1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 #include "amdgpu_xgmi.h" 38 39 /** 40 * DOC: GPUVM 41 * 42 * GPUVM is similar to the legacy gart on older asics, however 43 * rather than there being a single global gart table 44 * for the entire GPU, there are multiple VM page tables active 45 * at any given time. The VM page tables can contain a mix 46 * vram pages and system memory pages and system memory pages 47 * can be mapped as snooped (cached system pages) or unsnooped 48 * (uncached system pages). 49 * Each VM has an ID associated with it and there is a page table 50 * associated with each VMID. When execting a command buffer, 51 * the kernel tells the the ring what VMID to use for that command 52 * buffer. VMIDs are allocated dynamically as commands are submitted. 53 * The userspace drivers maintain their own address space and the kernel 54 * sets up their pages tables accordingly when they submit their 55 * command buffers and a VMID is assigned. 56 * Cayman/Trinity support up to 8 active VMs at any given time; 57 * SI supports 16. 58 */ 59 60 #define START(node) ((node)->start) 61 #define LAST(node) ((node)->last) 62 63 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 64 START, LAST, static, amdgpu_vm_it) 65 66 #undef START 67 #undef LAST 68 69 /** 70 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 71 */ 72 struct amdgpu_prt_cb { 73 74 /** 75 * @adev: amdgpu device 76 */ 77 struct amdgpu_device *adev; 78 79 /** 80 * @cb: callback 81 */ 82 struct dma_fence_cb cb; 83 }; 84 85 /** 86 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 87 * happens while holding this lock anywhere to prevent deadlocks when 88 * an MMU notifier runs in reclaim-FS context. 89 */ 90 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 91 { 92 mutex_lock(&vm->eviction_lock); 93 vm->saved_flags = memalloc_nofs_save(); 94 } 95 96 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 97 { 98 if (mutex_trylock(&vm->eviction_lock)) { 99 vm->saved_flags = memalloc_nofs_save(); 100 return 1; 101 } 102 return 0; 103 } 104 105 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 106 { 107 memalloc_nofs_restore(vm->saved_flags); 108 mutex_unlock(&vm->eviction_lock); 109 } 110 111 /** 112 * amdgpu_vm_level_shift - return the addr shift for each level 113 * 114 * @adev: amdgpu_device pointer 115 * @level: VMPT level 116 * 117 * Returns: 118 * The number of bits the pfn needs to be right shifted for a level. 119 */ 120 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 121 unsigned level) 122 { 123 unsigned shift = 0xff; 124 125 switch (level) { 126 case AMDGPU_VM_PDB2: 127 case AMDGPU_VM_PDB1: 128 case AMDGPU_VM_PDB0: 129 shift = 9 * (AMDGPU_VM_PDB0 - level) + 130 adev->vm_manager.block_size; 131 break; 132 case AMDGPU_VM_PTB: 133 shift = 0; 134 break; 135 default: 136 dev_err(adev->dev, "the level%d isn't supported.\n", level); 137 } 138 139 return shift; 140 } 141 142 /** 143 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 144 * 145 * @adev: amdgpu_device pointer 146 * @level: VMPT level 147 * 148 * Returns: 149 * The number of entries in a page directory or page table. 150 */ 151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 152 unsigned level) 153 { 154 unsigned shift = amdgpu_vm_level_shift(adev, 155 adev->vm_manager.root_level); 156 157 if (level == adev->vm_manager.root_level) 158 /* For the root directory */ 159 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 160 >> shift; 161 else if (level != AMDGPU_VM_PTB) 162 /* Everything in between */ 163 return 512; 164 else 165 /* For the page tables on the leaves */ 166 return AMDGPU_VM_PTE_COUNT(adev); 167 } 168 169 /** 170 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 171 * 172 * @adev: amdgpu_device pointer 173 * 174 * Returns: 175 * The number of entries in the root page directory which needs the ATS setting. 176 */ 177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 178 { 179 unsigned shift; 180 181 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 182 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 183 } 184 185 /** 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 187 * 188 * @adev: amdgpu_device pointer 189 * @level: VMPT level 190 * 191 * Returns: 192 * The mask to extract the entry number of a PD/PT from an address. 193 */ 194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 195 unsigned int level) 196 { 197 if (level <= adev->vm_manager.root_level) 198 return 0xffffffff; 199 else if (level != AMDGPU_VM_PTB) 200 return 0x1ff; 201 else 202 return AMDGPU_VM_PTE_COUNT(adev) - 1; 203 } 204 205 /** 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The size of the BO for a page directory or page table in bytes. 213 */ 214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 215 { 216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 217 } 218 219 /** 220 * amdgpu_vm_bo_evicted - vm_bo is evicted 221 * 222 * @vm_bo: vm_bo which is evicted 223 * 224 * State for PDs/PTs and per VM BOs which are not at the location they should 225 * be. 226 */ 227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 228 { 229 struct amdgpu_vm *vm = vm_bo->vm; 230 struct amdgpu_bo *bo = vm_bo->bo; 231 232 vm_bo->moved = true; 233 if (bo->tbo.type == ttm_bo_type_kernel) 234 list_move(&vm_bo->vm_status, &vm->evicted); 235 else 236 list_move_tail(&vm_bo->vm_status, &vm->evicted); 237 } 238 239 /** 240 * amdgpu_vm_bo_relocated - vm_bo is reloacted 241 * 242 * @vm_bo: vm_bo which is relocated 243 * 244 * State for PDs/PTs which needs to update their parent PD. 245 */ 246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 249 } 250 251 /** 252 * amdgpu_vm_bo_moved - vm_bo is moved 253 * 254 * @vm_bo: vm_bo which is moved 255 * 256 * State for per VM BOs which are moved, but that change is not yet reflected 257 * in the page tables. 258 */ 259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 262 } 263 264 /** 265 * amdgpu_vm_bo_idle - vm_bo is idle 266 * 267 * @vm_bo: vm_bo which is now idle 268 * 269 * State for PDs/PTs and per VM BOs which have gone through the state machine 270 * and are now idle. 271 */ 272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 273 { 274 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 275 vm_bo->moved = false; 276 } 277 278 /** 279 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 280 * 281 * @vm_bo: vm_bo which is now invalidated 282 * 283 * State for normal BOs which are invalidated and that change not yet reflected 284 * in the PTs. 285 */ 286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 spin_lock(&vm_bo->vm->invalidated_lock); 289 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 290 spin_unlock(&vm_bo->vm->invalidated_lock); 291 } 292 293 /** 294 * amdgpu_vm_bo_done - vm_bo is done 295 * 296 * @vm_bo: vm_bo which is now done 297 * 298 * State for normal BOs which are invalidated and that change has been updated 299 * in the PTs. 300 */ 301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 302 { 303 spin_lock(&vm_bo->vm->invalidated_lock); 304 list_del_init(&vm_bo->vm_status); 305 spin_unlock(&vm_bo->vm->invalidated_lock); 306 } 307 308 /** 309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 310 * 311 * @base: base structure for tracking BO usage in a VM 312 * @vm: vm to which bo is to be added 313 * @bo: amdgpu buffer object 314 * 315 * Initialize a bo_va_base structure and add it to the appropriate lists 316 * 317 */ 318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 319 struct amdgpu_vm *vm, 320 struct amdgpu_bo *bo) 321 { 322 base->vm = vm; 323 base->bo = bo; 324 base->next = NULL; 325 INIT_LIST_HEAD(&base->vm_status); 326 327 if (!bo) 328 return; 329 base->next = bo->vm_bo; 330 bo->vm_bo = base; 331 332 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 333 return; 334 335 vm->bulk_moveable = false; 336 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 337 amdgpu_vm_bo_relocated(base); 338 else 339 amdgpu_vm_bo_idle(base); 340 341 if (bo->preferred_domains & 342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 343 return; 344 345 /* 346 * we checked all the prerequisites, but it looks like this per vm bo 347 * is currently evicted. add the bo to the evicted list to make sure it 348 * is validated on next vm use to avoid fault. 349 * */ 350 amdgpu_vm_bo_evicted(base); 351 } 352 353 /** 354 * amdgpu_vm_pt_parent - get the parent page directory 355 * 356 * @pt: child page table 357 * 358 * Helper to get the parent entry for the child page table. NULL if we are at 359 * the root page directory. 360 */ 361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 362 { 363 struct amdgpu_bo *parent = pt->base.bo->parent; 364 365 if (!parent) 366 return NULL; 367 368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 369 } 370 371 /* 372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 373 */ 374 struct amdgpu_vm_pt_cursor { 375 uint64_t pfn; 376 struct amdgpu_vm_pt *parent; 377 struct amdgpu_vm_pt *entry; 378 unsigned level; 379 }; 380 381 /** 382 * amdgpu_vm_pt_start - start PD/PT walk 383 * 384 * @adev: amdgpu_device pointer 385 * @vm: amdgpu_vm structure 386 * @start: start address of the walk 387 * @cursor: state to initialize 388 * 389 * Initialize a amdgpu_vm_pt_cursor to start a walk. 390 */ 391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 392 struct amdgpu_vm *vm, uint64_t start, 393 struct amdgpu_vm_pt_cursor *cursor) 394 { 395 cursor->pfn = start; 396 cursor->parent = NULL; 397 cursor->entry = &vm->root; 398 cursor->level = adev->vm_manager.root_level; 399 } 400 401 /** 402 * amdgpu_vm_pt_descendant - go to child node 403 * 404 * @adev: amdgpu_device pointer 405 * @cursor: current state 406 * 407 * Walk to the child node of the current node. 408 * Returns: 409 * True if the walk was possible, false otherwise. 410 */ 411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 412 struct amdgpu_vm_pt_cursor *cursor) 413 { 414 unsigned mask, shift, idx; 415 416 if (!cursor->entry->entries) 417 return false; 418 419 BUG_ON(!cursor->entry->base.bo); 420 mask = amdgpu_vm_entries_mask(adev, cursor->level); 421 shift = amdgpu_vm_level_shift(adev, cursor->level); 422 423 ++cursor->level; 424 idx = (cursor->pfn >> shift) & mask; 425 cursor->parent = cursor->entry; 426 cursor->entry = &cursor->entry->entries[idx]; 427 return true; 428 } 429 430 /** 431 * amdgpu_vm_pt_sibling - go to sibling node 432 * 433 * @adev: amdgpu_device pointer 434 * @cursor: current state 435 * 436 * Walk to the sibling node of the current node. 437 * Returns: 438 * True if the walk was possible, false otherwise. 439 */ 440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 441 struct amdgpu_vm_pt_cursor *cursor) 442 { 443 unsigned shift, num_entries; 444 445 /* Root doesn't have a sibling */ 446 if (!cursor->parent) 447 return false; 448 449 /* Go to our parents and see if we got a sibling */ 450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 452 453 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 454 return false; 455 456 cursor->pfn += 1ULL << shift; 457 cursor->pfn &= ~((1ULL << shift) - 1); 458 ++cursor->entry; 459 return true; 460 } 461 462 /** 463 * amdgpu_vm_pt_ancestor - go to parent node 464 * 465 * @cursor: current state 466 * 467 * Walk to the parent node of the current node. 468 * Returns: 469 * True if the walk was possible, false otherwise. 470 */ 471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 472 { 473 if (!cursor->parent) 474 return false; 475 476 --cursor->level; 477 cursor->entry = cursor->parent; 478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 479 return true; 480 } 481 482 /** 483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 484 * 485 * @adev: amdgpu_device pointer 486 * @cursor: current state 487 * 488 * Walk the PD/PT tree to the next node. 489 */ 490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 491 struct amdgpu_vm_pt_cursor *cursor) 492 { 493 /* First try a newborn child */ 494 if (amdgpu_vm_pt_descendant(adev, cursor)) 495 return; 496 497 /* If that didn't worked try to find a sibling */ 498 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 499 /* No sibling, go to our parents and grandparents */ 500 if (!amdgpu_vm_pt_ancestor(cursor)) { 501 cursor->pfn = ~0ll; 502 return; 503 } 504 } 505 } 506 507 /** 508 * amdgpu_vm_pt_first_dfs - start a deep first search 509 * 510 * @adev: amdgpu_device structure 511 * @vm: amdgpu_vm structure 512 * @start: optional cursor to start with 513 * @cursor: state to initialize 514 * 515 * Starts a deep first traversal of the PD/PT tree. 516 */ 517 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 518 struct amdgpu_vm *vm, 519 struct amdgpu_vm_pt_cursor *start, 520 struct amdgpu_vm_pt_cursor *cursor) 521 { 522 if (start) 523 *cursor = *start; 524 else 525 amdgpu_vm_pt_start(adev, vm, 0, cursor); 526 while (amdgpu_vm_pt_descendant(adev, cursor)); 527 } 528 529 /** 530 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 531 * 532 * @start: starting point for the search 533 * @entry: current entry 534 * 535 * Returns: 536 * True when the search should continue, false otherwise. 537 */ 538 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 539 struct amdgpu_vm_pt *entry) 540 { 541 return entry && (!start || entry != start->entry); 542 } 543 544 /** 545 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 546 * 547 * @adev: amdgpu_device structure 548 * @cursor: current state 549 * 550 * Move the cursor to the next node in a deep first search. 551 */ 552 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 553 struct amdgpu_vm_pt_cursor *cursor) 554 { 555 if (!cursor->entry) 556 return; 557 558 if (!cursor->parent) 559 cursor->entry = NULL; 560 else if (amdgpu_vm_pt_sibling(adev, cursor)) 561 while (amdgpu_vm_pt_descendant(adev, cursor)); 562 else 563 amdgpu_vm_pt_ancestor(cursor); 564 } 565 566 /* 567 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 568 */ 569 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 570 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 571 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 572 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 573 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 574 575 /** 576 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 577 * 578 * @vm: vm providing the BOs 579 * @validated: head of validation list 580 * @entry: entry to add 581 * 582 * Add the page directory to the list of BOs to 583 * validate for command submission. 584 */ 585 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 586 struct list_head *validated, 587 struct amdgpu_bo_list_entry *entry) 588 { 589 entry->priority = 0; 590 entry->tv.bo = &vm->root.base.bo->tbo; 591 /* One for TTM and one for the CS job */ 592 entry->tv.num_shared = 2; 593 entry->user_pages = NULL; 594 list_add(&entry->tv.head, validated); 595 } 596 597 /** 598 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 599 * 600 * @bo: BO which was removed from the LRU 601 * 602 * Make sure the bulk_moveable flag is updated when a BO is removed from the 603 * LRU. 604 */ 605 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 606 { 607 struct amdgpu_bo *abo; 608 struct amdgpu_vm_bo_base *bo_base; 609 610 if (!amdgpu_bo_is_amdgpu_bo(bo)) 611 return; 612 613 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 614 return; 615 616 abo = ttm_to_amdgpu_bo(bo); 617 if (!abo->parent) 618 return; 619 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 620 struct amdgpu_vm *vm = bo_base->vm; 621 622 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 623 vm->bulk_moveable = false; 624 } 625 626 } 627 /** 628 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 629 * 630 * @adev: amdgpu device pointer 631 * @vm: vm providing the BOs 632 * 633 * Move all BOs to the end of LRU and remember their positions to put them 634 * together. 635 */ 636 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 637 struct amdgpu_vm *vm) 638 { 639 struct amdgpu_vm_bo_base *bo_base; 640 641 if (vm->bulk_moveable) { 642 spin_lock(&ttm_bo_glob.lru_lock); 643 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 644 spin_unlock(&ttm_bo_glob.lru_lock); 645 return; 646 } 647 648 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 649 650 spin_lock(&ttm_bo_glob.lru_lock); 651 list_for_each_entry(bo_base, &vm->idle, vm_status) { 652 struct amdgpu_bo *bo = bo_base->bo; 653 654 if (!bo->parent) 655 continue; 656 657 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 658 if (bo->shadow) 659 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 660 &vm->lru_bulk_move); 661 } 662 spin_unlock(&ttm_bo_glob.lru_lock); 663 664 vm->bulk_moveable = true; 665 } 666 667 /** 668 * amdgpu_vm_validate_pt_bos - validate the page table BOs 669 * 670 * @adev: amdgpu device pointer 671 * @vm: vm providing the BOs 672 * @validate: callback to do the validation 673 * @param: parameter for the validation callback 674 * 675 * Validate the page table BOs on command submission if neccessary. 676 * 677 * Returns: 678 * Validation result. 679 */ 680 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 681 int (*validate)(void *p, struct amdgpu_bo *bo), 682 void *param) 683 { 684 struct amdgpu_vm_bo_base *bo_base, *tmp; 685 int r; 686 687 vm->bulk_moveable &= list_empty(&vm->evicted); 688 689 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 690 struct amdgpu_bo *bo = bo_base->bo; 691 692 r = validate(param, bo); 693 if (r) 694 return r; 695 696 if (bo->tbo.type != ttm_bo_type_kernel) { 697 amdgpu_vm_bo_moved(bo_base); 698 } else { 699 vm->update_funcs->map_table(bo); 700 if (bo->parent) 701 amdgpu_vm_bo_relocated(bo_base); 702 else 703 amdgpu_vm_bo_idle(bo_base); 704 } 705 } 706 707 amdgpu_vm_eviction_lock(vm); 708 vm->evicting = false; 709 amdgpu_vm_eviction_unlock(vm); 710 711 return 0; 712 } 713 714 /** 715 * amdgpu_vm_ready - check VM is ready for updates 716 * 717 * @vm: VM to check 718 * 719 * Check if all VM PDs/PTs are ready for updates 720 * 721 * Returns: 722 * True if eviction list is empty. 723 */ 724 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 725 { 726 return list_empty(&vm->evicted); 727 } 728 729 /** 730 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 731 * 732 * @adev: amdgpu_device pointer 733 * @vm: VM to clear BO from 734 * @bo: BO to clear 735 * @direct: use a direct update 736 * 737 * Root PD needs to be reserved when calling this. 738 * 739 * Returns: 740 * 0 on success, errno otherwise. 741 */ 742 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 743 struct amdgpu_vm *vm, 744 struct amdgpu_bo *bo, 745 bool direct) 746 { 747 struct ttm_operation_ctx ctx = { true, false }; 748 unsigned level = adev->vm_manager.root_level; 749 struct amdgpu_vm_update_params params; 750 struct amdgpu_bo *ancestor = bo; 751 unsigned entries, ats_entries; 752 uint64_t addr; 753 int r; 754 755 /* Figure out our place in the hierarchy */ 756 if (ancestor->parent) { 757 ++level; 758 while (ancestor->parent->parent) { 759 ++level; 760 ancestor = ancestor->parent; 761 } 762 } 763 764 entries = amdgpu_bo_size(bo) / 8; 765 if (!vm->pte_support_ats) { 766 ats_entries = 0; 767 768 } else if (!bo->parent) { 769 ats_entries = amdgpu_vm_num_ats_entries(adev); 770 ats_entries = min(ats_entries, entries); 771 entries -= ats_entries; 772 773 } else { 774 struct amdgpu_vm_pt *pt; 775 776 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 777 ats_entries = amdgpu_vm_num_ats_entries(adev); 778 if ((pt - vm->root.entries) >= ats_entries) { 779 ats_entries = 0; 780 } else { 781 ats_entries = entries; 782 entries = 0; 783 } 784 } 785 786 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 787 if (r) 788 return r; 789 790 if (bo->shadow) { 791 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 792 &ctx); 793 if (r) 794 return r; 795 } 796 797 r = vm->update_funcs->map_table(bo); 798 if (r) 799 return r; 800 801 memset(¶ms, 0, sizeof(params)); 802 params.adev = adev; 803 params.vm = vm; 804 params.direct = direct; 805 806 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL); 807 if (r) 808 return r; 809 810 addr = 0; 811 if (ats_entries) { 812 uint64_t value = 0, flags; 813 814 flags = AMDGPU_PTE_DEFAULT_ATC; 815 if (level != AMDGPU_VM_PTB) { 816 /* Handle leaf PDEs as PTEs */ 817 flags |= AMDGPU_PDE_PTE; 818 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 819 } 820 821 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 822 value, flags); 823 if (r) 824 return r; 825 826 addr += ats_entries * 8; 827 } 828 829 if (entries) { 830 uint64_t value = 0, flags = 0; 831 832 if (adev->asic_type >= CHIP_VEGA10) { 833 if (level != AMDGPU_VM_PTB) { 834 /* Handle leaf PDEs as PTEs */ 835 flags |= AMDGPU_PDE_PTE; 836 amdgpu_gmc_get_vm_pde(adev, level, 837 &value, &flags); 838 } else { 839 /* Workaround for fault priority problem on GMC9 */ 840 flags = AMDGPU_PTE_EXECUTABLE; 841 } 842 } 843 844 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 845 value, flags); 846 if (r) 847 return r; 848 } 849 850 return vm->update_funcs->commit(¶ms, NULL); 851 } 852 853 /** 854 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 855 * 856 * @adev: amdgpu_device pointer 857 * @vm: requesting vm 858 * @level: the page table level 859 * @direct: use a direct update 860 * @bp: resulting BO allocation parameters 861 */ 862 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 863 int level, bool direct, 864 struct amdgpu_bo_param *bp) 865 { 866 memset(bp, 0, sizeof(*bp)); 867 868 bp->size = amdgpu_vm_bo_size(adev, level); 869 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 870 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 871 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 872 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 873 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 874 if (vm->use_cpu_for_update) 875 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 876 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 877 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 878 bp->type = ttm_bo_type_kernel; 879 bp->no_wait_gpu = direct; 880 if (vm->root.base.bo) 881 bp->resv = vm->root.base.bo->tbo.base.resv; 882 } 883 884 /** 885 * amdgpu_vm_alloc_pts - Allocate a specific page table 886 * 887 * @adev: amdgpu_device pointer 888 * @vm: VM to allocate page tables for 889 * @cursor: Which page table to allocate 890 * @direct: use a direct update 891 * 892 * Make sure a specific page table or directory is allocated. 893 * 894 * Returns: 895 * 1 if page table needed to be allocated, 0 if page table was already 896 * allocated, negative errno if an error occurred. 897 */ 898 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 899 struct amdgpu_vm *vm, 900 struct amdgpu_vm_pt_cursor *cursor, 901 bool direct) 902 { 903 struct amdgpu_vm_pt *entry = cursor->entry; 904 struct amdgpu_bo_param bp; 905 struct amdgpu_bo *pt; 906 int r; 907 908 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 909 unsigned num_entries; 910 911 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 912 entry->entries = kvmalloc_array(num_entries, 913 sizeof(*entry->entries), 914 GFP_KERNEL | __GFP_ZERO); 915 if (!entry->entries) 916 return -ENOMEM; 917 } 918 919 if (entry->base.bo) 920 return 0; 921 922 amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp); 923 924 r = amdgpu_bo_create(adev, &bp, &pt); 925 if (r) 926 return r; 927 928 /* Keep a reference to the root directory to avoid 929 * freeing them up in the wrong order. 930 */ 931 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 932 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 933 934 r = amdgpu_vm_clear_bo(adev, vm, pt, direct); 935 if (r) 936 goto error_free_pt; 937 938 return 0; 939 940 error_free_pt: 941 amdgpu_bo_unref(&pt->shadow); 942 amdgpu_bo_unref(&pt); 943 return r; 944 } 945 946 /** 947 * amdgpu_vm_free_table - fre one PD/PT 948 * 949 * @entry: PDE to free 950 */ 951 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 952 { 953 if (entry->base.bo) { 954 entry->base.bo->vm_bo = NULL; 955 list_del(&entry->base.vm_status); 956 amdgpu_bo_unref(&entry->base.bo->shadow); 957 amdgpu_bo_unref(&entry->base.bo); 958 } 959 kvfree(entry->entries); 960 entry->entries = NULL; 961 } 962 963 /** 964 * amdgpu_vm_free_pts - free PD/PT levels 965 * 966 * @adev: amdgpu device structure 967 * @vm: amdgpu vm structure 968 * @start: optional cursor where to start freeing PDs/PTs 969 * 970 * Free the page directory or page table level and all sub levels. 971 */ 972 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 973 struct amdgpu_vm *vm, 974 struct amdgpu_vm_pt_cursor *start) 975 { 976 struct amdgpu_vm_pt_cursor cursor; 977 struct amdgpu_vm_pt *entry; 978 979 vm->bulk_moveable = false; 980 981 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 982 amdgpu_vm_free_table(entry); 983 984 if (start) 985 amdgpu_vm_free_table(start->entry); 986 } 987 988 /** 989 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 990 * 991 * @adev: amdgpu_device pointer 992 */ 993 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 994 { 995 const struct amdgpu_ip_block *ip_block; 996 bool has_compute_vm_bug; 997 struct amdgpu_ring *ring; 998 int i; 999 1000 has_compute_vm_bug = false; 1001 1002 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1003 if (ip_block) { 1004 /* Compute has a VM bug for GFX version < 7. 1005 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1006 if (ip_block->version->major <= 7) 1007 has_compute_vm_bug = true; 1008 else if (ip_block->version->major == 8) 1009 if (adev->gfx.mec_fw_version < 673) 1010 has_compute_vm_bug = true; 1011 } 1012 1013 for (i = 0; i < adev->num_rings; i++) { 1014 ring = adev->rings[i]; 1015 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1016 /* only compute rings */ 1017 ring->has_compute_vm_bug = has_compute_vm_bug; 1018 else 1019 ring->has_compute_vm_bug = false; 1020 } 1021 } 1022 1023 /** 1024 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1025 * 1026 * @ring: ring on which the job will be submitted 1027 * @job: job to submit 1028 * 1029 * Returns: 1030 * True if sync is needed. 1031 */ 1032 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1033 struct amdgpu_job *job) 1034 { 1035 struct amdgpu_device *adev = ring->adev; 1036 unsigned vmhub = ring->funcs->vmhub; 1037 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1038 struct amdgpu_vmid *id; 1039 bool gds_switch_needed; 1040 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1041 1042 if (job->vmid == 0) 1043 return false; 1044 id = &id_mgr->ids[job->vmid]; 1045 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1046 id->gds_base != job->gds_base || 1047 id->gds_size != job->gds_size || 1048 id->gws_base != job->gws_base || 1049 id->gws_size != job->gws_size || 1050 id->oa_base != job->oa_base || 1051 id->oa_size != job->oa_size); 1052 1053 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1054 return true; 1055 1056 return vm_flush_needed || gds_switch_needed; 1057 } 1058 1059 /** 1060 * amdgpu_vm_flush - hardware flush the vm 1061 * 1062 * @ring: ring to use for flush 1063 * @job: related job 1064 * @need_pipe_sync: is pipe sync needed 1065 * 1066 * Emit a VM flush when it is necessary. 1067 * 1068 * Returns: 1069 * 0 on success, errno otherwise. 1070 */ 1071 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1072 bool need_pipe_sync) 1073 { 1074 struct amdgpu_device *adev = ring->adev; 1075 unsigned vmhub = ring->funcs->vmhub; 1076 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1077 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1078 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1079 id->gds_base != job->gds_base || 1080 id->gds_size != job->gds_size || 1081 id->gws_base != job->gws_base || 1082 id->gws_size != job->gws_size || 1083 id->oa_base != job->oa_base || 1084 id->oa_size != job->oa_size); 1085 bool vm_flush_needed = job->vm_needs_flush; 1086 struct dma_fence *fence = NULL; 1087 bool pasid_mapping_needed = false; 1088 unsigned patch_offset = 0; 1089 int r; 1090 1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1092 gds_switch_needed = true; 1093 vm_flush_needed = true; 1094 pasid_mapping_needed = true; 1095 } 1096 1097 mutex_lock(&id_mgr->lock); 1098 if (id->pasid != job->pasid || !id->pasid_mapping || 1099 !dma_fence_is_signaled(id->pasid_mapping)) 1100 pasid_mapping_needed = true; 1101 mutex_unlock(&id_mgr->lock); 1102 1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1107 ring->funcs->emit_wreg; 1108 1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1110 return 0; 1111 1112 if (ring->funcs->init_cond_exec) 1113 patch_offset = amdgpu_ring_init_cond_exec(ring); 1114 1115 if (need_pipe_sync) 1116 amdgpu_ring_emit_pipeline_sync(ring); 1117 1118 if (vm_flush_needed) { 1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1121 } 1122 1123 if (pasid_mapping_needed) 1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1125 1126 if (vm_flush_needed || pasid_mapping_needed) { 1127 r = amdgpu_fence_emit(ring, &fence, 0); 1128 if (r) 1129 return r; 1130 } 1131 1132 if (vm_flush_needed) { 1133 mutex_lock(&id_mgr->lock); 1134 dma_fence_put(id->last_flush); 1135 id->last_flush = dma_fence_get(fence); 1136 id->current_gpu_reset_count = 1137 atomic_read(&adev->gpu_reset_counter); 1138 mutex_unlock(&id_mgr->lock); 1139 } 1140 1141 if (pasid_mapping_needed) { 1142 mutex_lock(&id_mgr->lock); 1143 id->pasid = job->pasid; 1144 dma_fence_put(id->pasid_mapping); 1145 id->pasid_mapping = dma_fence_get(fence); 1146 mutex_unlock(&id_mgr->lock); 1147 } 1148 dma_fence_put(fence); 1149 1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1151 id->gds_base = job->gds_base; 1152 id->gds_size = job->gds_size; 1153 id->gws_base = job->gws_base; 1154 id->gws_size = job->gws_size; 1155 id->oa_base = job->oa_base; 1156 id->oa_size = job->oa_size; 1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1158 job->gds_size, job->gws_base, 1159 job->gws_size, job->oa_base, 1160 job->oa_size); 1161 } 1162 1163 if (ring->funcs->patch_cond_exec) 1164 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1165 1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1167 if (ring->funcs->emit_switch_buffer) { 1168 amdgpu_ring_emit_switch_buffer(ring); 1169 amdgpu_ring_emit_switch_buffer(ring); 1170 } 1171 return 0; 1172 } 1173 1174 /** 1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1176 * 1177 * @vm: requested vm 1178 * @bo: requested buffer object 1179 * 1180 * Find @bo inside the requested vm. 1181 * Search inside the @bos vm list for the requested vm 1182 * Returns the found bo_va or NULL if none is found 1183 * 1184 * Object has to be reserved! 1185 * 1186 * Returns: 1187 * Found bo_va or NULL. 1188 */ 1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1190 struct amdgpu_bo *bo) 1191 { 1192 struct amdgpu_vm_bo_base *base; 1193 1194 for (base = bo->vm_bo; base; base = base->next) { 1195 if (base->vm != vm) 1196 continue; 1197 1198 return container_of(base, struct amdgpu_bo_va, base); 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1205 * 1206 * @pages_addr: optional DMA address to use for lookup 1207 * @addr: the unmapped addr 1208 * 1209 * Look up the physical address of the page that the pte resolves 1210 * to. 1211 * 1212 * Returns: 1213 * The pointer for the page table entry. 1214 */ 1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1216 { 1217 uint64_t result; 1218 1219 /* page table offset */ 1220 result = pages_addr[addr >> PAGE_SHIFT]; 1221 1222 /* in case cpu page size != gpu page size*/ 1223 result |= addr & (~PAGE_MASK); 1224 1225 result &= 0xFFFFFFFFFFFFF000ULL; 1226 1227 return result; 1228 } 1229 1230 /** 1231 * amdgpu_vm_update_pde - update a single level in the hierarchy 1232 * 1233 * @params: parameters for the update 1234 * @vm: requested vm 1235 * @entry: entry to update 1236 * 1237 * Makes sure the requested entry in parent is up to date. 1238 */ 1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1240 struct amdgpu_vm *vm, 1241 struct amdgpu_vm_pt *entry) 1242 { 1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1244 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1245 uint64_t pde, pt, flags; 1246 unsigned level; 1247 1248 for (level = 0, pbo = bo->parent; pbo; ++level) 1249 pbo = pbo->parent; 1250 1251 level += params->adev->vm_manager.root_level; 1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1253 pde = (entry - parent->entries) * 8; 1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1255 } 1256 1257 /** 1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1259 * 1260 * @adev: amdgpu_device pointer 1261 * @vm: related vm 1262 * 1263 * Mark all PD level as invalid after an error. 1264 */ 1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1266 struct amdgpu_vm *vm) 1267 { 1268 struct amdgpu_vm_pt_cursor cursor; 1269 struct amdgpu_vm_pt *entry; 1270 1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1272 if (entry->base.bo && !entry->base.moved) 1273 amdgpu_vm_bo_relocated(&entry->base); 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pdes - make sure that all directories are valid 1278 * 1279 * @adev: amdgpu_device pointer 1280 * @vm: requested vm 1281 * @direct: submit directly to the paging queue 1282 * 1283 * Makes sure all directories are up to date. 1284 * 1285 * Returns: 1286 * 0 for success, error for failure. 1287 */ 1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1289 struct amdgpu_vm *vm, bool direct) 1290 { 1291 struct amdgpu_vm_update_params params; 1292 int r; 1293 1294 if (list_empty(&vm->relocated)) 1295 return 0; 1296 1297 memset(¶ms, 0, sizeof(params)); 1298 params.adev = adev; 1299 params.vm = vm; 1300 params.direct = direct; 1301 1302 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL); 1303 if (r) 1304 return r; 1305 1306 while (!list_empty(&vm->relocated)) { 1307 struct amdgpu_vm_pt *entry; 1308 1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1310 base.vm_status); 1311 amdgpu_vm_bo_idle(&entry->base); 1312 1313 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1314 if (r) 1315 goto error; 1316 } 1317 1318 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1319 if (r) 1320 goto error; 1321 return 0; 1322 1323 error: 1324 amdgpu_vm_invalidate_pds(adev, vm); 1325 return r; 1326 } 1327 1328 /* 1329 * amdgpu_vm_update_flags - figure out flags for PTE updates 1330 * 1331 * Make sure to set the right flags for the PTEs at the desired level. 1332 */ 1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1334 struct amdgpu_bo *bo, unsigned level, 1335 uint64_t pe, uint64_t addr, 1336 unsigned count, uint32_t incr, 1337 uint64_t flags) 1338 1339 { 1340 if (level != AMDGPU_VM_PTB) { 1341 flags |= AMDGPU_PDE_PTE; 1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1343 1344 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1345 !(flags & AMDGPU_PTE_VALID) && 1346 !(flags & AMDGPU_PTE_PRT)) { 1347 1348 /* Workaround for fault priority problem on GMC9 */ 1349 flags |= AMDGPU_PTE_EXECUTABLE; 1350 } 1351 1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1353 flags); 1354 } 1355 1356 /** 1357 * amdgpu_vm_fragment - get fragment for PTEs 1358 * 1359 * @params: see amdgpu_vm_update_params definition 1360 * @start: first PTE to handle 1361 * @end: last PTE to handle 1362 * @flags: hw mapping flags 1363 * @frag: resulting fragment size 1364 * @frag_end: end of this fragment 1365 * 1366 * Returns the first possible fragment for the start and end address. 1367 */ 1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1369 uint64_t start, uint64_t end, uint64_t flags, 1370 unsigned int *frag, uint64_t *frag_end) 1371 { 1372 /** 1373 * The MC L1 TLB supports variable sized pages, based on a fragment 1374 * field in the PTE. When this field is set to a non-zero value, page 1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1376 * flags are considered valid for all PTEs within the fragment range 1377 * and corresponding mappings are assumed to be physically contiguous. 1378 * 1379 * The L1 TLB can store a single PTE for the whole fragment, 1380 * significantly increasing the space available for translation 1381 * caching. This leads to large improvements in throughput when the 1382 * TLB is under pressure. 1383 * 1384 * The L2 TLB distributes small and large fragments into two 1385 * asymmetric partitions. The large fragment cache is significantly 1386 * larger. Thus, we try to use large fragments wherever possible. 1387 * Userspace can support this by aligning virtual base address and 1388 * allocation size to the fragment size. 1389 * 1390 * Starting with Vega10 the fragment size only controls the L1. The L2 1391 * is now directly feed with small/huge/giant pages from the walker. 1392 */ 1393 unsigned max_frag; 1394 1395 if (params->adev->asic_type < CHIP_VEGA10) 1396 max_frag = params->adev->vm_manager.fragment_size; 1397 else 1398 max_frag = 31; 1399 1400 /* system pages are non continuously */ 1401 if (params->pages_addr) { 1402 *frag = 0; 1403 *frag_end = end; 1404 return; 1405 } 1406 1407 /* This intentionally wraps around if no bit is set */ 1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1409 if (*frag >= max_frag) { 1410 *frag = max_frag; 1411 *frag_end = end & ~((1ULL << max_frag) - 1); 1412 } else { 1413 *frag_end = start + (1 << *frag); 1414 } 1415 } 1416 1417 /** 1418 * amdgpu_vm_update_ptes - make sure that page tables are valid 1419 * 1420 * @params: see amdgpu_vm_update_params definition 1421 * @start: start of GPU address range 1422 * @end: end of GPU address range 1423 * @dst: destination address to map to, the next dst inside the function 1424 * @flags: mapping flags 1425 * 1426 * Update the page tables in the range @start - @end. 1427 * 1428 * Returns: 1429 * 0 for success, -EINVAL for failure. 1430 */ 1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1432 uint64_t start, uint64_t end, 1433 uint64_t dst, uint64_t flags) 1434 { 1435 struct amdgpu_device *adev = params->adev; 1436 struct amdgpu_vm_pt_cursor cursor; 1437 uint64_t frag_start = start, frag_end; 1438 unsigned int frag; 1439 int r; 1440 1441 /* figure out the initial fragment */ 1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1443 1444 /* walk over the address space and update the PTs */ 1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1446 while (cursor.pfn < end) { 1447 unsigned shift, parent_shift, mask; 1448 uint64_t incr, entry_end, pe_start; 1449 struct amdgpu_bo *pt; 1450 1451 /* make sure that the page tables covering the address range are 1452 * actually allocated 1453 */ 1454 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor, 1455 params->direct); 1456 if (r) 1457 return r; 1458 1459 pt = cursor.entry->base.bo; 1460 1461 /* The root level can't be a huge page */ 1462 if (cursor.level == adev->vm_manager.root_level) { 1463 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1464 return -ENOENT; 1465 continue; 1466 } 1467 1468 shift = amdgpu_vm_level_shift(adev, cursor.level); 1469 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1470 if (adev->asic_type < CHIP_VEGA10 && 1471 (flags & AMDGPU_PTE_VALID)) { 1472 /* No huge page support before GMC v9 */ 1473 if (cursor.level != AMDGPU_VM_PTB) { 1474 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1475 return -ENOENT; 1476 continue; 1477 } 1478 } else if (frag < shift) { 1479 /* We can't use this level when the fragment size is 1480 * smaller than the address shift. Go to the next 1481 * child entry and try again. 1482 */ 1483 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1484 return -ENOENT; 1485 continue; 1486 } else if (frag >= parent_shift && 1487 cursor.level - 1 != adev->vm_manager.root_level) { 1488 /* If the fragment size is even larger than the parent 1489 * shift we should go up one level and check it again 1490 * unless one level up is the root level. 1491 */ 1492 if (!amdgpu_vm_pt_ancestor(&cursor)) 1493 return -ENOENT; 1494 continue; 1495 } 1496 1497 /* Looks good so far, calculate parameters for the update */ 1498 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1499 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1500 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1501 entry_end = (uint64_t)(mask + 1) << shift; 1502 entry_end += cursor.pfn & ~(entry_end - 1); 1503 entry_end = min(entry_end, end); 1504 1505 do { 1506 uint64_t upd_end = min(entry_end, frag_end); 1507 unsigned nptes = (upd_end - frag_start) >> shift; 1508 1509 amdgpu_vm_update_flags(params, pt, cursor.level, 1510 pe_start, dst, nptes, incr, 1511 flags | AMDGPU_PTE_FRAG(frag)); 1512 1513 pe_start += nptes * 8; 1514 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1515 1516 frag_start = upd_end; 1517 if (frag_start >= frag_end) { 1518 /* figure out the next fragment */ 1519 amdgpu_vm_fragment(params, frag_start, end, 1520 flags, &frag, &frag_end); 1521 if (frag < shift) 1522 break; 1523 } 1524 } while (frag_start < entry_end); 1525 1526 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1527 /* Free all child entries. 1528 * Update the tables with the flags and addresses and free up subsequent 1529 * tables in the case of huge pages or freed up areas. 1530 * This is the maximum you can free, because all other page tables are not 1531 * completely covered by the range and so potentially still in use. 1532 */ 1533 while (cursor.pfn < frag_start) { 1534 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1535 amdgpu_vm_pt_next(adev, &cursor); 1536 } 1537 1538 } else if (frag >= shift) { 1539 /* or just move on to the next on the same level. */ 1540 amdgpu_vm_pt_next(adev, &cursor); 1541 } 1542 } 1543 1544 return 0; 1545 } 1546 1547 /** 1548 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1549 * 1550 * @adev: amdgpu_device pointer 1551 * @vm: requested vm 1552 * @direct: direct submission in a page fault 1553 * @exclusive: fence we need to sync to 1554 * @start: start of mapped range 1555 * @last: last mapped entry 1556 * @flags: flags for the entries 1557 * @addr: addr to set the area to 1558 * @pages_addr: DMA addresses to use for mapping 1559 * @fence: optional resulting fence 1560 * 1561 * Fill in the page table entries between @start and @last. 1562 * 1563 * Returns: 1564 * 0 for success, -EINVAL for failure. 1565 */ 1566 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1567 struct amdgpu_vm *vm, bool direct, 1568 struct dma_fence *exclusive, 1569 uint64_t start, uint64_t last, 1570 uint64_t flags, uint64_t addr, 1571 dma_addr_t *pages_addr, 1572 struct dma_fence **fence) 1573 { 1574 struct amdgpu_vm_update_params params; 1575 void *owner = AMDGPU_FENCE_OWNER_VM; 1576 int r; 1577 1578 memset(¶ms, 0, sizeof(params)); 1579 params.adev = adev; 1580 params.vm = vm; 1581 params.direct = direct; 1582 params.pages_addr = pages_addr; 1583 1584 /* sync to everything except eviction fences on unmapping */ 1585 if (!(flags & AMDGPU_PTE_VALID)) 1586 owner = AMDGPU_FENCE_OWNER_KFD; 1587 1588 amdgpu_vm_eviction_lock(vm); 1589 if (vm->evicting) { 1590 r = -EBUSY; 1591 goto error_unlock; 1592 } 1593 1594 r = vm->update_funcs->prepare(¶ms, owner, exclusive); 1595 if (r) 1596 goto error_unlock; 1597 1598 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1599 if (r) 1600 goto error_unlock; 1601 1602 r = vm->update_funcs->commit(¶ms, fence); 1603 1604 error_unlock: 1605 amdgpu_vm_eviction_unlock(vm); 1606 return r; 1607 } 1608 1609 /** 1610 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1611 * 1612 * @adev: amdgpu_device pointer 1613 * @exclusive: fence we need to sync to 1614 * @pages_addr: DMA addresses to use for mapping 1615 * @vm: requested vm 1616 * @mapping: mapped range and flags to use for the update 1617 * @flags: HW flags for the mapping 1618 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1619 * @nodes: array of drm_mm_nodes with the MC addresses 1620 * @fence: optional resulting fence 1621 * 1622 * Split the mapping into smaller chunks so that each update fits 1623 * into a SDMA IB. 1624 * 1625 * Returns: 1626 * 0 for success, -EINVAL for failure. 1627 */ 1628 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1629 struct dma_fence *exclusive, 1630 dma_addr_t *pages_addr, 1631 struct amdgpu_vm *vm, 1632 struct amdgpu_bo_va_mapping *mapping, 1633 uint64_t flags, 1634 struct amdgpu_device *bo_adev, 1635 struct drm_mm_node *nodes, 1636 struct dma_fence **fence) 1637 { 1638 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1639 uint64_t pfn, start = mapping->start; 1640 int r; 1641 1642 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1643 * but in case of something, we filter the flags in first place 1644 */ 1645 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1646 flags &= ~AMDGPU_PTE_READABLE; 1647 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1648 flags &= ~AMDGPU_PTE_WRITEABLE; 1649 1650 /* Apply ASIC specific mapping flags */ 1651 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1652 1653 trace_amdgpu_vm_bo_update(mapping); 1654 1655 pfn = mapping->offset >> PAGE_SHIFT; 1656 if (nodes) { 1657 while (pfn >= nodes->size) { 1658 pfn -= nodes->size; 1659 ++nodes; 1660 } 1661 } 1662 1663 do { 1664 dma_addr_t *dma_addr = NULL; 1665 uint64_t max_entries; 1666 uint64_t addr, last; 1667 1668 if (nodes) { 1669 addr = nodes->start << PAGE_SHIFT; 1670 max_entries = (nodes->size - pfn) * 1671 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1672 } else { 1673 addr = 0; 1674 max_entries = S64_MAX; 1675 } 1676 1677 if (pages_addr) { 1678 uint64_t count; 1679 1680 for (count = 1; 1681 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1682 ++count) { 1683 uint64_t idx = pfn + count; 1684 1685 if (pages_addr[idx] != 1686 (pages_addr[idx - 1] + PAGE_SIZE)) 1687 break; 1688 } 1689 1690 if (count < min_linear_pages) { 1691 addr = pfn << PAGE_SHIFT; 1692 dma_addr = pages_addr; 1693 } else { 1694 addr = pages_addr[pfn]; 1695 max_entries = count * 1696 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1697 } 1698 1699 } else if (flags & AMDGPU_PTE_VALID) { 1700 addr += bo_adev->vm_manager.vram_base_offset; 1701 addr += pfn << PAGE_SHIFT; 1702 } 1703 1704 last = min((uint64_t)mapping->last, start + max_entries - 1); 1705 r = amdgpu_vm_bo_update_mapping(adev, vm, false, exclusive, 1706 start, last, flags, addr, 1707 dma_addr, fence); 1708 if (r) 1709 return r; 1710 1711 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1712 if (nodes && nodes->size == pfn) { 1713 pfn = 0; 1714 ++nodes; 1715 } 1716 start = last + 1; 1717 1718 } while (unlikely(start != mapping->last + 1)); 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1725 * 1726 * @adev: amdgpu_device pointer 1727 * @bo_va: requested BO and VM object 1728 * @clear: if true clear the entries 1729 * 1730 * Fill in the page table entries for @bo_va. 1731 * 1732 * Returns: 1733 * 0 for success, -EINVAL for failure. 1734 */ 1735 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1736 bool clear) 1737 { 1738 struct amdgpu_bo *bo = bo_va->base.bo; 1739 struct amdgpu_vm *vm = bo_va->base.vm; 1740 struct amdgpu_bo_va_mapping *mapping; 1741 dma_addr_t *pages_addr = NULL; 1742 struct ttm_mem_reg *mem; 1743 struct drm_mm_node *nodes; 1744 struct dma_fence *exclusive, **last_update; 1745 uint64_t flags; 1746 struct amdgpu_device *bo_adev = adev; 1747 int r; 1748 1749 if (clear || !bo) { 1750 mem = NULL; 1751 nodes = NULL; 1752 exclusive = NULL; 1753 } else { 1754 struct ttm_dma_tt *ttm; 1755 1756 mem = &bo->tbo.mem; 1757 nodes = mem->mm_node; 1758 if (mem->mem_type == TTM_PL_TT) { 1759 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1760 pages_addr = ttm->dma_address; 1761 } 1762 exclusive = bo->tbo.moving; 1763 } 1764 1765 if (bo) { 1766 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1767 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1768 } else { 1769 flags = 0x0; 1770 } 1771 1772 if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)) 1773 last_update = &vm->last_update; 1774 else 1775 last_update = &bo_va->last_pt_update; 1776 1777 if (!clear && bo_va->base.moved) { 1778 bo_va->base.moved = false; 1779 list_splice_init(&bo_va->valids, &bo_va->invalids); 1780 1781 } else if (bo_va->cleared != clear) { 1782 list_splice_init(&bo_va->valids, &bo_va->invalids); 1783 } 1784 1785 list_for_each_entry(mapping, &bo_va->invalids, list) { 1786 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1787 mapping, flags, bo_adev, nodes, 1788 last_update); 1789 if (r) 1790 return r; 1791 } 1792 1793 /* If the BO is not in its preferred location add it back to 1794 * the evicted list so that it gets validated again on the 1795 * next command submission. 1796 */ 1797 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1798 uint32_t mem_type = bo->tbo.mem.mem_type; 1799 1800 if (!(bo->preferred_domains & 1801 amdgpu_mem_type_to_domain(mem_type))) 1802 amdgpu_vm_bo_evicted(&bo_va->base); 1803 else 1804 amdgpu_vm_bo_idle(&bo_va->base); 1805 } else { 1806 amdgpu_vm_bo_done(&bo_va->base); 1807 } 1808 1809 list_splice_init(&bo_va->invalids, &bo_va->valids); 1810 bo_va->cleared = clear; 1811 1812 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1813 list_for_each_entry(mapping, &bo_va->valids, list) 1814 trace_amdgpu_vm_bo_mapping(mapping); 1815 } 1816 1817 return 0; 1818 } 1819 1820 /** 1821 * amdgpu_vm_update_prt_state - update the global PRT state 1822 * 1823 * @adev: amdgpu_device pointer 1824 */ 1825 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1826 { 1827 unsigned long flags; 1828 bool enable; 1829 1830 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1831 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1832 adev->gmc.gmc_funcs->set_prt(adev, enable); 1833 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1834 } 1835 1836 /** 1837 * amdgpu_vm_prt_get - add a PRT user 1838 * 1839 * @adev: amdgpu_device pointer 1840 */ 1841 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1842 { 1843 if (!adev->gmc.gmc_funcs->set_prt) 1844 return; 1845 1846 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1847 amdgpu_vm_update_prt_state(adev); 1848 } 1849 1850 /** 1851 * amdgpu_vm_prt_put - drop a PRT user 1852 * 1853 * @adev: amdgpu_device pointer 1854 */ 1855 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1856 { 1857 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1858 amdgpu_vm_update_prt_state(adev); 1859 } 1860 1861 /** 1862 * amdgpu_vm_prt_cb - callback for updating the PRT status 1863 * 1864 * @fence: fence for the callback 1865 * @_cb: the callback function 1866 */ 1867 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1868 { 1869 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1870 1871 amdgpu_vm_prt_put(cb->adev); 1872 kfree(cb); 1873 } 1874 1875 /** 1876 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1877 * 1878 * @adev: amdgpu_device pointer 1879 * @fence: fence for the callback 1880 */ 1881 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1882 struct dma_fence *fence) 1883 { 1884 struct amdgpu_prt_cb *cb; 1885 1886 if (!adev->gmc.gmc_funcs->set_prt) 1887 return; 1888 1889 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1890 if (!cb) { 1891 /* Last resort when we are OOM */ 1892 if (fence) 1893 dma_fence_wait(fence, false); 1894 1895 amdgpu_vm_prt_put(adev); 1896 } else { 1897 cb->adev = adev; 1898 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1899 amdgpu_vm_prt_cb)) 1900 amdgpu_vm_prt_cb(fence, &cb->cb); 1901 } 1902 } 1903 1904 /** 1905 * amdgpu_vm_free_mapping - free a mapping 1906 * 1907 * @adev: amdgpu_device pointer 1908 * @vm: requested vm 1909 * @mapping: mapping to be freed 1910 * @fence: fence of the unmap operation 1911 * 1912 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1913 */ 1914 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1915 struct amdgpu_vm *vm, 1916 struct amdgpu_bo_va_mapping *mapping, 1917 struct dma_fence *fence) 1918 { 1919 if (mapping->flags & AMDGPU_PTE_PRT) 1920 amdgpu_vm_add_prt_cb(adev, fence); 1921 kfree(mapping); 1922 } 1923 1924 /** 1925 * amdgpu_vm_prt_fini - finish all prt mappings 1926 * 1927 * @adev: amdgpu_device pointer 1928 * @vm: requested vm 1929 * 1930 * Register a cleanup callback to disable PRT support after VM dies. 1931 */ 1932 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1933 { 1934 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1935 struct dma_fence *excl, **shared; 1936 unsigned i, shared_count; 1937 int r; 1938 1939 r = dma_resv_get_fences_rcu(resv, &excl, 1940 &shared_count, &shared); 1941 if (r) { 1942 /* Not enough memory to grab the fence list, as last resort 1943 * block for all the fences to complete. 1944 */ 1945 dma_resv_wait_timeout_rcu(resv, true, false, 1946 MAX_SCHEDULE_TIMEOUT); 1947 return; 1948 } 1949 1950 /* Add a callback for each fence in the reservation object */ 1951 amdgpu_vm_prt_get(adev); 1952 amdgpu_vm_add_prt_cb(adev, excl); 1953 1954 for (i = 0; i < shared_count; ++i) { 1955 amdgpu_vm_prt_get(adev); 1956 amdgpu_vm_add_prt_cb(adev, shared[i]); 1957 } 1958 1959 kfree(shared); 1960 } 1961 1962 /** 1963 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1964 * 1965 * @adev: amdgpu_device pointer 1966 * @vm: requested vm 1967 * @fence: optional resulting fence (unchanged if no work needed to be done 1968 * or if an error occurred) 1969 * 1970 * Make sure all freed BOs are cleared in the PT. 1971 * PTs have to be reserved and mutex must be locked! 1972 * 1973 * Returns: 1974 * 0 for success. 1975 * 1976 */ 1977 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1978 struct amdgpu_vm *vm, 1979 struct dma_fence **fence) 1980 { 1981 struct amdgpu_bo_va_mapping *mapping; 1982 uint64_t init_pte_value = 0; 1983 struct dma_fence *f = NULL; 1984 int r; 1985 1986 while (!list_empty(&vm->freed)) { 1987 mapping = list_first_entry(&vm->freed, 1988 struct amdgpu_bo_va_mapping, list); 1989 list_del(&mapping->list); 1990 1991 if (vm->pte_support_ats && 1992 mapping->start < AMDGPU_GMC_HOLE_START) 1993 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1994 1995 r = amdgpu_vm_bo_update_mapping(adev, vm, false, NULL, 1996 mapping->start, mapping->last, 1997 init_pte_value, 0, NULL, &f); 1998 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1999 if (r) { 2000 dma_fence_put(f); 2001 return r; 2002 } 2003 } 2004 2005 if (fence && f) { 2006 dma_fence_put(*fence); 2007 *fence = f; 2008 } else { 2009 dma_fence_put(f); 2010 } 2011 2012 return 0; 2013 2014 } 2015 2016 /** 2017 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2018 * 2019 * @adev: amdgpu_device pointer 2020 * @vm: requested vm 2021 * 2022 * Make sure all BOs which are moved are updated in the PTs. 2023 * 2024 * Returns: 2025 * 0 for success. 2026 * 2027 * PTs have to be reserved! 2028 */ 2029 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2030 struct amdgpu_vm *vm) 2031 { 2032 struct amdgpu_bo_va *bo_va, *tmp; 2033 struct dma_resv *resv; 2034 bool clear; 2035 int r; 2036 2037 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2038 /* Per VM BOs never need to bo cleared in the page tables */ 2039 r = amdgpu_vm_bo_update(adev, bo_va, false); 2040 if (r) 2041 return r; 2042 } 2043 2044 spin_lock(&vm->invalidated_lock); 2045 while (!list_empty(&vm->invalidated)) { 2046 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2047 base.vm_status); 2048 resv = bo_va->base.bo->tbo.base.resv; 2049 spin_unlock(&vm->invalidated_lock); 2050 2051 /* Try to reserve the BO to avoid clearing its ptes */ 2052 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2053 clear = false; 2054 /* Somebody else is using the BO right now */ 2055 else 2056 clear = true; 2057 2058 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2059 if (r) 2060 return r; 2061 2062 if (!clear) 2063 dma_resv_unlock(resv); 2064 spin_lock(&vm->invalidated_lock); 2065 } 2066 spin_unlock(&vm->invalidated_lock); 2067 2068 return 0; 2069 } 2070 2071 /** 2072 * amdgpu_vm_bo_add - add a bo to a specific vm 2073 * 2074 * @adev: amdgpu_device pointer 2075 * @vm: requested vm 2076 * @bo: amdgpu buffer object 2077 * 2078 * Add @bo into the requested vm. 2079 * Add @bo to the list of bos associated with the vm 2080 * 2081 * Returns: 2082 * Newly added bo_va or NULL for failure 2083 * 2084 * Object has to be reserved! 2085 */ 2086 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2087 struct amdgpu_vm *vm, 2088 struct amdgpu_bo *bo) 2089 { 2090 struct amdgpu_bo_va *bo_va; 2091 2092 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2093 if (bo_va == NULL) { 2094 return NULL; 2095 } 2096 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2097 2098 bo_va->ref_count = 1; 2099 INIT_LIST_HEAD(&bo_va->valids); 2100 INIT_LIST_HEAD(&bo_va->invalids); 2101 2102 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) && 2103 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) { 2104 bo_va->is_xgmi = true; 2105 mutex_lock(&adev->vm_manager.lock_pstate); 2106 /* Power up XGMI if it can be potentially used */ 2107 if (++adev->vm_manager.xgmi_map_counter == 1) 2108 amdgpu_xgmi_set_pstate(adev, 1); 2109 mutex_unlock(&adev->vm_manager.lock_pstate); 2110 } 2111 2112 return bo_va; 2113 } 2114 2115 2116 /** 2117 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2118 * 2119 * @adev: amdgpu_device pointer 2120 * @bo_va: bo_va to store the address 2121 * @mapping: the mapping to insert 2122 * 2123 * Insert a new mapping into all structures. 2124 */ 2125 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2126 struct amdgpu_bo_va *bo_va, 2127 struct amdgpu_bo_va_mapping *mapping) 2128 { 2129 struct amdgpu_vm *vm = bo_va->base.vm; 2130 struct amdgpu_bo *bo = bo_va->base.bo; 2131 2132 mapping->bo_va = bo_va; 2133 list_add(&mapping->list, &bo_va->invalids); 2134 amdgpu_vm_it_insert(mapping, &vm->va); 2135 2136 if (mapping->flags & AMDGPU_PTE_PRT) 2137 amdgpu_vm_prt_get(adev); 2138 2139 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2140 !bo_va->base.moved) { 2141 list_move(&bo_va->base.vm_status, &vm->moved); 2142 } 2143 trace_amdgpu_vm_bo_map(bo_va, mapping); 2144 } 2145 2146 /** 2147 * amdgpu_vm_bo_map - map bo inside a vm 2148 * 2149 * @adev: amdgpu_device pointer 2150 * @bo_va: bo_va to store the address 2151 * @saddr: where to map the BO 2152 * @offset: requested offset in the BO 2153 * @size: BO size in bytes 2154 * @flags: attributes of pages (read/write/valid/etc.) 2155 * 2156 * Add a mapping of the BO at the specefied addr into the VM. 2157 * 2158 * Returns: 2159 * 0 for success, error for failure. 2160 * 2161 * Object has to be reserved and unreserved outside! 2162 */ 2163 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2164 struct amdgpu_bo_va *bo_va, 2165 uint64_t saddr, uint64_t offset, 2166 uint64_t size, uint64_t flags) 2167 { 2168 struct amdgpu_bo_va_mapping *mapping, *tmp; 2169 struct amdgpu_bo *bo = bo_va->base.bo; 2170 struct amdgpu_vm *vm = bo_va->base.vm; 2171 uint64_t eaddr; 2172 2173 /* validate the parameters */ 2174 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2175 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2176 return -EINVAL; 2177 2178 /* make sure object fit at this offset */ 2179 eaddr = saddr + size - 1; 2180 if (saddr >= eaddr || 2181 (bo && offset + size > amdgpu_bo_size(bo))) 2182 return -EINVAL; 2183 2184 saddr /= AMDGPU_GPU_PAGE_SIZE; 2185 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2186 2187 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2188 if (tmp) { 2189 /* bo and tmp overlap, invalid addr */ 2190 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2191 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2192 tmp->start, tmp->last + 1); 2193 return -EINVAL; 2194 } 2195 2196 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2197 if (!mapping) 2198 return -ENOMEM; 2199 2200 mapping->start = saddr; 2201 mapping->last = eaddr; 2202 mapping->offset = offset; 2203 mapping->flags = flags; 2204 2205 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2206 2207 return 0; 2208 } 2209 2210 /** 2211 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2212 * 2213 * @adev: amdgpu_device pointer 2214 * @bo_va: bo_va to store the address 2215 * @saddr: where to map the BO 2216 * @offset: requested offset in the BO 2217 * @size: BO size in bytes 2218 * @flags: attributes of pages (read/write/valid/etc.) 2219 * 2220 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2221 * mappings as we do so. 2222 * 2223 * Returns: 2224 * 0 for success, error for failure. 2225 * 2226 * Object has to be reserved and unreserved outside! 2227 */ 2228 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2229 struct amdgpu_bo_va *bo_va, 2230 uint64_t saddr, uint64_t offset, 2231 uint64_t size, uint64_t flags) 2232 { 2233 struct amdgpu_bo_va_mapping *mapping; 2234 struct amdgpu_bo *bo = bo_va->base.bo; 2235 uint64_t eaddr; 2236 int r; 2237 2238 /* validate the parameters */ 2239 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2240 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2241 return -EINVAL; 2242 2243 /* make sure object fit at this offset */ 2244 eaddr = saddr + size - 1; 2245 if (saddr >= eaddr || 2246 (bo && offset + size > amdgpu_bo_size(bo))) 2247 return -EINVAL; 2248 2249 /* Allocate all the needed memory */ 2250 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2251 if (!mapping) 2252 return -ENOMEM; 2253 2254 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2255 if (r) { 2256 kfree(mapping); 2257 return r; 2258 } 2259 2260 saddr /= AMDGPU_GPU_PAGE_SIZE; 2261 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2262 2263 mapping->start = saddr; 2264 mapping->last = eaddr; 2265 mapping->offset = offset; 2266 mapping->flags = flags; 2267 2268 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2275 * 2276 * @adev: amdgpu_device pointer 2277 * @bo_va: bo_va to remove the address from 2278 * @saddr: where to the BO is mapped 2279 * 2280 * Remove a mapping of the BO at the specefied addr from the VM. 2281 * 2282 * Returns: 2283 * 0 for success, error for failure. 2284 * 2285 * Object has to be reserved and unreserved outside! 2286 */ 2287 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2288 struct amdgpu_bo_va *bo_va, 2289 uint64_t saddr) 2290 { 2291 struct amdgpu_bo_va_mapping *mapping; 2292 struct amdgpu_vm *vm = bo_va->base.vm; 2293 bool valid = true; 2294 2295 saddr /= AMDGPU_GPU_PAGE_SIZE; 2296 2297 list_for_each_entry(mapping, &bo_va->valids, list) { 2298 if (mapping->start == saddr) 2299 break; 2300 } 2301 2302 if (&mapping->list == &bo_va->valids) { 2303 valid = false; 2304 2305 list_for_each_entry(mapping, &bo_va->invalids, list) { 2306 if (mapping->start == saddr) 2307 break; 2308 } 2309 2310 if (&mapping->list == &bo_va->invalids) 2311 return -ENOENT; 2312 } 2313 2314 list_del(&mapping->list); 2315 amdgpu_vm_it_remove(mapping, &vm->va); 2316 mapping->bo_va = NULL; 2317 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2318 2319 if (valid) 2320 list_add(&mapping->list, &vm->freed); 2321 else 2322 amdgpu_vm_free_mapping(adev, vm, mapping, 2323 bo_va->last_pt_update); 2324 2325 return 0; 2326 } 2327 2328 /** 2329 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2330 * 2331 * @adev: amdgpu_device pointer 2332 * @vm: VM structure to use 2333 * @saddr: start of the range 2334 * @size: size of the range 2335 * 2336 * Remove all mappings in a range, split them as appropriate. 2337 * 2338 * Returns: 2339 * 0 for success, error for failure. 2340 */ 2341 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2342 struct amdgpu_vm *vm, 2343 uint64_t saddr, uint64_t size) 2344 { 2345 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2346 LIST_HEAD(removed); 2347 uint64_t eaddr; 2348 2349 eaddr = saddr + size - 1; 2350 saddr /= AMDGPU_GPU_PAGE_SIZE; 2351 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2352 2353 /* Allocate all the needed memory */ 2354 before = kzalloc(sizeof(*before), GFP_KERNEL); 2355 if (!before) 2356 return -ENOMEM; 2357 INIT_LIST_HEAD(&before->list); 2358 2359 after = kzalloc(sizeof(*after), GFP_KERNEL); 2360 if (!after) { 2361 kfree(before); 2362 return -ENOMEM; 2363 } 2364 INIT_LIST_HEAD(&after->list); 2365 2366 /* Now gather all removed mappings */ 2367 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2368 while (tmp) { 2369 /* Remember mapping split at the start */ 2370 if (tmp->start < saddr) { 2371 before->start = tmp->start; 2372 before->last = saddr - 1; 2373 before->offset = tmp->offset; 2374 before->flags = tmp->flags; 2375 before->bo_va = tmp->bo_va; 2376 list_add(&before->list, &tmp->bo_va->invalids); 2377 } 2378 2379 /* Remember mapping split at the end */ 2380 if (tmp->last > eaddr) { 2381 after->start = eaddr + 1; 2382 after->last = tmp->last; 2383 after->offset = tmp->offset; 2384 after->offset += after->start - tmp->start; 2385 after->flags = tmp->flags; 2386 after->bo_va = tmp->bo_va; 2387 list_add(&after->list, &tmp->bo_va->invalids); 2388 } 2389 2390 list_del(&tmp->list); 2391 list_add(&tmp->list, &removed); 2392 2393 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2394 } 2395 2396 /* And free them up */ 2397 list_for_each_entry_safe(tmp, next, &removed, list) { 2398 amdgpu_vm_it_remove(tmp, &vm->va); 2399 list_del(&tmp->list); 2400 2401 if (tmp->start < saddr) 2402 tmp->start = saddr; 2403 if (tmp->last > eaddr) 2404 tmp->last = eaddr; 2405 2406 tmp->bo_va = NULL; 2407 list_add(&tmp->list, &vm->freed); 2408 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2409 } 2410 2411 /* Insert partial mapping before the range */ 2412 if (!list_empty(&before->list)) { 2413 amdgpu_vm_it_insert(before, &vm->va); 2414 if (before->flags & AMDGPU_PTE_PRT) 2415 amdgpu_vm_prt_get(adev); 2416 } else { 2417 kfree(before); 2418 } 2419 2420 /* Insert partial mapping after the range */ 2421 if (!list_empty(&after->list)) { 2422 amdgpu_vm_it_insert(after, &vm->va); 2423 if (after->flags & AMDGPU_PTE_PRT) 2424 amdgpu_vm_prt_get(adev); 2425 } else { 2426 kfree(after); 2427 } 2428 2429 return 0; 2430 } 2431 2432 /** 2433 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2434 * 2435 * @vm: the requested VM 2436 * @addr: the address 2437 * 2438 * Find a mapping by it's address. 2439 * 2440 * Returns: 2441 * The amdgpu_bo_va_mapping matching for addr or NULL 2442 * 2443 */ 2444 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2445 uint64_t addr) 2446 { 2447 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2448 } 2449 2450 /** 2451 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2452 * 2453 * @vm: the requested vm 2454 * @ticket: CS ticket 2455 * 2456 * Trace all mappings of BOs reserved during a command submission. 2457 */ 2458 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2459 { 2460 struct amdgpu_bo_va_mapping *mapping; 2461 2462 if (!trace_amdgpu_vm_bo_cs_enabled()) 2463 return; 2464 2465 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2466 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2467 if (mapping->bo_va && mapping->bo_va->base.bo) { 2468 struct amdgpu_bo *bo; 2469 2470 bo = mapping->bo_va->base.bo; 2471 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2472 ticket) 2473 continue; 2474 } 2475 2476 trace_amdgpu_vm_bo_cs(mapping); 2477 } 2478 } 2479 2480 /** 2481 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2482 * 2483 * @adev: amdgpu_device pointer 2484 * @bo_va: requested bo_va 2485 * 2486 * Remove @bo_va->bo from the requested vm. 2487 * 2488 * Object have to be reserved! 2489 */ 2490 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2491 struct amdgpu_bo_va *bo_va) 2492 { 2493 struct amdgpu_bo_va_mapping *mapping, *next; 2494 struct amdgpu_bo *bo = bo_va->base.bo; 2495 struct amdgpu_vm *vm = bo_va->base.vm; 2496 struct amdgpu_vm_bo_base **base; 2497 2498 if (bo) { 2499 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2500 vm->bulk_moveable = false; 2501 2502 for (base = &bo_va->base.bo->vm_bo; *base; 2503 base = &(*base)->next) { 2504 if (*base != &bo_va->base) 2505 continue; 2506 2507 *base = bo_va->base.next; 2508 break; 2509 } 2510 } 2511 2512 spin_lock(&vm->invalidated_lock); 2513 list_del(&bo_va->base.vm_status); 2514 spin_unlock(&vm->invalidated_lock); 2515 2516 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2517 list_del(&mapping->list); 2518 amdgpu_vm_it_remove(mapping, &vm->va); 2519 mapping->bo_va = NULL; 2520 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2521 list_add(&mapping->list, &vm->freed); 2522 } 2523 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2524 list_del(&mapping->list); 2525 amdgpu_vm_it_remove(mapping, &vm->va); 2526 amdgpu_vm_free_mapping(adev, vm, mapping, 2527 bo_va->last_pt_update); 2528 } 2529 2530 dma_fence_put(bo_va->last_pt_update); 2531 2532 if (bo && bo_va->is_xgmi) { 2533 mutex_lock(&adev->vm_manager.lock_pstate); 2534 if (--adev->vm_manager.xgmi_map_counter == 0) 2535 amdgpu_xgmi_set_pstate(adev, 0); 2536 mutex_unlock(&adev->vm_manager.lock_pstate); 2537 } 2538 2539 kfree(bo_va); 2540 } 2541 2542 /** 2543 * amdgpu_vm_evictable - check if we can evict a VM 2544 * 2545 * @bo: A page table of the VM. 2546 * 2547 * Check if it is possible to evict a VM. 2548 */ 2549 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2550 { 2551 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2552 2553 /* Page tables of a destroyed VM can go away immediately */ 2554 if (!bo_base || !bo_base->vm) 2555 return true; 2556 2557 /* Don't evict VM page tables while they are busy */ 2558 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2559 return false; 2560 2561 /* Try to block ongoing updates */ 2562 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2563 return false; 2564 2565 /* Don't evict VM page tables while they are updated */ 2566 if (!dma_fence_is_signaled(bo_base->vm->last_direct) || 2567 !dma_fence_is_signaled(bo_base->vm->last_delayed)) { 2568 amdgpu_vm_eviction_unlock(bo_base->vm); 2569 return false; 2570 } 2571 2572 bo_base->vm->evicting = true; 2573 amdgpu_vm_eviction_unlock(bo_base->vm); 2574 return true; 2575 } 2576 2577 /** 2578 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2579 * 2580 * @adev: amdgpu_device pointer 2581 * @bo: amdgpu buffer object 2582 * @evicted: is the BO evicted 2583 * 2584 * Mark @bo as invalid. 2585 */ 2586 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2587 struct amdgpu_bo *bo, bool evicted) 2588 { 2589 struct amdgpu_vm_bo_base *bo_base; 2590 2591 /* shadow bo doesn't have bo base, its validation needs its parent */ 2592 if (bo->parent && bo->parent->shadow == bo) 2593 bo = bo->parent; 2594 2595 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2596 struct amdgpu_vm *vm = bo_base->vm; 2597 2598 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2599 amdgpu_vm_bo_evicted(bo_base); 2600 continue; 2601 } 2602 2603 if (bo_base->moved) 2604 continue; 2605 bo_base->moved = true; 2606 2607 if (bo->tbo.type == ttm_bo_type_kernel) 2608 amdgpu_vm_bo_relocated(bo_base); 2609 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2610 amdgpu_vm_bo_moved(bo_base); 2611 else 2612 amdgpu_vm_bo_invalidated(bo_base); 2613 } 2614 } 2615 2616 /** 2617 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2618 * 2619 * @vm_size: VM size 2620 * 2621 * Returns: 2622 * VM page table as power of two 2623 */ 2624 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2625 { 2626 /* Total bits covered by PD + PTs */ 2627 unsigned bits = ilog2(vm_size) + 18; 2628 2629 /* Make sure the PD is 4K in size up to 8GB address space. 2630 Above that split equal between PD and PTs */ 2631 if (vm_size <= 8) 2632 return (bits - 9); 2633 else 2634 return ((bits + 3) / 2); 2635 } 2636 2637 /** 2638 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2639 * 2640 * @adev: amdgpu_device pointer 2641 * @min_vm_size: the minimum vm size in GB if it's set auto 2642 * @fragment_size_default: Default PTE fragment size 2643 * @max_level: max VMPT level 2644 * @max_bits: max address space size in bits 2645 * 2646 */ 2647 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2648 uint32_t fragment_size_default, unsigned max_level, 2649 unsigned max_bits) 2650 { 2651 unsigned int max_size = 1 << (max_bits - 30); 2652 unsigned int vm_size; 2653 uint64_t tmp; 2654 2655 /* adjust vm size first */ 2656 if (amdgpu_vm_size != -1) { 2657 vm_size = amdgpu_vm_size; 2658 if (vm_size > max_size) { 2659 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2660 amdgpu_vm_size, max_size); 2661 vm_size = max_size; 2662 } 2663 } else { 2664 struct sysinfo si; 2665 unsigned int phys_ram_gb; 2666 2667 /* Optimal VM size depends on the amount of physical 2668 * RAM available. Underlying requirements and 2669 * assumptions: 2670 * 2671 * - Need to map system memory and VRAM from all GPUs 2672 * - VRAM from other GPUs not known here 2673 * - Assume VRAM <= system memory 2674 * - On GFX8 and older, VM space can be segmented for 2675 * different MTYPEs 2676 * - Need to allow room for fragmentation, guard pages etc. 2677 * 2678 * This adds up to a rough guess of system memory x3. 2679 * Round up to power of two to maximize the available 2680 * VM size with the given page table size. 2681 */ 2682 si_meminfo(&si); 2683 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2684 (1 << 30) - 1) >> 30; 2685 vm_size = roundup_pow_of_two( 2686 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2687 } 2688 2689 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2690 2691 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2692 if (amdgpu_vm_block_size != -1) 2693 tmp >>= amdgpu_vm_block_size - 9; 2694 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2695 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2696 switch (adev->vm_manager.num_level) { 2697 case 3: 2698 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2699 break; 2700 case 2: 2701 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2702 break; 2703 case 1: 2704 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2705 break; 2706 default: 2707 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2708 } 2709 /* block size depends on vm size and hw setup*/ 2710 if (amdgpu_vm_block_size != -1) 2711 adev->vm_manager.block_size = 2712 min((unsigned)amdgpu_vm_block_size, max_bits 2713 - AMDGPU_GPU_PAGE_SHIFT 2714 - 9 * adev->vm_manager.num_level); 2715 else if (adev->vm_manager.num_level > 1) 2716 adev->vm_manager.block_size = 9; 2717 else 2718 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2719 2720 if (amdgpu_vm_fragment_size == -1) 2721 adev->vm_manager.fragment_size = fragment_size_default; 2722 else 2723 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2724 2725 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2726 vm_size, adev->vm_manager.num_level + 1, 2727 adev->vm_manager.block_size, 2728 adev->vm_manager.fragment_size); 2729 } 2730 2731 /** 2732 * amdgpu_vm_wait_idle - wait for the VM to become idle 2733 * 2734 * @vm: VM object to wait for 2735 * @timeout: timeout to wait for VM to become idle 2736 */ 2737 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2738 { 2739 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2740 true, true, timeout); 2741 if (timeout <= 0) 2742 return timeout; 2743 2744 timeout = dma_fence_wait_timeout(vm->last_direct, true, timeout); 2745 if (timeout <= 0) 2746 return timeout; 2747 2748 return dma_fence_wait_timeout(vm->last_delayed, true, timeout); 2749 } 2750 2751 /** 2752 * amdgpu_vm_init - initialize a vm instance 2753 * 2754 * @adev: amdgpu_device pointer 2755 * @vm: requested vm 2756 * @vm_context: Indicates if it GFX or Compute context 2757 * @pasid: Process address space identifier 2758 * 2759 * Init @vm fields. 2760 * 2761 * Returns: 2762 * 0 for success, error for failure. 2763 */ 2764 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2765 int vm_context, unsigned int pasid) 2766 { 2767 struct amdgpu_bo_param bp; 2768 struct amdgpu_bo *root; 2769 int r, i; 2770 2771 vm->va = RB_ROOT_CACHED; 2772 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2773 vm->reserved_vmid[i] = NULL; 2774 INIT_LIST_HEAD(&vm->evicted); 2775 INIT_LIST_HEAD(&vm->relocated); 2776 INIT_LIST_HEAD(&vm->moved); 2777 INIT_LIST_HEAD(&vm->idle); 2778 INIT_LIST_HEAD(&vm->invalidated); 2779 spin_lock_init(&vm->invalidated_lock); 2780 INIT_LIST_HEAD(&vm->freed); 2781 2782 2783 /* create scheduler entities for page table updates */ 2784 r = drm_sched_entity_init(&vm->direct, DRM_SCHED_PRIORITY_NORMAL, 2785 adev->vm_manager.vm_pte_scheds, 2786 adev->vm_manager.vm_pte_num_scheds, NULL); 2787 if (r) 2788 return r; 2789 2790 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2791 adev->vm_manager.vm_pte_scheds, 2792 adev->vm_manager.vm_pte_num_scheds, NULL); 2793 if (r) 2794 goto error_free_direct; 2795 2796 vm->pte_support_ats = false; 2797 vm->is_compute_context = false; 2798 2799 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2800 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2801 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2802 2803 if (adev->asic_type == CHIP_RAVEN) 2804 vm->pte_support_ats = true; 2805 } else { 2806 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2807 AMDGPU_VM_USE_CPU_FOR_GFX); 2808 } 2809 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2810 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2811 WARN_ONCE((vm->use_cpu_for_update && 2812 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2813 "CPU update of VM recommended only for large BAR system\n"); 2814 2815 if (vm->use_cpu_for_update) 2816 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2817 else 2818 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2819 vm->last_update = NULL; 2820 vm->last_direct = dma_fence_get_stub(); 2821 vm->last_delayed = dma_fence_get_stub(); 2822 2823 mutex_init(&vm->eviction_lock); 2824 vm->evicting = false; 2825 2826 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2827 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2828 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2829 r = amdgpu_bo_create(adev, &bp, &root); 2830 if (r) 2831 goto error_free_delayed; 2832 2833 r = amdgpu_bo_reserve(root, true); 2834 if (r) 2835 goto error_free_root; 2836 2837 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2838 if (r) 2839 goto error_unreserve; 2840 2841 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2842 2843 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2844 if (r) 2845 goto error_unreserve; 2846 2847 amdgpu_bo_unreserve(vm->root.base.bo); 2848 2849 if (pasid) { 2850 unsigned long flags; 2851 2852 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2853 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2854 GFP_ATOMIC); 2855 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2856 if (r < 0) 2857 goto error_free_root; 2858 2859 vm->pasid = pasid; 2860 } 2861 2862 INIT_KFIFO(vm->faults); 2863 2864 return 0; 2865 2866 error_unreserve: 2867 amdgpu_bo_unreserve(vm->root.base.bo); 2868 2869 error_free_root: 2870 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2871 amdgpu_bo_unref(&vm->root.base.bo); 2872 vm->root.base.bo = NULL; 2873 2874 error_free_delayed: 2875 dma_fence_put(vm->last_direct); 2876 dma_fence_put(vm->last_delayed); 2877 drm_sched_entity_destroy(&vm->delayed); 2878 2879 error_free_direct: 2880 drm_sched_entity_destroy(&vm->direct); 2881 2882 return r; 2883 } 2884 2885 /** 2886 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2887 * 2888 * @adev: amdgpu_device pointer 2889 * @vm: the VM to check 2890 * 2891 * check all entries of the root PD, if any subsequent PDs are allocated, 2892 * it means there are page table creating and filling, and is no a clean 2893 * VM 2894 * 2895 * Returns: 2896 * 0 if this VM is clean 2897 */ 2898 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2899 struct amdgpu_vm *vm) 2900 { 2901 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2902 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2903 unsigned int i = 0; 2904 2905 if (!(vm->root.entries)) 2906 return 0; 2907 2908 for (i = 0; i < entries; i++) { 2909 if (vm->root.entries[i].base.bo) 2910 return -EINVAL; 2911 } 2912 2913 return 0; 2914 } 2915 2916 /** 2917 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2918 * 2919 * @adev: amdgpu_device pointer 2920 * @vm: requested vm 2921 * @pasid: pasid to use 2922 * 2923 * This only works on GFX VMs that don't have any BOs added and no 2924 * page tables allocated yet. 2925 * 2926 * Changes the following VM parameters: 2927 * - use_cpu_for_update 2928 * - pte_supports_ats 2929 * - pasid (old PASID is released, because compute manages its own PASIDs) 2930 * 2931 * Reinitializes the page directory to reflect the changed ATS 2932 * setting. 2933 * 2934 * Returns: 2935 * 0 for success, -errno for errors. 2936 */ 2937 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2938 unsigned int pasid) 2939 { 2940 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2941 int r; 2942 2943 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2944 if (r) 2945 return r; 2946 2947 /* Sanity checks */ 2948 r = amdgpu_vm_check_clean_reserved(adev, vm); 2949 if (r) 2950 goto unreserve_bo; 2951 2952 if (pasid) { 2953 unsigned long flags; 2954 2955 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2956 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2957 GFP_ATOMIC); 2958 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2959 2960 if (r == -ENOSPC) 2961 goto unreserve_bo; 2962 r = 0; 2963 } 2964 2965 /* Check if PD needs to be reinitialized and do it before 2966 * changing any other state, in case it fails. 2967 */ 2968 if (pte_support_ats != vm->pte_support_ats) { 2969 vm->pte_support_ats = pte_support_ats; 2970 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 2971 if (r) 2972 goto free_idr; 2973 } 2974 2975 /* Update VM state */ 2976 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2977 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2978 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2979 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2980 WARN_ONCE((vm->use_cpu_for_update && 2981 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2982 "CPU update of VM recommended only for large BAR system\n"); 2983 2984 if (vm->use_cpu_for_update) 2985 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2986 else 2987 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2988 dma_fence_put(vm->last_update); 2989 vm->last_update = NULL; 2990 vm->is_compute_context = true; 2991 2992 if (vm->pasid) { 2993 unsigned long flags; 2994 2995 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2996 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2997 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2998 2999 /* Free the original amdgpu allocated pasid 3000 * Will be replaced with kfd allocated pasid 3001 */ 3002 amdgpu_pasid_free(vm->pasid); 3003 vm->pasid = 0; 3004 } 3005 3006 /* Free the shadow bo for compute VM */ 3007 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3008 3009 if (pasid) 3010 vm->pasid = pasid; 3011 3012 goto unreserve_bo; 3013 3014 free_idr: 3015 if (pasid) { 3016 unsigned long flags; 3017 3018 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3019 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3020 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3021 } 3022 unreserve_bo: 3023 amdgpu_bo_unreserve(vm->root.base.bo); 3024 return r; 3025 } 3026 3027 /** 3028 * amdgpu_vm_release_compute - release a compute vm 3029 * @adev: amdgpu_device pointer 3030 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3031 * 3032 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3033 * pasid from vm. Compute should stop use of vm after this call. 3034 */ 3035 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3036 { 3037 if (vm->pasid) { 3038 unsigned long flags; 3039 3040 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3041 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3042 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3043 } 3044 vm->pasid = 0; 3045 vm->is_compute_context = false; 3046 } 3047 3048 /** 3049 * amdgpu_vm_fini - tear down a vm instance 3050 * 3051 * @adev: amdgpu_device pointer 3052 * @vm: requested vm 3053 * 3054 * Tear down @vm. 3055 * Unbind the VM and remove all bos from the vm bo list 3056 */ 3057 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3058 { 3059 struct amdgpu_bo_va_mapping *mapping, *tmp; 3060 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3061 struct amdgpu_bo *root; 3062 int i; 3063 3064 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3065 3066 root = amdgpu_bo_ref(vm->root.base.bo); 3067 amdgpu_bo_reserve(root, true); 3068 if (vm->pasid) { 3069 unsigned long flags; 3070 3071 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3072 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3073 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3074 vm->pasid = 0; 3075 } 3076 3077 dma_fence_wait(vm->last_direct, false); 3078 dma_fence_put(vm->last_direct); 3079 dma_fence_wait(vm->last_delayed, false); 3080 dma_fence_put(vm->last_delayed); 3081 3082 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3083 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3084 amdgpu_vm_prt_fini(adev, vm); 3085 prt_fini_needed = false; 3086 } 3087 3088 list_del(&mapping->list); 3089 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3090 } 3091 3092 amdgpu_vm_free_pts(adev, vm, NULL); 3093 amdgpu_bo_unreserve(root); 3094 amdgpu_bo_unref(&root); 3095 WARN_ON(vm->root.base.bo); 3096 3097 drm_sched_entity_destroy(&vm->direct); 3098 drm_sched_entity_destroy(&vm->delayed); 3099 3100 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3101 dev_err(adev->dev, "still active bo inside vm\n"); 3102 } 3103 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3104 &vm->va.rb_root, rb) { 3105 /* Don't remove the mapping here, we don't want to trigger a 3106 * rebalance and the tree is about to be destroyed anyway. 3107 */ 3108 list_del(&mapping->list); 3109 kfree(mapping); 3110 } 3111 3112 dma_fence_put(vm->last_update); 3113 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3114 amdgpu_vmid_free_reserved(adev, vm, i); 3115 } 3116 3117 /** 3118 * amdgpu_vm_manager_init - init the VM manager 3119 * 3120 * @adev: amdgpu_device pointer 3121 * 3122 * Initialize the VM manager structures 3123 */ 3124 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3125 { 3126 unsigned i; 3127 3128 amdgpu_vmid_mgr_init(adev); 3129 3130 adev->vm_manager.fence_context = 3131 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3132 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3133 adev->vm_manager.seqno[i] = 0; 3134 3135 spin_lock_init(&adev->vm_manager.prt_lock); 3136 atomic_set(&adev->vm_manager.num_prt_users, 0); 3137 3138 /* If not overridden by the user, by default, only in large BAR systems 3139 * Compute VM tables will be updated by CPU 3140 */ 3141 #ifdef CONFIG_X86_64 3142 if (amdgpu_vm_update_mode == -1) { 3143 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3144 adev->vm_manager.vm_update_mode = 3145 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3146 else 3147 adev->vm_manager.vm_update_mode = 0; 3148 } else 3149 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3150 #else 3151 adev->vm_manager.vm_update_mode = 0; 3152 #endif 3153 3154 idr_init(&adev->vm_manager.pasid_idr); 3155 spin_lock_init(&adev->vm_manager.pasid_lock); 3156 3157 adev->vm_manager.xgmi_map_counter = 0; 3158 mutex_init(&adev->vm_manager.lock_pstate); 3159 } 3160 3161 /** 3162 * amdgpu_vm_manager_fini - cleanup VM manager 3163 * 3164 * @adev: amdgpu_device pointer 3165 * 3166 * Cleanup the VM manager and free resources. 3167 */ 3168 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3169 { 3170 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3171 idr_destroy(&adev->vm_manager.pasid_idr); 3172 3173 amdgpu_vmid_mgr_fini(adev); 3174 } 3175 3176 /** 3177 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3178 * 3179 * @dev: drm device pointer 3180 * @data: drm_amdgpu_vm 3181 * @filp: drm file pointer 3182 * 3183 * Returns: 3184 * 0 for success, -errno for errors. 3185 */ 3186 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3187 { 3188 union drm_amdgpu_vm *args = data; 3189 struct amdgpu_device *adev = dev->dev_private; 3190 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3191 int r; 3192 3193 switch (args->in.op) { 3194 case AMDGPU_VM_OP_RESERVE_VMID: 3195 /* We only have requirement to reserve vmid from gfxhub */ 3196 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3197 AMDGPU_GFXHUB_0); 3198 if (r) 3199 return r; 3200 break; 3201 case AMDGPU_VM_OP_UNRESERVE_VMID: 3202 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3203 break; 3204 default: 3205 return -EINVAL; 3206 } 3207 3208 return 0; 3209 } 3210 3211 /** 3212 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3213 * 3214 * @adev: drm device pointer 3215 * @pasid: PASID identifier for VM 3216 * @task_info: task_info to fill. 3217 */ 3218 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3219 struct amdgpu_task_info *task_info) 3220 { 3221 struct amdgpu_vm *vm; 3222 unsigned long flags; 3223 3224 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3225 3226 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3227 if (vm) 3228 *task_info = vm->task_info; 3229 3230 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3231 } 3232 3233 /** 3234 * amdgpu_vm_set_task_info - Sets VMs task info. 3235 * 3236 * @vm: vm for which to set the info 3237 */ 3238 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3239 { 3240 if (vm->task_info.pid) 3241 return; 3242 3243 vm->task_info.pid = current->pid; 3244 get_task_comm(vm->task_info.task_name, current); 3245 3246 if (current->group_leader->mm != current->mm) 3247 return; 3248 3249 vm->task_info.tgid = current->group_leader->pid; 3250 get_task_comm(vm->task_info.process_name, current->group_leader); 3251 } 3252 3253 /** 3254 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3255 * @adev: amdgpu device pointer 3256 * @pasid: PASID of the VM 3257 * @addr: Address of the fault 3258 * 3259 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3260 * shouldn't be reported any more. 3261 */ 3262 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid, 3263 uint64_t addr) 3264 { 3265 struct amdgpu_bo *root; 3266 uint64_t value, flags; 3267 struct amdgpu_vm *vm; 3268 long r; 3269 3270 spin_lock(&adev->vm_manager.pasid_lock); 3271 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3272 if (vm) 3273 root = amdgpu_bo_ref(vm->root.base.bo); 3274 else 3275 root = NULL; 3276 spin_unlock(&adev->vm_manager.pasid_lock); 3277 3278 if (!root) 3279 return false; 3280 3281 r = amdgpu_bo_reserve(root, true); 3282 if (r) 3283 goto error_unref; 3284 3285 /* Double check that the VM still exists */ 3286 spin_lock(&adev->vm_manager.pasid_lock); 3287 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3288 if (vm && vm->root.base.bo != root) 3289 vm = NULL; 3290 spin_unlock(&adev->vm_manager.pasid_lock); 3291 if (!vm) 3292 goto error_unlock; 3293 3294 addr /= AMDGPU_GPU_PAGE_SIZE; 3295 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3296 AMDGPU_PTE_SYSTEM; 3297 3298 if (vm->is_compute_context) { 3299 /* Intentionally setting invalid PTE flag 3300 * combination to force a no-retry-fault 3301 */ 3302 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3303 AMDGPU_PTE_TF; 3304 value = 0; 3305 3306 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3307 /* Redirect the access to the dummy page */ 3308 value = adev->dummy_page_addr; 3309 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3310 AMDGPU_PTE_WRITEABLE; 3311 3312 } else { 3313 /* Let the hw retry silently on the PTE */ 3314 value = 0; 3315 } 3316 3317 r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1, 3318 flags, value, NULL, NULL); 3319 if (r) 3320 goto error_unlock; 3321 3322 r = amdgpu_vm_update_pdes(adev, vm, true); 3323 3324 error_unlock: 3325 amdgpu_bo_unreserve(root); 3326 if (r < 0) 3327 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3328 3329 error_unref: 3330 amdgpu_bo_unref(&root); 3331 3332 return false; 3333 } 3334