1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <drm/drmP.h>
29 #include <drm/amdgpu_drm.h>
30 #include "amdgpu.h"
31 #include "amdgpu_trace.h"
32 
33 /*
34  * GPUVM
35  * GPUVM is similar to the legacy gart on older asics, however
36  * rather than there being a single global gart table
37  * for the entire GPU, there are multiple VM page tables active
38  * at any given time.  The VM page tables can contain a mix
39  * vram pages and system memory pages and system memory pages
40  * can be mapped as snooped (cached system pages) or unsnooped
41  * (uncached system pages).
42  * Each VM has an ID associated with it and there is a page table
43  * associated with each VMID.  When execting a command buffer,
44  * the kernel tells the the ring what VMID to use for that command
45  * buffer.  VMIDs are allocated dynamically as commands are submitted.
46  * The userspace drivers maintain their own address space and the kernel
47  * sets up their pages tables accordingly when they submit their
48  * command buffers and a VMID is assigned.
49  * Cayman/Trinity support up to 8 active VMs at any given time;
50  * SI supports 16.
51  */
52 
53 /* Special value that no flush is necessary */
54 #define AMDGPU_VM_NO_FLUSH (~0ll)
55 
56 /**
57  * amdgpu_vm_num_pde - return the number of page directory entries
58  *
59  * @adev: amdgpu_device pointer
60  *
61  * Calculate the number of page directory entries.
62  */
63 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
64 {
65 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
66 }
67 
68 /**
69  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
70  *
71  * @adev: amdgpu_device pointer
72  *
73  * Calculate the size of the page directory in bytes.
74  */
75 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
76 {
77 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
78 }
79 
80 /**
81  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
82  *
83  * @vm: vm providing the BOs
84  * @validated: head of validation list
85  * @entry: entry to add
86  *
87  * Add the page directory to the list of BOs to
88  * validate for command submission.
89  */
90 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
91 			 struct list_head *validated,
92 			 struct amdgpu_bo_list_entry *entry)
93 {
94 	entry->robj = vm->page_directory;
95 	entry->priority = 0;
96 	entry->tv.bo = &vm->page_directory->tbo;
97 	entry->tv.shared = true;
98 	entry->user_pages = NULL;
99 	list_add(&entry->tv.head, validated);
100 }
101 
102 /**
103  * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
104  *
105  * @vm: vm providing the BOs
106  * @duplicates: head of duplicates list
107  *
108  * Add the page directory to the BO duplicates list
109  * for command submission.
110  */
111 void amdgpu_vm_get_pt_bos(struct amdgpu_vm *vm, struct list_head *duplicates)
112 {
113 	unsigned i;
114 
115 	/* add the vm page table to the list */
116 	for (i = 0; i <= vm->max_pde_used; ++i) {
117 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
118 
119 		if (!entry->robj)
120 			continue;
121 
122 		list_add(&entry->tv.head, duplicates);
123 	}
124 
125 }
126 
127 /**
128  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
129  *
130  * @adev: amdgpu device instance
131  * @vm: vm providing the BOs
132  *
133  * Move the PT BOs to the tail of the LRU.
134  */
135 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
136 				  struct amdgpu_vm *vm)
137 {
138 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
139 	unsigned i;
140 
141 	spin_lock(&glob->lru_lock);
142 	for (i = 0; i <= vm->max_pde_used; ++i) {
143 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
144 
145 		if (!entry->robj)
146 			continue;
147 
148 		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
149 	}
150 	spin_unlock(&glob->lru_lock);
151 }
152 
153 /**
154  * amdgpu_vm_grab_id - allocate the next free VMID
155  *
156  * @vm: vm to allocate id for
157  * @ring: ring we want to submit job to
158  * @sync: sync object where we add dependencies
159  * @fence: fence protecting ID from reuse
160  *
161  * Allocate an id for the vm, adding fences to the sync obj as necessary.
162  */
163 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
164 		      struct amdgpu_sync *sync, struct fence *fence,
165 		      unsigned *vm_id, uint64_t *vm_pd_addr)
166 {
167 	uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
168 	struct amdgpu_device *adev = ring->adev;
169 	struct amdgpu_vm_id *id = &vm->ids[ring->idx];
170 	struct fence *updates = sync->last_vm_update;
171 	int r;
172 
173 	mutex_lock(&adev->vm_manager.lock);
174 
175 	/* check if the id is still valid */
176 	if (id->mgr_id) {
177 		struct fence *flushed = id->flushed_updates;
178 		bool is_later;
179 		long owner;
180 
181 		if (!flushed)
182 			is_later = true;
183 		else if (!updates)
184 			is_later = false;
185 		else
186 			is_later = fence_is_later(updates, flushed);
187 
188 		owner = atomic_long_read(&id->mgr_id->owner);
189 		if (!is_later && owner == (long)id &&
190 		    pd_addr == id->pd_gpu_addr) {
191 
192 			r = amdgpu_sync_fence(ring->adev, sync,
193 					      id->mgr_id->active);
194 			if (r) {
195 				mutex_unlock(&adev->vm_manager.lock);
196 				return r;
197 			}
198 
199 			fence_put(id->mgr_id->active);
200 			id->mgr_id->active = fence_get(fence);
201 
202 			list_move_tail(&id->mgr_id->list,
203 				       &adev->vm_manager.ids_lru);
204 
205 			*vm_id = id->mgr_id - adev->vm_manager.ids;
206 			*vm_pd_addr = AMDGPU_VM_NO_FLUSH;
207 			trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id,
208 						*vm_pd_addr);
209 
210 			mutex_unlock(&adev->vm_manager.lock);
211 			return 0;
212 		}
213 	}
214 
215 	id->mgr_id = list_first_entry(&adev->vm_manager.ids_lru,
216 				      struct amdgpu_vm_manager_id,
217 				      list);
218 
219 	r = amdgpu_sync_fence(ring->adev, sync, id->mgr_id->active);
220 	if (!r) {
221 		fence_put(id->mgr_id->active);
222 		id->mgr_id->active = fence_get(fence);
223 
224 		fence_put(id->flushed_updates);
225 		id->flushed_updates = fence_get(updates);
226 
227 		id->pd_gpu_addr = pd_addr;
228 
229 		list_move_tail(&id->mgr_id->list, &adev->vm_manager.ids_lru);
230 		atomic_long_set(&id->mgr_id->owner, (long)id);
231 
232 		*vm_id = id->mgr_id - adev->vm_manager.ids;
233 		*vm_pd_addr = pd_addr;
234 		trace_amdgpu_vm_grab_id(vm, ring->idx, *vm_id, *vm_pd_addr);
235 	}
236 
237 	mutex_unlock(&adev->vm_manager.lock);
238 	return r;
239 }
240 
241 /**
242  * amdgpu_vm_flush - hardware flush the vm
243  *
244  * @ring: ring to use for flush
245  * @vm_id: vmid number to use
246  * @pd_addr: address of the page directory
247  *
248  * Emit a VM flush when it is necessary.
249  */
250 void amdgpu_vm_flush(struct amdgpu_ring *ring,
251 		     unsigned vm_id, uint64_t pd_addr,
252 		     uint32_t gds_base, uint32_t gds_size,
253 		     uint32_t gws_base, uint32_t gws_size,
254 		     uint32_t oa_base, uint32_t oa_size)
255 {
256 	struct amdgpu_device *adev = ring->adev;
257 	struct amdgpu_vm_manager_id *mgr_id = &adev->vm_manager.ids[vm_id];
258 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
259 		mgr_id->gds_base != gds_base ||
260 		mgr_id->gds_size != gds_size ||
261 		mgr_id->gws_base != gws_base ||
262 		mgr_id->gws_size != gws_size ||
263 		mgr_id->oa_base != oa_base ||
264 		mgr_id->oa_size != oa_size);
265 
266 	if (ring->funcs->emit_pipeline_sync && (
267 	    pd_addr != AMDGPU_VM_NO_FLUSH || gds_switch_needed))
268 		amdgpu_ring_emit_pipeline_sync(ring);
269 
270 	if (pd_addr != AMDGPU_VM_NO_FLUSH) {
271 		trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id);
272 		amdgpu_ring_emit_vm_flush(ring, vm_id, pd_addr);
273 	}
274 
275 	if (gds_switch_needed) {
276 		mgr_id->gds_base = gds_base;
277 		mgr_id->gds_size = gds_size;
278 		mgr_id->gws_base = gws_base;
279 		mgr_id->gws_size = gws_size;
280 		mgr_id->oa_base = oa_base;
281 		mgr_id->oa_size = oa_size;
282 		amdgpu_ring_emit_gds_switch(ring, vm_id,
283 					    gds_base, gds_size,
284 					    gws_base, gws_size,
285 					    oa_base, oa_size);
286 	}
287 }
288 
289 /**
290  * amdgpu_vm_reset_id - reset VMID to zero
291  *
292  * @adev: amdgpu device structure
293  * @vm_id: vmid number to use
294  *
295  * Reset saved GDW, GWS and OA to force switch on next flush.
296  */
297 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
298 {
299 	struct amdgpu_vm_manager_id *mgr_id = &adev->vm_manager.ids[vm_id];
300 
301 	mgr_id->gds_base = 0;
302 	mgr_id->gds_size = 0;
303 	mgr_id->gws_base = 0;
304 	mgr_id->gws_size = 0;
305 	mgr_id->oa_base = 0;
306 	mgr_id->oa_size = 0;
307 }
308 
309 /**
310  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
311  *
312  * @vm: requested vm
313  * @bo: requested buffer object
314  *
315  * Find @bo inside the requested vm.
316  * Search inside the @bos vm list for the requested vm
317  * Returns the found bo_va or NULL if none is found
318  *
319  * Object has to be reserved!
320  */
321 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
322 				       struct amdgpu_bo *bo)
323 {
324 	struct amdgpu_bo_va *bo_va;
325 
326 	list_for_each_entry(bo_va, &bo->va, bo_list) {
327 		if (bo_va->vm == vm) {
328 			return bo_va;
329 		}
330 	}
331 	return NULL;
332 }
333 
334 /**
335  * amdgpu_vm_update_pages - helper to call the right asic function
336  *
337  * @adev: amdgpu_device pointer
338  * @gtt: GART instance to use for mapping
339  * @gtt_flags: GTT hw access flags
340  * @ib: indirect buffer to fill with commands
341  * @pe: addr of the page entry
342  * @addr: dst addr to write into pe
343  * @count: number of page entries to update
344  * @incr: increase next addr by incr bytes
345  * @flags: hw access flags
346  *
347  * Traces the parameters and calls the right asic functions
348  * to setup the page table using the DMA.
349  */
350 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
351 				   struct amdgpu_gart *gtt,
352 				   uint32_t gtt_flags,
353 				   struct amdgpu_ib *ib,
354 				   uint64_t pe, uint64_t addr,
355 				   unsigned count, uint32_t incr,
356 				   uint32_t flags)
357 {
358 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
359 
360 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
361 		uint64_t src = gtt->table_addr + (addr >> 12) * 8;
362 		amdgpu_vm_copy_pte(adev, ib, pe, src, count);
363 
364 	} else if (gtt) {
365 		dma_addr_t *pages_addr = gtt->pages_addr;
366 		amdgpu_vm_write_pte(adev, ib, pages_addr, pe, addr,
367 				    count, incr, flags);
368 
369 	} else if (count < 3) {
370 		amdgpu_vm_write_pte(adev, ib, NULL, pe, addr,
371 				    count, incr, flags);
372 
373 	} else {
374 		amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
375 				      count, incr, flags);
376 	}
377 }
378 
379 /**
380  * amdgpu_vm_clear_bo - initially clear the page dir/table
381  *
382  * @adev: amdgpu_device pointer
383  * @bo: bo to clear
384  *
385  * need to reserve bo first before calling it.
386  */
387 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
388 			      struct amdgpu_vm *vm,
389 			      struct amdgpu_bo *bo)
390 {
391 	struct amdgpu_ring *ring;
392 	struct fence *fence = NULL;
393 	struct amdgpu_job *job;
394 	unsigned entries;
395 	uint64_t addr;
396 	int r;
397 
398 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
399 
400 	r = reservation_object_reserve_shared(bo->tbo.resv);
401 	if (r)
402 		return r;
403 
404 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
405 	if (r)
406 		goto error;
407 
408 	addr = amdgpu_bo_gpu_offset(bo);
409 	entries = amdgpu_bo_size(bo) / 8;
410 
411 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
412 	if (r)
413 		goto error;
414 
415 	amdgpu_vm_update_pages(adev, NULL, 0, &job->ibs[0], addr, 0, entries,
416 			       0, 0);
417 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
418 
419 	WARN_ON(job->ibs[0].length_dw > 64);
420 	r = amdgpu_job_submit(job, ring, &vm->entity,
421 			      AMDGPU_FENCE_OWNER_VM, &fence);
422 	if (r)
423 		goto error_free;
424 
425 	amdgpu_bo_fence(bo, fence, true);
426 	fence_put(fence);
427 	return 0;
428 
429 error_free:
430 	amdgpu_job_free(job);
431 
432 error:
433 	return r;
434 }
435 
436 /**
437  * amdgpu_vm_map_gart - Resolve gart mapping of addr
438  *
439  * @pages_addr: optional DMA address to use for lookup
440  * @addr: the unmapped addr
441  *
442  * Look up the physical address of the page that the pte resolves
443  * to and return the pointer for the page table entry.
444  */
445 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
446 {
447 	uint64_t result;
448 
449 	if (pages_addr) {
450 		/* page table offset */
451 		result = pages_addr[addr >> PAGE_SHIFT];
452 
453 		/* in case cpu page size != gpu page size*/
454 		result |= addr & (~PAGE_MASK);
455 
456 	} else {
457 		/* No mapping required */
458 		result = addr;
459 	}
460 
461 	result &= 0xFFFFFFFFFFFFF000ULL;
462 
463 	return result;
464 }
465 
466 /**
467  * amdgpu_vm_update_pdes - make sure that page directory is valid
468  *
469  * @adev: amdgpu_device pointer
470  * @vm: requested vm
471  * @start: start of GPU address range
472  * @end: end of GPU address range
473  *
474  * Allocates new page tables if necessary
475  * and updates the page directory.
476  * Returns 0 for success, error for failure.
477  */
478 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
479 				    struct amdgpu_vm *vm)
480 {
481 	struct amdgpu_ring *ring;
482 	struct amdgpu_bo *pd = vm->page_directory;
483 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
484 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
485 	uint64_t last_pde = ~0, last_pt = ~0;
486 	unsigned count = 0, pt_idx, ndw;
487 	struct amdgpu_job *job;
488 	struct amdgpu_ib *ib;
489 	struct fence *fence = NULL;
490 
491 	int r;
492 
493 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
494 
495 	/* padding, etc. */
496 	ndw = 64;
497 
498 	/* assume the worst case */
499 	ndw += vm->max_pde_used * 6;
500 
501 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
502 	if (r)
503 		return r;
504 
505 	ib = &job->ibs[0];
506 
507 	/* walk over the address space and update the page directory */
508 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
509 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
510 		uint64_t pde, pt;
511 
512 		if (bo == NULL)
513 			continue;
514 
515 		pt = amdgpu_bo_gpu_offset(bo);
516 		if (vm->page_tables[pt_idx].addr == pt)
517 			continue;
518 		vm->page_tables[pt_idx].addr = pt;
519 
520 		pde = pd_addr + pt_idx * 8;
521 		if (((last_pde + 8 * count) != pde) ||
522 		    ((last_pt + incr * count) != pt)) {
523 
524 			if (count) {
525 				amdgpu_vm_update_pages(adev, NULL, 0, ib,
526 						       last_pde, last_pt,
527 						       count, incr,
528 						       AMDGPU_PTE_VALID);
529 			}
530 
531 			count = 1;
532 			last_pde = pde;
533 			last_pt = pt;
534 		} else {
535 			++count;
536 		}
537 	}
538 
539 	if (count)
540 		amdgpu_vm_update_pages(adev, NULL, 0, ib, last_pde, last_pt,
541 				       count, incr, AMDGPU_PTE_VALID);
542 
543 	if (ib->length_dw != 0) {
544 		amdgpu_ring_pad_ib(ring, ib);
545 		amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
546 				 AMDGPU_FENCE_OWNER_VM);
547 		WARN_ON(ib->length_dw > ndw);
548 		r = amdgpu_job_submit(job, ring, &vm->entity,
549 				      AMDGPU_FENCE_OWNER_VM, &fence);
550 		if (r)
551 			goto error_free;
552 
553 		amdgpu_bo_fence(pd, fence, true);
554 		fence_put(vm->page_directory_fence);
555 		vm->page_directory_fence = fence_get(fence);
556 		fence_put(fence);
557 
558 	} else {
559 		amdgpu_job_free(job);
560 	}
561 
562 	return 0;
563 
564 error_free:
565 	amdgpu_job_free(job);
566 	return r;
567 }
568 
569 /**
570  * amdgpu_vm_frag_ptes - add fragment information to PTEs
571  *
572  * @adev: amdgpu_device pointer
573  * @gtt: GART instance to use for mapping
574  * @gtt_flags: GTT hw mapping flags
575  * @ib: IB for the update
576  * @pe_start: first PTE to handle
577  * @pe_end: last PTE to handle
578  * @addr: addr those PTEs should point to
579  * @flags: hw mapping flags
580  */
581 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
582 				struct amdgpu_gart *gtt,
583 				uint32_t gtt_flags,
584 				struct amdgpu_ib *ib,
585 				uint64_t pe_start, uint64_t pe_end,
586 				uint64_t addr, uint32_t flags)
587 {
588 	/**
589 	 * The MC L1 TLB supports variable sized pages, based on a fragment
590 	 * field in the PTE. When this field is set to a non-zero value, page
591 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
592 	 * flags are considered valid for all PTEs within the fragment range
593 	 * and corresponding mappings are assumed to be physically contiguous.
594 	 *
595 	 * The L1 TLB can store a single PTE for the whole fragment,
596 	 * significantly increasing the space available for translation
597 	 * caching. This leads to large improvements in throughput when the
598 	 * TLB is under pressure.
599 	 *
600 	 * The L2 TLB distributes small and large fragments into two
601 	 * asymmetric partitions. The large fragment cache is significantly
602 	 * larger. Thus, we try to use large fragments wherever possible.
603 	 * Userspace can support this by aligning virtual base address and
604 	 * allocation size to the fragment size.
605 	 */
606 
607 	/* SI and newer are optimized for 64KB */
608 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
609 	uint64_t frag_align = 0x80;
610 
611 	uint64_t frag_start = ALIGN(pe_start, frag_align);
612 	uint64_t frag_end = pe_end & ~(frag_align - 1);
613 
614 	unsigned count;
615 
616 	/* Abort early if there isn't anything to do */
617 	if (pe_start == pe_end)
618 		return;
619 
620 	/* system pages are non continuously */
621 	if (gtt || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
622 
623 		count = (pe_end - pe_start) / 8;
624 		amdgpu_vm_update_pages(adev, gtt, gtt_flags, ib, pe_start,
625 				       addr, count, AMDGPU_GPU_PAGE_SIZE,
626 				       flags);
627 		return;
628 	}
629 
630 	/* handle the 4K area at the beginning */
631 	if (pe_start != frag_start) {
632 		count = (frag_start - pe_start) / 8;
633 		amdgpu_vm_update_pages(adev, NULL, 0, ib, pe_start, addr,
634 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
635 		addr += AMDGPU_GPU_PAGE_SIZE * count;
636 	}
637 
638 	/* handle the area in the middle */
639 	count = (frag_end - frag_start) / 8;
640 	amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_start, addr, count,
641 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
642 
643 	/* handle the 4K area at the end */
644 	if (frag_end != pe_end) {
645 		addr += AMDGPU_GPU_PAGE_SIZE * count;
646 		count = (pe_end - frag_end) / 8;
647 		amdgpu_vm_update_pages(adev, NULL, 0, ib, frag_end, addr,
648 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
649 	}
650 }
651 
652 /**
653  * amdgpu_vm_update_ptes - make sure that page tables are valid
654  *
655  * @adev: amdgpu_device pointer
656  * @gtt: GART instance to use for mapping
657  * @gtt_flags: GTT hw mapping flags
658  * @vm: requested vm
659  * @start: start of GPU address range
660  * @end: end of GPU address range
661  * @dst: destination address to map to
662  * @flags: mapping flags
663  *
664  * Update the page tables in the range @start - @end.
665  */
666 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
667 				  struct amdgpu_gart *gtt,
668 				  uint32_t gtt_flags,
669 				  struct amdgpu_vm *vm,
670 				  struct amdgpu_ib *ib,
671 				  uint64_t start, uint64_t end,
672 				  uint64_t dst, uint32_t flags)
673 {
674 	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
675 
676 	uint64_t last_pe_start = ~0, last_pe_end = ~0, last_dst = ~0;
677 	uint64_t addr;
678 
679 	/* walk over the address space and update the page tables */
680 	for (addr = start; addr < end; ) {
681 		uint64_t pt_idx = addr >> amdgpu_vm_block_size;
682 		struct amdgpu_bo *pt = vm->page_tables[pt_idx].entry.robj;
683 		unsigned nptes;
684 		uint64_t pe_start;
685 
686 		if ((addr & ~mask) == (end & ~mask))
687 			nptes = end - addr;
688 		else
689 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
690 
691 		pe_start = amdgpu_bo_gpu_offset(pt);
692 		pe_start += (addr & mask) * 8;
693 
694 		if (last_pe_end != pe_start) {
695 
696 			amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
697 					    last_pe_start, last_pe_end,
698 					    last_dst, flags);
699 
700 			last_pe_start = pe_start;
701 			last_pe_end = pe_start + 8 * nptes;
702 			last_dst = dst;
703 		} else {
704 			last_pe_end += 8 * nptes;
705 		}
706 
707 		addr += nptes;
708 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
709 	}
710 
711 	amdgpu_vm_frag_ptes(adev, gtt, gtt_flags, ib,
712 			    last_pe_start, last_pe_end,
713 			    last_dst, flags);
714 }
715 
716 /**
717  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
718  *
719  * @adev: amdgpu_device pointer
720  * @gtt: GART instance to use for mapping
721  * @gtt_flags: flags as they are used for GTT
722  * @vm: requested vm
723  * @start: start of mapped range
724  * @last: last mapped entry
725  * @flags: flags for the entries
726  * @addr: addr to set the area to
727  * @fence: optional resulting fence
728  *
729  * Fill in the page table entries between @start and @last.
730  * Returns 0 for success, -EINVAL for failure.
731  */
732 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
733 				       struct amdgpu_gart *gtt,
734 				       uint32_t gtt_flags,
735 				       struct amdgpu_vm *vm,
736 				       uint64_t start, uint64_t last,
737 				       uint32_t flags, uint64_t addr,
738 				       struct fence **fence)
739 {
740 	struct amdgpu_ring *ring;
741 	void *owner = AMDGPU_FENCE_OWNER_VM;
742 	unsigned nptes, ncmds, ndw;
743 	struct amdgpu_job *job;
744 	struct amdgpu_ib *ib;
745 	struct fence *f = NULL;
746 	int r;
747 
748 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
749 
750 	/* sync to everything on unmapping */
751 	if (!(flags & AMDGPU_PTE_VALID))
752 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
753 
754 	nptes = last - start + 1;
755 
756 	/*
757 	 * reserve space for one command every (1 << BLOCK_SIZE)
758 	 *  entries or 2k dwords (whatever is smaller)
759 	 */
760 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
761 
762 	/* padding, etc. */
763 	ndw = 64;
764 
765 	if ((gtt == &adev->gart) && (flags == gtt_flags)) {
766 		/* only copy commands needed */
767 		ndw += ncmds * 7;
768 
769 	} else if (gtt) {
770 		/* header for write data commands */
771 		ndw += ncmds * 4;
772 
773 		/* body of write data command */
774 		ndw += nptes * 2;
775 
776 	} else {
777 		/* set page commands needed */
778 		ndw += ncmds * 10;
779 
780 		/* two extra commands for begin/end of fragment */
781 		ndw += 2 * 10;
782 	}
783 
784 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
785 	if (r)
786 		return r;
787 
788 	ib = &job->ibs[0];
789 
790 	r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
791 			     owner);
792 	if (r)
793 		goto error_free;
794 
795 	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
796 	if (r)
797 		goto error_free;
798 
799 	amdgpu_vm_update_ptes(adev, gtt, gtt_flags, vm, ib, start, last + 1,
800 			      addr, flags);
801 
802 	amdgpu_ring_pad_ib(ring, ib);
803 	WARN_ON(ib->length_dw > ndw);
804 	r = amdgpu_job_submit(job, ring, &vm->entity,
805 			      AMDGPU_FENCE_OWNER_VM, &f);
806 	if (r)
807 		goto error_free;
808 
809 	amdgpu_bo_fence(vm->page_directory, f, true);
810 	if (fence) {
811 		fence_put(*fence);
812 		*fence = fence_get(f);
813 	}
814 	fence_put(f);
815 	return 0;
816 
817 error_free:
818 	amdgpu_job_free(job);
819 	return r;
820 }
821 
822 /**
823  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
824  *
825  * @adev: amdgpu_device pointer
826  * @gtt: GART instance to use for mapping
827  * @vm: requested vm
828  * @mapping: mapped range and flags to use for the update
829  * @addr: addr to set the area to
830  * @gtt_flags: flags as they are used for GTT
831  * @fence: optional resulting fence
832  *
833  * Split the mapping into smaller chunks so that each update fits
834  * into a SDMA IB.
835  * Returns 0 for success, -EINVAL for failure.
836  */
837 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
838 				      struct amdgpu_gart *gtt,
839 				      uint32_t gtt_flags,
840 				      struct amdgpu_vm *vm,
841 				      struct amdgpu_bo_va_mapping *mapping,
842 				      uint64_t addr, struct fence **fence)
843 {
844 	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
845 
846 	uint64_t start = mapping->it.start;
847 	uint32_t flags = gtt_flags;
848 	int r;
849 
850 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
851 	 * but in case of something, we filter the flags in first place
852 	 */
853 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
854 		flags &= ~AMDGPU_PTE_READABLE;
855 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
856 		flags &= ~AMDGPU_PTE_WRITEABLE;
857 
858 	trace_amdgpu_vm_bo_update(mapping);
859 
860 	addr += mapping->offset;
861 
862 	if (!gtt || ((gtt == &adev->gart) && (flags == gtt_flags)))
863 		return amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
864 						   start, mapping->it.last,
865 						   flags, addr, fence);
866 
867 	while (start != mapping->it.last + 1) {
868 		uint64_t last;
869 
870 		last = min((uint64_t)mapping->it.last, start + max_size - 1);
871 		r = amdgpu_vm_bo_update_mapping(adev, gtt, gtt_flags, vm,
872 						start, last, flags, addr,
873 						fence);
874 		if (r)
875 			return r;
876 
877 		start = last + 1;
878 		addr += max_size * AMDGPU_GPU_PAGE_SIZE;
879 	}
880 
881 	return 0;
882 }
883 
884 /**
885  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
886  *
887  * @adev: amdgpu_device pointer
888  * @bo_va: requested BO and VM object
889  * @mem: ttm mem
890  *
891  * Fill in the page table entries for @bo_va.
892  * Returns 0 for success, -EINVAL for failure.
893  *
894  * Object have to be reserved and mutex must be locked!
895  */
896 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
897 			struct amdgpu_bo_va *bo_va,
898 			struct ttm_mem_reg *mem)
899 {
900 	struct amdgpu_vm *vm = bo_va->vm;
901 	struct amdgpu_bo_va_mapping *mapping;
902 	struct amdgpu_gart *gtt = NULL;
903 	uint32_t flags;
904 	uint64_t addr;
905 	int r;
906 
907 	if (mem) {
908 		addr = (u64)mem->start << PAGE_SHIFT;
909 		switch (mem->mem_type) {
910 		case TTM_PL_TT:
911 			gtt = &bo_va->bo->adev->gart;
912 			break;
913 
914 		case TTM_PL_VRAM:
915 			addr += adev->vm_manager.vram_base_offset;
916 			break;
917 
918 		default:
919 			break;
920 		}
921 	} else {
922 		addr = 0;
923 	}
924 
925 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
926 
927 	spin_lock(&vm->status_lock);
928 	if (!list_empty(&bo_va->vm_status))
929 		list_splice_init(&bo_va->valids, &bo_va->invalids);
930 	spin_unlock(&vm->status_lock);
931 
932 	list_for_each_entry(mapping, &bo_va->invalids, list) {
933 		r = amdgpu_vm_bo_split_mapping(adev, gtt, flags, vm, mapping, addr,
934 					       &bo_va->last_pt_update);
935 		if (r)
936 			return r;
937 	}
938 
939 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
940 		list_for_each_entry(mapping, &bo_va->valids, list)
941 			trace_amdgpu_vm_bo_mapping(mapping);
942 
943 		list_for_each_entry(mapping, &bo_va->invalids, list)
944 			trace_amdgpu_vm_bo_mapping(mapping);
945 	}
946 
947 	spin_lock(&vm->status_lock);
948 	list_splice_init(&bo_va->invalids, &bo_va->valids);
949 	list_del_init(&bo_va->vm_status);
950 	if (!mem)
951 		list_add(&bo_va->vm_status, &vm->cleared);
952 	spin_unlock(&vm->status_lock);
953 
954 	return 0;
955 }
956 
957 /**
958  * amdgpu_vm_clear_freed - clear freed BOs in the PT
959  *
960  * @adev: amdgpu_device pointer
961  * @vm: requested vm
962  *
963  * Make sure all freed BOs are cleared in the PT.
964  * Returns 0 for success.
965  *
966  * PTs have to be reserved and mutex must be locked!
967  */
968 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
969 			  struct amdgpu_vm *vm)
970 {
971 	struct amdgpu_bo_va_mapping *mapping;
972 	int r;
973 
974 	while (!list_empty(&vm->freed)) {
975 		mapping = list_first_entry(&vm->freed,
976 			struct amdgpu_bo_va_mapping, list);
977 		list_del(&mapping->list);
978 
979 		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, vm, mapping,
980 					       0, NULL);
981 		kfree(mapping);
982 		if (r)
983 			return r;
984 
985 	}
986 	return 0;
987 
988 }
989 
990 /**
991  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
992  *
993  * @adev: amdgpu_device pointer
994  * @vm: requested vm
995  *
996  * Make sure all invalidated BOs are cleared in the PT.
997  * Returns 0 for success.
998  *
999  * PTs have to be reserved and mutex must be locked!
1000  */
1001 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1002 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1003 {
1004 	struct amdgpu_bo_va *bo_va = NULL;
1005 	int r = 0;
1006 
1007 	spin_lock(&vm->status_lock);
1008 	while (!list_empty(&vm->invalidated)) {
1009 		bo_va = list_first_entry(&vm->invalidated,
1010 			struct amdgpu_bo_va, vm_status);
1011 		spin_unlock(&vm->status_lock);
1012 
1013 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1014 		if (r)
1015 			return r;
1016 
1017 		spin_lock(&vm->status_lock);
1018 	}
1019 	spin_unlock(&vm->status_lock);
1020 
1021 	if (bo_va)
1022 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1023 
1024 	return r;
1025 }
1026 
1027 /**
1028  * amdgpu_vm_bo_add - add a bo to a specific vm
1029  *
1030  * @adev: amdgpu_device pointer
1031  * @vm: requested vm
1032  * @bo: amdgpu buffer object
1033  *
1034  * Add @bo into the requested vm.
1035  * Add @bo to the list of bos associated with the vm
1036  * Returns newly added bo_va or NULL for failure
1037  *
1038  * Object has to be reserved!
1039  */
1040 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1041 				      struct amdgpu_vm *vm,
1042 				      struct amdgpu_bo *bo)
1043 {
1044 	struct amdgpu_bo_va *bo_va;
1045 
1046 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1047 	if (bo_va == NULL) {
1048 		return NULL;
1049 	}
1050 	bo_va->vm = vm;
1051 	bo_va->bo = bo;
1052 	bo_va->ref_count = 1;
1053 	INIT_LIST_HEAD(&bo_va->bo_list);
1054 	INIT_LIST_HEAD(&bo_va->valids);
1055 	INIT_LIST_HEAD(&bo_va->invalids);
1056 	INIT_LIST_HEAD(&bo_va->vm_status);
1057 
1058 	list_add_tail(&bo_va->bo_list, &bo->va);
1059 
1060 	return bo_va;
1061 }
1062 
1063 /**
1064  * amdgpu_vm_bo_map - map bo inside a vm
1065  *
1066  * @adev: amdgpu_device pointer
1067  * @bo_va: bo_va to store the address
1068  * @saddr: where to map the BO
1069  * @offset: requested offset in the BO
1070  * @flags: attributes of pages (read/write/valid/etc.)
1071  *
1072  * Add a mapping of the BO at the specefied addr into the VM.
1073  * Returns 0 for success, error for failure.
1074  *
1075  * Object has to be reserved and unreserved outside!
1076  */
1077 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1078 		     struct amdgpu_bo_va *bo_va,
1079 		     uint64_t saddr, uint64_t offset,
1080 		     uint64_t size, uint32_t flags)
1081 {
1082 	struct amdgpu_bo_va_mapping *mapping;
1083 	struct amdgpu_vm *vm = bo_va->vm;
1084 	struct interval_tree_node *it;
1085 	unsigned last_pfn, pt_idx;
1086 	uint64_t eaddr;
1087 	int r;
1088 
1089 	/* validate the parameters */
1090 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1091 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1092 		return -EINVAL;
1093 
1094 	/* make sure object fit at this offset */
1095 	eaddr = saddr + size - 1;
1096 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1097 		return -EINVAL;
1098 
1099 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1100 	if (last_pfn >= adev->vm_manager.max_pfn) {
1101 		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1102 			last_pfn, adev->vm_manager.max_pfn);
1103 		return -EINVAL;
1104 	}
1105 
1106 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1107 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1108 
1109 	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1110 	if (it) {
1111 		struct amdgpu_bo_va_mapping *tmp;
1112 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1113 		/* bo and tmp overlap, invalid addr */
1114 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1115 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1116 			tmp->it.start, tmp->it.last + 1);
1117 		r = -EINVAL;
1118 		goto error;
1119 	}
1120 
1121 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1122 	if (!mapping) {
1123 		r = -ENOMEM;
1124 		goto error;
1125 	}
1126 
1127 	INIT_LIST_HEAD(&mapping->list);
1128 	mapping->it.start = saddr;
1129 	mapping->it.last = eaddr;
1130 	mapping->offset = offset;
1131 	mapping->flags = flags;
1132 
1133 	list_add(&mapping->list, &bo_va->invalids);
1134 	interval_tree_insert(&mapping->it, &vm->va);
1135 
1136 	/* Make sure the page tables are allocated */
1137 	saddr >>= amdgpu_vm_block_size;
1138 	eaddr >>= amdgpu_vm_block_size;
1139 
1140 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1141 
1142 	if (eaddr > vm->max_pde_used)
1143 		vm->max_pde_used = eaddr;
1144 
1145 	/* walk over the address space and allocate the page tables */
1146 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1147 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1148 		struct amdgpu_bo_list_entry *entry;
1149 		struct amdgpu_bo *pt;
1150 
1151 		entry = &vm->page_tables[pt_idx].entry;
1152 		if (entry->robj)
1153 			continue;
1154 
1155 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1156 				     AMDGPU_GPU_PAGE_SIZE, true,
1157 				     AMDGPU_GEM_DOMAIN_VRAM,
1158 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1159 				     NULL, resv, &pt);
1160 		if (r)
1161 			goto error_free;
1162 
1163 		/* Keep a reference to the page table to avoid freeing
1164 		 * them up in the wrong order.
1165 		 */
1166 		pt->parent = amdgpu_bo_ref(vm->page_directory);
1167 
1168 		r = amdgpu_vm_clear_bo(adev, vm, pt);
1169 		if (r) {
1170 			amdgpu_bo_unref(&pt);
1171 			goto error_free;
1172 		}
1173 
1174 		entry->robj = pt;
1175 		entry->priority = 0;
1176 		entry->tv.bo = &entry->robj->tbo;
1177 		entry->tv.shared = true;
1178 		entry->user_pages = NULL;
1179 		vm->page_tables[pt_idx].addr = 0;
1180 	}
1181 
1182 	return 0;
1183 
1184 error_free:
1185 	list_del(&mapping->list);
1186 	interval_tree_remove(&mapping->it, &vm->va);
1187 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1188 	kfree(mapping);
1189 
1190 error:
1191 	return r;
1192 }
1193 
1194 /**
1195  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1196  *
1197  * @adev: amdgpu_device pointer
1198  * @bo_va: bo_va to remove the address from
1199  * @saddr: where to the BO is mapped
1200  *
1201  * Remove a mapping of the BO at the specefied addr from the VM.
1202  * Returns 0 for success, error for failure.
1203  *
1204  * Object has to be reserved and unreserved outside!
1205  */
1206 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1207 		       struct amdgpu_bo_va *bo_va,
1208 		       uint64_t saddr)
1209 {
1210 	struct amdgpu_bo_va_mapping *mapping;
1211 	struct amdgpu_vm *vm = bo_va->vm;
1212 	bool valid = true;
1213 
1214 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1215 
1216 	list_for_each_entry(mapping, &bo_va->valids, list) {
1217 		if (mapping->it.start == saddr)
1218 			break;
1219 	}
1220 
1221 	if (&mapping->list == &bo_va->valids) {
1222 		valid = false;
1223 
1224 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1225 			if (mapping->it.start == saddr)
1226 				break;
1227 		}
1228 
1229 		if (&mapping->list == &bo_va->invalids)
1230 			return -ENOENT;
1231 	}
1232 
1233 	list_del(&mapping->list);
1234 	interval_tree_remove(&mapping->it, &vm->va);
1235 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1236 
1237 	if (valid)
1238 		list_add(&mapping->list, &vm->freed);
1239 	else
1240 		kfree(mapping);
1241 
1242 	return 0;
1243 }
1244 
1245 /**
1246  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1247  *
1248  * @adev: amdgpu_device pointer
1249  * @bo_va: requested bo_va
1250  *
1251  * Remove @bo_va->bo from the requested vm.
1252  *
1253  * Object have to be reserved!
1254  */
1255 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1256 		      struct amdgpu_bo_va *bo_va)
1257 {
1258 	struct amdgpu_bo_va_mapping *mapping, *next;
1259 	struct amdgpu_vm *vm = bo_va->vm;
1260 
1261 	list_del(&bo_va->bo_list);
1262 
1263 	spin_lock(&vm->status_lock);
1264 	list_del(&bo_va->vm_status);
1265 	spin_unlock(&vm->status_lock);
1266 
1267 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1268 		list_del(&mapping->list);
1269 		interval_tree_remove(&mapping->it, &vm->va);
1270 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1271 		list_add(&mapping->list, &vm->freed);
1272 	}
1273 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1274 		list_del(&mapping->list);
1275 		interval_tree_remove(&mapping->it, &vm->va);
1276 		kfree(mapping);
1277 	}
1278 
1279 	fence_put(bo_va->last_pt_update);
1280 	kfree(bo_va);
1281 }
1282 
1283 /**
1284  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1285  *
1286  * @adev: amdgpu_device pointer
1287  * @vm: requested vm
1288  * @bo: amdgpu buffer object
1289  *
1290  * Mark @bo as invalid.
1291  */
1292 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1293 			     struct amdgpu_bo *bo)
1294 {
1295 	struct amdgpu_bo_va *bo_va;
1296 
1297 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1298 		spin_lock(&bo_va->vm->status_lock);
1299 		if (list_empty(&bo_va->vm_status))
1300 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1301 		spin_unlock(&bo_va->vm->status_lock);
1302 	}
1303 }
1304 
1305 /**
1306  * amdgpu_vm_init - initialize a vm instance
1307  *
1308  * @adev: amdgpu_device pointer
1309  * @vm: requested vm
1310  *
1311  * Init @vm fields.
1312  */
1313 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1314 {
1315 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1316 		AMDGPU_VM_PTE_COUNT * 8);
1317 	unsigned pd_size, pd_entries;
1318 	unsigned ring_instance;
1319 	struct amdgpu_ring *ring;
1320 	struct amd_sched_rq *rq;
1321 	int i, r;
1322 
1323 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1324 		vm->ids[i].mgr_id = NULL;
1325 		vm->ids[i].flushed_updates = NULL;
1326 	}
1327 	vm->va = RB_ROOT;
1328 	spin_lock_init(&vm->status_lock);
1329 	INIT_LIST_HEAD(&vm->invalidated);
1330 	INIT_LIST_HEAD(&vm->cleared);
1331 	INIT_LIST_HEAD(&vm->freed);
1332 
1333 	pd_size = amdgpu_vm_directory_size(adev);
1334 	pd_entries = amdgpu_vm_num_pdes(adev);
1335 
1336 	/* allocate page table array */
1337 	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1338 	if (vm->page_tables == NULL) {
1339 		DRM_ERROR("Cannot allocate memory for page table array\n");
1340 		return -ENOMEM;
1341 	}
1342 
1343 	/* create scheduler entity for page table updates */
1344 
1345 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1346 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
1347 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
1348 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1349 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
1350 				  rq, amdgpu_sched_jobs);
1351 	if (r)
1352 		return r;
1353 
1354 	vm->page_directory_fence = NULL;
1355 
1356 	r = amdgpu_bo_create(adev, pd_size, align, true,
1357 			     AMDGPU_GEM_DOMAIN_VRAM,
1358 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1359 			     NULL, NULL, &vm->page_directory);
1360 	if (r)
1361 		goto error_free_sched_entity;
1362 
1363 	r = amdgpu_bo_reserve(vm->page_directory, false);
1364 	if (r)
1365 		goto error_free_page_directory;
1366 
1367 	r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1368 	amdgpu_bo_unreserve(vm->page_directory);
1369 	if (r)
1370 		goto error_free_page_directory;
1371 
1372 	return 0;
1373 
1374 error_free_page_directory:
1375 	amdgpu_bo_unref(&vm->page_directory);
1376 	vm->page_directory = NULL;
1377 
1378 error_free_sched_entity:
1379 	amd_sched_entity_fini(&ring->sched, &vm->entity);
1380 
1381 	return r;
1382 }
1383 
1384 /**
1385  * amdgpu_vm_fini - tear down a vm instance
1386  *
1387  * @adev: amdgpu_device pointer
1388  * @vm: requested vm
1389  *
1390  * Tear down @vm.
1391  * Unbind the VM and remove all bos from the vm bo list
1392  */
1393 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1394 {
1395 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1396 	int i;
1397 
1398 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1399 
1400 	if (!RB_EMPTY_ROOT(&vm->va)) {
1401 		dev_err(adev->dev, "still active bo inside vm\n");
1402 	}
1403 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1404 		list_del(&mapping->list);
1405 		interval_tree_remove(&mapping->it, &vm->va);
1406 		kfree(mapping);
1407 	}
1408 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1409 		list_del(&mapping->list);
1410 		kfree(mapping);
1411 	}
1412 
1413 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1414 		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1415 	drm_free_large(vm->page_tables);
1416 
1417 	amdgpu_bo_unref(&vm->page_directory);
1418 	fence_put(vm->page_directory_fence);
1419 
1420 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1421 		struct amdgpu_vm_id *id = &vm->ids[i];
1422 
1423 		if (id->mgr_id)
1424 			atomic_long_cmpxchg(&id->mgr_id->owner,
1425 					    (long)id, 0);
1426 		fence_put(id->flushed_updates);
1427 	}
1428 }
1429 
1430 /**
1431  * amdgpu_vm_manager_init - init the VM manager
1432  *
1433  * @adev: amdgpu_device pointer
1434  *
1435  * Initialize the VM manager structures
1436  */
1437 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1438 {
1439 	unsigned i;
1440 
1441 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1442 
1443 	/* skip over VMID 0, since it is the system VM */
1444 	for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1445 		amdgpu_vm_reset_id(adev, i);
1446 		list_add_tail(&adev->vm_manager.ids[i].list,
1447 			      &adev->vm_manager.ids_lru);
1448 	}
1449 
1450 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1451 }
1452 
1453 /**
1454  * amdgpu_vm_manager_fini - cleanup VM manager
1455  *
1456  * @adev: amdgpu_device pointer
1457  *
1458  * Cleanup the VM manager and free resources.
1459  */
1460 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1461 {
1462 	unsigned i;
1463 
1464 	for (i = 0; i < AMDGPU_NUM_VM; ++i)
1465 		fence_put(adev->vm_manager.ids[i].active);
1466 }
1467