1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 36 /* 37 * GPUVM 38 * GPUVM is similar to the legacy gart on older asics, however 39 * rather than there being a single global gart table 40 * for the entire GPU, there are multiple VM page tables active 41 * at any given time. The VM page tables can contain a mix 42 * vram pages and system memory pages and system memory pages 43 * can be mapped as snooped (cached system pages) or unsnooped 44 * (uncached system pages). 45 * Each VM has an ID associated with it and there is a page table 46 * associated with each VMID. When execting a command buffer, 47 * the kernel tells the the ring what VMID to use for that command 48 * buffer. VMIDs are allocated dynamically as commands are submitted. 49 * The userspace drivers maintain their own address space and the kernel 50 * sets up their pages tables accordingly when they submit their 51 * command buffers and a VMID is assigned. 52 * Cayman/Trinity support up to 8 active VMs at any given time; 53 * SI supports 16. 54 */ 55 56 #define START(node) ((node)->start) 57 #define LAST(node) ((node)->last) 58 59 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 60 START, LAST, static, amdgpu_vm_it) 61 62 #undef START 63 #undef LAST 64 65 /* Local structure. Encapsulate some VM table update parameters to reduce 66 * the number of function parameters 67 */ 68 struct amdgpu_pte_update_params { 69 /* amdgpu device we do this update for */ 70 struct amdgpu_device *adev; 71 /* optional amdgpu_vm we do this update for */ 72 struct amdgpu_vm *vm; 73 /* address where to copy page table entries from */ 74 uint64_t src; 75 /* indirect buffer to fill with commands */ 76 struct amdgpu_ib *ib; 77 /* Function which actually does the update */ 78 void (*func)(struct amdgpu_pte_update_params *params, 79 struct amdgpu_bo *bo, uint64_t pe, 80 uint64_t addr, unsigned count, uint32_t incr, 81 uint64_t flags); 82 /* The next two are used during VM update by CPU 83 * DMA addresses to use for mapping 84 * Kernel pointer of PD/PT BO that needs to be updated 85 */ 86 dma_addr_t *pages_addr; 87 void *kptr; 88 }; 89 90 /* Helper to disable partial resident texture feature from a fence callback */ 91 struct amdgpu_prt_cb { 92 struct amdgpu_device *adev; 93 struct dma_fence_cb cb; 94 }; 95 96 /** 97 * amdgpu_vm_level_shift - return the addr shift for each level 98 * 99 * @adev: amdgpu_device pointer 100 * 101 * Returns the number of bits the pfn needs to be right shifted for a level. 102 */ 103 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 104 unsigned level) 105 { 106 unsigned shift = 0xff; 107 108 switch (level) { 109 case AMDGPU_VM_PDB2: 110 case AMDGPU_VM_PDB1: 111 case AMDGPU_VM_PDB0: 112 shift = 9 * (AMDGPU_VM_PDB0 - level) + 113 adev->vm_manager.block_size; 114 break; 115 case AMDGPU_VM_PTB: 116 shift = 0; 117 break; 118 default: 119 dev_err(adev->dev, "the level%d isn't supported.\n", level); 120 } 121 122 return shift; 123 } 124 125 /** 126 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 127 * 128 * @adev: amdgpu_device pointer 129 * 130 * Calculate the number of entries in a page directory or page table. 131 */ 132 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 133 unsigned level) 134 { 135 unsigned shift = amdgpu_vm_level_shift(adev, 136 adev->vm_manager.root_level); 137 138 if (level == adev->vm_manager.root_level) 139 /* For the root directory */ 140 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 141 else if (level != AMDGPU_VM_PTB) 142 /* Everything in between */ 143 return 512; 144 else 145 /* For the page tables on the leaves */ 146 return AMDGPU_VM_PTE_COUNT(adev); 147 } 148 149 /** 150 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 151 * 152 * @adev: amdgpu_device pointer 153 * 154 * Calculate the size of the BO for a page directory or page table in bytes. 155 */ 156 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 157 { 158 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 159 } 160 161 /** 162 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 163 * 164 * @vm: vm providing the BOs 165 * @validated: head of validation list 166 * @entry: entry to add 167 * 168 * Add the page directory to the list of BOs to 169 * validate for command submission. 170 */ 171 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 172 struct list_head *validated, 173 struct amdgpu_bo_list_entry *entry) 174 { 175 entry->robj = vm->root.base.bo; 176 entry->priority = 0; 177 entry->tv.bo = &entry->robj->tbo; 178 entry->tv.shared = true; 179 entry->user_pages = NULL; 180 list_add(&entry->tv.head, validated); 181 } 182 183 /** 184 * amdgpu_vm_validate_pt_bos - validate the page table BOs 185 * 186 * @adev: amdgpu device pointer 187 * @vm: vm providing the BOs 188 * @validate: callback to do the validation 189 * @param: parameter for the validation callback 190 * 191 * Validate the page table BOs on command submission if neccessary. 192 */ 193 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 194 int (*validate)(void *p, struct amdgpu_bo *bo), 195 void *param) 196 { 197 struct ttm_bo_global *glob = adev->mman.bdev.glob; 198 int r; 199 200 spin_lock(&vm->status_lock); 201 while (!list_empty(&vm->evicted)) { 202 struct amdgpu_vm_bo_base *bo_base; 203 struct amdgpu_bo *bo; 204 205 bo_base = list_first_entry(&vm->evicted, 206 struct amdgpu_vm_bo_base, 207 vm_status); 208 spin_unlock(&vm->status_lock); 209 210 bo = bo_base->bo; 211 BUG_ON(!bo); 212 if (bo->parent) { 213 r = validate(param, bo); 214 if (r) 215 return r; 216 217 spin_lock(&glob->lru_lock); 218 ttm_bo_move_to_lru_tail(&bo->tbo); 219 if (bo->shadow) 220 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 221 spin_unlock(&glob->lru_lock); 222 } 223 224 if (bo->tbo.type == ttm_bo_type_kernel && 225 vm->use_cpu_for_update) { 226 r = amdgpu_bo_kmap(bo, NULL); 227 if (r) 228 return r; 229 } 230 231 spin_lock(&vm->status_lock); 232 if (bo->tbo.type != ttm_bo_type_kernel) 233 list_move(&bo_base->vm_status, &vm->moved); 234 else 235 list_move(&bo_base->vm_status, &vm->relocated); 236 } 237 spin_unlock(&vm->status_lock); 238 239 return 0; 240 } 241 242 /** 243 * amdgpu_vm_ready - check VM is ready for updates 244 * 245 * @vm: VM to check 246 * 247 * Check if all VM PDs/PTs are ready for updates 248 */ 249 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 250 { 251 bool ready; 252 253 spin_lock(&vm->status_lock); 254 ready = list_empty(&vm->evicted); 255 spin_unlock(&vm->status_lock); 256 257 return ready; 258 } 259 260 /** 261 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 262 * 263 * @adev: amdgpu_device pointer 264 * @vm: requested vm 265 * @saddr: start of the address range 266 * @eaddr: end of the address range 267 * 268 * Make sure the page directories and page tables are allocated 269 */ 270 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 271 struct amdgpu_vm *vm, 272 struct amdgpu_vm_pt *parent, 273 uint64_t saddr, uint64_t eaddr, 274 unsigned level) 275 { 276 unsigned shift = amdgpu_vm_level_shift(adev, level); 277 unsigned pt_idx, from, to; 278 int r; 279 u64 flags; 280 uint64_t init_value = 0; 281 282 if (!parent->entries) { 283 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 284 285 parent->entries = kvmalloc_array(num_entries, 286 sizeof(struct amdgpu_vm_pt), 287 GFP_KERNEL | __GFP_ZERO); 288 if (!parent->entries) 289 return -ENOMEM; 290 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 291 } 292 293 from = saddr >> shift; 294 to = eaddr >> shift; 295 if (from >= amdgpu_vm_num_entries(adev, level) || 296 to >= amdgpu_vm_num_entries(adev, level)) 297 return -EINVAL; 298 299 ++level; 300 saddr = saddr & ((1 << shift) - 1); 301 eaddr = eaddr & ((1 << shift) - 1); 302 303 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 304 AMDGPU_GEM_CREATE_VRAM_CLEARED; 305 if (vm->use_cpu_for_update) 306 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 307 else 308 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 309 AMDGPU_GEM_CREATE_SHADOW); 310 311 if (vm->pte_support_ats) { 312 init_value = AMDGPU_PTE_DEFAULT_ATC; 313 if (level != AMDGPU_VM_PTB) 314 init_value |= AMDGPU_PDE_PTE; 315 316 } 317 318 /* walk over the address space and allocate the page tables */ 319 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 320 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 321 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 322 struct amdgpu_bo *pt; 323 324 if (!entry->base.bo) { 325 r = amdgpu_bo_create(adev, 326 amdgpu_vm_bo_size(adev, level), 327 AMDGPU_GPU_PAGE_SIZE, true, 328 AMDGPU_GEM_DOMAIN_VRAM, 329 flags, 330 NULL, resv, init_value, &pt); 331 if (r) 332 return r; 333 334 if (vm->use_cpu_for_update) { 335 r = amdgpu_bo_kmap(pt, NULL); 336 if (r) { 337 amdgpu_bo_unref(&pt); 338 return r; 339 } 340 } 341 342 /* Keep a reference to the root directory to avoid 343 * freeing them up in the wrong order. 344 */ 345 pt->parent = amdgpu_bo_ref(parent->base.bo); 346 347 entry->base.vm = vm; 348 entry->base.bo = pt; 349 list_add_tail(&entry->base.bo_list, &pt->va); 350 spin_lock(&vm->status_lock); 351 list_add(&entry->base.vm_status, &vm->relocated); 352 spin_unlock(&vm->status_lock); 353 } 354 355 if (level < AMDGPU_VM_PTB) { 356 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 357 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 358 ((1 << shift) - 1); 359 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 360 sub_eaddr, level); 361 if (r) 362 return r; 363 } 364 } 365 366 return 0; 367 } 368 369 /** 370 * amdgpu_vm_alloc_pts - Allocate page tables. 371 * 372 * @adev: amdgpu_device pointer 373 * @vm: VM to allocate page tables for 374 * @saddr: Start address which needs to be allocated 375 * @size: Size from start address we need. 376 * 377 * Make sure the page tables are allocated. 378 */ 379 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 380 struct amdgpu_vm *vm, 381 uint64_t saddr, uint64_t size) 382 { 383 uint64_t last_pfn; 384 uint64_t eaddr; 385 386 /* validate the parameters */ 387 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 388 return -EINVAL; 389 390 eaddr = saddr + size - 1; 391 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; 392 if (last_pfn >= adev->vm_manager.max_pfn) { 393 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 394 last_pfn, adev->vm_manager.max_pfn); 395 return -EINVAL; 396 } 397 398 saddr /= AMDGPU_GPU_PAGE_SIZE; 399 eaddr /= AMDGPU_GPU_PAGE_SIZE; 400 401 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 402 adev->vm_manager.root_level); 403 } 404 405 /** 406 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 407 * 408 * @adev: amdgpu_device pointer 409 */ 410 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 411 { 412 const struct amdgpu_ip_block *ip_block; 413 bool has_compute_vm_bug; 414 struct amdgpu_ring *ring; 415 int i; 416 417 has_compute_vm_bug = false; 418 419 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 420 if (ip_block) { 421 /* Compute has a VM bug for GFX version < 7. 422 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 423 if (ip_block->version->major <= 7) 424 has_compute_vm_bug = true; 425 else if (ip_block->version->major == 8) 426 if (adev->gfx.mec_fw_version < 673) 427 has_compute_vm_bug = true; 428 } 429 430 for (i = 0; i < adev->num_rings; i++) { 431 ring = adev->rings[i]; 432 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 433 /* only compute rings */ 434 ring->has_compute_vm_bug = has_compute_vm_bug; 435 else 436 ring->has_compute_vm_bug = false; 437 } 438 } 439 440 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 441 struct amdgpu_job *job) 442 { 443 struct amdgpu_device *adev = ring->adev; 444 unsigned vmhub = ring->funcs->vmhub; 445 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 446 struct amdgpu_vmid *id; 447 bool gds_switch_needed; 448 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 449 450 if (job->vmid == 0) 451 return false; 452 id = &id_mgr->ids[job->vmid]; 453 gds_switch_needed = ring->funcs->emit_gds_switch && ( 454 id->gds_base != job->gds_base || 455 id->gds_size != job->gds_size || 456 id->gws_base != job->gws_base || 457 id->gws_size != job->gws_size || 458 id->oa_base != job->oa_base || 459 id->oa_size != job->oa_size); 460 461 if (amdgpu_vmid_had_gpu_reset(adev, id)) 462 return true; 463 464 return vm_flush_needed || gds_switch_needed; 465 } 466 467 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 468 { 469 return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size); 470 } 471 472 /** 473 * amdgpu_vm_flush - hardware flush the vm 474 * 475 * @ring: ring to use for flush 476 * @vmid: vmid number to use 477 * @pd_addr: address of the page directory 478 * 479 * Emit a VM flush when it is necessary. 480 */ 481 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 482 { 483 struct amdgpu_device *adev = ring->adev; 484 unsigned vmhub = ring->funcs->vmhub; 485 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 486 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 487 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 488 id->gds_base != job->gds_base || 489 id->gds_size != job->gds_size || 490 id->gws_base != job->gws_base || 491 id->gws_size != job->gws_size || 492 id->oa_base != job->oa_base || 493 id->oa_size != job->oa_size); 494 bool vm_flush_needed = job->vm_needs_flush; 495 unsigned patch_offset = 0; 496 int r; 497 498 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 499 gds_switch_needed = true; 500 vm_flush_needed = true; 501 } 502 503 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 504 return 0; 505 506 if (ring->funcs->init_cond_exec) 507 patch_offset = amdgpu_ring_init_cond_exec(ring); 508 509 if (need_pipe_sync) 510 amdgpu_ring_emit_pipeline_sync(ring); 511 512 if (ring->funcs->emit_vm_flush && vm_flush_needed) { 513 struct dma_fence *fence; 514 515 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 516 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->pasid, 517 job->vm_pd_addr); 518 519 r = amdgpu_fence_emit(ring, &fence); 520 if (r) 521 return r; 522 523 mutex_lock(&id_mgr->lock); 524 dma_fence_put(id->last_flush); 525 id->last_flush = fence; 526 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); 527 mutex_unlock(&id_mgr->lock); 528 } 529 530 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 531 id->gds_base = job->gds_base; 532 id->gds_size = job->gds_size; 533 id->gws_base = job->gws_base; 534 id->gws_size = job->gws_size; 535 id->oa_base = job->oa_base; 536 id->oa_size = job->oa_size; 537 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 538 job->gds_size, job->gws_base, 539 job->gws_size, job->oa_base, 540 job->oa_size); 541 } 542 543 if (ring->funcs->patch_cond_exec) 544 amdgpu_ring_patch_cond_exec(ring, patch_offset); 545 546 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 547 if (ring->funcs->emit_switch_buffer) { 548 amdgpu_ring_emit_switch_buffer(ring); 549 amdgpu_ring_emit_switch_buffer(ring); 550 } 551 return 0; 552 } 553 554 /** 555 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 556 * 557 * @vm: requested vm 558 * @bo: requested buffer object 559 * 560 * Find @bo inside the requested vm. 561 * Search inside the @bos vm list for the requested vm 562 * Returns the found bo_va or NULL if none is found 563 * 564 * Object has to be reserved! 565 */ 566 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 567 struct amdgpu_bo *bo) 568 { 569 struct amdgpu_bo_va *bo_va; 570 571 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 572 if (bo_va->base.vm == vm) { 573 return bo_va; 574 } 575 } 576 return NULL; 577 } 578 579 /** 580 * amdgpu_vm_do_set_ptes - helper to call the right asic function 581 * 582 * @params: see amdgpu_pte_update_params definition 583 * @bo: PD/PT to update 584 * @pe: addr of the page entry 585 * @addr: dst addr to write into pe 586 * @count: number of page entries to update 587 * @incr: increase next addr by incr bytes 588 * @flags: hw access flags 589 * 590 * Traces the parameters and calls the right asic functions 591 * to setup the page table using the DMA. 592 */ 593 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 594 struct amdgpu_bo *bo, 595 uint64_t pe, uint64_t addr, 596 unsigned count, uint32_t incr, 597 uint64_t flags) 598 { 599 pe += amdgpu_bo_gpu_offset(bo); 600 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 601 602 if (count < 3) { 603 amdgpu_vm_write_pte(params->adev, params->ib, pe, 604 addr | flags, count, incr); 605 606 } else { 607 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 608 count, incr, flags); 609 } 610 } 611 612 /** 613 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 614 * 615 * @params: see amdgpu_pte_update_params definition 616 * @bo: PD/PT to update 617 * @pe: addr of the page entry 618 * @addr: dst addr to write into pe 619 * @count: number of page entries to update 620 * @incr: increase next addr by incr bytes 621 * @flags: hw access flags 622 * 623 * Traces the parameters and calls the DMA function to copy the PTEs. 624 */ 625 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 626 struct amdgpu_bo *bo, 627 uint64_t pe, uint64_t addr, 628 unsigned count, uint32_t incr, 629 uint64_t flags) 630 { 631 uint64_t src = (params->src + (addr >> 12) * 8); 632 633 pe += amdgpu_bo_gpu_offset(bo); 634 trace_amdgpu_vm_copy_ptes(pe, src, count); 635 636 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 637 } 638 639 /** 640 * amdgpu_vm_map_gart - Resolve gart mapping of addr 641 * 642 * @pages_addr: optional DMA address to use for lookup 643 * @addr: the unmapped addr 644 * 645 * Look up the physical address of the page that the pte resolves 646 * to and return the pointer for the page table entry. 647 */ 648 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 649 { 650 uint64_t result; 651 652 /* page table offset */ 653 result = pages_addr[addr >> PAGE_SHIFT]; 654 655 /* in case cpu page size != gpu page size*/ 656 result |= addr & (~PAGE_MASK); 657 658 result &= 0xFFFFFFFFFFFFF000ULL; 659 660 return result; 661 } 662 663 /** 664 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 665 * 666 * @params: see amdgpu_pte_update_params definition 667 * @bo: PD/PT to update 668 * @pe: kmap addr of the page entry 669 * @addr: dst addr to write into pe 670 * @count: number of page entries to update 671 * @incr: increase next addr by incr bytes 672 * @flags: hw access flags 673 * 674 * Write count number of PT/PD entries directly. 675 */ 676 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 677 struct amdgpu_bo *bo, 678 uint64_t pe, uint64_t addr, 679 unsigned count, uint32_t incr, 680 uint64_t flags) 681 { 682 unsigned int i; 683 uint64_t value; 684 685 pe += (unsigned long)amdgpu_bo_kptr(bo); 686 687 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 688 689 for (i = 0; i < count; i++) { 690 value = params->pages_addr ? 691 amdgpu_vm_map_gart(params->pages_addr, addr) : 692 addr; 693 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 694 i, value, flags); 695 addr += incr; 696 } 697 } 698 699 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 700 void *owner) 701 { 702 struct amdgpu_sync sync; 703 int r; 704 705 amdgpu_sync_create(&sync); 706 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 707 r = amdgpu_sync_wait(&sync, true); 708 amdgpu_sync_free(&sync); 709 710 return r; 711 } 712 713 /* 714 * amdgpu_vm_update_pde - update a single level in the hierarchy 715 * 716 * @param: parameters for the update 717 * @vm: requested vm 718 * @parent: parent directory 719 * @entry: entry to update 720 * 721 * Makes sure the requested entry in parent is up to date. 722 */ 723 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 724 struct amdgpu_vm *vm, 725 struct amdgpu_vm_pt *parent, 726 struct amdgpu_vm_pt *entry) 727 { 728 struct amdgpu_bo *bo = parent->base.bo, *pbo; 729 uint64_t pde, pt, flags; 730 unsigned level; 731 732 /* Don't update huge pages here */ 733 if (entry->huge) 734 return; 735 736 for (level = 0, pbo = bo->parent; pbo; ++level) 737 pbo = pbo->parent; 738 739 level += params->adev->vm_manager.root_level; 740 pt = amdgpu_bo_gpu_offset(entry->base.bo); 741 flags = AMDGPU_PTE_VALID; 742 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 743 pde = (entry - parent->entries) * 8; 744 if (bo->shadow) 745 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 746 params->func(params, bo, pde, pt, 1, 0, flags); 747 } 748 749 /* 750 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 751 * 752 * @parent: parent PD 753 * 754 * Mark all PD level as invalid after an error. 755 */ 756 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 757 struct amdgpu_vm *vm, 758 struct amdgpu_vm_pt *parent, 759 unsigned level) 760 { 761 unsigned pt_idx, num_entries; 762 763 /* 764 * Recurse into the subdirectories. This recursion is harmless because 765 * we only have a maximum of 5 layers. 766 */ 767 num_entries = amdgpu_vm_num_entries(adev, level); 768 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 769 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 770 771 if (!entry->base.bo) 772 continue; 773 774 spin_lock(&vm->status_lock); 775 if (list_empty(&entry->base.vm_status)) 776 list_add(&entry->base.vm_status, &vm->relocated); 777 spin_unlock(&vm->status_lock); 778 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 779 } 780 } 781 782 /* 783 * amdgpu_vm_update_directories - make sure that all directories are valid 784 * 785 * @adev: amdgpu_device pointer 786 * @vm: requested vm 787 * 788 * Makes sure all directories are up to date. 789 * Returns 0 for success, error for failure. 790 */ 791 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 792 struct amdgpu_vm *vm) 793 { 794 struct amdgpu_pte_update_params params; 795 struct amdgpu_job *job; 796 unsigned ndw = 0; 797 int r = 0; 798 799 if (list_empty(&vm->relocated)) 800 return 0; 801 802 restart: 803 memset(¶ms, 0, sizeof(params)); 804 params.adev = adev; 805 806 if (vm->use_cpu_for_update) { 807 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 808 if (unlikely(r)) 809 return r; 810 811 params.func = amdgpu_vm_cpu_set_ptes; 812 } else { 813 ndw = 512 * 8; 814 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 815 if (r) 816 return r; 817 818 params.ib = &job->ibs[0]; 819 params.func = amdgpu_vm_do_set_ptes; 820 } 821 822 spin_lock(&vm->status_lock); 823 while (!list_empty(&vm->relocated)) { 824 struct amdgpu_vm_bo_base *bo_base, *parent; 825 struct amdgpu_vm_pt *pt, *entry; 826 struct amdgpu_bo *bo; 827 828 bo_base = list_first_entry(&vm->relocated, 829 struct amdgpu_vm_bo_base, 830 vm_status); 831 list_del_init(&bo_base->vm_status); 832 spin_unlock(&vm->status_lock); 833 834 bo = bo_base->bo->parent; 835 if (!bo) { 836 spin_lock(&vm->status_lock); 837 continue; 838 } 839 840 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 841 bo_list); 842 pt = container_of(parent, struct amdgpu_vm_pt, base); 843 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 844 845 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 846 847 spin_lock(&vm->status_lock); 848 if (!vm->use_cpu_for_update && 849 (ndw - params.ib->length_dw) < 32) 850 break; 851 } 852 spin_unlock(&vm->status_lock); 853 854 if (vm->use_cpu_for_update) { 855 /* Flush HDP */ 856 mb(); 857 amdgpu_asic_flush_hdp(adev); 858 } else if (params.ib->length_dw == 0) { 859 amdgpu_job_free(job); 860 } else { 861 struct amdgpu_bo *root = vm->root.base.bo; 862 struct amdgpu_ring *ring; 863 struct dma_fence *fence; 864 865 ring = container_of(vm->entity.sched, struct amdgpu_ring, 866 sched); 867 868 amdgpu_ring_pad_ib(ring, params.ib); 869 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 870 AMDGPU_FENCE_OWNER_VM, false); 871 if (root->shadow) 872 amdgpu_sync_resv(adev, &job->sync, 873 root->shadow->tbo.resv, 874 AMDGPU_FENCE_OWNER_VM, false); 875 876 WARN_ON(params.ib->length_dw > ndw); 877 r = amdgpu_job_submit(job, ring, &vm->entity, 878 AMDGPU_FENCE_OWNER_VM, &fence); 879 if (r) 880 goto error; 881 882 amdgpu_bo_fence(root, fence, true); 883 dma_fence_put(vm->last_update); 884 vm->last_update = fence; 885 } 886 887 if (!list_empty(&vm->relocated)) 888 goto restart; 889 890 return 0; 891 892 error: 893 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 894 adev->vm_manager.root_level); 895 amdgpu_job_free(job); 896 return r; 897 } 898 899 /** 900 * amdgpu_vm_find_entry - find the entry for an address 901 * 902 * @p: see amdgpu_pte_update_params definition 903 * @addr: virtual address in question 904 * @entry: resulting entry or NULL 905 * @parent: parent entry 906 * 907 * Find the vm_pt entry and it's parent for the given address. 908 */ 909 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 910 struct amdgpu_vm_pt **entry, 911 struct amdgpu_vm_pt **parent) 912 { 913 unsigned level = p->adev->vm_manager.root_level; 914 915 *parent = NULL; 916 *entry = &p->vm->root; 917 while ((*entry)->entries) { 918 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 919 920 *parent = *entry; 921 *entry = &(*entry)->entries[addr >> shift]; 922 addr &= (1ULL << shift) - 1; 923 } 924 925 if (level != AMDGPU_VM_PTB) 926 *entry = NULL; 927 } 928 929 /** 930 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 931 * 932 * @p: see amdgpu_pte_update_params definition 933 * @entry: vm_pt entry to check 934 * @parent: parent entry 935 * @nptes: number of PTEs updated with this operation 936 * @dst: destination address where the PTEs should point to 937 * @flags: access flags fro the PTEs 938 * 939 * Check if we can update the PD with a huge page. 940 */ 941 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 942 struct amdgpu_vm_pt *entry, 943 struct amdgpu_vm_pt *parent, 944 unsigned nptes, uint64_t dst, 945 uint64_t flags) 946 { 947 uint64_t pde; 948 949 /* In the case of a mixed PT the PDE must point to it*/ 950 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 951 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 952 /* Set the huge page flag to stop scanning at this PDE */ 953 flags |= AMDGPU_PDE_PTE; 954 } 955 956 if (!(flags & AMDGPU_PDE_PTE)) { 957 if (entry->huge) { 958 /* Add the entry to the relocated list to update it. */ 959 entry->huge = false; 960 spin_lock(&p->vm->status_lock); 961 list_move(&entry->base.vm_status, &p->vm->relocated); 962 spin_unlock(&p->vm->status_lock); 963 } 964 return; 965 } 966 967 entry->huge = true; 968 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 969 970 pde = (entry - parent->entries) * 8; 971 if (parent->base.bo->shadow) 972 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 973 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 974 } 975 976 /** 977 * amdgpu_vm_update_ptes - make sure that page tables are valid 978 * 979 * @params: see amdgpu_pte_update_params definition 980 * @vm: requested vm 981 * @start: start of GPU address range 982 * @end: end of GPU address range 983 * @dst: destination address to map to, the next dst inside the function 984 * @flags: mapping flags 985 * 986 * Update the page tables in the range @start - @end. 987 * Returns 0 for success, -EINVAL for failure. 988 */ 989 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 990 uint64_t start, uint64_t end, 991 uint64_t dst, uint64_t flags) 992 { 993 struct amdgpu_device *adev = params->adev; 994 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 995 996 uint64_t addr, pe_start; 997 struct amdgpu_bo *pt; 998 unsigned nptes; 999 1000 /* walk over the address space and update the page tables */ 1001 for (addr = start; addr < end; addr += nptes, 1002 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1003 struct amdgpu_vm_pt *entry, *parent; 1004 1005 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1006 if (!entry) 1007 return -ENOENT; 1008 1009 if ((addr & ~mask) == (end & ~mask)) 1010 nptes = end - addr; 1011 else 1012 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1013 1014 amdgpu_vm_handle_huge_pages(params, entry, parent, 1015 nptes, dst, flags); 1016 /* We don't need to update PTEs for huge pages */ 1017 if (entry->huge) 1018 continue; 1019 1020 pt = entry->base.bo; 1021 pe_start = (addr & mask) * 8; 1022 if (pt->shadow) 1023 params->func(params, pt->shadow, pe_start, dst, nptes, 1024 AMDGPU_GPU_PAGE_SIZE, flags); 1025 params->func(params, pt, pe_start, dst, nptes, 1026 AMDGPU_GPU_PAGE_SIZE, flags); 1027 } 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1034 * 1035 * @params: see amdgpu_pte_update_params definition 1036 * @vm: requested vm 1037 * @start: first PTE to handle 1038 * @end: last PTE to handle 1039 * @dst: addr those PTEs should point to 1040 * @flags: hw mapping flags 1041 * Returns 0 for success, -EINVAL for failure. 1042 */ 1043 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1044 uint64_t start, uint64_t end, 1045 uint64_t dst, uint64_t flags) 1046 { 1047 /** 1048 * The MC L1 TLB supports variable sized pages, based on a fragment 1049 * field in the PTE. When this field is set to a non-zero value, page 1050 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1051 * flags are considered valid for all PTEs within the fragment range 1052 * and corresponding mappings are assumed to be physically contiguous. 1053 * 1054 * The L1 TLB can store a single PTE for the whole fragment, 1055 * significantly increasing the space available for translation 1056 * caching. This leads to large improvements in throughput when the 1057 * TLB is under pressure. 1058 * 1059 * The L2 TLB distributes small and large fragments into two 1060 * asymmetric partitions. The large fragment cache is significantly 1061 * larger. Thus, we try to use large fragments wherever possible. 1062 * Userspace can support this by aligning virtual base address and 1063 * allocation size to the fragment size. 1064 */ 1065 unsigned max_frag = params->adev->vm_manager.fragment_size; 1066 int r; 1067 1068 /* system pages are non continuously */ 1069 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1070 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1071 1072 while (start != end) { 1073 uint64_t frag_flags, frag_end; 1074 unsigned frag; 1075 1076 /* This intentionally wraps around if no bit is set */ 1077 frag = min((unsigned)ffs(start) - 1, 1078 (unsigned)fls64(end - start) - 1); 1079 if (frag >= max_frag) { 1080 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1081 frag_end = end & ~((1ULL << max_frag) - 1); 1082 } else { 1083 frag_flags = AMDGPU_PTE_FRAG(frag); 1084 frag_end = start + (1 << frag); 1085 } 1086 1087 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1088 flags | frag_flags); 1089 if (r) 1090 return r; 1091 1092 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1093 start = frag_end; 1094 } 1095 1096 return 0; 1097 } 1098 1099 /** 1100 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1101 * 1102 * @adev: amdgpu_device pointer 1103 * @exclusive: fence we need to sync to 1104 * @pages_addr: DMA addresses to use for mapping 1105 * @vm: requested vm 1106 * @start: start of mapped range 1107 * @last: last mapped entry 1108 * @flags: flags for the entries 1109 * @addr: addr to set the area to 1110 * @fence: optional resulting fence 1111 * 1112 * Fill in the page table entries between @start and @last. 1113 * Returns 0 for success, -EINVAL for failure. 1114 */ 1115 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1116 struct dma_fence *exclusive, 1117 dma_addr_t *pages_addr, 1118 struct amdgpu_vm *vm, 1119 uint64_t start, uint64_t last, 1120 uint64_t flags, uint64_t addr, 1121 struct dma_fence **fence) 1122 { 1123 struct amdgpu_ring *ring; 1124 void *owner = AMDGPU_FENCE_OWNER_VM; 1125 unsigned nptes, ncmds, ndw; 1126 struct amdgpu_job *job; 1127 struct amdgpu_pte_update_params params; 1128 struct dma_fence *f = NULL; 1129 int r; 1130 1131 memset(¶ms, 0, sizeof(params)); 1132 params.adev = adev; 1133 params.vm = vm; 1134 1135 /* sync to everything on unmapping */ 1136 if (!(flags & AMDGPU_PTE_VALID)) 1137 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1138 1139 if (vm->use_cpu_for_update) { 1140 /* params.src is used as flag to indicate system Memory */ 1141 if (pages_addr) 1142 params.src = ~0; 1143 1144 /* Wait for PT BOs to be free. PTs share the same resv. object 1145 * as the root PD BO 1146 */ 1147 r = amdgpu_vm_wait_pd(adev, vm, owner); 1148 if (unlikely(r)) 1149 return r; 1150 1151 params.func = amdgpu_vm_cpu_set_ptes; 1152 params.pages_addr = pages_addr; 1153 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1154 addr, flags); 1155 } 1156 1157 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1158 1159 nptes = last - start + 1; 1160 1161 /* 1162 * reserve space for two commands every (1 << BLOCK_SIZE) 1163 * entries or 2k dwords (whatever is smaller) 1164 * 1165 * The second command is for the shadow pagetables. 1166 */ 1167 if (vm->root.base.bo->shadow) 1168 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1169 else 1170 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1171 1172 /* padding, etc. */ 1173 ndw = 64; 1174 1175 if (pages_addr) { 1176 /* copy commands needed */ 1177 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1178 1179 /* and also PTEs */ 1180 ndw += nptes * 2; 1181 1182 params.func = amdgpu_vm_do_copy_ptes; 1183 1184 } else { 1185 /* set page commands needed */ 1186 ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw; 1187 1188 /* extra commands for begin/end fragments */ 1189 ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw 1190 * adev->vm_manager.fragment_size; 1191 1192 params.func = amdgpu_vm_do_set_ptes; 1193 } 1194 1195 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1196 if (r) 1197 return r; 1198 1199 params.ib = &job->ibs[0]; 1200 1201 if (pages_addr) { 1202 uint64_t *pte; 1203 unsigned i; 1204 1205 /* Put the PTEs at the end of the IB. */ 1206 i = ndw - nptes * 2; 1207 pte= (uint64_t *)&(job->ibs->ptr[i]); 1208 params.src = job->ibs->gpu_addr + i * 4; 1209 1210 for (i = 0; i < nptes; ++i) { 1211 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1212 AMDGPU_GPU_PAGE_SIZE); 1213 pte[i] |= flags; 1214 } 1215 addr = 0; 1216 } 1217 1218 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1219 if (r) 1220 goto error_free; 1221 1222 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1223 owner, false); 1224 if (r) 1225 goto error_free; 1226 1227 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1228 if (r) 1229 goto error_free; 1230 1231 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1232 if (r) 1233 goto error_free; 1234 1235 amdgpu_ring_pad_ib(ring, params.ib); 1236 WARN_ON(params.ib->length_dw > ndw); 1237 r = amdgpu_job_submit(job, ring, &vm->entity, 1238 AMDGPU_FENCE_OWNER_VM, &f); 1239 if (r) 1240 goto error_free; 1241 1242 amdgpu_bo_fence(vm->root.base.bo, f, true); 1243 dma_fence_put(*fence); 1244 *fence = f; 1245 return 0; 1246 1247 error_free: 1248 amdgpu_job_free(job); 1249 return r; 1250 } 1251 1252 /** 1253 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1254 * 1255 * @adev: amdgpu_device pointer 1256 * @exclusive: fence we need to sync to 1257 * @pages_addr: DMA addresses to use for mapping 1258 * @vm: requested vm 1259 * @mapping: mapped range and flags to use for the update 1260 * @flags: HW flags for the mapping 1261 * @nodes: array of drm_mm_nodes with the MC addresses 1262 * @fence: optional resulting fence 1263 * 1264 * Split the mapping into smaller chunks so that each update fits 1265 * into a SDMA IB. 1266 * Returns 0 for success, -EINVAL for failure. 1267 */ 1268 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1269 struct dma_fence *exclusive, 1270 dma_addr_t *pages_addr, 1271 struct amdgpu_vm *vm, 1272 struct amdgpu_bo_va_mapping *mapping, 1273 uint64_t flags, 1274 struct drm_mm_node *nodes, 1275 struct dma_fence **fence) 1276 { 1277 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1278 uint64_t pfn, start = mapping->start; 1279 int r; 1280 1281 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1282 * but in case of something, we filter the flags in first place 1283 */ 1284 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1285 flags &= ~AMDGPU_PTE_READABLE; 1286 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1287 flags &= ~AMDGPU_PTE_WRITEABLE; 1288 1289 flags &= ~AMDGPU_PTE_EXECUTABLE; 1290 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1291 1292 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1293 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1294 1295 if ((mapping->flags & AMDGPU_PTE_PRT) && 1296 (adev->asic_type >= CHIP_VEGA10)) { 1297 flags |= AMDGPU_PTE_PRT; 1298 flags &= ~AMDGPU_PTE_VALID; 1299 } 1300 1301 trace_amdgpu_vm_bo_update(mapping); 1302 1303 pfn = mapping->offset >> PAGE_SHIFT; 1304 if (nodes) { 1305 while (pfn >= nodes->size) { 1306 pfn -= nodes->size; 1307 ++nodes; 1308 } 1309 } 1310 1311 do { 1312 dma_addr_t *dma_addr = NULL; 1313 uint64_t max_entries; 1314 uint64_t addr, last; 1315 1316 if (nodes) { 1317 addr = nodes->start << PAGE_SHIFT; 1318 max_entries = (nodes->size - pfn) * 1319 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1320 } else { 1321 addr = 0; 1322 max_entries = S64_MAX; 1323 } 1324 1325 if (pages_addr) { 1326 uint64_t count; 1327 1328 max_entries = min(max_entries, 16ull * 1024ull); 1329 for (count = 1; count < max_entries; ++count) { 1330 uint64_t idx = pfn + count; 1331 1332 if (pages_addr[idx] != 1333 (pages_addr[idx - 1] + PAGE_SIZE)) 1334 break; 1335 } 1336 1337 if (count < min_linear_pages) { 1338 addr = pfn << PAGE_SHIFT; 1339 dma_addr = pages_addr; 1340 } else { 1341 addr = pages_addr[pfn]; 1342 max_entries = count; 1343 } 1344 1345 } else if (flags & AMDGPU_PTE_VALID) { 1346 addr += adev->vm_manager.vram_base_offset; 1347 addr += pfn << PAGE_SHIFT; 1348 } 1349 1350 last = min((uint64_t)mapping->last, start + max_entries - 1); 1351 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1352 start, last, flags, addr, 1353 fence); 1354 if (r) 1355 return r; 1356 1357 pfn += last - start + 1; 1358 if (nodes && nodes->size == pfn) { 1359 pfn = 0; 1360 ++nodes; 1361 } 1362 start = last + 1; 1363 1364 } while (unlikely(start != mapping->last + 1)); 1365 1366 return 0; 1367 } 1368 1369 /** 1370 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1371 * 1372 * @adev: amdgpu_device pointer 1373 * @bo_va: requested BO and VM object 1374 * @clear: if true clear the entries 1375 * 1376 * Fill in the page table entries for @bo_va. 1377 * Returns 0 for success, -EINVAL for failure. 1378 */ 1379 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1380 struct amdgpu_bo_va *bo_va, 1381 bool clear) 1382 { 1383 struct amdgpu_bo *bo = bo_va->base.bo; 1384 struct amdgpu_vm *vm = bo_va->base.vm; 1385 struct amdgpu_bo_va_mapping *mapping; 1386 dma_addr_t *pages_addr = NULL; 1387 struct ttm_mem_reg *mem; 1388 struct drm_mm_node *nodes; 1389 struct dma_fence *exclusive, **last_update; 1390 uint64_t flags; 1391 int r; 1392 1393 if (clear || !bo_va->base.bo) { 1394 mem = NULL; 1395 nodes = NULL; 1396 exclusive = NULL; 1397 } else { 1398 struct ttm_dma_tt *ttm; 1399 1400 mem = &bo_va->base.bo->tbo.mem; 1401 nodes = mem->mm_node; 1402 if (mem->mem_type == TTM_PL_TT) { 1403 ttm = container_of(bo_va->base.bo->tbo.ttm, 1404 struct ttm_dma_tt, ttm); 1405 pages_addr = ttm->dma_address; 1406 } 1407 exclusive = reservation_object_get_excl(bo->tbo.resv); 1408 } 1409 1410 if (bo) 1411 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1412 else 1413 flags = 0x0; 1414 1415 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1416 last_update = &vm->last_update; 1417 else 1418 last_update = &bo_va->last_pt_update; 1419 1420 if (!clear && bo_va->base.moved) { 1421 bo_va->base.moved = false; 1422 list_splice_init(&bo_va->valids, &bo_va->invalids); 1423 1424 } else if (bo_va->cleared != clear) { 1425 list_splice_init(&bo_va->valids, &bo_va->invalids); 1426 } 1427 1428 list_for_each_entry(mapping, &bo_va->invalids, list) { 1429 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1430 mapping, flags, nodes, 1431 last_update); 1432 if (r) 1433 return r; 1434 } 1435 1436 if (vm->use_cpu_for_update) { 1437 /* Flush HDP */ 1438 mb(); 1439 amdgpu_asic_flush_hdp(adev); 1440 } 1441 1442 spin_lock(&vm->status_lock); 1443 list_del_init(&bo_va->base.vm_status); 1444 spin_unlock(&vm->status_lock); 1445 1446 list_splice_init(&bo_va->invalids, &bo_va->valids); 1447 bo_va->cleared = clear; 1448 1449 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1450 list_for_each_entry(mapping, &bo_va->valids, list) 1451 trace_amdgpu_vm_bo_mapping(mapping); 1452 } 1453 1454 return 0; 1455 } 1456 1457 /** 1458 * amdgpu_vm_update_prt_state - update the global PRT state 1459 */ 1460 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1461 { 1462 unsigned long flags; 1463 bool enable; 1464 1465 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1466 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1467 adev->gmc.gmc_funcs->set_prt(adev, enable); 1468 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1469 } 1470 1471 /** 1472 * amdgpu_vm_prt_get - add a PRT user 1473 */ 1474 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1475 { 1476 if (!adev->gmc.gmc_funcs->set_prt) 1477 return; 1478 1479 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1480 amdgpu_vm_update_prt_state(adev); 1481 } 1482 1483 /** 1484 * amdgpu_vm_prt_put - drop a PRT user 1485 */ 1486 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1487 { 1488 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1489 amdgpu_vm_update_prt_state(adev); 1490 } 1491 1492 /** 1493 * amdgpu_vm_prt_cb - callback for updating the PRT status 1494 */ 1495 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1496 { 1497 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1498 1499 amdgpu_vm_prt_put(cb->adev); 1500 kfree(cb); 1501 } 1502 1503 /** 1504 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1505 */ 1506 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1507 struct dma_fence *fence) 1508 { 1509 struct amdgpu_prt_cb *cb; 1510 1511 if (!adev->gmc.gmc_funcs->set_prt) 1512 return; 1513 1514 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1515 if (!cb) { 1516 /* Last resort when we are OOM */ 1517 if (fence) 1518 dma_fence_wait(fence, false); 1519 1520 amdgpu_vm_prt_put(adev); 1521 } else { 1522 cb->adev = adev; 1523 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1524 amdgpu_vm_prt_cb)) 1525 amdgpu_vm_prt_cb(fence, &cb->cb); 1526 } 1527 } 1528 1529 /** 1530 * amdgpu_vm_free_mapping - free a mapping 1531 * 1532 * @adev: amdgpu_device pointer 1533 * @vm: requested vm 1534 * @mapping: mapping to be freed 1535 * @fence: fence of the unmap operation 1536 * 1537 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1538 */ 1539 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1540 struct amdgpu_vm *vm, 1541 struct amdgpu_bo_va_mapping *mapping, 1542 struct dma_fence *fence) 1543 { 1544 if (mapping->flags & AMDGPU_PTE_PRT) 1545 amdgpu_vm_add_prt_cb(adev, fence); 1546 kfree(mapping); 1547 } 1548 1549 /** 1550 * amdgpu_vm_prt_fini - finish all prt mappings 1551 * 1552 * @adev: amdgpu_device pointer 1553 * @vm: requested vm 1554 * 1555 * Register a cleanup callback to disable PRT support after VM dies. 1556 */ 1557 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1558 { 1559 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1560 struct dma_fence *excl, **shared; 1561 unsigned i, shared_count; 1562 int r; 1563 1564 r = reservation_object_get_fences_rcu(resv, &excl, 1565 &shared_count, &shared); 1566 if (r) { 1567 /* Not enough memory to grab the fence list, as last resort 1568 * block for all the fences to complete. 1569 */ 1570 reservation_object_wait_timeout_rcu(resv, true, false, 1571 MAX_SCHEDULE_TIMEOUT); 1572 return; 1573 } 1574 1575 /* Add a callback for each fence in the reservation object */ 1576 amdgpu_vm_prt_get(adev); 1577 amdgpu_vm_add_prt_cb(adev, excl); 1578 1579 for (i = 0; i < shared_count; ++i) { 1580 amdgpu_vm_prt_get(adev); 1581 amdgpu_vm_add_prt_cb(adev, shared[i]); 1582 } 1583 1584 kfree(shared); 1585 } 1586 1587 /** 1588 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1589 * 1590 * @adev: amdgpu_device pointer 1591 * @vm: requested vm 1592 * @fence: optional resulting fence (unchanged if no work needed to be done 1593 * or if an error occurred) 1594 * 1595 * Make sure all freed BOs are cleared in the PT. 1596 * Returns 0 for success. 1597 * 1598 * PTs have to be reserved and mutex must be locked! 1599 */ 1600 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1601 struct amdgpu_vm *vm, 1602 struct dma_fence **fence) 1603 { 1604 struct amdgpu_bo_va_mapping *mapping; 1605 struct dma_fence *f = NULL; 1606 int r; 1607 uint64_t init_pte_value = 0; 1608 1609 while (!list_empty(&vm->freed)) { 1610 mapping = list_first_entry(&vm->freed, 1611 struct amdgpu_bo_va_mapping, list); 1612 list_del(&mapping->list); 1613 1614 if (vm->pte_support_ats) 1615 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1616 1617 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1618 mapping->start, mapping->last, 1619 init_pte_value, 0, &f); 1620 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1621 if (r) { 1622 dma_fence_put(f); 1623 return r; 1624 } 1625 } 1626 1627 if (fence && f) { 1628 dma_fence_put(*fence); 1629 *fence = f; 1630 } else { 1631 dma_fence_put(f); 1632 } 1633 1634 return 0; 1635 1636 } 1637 1638 /** 1639 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1640 * 1641 * @adev: amdgpu_device pointer 1642 * @vm: requested vm 1643 * @sync: sync object to add fences to 1644 * 1645 * Make sure all BOs which are moved are updated in the PTs. 1646 * Returns 0 for success. 1647 * 1648 * PTs have to be reserved! 1649 */ 1650 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1651 struct amdgpu_vm *vm) 1652 { 1653 bool clear; 1654 int r = 0; 1655 1656 spin_lock(&vm->status_lock); 1657 while (!list_empty(&vm->moved)) { 1658 struct amdgpu_bo_va *bo_va; 1659 struct reservation_object *resv; 1660 1661 bo_va = list_first_entry(&vm->moved, 1662 struct amdgpu_bo_va, base.vm_status); 1663 spin_unlock(&vm->status_lock); 1664 1665 resv = bo_va->base.bo->tbo.resv; 1666 1667 /* Per VM BOs never need to bo cleared in the page tables */ 1668 if (resv == vm->root.base.bo->tbo.resv) 1669 clear = false; 1670 /* Try to reserve the BO to avoid clearing its ptes */ 1671 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1672 clear = false; 1673 /* Somebody else is using the BO right now */ 1674 else 1675 clear = true; 1676 1677 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1678 if (r) 1679 return r; 1680 1681 if (!clear && resv != vm->root.base.bo->tbo.resv) 1682 reservation_object_unlock(resv); 1683 1684 spin_lock(&vm->status_lock); 1685 } 1686 spin_unlock(&vm->status_lock); 1687 1688 return r; 1689 } 1690 1691 /** 1692 * amdgpu_vm_bo_add - add a bo to a specific vm 1693 * 1694 * @adev: amdgpu_device pointer 1695 * @vm: requested vm 1696 * @bo: amdgpu buffer object 1697 * 1698 * Add @bo into the requested vm. 1699 * Add @bo to the list of bos associated with the vm 1700 * Returns newly added bo_va or NULL for failure 1701 * 1702 * Object has to be reserved! 1703 */ 1704 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1705 struct amdgpu_vm *vm, 1706 struct amdgpu_bo *bo) 1707 { 1708 struct amdgpu_bo_va *bo_va; 1709 1710 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1711 if (bo_va == NULL) { 1712 return NULL; 1713 } 1714 bo_va->base.vm = vm; 1715 bo_va->base.bo = bo; 1716 INIT_LIST_HEAD(&bo_va->base.bo_list); 1717 INIT_LIST_HEAD(&bo_va->base.vm_status); 1718 1719 bo_va->ref_count = 1; 1720 INIT_LIST_HEAD(&bo_va->valids); 1721 INIT_LIST_HEAD(&bo_va->invalids); 1722 1723 if (!bo) 1724 return bo_va; 1725 1726 list_add_tail(&bo_va->base.bo_list, &bo->va); 1727 1728 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 1729 return bo_va; 1730 1731 if (bo->preferred_domains & 1732 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 1733 return bo_va; 1734 1735 /* 1736 * We checked all the prerequisites, but it looks like this per VM BO 1737 * is currently evicted. add the BO to the evicted list to make sure it 1738 * is validated on next VM use to avoid fault. 1739 * */ 1740 spin_lock(&vm->status_lock); 1741 list_move_tail(&bo_va->base.vm_status, &vm->evicted); 1742 spin_unlock(&vm->status_lock); 1743 1744 return bo_va; 1745 } 1746 1747 1748 /** 1749 * amdgpu_vm_bo_insert_mapping - insert a new mapping 1750 * 1751 * @adev: amdgpu_device pointer 1752 * @bo_va: bo_va to store the address 1753 * @mapping: the mapping to insert 1754 * 1755 * Insert a new mapping into all structures. 1756 */ 1757 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1758 struct amdgpu_bo_va *bo_va, 1759 struct amdgpu_bo_va_mapping *mapping) 1760 { 1761 struct amdgpu_vm *vm = bo_va->base.vm; 1762 struct amdgpu_bo *bo = bo_va->base.bo; 1763 1764 mapping->bo_va = bo_va; 1765 list_add(&mapping->list, &bo_va->invalids); 1766 amdgpu_vm_it_insert(mapping, &vm->va); 1767 1768 if (mapping->flags & AMDGPU_PTE_PRT) 1769 amdgpu_vm_prt_get(adev); 1770 1771 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1772 spin_lock(&vm->status_lock); 1773 if (list_empty(&bo_va->base.vm_status)) 1774 list_add(&bo_va->base.vm_status, &vm->moved); 1775 spin_unlock(&vm->status_lock); 1776 } 1777 trace_amdgpu_vm_bo_map(bo_va, mapping); 1778 } 1779 1780 /** 1781 * amdgpu_vm_bo_map - map bo inside a vm 1782 * 1783 * @adev: amdgpu_device pointer 1784 * @bo_va: bo_va to store the address 1785 * @saddr: where to map the BO 1786 * @offset: requested offset in the BO 1787 * @flags: attributes of pages (read/write/valid/etc.) 1788 * 1789 * Add a mapping of the BO at the specefied addr into the VM. 1790 * Returns 0 for success, error for failure. 1791 * 1792 * Object has to be reserved and unreserved outside! 1793 */ 1794 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1795 struct amdgpu_bo_va *bo_va, 1796 uint64_t saddr, uint64_t offset, 1797 uint64_t size, uint64_t flags) 1798 { 1799 struct amdgpu_bo_va_mapping *mapping, *tmp; 1800 struct amdgpu_bo *bo = bo_va->base.bo; 1801 struct amdgpu_vm *vm = bo_va->base.vm; 1802 uint64_t eaddr; 1803 1804 /* validate the parameters */ 1805 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1806 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1807 return -EINVAL; 1808 1809 /* make sure object fit at this offset */ 1810 eaddr = saddr + size - 1; 1811 if (saddr >= eaddr || 1812 (bo && offset + size > amdgpu_bo_size(bo))) 1813 return -EINVAL; 1814 1815 saddr /= AMDGPU_GPU_PAGE_SIZE; 1816 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1817 1818 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1819 if (tmp) { 1820 /* bo and tmp overlap, invalid addr */ 1821 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1822 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1823 tmp->start, tmp->last + 1); 1824 return -EINVAL; 1825 } 1826 1827 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1828 if (!mapping) 1829 return -ENOMEM; 1830 1831 mapping->start = saddr; 1832 mapping->last = eaddr; 1833 mapping->offset = offset; 1834 mapping->flags = flags; 1835 1836 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1843 * 1844 * @adev: amdgpu_device pointer 1845 * @bo_va: bo_va to store the address 1846 * @saddr: where to map the BO 1847 * @offset: requested offset in the BO 1848 * @flags: attributes of pages (read/write/valid/etc.) 1849 * 1850 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1851 * mappings as we do so. 1852 * Returns 0 for success, error for failure. 1853 * 1854 * Object has to be reserved and unreserved outside! 1855 */ 1856 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1857 struct amdgpu_bo_va *bo_va, 1858 uint64_t saddr, uint64_t offset, 1859 uint64_t size, uint64_t flags) 1860 { 1861 struct amdgpu_bo_va_mapping *mapping; 1862 struct amdgpu_bo *bo = bo_va->base.bo; 1863 uint64_t eaddr; 1864 int r; 1865 1866 /* validate the parameters */ 1867 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1868 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1869 return -EINVAL; 1870 1871 /* make sure object fit at this offset */ 1872 eaddr = saddr + size - 1; 1873 if (saddr >= eaddr || 1874 (bo && offset + size > amdgpu_bo_size(bo))) 1875 return -EINVAL; 1876 1877 /* Allocate all the needed memory */ 1878 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1879 if (!mapping) 1880 return -ENOMEM; 1881 1882 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1883 if (r) { 1884 kfree(mapping); 1885 return r; 1886 } 1887 1888 saddr /= AMDGPU_GPU_PAGE_SIZE; 1889 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1890 1891 mapping->start = saddr; 1892 mapping->last = eaddr; 1893 mapping->offset = offset; 1894 mapping->flags = flags; 1895 1896 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1897 1898 return 0; 1899 } 1900 1901 /** 1902 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1903 * 1904 * @adev: amdgpu_device pointer 1905 * @bo_va: bo_va to remove the address from 1906 * @saddr: where to the BO is mapped 1907 * 1908 * Remove a mapping of the BO at the specefied addr from the VM. 1909 * Returns 0 for success, error for failure. 1910 * 1911 * Object has to be reserved and unreserved outside! 1912 */ 1913 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1914 struct amdgpu_bo_va *bo_va, 1915 uint64_t saddr) 1916 { 1917 struct amdgpu_bo_va_mapping *mapping; 1918 struct amdgpu_vm *vm = bo_va->base.vm; 1919 bool valid = true; 1920 1921 saddr /= AMDGPU_GPU_PAGE_SIZE; 1922 1923 list_for_each_entry(mapping, &bo_va->valids, list) { 1924 if (mapping->start == saddr) 1925 break; 1926 } 1927 1928 if (&mapping->list == &bo_va->valids) { 1929 valid = false; 1930 1931 list_for_each_entry(mapping, &bo_va->invalids, list) { 1932 if (mapping->start == saddr) 1933 break; 1934 } 1935 1936 if (&mapping->list == &bo_va->invalids) 1937 return -ENOENT; 1938 } 1939 1940 list_del(&mapping->list); 1941 amdgpu_vm_it_remove(mapping, &vm->va); 1942 mapping->bo_va = NULL; 1943 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1944 1945 if (valid) 1946 list_add(&mapping->list, &vm->freed); 1947 else 1948 amdgpu_vm_free_mapping(adev, vm, mapping, 1949 bo_va->last_pt_update); 1950 1951 return 0; 1952 } 1953 1954 /** 1955 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1956 * 1957 * @adev: amdgpu_device pointer 1958 * @vm: VM structure to use 1959 * @saddr: start of the range 1960 * @size: size of the range 1961 * 1962 * Remove all mappings in a range, split them as appropriate. 1963 * Returns 0 for success, error for failure. 1964 */ 1965 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1966 struct amdgpu_vm *vm, 1967 uint64_t saddr, uint64_t size) 1968 { 1969 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1970 LIST_HEAD(removed); 1971 uint64_t eaddr; 1972 1973 eaddr = saddr + size - 1; 1974 saddr /= AMDGPU_GPU_PAGE_SIZE; 1975 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1976 1977 /* Allocate all the needed memory */ 1978 before = kzalloc(sizeof(*before), GFP_KERNEL); 1979 if (!before) 1980 return -ENOMEM; 1981 INIT_LIST_HEAD(&before->list); 1982 1983 after = kzalloc(sizeof(*after), GFP_KERNEL); 1984 if (!after) { 1985 kfree(before); 1986 return -ENOMEM; 1987 } 1988 INIT_LIST_HEAD(&after->list); 1989 1990 /* Now gather all removed mappings */ 1991 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1992 while (tmp) { 1993 /* Remember mapping split at the start */ 1994 if (tmp->start < saddr) { 1995 before->start = tmp->start; 1996 before->last = saddr - 1; 1997 before->offset = tmp->offset; 1998 before->flags = tmp->flags; 1999 list_add(&before->list, &tmp->list); 2000 } 2001 2002 /* Remember mapping split at the end */ 2003 if (tmp->last > eaddr) { 2004 after->start = eaddr + 1; 2005 after->last = tmp->last; 2006 after->offset = tmp->offset; 2007 after->offset += after->start - tmp->start; 2008 after->flags = tmp->flags; 2009 list_add(&after->list, &tmp->list); 2010 } 2011 2012 list_del(&tmp->list); 2013 list_add(&tmp->list, &removed); 2014 2015 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2016 } 2017 2018 /* And free them up */ 2019 list_for_each_entry_safe(tmp, next, &removed, list) { 2020 amdgpu_vm_it_remove(tmp, &vm->va); 2021 list_del(&tmp->list); 2022 2023 if (tmp->start < saddr) 2024 tmp->start = saddr; 2025 if (tmp->last > eaddr) 2026 tmp->last = eaddr; 2027 2028 tmp->bo_va = NULL; 2029 list_add(&tmp->list, &vm->freed); 2030 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2031 } 2032 2033 /* Insert partial mapping before the range */ 2034 if (!list_empty(&before->list)) { 2035 amdgpu_vm_it_insert(before, &vm->va); 2036 if (before->flags & AMDGPU_PTE_PRT) 2037 amdgpu_vm_prt_get(adev); 2038 } else { 2039 kfree(before); 2040 } 2041 2042 /* Insert partial mapping after the range */ 2043 if (!list_empty(&after->list)) { 2044 amdgpu_vm_it_insert(after, &vm->va); 2045 if (after->flags & AMDGPU_PTE_PRT) 2046 amdgpu_vm_prt_get(adev); 2047 } else { 2048 kfree(after); 2049 } 2050 2051 return 0; 2052 } 2053 2054 /** 2055 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2056 * 2057 * @vm: the requested VM 2058 * 2059 * Find a mapping by it's address. 2060 */ 2061 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2062 uint64_t addr) 2063 { 2064 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2065 } 2066 2067 /** 2068 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2069 * 2070 * @adev: amdgpu_device pointer 2071 * @bo_va: requested bo_va 2072 * 2073 * Remove @bo_va->bo from the requested vm. 2074 * 2075 * Object have to be reserved! 2076 */ 2077 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2078 struct amdgpu_bo_va *bo_va) 2079 { 2080 struct amdgpu_bo_va_mapping *mapping, *next; 2081 struct amdgpu_vm *vm = bo_va->base.vm; 2082 2083 list_del(&bo_va->base.bo_list); 2084 2085 spin_lock(&vm->status_lock); 2086 list_del(&bo_va->base.vm_status); 2087 spin_unlock(&vm->status_lock); 2088 2089 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2090 list_del(&mapping->list); 2091 amdgpu_vm_it_remove(mapping, &vm->va); 2092 mapping->bo_va = NULL; 2093 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2094 list_add(&mapping->list, &vm->freed); 2095 } 2096 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2097 list_del(&mapping->list); 2098 amdgpu_vm_it_remove(mapping, &vm->va); 2099 amdgpu_vm_free_mapping(adev, vm, mapping, 2100 bo_va->last_pt_update); 2101 } 2102 2103 dma_fence_put(bo_va->last_pt_update); 2104 kfree(bo_va); 2105 } 2106 2107 /** 2108 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2109 * 2110 * @adev: amdgpu_device pointer 2111 * @vm: requested vm 2112 * @bo: amdgpu buffer object 2113 * 2114 * Mark @bo as invalid. 2115 */ 2116 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2117 struct amdgpu_bo *bo, bool evicted) 2118 { 2119 struct amdgpu_vm_bo_base *bo_base; 2120 2121 list_for_each_entry(bo_base, &bo->va, bo_list) { 2122 struct amdgpu_vm *vm = bo_base->vm; 2123 2124 bo_base->moved = true; 2125 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2126 spin_lock(&bo_base->vm->status_lock); 2127 if (bo->tbo.type == ttm_bo_type_kernel) 2128 list_move(&bo_base->vm_status, &vm->evicted); 2129 else 2130 list_move_tail(&bo_base->vm_status, 2131 &vm->evicted); 2132 spin_unlock(&bo_base->vm->status_lock); 2133 continue; 2134 } 2135 2136 if (bo->tbo.type == ttm_bo_type_kernel) { 2137 spin_lock(&bo_base->vm->status_lock); 2138 if (list_empty(&bo_base->vm_status)) 2139 list_add(&bo_base->vm_status, &vm->relocated); 2140 spin_unlock(&bo_base->vm->status_lock); 2141 continue; 2142 } 2143 2144 spin_lock(&bo_base->vm->status_lock); 2145 if (list_empty(&bo_base->vm_status)) 2146 list_add(&bo_base->vm_status, &vm->moved); 2147 spin_unlock(&bo_base->vm->status_lock); 2148 } 2149 } 2150 2151 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2152 { 2153 /* Total bits covered by PD + PTs */ 2154 unsigned bits = ilog2(vm_size) + 18; 2155 2156 /* Make sure the PD is 4K in size up to 8GB address space. 2157 Above that split equal between PD and PTs */ 2158 if (vm_size <= 8) 2159 return (bits - 9); 2160 else 2161 return ((bits + 3) / 2); 2162 } 2163 2164 /** 2165 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2166 * 2167 * @adev: amdgpu_device pointer 2168 * @vm_size: the default vm size if it's set auto 2169 */ 2170 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size, 2171 uint32_t fragment_size_default, unsigned max_level, 2172 unsigned max_bits) 2173 { 2174 uint64_t tmp; 2175 2176 /* adjust vm size first */ 2177 if (amdgpu_vm_size != -1) { 2178 unsigned max_size = 1 << (max_bits - 30); 2179 2180 vm_size = amdgpu_vm_size; 2181 if (vm_size > max_size) { 2182 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2183 amdgpu_vm_size, max_size); 2184 vm_size = max_size; 2185 } 2186 } 2187 2188 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2189 2190 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2191 if (amdgpu_vm_block_size != -1) 2192 tmp >>= amdgpu_vm_block_size - 9; 2193 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2194 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2195 switch (adev->vm_manager.num_level) { 2196 case 3: 2197 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2198 break; 2199 case 2: 2200 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2201 break; 2202 case 1: 2203 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2204 break; 2205 default: 2206 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2207 } 2208 /* block size depends on vm size and hw setup*/ 2209 if (amdgpu_vm_block_size != -1) 2210 adev->vm_manager.block_size = 2211 min((unsigned)amdgpu_vm_block_size, max_bits 2212 - AMDGPU_GPU_PAGE_SHIFT 2213 - 9 * adev->vm_manager.num_level); 2214 else if (adev->vm_manager.num_level > 1) 2215 adev->vm_manager.block_size = 9; 2216 else 2217 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2218 2219 if (amdgpu_vm_fragment_size == -1) 2220 adev->vm_manager.fragment_size = fragment_size_default; 2221 else 2222 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2223 2224 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2225 vm_size, adev->vm_manager.num_level + 1, 2226 adev->vm_manager.block_size, 2227 adev->vm_manager.fragment_size); 2228 } 2229 2230 /** 2231 * amdgpu_vm_init - initialize a vm instance 2232 * 2233 * @adev: amdgpu_device pointer 2234 * @vm: requested vm 2235 * @vm_context: Indicates if it GFX or Compute context 2236 * 2237 * Init @vm fields. 2238 */ 2239 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2240 int vm_context, unsigned int pasid) 2241 { 2242 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2243 AMDGPU_VM_PTE_COUNT(adev) * 8); 2244 uint64_t init_pde_value = 0, flags; 2245 unsigned ring_instance; 2246 struct amdgpu_ring *ring; 2247 struct drm_sched_rq *rq; 2248 unsigned long size; 2249 int r, i; 2250 2251 vm->va = RB_ROOT_CACHED; 2252 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2253 vm->reserved_vmid[i] = NULL; 2254 spin_lock_init(&vm->status_lock); 2255 INIT_LIST_HEAD(&vm->evicted); 2256 INIT_LIST_HEAD(&vm->relocated); 2257 INIT_LIST_HEAD(&vm->moved); 2258 INIT_LIST_HEAD(&vm->freed); 2259 2260 /* create scheduler entity for page table updates */ 2261 2262 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2263 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2264 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2265 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2266 r = drm_sched_entity_init(&ring->sched, &vm->entity, 2267 rq, amdgpu_sched_jobs, NULL); 2268 if (r) 2269 return r; 2270 2271 vm->pte_support_ats = false; 2272 2273 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2274 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2275 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2276 2277 if (adev->asic_type == CHIP_RAVEN) { 2278 vm->pte_support_ats = true; 2279 init_pde_value = AMDGPU_PTE_DEFAULT_ATC 2280 | AMDGPU_PDE_PTE; 2281 2282 } 2283 } else 2284 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2285 AMDGPU_VM_USE_CPU_FOR_GFX); 2286 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2287 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2288 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2289 "CPU update of VM recommended only for large BAR system\n"); 2290 vm->last_update = NULL; 2291 2292 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 2293 AMDGPU_GEM_CREATE_VRAM_CLEARED; 2294 if (vm->use_cpu_for_update) 2295 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2296 else 2297 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2298 AMDGPU_GEM_CREATE_SHADOW); 2299 2300 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2301 r = amdgpu_bo_create(adev, size, align, true, AMDGPU_GEM_DOMAIN_VRAM, 2302 flags, NULL, NULL, init_pde_value, 2303 &vm->root.base.bo); 2304 if (r) 2305 goto error_free_sched_entity; 2306 2307 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2308 if (r) 2309 goto error_free_root; 2310 2311 vm->root.base.vm = vm; 2312 list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va); 2313 list_add_tail(&vm->root.base.vm_status, &vm->evicted); 2314 amdgpu_bo_unreserve(vm->root.base.bo); 2315 2316 if (pasid) { 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2320 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2321 GFP_ATOMIC); 2322 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2323 if (r < 0) 2324 goto error_free_root; 2325 2326 vm->pasid = pasid; 2327 } 2328 2329 INIT_KFIFO(vm->faults); 2330 vm->fault_credit = 16; 2331 2332 return 0; 2333 2334 error_free_root: 2335 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2336 amdgpu_bo_unref(&vm->root.base.bo); 2337 vm->root.base.bo = NULL; 2338 2339 error_free_sched_entity: 2340 drm_sched_entity_fini(&ring->sched, &vm->entity); 2341 2342 return r; 2343 } 2344 2345 /** 2346 * amdgpu_vm_free_levels - free PD/PT levels 2347 * 2348 * @adev: amdgpu device structure 2349 * @parent: PD/PT starting level to free 2350 * @level: level of parent structure 2351 * 2352 * Free the page directory or page table level and all sub levels. 2353 */ 2354 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2355 struct amdgpu_vm_pt *parent, 2356 unsigned level) 2357 { 2358 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2359 2360 if (parent->base.bo) { 2361 list_del(&parent->base.bo_list); 2362 list_del(&parent->base.vm_status); 2363 amdgpu_bo_unref(&parent->base.bo->shadow); 2364 amdgpu_bo_unref(&parent->base.bo); 2365 } 2366 2367 if (parent->entries) 2368 for (i = 0; i < num_entries; i++) 2369 amdgpu_vm_free_levels(adev, &parent->entries[i], 2370 level + 1); 2371 2372 kvfree(parent->entries); 2373 } 2374 2375 /** 2376 * amdgpu_vm_fini - tear down a vm instance 2377 * 2378 * @adev: amdgpu_device pointer 2379 * @vm: requested vm 2380 * 2381 * Tear down @vm. 2382 * Unbind the VM and remove all bos from the vm bo list 2383 */ 2384 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2385 { 2386 struct amdgpu_bo_va_mapping *mapping, *tmp; 2387 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2388 struct amdgpu_bo *root; 2389 u64 fault; 2390 int i, r; 2391 2392 /* Clear pending page faults from IH when the VM is destroyed */ 2393 while (kfifo_get(&vm->faults, &fault)) 2394 amdgpu_ih_clear_fault(adev, fault); 2395 2396 if (vm->pasid) { 2397 unsigned long flags; 2398 2399 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2400 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2401 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2402 } 2403 2404 drm_sched_entity_fini(vm->entity.sched, &vm->entity); 2405 2406 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2407 dev_err(adev->dev, "still active bo inside vm\n"); 2408 } 2409 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2410 &vm->va.rb_root, rb) { 2411 list_del(&mapping->list); 2412 amdgpu_vm_it_remove(mapping, &vm->va); 2413 kfree(mapping); 2414 } 2415 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2416 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2417 amdgpu_vm_prt_fini(adev, vm); 2418 prt_fini_needed = false; 2419 } 2420 2421 list_del(&mapping->list); 2422 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2423 } 2424 2425 root = amdgpu_bo_ref(vm->root.base.bo); 2426 r = amdgpu_bo_reserve(root, true); 2427 if (r) { 2428 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2429 } else { 2430 amdgpu_vm_free_levels(adev, &vm->root, 2431 adev->vm_manager.root_level); 2432 amdgpu_bo_unreserve(root); 2433 } 2434 amdgpu_bo_unref(&root); 2435 dma_fence_put(vm->last_update); 2436 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2437 amdgpu_vmid_free_reserved(adev, vm, i); 2438 } 2439 2440 /** 2441 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2442 * 2443 * @adev: amdgpu_device pointer 2444 * @pasid: PASID do identify the VM 2445 * 2446 * This function is expected to be called in interrupt context. Returns 2447 * true if there was fault credit, false otherwise 2448 */ 2449 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2450 unsigned int pasid) 2451 { 2452 struct amdgpu_vm *vm; 2453 2454 spin_lock(&adev->vm_manager.pasid_lock); 2455 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2456 if (!vm) { 2457 /* VM not found, can't track fault credit */ 2458 spin_unlock(&adev->vm_manager.pasid_lock); 2459 return true; 2460 } 2461 2462 /* No lock needed. only accessed by IRQ handler */ 2463 if (!vm->fault_credit) { 2464 /* Too many faults in this VM */ 2465 spin_unlock(&adev->vm_manager.pasid_lock); 2466 return false; 2467 } 2468 2469 vm->fault_credit--; 2470 spin_unlock(&adev->vm_manager.pasid_lock); 2471 return true; 2472 } 2473 2474 /** 2475 * amdgpu_vm_manager_init - init the VM manager 2476 * 2477 * @adev: amdgpu_device pointer 2478 * 2479 * Initialize the VM manager structures 2480 */ 2481 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2482 { 2483 unsigned i; 2484 2485 amdgpu_vmid_mgr_init(adev); 2486 2487 adev->vm_manager.fence_context = 2488 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2489 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2490 adev->vm_manager.seqno[i] = 0; 2491 2492 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2493 spin_lock_init(&adev->vm_manager.prt_lock); 2494 atomic_set(&adev->vm_manager.num_prt_users, 0); 2495 2496 /* If not overridden by the user, by default, only in large BAR systems 2497 * Compute VM tables will be updated by CPU 2498 */ 2499 #ifdef CONFIG_X86_64 2500 if (amdgpu_vm_update_mode == -1) { 2501 if (amdgpu_vm_is_large_bar(adev)) 2502 adev->vm_manager.vm_update_mode = 2503 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2504 else 2505 adev->vm_manager.vm_update_mode = 0; 2506 } else 2507 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2508 #else 2509 adev->vm_manager.vm_update_mode = 0; 2510 #endif 2511 2512 idr_init(&adev->vm_manager.pasid_idr); 2513 spin_lock_init(&adev->vm_manager.pasid_lock); 2514 } 2515 2516 /** 2517 * amdgpu_vm_manager_fini - cleanup VM manager 2518 * 2519 * @adev: amdgpu_device pointer 2520 * 2521 * Cleanup the VM manager and free resources. 2522 */ 2523 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2524 { 2525 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2526 idr_destroy(&adev->vm_manager.pasid_idr); 2527 2528 amdgpu_vmid_mgr_fini(adev); 2529 } 2530 2531 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2532 { 2533 union drm_amdgpu_vm *args = data; 2534 struct amdgpu_device *adev = dev->dev_private; 2535 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2536 int r; 2537 2538 switch (args->in.op) { 2539 case AMDGPU_VM_OP_RESERVE_VMID: 2540 /* current, we only have requirement to reserve vmid from gfxhub */ 2541 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2542 if (r) 2543 return r; 2544 break; 2545 case AMDGPU_VM_OP_UNRESERVE_VMID: 2546 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2547 break; 2548 default: 2549 return -EINVAL; 2550 } 2551 2552 return 0; 2553 } 2554