1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 
36 /*
37  * GPUVM
38  * GPUVM is similar to the legacy gart on older asics, however
39  * rather than there being a single global gart table
40  * for the entire GPU, there are multiple VM page tables active
41  * at any given time.  The VM page tables can contain a mix
42  * vram pages and system memory pages and system memory pages
43  * can be mapped as snooped (cached system pages) or unsnooped
44  * (uncached system pages).
45  * Each VM has an ID associated with it and there is a page table
46  * associated with each VMID.  When execting a command buffer,
47  * the kernel tells the the ring what VMID to use for that command
48  * buffer.  VMIDs are allocated dynamically as commands are submitted.
49  * The userspace drivers maintain their own address space and the kernel
50  * sets up their pages tables accordingly when they submit their
51  * command buffers and a VMID is assigned.
52  * Cayman/Trinity support up to 8 active VMs at any given time;
53  * SI supports 16.
54  */
55 
56 #define START(node) ((node)->start)
57 #define LAST(node) ((node)->last)
58 
59 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
60 		     START, LAST, static, amdgpu_vm_it)
61 
62 #undef START
63 #undef LAST
64 
65 /* Local structure. Encapsulate some VM table update parameters to reduce
66  * the number of function parameters
67  */
68 struct amdgpu_pte_update_params {
69 	/* amdgpu device we do this update for */
70 	struct amdgpu_device *adev;
71 	/* optional amdgpu_vm we do this update for */
72 	struct amdgpu_vm *vm;
73 	/* address where to copy page table entries from */
74 	uint64_t src;
75 	/* indirect buffer to fill with commands */
76 	struct amdgpu_ib *ib;
77 	/* Function which actually does the update */
78 	void (*func)(struct amdgpu_pte_update_params *params,
79 		     struct amdgpu_bo *bo, uint64_t pe,
80 		     uint64_t addr, unsigned count, uint32_t incr,
81 		     uint64_t flags);
82 	/* The next two are used during VM update by CPU
83 	 *  DMA addresses to use for mapping
84 	 *  Kernel pointer of PD/PT BO that needs to be updated
85 	 */
86 	dma_addr_t *pages_addr;
87 	void *kptr;
88 };
89 
90 /* Helper to disable partial resident texture feature from a fence callback */
91 struct amdgpu_prt_cb {
92 	struct amdgpu_device *adev;
93 	struct dma_fence_cb cb;
94 };
95 
96 /**
97  * amdgpu_vm_level_shift - return the addr shift for each level
98  *
99  * @adev: amdgpu_device pointer
100  *
101  * Returns the number of bits the pfn needs to be right shifted for a level.
102  */
103 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
104 				      unsigned level)
105 {
106 	unsigned shift = 0xff;
107 
108 	switch (level) {
109 	case AMDGPU_VM_PDB2:
110 	case AMDGPU_VM_PDB1:
111 	case AMDGPU_VM_PDB0:
112 		shift = 9 * (AMDGPU_VM_PDB0 - level) +
113 			adev->vm_manager.block_size;
114 		break;
115 	case AMDGPU_VM_PTB:
116 		shift = 0;
117 		break;
118 	default:
119 		dev_err(adev->dev, "the level%d isn't supported.\n", level);
120 	}
121 
122 	return shift;
123 }
124 
125 /**
126  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
127  *
128  * @adev: amdgpu_device pointer
129  *
130  * Calculate the number of entries in a page directory or page table.
131  */
132 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
133 				      unsigned level)
134 {
135 	unsigned shift = amdgpu_vm_level_shift(adev,
136 					       adev->vm_manager.root_level);
137 
138 	if (level == adev->vm_manager.root_level)
139 		/* For the root directory */
140 		return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift;
141 	else if (level != AMDGPU_VM_PTB)
142 		/* Everything in between */
143 		return 512;
144 	else
145 		/* For the page tables on the leaves */
146 		return AMDGPU_VM_PTE_COUNT(adev);
147 }
148 
149 /**
150  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
151  *
152  * @adev: amdgpu_device pointer
153  *
154  * Calculate the size of the BO for a page directory or page table in bytes.
155  */
156 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
157 {
158 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
159 }
160 
161 /**
162  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
163  *
164  * @vm: vm providing the BOs
165  * @validated: head of validation list
166  * @entry: entry to add
167  *
168  * Add the page directory to the list of BOs to
169  * validate for command submission.
170  */
171 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
172 			 struct list_head *validated,
173 			 struct amdgpu_bo_list_entry *entry)
174 {
175 	entry->robj = vm->root.base.bo;
176 	entry->priority = 0;
177 	entry->tv.bo = &entry->robj->tbo;
178 	entry->tv.shared = true;
179 	entry->user_pages = NULL;
180 	list_add(&entry->tv.head, validated);
181 }
182 
183 /**
184  * amdgpu_vm_validate_pt_bos - validate the page table BOs
185  *
186  * @adev: amdgpu device pointer
187  * @vm: vm providing the BOs
188  * @validate: callback to do the validation
189  * @param: parameter for the validation callback
190  *
191  * Validate the page table BOs on command submission if neccessary.
192  */
193 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
194 			      int (*validate)(void *p, struct amdgpu_bo *bo),
195 			      void *param)
196 {
197 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
198 	int r;
199 
200 	spin_lock(&vm->status_lock);
201 	while (!list_empty(&vm->evicted)) {
202 		struct amdgpu_vm_bo_base *bo_base;
203 		struct amdgpu_bo *bo;
204 
205 		bo_base = list_first_entry(&vm->evicted,
206 					   struct amdgpu_vm_bo_base,
207 					   vm_status);
208 		spin_unlock(&vm->status_lock);
209 
210 		bo = bo_base->bo;
211 		BUG_ON(!bo);
212 		if (bo->parent) {
213 			r = validate(param, bo);
214 			if (r)
215 				return r;
216 
217 			spin_lock(&glob->lru_lock);
218 			ttm_bo_move_to_lru_tail(&bo->tbo);
219 			if (bo->shadow)
220 				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
221 			spin_unlock(&glob->lru_lock);
222 		}
223 
224 		if (bo->tbo.type == ttm_bo_type_kernel &&
225 		    vm->use_cpu_for_update) {
226 			r = amdgpu_bo_kmap(bo, NULL);
227 			if (r)
228 				return r;
229 		}
230 
231 		spin_lock(&vm->status_lock);
232 		if (bo->tbo.type != ttm_bo_type_kernel)
233 			list_move(&bo_base->vm_status, &vm->moved);
234 		else
235 			list_move(&bo_base->vm_status, &vm->relocated);
236 	}
237 	spin_unlock(&vm->status_lock);
238 
239 	return 0;
240 }
241 
242 /**
243  * amdgpu_vm_ready - check VM is ready for updates
244  *
245  * @vm: VM to check
246  *
247  * Check if all VM PDs/PTs are ready for updates
248  */
249 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
250 {
251 	bool ready;
252 
253 	spin_lock(&vm->status_lock);
254 	ready = list_empty(&vm->evicted);
255 	spin_unlock(&vm->status_lock);
256 
257 	return ready;
258 }
259 
260 /**
261  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
262  *
263  * @adev: amdgpu_device pointer
264  * @vm: requested vm
265  * @saddr: start of the address range
266  * @eaddr: end of the address range
267  *
268  * Make sure the page directories and page tables are allocated
269  */
270 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
271 				  struct amdgpu_vm *vm,
272 				  struct amdgpu_vm_pt *parent,
273 				  uint64_t saddr, uint64_t eaddr,
274 				  unsigned level)
275 {
276 	unsigned shift = amdgpu_vm_level_shift(adev, level);
277 	unsigned pt_idx, from, to;
278 	int r;
279 	u64 flags;
280 	uint64_t init_value = 0;
281 
282 	if (!parent->entries) {
283 		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
284 
285 		parent->entries = kvmalloc_array(num_entries,
286 						   sizeof(struct amdgpu_vm_pt),
287 						   GFP_KERNEL | __GFP_ZERO);
288 		if (!parent->entries)
289 			return -ENOMEM;
290 		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
291 	}
292 
293 	from = saddr >> shift;
294 	to = eaddr >> shift;
295 	if (from >= amdgpu_vm_num_entries(adev, level) ||
296 	    to >= amdgpu_vm_num_entries(adev, level))
297 		return -EINVAL;
298 
299 	++level;
300 	saddr = saddr & ((1 << shift) - 1);
301 	eaddr = eaddr & ((1 << shift) - 1);
302 
303 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
304 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
305 	if (vm->use_cpu_for_update)
306 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
307 	else
308 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
309 				AMDGPU_GEM_CREATE_SHADOW);
310 
311 	if (vm->pte_support_ats) {
312 		init_value = AMDGPU_PTE_DEFAULT_ATC;
313 		if (level != AMDGPU_VM_PTB)
314 			init_value |= AMDGPU_PDE_PTE;
315 
316 	}
317 
318 	/* walk over the address space and allocate the page tables */
319 	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
320 		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
321 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
322 		struct amdgpu_bo *pt;
323 
324 		if (!entry->base.bo) {
325 			r = amdgpu_bo_create(adev,
326 					     amdgpu_vm_bo_size(adev, level),
327 					     AMDGPU_GPU_PAGE_SIZE, true,
328 					     AMDGPU_GEM_DOMAIN_VRAM,
329 					     flags,
330 					     NULL, resv, init_value, &pt);
331 			if (r)
332 				return r;
333 
334 			if (vm->use_cpu_for_update) {
335 				r = amdgpu_bo_kmap(pt, NULL);
336 				if (r) {
337 					amdgpu_bo_unref(&pt);
338 					return r;
339 				}
340 			}
341 
342 			/* Keep a reference to the root directory to avoid
343 			* freeing them up in the wrong order.
344 			*/
345 			pt->parent = amdgpu_bo_ref(parent->base.bo);
346 
347 			entry->base.vm = vm;
348 			entry->base.bo = pt;
349 			list_add_tail(&entry->base.bo_list, &pt->va);
350 			spin_lock(&vm->status_lock);
351 			list_add(&entry->base.vm_status, &vm->relocated);
352 			spin_unlock(&vm->status_lock);
353 		}
354 
355 		if (level < AMDGPU_VM_PTB) {
356 			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
357 			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
358 				((1 << shift) - 1);
359 			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
360 						   sub_eaddr, level);
361 			if (r)
362 				return r;
363 		}
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  * amdgpu_vm_alloc_pts - Allocate page tables.
371  *
372  * @adev: amdgpu_device pointer
373  * @vm: VM to allocate page tables for
374  * @saddr: Start address which needs to be allocated
375  * @size: Size from start address we need.
376  *
377  * Make sure the page tables are allocated.
378  */
379 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
380 			struct amdgpu_vm *vm,
381 			uint64_t saddr, uint64_t size)
382 {
383 	uint64_t last_pfn;
384 	uint64_t eaddr;
385 
386 	/* validate the parameters */
387 	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
388 		return -EINVAL;
389 
390 	eaddr = saddr + size - 1;
391 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
392 	if (last_pfn >= adev->vm_manager.max_pfn) {
393 		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
394 			last_pfn, adev->vm_manager.max_pfn);
395 		return -EINVAL;
396 	}
397 
398 	saddr /= AMDGPU_GPU_PAGE_SIZE;
399 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
400 
401 	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr,
402 				      adev->vm_manager.root_level);
403 }
404 
405 /**
406  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
407  *
408  * @adev: amdgpu_device pointer
409  */
410 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
411 {
412 	const struct amdgpu_ip_block *ip_block;
413 	bool has_compute_vm_bug;
414 	struct amdgpu_ring *ring;
415 	int i;
416 
417 	has_compute_vm_bug = false;
418 
419 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
420 	if (ip_block) {
421 		/* Compute has a VM bug for GFX version < 7.
422 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
423 		if (ip_block->version->major <= 7)
424 			has_compute_vm_bug = true;
425 		else if (ip_block->version->major == 8)
426 			if (adev->gfx.mec_fw_version < 673)
427 				has_compute_vm_bug = true;
428 	}
429 
430 	for (i = 0; i < adev->num_rings; i++) {
431 		ring = adev->rings[i];
432 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
433 			/* only compute rings */
434 			ring->has_compute_vm_bug = has_compute_vm_bug;
435 		else
436 			ring->has_compute_vm_bug = false;
437 	}
438 }
439 
440 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
441 				  struct amdgpu_job *job)
442 {
443 	struct amdgpu_device *adev = ring->adev;
444 	unsigned vmhub = ring->funcs->vmhub;
445 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
446 	struct amdgpu_vmid *id;
447 	bool gds_switch_needed;
448 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
449 
450 	if (job->vmid == 0)
451 		return false;
452 	id = &id_mgr->ids[job->vmid];
453 	gds_switch_needed = ring->funcs->emit_gds_switch && (
454 		id->gds_base != job->gds_base ||
455 		id->gds_size != job->gds_size ||
456 		id->gws_base != job->gws_base ||
457 		id->gws_size != job->gws_size ||
458 		id->oa_base != job->oa_base ||
459 		id->oa_size != job->oa_size);
460 
461 	if (amdgpu_vmid_had_gpu_reset(adev, id))
462 		return true;
463 
464 	return vm_flush_needed || gds_switch_needed;
465 }
466 
467 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
468 {
469 	return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size);
470 }
471 
472 /**
473  * amdgpu_vm_flush - hardware flush the vm
474  *
475  * @ring: ring to use for flush
476  * @vmid: vmid number to use
477  * @pd_addr: address of the page directory
478  *
479  * Emit a VM flush when it is necessary.
480  */
481 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
482 {
483 	struct amdgpu_device *adev = ring->adev;
484 	unsigned vmhub = ring->funcs->vmhub;
485 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
486 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
487 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
488 		id->gds_base != job->gds_base ||
489 		id->gds_size != job->gds_size ||
490 		id->gws_base != job->gws_base ||
491 		id->gws_size != job->gws_size ||
492 		id->oa_base != job->oa_base ||
493 		id->oa_size != job->oa_size);
494 	bool vm_flush_needed = job->vm_needs_flush;
495 	unsigned patch_offset = 0;
496 	int r;
497 
498 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
499 		gds_switch_needed = true;
500 		vm_flush_needed = true;
501 	}
502 
503 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
504 		return 0;
505 
506 	if (ring->funcs->init_cond_exec)
507 		patch_offset = amdgpu_ring_init_cond_exec(ring);
508 
509 	if (need_pipe_sync)
510 		amdgpu_ring_emit_pipeline_sync(ring);
511 
512 	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
513 		struct dma_fence *fence;
514 
515 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
516 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->pasid,
517 					  job->vm_pd_addr);
518 
519 		r = amdgpu_fence_emit(ring, &fence);
520 		if (r)
521 			return r;
522 
523 		mutex_lock(&id_mgr->lock);
524 		dma_fence_put(id->last_flush);
525 		id->last_flush = fence;
526 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
527 		mutex_unlock(&id_mgr->lock);
528 	}
529 
530 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
531 		id->gds_base = job->gds_base;
532 		id->gds_size = job->gds_size;
533 		id->gws_base = job->gws_base;
534 		id->gws_size = job->gws_size;
535 		id->oa_base = job->oa_base;
536 		id->oa_size = job->oa_size;
537 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
538 					    job->gds_size, job->gws_base,
539 					    job->gws_size, job->oa_base,
540 					    job->oa_size);
541 	}
542 
543 	if (ring->funcs->patch_cond_exec)
544 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
545 
546 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
547 	if (ring->funcs->emit_switch_buffer) {
548 		amdgpu_ring_emit_switch_buffer(ring);
549 		amdgpu_ring_emit_switch_buffer(ring);
550 	}
551 	return 0;
552 }
553 
554 /**
555  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
556  *
557  * @vm: requested vm
558  * @bo: requested buffer object
559  *
560  * Find @bo inside the requested vm.
561  * Search inside the @bos vm list for the requested vm
562  * Returns the found bo_va or NULL if none is found
563  *
564  * Object has to be reserved!
565  */
566 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
567 				       struct amdgpu_bo *bo)
568 {
569 	struct amdgpu_bo_va *bo_va;
570 
571 	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
572 		if (bo_va->base.vm == vm) {
573 			return bo_va;
574 		}
575 	}
576 	return NULL;
577 }
578 
579 /**
580  * amdgpu_vm_do_set_ptes - helper to call the right asic function
581  *
582  * @params: see amdgpu_pte_update_params definition
583  * @bo: PD/PT to update
584  * @pe: addr of the page entry
585  * @addr: dst addr to write into pe
586  * @count: number of page entries to update
587  * @incr: increase next addr by incr bytes
588  * @flags: hw access flags
589  *
590  * Traces the parameters and calls the right asic functions
591  * to setup the page table using the DMA.
592  */
593 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
594 				  struct amdgpu_bo *bo,
595 				  uint64_t pe, uint64_t addr,
596 				  unsigned count, uint32_t incr,
597 				  uint64_t flags)
598 {
599 	pe += amdgpu_bo_gpu_offset(bo);
600 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
601 
602 	if (count < 3) {
603 		amdgpu_vm_write_pte(params->adev, params->ib, pe,
604 				    addr | flags, count, incr);
605 
606 	} else {
607 		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
608 				      count, incr, flags);
609 	}
610 }
611 
612 /**
613  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
614  *
615  * @params: see amdgpu_pte_update_params definition
616  * @bo: PD/PT to update
617  * @pe: addr of the page entry
618  * @addr: dst addr to write into pe
619  * @count: number of page entries to update
620  * @incr: increase next addr by incr bytes
621  * @flags: hw access flags
622  *
623  * Traces the parameters and calls the DMA function to copy the PTEs.
624  */
625 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
626 				   struct amdgpu_bo *bo,
627 				   uint64_t pe, uint64_t addr,
628 				   unsigned count, uint32_t incr,
629 				   uint64_t flags)
630 {
631 	uint64_t src = (params->src + (addr >> 12) * 8);
632 
633 	pe += amdgpu_bo_gpu_offset(bo);
634 	trace_amdgpu_vm_copy_ptes(pe, src, count);
635 
636 	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
637 }
638 
639 /**
640  * amdgpu_vm_map_gart - Resolve gart mapping of addr
641  *
642  * @pages_addr: optional DMA address to use for lookup
643  * @addr: the unmapped addr
644  *
645  * Look up the physical address of the page that the pte resolves
646  * to and return the pointer for the page table entry.
647  */
648 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
649 {
650 	uint64_t result;
651 
652 	/* page table offset */
653 	result = pages_addr[addr >> PAGE_SHIFT];
654 
655 	/* in case cpu page size != gpu page size*/
656 	result |= addr & (~PAGE_MASK);
657 
658 	result &= 0xFFFFFFFFFFFFF000ULL;
659 
660 	return result;
661 }
662 
663 /**
664  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
665  *
666  * @params: see amdgpu_pte_update_params definition
667  * @bo: PD/PT to update
668  * @pe: kmap addr of the page entry
669  * @addr: dst addr to write into pe
670  * @count: number of page entries to update
671  * @incr: increase next addr by incr bytes
672  * @flags: hw access flags
673  *
674  * Write count number of PT/PD entries directly.
675  */
676 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
677 				   struct amdgpu_bo *bo,
678 				   uint64_t pe, uint64_t addr,
679 				   unsigned count, uint32_t incr,
680 				   uint64_t flags)
681 {
682 	unsigned int i;
683 	uint64_t value;
684 
685 	pe += (unsigned long)amdgpu_bo_kptr(bo);
686 
687 	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
688 
689 	for (i = 0; i < count; i++) {
690 		value = params->pages_addr ?
691 			amdgpu_vm_map_gart(params->pages_addr, addr) :
692 			addr;
693 		amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
694 				       i, value, flags);
695 		addr += incr;
696 	}
697 }
698 
699 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
700 			     void *owner)
701 {
702 	struct amdgpu_sync sync;
703 	int r;
704 
705 	amdgpu_sync_create(&sync);
706 	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
707 	r = amdgpu_sync_wait(&sync, true);
708 	amdgpu_sync_free(&sync);
709 
710 	return r;
711 }
712 
713 /*
714  * amdgpu_vm_update_pde - update a single level in the hierarchy
715  *
716  * @param: parameters for the update
717  * @vm: requested vm
718  * @parent: parent directory
719  * @entry: entry to update
720  *
721  * Makes sure the requested entry in parent is up to date.
722  */
723 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
724 				 struct amdgpu_vm *vm,
725 				 struct amdgpu_vm_pt *parent,
726 				 struct amdgpu_vm_pt *entry)
727 {
728 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
729 	uint64_t pde, pt, flags;
730 	unsigned level;
731 
732 	/* Don't update huge pages here */
733 	if (entry->huge)
734 		return;
735 
736 	for (level = 0, pbo = bo->parent; pbo; ++level)
737 		pbo = pbo->parent;
738 
739 	level += params->adev->vm_manager.root_level;
740 	pt = amdgpu_bo_gpu_offset(entry->base.bo);
741 	flags = AMDGPU_PTE_VALID;
742 	amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags);
743 	pde = (entry - parent->entries) * 8;
744 	if (bo->shadow)
745 		params->func(params, bo->shadow, pde, pt, 1, 0, flags);
746 	params->func(params, bo, pde, pt, 1, 0, flags);
747 }
748 
749 /*
750  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
751  *
752  * @parent: parent PD
753  *
754  * Mark all PD level as invalid after an error.
755  */
756 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev,
757 				       struct amdgpu_vm *vm,
758 				       struct amdgpu_vm_pt *parent,
759 				       unsigned level)
760 {
761 	unsigned pt_idx, num_entries;
762 
763 	/*
764 	 * Recurse into the subdirectories. This recursion is harmless because
765 	 * we only have a maximum of 5 layers.
766 	 */
767 	num_entries = amdgpu_vm_num_entries(adev, level);
768 	for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) {
769 		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
770 
771 		if (!entry->base.bo)
772 			continue;
773 
774 		spin_lock(&vm->status_lock);
775 		if (list_empty(&entry->base.vm_status))
776 			list_add(&entry->base.vm_status, &vm->relocated);
777 		spin_unlock(&vm->status_lock);
778 		amdgpu_vm_invalidate_level(adev, vm, entry, level + 1);
779 	}
780 }
781 
782 /*
783  * amdgpu_vm_update_directories - make sure that all directories are valid
784  *
785  * @adev: amdgpu_device pointer
786  * @vm: requested vm
787  *
788  * Makes sure all directories are up to date.
789  * Returns 0 for success, error for failure.
790  */
791 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
792 				 struct amdgpu_vm *vm)
793 {
794 	struct amdgpu_pte_update_params params;
795 	struct amdgpu_job *job;
796 	unsigned ndw = 0;
797 	int r = 0;
798 
799 	if (list_empty(&vm->relocated))
800 		return 0;
801 
802 restart:
803 	memset(&params, 0, sizeof(params));
804 	params.adev = adev;
805 
806 	if (vm->use_cpu_for_update) {
807 		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
808 		if (unlikely(r))
809 			return r;
810 
811 		params.func = amdgpu_vm_cpu_set_ptes;
812 	} else {
813 		ndw = 512 * 8;
814 		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
815 		if (r)
816 			return r;
817 
818 		params.ib = &job->ibs[0];
819 		params.func = amdgpu_vm_do_set_ptes;
820 	}
821 
822 	spin_lock(&vm->status_lock);
823 	while (!list_empty(&vm->relocated)) {
824 		struct amdgpu_vm_bo_base *bo_base, *parent;
825 		struct amdgpu_vm_pt *pt, *entry;
826 		struct amdgpu_bo *bo;
827 
828 		bo_base = list_first_entry(&vm->relocated,
829 					   struct amdgpu_vm_bo_base,
830 					   vm_status);
831 		list_del_init(&bo_base->vm_status);
832 		spin_unlock(&vm->status_lock);
833 
834 		bo = bo_base->bo->parent;
835 		if (!bo) {
836 			spin_lock(&vm->status_lock);
837 			continue;
838 		}
839 
840 		parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base,
841 					  bo_list);
842 		pt = container_of(parent, struct amdgpu_vm_pt, base);
843 		entry = container_of(bo_base, struct amdgpu_vm_pt, base);
844 
845 		amdgpu_vm_update_pde(&params, vm, pt, entry);
846 
847 		spin_lock(&vm->status_lock);
848 		if (!vm->use_cpu_for_update &&
849 		    (ndw - params.ib->length_dw) < 32)
850 			break;
851 	}
852 	spin_unlock(&vm->status_lock);
853 
854 	if (vm->use_cpu_for_update) {
855 		/* Flush HDP */
856 		mb();
857 		amdgpu_asic_flush_hdp(adev);
858 	} else if (params.ib->length_dw == 0) {
859 		amdgpu_job_free(job);
860 	} else {
861 		struct amdgpu_bo *root = vm->root.base.bo;
862 		struct amdgpu_ring *ring;
863 		struct dma_fence *fence;
864 
865 		ring = container_of(vm->entity.sched, struct amdgpu_ring,
866 				    sched);
867 
868 		amdgpu_ring_pad_ib(ring, params.ib);
869 		amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
870 				 AMDGPU_FENCE_OWNER_VM, false);
871 		if (root->shadow)
872 			amdgpu_sync_resv(adev, &job->sync,
873 					 root->shadow->tbo.resv,
874 					 AMDGPU_FENCE_OWNER_VM, false);
875 
876 		WARN_ON(params.ib->length_dw > ndw);
877 		r = amdgpu_job_submit(job, ring, &vm->entity,
878 				      AMDGPU_FENCE_OWNER_VM, &fence);
879 		if (r)
880 			goto error;
881 
882 		amdgpu_bo_fence(root, fence, true);
883 		dma_fence_put(vm->last_update);
884 		vm->last_update = fence;
885 	}
886 
887 	if (!list_empty(&vm->relocated))
888 		goto restart;
889 
890 	return 0;
891 
892 error:
893 	amdgpu_vm_invalidate_level(adev, vm, &vm->root,
894 				   adev->vm_manager.root_level);
895 	amdgpu_job_free(job);
896 	return r;
897 }
898 
899 /**
900  * amdgpu_vm_find_entry - find the entry for an address
901  *
902  * @p: see amdgpu_pte_update_params definition
903  * @addr: virtual address in question
904  * @entry: resulting entry or NULL
905  * @parent: parent entry
906  *
907  * Find the vm_pt entry and it's parent for the given address.
908  */
909 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
910 			 struct amdgpu_vm_pt **entry,
911 			 struct amdgpu_vm_pt **parent)
912 {
913 	unsigned level = p->adev->vm_manager.root_level;
914 
915 	*parent = NULL;
916 	*entry = &p->vm->root;
917 	while ((*entry)->entries) {
918 		unsigned shift = amdgpu_vm_level_shift(p->adev, level++);
919 
920 		*parent = *entry;
921 		*entry = &(*entry)->entries[addr >> shift];
922 		addr &= (1ULL << shift) - 1;
923 	}
924 
925 	if (level != AMDGPU_VM_PTB)
926 		*entry = NULL;
927 }
928 
929 /**
930  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
931  *
932  * @p: see amdgpu_pte_update_params definition
933  * @entry: vm_pt entry to check
934  * @parent: parent entry
935  * @nptes: number of PTEs updated with this operation
936  * @dst: destination address where the PTEs should point to
937  * @flags: access flags fro the PTEs
938  *
939  * Check if we can update the PD with a huge page.
940  */
941 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
942 					struct amdgpu_vm_pt *entry,
943 					struct amdgpu_vm_pt *parent,
944 					unsigned nptes, uint64_t dst,
945 					uint64_t flags)
946 {
947 	uint64_t pde;
948 
949 	/* In the case of a mixed PT the PDE must point to it*/
950 	if (p->adev->asic_type >= CHIP_VEGA10 && !p->src &&
951 	    nptes == AMDGPU_VM_PTE_COUNT(p->adev)) {
952 		/* Set the huge page flag to stop scanning at this PDE */
953 		flags |= AMDGPU_PDE_PTE;
954 	}
955 
956 	if (!(flags & AMDGPU_PDE_PTE)) {
957 		if (entry->huge) {
958 			/* Add the entry to the relocated list to update it. */
959 			entry->huge = false;
960 			spin_lock(&p->vm->status_lock);
961 			list_move(&entry->base.vm_status, &p->vm->relocated);
962 			spin_unlock(&p->vm->status_lock);
963 		}
964 		return;
965 	}
966 
967 	entry->huge = true;
968 	amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags);
969 
970 	pde = (entry - parent->entries) * 8;
971 	if (parent->base.bo->shadow)
972 		p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags);
973 	p->func(p, parent->base.bo, pde, dst, 1, 0, flags);
974 }
975 
976 /**
977  * amdgpu_vm_update_ptes - make sure that page tables are valid
978  *
979  * @params: see amdgpu_pte_update_params definition
980  * @vm: requested vm
981  * @start: start of GPU address range
982  * @end: end of GPU address range
983  * @dst: destination address to map to, the next dst inside the function
984  * @flags: mapping flags
985  *
986  * Update the page tables in the range @start - @end.
987  * Returns 0 for success, -EINVAL for failure.
988  */
989 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
990 				  uint64_t start, uint64_t end,
991 				  uint64_t dst, uint64_t flags)
992 {
993 	struct amdgpu_device *adev = params->adev;
994 	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
995 
996 	uint64_t addr, pe_start;
997 	struct amdgpu_bo *pt;
998 	unsigned nptes;
999 
1000 	/* walk over the address space and update the page tables */
1001 	for (addr = start; addr < end; addr += nptes,
1002 	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1003 		struct amdgpu_vm_pt *entry, *parent;
1004 
1005 		amdgpu_vm_get_entry(params, addr, &entry, &parent);
1006 		if (!entry)
1007 			return -ENOENT;
1008 
1009 		if ((addr & ~mask) == (end & ~mask))
1010 			nptes = end - addr;
1011 		else
1012 			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1013 
1014 		amdgpu_vm_handle_huge_pages(params, entry, parent,
1015 					    nptes, dst, flags);
1016 		/* We don't need to update PTEs for huge pages */
1017 		if (entry->huge)
1018 			continue;
1019 
1020 		pt = entry->base.bo;
1021 		pe_start = (addr & mask) * 8;
1022 		if (pt->shadow)
1023 			params->func(params, pt->shadow, pe_start, dst, nptes,
1024 				     AMDGPU_GPU_PAGE_SIZE, flags);
1025 		params->func(params, pt, pe_start, dst, nptes,
1026 			     AMDGPU_GPU_PAGE_SIZE, flags);
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 /*
1033  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1034  *
1035  * @params: see amdgpu_pte_update_params definition
1036  * @vm: requested vm
1037  * @start: first PTE to handle
1038  * @end: last PTE to handle
1039  * @dst: addr those PTEs should point to
1040  * @flags: hw mapping flags
1041  * Returns 0 for success, -EINVAL for failure.
1042  */
1043 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
1044 				uint64_t start, uint64_t end,
1045 				uint64_t dst, uint64_t flags)
1046 {
1047 	/**
1048 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1049 	 * field in the PTE. When this field is set to a non-zero value, page
1050 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1051 	 * flags are considered valid for all PTEs within the fragment range
1052 	 * and corresponding mappings are assumed to be physically contiguous.
1053 	 *
1054 	 * The L1 TLB can store a single PTE for the whole fragment,
1055 	 * significantly increasing the space available for translation
1056 	 * caching. This leads to large improvements in throughput when the
1057 	 * TLB is under pressure.
1058 	 *
1059 	 * The L2 TLB distributes small and large fragments into two
1060 	 * asymmetric partitions. The large fragment cache is significantly
1061 	 * larger. Thus, we try to use large fragments wherever possible.
1062 	 * Userspace can support this by aligning virtual base address and
1063 	 * allocation size to the fragment size.
1064 	 */
1065 	unsigned max_frag = params->adev->vm_manager.fragment_size;
1066 	int r;
1067 
1068 	/* system pages are non continuously */
1069 	if (params->src || !(flags & AMDGPU_PTE_VALID))
1070 		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1071 
1072 	while (start != end) {
1073 		uint64_t frag_flags, frag_end;
1074 		unsigned frag;
1075 
1076 		/* This intentionally wraps around if no bit is set */
1077 		frag = min((unsigned)ffs(start) - 1,
1078 			   (unsigned)fls64(end - start) - 1);
1079 		if (frag >= max_frag) {
1080 			frag_flags = AMDGPU_PTE_FRAG(max_frag);
1081 			frag_end = end & ~((1ULL << max_frag) - 1);
1082 		} else {
1083 			frag_flags = AMDGPU_PTE_FRAG(frag);
1084 			frag_end = start + (1 << frag);
1085 		}
1086 
1087 		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1088 					  flags | frag_flags);
1089 		if (r)
1090 			return r;
1091 
1092 		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1093 		start = frag_end;
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /**
1100  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1101  *
1102  * @adev: amdgpu_device pointer
1103  * @exclusive: fence we need to sync to
1104  * @pages_addr: DMA addresses to use for mapping
1105  * @vm: requested vm
1106  * @start: start of mapped range
1107  * @last: last mapped entry
1108  * @flags: flags for the entries
1109  * @addr: addr to set the area to
1110  * @fence: optional resulting fence
1111  *
1112  * Fill in the page table entries between @start and @last.
1113  * Returns 0 for success, -EINVAL for failure.
1114  */
1115 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1116 				       struct dma_fence *exclusive,
1117 				       dma_addr_t *pages_addr,
1118 				       struct amdgpu_vm *vm,
1119 				       uint64_t start, uint64_t last,
1120 				       uint64_t flags, uint64_t addr,
1121 				       struct dma_fence **fence)
1122 {
1123 	struct amdgpu_ring *ring;
1124 	void *owner = AMDGPU_FENCE_OWNER_VM;
1125 	unsigned nptes, ncmds, ndw;
1126 	struct amdgpu_job *job;
1127 	struct amdgpu_pte_update_params params;
1128 	struct dma_fence *f = NULL;
1129 	int r;
1130 
1131 	memset(&params, 0, sizeof(params));
1132 	params.adev = adev;
1133 	params.vm = vm;
1134 
1135 	/* sync to everything on unmapping */
1136 	if (!(flags & AMDGPU_PTE_VALID))
1137 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1138 
1139 	if (vm->use_cpu_for_update) {
1140 		/* params.src is used as flag to indicate system Memory */
1141 		if (pages_addr)
1142 			params.src = ~0;
1143 
1144 		/* Wait for PT BOs to be free. PTs share the same resv. object
1145 		 * as the root PD BO
1146 		 */
1147 		r = amdgpu_vm_wait_pd(adev, vm, owner);
1148 		if (unlikely(r))
1149 			return r;
1150 
1151 		params.func = amdgpu_vm_cpu_set_ptes;
1152 		params.pages_addr = pages_addr;
1153 		return amdgpu_vm_frag_ptes(&params, start, last + 1,
1154 					   addr, flags);
1155 	}
1156 
1157 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1158 
1159 	nptes = last - start + 1;
1160 
1161 	/*
1162 	 * reserve space for two commands every (1 << BLOCK_SIZE)
1163 	 *  entries or 2k dwords (whatever is smaller)
1164          *
1165          * The second command is for the shadow pagetables.
1166 	 */
1167 	if (vm->root.base.bo->shadow)
1168 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1169 	else
1170 		ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1171 
1172 	/* padding, etc. */
1173 	ndw = 64;
1174 
1175 	if (pages_addr) {
1176 		/* copy commands needed */
1177 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1178 
1179 		/* and also PTEs */
1180 		ndw += nptes * 2;
1181 
1182 		params.func = amdgpu_vm_do_copy_ptes;
1183 
1184 	} else {
1185 		/* set page commands needed */
1186 		ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
1187 
1188 		/* extra commands for begin/end fragments */
1189 		ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
1190 				* adev->vm_manager.fragment_size;
1191 
1192 		params.func = amdgpu_vm_do_set_ptes;
1193 	}
1194 
1195 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1196 	if (r)
1197 		return r;
1198 
1199 	params.ib = &job->ibs[0];
1200 
1201 	if (pages_addr) {
1202 		uint64_t *pte;
1203 		unsigned i;
1204 
1205 		/* Put the PTEs at the end of the IB. */
1206 		i = ndw - nptes * 2;
1207 		pte= (uint64_t *)&(job->ibs->ptr[i]);
1208 		params.src = job->ibs->gpu_addr + i * 4;
1209 
1210 		for (i = 0; i < nptes; ++i) {
1211 			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1212 						    AMDGPU_GPU_PAGE_SIZE);
1213 			pte[i] |= flags;
1214 		}
1215 		addr = 0;
1216 	}
1217 
1218 	r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1219 	if (r)
1220 		goto error_free;
1221 
1222 	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1223 			     owner, false);
1224 	if (r)
1225 		goto error_free;
1226 
1227 	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1228 	if (r)
1229 		goto error_free;
1230 
1231 	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1232 	if (r)
1233 		goto error_free;
1234 
1235 	amdgpu_ring_pad_ib(ring, params.ib);
1236 	WARN_ON(params.ib->length_dw > ndw);
1237 	r = amdgpu_job_submit(job, ring, &vm->entity,
1238 			      AMDGPU_FENCE_OWNER_VM, &f);
1239 	if (r)
1240 		goto error_free;
1241 
1242 	amdgpu_bo_fence(vm->root.base.bo, f, true);
1243 	dma_fence_put(*fence);
1244 	*fence = f;
1245 	return 0;
1246 
1247 error_free:
1248 	amdgpu_job_free(job);
1249 	return r;
1250 }
1251 
1252 /**
1253  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1254  *
1255  * @adev: amdgpu_device pointer
1256  * @exclusive: fence we need to sync to
1257  * @pages_addr: DMA addresses to use for mapping
1258  * @vm: requested vm
1259  * @mapping: mapped range and flags to use for the update
1260  * @flags: HW flags for the mapping
1261  * @nodes: array of drm_mm_nodes with the MC addresses
1262  * @fence: optional resulting fence
1263  *
1264  * Split the mapping into smaller chunks so that each update fits
1265  * into a SDMA IB.
1266  * Returns 0 for success, -EINVAL for failure.
1267  */
1268 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1269 				      struct dma_fence *exclusive,
1270 				      dma_addr_t *pages_addr,
1271 				      struct amdgpu_vm *vm,
1272 				      struct amdgpu_bo_va_mapping *mapping,
1273 				      uint64_t flags,
1274 				      struct drm_mm_node *nodes,
1275 				      struct dma_fence **fence)
1276 {
1277 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1278 	uint64_t pfn, start = mapping->start;
1279 	int r;
1280 
1281 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1282 	 * but in case of something, we filter the flags in first place
1283 	 */
1284 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1285 		flags &= ~AMDGPU_PTE_READABLE;
1286 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1287 		flags &= ~AMDGPU_PTE_WRITEABLE;
1288 
1289 	flags &= ~AMDGPU_PTE_EXECUTABLE;
1290 	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1291 
1292 	flags &= ~AMDGPU_PTE_MTYPE_MASK;
1293 	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1294 
1295 	if ((mapping->flags & AMDGPU_PTE_PRT) &&
1296 	    (adev->asic_type >= CHIP_VEGA10)) {
1297 		flags |= AMDGPU_PTE_PRT;
1298 		flags &= ~AMDGPU_PTE_VALID;
1299 	}
1300 
1301 	trace_amdgpu_vm_bo_update(mapping);
1302 
1303 	pfn = mapping->offset >> PAGE_SHIFT;
1304 	if (nodes) {
1305 		while (pfn >= nodes->size) {
1306 			pfn -= nodes->size;
1307 			++nodes;
1308 		}
1309 	}
1310 
1311 	do {
1312 		dma_addr_t *dma_addr = NULL;
1313 		uint64_t max_entries;
1314 		uint64_t addr, last;
1315 
1316 		if (nodes) {
1317 			addr = nodes->start << PAGE_SHIFT;
1318 			max_entries = (nodes->size - pfn) *
1319 				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1320 		} else {
1321 			addr = 0;
1322 			max_entries = S64_MAX;
1323 		}
1324 
1325 		if (pages_addr) {
1326 			uint64_t count;
1327 
1328 			max_entries = min(max_entries, 16ull * 1024ull);
1329 			for (count = 1; count < max_entries; ++count) {
1330 				uint64_t idx = pfn + count;
1331 
1332 				if (pages_addr[idx] !=
1333 				    (pages_addr[idx - 1] + PAGE_SIZE))
1334 					break;
1335 			}
1336 
1337 			if (count < min_linear_pages) {
1338 				addr = pfn << PAGE_SHIFT;
1339 				dma_addr = pages_addr;
1340 			} else {
1341 				addr = pages_addr[pfn];
1342 				max_entries = count;
1343 			}
1344 
1345 		} else if (flags & AMDGPU_PTE_VALID) {
1346 			addr += adev->vm_manager.vram_base_offset;
1347 			addr += pfn << PAGE_SHIFT;
1348 		}
1349 
1350 		last = min((uint64_t)mapping->last, start + max_entries - 1);
1351 		r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1352 						start, last, flags, addr,
1353 						fence);
1354 		if (r)
1355 			return r;
1356 
1357 		pfn += last - start + 1;
1358 		if (nodes && nodes->size == pfn) {
1359 			pfn = 0;
1360 			++nodes;
1361 		}
1362 		start = last + 1;
1363 
1364 	} while (unlikely(start != mapping->last + 1));
1365 
1366 	return 0;
1367 }
1368 
1369 /**
1370  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1371  *
1372  * @adev: amdgpu_device pointer
1373  * @bo_va: requested BO and VM object
1374  * @clear: if true clear the entries
1375  *
1376  * Fill in the page table entries for @bo_va.
1377  * Returns 0 for success, -EINVAL for failure.
1378  */
1379 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1380 			struct amdgpu_bo_va *bo_va,
1381 			bool clear)
1382 {
1383 	struct amdgpu_bo *bo = bo_va->base.bo;
1384 	struct amdgpu_vm *vm = bo_va->base.vm;
1385 	struct amdgpu_bo_va_mapping *mapping;
1386 	dma_addr_t *pages_addr = NULL;
1387 	struct ttm_mem_reg *mem;
1388 	struct drm_mm_node *nodes;
1389 	struct dma_fence *exclusive, **last_update;
1390 	uint64_t flags;
1391 	int r;
1392 
1393 	if (clear || !bo_va->base.bo) {
1394 		mem = NULL;
1395 		nodes = NULL;
1396 		exclusive = NULL;
1397 	} else {
1398 		struct ttm_dma_tt *ttm;
1399 
1400 		mem = &bo_va->base.bo->tbo.mem;
1401 		nodes = mem->mm_node;
1402 		if (mem->mem_type == TTM_PL_TT) {
1403 			ttm = container_of(bo_va->base.bo->tbo.ttm,
1404 					   struct ttm_dma_tt, ttm);
1405 			pages_addr = ttm->dma_address;
1406 		}
1407 		exclusive = reservation_object_get_excl(bo->tbo.resv);
1408 	}
1409 
1410 	if (bo)
1411 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1412 	else
1413 		flags = 0x0;
1414 
1415 	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1416 		last_update = &vm->last_update;
1417 	else
1418 		last_update = &bo_va->last_pt_update;
1419 
1420 	if (!clear && bo_va->base.moved) {
1421 		bo_va->base.moved = false;
1422 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1423 
1424 	} else if (bo_va->cleared != clear) {
1425 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1426 	}
1427 
1428 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1429 		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1430 					       mapping, flags, nodes,
1431 					       last_update);
1432 		if (r)
1433 			return r;
1434 	}
1435 
1436 	if (vm->use_cpu_for_update) {
1437 		/* Flush HDP */
1438 		mb();
1439 		amdgpu_asic_flush_hdp(adev);
1440 	}
1441 
1442 	spin_lock(&vm->status_lock);
1443 	list_del_init(&bo_va->base.vm_status);
1444 	spin_unlock(&vm->status_lock);
1445 
1446 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1447 	bo_va->cleared = clear;
1448 
1449 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1450 		list_for_each_entry(mapping, &bo_va->valids, list)
1451 			trace_amdgpu_vm_bo_mapping(mapping);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 /**
1458  * amdgpu_vm_update_prt_state - update the global PRT state
1459  */
1460 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1461 {
1462 	unsigned long flags;
1463 	bool enable;
1464 
1465 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1466 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1467 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1468 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1469 }
1470 
1471 /**
1472  * amdgpu_vm_prt_get - add a PRT user
1473  */
1474 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1475 {
1476 	if (!adev->gmc.gmc_funcs->set_prt)
1477 		return;
1478 
1479 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1480 		amdgpu_vm_update_prt_state(adev);
1481 }
1482 
1483 /**
1484  * amdgpu_vm_prt_put - drop a PRT user
1485  */
1486 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1487 {
1488 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1489 		amdgpu_vm_update_prt_state(adev);
1490 }
1491 
1492 /**
1493  * amdgpu_vm_prt_cb - callback for updating the PRT status
1494  */
1495 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1496 {
1497 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1498 
1499 	amdgpu_vm_prt_put(cb->adev);
1500 	kfree(cb);
1501 }
1502 
1503 /**
1504  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1505  */
1506 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1507 				 struct dma_fence *fence)
1508 {
1509 	struct amdgpu_prt_cb *cb;
1510 
1511 	if (!adev->gmc.gmc_funcs->set_prt)
1512 		return;
1513 
1514 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1515 	if (!cb) {
1516 		/* Last resort when we are OOM */
1517 		if (fence)
1518 			dma_fence_wait(fence, false);
1519 
1520 		amdgpu_vm_prt_put(adev);
1521 	} else {
1522 		cb->adev = adev;
1523 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1524 						     amdgpu_vm_prt_cb))
1525 			amdgpu_vm_prt_cb(fence, &cb->cb);
1526 	}
1527 }
1528 
1529 /**
1530  * amdgpu_vm_free_mapping - free a mapping
1531  *
1532  * @adev: amdgpu_device pointer
1533  * @vm: requested vm
1534  * @mapping: mapping to be freed
1535  * @fence: fence of the unmap operation
1536  *
1537  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1538  */
1539 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1540 				   struct amdgpu_vm *vm,
1541 				   struct amdgpu_bo_va_mapping *mapping,
1542 				   struct dma_fence *fence)
1543 {
1544 	if (mapping->flags & AMDGPU_PTE_PRT)
1545 		amdgpu_vm_add_prt_cb(adev, fence);
1546 	kfree(mapping);
1547 }
1548 
1549 /**
1550  * amdgpu_vm_prt_fini - finish all prt mappings
1551  *
1552  * @adev: amdgpu_device pointer
1553  * @vm: requested vm
1554  *
1555  * Register a cleanup callback to disable PRT support after VM dies.
1556  */
1557 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1558 {
1559 	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1560 	struct dma_fence *excl, **shared;
1561 	unsigned i, shared_count;
1562 	int r;
1563 
1564 	r = reservation_object_get_fences_rcu(resv, &excl,
1565 					      &shared_count, &shared);
1566 	if (r) {
1567 		/* Not enough memory to grab the fence list, as last resort
1568 		 * block for all the fences to complete.
1569 		 */
1570 		reservation_object_wait_timeout_rcu(resv, true, false,
1571 						    MAX_SCHEDULE_TIMEOUT);
1572 		return;
1573 	}
1574 
1575 	/* Add a callback for each fence in the reservation object */
1576 	amdgpu_vm_prt_get(adev);
1577 	amdgpu_vm_add_prt_cb(adev, excl);
1578 
1579 	for (i = 0; i < shared_count; ++i) {
1580 		amdgpu_vm_prt_get(adev);
1581 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1582 	}
1583 
1584 	kfree(shared);
1585 }
1586 
1587 /**
1588  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1589  *
1590  * @adev: amdgpu_device pointer
1591  * @vm: requested vm
1592  * @fence: optional resulting fence (unchanged if no work needed to be done
1593  * or if an error occurred)
1594  *
1595  * Make sure all freed BOs are cleared in the PT.
1596  * Returns 0 for success.
1597  *
1598  * PTs have to be reserved and mutex must be locked!
1599  */
1600 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1601 			  struct amdgpu_vm *vm,
1602 			  struct dma_fence **fence)
1603 {
1604 	struct amdgpu_bo_va_mapping *mapping;
1605 	struct dma_fence *f = NULL;
1606 	int r;
1607 	uint64_t init_pte_value = 0;
1608 
1609 	while (!list_empty(&vm->freed)) {
1610 		mapping = list_first_entry(&vm->freed,
1611 			struct amdgpu_bo_va_mapping, list);
1612 		list_del(&mapping->list);
1613 
1614 		if (vm->pte_support_ats)
1615 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
1616 
1617 		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
1618 						mapping->start, mapping->last,
1619 						init_pte_value, 0, &f);
1620 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
1621 		if (r) {
1622 			dma_fence_put(f);
1623 			return r;
1624 		}
1625 	}
1626 
1627 	if (fence && f) {
1628 		dma_fence_put(*fence);
1629 		*fence = f;
1630 	} else {
1631 		dma_fence_put(f);
1632 	}
1633 
1634 	return 0;
1635 
1636 }
1637 
1638 /**
1639  * amdgpu_vm_handle_moved - handle moved BOs in the PT
1640  *
1641  * @adev: amdgpu_device pointer
1642  * @vm: requested vm
1643  * @sync: sync object to add fences to
1644  *
1645  * Make sure all BOs which are moved are updated in the PTs.
1646  * Returns 0 for success.
1647  *
1648  * PTs have to be reserved!
1649  */
1650 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
1651 			   struct amdgpu_vm *vm)
1652 {
1653 	bool clear;
1654 	int r = 0;
1655 
1656 	spin_lock(&vm->status_lock);
1657 	while (!list_empty(&vm->moved)) {
1658 		struct amdgpu_bo_va *bo_va;
1659 		struct reservation_object *resv;
1660 
1661 		bo_va = list_first_entry(&vm->moved,
1662 			struct amdgpu_bo_va, base.vm_status);
1663 		spin_unlock(&vm->status_lock);
1664 
1665 		resv = bo_va->base.bo->tbo.resv;
1666 
1667 		/* Per VM BOs never need to bo cleared in the page tables */
1668 		if (resv == vm->root.base.bo->tbo.resv)
1669 			clear = false;
1670 		/* Try to reserve the BO to avoid clearing its ptes */
1671 		else if (!amdgpu_vm_debug && reservation_object_trylock(resv))
1672 			clear = false;
1673 		/* Somebody else is using the BO right now */
1674 		else
1675 			clear = true;
1676 
1677 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
1678 		if (r)
1679 			return r;
1680 
1681 		if (!clear && resv != vm->root.base.bo->tbo.resv)
1682 			reservation_object_unlock(resv);
1683 
1684 		spin_lock(&vm->status_lock);
1685 	}
1686 	spin_unlock(&vm->status_lock);
1687 
1688 	return r;
1689 }
1690 
1691 /**
1692  * amdgpu_vm_bo_add - add a bo to a specific vm
1693  *
1694  * @adev: amdgpu_device pointer
1695  * @vm: requested vm
1696  * @bo: amdgpu buffer object
1697  *
1698  * Add @bo into the requested vm.
1699  * Add @bo to the list of bos associated with the vm
1700  * Returns newly added bo_va or NULL for failure
1701  *
1702  * Object has to be reserved!
1703  */
1704 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1705 				      struct amdgpu_vm *vm,
1706 				      struct amdgpu_bo *bo)
1707 {
1708 	struct amdgpu_bo_va *bo_va;
1709 
1710 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1711 	if (bo_va == NULL) {
1712 		return NULL;
1713 	}
1714 	bo_va->base.vm = vm;
1715 	bo_va->base.bo = bo;
1716 	INIT_LIST_HEAD(&bo_va->base.bo_list);
1717 	INIT_LIST_HEAD(&bo_va->base.vm_status);
1718 
1719 	bo_va->ref_count = 1;
1720 	INIT_LIST_HEAD(&bo_va->valids);
1721 	INIT_LIST_HEAD(&bo_va->invalids);
1722 
1723 	if (!bo)
1724 		return bo_va;
1725 
1726 	list_add_tail(&bo_va->base.bo_list, &bo->va);
1727 
1728 	if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
1729 		return bo_va;
1730 
1731 	if (bo->preferred_domains &
1732 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
1733 		return bo_va;
1734 
1735 	/*
1736 	 * We checked all the prerequisites, but it looks like this per VM BO
1737 	 * is currently evicted. add the BO to the evicted list to make sure it
1738 	 * is validated on next VM use to avoid fault.
1739 	 * */
1740 	spin_lock(&vm->status_lock);
1741 	list_move_tail(&bo_va->base.vm_status, &vm->evicted);
1742 	spin_unlock(&vm->status_lock);
1743 
1744 	return bo_va;
1745 }
1746 
1747 
1748 /**
1749  * amdgpu_vm_bo_insert_mapping - insert a new mapping
1750  *
1751  * @adev: amdgpu_device pointer
1752  * @bo_va: bo_va to store the address
1753  * @mapping: the mapping to insert
1754  *
1755  * Insert a new mapping into all structures.
1756  */
1757 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
1758 				    struct amdgpu_bo_va *bo_va,
1759 				    struct amdgpu_bo_va_mapping *mapping)
1760 {
1761 	struct amdgpu_vm *vm = bo_va->base.vm;
1762 	struct amdgpu_bo *bo = bo_va->base.bo;
1763 
1764 	mapping->bo_va = bo_va;
1765 	list_add(&mapping->list, &bo_va->invalids);
1766 	amdgpu_vm_it_insert(mapping, &vm->va);
1767 
1768 	if (mapping->flags & AMDGPU_PTE_PRT)
1769 		amdgpu_vm_prt_get(adev);
1770 
1771 	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
1772 		spin_lock(&vm->status_lock);
1773 		if (list_empty(&bo_va->base.vm_status))
1774 			list_add(&bo_va->base.vm_status, &vm->moved);
1775 		spin_unlock(&vm->status_lock);
1776 	}
1777 	trace_amdgpu_vm_bo_map(bo_va, mapping);
1778 }
1779 
1780 /**
1781  * amdgpu_vm_bo_map - map bo inside a vm
1782  *
1783  * @adev: amdgpu_device pointer
1784  * @bo_va: bo_va to store the address
1785  * @saddr: where to map the BO
1786  * @offset: requested offset in the BO
1787  * @flags: attributes of pages (read/write/valid/etc.)
1788  *
1789  * Add a mapping of the BO at the specefied addr into the VM.
1790  * Returns 0 for success, error for failure.
1791  *
1792  * Object has to be reserved and unreserved outside!
1793  */
1794 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1795 		     struct amdgpu_bo_va *bo_va,
1796 		     uint64_t saddr, uint64_t offset,
1797 		     uint64_t size, uint64_t flags)
1798 {
1799 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1800 	struct amdgpu_bo *bo = bo_va->base.bo;
1801 	struct amdgpu_vm *vm = bo_va->base.vm;
1802 	uint64_t eaddr;
1803 
1804 	/* validate the parameters */
1805 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1806 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1807 		return -EINVAL;
1808 
1809 	/* make sure object fit at this offset */
1810 	eaddr = saddr + size - 1;
1811 	if (saddr >= eaddr ||
1812 	    (bo && offset + size > amdgpu_bo_size(bo)))
1813 		return -EINVAL;
1814 
1815 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1816 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1817 
1818 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1819 	if (tmp) {
1820 		/* bo and tmp overlap, invalid addr */
1821 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1822 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
1823 			tmp->start, tmp->last + 1);
1824 		return -EINVAL;
1825 	}
1826 
1827 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1828 	if (!mapping)
1829 		return -ENOMEM;
1830 
1831 	mapping->start = saddr;
1832 	mapping->last = eaddr;
1833 	mapping->offset = offset;
1834 	mapping->flags = flags;
1835 
1836 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
1843  *
1844  * @adev: amdgpu_device pointer
1845  * @bo_va: bo_va to store the address
1846  * @saddr: where to map the BO
1847  * @offset: requested offset in the BO
1848  * @flags: attributes of pages (read/write/valid/etc.)
1849  *
1850  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
1851  * mappings as we do so.
1852  * Returns 0 for success, error for failure.
1853  *
1854  * Object has to be reserved and unreserved outside!
1855  */
1856 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
1857 			     struct amdgpu_bo_va *bo_va,
1858 			     uint64_t saddr, uint64_t offset,
1859 			     uint64_t size, uint64_t flags)
1860 {
1861 	struct amdgpu_bo_va_mapping *mapping;
1862 	struct amdgpu_bo *bo = bo_va->base.bo;
1863 	uint64_t eaddr;
1864 	int r;
1865 
1866 	/* validate the parameters */
1867 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1868 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1869 		return -EINVAL;
1870 
1871 	/* make sure object fit at this offset */
1872 	eaddr = saddr + size - 1;
1873 	if (saddr >= eaddr ||
1874 	    (bo && offset + size > amdgpu_bo_size(bo)))
1875 		return -EINVAL;
1876 
1877 	/* Allocate all the needed memory */
1878 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1879 	if (!mapping)
1880 		return -ENOMEM;
1881 
1882 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
1883 	if (r) {
1884 		kfree(mapping);
1885 		return r;
1886 	}
1887 
1888 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1889 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1890 
1891 	mapping->start = saddr;
1892 	mapping->last = eaddr;
1893 	mapping->offset = offset;
1894 	mapping->flags = flags;
1895 
1896 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
1897 
1898 	return 0;
1899 }
1900 
1901 /**
1902  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1903  *
1904  * @adev: amdgpu_device pointer
1905  * @bo_va: bo_va to remove the address from
1906  * @saddr: where to the BO is mapped
1907  *
1908  * Remove a mapping of the BO at the specefied addr from the VM.
1909  * Returns 0 for success, error for failure.
1910  *
1911  * Object has to be reserved and unreserved outside!
1912  */
1913 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1914 		       struct amdgpu_bo_va *bo_va,
1915 		       uint64_t saddr)
1916 {
1917 	struct amdgpu_bo_va_mapping *mapping;
1918 	struct amdgpu_vm *vm = bo_va->base.vm;
1919 	bool valid = true;
1920 
1921 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1922 
1923 	list_for_each_entry(mapping, &bo_va->valids, list) {
1924 		if (mapping->start == saddr)
1925 			break;
1926 	}
1927 
1928 	if (&mapping->list == &bo_va->valids) {
1929 		valid = false;
1930 
1931 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1932 			if (mapping->start == saddr)
1933 				break;
1934 		}
1935 
1936 		if (&mapping->list == &bo_va->invalids)
1937 			return -ENOENT;
1938 	}
1939 
1940 	list_del(&mapping->list);
1941 	amdgpu_vm_it_remove(mapping, &vm->va);
1942 	mapping->bo_va = NULL;
1943 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1944 
1945 	if (valid)
1946 		list_add(&mapping->list, &vm->freed);
1947 	else
1948 		amdgpu_vm_free_mapping(adev, vm, mapping,
1949 				       bo_va->last_pt_update);
1950 
1951 	return 0;
1952 }
1953 
1954 /**
1955  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
1956  *
1957  * @adev: amdgpu_device pointer
1958  * @vm: VM structure to use
1959  * @saddr: start of the range
1960  * @size: size of the range
1961  *
1962  * Remove all mappings in a range, split them as appropriate.
1963  * Returns 0 for success, error for failure.
1964  */
1965 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
1966 				struct amdgpu_vm *vm,
1967 				uint64_t saddr, uint64_t size)
1968 {
1969 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
1970 	LIST_HEAD(removed);
1971 	uint64_t eaddr;
1972 
1973 	eaddr = saddr + size - 1;
1974 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1975 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1976 
1977 	/* Allocate all the needed memory */
1978 	before = kzalloc(sizeof(*before), GFP_KERNEL);
1979 	if (!before)
1980 		return -ENOMEM;
1981 	INIT_LIST_HEAD(&before->list);
1982 
1983 	after = kzalloc(sizeof(*after), GFP_KERNEL);
1984 	if (!after) {
1985 		kfree(before);
1986 		return -ENOMEM;
1987 	}
1988 	INIT_LIST_HEAD(&after->list);
1989 
1990 	/* Now gather all removed mappings */
1991 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
1992 	while (tmp) {
1993 		/* Remember mapping split at the start */
1994 		if (tmp->start < saddr) {
1995 			before->start = tmp->start;
1996 			before->last = saddr - 1;
1997 			before->offset = tmp->offset;
1998 			before->flags = tmp->flags;
1999 			list_add(&before->list, &tmp->list);
2000 		}
2001 
2002 		/* Remember mapping split at the end */
2003 		if (tmp->last > eaddr) {
2004 			after->start = eaddr + 1;
2005 			after->last = tmp->last;
2006 			after->offset = tmp->offset;
2007 			after->offset += after->start - tmp->start;
2008 			after->flags = tmp->flags;
2009 			list_add(&after->list, &tmp->list);
2010 		}
2011 
2012 		list_del(&tmp->list);
2013 		list_add(&tmp->list, &removed);
2014 
2015 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2016 	}
2017 
2018 	/* And free them up */
2019 	list_for_each_entry_safe(tmp, next, &removed, list) {
2020 		amdgpu_vm_it_remove(tmp, &vm->va);
2021 		list_del(&tmp->list);
2022 
2023 		if (tmp->start < saddr)
2024 		    tmp->start = saddr;
2025 		if (tmp->last > eaddr)
2026 		    tmp->last = eaddr;
2027 
2028 		tmp->bo_va = NULL;
2029 		list_add(&tmp->list, &vm->freed);
2030 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2031 	}
2032 
2033 	/* Insert partial mapping before the range */
2034 	if (!list_empty(&before->list)) {
2035 		amdgpu_vm_it_insert(before, &vm->va);
2036 		if (before->flags & AMDGPU_PTE_PRT)
2037 			amdgpu_vm_prt_get(adev);
2038 	} else {
2039 		kfree(before);
2040 	}
2041 
2042 	/* Insert partial mapping after the range */
2043 	if (!list_empty(&after->list)) {
2044 		amdgpu_vm_it_insert(after, &vm->va);
2045 		if (after->flags & AMDGPU_PTE_PRT)
2046 			amdgpu_vm_prt_get(adev);
2047 	} else {
2048 		kfree(after);
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 /**
2055  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2056  *
2057  * @vm: the requested VM
2058  *
2059  * Find a mapping by it's address.
2060  */
2061 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2062 							 uint64_t addr)
2063 {
2064 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2065 }
2066 
2067 /**
2068  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2069  *
2070  * @adev: amdgpu_device pointer
2071  * @bo_va: requested bo_va
2072  *
2073  * Remove @bo_va->bo from the requested vm.
2074  *
2075  * Object have to be reserved!
2076  */
2077 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2078 		      struct amdgpu_bo_va *bo_va)
2079 {
2080 	struct amdgpu_bo_va_mapping *mapping, *next;
2081 	struct amdgpu_vm *vm = bo_va->base.vm;
2082 
2083 	list_del(&bo_va->base.bo_list);
2084 
2085 	spin_lock(&vm->status_lock);
2086 	list_del(&bo_va->base.vm_status);
2087 	spin_unlock(&vm->status_lock);
2088 
2089 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2090 		list_del(&mapping->list);
2091 		amdgpu_vm_it_remove(mapping, &vm->va);
2092 		mapping->bo_va = NULL;
2093 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2094 		list_add(&mapping->list, &vm->freed);
2095 	}
2096 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2097 		list_del(&mapping->list);
2098 		amdgpu_vm_it_remove(mapping, &vm->va);
2099 		amdgpu_vm_free_mapping(adev, vm, mapping,
2100 				       bo_va->last_pt_update);
2101 	}
2102 
2103 	dma_fence_put(bo_va->last_pt_update);
2104 	kfree(bo_va);
2105 }
2106 
2107 /**
2108  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2109  *
2110  * @adev: amdgpu_device pointer
2111  * @vm: requested vm
2112  * @bo: amdgpu buffer object
2113  *
2114  * Mark @bo as invalid.
2115  */
2116 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2117 			     struct amdgpu_bo *bo, bool evicted)
2118 {
2119 	struct amdgpu_vm_bo_base *bo_base;
2120 
2121 	list_for_each_entry(bo_base, &bo->va, bo_list) {
2122 		struct amdgpu_vm *vm = bo_base->vm;
2123 
2124 		bo_base->moved = true;
2125 		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2126 			spin_lock(&bo_base->vm->status_lock);
2127 			if (bo->tbo.type == ttm_bo_type_kernel)
2128 				list_move(&bo_base->vm_status, &vm->evicted);
2129 			else
2130 				list_move_tail(&bo_base->vm_status,
2131 					       &vm->evicted);
2132 			spin_unlock(&bo_base->vm->status_lock);
2133 			continue;
2134 		}
2135 
2136 		if (bo->tbo.type == ttm_bo_type_kernel) {
2137 			spin_lock(&bo_base->vm->status_lock);
2138 			if (list_empty(&bo_base->vm_status))
2139 				list_add(&bo_base->vm_status, &vm->relocated);
2140 			spin_unlock(&bo_base->vm->status_lock);
2141 			continue;
2142 		}
2143 
2144 		spin_lock(&bo_base->vm->status_lock);
2145 		if (list_empty(&bo_base->vm_status))
2146 			list_add(&bo_base->vm_status, &vm->moved);
2147 		spin_unlock(&bo_base->vm->status_lock);
2148 	}
2149 }
2150 
2151 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2152 {
2153 	/* Total bits covered by PD + PTs */
2154 	unsigned bits = ilog2(vm_size) + 18;
2155 
2156 	/* Make sure the PD is 4K in size up to 8GB address space.
2157 	   Above that split equal between PD and PTs */
2158 	if (vm_size <= 8)
2159 		return (bits - 9);
2160 	else
2161 		return ((bits + 3) / 2);
2162 }
2163 
2164 /**
2165  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2166  *
2167  * @adev: amdgpu_device pointer
2168  * @vm_size: the default vm size if it's set auto
2169  */
2170 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size,
2171 			   uint32_t fragment_size_default, unsigned max_level,
2172 			   unsigned max_bits)
2173 {
2174 	uint64_t tmp;
2175 
2176 	/* adjust vm size first */
2177 	if (amdgpu_vm_size != -1) {
2178 		unsigned max_size = 1 << (max_bits - 30);
2179 
2180 		vm_size = amdgpu_vm_size;
2181 		if (vm_size > max_size) {
2182 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2183 				 amdgpu_vm_size, max_size);
2184 			vm_size = max_size;
2185 		}
2186 	}
2187 
2188 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2189 
2190 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2191 	if (amdgpu_vm_block_size != -1)
2192 		tmp >>= amdgpu_vm_block_size - 9;
2193 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2194 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2195 	switch (adev->vm_manager.num_level) {
2196 	case 3:
2197 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2198 		break;
2199 	case 2:
2200 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2201 		break;
2202 	case 1:
2203 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2204 		break;
2205 	default:
2206 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2207 	}
2208 	/* block size depends on vm size and hw setup*/
2209 	if (amdgpu_vm_block_size != -1)
2210 		adev->vm_manager.block_size =
2211 			min((unsigned)amdgpu_vm_block_size, max_bits
2212 			    - AMDGPU_GPU_PAGE_SHIFT
2213 			    - 9 * adev->vm_manager.num_level);
2214 	else if (adev->vm_manager.num_level > 1)
2215 		adev->vm_manager.block_size = 9;
2216 	else
2217 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2218 
2219 	if (amdgpu_vm_fragment_size == -1)
2220 		adev->vm_manager.fragment_size = fragment_size_default;
2221 	else
2222 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2223 
2224 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2225 		 vm_size, adev->vm_manager.num_level + 1,
2226 		 adev->vm_manager.block_size,
2227 		 adev->vm_manager.fragment_size);
2228 }
2229 
2230 /**
2231  * amdgpu_vm_init - initialize a vm instance
2232  *
2233  * @adev: amdgpu_device pointer
2234  * @vm: requested vm
2235  * @vm_context: Indicates if it GFX or Compute context
2236  *
2237  * Init @vm fields.
2238  */
2239 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2240 		   int vm_context, unsigned int pasid)
2241 {
2242 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2243 		AMDGPU_VM_PTE_COUNT(adev) * 8);
2244 	uint64_t init_pde_value = 0, flags;
2245 	unsigned ring_instance;
2246 	struct amdgpu_ring *ring;
2247 	struct drm_sched_rq *rq;
2248 	unsigned long size;
2249 	int r, i;
2250 
2251 	vm->va = RB_ROOT_CACHED;
2252 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2253 		vm->reserved_vmid[i] = NULL;
2254 	spin_lock_init(&vm->status_lock);
2255 	INIT_LIST_HEAD(&vm->evicted);
2256 	INIT_LIST_HEAD(&vm->relocated);
2257 	INIT_LIST_HEAD(&vm->moved);
2258 	INIT_LIST_HEAD(&vm->freed);
2259 
2260 	/* create scheduler entity for page table updates */
2261 
2262 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2263 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
2264 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
2265 	rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2266 	r = drm_sched_entity_init(&ring->sched, &vm->entity,
2267 				  rq, amdgpu_sched_jobs, NULL);
2268 	if (r)
2269 		return r;
2270 
2271 	vm->pte_support_ats = false;
2272 
2273 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2274 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2275 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2276 
2277 		if (adev->asic_type == CHIP_RAVEN) {
2278 			vm->pte_support_ats = true;
2279 			init_pde_value = AMDGPU_PTE_DEFAULT_ATC
2280 					| AMDGPU_PDE_PTE;
2281 
2282 		}
2283 	} else
2284 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2285 						AMDGPU_VM_USE_CPU_FOR_GFX);
2286 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2287 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2288 	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2289 		  "CPU update of VM recommended only for large BAR system\n");
2290 	vm->last_update = NULL;
2291 
2292 	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2293 			AMDGPU_GEM_CREATE_VRAM_CLEARED;
2294 	if (vm->use_cpu_for_update)
2295 		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2296 	else
2297 		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2298 				AMDGPU_GEM_CREATE_SHADOW);
2299 
2300 	size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level);
2301 	r = amdgpu_bo_create(adev, size, align, true, AMDGPU_GEM_DOMAIN_VRAM,
2302 			     flags, NULL, NULL, init_pde_value,
2303 			     &vm->root.base.bo);
2304 	if (r)
2305 		goto error_free_sched_entity;
2306 
2307 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2308 	if (r)
2309 		goto error_free_root;
2310 
2311 	vm->root.base.vm = vm;
2312 	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2313 	list_add_tail(&vm->root.base.vm_status, &vm->evicted);
2314 	amdgpu_bo_unreserve(vm->root.base.bo);
2315 
2316 	if (pasid) {
2317 		unsigned long flags;
2318 
2319 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2320 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2321 			      GFP_ATOMIC);
2322 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2323 		if (r < 0)
2324 			goto error_free_root;
2325 
2326 		vm->pasid = pasid;
2327 	}
2328 
2329 	INIT_KFIFO(vm->faults);
2330 	vm->fault_credit = 16;
2331 
2332 	return 0;
2333 
2334 error_free_root:
2335 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2336 	amdgpu_bo_unref(&vm->root.base.bo);
2337 	vm->root.base.bo = NULL;
2338 
2339 error_free_sched_entity:
2340 	drm_sched_entity_fini(&ring->sched, &vm->entity);
2341 
2342 	return r;
2343 }
2344 
2345 /**
2346  * amdgpu_vm_free_levels - free PD/PT levels
2347  *
2348  * @adev: amdgpu device structure
2349  * @parent: PD/PT starting level to free
2350  * @level: level of parent structure
2351  *
2352  * Free the page directory or page table level and all sub levels.
2353  */
2354 static void amdgpu_vm_free_levels(struct amdgpu_device *adev,
2355 				  struct amdgpu_vm_pt *parent,
2356 				  unsigned level)
2357 {
2358 	unsigned i, num_entries = amdgpu_vm_num_entries(adev, level);
2359 
2360 	if (parent->base.bo) {
2361 		list_del(&parent->base.bo_list);
2362 		list_del(&parent->base.vm_status);
2363 		amdgpu_bo_unref(&parent->base.bo->shadow);
2364 		amdgpu_bo_unref(&parent->base.bo);
2365 	}
2366 
2367 	if (parent->entries)
2368 		for (i = 0; i < num_entries; i++)
2369 			amdgpu_vm_free_levels(adev, &parent->entries[i],
2370 					      level + 1);
2371 
2372 	kvfree(parent->entries);
2373 }
2374 
2375 /**
2376  * amdgpu_vm_fini - tear down a vm instance
2377  *
2378  * @adev: amdgpu_device pointer
2379  * @vm: requested vm
2380  *
2381  * Tear down @vm.
2382  * Unbind the VM and remove all bos from the vm bo list
2383  */
2384 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2385 {
2386 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2387 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
2388 	struct amdgpu_bo *root;
2389 	u64 fault;
2390 	int i, r;
2391 
2392 	/* Clear pending page faults from IH when the VM is destroyed */
2393 	while (kfifo_get(&vm->faults, &fault))
2394 		amdgpu_ih_clear_fault(adev, fault);
2395 
2396 	if (vm->pasid) {
2397 		unsigned long flags;
2398 
2399 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2400 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2401 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2402 	}
2403 
2404 	drm_sched_entity_fini(vm->entity.sched, &vm->entity);
2405 
2406 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2407 		dev_err(adev->dev, "still active bo inside vm\n");
2408 	}
2409 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
2410 					     &vm->va.rb_root, rb) {
2411 		list_del(&mapping->list);
2412 		amdgpu_vm_it_remove(mapping, &vm->va);
2413 		kfree(mapping);
2414 	}
2415 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2416 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2417 			amdgpu_vm_prt_fini(adev, vm);
2418 			prt_fini_needed = false;
2419 		}
2420 
2421 		list_del(&mapping->list);
2422 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2423 	}
2424 
2425 	root = amdgpu_bo_ref(vm->root.base.bo);
2426 	r = amdgpu_bo_reserve(root, true);
2427 	if (r) {
2428 		dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2429 	} else {
2430 		amdgpu_vm_free_levels(adev, &vm->root,
2431 				      adev->vm_manager.root_level);
2432 		amdgpu_bo_unreserve(root);
2433 	}
2434 	amdgpu_bo_unref(&root);
2435 	dma_fence_put(vm->last_update);
2436 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2437 		amdgpu_vmid_free_reserved(adev, vm, i);
2438 }
2439 
2440 /**
2441  * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
2442  *
2443  * @adev: amdgpu_device pointer
2444  * @pasid: PASID do identify the VM
2445  *
2446  * This function is expected to be called in interrupt context. Returns
2447  * true if there was fault credit, false otherwise
2448  */
2449 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
2450 				  unsigned int pasid)
2451 {
2452 	struct amdgpu_vm *vm;
2453 
2454 	spin_lock(&adev->vm_manager.pasid_lock);
2455 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
2456 	if (!vm) {
2457 		/* VM not found, can't track fault credit */
2458 		spin_unlock(&adev->vm_manager.pasid_lock);
2459 		return true;
2460 	}
2461 
2462 	/* No lock needed. only accessed by IRQ handler */
2463 	if (!vm->fault_credit) {
2464 		/* Too many faults in this VM */
2465 		spin_unlock(&adev->vm_manager.pasid_lock);
2466 		return false;
2467 	}
2468 
2469 	vm->fault_credit--;
2470 	spin_unlock(&adev->vm_manager.pasid_lock);
2471 	return true;
2472 }
2473 
2474 /**
2475  * amdgpu_vm_manager_init - init the VM manager
2476  *
2477  * @adev: amdgpu_device pointer
2478  *
2479  * Initialize the VM manager structures
2480  */
2481 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2482 {
2483 	unsigned i;
2484 
2485 	amdgpu_vmid_mgr_init(adev);
2486 
2487 	adev->vm_manager.fence_context =
2488 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2489 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2490 		adev->vm_manager.seqno[i] = 0;
2491 
2492 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2493 	spin_lock_init(&adev->vm_manager.prt_lock);
2494 	atomic_set(&adev->vm_manager.num_prt_users, 0);
2495 
2496 	/* If not overridden by the user, by default, only in large BAR systems
2497 	 * Compute VM tables will be updated by CPU
2498 	 */
2499 #ifdef CONFIG_X86_64
2500 	if (amdgpu_vm_update_mode == -1) {
2501 		if (amdgpu_vm_is_large_bar(adev))
2502 			adev->vm_manager.vm_update_mode =
2503 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2504 		else
2505 			adev->vm_manager.vm_update_mode = 0;
2506 	} else
2507 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2508 #else
2509 	adev->vm_manager.vm_update_mode = 0;
2510 #endif
2511 
2512 	idr_init(&adev->vm_manager.pasid_idr);
2513 	spin_lock_init(&adev->vm_manager.pasid_lock);
2514 }
2515 
2516 /**
2517  * amdgpu_vm_manager_fini - cleanup VM manager
2518  *
2519  * @adev: amdgpu_device pointer
2520  *
2521  * Cleanup the VM manager and free resources.
2522  */
2523 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2524 {
2525 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2526 	idr_destroy(&adev->vm_manager.pasid_idr);
2527 
2528 	amdgpu_vmid_mgr_fini(adev);
2529 }
2530 
2531 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2532 {
2533 	union drm_amdgpu_vm *args = data;
2534 	struct amdgpu_device *adev = dev->dev_private;
2535 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
2536 	int r;
2537 
2538 	switch (args->in.op) {
2539 	case AMDGPU_VM_OP_RESERVE_VMID:
2540 		/* current, we only have requirement to reserve vmid from gfxhub */
2541 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2542 		if (r)
2543 			return r;
2544 		break;
2545 	case AMDGPU_VM_OP_UNRESERVE_VMID:
2546 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
2547 		break;
2548 	default:
2549 		return -EINVAL;
2550 	}
2551 
2552 	return 0;
2553 }
2554