_t addr, 1214 unsigned count, uint32_t incr, 1215 uint64_t flags) 1216 { 1217 pe += amdgpu_bo_gpu_offset(bo); 1218 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1219 1220 if (count < 3) { 1221 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1222 addr | flags, count, incr); 1223 1224 } else { 1225 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1226 count, incr, flags); 1227 } 1228 } 1229 1230 /** 1231 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1232 * 1233 * @params: see amdgpu_pte_update_params definition 1234 * @bo: PD/PT to update 1235 * @pe: addr of the page entry 1236 * @addr: dst addr to write into pe 1237 * @count: number of page entries to update 1238 * @incr: increase next addr by incr bytes 1239 * @flags: hw access flags 1240 * 1241 * Traces the parameters and calls the DMA function to copy the PTEs. 1242 */ 1243 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1244 struct amdgpu_bo *bo, 1245 uint64_t pe, uint64_t addr, 1246 unsigned count, uint32_t incr, 1247 uint64_t flags) 1248 { 1249 uint64_t src = (params->src + (addr >> 12) * 8); 1250 1251 pe += amdgpu_bo_gpu_offset(bo); 1252 trace_amdgpu_vm_copy_ptes(pe, src, count); 1253 1254 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1255 } 1256 1257 /** 1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1259 * 1260 * @pages_addr: optional DMA address to use for lookup 1261 * @addr: the unmapped addr 1262 * 1263 * Look up the physical address of the page that the pte resolves 1264 * to. 1265 * 1266 * Returns: 1267 * The pointer for the page table entry. 1268 */ 1269 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1270 { 1271 uint64_t result; 1272 1273 /* page table offset */ 1274 result = pages_addr[addr >> PAGE_SHIFT]; 1275 1276 /* in case cpu page size != gpu page size*/ 1277 result |= addr & (~PAGE_MASK); 1278 1279 result &= 0xFFFFFFFFFFFFF000ULL; 1280 1281 return result; 1282 } 1283 1284 /** 1285 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1286 * 1287 * @params: see amdgpu_pte_update_params definition 1288 * @bo: PD/PT to update 1289 * @pe: kmap addr of the page entry 1290 * @addr: dst addr to write into pe 1291 * @count: number of page entries to update 1292 * @incr: increase next addr by incr bytes 1293 * @flags: hw access flags 1294 * 1295 * Write count number of PT/PD entries directly. 1296 */ 1297 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1298 struct amdgpu_bo *bo, 1299 uint64_t pe, uint64_t addr, 1300 unsigned count, uint32_t incr, 1301 uint64_t flags) 1302 { 1303 unsigned int i; 1304 uint64_t value; 1305 1306 pe += (unsigned long)amdgpu_bo_kptr(bo); 1307 1308 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1309 1310 for (i = 0; i < count; i++) { 1311 value = params->pages_addr ? 1312 amdgpu_vm_map_gart(params->pages_addr, addr) : 1313 addr; 1314 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1315 i, value, flags); 1316 addr += incr; 1317 } 1318 } 1319 1320 1321 /** 1322 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1323 * 1324 * @adev: amdgpu_device pointer 1325 * @vm: related vm 1326 * @owner: fence owner 1327 * 1328 * Returns: 1329 * 0 on success, errno otherwise. 1330 */ 1331 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1332 void *owner) 1333 { 1334 struct amdgpu_sync sync; 1335 int r; 1336 1337 amdgpu_sync_create(&sync); 1338 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1339 r = amdgpu_sync_wait(&sync, true); 1340 amdgpu_sync_free(&sync); 1341 1342 return r; 1343 } 1344 1345 /** 1346 * amdgpu_vm_update_func - helper to call update function 1347 * 1348 * Calls the update function for both the given BO as well as its shadow. 1349 */ 1350 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1351 struct amdgpu_bo *bo, 1352 uint64_t pe, uint64_t addr, 1353 unsigned count, uint32_t incr, 1354 uint64_t flags) 1355 { 1356 if (bo->shadow) 1357 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1358 params->func(params, bo, pe, addr, count, incr, flags); 1359 } 1360 1361 /* 1362 * amdgpu_vm_update_pde - update a single level in the hierarchy 1363 * 1364 * @param: parameters for the update 1365 * @vm: requested vm 1366 * @parent: parent directory 1367 * @entry: entry to update 1368 * 1369 * Makes sure the requested entry in parent is up to date. 1370 */ 1371 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1372 struct amdgpu_vm *vm, 1373 struct amdgpu_vm_pt *parent, 1374 struct amdgpu_vm_pt *entry) 1375 { 1376 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1377 uint64_t pde, pt, flags; 1378 unsigned level; 1379 1380 /* Don't update huge pages here */ 1381 if (entry->huge) 1382 return; 1383 1384 for (level = 0, pbo = bo->parent; pbo; ++level) 1385 pbo = pbo->parent; 1386 1387 level += params->adev->vm_manager.root_level; 1388 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1389 pde = (entry - parent->entries) * 8; 1390 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1391 } 1392 1393 /* 1394 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1395 * 1396 * @adev: amdgpu_device pointer 1397 * @vm: related vm 1398 * 1399 * Mark all PD level as invalid after an error. 1400 */ 1401 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1402 struct amdgpu_vm *vm) 1403 { 1404 struct amdgpu_vm_pt_cursor cursor; 1405 struct amdgpu_vm_pt *entry; 1406 1407 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1408 if (entry->base.bo && !entry->base.moved) 1409 amdgpu_vm_bo_relocated(&entry->base); 1410 } 1411 1412 /* 1413 * amdgpu_vm_update_directories - make sure that all directories are valid 1414 * 1415 * @adev: amdgpu_device pointer 1416 * @vm: requested vm 1417 * 1418 * Makes sure all directories are up to date. 1419 * 1420 * Returns: 1421 * 0 for success, error for failure. 1422 */ 1423 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1424 struct amdgpu_vm *vm) 1425 { 1426 struct amdgpu_pte_update_params params; 1427 struct amdgpu_job *job; 1428 unsigned ndw = 0; 1429 int r = 0; 1430 1431 if (list_empty(&vm->relocated)) 1432 return 0; 1433 1434 restart: 1435 memset(¶ms, 0, sizeof(params)); 1436 params.adev = adev; 1437 1438 if (vm->use_cpu_for_update) { 1439 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1440 if (unlikely(r)) 1441 return r; 1442 1443 params.func = amdgpu_vm_cpu_set_ptes; 1444 } else { 1445 ndw = 512 * 8; 1446 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1447 if (r) 1448 return r; 1449 1450 params.ib = &job->ibs[0]; 1451 params.func = amdgpu_vm_do_set_ptes; 1452 } 1453 1454 while (!list_empty(&vm->relocated)) { 1455 struct amdgpu_vm_pt *pt, *entry; 1456 1457 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1458 base.vm_status); 1459 amdgpu_vm_bo_idle(&entry->base); 1460 1461 pt = amdgpu_vm_pt_parent(entry); 1462 if (!pt) 1463 continue; 1464 1465 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1466 1467 if (!vm->use_cpu_for_update && 1468 (ndw - params.ib->length_dw) < 32) 1469 break; 1470 } 1471 1472 if (vm->use_cpu_for_update) { 1473 /* Flush HDP */ 1474 mb(); 1475 amdgpu_asic_flush_hdp(adev, NULL); 1476 } else if (params.ib->length_dw == 0) { 1477 amdgpu_job_free(job); 1478 } else { 1479 struct amdgpu_bo *root = vm->root.base.bo; 1480 struct amdgpu_ring *ring; 1481 struct dma_fence *fence; 1482 1483 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1484 sched); 1485 1486 amdgpu_ring_pad_ib(ring, params.ib); 1487 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1488 AMDGPU_FENCE_OWNER_VM, false); 1489 WARN_ON(params.ib->length_dw > ndw); 1490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1491 &fence); 1492 if (r) 1493 goto error; 1494 1495 amdgpu_bo_fence(root, fence, true); 1496 dma_fence_put(vm->last_update); 1497 vm->last_update = fence; 1498 } 1499 1500 if (!list_empty(&vm->relocated)) 1501 goto restart; 1502 1503 return 0; 1504 1505 error: 1506 amdgpu_vm_invalidate_pds(adev, vm); 1507 amdgpu_job_free(job); 1508 return r; 1509 } 1510 1511 /** 1512 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1513 * 1514 * Make sure to set the right flags for the PTEs at the desired level. 1515 */ 1516 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1517 struct amdgpu_bo *bo, unsigned level, 1518 uint64_t pe, uint64_t addr, 1519 unsigned count, uint32_t incr, 1520 uint64_t flags) 1521 1522 { 1523 if (level != AMDGPU_VM_PTB) { 1524 flags |= AMDGPU_PDE_PTE; 1525 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1526 } 1527 1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1529 } 1530 1531 /** 1532 * amdgpu_vm_fragment - get fragment for PTEs 1533 * 1534 * @params: see amdgpu_pte_update_params definition 1535 * @start: first PTE to handle 1536 * @end: last PTE to handle 1537 * @flags: hw mapping flags 1538 * @frag: resulting fragment size 1539 * @frag_end: end of this fragment 1540 * 1541 * Returns the first possible fragment for the start and end address. 1542 */ 1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1544 uint64_t start, uint64_t end, uint64_t flags, 1545 unsigned int *frag, uint64_t *frag_end) 1546 { 1547 /** 1548 * The MC L1 TLB supports variable sized pages, based on a fragment 1549 * field in the PTE. When this field is set to a non-zero value, page 1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1551 * flags are considered valid for all PTEs within the fragment range 1552 * and corresponding mappings are assumed to be physically contiguous. 1553 * 1554 * The L1 TLB can store a single PTE for the whole fragment, 1555 * significantly increasing the space available for translation 1556 * caching. This leads to large improvements in throughput when the 1557 * TLB is under pressure. 1558 * 1559 * The L2 TLB distributes small and large fragments into two 1560 * asymmetric partitions. The large fragment cache is significantly 1561 * larger. Thus, we try to use large fragments wherever possible. 1562 * Userspace can support this by aligning virtual base address and 1563 * allocation size to the fragment size. 1564 * 1565 * Starting with Vega10 the fragment size only controls the L1. The L2 1566 * is now directly feed with small/huge/giant pages from the walker. 1567 */ 1568 unsigned max_frag; 1569 1570 if (params->adev->asic_type < CHIP_VEGA10) 1571 max_frag = params->adev->vm_manager.fragment_size; 1572 else 1573 max_frag = 31; 1574 1575 /* system pages are non continuously */ 1576 if (params->src) { 1577 *frag = 0; 1578 *frag_end = end; 1579 return; 1580 } 1581 1582 /* This intentionally wraps around if no bit is set */ 1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1584 if (*frag >= max_frag) { 1585 *frag = max_frag; 1586 *frag_end = end & ~((1ULL << max_frag) - 1); 1587 } else { 1588 *frag_end = start + (1 << *frag); 1589 } 1590 } 1591 1592 /** 1593 * amdgpu_vm_update_ptes - make sure that page tables are valid 1594 * 1595 * @params: see amdgpu_pte_update_params definition 1596 * @start: start of GPU address range 1597 * @end: end of GPU address range 1598 * @dst: destination address to map to, the next dst inside the function 1599 * @flags: mapping flags 1600 * 1601 * Update the page tables in the range @start - @end. 1602 * 1603 * Returns: 1604 * 0 for success, -EINVAL for failure. 1605 */ 1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1607 uint64_t start, uint64_t end, 1608 uint64_t dst, uint64_t flags) 1609 { 1610 struct amdgpu_device *adev = params->adev; 1611 struct amdgpu_vm_pt_cursor cursor; 1612 uint64_t frag_start = start, frag_end; 1613 unsigned int frag; 1614 1615 /* figure out the initial fragment */ 1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1617 1618 /* walk over the address space and update the PTs */ 1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1620 while (cursor.pfn < end) { 1621 struct amdgpu_bo *pt = cursor.entry->base.bo; 1622 unsigned shift, parent_shift, mask; 1623 uint64_t incr, entry_end, pe_start; 1624 1625 if (!pt) 1626 return -ENOENT; 1627 1628 /* The root level can't be a huge page */ 1629 if (cursor.level == adev->vm_manager.root_level) { 1630 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1631 return -ENOENT; 1632 continue; 1633 } 1634 1635 /* If it isn't already handled it can't be a huge page */ 1636 if (cursor.entry->huge) { 1637 /* Add the entry to the relocated list to update it. */ 1638 cursor.entry->huge = false; 1639 amdgpu_vm_bo_relocated(&cursor.entry->base); 1640 } 1641 1642 shift = amdgpu_vm_level_shift(adev, cursor.level); 1643 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1644 if (adev->asic_type < CHIP_VEGA10) { 1645 /* No huge page support before GMC v9 */ 1646 if (cursor.level != AMDGPU_VM_PTB) { 1647 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1648 return -ENOENT; 1649 continue; 1650 } 1651 } else if (frag < shift) { 1652 /* We can't use this level when the fragment size is 1653 * smaller than the address shift. Go to the next 1654 * child entry and try again. 1655 */ 1656 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1657 return -ENOENT; 1658 continue; 1659 } else if (frag >= parent_shift) { 1660 /* If the fragment size is even larger than the parent 1661 * shift we should go up one level and check it again. 1662 */ 1663 if (!amdgpu_vm_pt_ancestor(&cursor)) 1664 return -ENOENT; 1665 continue; 1666 } 1667 1668 /* Looks good so far, calculate parameters for the update */ 1669 incr = AMDGPU_GPU_PAGE_SIZE << shift; 1670 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1671 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1672 entry_end = (mask + 1) << shift; 1673 entry_end += cursor.pfn & ~(entry_end - 1); 1674 entry_end = min(entry_end, end); 1675 1676 do { 1677 uint64_t upd_end = min(entry_end, frag_end); 1678 unsigned nptes = (upd_end - frag_start) >> shift; 1679 1680 amdgpu_vm_update_huge(params, pt, cursor.level, 1681 pe_start, dst, nptes, incr, 1682 flags | AMDGPU_PTE_FRAG(frag)); 1683 1684 pe_start += nptes * 8; 1685 dst += nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1686 1687 frag_start = upd_end; 1688 if (frag_start >= frag_end) { 1689 /* figure out the next fragment */ 1690 amdgpu_vm_fragment(params, frag_start, end, 1691 flags, &frag, &frag_end); 1692 if (frag < shift) 1693 break; 1694 } 1695 } while (frag_start < entry_end); 1696 1697 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1698 /* Mark all child entries as huge */ 1699 while (cursor.pfn < frag_start) { 1700 cursor.entry->huge = true; 1701 amdgpu_vm_pt_next(adev, &cursor); 1702 } 1703 1704 } else if (frag >= shift) { 1705 /* or just move on to the next on the same level. */ 1706 amdgpu_vm_pt_next(adev, &cursor); 1707 } 1708 } 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1715 * 1716 * @adev: amdgpu_device pointer 1717 * @exclusive: fence we need to sync to 1718 * @pages_addr: DMA addresses to use for mapping 1719 * @vm: requested vm 1720 * @start: start of mapped range 1721 * @last: last mapped entry 1722 * @flags: flags for the entries 1723 * @addr: addr to set the area to 1724 * @fence: optional resulting fence 1725 * 1726 * Fill in the page table entries between @start and @last. 1727 * 1728 * Returns: 1729 * 0 for success, -EINVAL for failure. 1730 */ 1731 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1732 struct dma_fence *exclusive, 1733 dma_addr_t *pages_addr, 1734 struct amdgpu_vm *vm, 1735 uint64_t start, uint64_t last, 1736 uint64_t flags, uint64_t addr, 1737 struct dma_fence **fence) 1738 { 1739 struct amdgpu_ring *ring; 1740 void *owner = AMDGPU_FENCE_OWNER_VM; 1741 unsigned nptes, ncmds, ndw; 1742 struct amdgpu_job *job; 1743 struct amdgpu_pte_update_params params; 1744 struct dma_fence *f = NULL; 1745 int r; 1746 1747 memset(¶ms, 0, sizeof(params)); 1748 params.adev = adev; 1749 params.vm = vm; 1750 1751 /* sync to everything on unmapping */ 1752 if (!(flags & AMDGPU_PTE_VALID)) 1753 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1754 1755 if (vm->use_cpu_for_update) { 1756 /* params.src is used as flag to indicate system Memory */ 1757 if (pages_addr) 1758 params.src = ~0; 1759 1760 /* Wait for PT BOs to be free. PTs share the same resv. object 1761 * as the root PD BO 1762 */ 1763 r = amdgpu_vm_wait_pd(adev, vm, owner); 1764 if (unlikely(r)) 1765 return r; 1766 1767 params.func = amdgpu_vm_cpu_set_ptes; 1768 params.pages_addr = pages_addr; 1769 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1770 addr, flags); 1771 } 1772 1773 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1774 1775 nptes = last - start + 1; 1776 1777 /* 1778 * reserve space for two commands every (1 << BLOCK_SIZE) 1779 * entries or 2k dwords (whatever is smaller) 1780 * 1781 * The second command is for the shadow pagetables. 1782 */ 1783 if (vm->root.base.bo->shadow) 1784 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1785 else 1786 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1787 1788 /* padding, etc. */ 1789 ndw = 64; 1790 1791 if (pages_addr) { 1792 /* copy commands needed */ 1793 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1794 1795 /* and also PTEs */ 1796 ndw += nptes * 2; 1797 1798 params.func = amdgpu_vm_do_copy_ptes; 1799 1800 } else { 1801 /* set page commands needed */ 1802 ndw += ncmds * 10; 1803 1804 /* extra commands for begin/end fragments */ 1805 if (vm->root.base.bo->shadow) 1806 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1807 else 1808 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1809 1810 params.func = amdgpu_vm_do_set_ptes; 1811 } 1812 1813 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1814 if (r) 1815 return r; 1816 1817 params.ib = &job->ibs[0]; 1818 1819 if (pages_addr) { 1820 uint64_t *pte; 1821 unsigned i; 1822 1823 /* Put the PTEs at the end of the IB. */ 1824 i = ndw - nptes * 2; 1825 pte= (uint64_t *)&(job->ibs->ptr[i]); 1826 params.src = job->ibs->gpu_addr + i * 4; 1827 1828 for (i = 0; i < nptes; ++i) { 1829 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1830 AMDGPU_GPU_PAGE_SIZE); 1831 pte[i] |= flags; 1832 } 1833 addr = 0; 1834 } 1835 1836 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1837 if (r) 1838 goto error_free; 1839 1840 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1841 owner, false); 1842 if (r) 1843 goto error_free; 1844 1845 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1846 if (r) 1847 goto error_free; 1848 1849 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1850 if (r) 1851 goto error_free; 1852 1853 amdgpu_ring_pad_ib(ring, params.ib); 1854 WARN_ON(params.ib->length_dw > ndw); 1855 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1856 if (r) 1857 goto error_free; 1858 1859 amdgpu_bo_fence(vm->root.base.bo, f, true); 1860 dma_fence_put(*fence); 1861 *fence = f; 1862 return 0; 1863 1864 error_free: 1865 amdgpu_job_free(job); 1866 return r; 1867 } 1868 1869 /** 1870 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1871 * 1872 * @adev: amdgpu_device pointer 1873 * @exclusive: fence we need to sync to 1874 * @pages_addr: DMA addresses to use for mapping 1875 * @vm: requested vm 1876 * @mapping: mapped range and flags to use for the update 1877 * @flags: HW flags for the mapping 1878 * @nodes: array of drm_mm_nodes with the MC addresses 1879 * @fence: optional resulting fence 1880 * 1881 * Split the mapping into smaller chunks so that each update fits 1882 * into a SDMA IB. 1883 * 1884 * Returns: 1885 * 0 for success, -EINVAL for failure. 1886 */ 1887 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1888 struct dma_fence *exclusive, 1889 dma_addr_t *pages_addr, 1890 struct amdgpu_vm *vm, 1891 struct amdgpu_bo_va_mapping *mapping, 1892 uint64_t flags, 1893 struct drm_mm_node *nodes, 1894 struct dma_fence **fence) 1895 { 1896 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1897 uint64_t pfn, start = mapping->start; 1898 int r; 1899 1900 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1901 * but in case of something, we filter the flags in first place 1902 */ 1903 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1904 flags &= ~AMDGPU_PTE_READABLE; 1905 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1906 flags &= ~AMDGPU_PTE_WRITEABLE; 1907 1908 flags &= ~AMDGPU_PTE_EXECUTABLE; 1909 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1910 1911 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1912 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1913 1914 if ((mapping->flags & AMDGPU_PTE_PRT) && 1915 (adev->asic_type >= CHIP_VEGA10)) { 1916 flags |= AMDGPU_PTE_PRT; 1917 flags &= ~AMDGPU_PTE_VALID; 1918 } 1919 1920 trace_amdgpu_vm_bo_update(mapping); 1921 1922 pfn = mapping->offset >> PAGE_SHIFT; 1923 if (nodes) { 1924 while (pfn >= nodes->size) { 1925 pfn -= nodes->size; 1926 ++nodes; 1927 } 1928 } 1929 1930 do { 1931 dma_addr_t *dma_addr = NULL; 1932 uint64_t max_entries; 1933 uint64_t addr, last; 1934 1935 if (nodes) { 1936 addr = nodes->start << PAGE_SHIFT; 1937 max_entries = (nodes->size - pfn) * 1938 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1939 } else { 1940 addr = 0; 1941 max_entries = S64_MAX; 1942 } 1943 1944 if (pages_addr) { 1945 uint64_t count; 1946 1947 max_entries = min(max_entries, 16ull * 1024ull); 1948 for (count = 1; 1949 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1950 ++count) { 1951 uint64_t idx = pfn + count; 1952 1953 if (pages_addr[idx] != 1954 (pages_addr[idx - 1] + PAGE_SIZE)) 1955 break; 1956 } 1957 1958 if (count < min_linear_pages) { 1959 addr = pfn << PAGE_SHIFT; 1960 dma_addr = pages_addr; 1961 } else { 1962 addr = pages_addr[pfn]; 1963 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1964 } 1965 1966 } else if (flags & AMDGPU_PTE_VALID) { 1967 addr += adev->vm_manager.vram_base_offset; 1968 addr += pfn << PAGE_SHIFT; 1969 } 1970 1971 last = min((uint64_t)mapping->last, start + max_entries - 1); 1972 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1973 start, last, flags, addr, 1974 fence); 1975 if (r) 1976 return r; 1977 1978 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1979 if (nodes && nodes->size == pfn) { 1980 pfn = 0; 1981 ++nodes; 1982 } 1983 start = last + 1; 1984 1985 } while (unlikely(start != mapping->last + 1)); 1986 1987 return 0; 1988 } 1989 1990 /** 1991 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1992 * 1993 * @adev: amdgpu_device pointer 1994 * @bo_va: requested BO and VM object 1995 * @clear: if true clear the entries 1996 * 1997 * Fill in the page table entries for @bo_va. 1998 * 1999 * Returns: 2000 * 0 for success, -EINVAL for failure. 2001 */ 2002 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2003 struct amdgpu_bo_va *bo_va, 2004 bool clear) 2005 { 2006 struct amdgpu_bo *bo = bo_va->base.bo; 2007 struct amdgpu_vm *vm = bo_va->base.vm; 2008 struct amdgpu_bo_va_mapping *mapping; 2009 dma_addr_t *pages_addr = NULL; 2010 struct ttm_mem_reg *mem; 2011 struct drm_mm_node *nodes; 2012 struct dma_fence *exclusive, **last_update; 2013 uint64_t flags; 2014 int r; 2015 2016 if (clear || !bo) { 2017 mem = NULL; 2018 nodes = NULL; 2019 exclusive = NULL; 2020 } else { 2021 struct ttm_dma_tt *ttm; 2022 2023 mem = &bo->tbo.mem; 2024 nodes = mem->mm_node; 2025 if (mem->mem_type == TTM_PL_TT) { 2026 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2027 pages_addr = ttm->dma_address; 2028 } 2029 exclusive = reservation_object_get_excl(bo->tbo.resv); 2030 } 2031 2032 if (bo) 2033 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2034 else 2035 flags = 0x0; 2036 2037 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2038 last_update = &vm->last_update; 2039 else 2040 last_update = &bo_va->last_pt_update; 2041 2042 if (!clear && bo_va->base.moved) { 2043 bo_va->base.moved = false; 2044 list_splice_init(&bo_va->valids, &bo_va->invalids); 2045 2046 } else if (bo_va->cleared != clear) { 2047 list_splice_init(&bo_va->valids, &bo_va->invalids); 2048 } 2049 2050 list_for_each_entry(mapping, &bo_va->invalids, list) { 2051 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2052 mapping, flags, nodes, 2053 last_update); 2054 if (r) 2055 return r; 2056 } 2057 2058 if (vm->use_cpu_for_update) { 2059 /* Flush HDP */ 2060 mb(); 2061 amdgpu_asic_flush_hdp(adev, NULL); 2062 } 2063 2064 /* If the BO is not in its preferred location add it back to 2065 * the evicted list so that it gets validated again on the 2066 * next command submission. 2067 */ 2068 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2069 uint32_t mem_type = bo->tbo.mem.mem_type; 2070 2071 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2072 amdgpu_vm_bo_evicted(&bo_va->base); 2073 else 2074 amdgpu_vm_bo_idle(&bo_va->base); 2075 } else { 2076 amdgpu_vm_bo_done(&bo_va->base); 2077 } 2078 2079 list_splice_init(&bo_va->invalids, &bo_va->valids); 2080 bo_va->cleared = clear; 2081 2082 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2083 list_for_each_entry(mapping, &bo_va->valids, list) 2084 trace_amdgpu_vm_bo_mapping(mapping); 2085 } 2086 2087 return 0; 2088 } 2089 2090 /** 2091 * amdgpu_vm_update_prt_state - update the global PRT state 2092 * 2093 * @adev: amdgpu_device pointer 2094 */ 2095 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2096 { 2097 unsigned long flags; 2098 bool enable; 2099 2100 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2101 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2102 adev->gmc.gmc_funcs->set_prt(adev, enable); 2103 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2104 } 2105 2106 /** 2107 * amdgpu_vm_prt_get - add a PRT user 2108 * 2109 * @adev: amdgpu_device pointer 2110 */ 2111 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2112 { 2113 if (!adev->gmc.gmc_funcs->set_prt) 2114 return; 2115 2116 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2117 amdgpu_vm_update_prt_state(adev); 2118 } 2119 2120 /** 2121 * amdgpu_vm_prt_put - drop a PRT user 2122 * 2123 * @adev: amdgpu_device pointer 2124 */ 2125 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2126 { 2127 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2128 amdgpu_vm_update_prt_state(adev); 2129 } 2130 2131 /** 2132 * amdgpu_vm_prt_cb - callback for updating the PRT status 2133 * 2134 * @fence: fence for the callback 2135 * @_cb: the callback function 2136 */ 2137 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2138 { 2139 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2140 2141 amdgpu_vm_prt_put(cb->adev); 2142 kfree(cb); 2143 } 2144 2145 /** 2146 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2147 * 2148 * @adev: amdgpu_device pointer 2149 * @fence: fence for the callback 2150 */ 2151 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2152 struct dma_fence *fence) 2153 { 2154 struct amdgpu_prt_cb *cb; 2155 2156 if (!adev->gmc.gmc_funcs->set_prt) 2157 return; 2158 2159 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2160 if (!cb) { 2161 /* Last resort when we are OOM */ 2162 if (fence) 2163 dma_fence_wait(fence, false); 2164 2165 amdgpu_vm_prt_put(adev); 2166 } else { 2167 cb->adev = adev; 2168 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2169 amdgpu_vm_prt_cb)) 2170 amdgpu_vm_prt_cb(fence, &cb->cb); 2171 } 2172 } 2173 2174 /** 2175 * amdgpu_vm_free_mapping - free a mapping 2176 * 2177 * @adev: amdgpu_device pointer 2178 * @vm: requested vm 2179 * @mapping: mapping to be freed 2180 * @fence: fence of the unmap operation 2181 * 2182 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2183 */ 2184 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2185 struct amdgpu_vm *vm, 2186 struct amdgpu_bo_va_mapping *mapping, 2187 struct dma_fence *fence) 2188 { 2189 if (mapping->flags & AMDGPU_PTE_PRT) 2190 amdgpu_vm_add_prt_cb(adev, fence); 2191 kfree(mapping); 2192 } 2193 2194 /** 2195 * amdgpu_vm_prt_fini - finish all prt mappings 2196 * 2197 * @adev: amdgpu_device pointer 2198 * @vm: requested vm 2199 * 2200 * Register a cleanup callback to disable PRT support after VM dies. 2201 */ 2202 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2203 { 2204 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2205 struct dma_fence *excl, **shared; 2206 unsigned i, shared_count; 2207 int r; 2208 2209 r = reservation_object_get_fences_rcu(resv, &excl, 2210 &shared_count, &shared); 2211 if (r) { 2212 /* Not enough memory to grab the fence list, as last resort 2213 * block for all the fences to complete. 2214 */ 2215 reservation_object_wait_timeout_rcu(resv, true, false, 2216 MAX_SCHEDULE_TIMEOUT); 2217 return; 2218 } 2219 2220 /* Add a callback for each fence in the reservation object */ 2221 amdgpu_vm_prt_get(adev); 2222 amdgpu_vm_add_prt_cb(adev, excl); 2223 2224 for (i = 0; i < shared_count; ++i) { 2225 amdgpu_vm_prt_get(adev); 2226 amdgpu_vm_add_prt_cb(adev, shared[i]); 2227 } 2228 2229 kfree(shared); 2230 } 2231 2232 /** 2233 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2234 * 2235 * @adev: amdgpu_device pointer 2236 * @vm: requested vm 2237 * @fence: optional resulting fence (unchanged if no work needed to be done 2238 * or if an error occurred) 2239 * 2240 * Make sure all freed BOs are cleared in the PT. 2241 * PTs have to be reserved and mutex must be locked! 2242 * 2243 * Returns: 2244 * 0 for success. 2245 * 2246 */ 2247 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2248 struct amdgpu_vm *vm, 2249 struct dma_fence **fence) 2250 { 2251 struct amdgpu_bo_va_mapping *mapping; 2252 uint64_t init_pte_value = 0; 2253 struct dma_fence *f = NULL; 2254 int r; 2255 2256 while (!list_empty(&vm->freed)) { 2257 mapping = list_first_entry(&vm->freed, 2258 struct amdgpu_bo_va_mapping, list); 2259 list_del(&mapping->list); 2260 2261 if (vm->pte_support_ats && 2262 mapping->start < AMDGPU_GMC_HOLE_START) 2263 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2264 2265 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2266 mapping->start, mapping->last, 2267 init_pte_value, 0, &f); 2268 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2269 if (r) { 2270 dma_fence_put(f); 2271 return r; 2272 } 2273 } 2274 2275 if (fence && f) { 2276 dma_fence_put(*fence); 2277 *fence = f; 2278 } else { 2279 dma_fence_put(f); 2280 } 2281 2282 return 0; 2283 2284 } 2285 2286 /** 2287 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2288 * 2289 * @adev: amdgpu_device pointer 2290 * @vm: requested vm 2291 * 2292 * Make sure all BOs which are moved are updated in the PTs. 2293 * 2294 * Returns: 2295 * 0 for success. 2296 * 2297 * PTs have to be reserved! 2298 */ 2299 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2300 struct amdgpu_vm *vm) 2301 { 2302 struct amdgpu_bo_va *bo_va, *tmp; 2303 struct reservation_object *resv; 2304 bool clear; 2305 int r; 2306 2307 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2308 /* Per VM BOs never need to bo cleared in the page tables */ 2309 r = amdgpu_vm_bo_update(adev, bo_va, false); 2310 if (r) 2311 return r; 2312 } 2313 2314 spin_lock(&vm->invalidated_lock); 2315 while (!list_empty(&vm->invalidated)) { 2316 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2317 base.vm_status); 2318 resv = bo_va->base.bo->tbo.resv; 2319 spin_unlock(&vm->invalidated_lock); 2320 2321 /* Try to reserve the BO to avoid clearing its ptes */ 2322 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2323 clear = false; 2324 /* Somebody else is using the BO right now */ 2325 else 2326 clear = true; 2327 2328 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2329 if (r) 2330 return r; 2331 2332 if (!clear) 2333 reservation_object_unlock(resv); 2334 spin_lock(&vm->invalidated_lock); 2335 } 2336 spin_unlock(&vm->invalidated_lock); 2337 2338 return 0; 2339 } 2340 2341 /** 2342 * amdgpu_vm_bo_add - add a bo to a specific vm 2343 * 2344 * @adev: amdgpu_device pointer 2345 * @vm: requested vm 2346 * @bo: amdgpu buffer object 2347 * 2348 * Add @bo into the requested vm. 2349 * Add @bo to the list of bos associated with the vm 2350 * 2351 * Returns: 2352 * Newly added bo_va or NULL for failure 2353 * 2354 * Object has to be reserved! 2355 */ 2356 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2357 struct amdgpu_vm *vm, 2358 struct amdgpu_bo *bo) 2359 { 2360 struct amdgpu_bo_va *bo_va; 2361 2362 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2363 if (bo_va == NULL) { 2364 return NULL; 2365 } 2366 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2367 2368 bo_va->ref_count = 1; 2369 INIT_LIST_HEAD(&bo_va->valids); 2370 INIT_LIST_HEAD(&bo_va->invalids); 2371 2372 return bo_va; 2373 } 2374 2375 2376 /** 2377 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2378 * 2379 * @adev: amdgpu_device pointer 2380 * @bo_va: bo_va to store the address 2381 * @mapping: the mapping to insert 2382 * 2383 * Insert a new mapping into all structures. 2384 */ 2385 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2386 struct amdgpu_bo_va *bo_va, 2387 struct amdgpu_bo_va_mapping *mapping) 2388 { 2389 struct amdgpu_vm *vm = bo_va->base.vm; 2390 struct amdgpu_bo *bo = bo_va->base.bo; 2391 2392 mapping->bo_va = bo_va; 2393 list_add(&mapping->list, &bo_va->invalids); 2394 amdgpu_vm_it_insert(mapping, &vm->va); 2395 2396 if (mapping->flags & AMDGPU_PTE_PRT) 2397 amdgpu_vm_prt_get(adev); 2398 2399 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2400 !bo_va->base.moved) { 2401 list_move(&bo_va->base.vm_status, &vm->moved); 2402 } 2403 trace_amdgpu_vm_bo_map(bo_va, mapping); 2404 } 2405 2406 /** 2407 * amdgpu_vm_bo_map - map bo inside a vm 2408 * 2409 * @adev: amdgpu_device pointer 2410 * @bo_va: bo_va to store the address 2411 * @saddr: where to map the BO 2412 * @offset: requested offset in the BO 2413 * @size: BO size in bytes 2414 * @flags: attributes of pages (read/write/valid/etc.) 2415 * 2416 * Add a mapping of the BO at the specefied addr into the VM. 2417 * 2418 * Returns: 2419 * 0 for success, error for failure. 2420 * 2421 * Object has to be reserved and unreserved outside! 2422 */ 2423 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2424 struct amdgpu_bo_va *bo_va, 2425 uint64_t saddr, uint64_t offset, 2426 uint64_t size, uint64_t flags) 2427 { 2428 struct amdgpu_bo_va_mapping *mapping, *tmp; 2429 struct amdgpu_bo *bo = bo_va->base.bo; 2430 struct amdgpu_vm *vm = bo_va->base.vm; 2431 uint64_t eaddr; 2432 2433 /* validate the parameters */ 2434 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2435 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2436 return -EINVAL; 2437 2438 /* make sure object fit at this offset */ 2439 eaddr = saddr + size - 1; 2440 if (saddr >= eaddr || 2441 (bo && offset + size > amdgpu_bo_size(bo))) 2442 return -EINVAL; 2443 2444 saddr /= AMDGPU_GPU_PAGE_SIZE; 2445 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2446 2447 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2448 if (tmp) { 2449 /* bo and tmp overlap, invalid addr */ 2450 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2451 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2452 tmp->start, tmp->last + 1); 2453 return -EINVAL; 2454 } 2455 2456 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2457 if (!mapping) 2458 return -ENOMEM; 2459 2460 mapping->start = saddr; 2461 mapping->last = eaddr; 2462 mapping->offset = offset; 2463 mapping->flags = flags; 2464 2465 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2466 2467 return 0; 2468 } 2469 2470 /** 2471 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2472 * 2473 * @adev: amdgpu_device pointer 2474 * @bo_va: bo_va to store the address 2475 * @saddr: where to map the BO 2476 * @offset: requested offset in the BO 2477 * @size: BO size in bytes 2478 * @flags: attributes of pages (read/write/valid/etc.) 2479 * 2480 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2481 * mappings as we do so. 2482 * 2483 * Returns: 2484 * 0 for success, error for failure. 2485 * 2486 * Object has to be reserved and unreserved outside! 2487 */ 2488 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2489 struct amdgpu_bo_va *bo_va, 2490 uint64_t saddr, uint64_t offset, 2491 uint64_t size, uint64_t flags) 2492 { 2493 struct amdgpu_bo_va_mapping *mapping; 2494 struct amdgpu_bo *bo = bo_va->base.bo; 2495 uint64_t eaddr; 2496 int r; 2497 2498 /* validate the parameters */ 2499 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2500 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2501 return -EINVAL; 2502 2503 /* make sure object fit at this offset */ 2504 eaddr = saddr + size - 1; 2505 if (saddr >= eaddr || 2506 (bo && offset + size > amdgpu_bo_size(bo))) 2507 return -EINVAL; 2508 2509 /* Allocate all the needed memory */ 2510 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2511 if (!mapping) 2512 return -ENOMEM; 2513 2514 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2515 if (r) { 2516 kfree(mapping); 2517 return r; 2518 } 2519 2520 saddr /= AMDGPU_GPU_PAGE_SIZE; 2521 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2522 2523 mapping->start = saddr; 2524 mapping->last = eaddr; 2525 mapping->offset = offset; 2526 mapping->flags = flags; 2527 2528 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2529 2530 return 0; 2531 } 2532 2533 /** 2534 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2535 * 2536 * @adev: amdgpu_device pointer 2537 * @bo_va: bo_va to remove the address from 2538 * @saddr: where to the BO is mapped 2539 * 2540 * Remove a mapping of the BO at the specefied addr from the VM. 2541 * 2542 * Returns: 2543 * 0 for success, error for failure. 2544 * 2545 * Object has to be reserved and unreserved outside! 2546 */ 2547 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2548 struct amdgpu_bo_va *bo_va, 2549 uint64_t saddr) 2550 { 2551 struct amdgpu_bo_va_mapping *mapping; 2552 struct amdgpu_vm *vm = bo_va->base.vm; 2553 bool valid = true; 2554 2555 saddr /= AMDGPU_GPU_PAGE_SIZE; 2556 2557 list_for_each_entry(mapping, &bo_va->valids, list) { 2558 if (mapping->start == saddr) 2559 break; 2560 } 2561 2562 if (&mapping->list == &bo_va->valids) { 2563 valid = false; 2564 2565 list_for_each_entry(mapping, &bo_va->invalids, list) { 2566 if (mapping->start == saddr) 2567 break; 2568 } 2569 2570 if (&mapping->list == &bo_va->invalids) 2571 return -ENOENT; 2572 } 2573 2574 list_del(&mapping->list); 2575 amdgpu_vm_it_remove(mapping, &vm->va); 2576 mapping->bo_va = NULL; 2577 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2578 2579 if (valid) 2580 list_add(&mapping->list, &vm->freed); 2581 else 2582 amdgpu_vm_free_mapping(adev, vm, mapping, 2583 bo_va->last_pt_update); 2584 2585 return 0; 2586 } 2587 2588 /** 2589 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2590 * 2591 * @adev: amdgpu_device pointer 2592 * @vm: VM structure to use 2593 * @saddr: start of the range 2594 * @size: size of the range 2595 * 2596 * Remove all mappings in a range, split them as appropriate. 2597 * 2598 * Returns: 2599 * 0 for success, error for failure. 2600 */ 2601 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2602 struct amdgpu_vm *vm, 2603 uint64_t saddr, uint64_t size) 2604 { 2605 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2606 LIST_HEAD(removed); 2607 uint64_t eaddr; 2608 2609 eaddr = saddr + size - 1; 2610 saddr /= AMDGPU_GPU_PAGE_SIZE; 2611 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2612 2613 /* Allocate all the needed memory */ 2614 before = kzalloc(sizeof(*before), GFP_KERNEL); 2615 if (!before) 2616 return -ENOMEM; 2617 INIT_LIST_HEAD(&before->list); 2618 2619 after = kzalloc(sizeof(*after), GFP_KERNEL); 2620 if (!after) { 2621 kfree(before); 2622 return -ENOMEM; 2623 } 2624 INIT_LIST_HEAD(&after->list); 2625 2626 /* Now gather all removed mappings */ 2627 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2628 while (tmp) { 2629 /* Remember mapping split at the start */ 2630 if (tmp->start < saddr) { 2631 before->start = tmp->start; 2632 before->last = saddr - 1; 2633 before->offset = tmp->offset; 2634 before->flags = tmp->flags; 2635 before->bo_va = tmp->bo_va; 2636 list_add(&before->list, &tmp->bo_va->invalids); 2637 } 2638 2639 /* Remember mapping split at the end */ 2640 if (tmp->last > eaddr) { 2641 after->start = eaddr + 1; 2642 after->last = tmp->last; 2643 after->offset = tmp->offset; 2644 after->offset += after->start - tmp->start; 2645 after->flags = tmp->flags; 2646 after->bo_va = tmp->bo_va; 2647 list_add(&after->list, &tmp->bo_va->invalids); 2648 } 2649 2650 list_del(&tmp->list); 2651 list_add(&tmp->list, &removed); 2652 2653 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2654 } 2655 2656 /* And free them up */ 2657 list_for_each_entry_safe(tmp, next, &removed, list) { 2658 amdgpu_vm_it_remove(tmp, &vm->va); 2659 list_del(&tmp->list); 2660 2661 if (tmp->start < saddr) 2662 tmp->start = saddr; 2663 if (tmp->last > eaddr) 2664 tmp->last = eaddr; 2665 2666 tmp->bo_va = NULL; 2667 list_add(&tmp->list, &vm->freed); 2668 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2669 } 2670 2671 /* Insert partial mapping before the range */ 2672 if (!list_empty(&before->list)) { 2673 amdgpu_vm_it_insert(before, &vm->va); 2674 if (before->flags & AMDGPU_PTE_PRT) 2675 amdgpu_vm_prt_get(adev); 2676 } else { 2677 kfree(before); 2678 } 2679 2680 /* Insert partial mapping after the range */ 2681 if (!list_empty(&after->list)) { 2682 amdgpu_vm_it_insert(after, &vm->va); 2683 if (after->flags & AMDGPU_PTE_PRT) 2684 amdgpu_vm_prt_get(adev); 2685 } else { 2686 kfree(after); 2687 } 2688 2689 return 0; 2690 } 2691 2692 /** 2693 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2694 * 2695 * @vm: the requested VM 2696 * @addr: the address 2697 * 2698 * Find a mapping by it's address. 2699 * 2700 * Returns: 2701 * The amdgpu_bo_va_mapping matching for addr or NULL 2702 * 2703 */ 2704 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2705 uint64_t addr) 2706 { 2707 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2708 } 2709 2710 /** 2711 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2712 * 2713 * @vm: the requested vm 2714 * @ticket: CS ticket 2715 * 2716 * Trace all mappings of BOs reserved during a command submission. 2717 */ 2718 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2719 { 2720 struct amdgpu_bo_va_mapping *mapping; 2721 2722 if (!trace_amdgpu_vm_bo_cs_enabled()) 2723 return; 2724 2725 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2726 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2727 if (mapping->bo_va && mapping->bo_va->base.bo) { 2728 struct amdgpu_bo *bo; 2729 2730 bo = mapping->bo_va->base.bo; 2731 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2732 continue; 2733 } 2734 2735 trace_amdgpu_vm_bo_cs(mapping); 2736 } 2737 } 2738 2739 /** 2740 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2741 * 2742 * @adev: amdgpu_device pointer 2743 * @bo_va: requested bo_va 2744 * 2745 * Remove @bo_va->bo from the requested vm. 2746 * 2747 * Object have to be reserved! 2748 */ 2749 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2750 struct amdgpu_bo_va *bo_va) 2751 { 2752 struct amdgpu_bo_va_mapping *mapping, *next; 2753 struct amdgpu_bo *bo = bo_va->base.bo; 2754 struct amdgpu_vm *vm = bo_va->base.vm; 2755 struct amdgpu_vm_bo_base **base; 2756 2757 if (bo) { 2758 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2759 vm->bulk_moveable = false; 2760 2761 for (base = &bo_va->base.bo->vm_bo; *base; 2762 base = &(*base)->next) { 2763 if (*base != &bo_va->base) 2764 continue; 2765 2766 *base = bo_va->base.next; 2767 break; 2768 } 2769 } 2770 2771 spin_lock(&vm->invalidated_lock); 2772 list_del(&bo_va->base.vm_status); 2773 spin_unlock(&vm->invalidated_lock); 2774 2775 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2776 list_del(&mapping->list); 2777 amdgpu_vm_it_remove(mapping, &vm->va); 2778 mapping->bo_va = NULL; 2779 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2780 list_add(&mapping->list, &vm->freed); 2781 } 2782 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2783 list_del(&mapping->list); 2784 amdgpu_vm_it_remove(mapping, &vm->va); 2785 amdgpu_vm_free_mapping(adev, vm, mapping, 2786 bo_va->last_pt_update); 2787 } 2788 2789 dma_fence_put(bo_va->last_pt_update); 2790 kfree(bo_va); 2791 } 2792 2793 /** 2794 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2795 * 2796 * @adev: amdgpu_device pointer 2797 * @bo: amdgpu buffer object 2798 * @evicted: is the BO evicted 2799 * 2800 * Mark @bo as invalid. 2801 */ 2802 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2803 struct amdgpu_bo *bo, bool evicted) 2804 { 2805 struct amdgpu_vm_bo_base *bo_base; 2806 2807 /* shadow bo doesn't have bo base, its validation needs its parent */ 2808 if (bo->parent && bo->parent->shadow == bo) 2809 bo = bo->parent; 2810 2811 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2812 struct amdgpu_vm *vm = bo_base->vm; 2813 2814 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2815 amdgpu_vm_bo_evicted(bo_base); 2816 continue; 2817 } 2818 2819 if (bo_base->moved) 2820 continue; 2821 bo_base->moved = true; 2822 2823 if (bo->tbo.type == ttm_bo_type_kernel) 2824 amdgpu_vm_bo_relocated(bo_base); 2825 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2826 amdgpu_vm_bo_moved(bo_base); 2827 else 2828 amdgpu_vm_bo_invalidated(bo_base); 2829 } 2830 } 2831 2832 /** 2833 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2834 * 2835 * @vm_size: VM size 2836 * 2837 * Returns: 2838 * VM page table as power of two 2839 */ 2840 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2841 { 2842 /* Total bits covered by PD + PTs */ 2843 unsigned bits = ilog2(vm_size) + 18; 2844 2845 /* Make sure the PD is 4K in size up to 8GB address space. 2846 Above that split equal between PD and PTs */ 2847 if (vm_size <= 8) 2848 return (bits - 9); 2849 else 2850 return ((bits + 3) / 2); 2851 } 2852 2853 /** 2854 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2855 * 2856 * @adev: amdgpu_device pointer 2857 * @min_vm_size: the minimum vm size in GB if it's set auto 2858 * @fragment_size_default: Default PTE fragment size 2859 * @max_level: max VMPT level 2860 * @max_bits: max address space size in bits 2861 * 2862 */ 2863 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2864 uint32_t fragment_size_default, unsigned max_level, 2865 unsigned max_bits) 2866 { 2867 unsigned int max_size = 1 << (max_bits - 30); 2868 unsigned int vm_size; 2869 uint64_t tmp; 2870 2871 /* adjust vm size first */ 2872 if (amdgpu_vm_size != -1) { 2873 vm_size = amdgpu_vm_size; 2874 if (vm_size > max_size) { 2875 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2876 amdgpu_vm_size, max_size); 2877 vm_size = max_size; 2878 } 2879 } else { 2880 struct sysinfo si; 2881 unsigned int phys_ram_gb; 2882 2883 /* Optimal VM size depends on the amount of physical 2884 * RAM available. Underlying requirements and 2885 * assumptions: 2886 * 2887 * - Need to map system memory and VRAM from all GPUs 2888 * - VRAM from other GPUs not known here 2889 * - Assume VRAM <= system memory 2890 * - On GFX8 and older, VM space can be segmented for 2891 * different MTYPEs 2892 * - Need to allow room for fragmentation, guard pages etc. 2893 * 2894 * This adds up to a rough guess of system memory x3. 2895 * Round up to power of two to maximize the available 2896 * VM size with the given page table size. 2897 */ 2898 si_meminfo(&si); 2899 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2900 (1 << 30) - 1) >> 30; 2901 vm_size = roundup_pow_of_two( 2902 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2903 } 2904 2905 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2906 2907 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2908 if (amdgpu_vm_block_size != -1) 2909 tmp >>= amdgpu_vm_block_size - 9; 2910 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2911 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2912 switch (adev->vm_manager.num_level) { 2913 case 3: 2914 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2915 break; 2916 case 2: 2917 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2918 break; 2919 case 1: 2920 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2921 break; 2922 default: 2923 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2924 } 2925 /* block size depends on vm size and hw setup*/ 2926 if (amdgpu_vm_block_size != -1) 2927 adev->vm_manager.block_size = 2928 min((unsigned)amdgpu_vm_block_size, max_bits 2929 - AMDGPU_GPU_PAGE_SHIFT 2930 - 9 * adev->vm_manager.num_level); 2931 else if (adev->vm_manager.num_level > 1) 2932 adev->vm_manager.block_size = 9; 2933 else 2934 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2935 2936 if (amdgpu_vm_fragment_size == -1) 2937 adev->vm_manager.fragment_size = fragment_size_default; 2938 else 2939 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2940 2941 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2942 vm_size, adev->vm_manager.num_level + 1, 2943 adev->vm_manager.block_size, 2944 adev->vm_manager.fragment_size); 2945 } 2946 2947 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2948 { 2949 struct amdgpu_retryfault_hashtable *fault_hash; 2950 2951 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2952 if (!fault_hash) 2953 return fault_hash; 2954 2955 INIT_CHASH_TABLE(fault_hash->hash, 2956 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2957 spin_lock_init(&fault_hash->lock); 2958 fault_hash->count = 0; 2959 2960 return fault_hash; 2961 } 2962 2963 /** 2964 * amdgpu_vm_init - initialize a vm instance 2965 * 2966 * @adev: amdgpu_device pointer 2967 * @vm: requested vm 2968 * @vm_context: Indicates if it GFX or Compute context 2969 * @pasid: Process address space identifier 2970 * 2971 * Init @vm fields. 2972 * 2973 * Returns: 2974 * 0 for success, error for failure. 2975 */ 2976 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2977 int vm_context, unsigned int pasid) 2978 { 2979 struct amdgpu_bo_param bp; 2980 struct amdgpu_bo *root; 2981 int r, i; 2982 2983 vm->va = RB_ROOT_CACHED; 2984 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2985 vm->reserved_vmid[i] = NULL; 2986 INIT_LIST_HEAD(&vm->evicted); 2987 INIT_LIST_HEAD(&vm->relocated); 2988 INIT_LIST_HEAD(&vm->moved); 2989 INIT_LIST_HEAD(&vm->idle); 2990 INIT_LIST_HEAD(&vm->invalidated); 2991 spin_lock_init(&vm->invalidated_lock); 2992 INIT_LIST_HEAD(&vm->freed); 2993 2994 /* create scheduler entity for page table updates */ 2995 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2996 adev->vm_manager.vm_pte_num_rqs, NULL); 2997 if (r) 2998 return r; 2999 3000 vm->pte_support_ats = false; 3001 3002 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3003 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3004 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3005 3006 if (adev->asic_type == CHIP_RAVEN) 3007 vm->pte_support_ats = true; 3008 } else { 3009 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3010 AMDGPU_VM_USE_CPU_FOR_GFX); 3011 } 3012 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3013 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3014 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3015 "CPU update of VM recommended only for large BAR system\n"); 3016 vm->last_update = NULL; 3017 3018 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3019 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3020 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3021 r = amdgpu_bo_create(adev, &bp, &root); 3022 if (r) 3023 goto error_free_sched_entity; 3024 3025 r = amdgpu_bo_reserve(root, true); 3026 if (r) 3027 goto error_free_root; 3028 3029 r = amdgpu_vm_clear_bo(adev, vm, root, 3030 adev->vm_manager.root_level, 3031 vm->pte_support_ats); 3032 if (r) 3033 goto error_unreserve; 3034 3035 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3036 amdgpu_bo_unreserve(vm->root.base.bo); 3037 3038 if (pasid) { 3039 unsigned long flags; 3040 3041 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3042 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3043 GFP_ATOMIC); 3044 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3045 if (r < 0) 3046 goto error_free_root; 3047 3048 vm->pasid = pasid; 3049 } 3050 3051 vm->fault_hash = init_fault_hash(); 3052 if (!vm->fault_hash) { 3053 r = -ENOMEM; 3054 goto error_free_root; 3055 } 3056 3057 INIT_KFIFO(vm->faults); 3058 vm->fault_credit = 16; 3059 3060 return 0; 3061 3062 error_unreserve: 3063 amdgpu_bo_unreserve(vm->root.base.bo); 3064 3065 error_free_root: 3066 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3067 amdgpu_bo_unref(&vm->root.base.bo); 3068 vm->root.base.bo = NULL; 3069 3070 error_free_sched_entity: 3071 drm_sched_entity_destroy(&vm->entity); 3072 3073 return r; 3074 } 3075 3076 /** 3077 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3078 * 3079 * @adev: amdgpu_device pointer 3080 * @vm: requested vm 3081 * 3082 * This only works on GFX VMs that don't have any BOs added and no 3083 * page tables allocated yet. 3084 * 3085 * Changes the following VM parameters: 3086 * - use_cpu_for_update 3087 * - pte_supports_ats 3088 * - pasid (old PASID is released, because compute manages its own PASIDs) 3089 * 3090 * Reinitializes the page directory to reflect the changed ATS 3091 * setting. 3092 * 3093 * Returns: 3094 * 0 for success, -errno for errors. 3095 */ 3096 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3097 { 3098 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3099 int r; 3100 3101 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3102 if (r) 3103 return r; 3104 3105 /* Sanity checks */ 3106 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3107 r = -EINVAL; 3108 goto unreserve_bo; 3109 } 3110 3111 if (pasid) { 3112 unsigned long flags; 3113 3114 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3115 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3116 GFP_ATOMIC); 3117 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3118 3119 if (r == -ENOSPC) 3120 goto unreserve_bo; 3121 r = 0; 3122 } 3123 3124 /* Check if PD needs to be reinitialized and do it before 3125 * changing any other state, in case it fails. 3126 */ 3127 if (pte_support_ats != vm->pte_support_ats) { 3128 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3129 adev->vm_manager.root_level, 3130 pte_support_ats); 3131 if (r) 3132 goto free_idr; 3133 } 3134 3135 /* Update VM state */ 3136 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3137 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3138 vm->pte_support_ats = pte_support_ats; 3139 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3140 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3141 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3142 "CPU update of VM recommended only for large BAR system\n"); 3143 3144 if (vm->pasid) { 3145 unsigned long flags; 3146 3147 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3148 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3149 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3150 3151 /* Free the original amdgpu allocated pasid 3152 * Will be replaced with kfd allocated pasid 3153 */ 3154 amdgpu_pasid_free(vm->pasid); 3155 vm->pasid = 0; 3156 } 3157 3158 /* Free the shadow bo for compute VM */ 3159 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3160 3161 if (pasid) 3162 vm->pasid = pasid; 3163 3164 goto unreserve_bo; 3165 3166 free_idr: 3167 if (pasid) { 3168 unsigned long flags; 3169 3170 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3171 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3172 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3173 } 3174 unreserve_bo: 3175 amdgpu_bo_unreserve(vm->root.base.bo); 3176 return r; 3177 } 3178 3179 /** 3180 * amdgpu_vm_release_compute - release a compute vm 3181 * @adev: amdgpu_device pointer 3182 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3183 * 3184 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3185 * pasid from vm. Compute should stop use of vm after this call. 3186 */ 3187 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3188 { 3189 if (vm->pasid) { 3190 unsigned long flags; 3191 3192 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3193 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3194 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3195 } 3196 vm->pasid = 0; 3197 } 3198 3199 /** 3200 * amdgpu_vm_fini - tear down a vm instance 3201 * 3202 * @adev: amdgpu_device pointer 3203 * @vm: requested vm 3204 * 3205 * Tear down @vm. 3206 * Unbind the VM and remove all bos from the vm bo list 3207 */ 3208 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3209 { 3210 struct amdgpu_bo_va_mapping *mapping, *tmp; 3211 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3212 struct amdgpu_bo *root; 3213 u64 fault; 3214 int i, r; 3215 3216 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3217 3218 /* Clear pending page faults from IH when the VM is destroyed */ 3219 while (kfifo_get(&vm->faults, &fault)) 3220 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3221 3222 if (vm->pasid) { 3223 unsigned long flags; 3224 3225 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3226 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3227 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3228 } 3229 3230 kfree(vm->fault_hash); 3231 vm->fault_hash = NULL; 3232 3233 drm_sched_entity_destroy(&vm->entity); 3234 3235 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3236 dev_err(adev->dev, "still active bo inside vm\n"); 3237 } 3238 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3239 &vm->va.rb_root, rb) { 3240 /* Don't remove the mapping here, we don't want to trigger a 3241 * rebalance and the tree is about to be destroyed anyway. 3242 */ 3243 list_del(&mapping->list); 3244 kfree(mapping); 3245 } 3246 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3247 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3248 amdgpu_vm_prt_fini(adev, vm); 3249 prt_fini_needed = false; 3250 } 3251 3252 list_del(&mapping->list); 3253 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3254 } 3255 3256 root = amdgpu_bo_ref(vm->root.base.bo); 3257 r = amdgpu_bo_reserve(root, true); 3258 if (r) { 3259 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3260 } else { 3261 amdgpu_vm_free_pts(adev, vm); 3262 amdgpu_bo_unreserve(root); 3263 } 3264 amdgpu_bo_unref(&root); 3265 dma_fence_put(vm->last_update); 3266 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3267 amdgpu_vmid_free_reserved(adev, vm, i); 3268 } 3269 3270 /** 3271 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 3272 * 3273 * @adev: amdgpu_device pointer 3274 * @pasid: PASID do identify the VM 3275 * 3276 * This function is expected to be called in interrupt context. 3277 * 3278 * Returns: 3279 * True if there was fault credit, false otherwise 3280 */ 3281 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 3282 unsigned int pasid) 3283 { 3284 struct amdgpu_vm *vm; 3285 3286 spin_lock(&adev->vm_manager.pasid_lock); 3287 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3288 if (!vm) { 3289 /* VM not found, can't track fault credit */ 3290 spin_unlock(&adev->vm_manager.pasid_lock); 3291 return true; 3292 } 3293 3294 /* No lock needed. only accessed by IRQ handler */ 3295 if (!vm->fault_credit) { 3296 /* Too many faults in this VM */ 3297 spin_unlock(&adev->vm_manager.pasid_lock); 3298 return false; 3299 } 3300 3301 vm->fault_credit--; 3302 spin_unlock(&adev->vm_manager.pasid_lock); 3303 return true; 3304 } 3305 3306 /** 3307 * amdgpu_vm_manager_init - init the VM manager 3308 * 3309 * @adev: amdgpu_device pointer 3310 * 3311 * Initialize the VM manager structures 3312 */ 3313 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3314 { 3315 unsigned i; 3316 3317 amdgpu_vmid_mgr_init(adev); 3318 3319 adev->vm_manager.fence_context = 3320 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3321 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3322 adev->vm_manager.seqno[i] = 0; 3323 3324 spin_lock_init(&adev->vm_manager.prt_lock); 3325 atomic_set(&adev->vm_manager.num_prt_users, 0); 3326 3327 /* If not overridden by the user, by default, only in large BAR systems 3328 * Compute VM tables will be updated by CPU 3329 */ 3330 #ifdef CONFIG_X86_64 3331 if (amdgpu_vm_update_mode == -1) { 3332 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3333 adev->vm_manager.vm_update_mode = 3334 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3335 else 3336 adev->vm_manager.vm_update_mode = 0; 3337 } else 3338 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3339 #else 3340 adev->vm_manager.vm_update_mode = 0; 3341 #endif 3342 3343 idr_init(&adev->vm_manager.pasid_idr); 3344 spin_lock_init(&adev->vm_manager.pasid_lock); 3345 } 3346 3347 /** 3348 * amdgpu_vm_manager_fini - cleanup VM manager 3349 * 3350 * @adev: amdgpu_device pointer 3351 * 3352 * Cleanup the VM manager and free resources. 3353 */ 3354 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3355 { 3356 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3357 idr_destroy(&adev->vm_manager.pasid_idr); 3358 3359 amdgpu_vmid_mgr_fini(adev); 3360 } 3361 3362 /** 3363 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3364 * 3365 * @dev: drm device pointer 3366 * @data: drm_amdgpu_vm 3367 * @filp: drm file pointer 3368 * 3369 * Returns: 3370 * 0 for success, -errno for errors. 3371 */ 3372 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3373 { 3374 union drm_amdgpu_vm *args = data; 3375 struct amdgpu_device *adev = dev->dev_private; 3376 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3377 int r; 3378 3379 switch (args->in.op) { 3380 case AMDGPU_VM_OP_RESERVE_VMID: 3381 /* current, we only have requirement to reserve vmid from gfxhub */ 3382 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3383 if (r) 3384 return r; 3385 break; 3386 case AMDGPU_VM_OP_UNRESERVE_VMID: 3387 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3388 break; 3389 default: 3390 return -EINVAL; 3391 } 3392 3393 return 0; 3394 } 3395 3396 /** 3397 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3398 * 3399 * @adev: drm device pointer 3400 * @pasid: PASID identifier for VM 3401 * @task_info: task_info to fill. 3402 */ 3403 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3404 struct amdgpu_task_info *task_info) 3405 { 3406 struct amdgpu_vm *vm; 3407 3408 spin_lock(&adev->vm_manager.pasid_lock); 3409 3410 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3411 if (vm) 3412 *task_info = vm->task_info; 3413 3414 spin_unlock(&adev->vm_manager.pasid_lock); 3415 } 3416 3417 /** 3418 * amdgpu_vm_set_task_info - Sets VMs task info. 3419 * 3420 * @vm: vm for which to set the info 3421 */ 3422 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3423 { 3424 if (!vm->task_info.pid) { 3425 vm->task_info.pid = current->pid; 3426 get_task_comm(vm->task_info.task_name, current); 3427 3428 if (current->group_leader->mm == current->mm) { 3429 vm->task_info.tgid = current->group_leader->pid; 3430 get_task_comm(vm->task_info.process_name, current->group_leader); 3431 } 3432 } 3433 } 3434 3435 /** 3436 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3437 * 3438 * @fault_hash: fault hash table 3439 * @key: 64-bit encoding of PASID and address 3440 * 3441 * This should be called when a retry page fault interrupt is 3442 * received. If this is a new page fault, it will be added to a hash 3443 * table. The return value indicates whether this is a new fault, or 3444 * a fault that was already known and is already being handled. 3445 * 3446 * If there are too many pending page faults, this will fail. Retry 3447 * interrupts should be ignored in this case until there is enough 3448 * free space. 3449 * 3450 * Returns 0 if the fault was added, 1 if the fault was already known, 3451 * -ENOSPC if there are too many pending faults. 3452 */ 3453 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3454 { 3455 unsigned long flags; 3456 int r = -ENOSPC; 3457 3458 if (WARN_ON_ONCE(!fault_hash)) 3459 /* Should be allocated in amdgpu_vm_init 3460 */ 3461 return r; 3462 3463 spin_lock_irqsave(&fault_hash->lock, flags); 3464 3465 /* Only let the hash table fill up to 50% for best performance */ 3466 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3467 goto unlock_out; 3468 3469 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3470 if (!r) 3471 fault_hash->count++; 3472 3473 /* chash_table_copy_in should never fail unless we're losing count */ 3474 WARN_ON_ONCE(r < 0); 3475 3476 unlock_out: 3477 spin_unlock_irqrestore(&fault_hash->lock, flags); 3478 return r; 3479 } 3480 3481 /** 3482 * amdgpu_vm_clear_fault - Remove a page fault record 3483 * 3484 * @fault_hash: fault hash table 3485 * @key: 64-bit encoding of PASID and address 3486 * 3487 * This should be called when a page fault has been handled. Any 3488 * future interrupt with this key will be processed as a new 3489 * page fault. 3490 */ 3491 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3492 { 3493 unsigned long flags; 3494 int r; 3495 3496 if (!fault_hash) 3497 return; 3498 3499 spin_lock_irqsave(&fault_hash->lock, flags); 3500 3501 r = chash_table_remove(&fault_hash->hash, key, NULL); 3502 if (!WARN_ON_ONCE(r < 0)) { 3503 fault_hash->count--; 3504 WARN_ON_ONCE(fault_hash->count < 0); 3505 } 3506 3507 spin_unlock_irqrestore(&fault_hash->lock, flags); 3508 } 3509