1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include "amdgpu.h" 38 #include "amdgpu_trace.h" 39 #include "amdgpu_amdkfd.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_xgmi.h" 42 #include "amdgpu_dma_buf.h" 43 #include "amdgpu_res_cursor.h" 44 #include "kfd_svm.h" 45 46 /** 47 * DOC: GPUVM 48 * 49 * GPUVM is the MMU functionality provided on the GPU. 50 * GPUVM is similar to the legacy GART on older asics, however 51 * rather than there being a single global GART table 52 * for the entire GPU, there can be multiple GPUVM page tables active 53 * at any given time. The GPUVM page tables can contain a mix 54 * VRAM pages and system pages (both memory and MMIO) and system pages 55 * can be mapped as snooped (cached system pages) or unsnooped 56 * (uncached system pages). 57 * 58 * Each active GPUVM has an ID associated with it and there is a page table 59 * linked with each VMID. When executing a command buffer, 60 * the kernel tells the engine what VMID to use for that command 61 * buffer. VMIDs are allocated dynamically as commands are submitted. 62 * The userspace drivers maintain their own address space and the kernel 63 * sets up their pages tables accordingly when they submit their 64 * command buffers and a VMID is assigned. 65 * The hardware supports up to 16 active GPUVMs at any given time. 66 * 67 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 68 * on the ASIC family. GPUVM supports RWX attributes on each page as well 69 * as other features such as encryption and caching attributes. 70 * 71 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 72 * addition to an aperture managed by a page table, VMID 0 also has 73 * several other apertures. There is an aperture for direct access to VRAM 74 * and there is a legacy AGP aperture which just forwards accesses directly 75 * to the matching system physical addresses (or IOVAs when an IOMMU is 76 * present). These apertures provide direct access to these memories without 77 * incurring the overhead of a page table. VMID 0 is used by the kernel 78 * driver for tasks like memory management. 79 * 80 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 81 * For user applications, each application can have their own unique GPUVM 82 * address space. The application manages the address space and the kernel 83 * driver manages the GPUVM page tables for each process. If an GPU client 84 * accesses an invalid page, it will generate a GPU page fault, similar to 85 * accessing an invalid page on a CPU. 86 */ 87 88 #define START(node) ((node)->start) 89 #define LAST(node) ((node)->last) 90 91 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 92 START, LAST, static, amdgpu_vm_it) 93 94 #undef START 95 #undef LAST 96 97 /** 98 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 99 */ 100 struct amdgpu_prt_cb { 101 102 /** 103 * @adev: amdgpu device 104 */ 105 struct amdgpu_device *adev; 106 107 /** 108 * @cb: callback 109 */ 110 struct dma_fence_cb cb; 111 }; 112 113 /** 114 * struct amdgpu_vm_tlb_seq_cb - Helper to increment the TLB flush sequence 115 */ 116 struct amdgpu_vm_tlb_seq_cb { 117 /** 118 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 119 */ 120 struct amdgpu_vm *vm; 121 122 /** 123 * @cb: callback 124 */ 125 struct dma_fence_cb cb; 126 }; 127 128 /** 129 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 130 * 131 * @adev: amdgpu_device pointer 132 * @vm: amdgpu_vm pointer 133 * @pasid: the pasid the VM is using on this GPU 134 * 135 * Set the pasid this VM is using on this GPU, can also be used to remove the 136 * pasid by passing in zero. 137 * 138 */ 139 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 140 u32 pasid) 141 { 142 int r; 143 144 if (vm->pasid == pasid) 145 return 0; 146 147 if (vm->pasid) { 148 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 149 if (r < 0) 150 return r; 151 152 vm->pasid = 0; 153 } 154 155 if (pasid) { 156 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 157 GFP_KERNEL)); 158 if (r < 0) 159 return r; 160 161 vm->pasid = pasid; 162 } 163 164 165 return 0; 166 } 167 168 /** 169 * amdgpu_vm_bo_evicted - vm_bo is evicted 170 * 171 * @vm_bo: vm_bo which is evicted 172 * 173 * State for PDs/PTs and per VM BOs which are not at the location they should 174 * be. 175 */ 176 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 177 { 178 struct amdgpu_vm *vm = vm_bo->vm; 179 struct amdgpu_bo *bo = vm_bo->bo; 180 181 vm_bo->moved = true; 182 spin_lock(&vm_bo->vm->status_lock); 183 if (bo->tbo.type == ttm_bo_type_kernel) 184 list_move(&vm_bo->vm_status, &vm->evicted); 185 else 186 list_move_tail(&vm_bo->vm_status, &vm->evicted); 187 spin_unlock(&vm_bo->vm->status_lock); 188 } 189 /** 190 * amdgpu_vm_bo_moved - vm_bo is moved 191 * 192 * @vm_bo: vm_bo which is moved 193 * 194 * State for per VM BOs which are moved, but that change is not yet reflected 195 * in the page tables. 196 */ 197 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 198 { 199 spin_lock(&vm_bo->vm->status_lock); 200 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 201 spin_unlock(&vm_bo->vm->status_lock); 202 } 203 204 /** 205 * amdgpu_vm_bo_idle - vm_bo is idle 206 * 207 * @vm_bo: vm_bo which is now idle 208 * 209 * State for PDs/PTs and per VM BOs which have gone through the state machine 210 * and are now idle. 211 */ 212 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 213 { 214 spin_lock(&vm_bo->vm->status_lock); 215 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 216 spin_unlock(&vm_bo->vm->status_lock); 217 vm_bo->moved = false; 218 } 219 220 /** 221 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 222 * 223 * @vm_bo: vm_bo which is now invalidated 224 * 225 * State for normal BOs which are invalidated and that change not yet reflected 226 * in the PTs. 227 */ 228 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 229 { 230 spin_lock(&vm_bo->vm->status_lock); 231 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 232 spin_unlock(&vm_bo->vm->status_lock); 233 } 234 235 /** 236 * amdgpu_vm_bo_relocated - vm_bo is reloacted 237 * 238 * @vm_bo: vm_bo which is relocated 239 * 240 * State for PDs/PTs which needs to update their parent PD. 241 * For the root PD, just move to idle state. 242 */ 243 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 244 { 245 if (vm_bo->bo->parent) { 246 spin_lock(&vm_bo->vm->status_lock); 247 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 248 spin_unlock(&vm_bo->vm->status_lock); 249 } else { 250 amdgpu_vm_bo_idle(vm_bo); 251 } 252 } 253 254 /** 255 * amdgpu_vm_bo_done - vm_bo is done 256 * 257 * @vm_bo: vm_bo which is now done 258 * 259 * State for normal BOs which are invalidated and that change has been updated 260 * in the PTs. 261 */ 262 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 263 { 264 spin_lock(&vm_bo->vm->status_lock); 265 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 266 spin_unlock(&vm_bo->vm->status_lock); 267 } 268 269 /** 270 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 271 * 272 * @base: base structure for tracking BO usage in a VM 273 * @vm: vm to which bo is to be added 274 * @bo: amdgpu buffer object 275 * 276 * Initialize a bo_va_base structure and add it to the appropriate lists 277 * 278 */ 279 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 280 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 281 { 282 base->vm = vm; 283 base->bo = bo; 284 base->next = NULL; 285 INIT_LIST_HEAD(&base->vm_status); 286 287 if (!bo) 288 return; 289 base->next = bo->vm_bo; 290 bo->vm_bo = base; 291 292 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 293 return; 294 295 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 296 297 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 298 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 299 amdgpu_vm_bo_relocated(base); 300 else 301 amdgpu_vm_bo_idle(base); 302 303 if (bo->preferred_domains & 304 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 305 return; 306 307 /* 308 * we checked all the prerequisites, but it looks like this per vm bo 309 * is currently evicted. add the bo to the evicted list to make sure it 310 * is validated on next vm use to avoid fault. 311 * */ 312 amdgpu_vm_bo_evicted(base); 313 } 314 315 /** 316 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 317 * 318 * @vm: vm providing the BOs 319 * @validated: head of validation list 320 * @entry: entry to add 321 * 322 * Add the page directory to the list of BOs to 323 * validate for command submission. 324 */ 325 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 326 struct list_head *validated, 327 struct amdgpu_bo_list_entry *entry) 328 { 329 entry->priority = 0; 330 entry->tv.bo = &vm->root.bo->tbo; 331 /* Two for VM updates, one for TTM and one for the CS job */ 332 entry->tv.num_shared = 4; 333 entry->user_pages = NULL; 334 list_add(&entry->tv.head, validated); 335 } 336 337 /** 338 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 339 * 340 * @adev: amdgpu device pointer 341 * @vm: vm providing the BOs 342 * 343 * Move all BOs to the end of LRU and remember their positions to put them 344 * together. 345 */ 346 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 347 struct amdgpu_vm *vm) 348 { 349 spin_lock(&adev->mman.bdev.lru_lock); 350 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 351 spin_unlock(&adev->mman.bdev.lru_lock); 352 } 353 354 /** 355 * amdgpu_vm_validate_pt_bos - validate the page table BOs 356 * 357 * @adev: amdgpu device pointer 358 * @vm: vm providing the BOs 359 * @validate: callback to do the validation 360 * @param: parameter for the validation callback 361 * 362 * Validate the page table BOs on command submission if neccessary. 363 * 364 * Returns: 365 * Validation result. 366 */ 367 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 368 int (*validate)(void *p, struct amdgpu_bo *bo), 369 void *param) 370 { 371 struct amdgpu_vm_bo_base *bo_base; 372 struct amdgpu_bo *shadow; 373 struct amdgpu_bo *bo; 374 int r; 375 376 spin_lock(&vm->status_lock); 377 while (!list_empty(&vm->evicted)) { 378 bo_base = list_first_entry(&vm->evicted, 379 struct amdgpu_vm_bo_base, 380 vm_status); 381 spin_unlock(&vm->status_lock); 382 383 bo = bo_base->bo; 384 shadow = amdgpu_bo_shadowed(bo); 385 386 r = validate(param, bo); 387 if (r) 388 return r; 389 if (shadow) { 390 r = validate(param, shadow); 391 if (r) 392 return r; 393 } 394 395 if (bo->tbo.type != ttm_bo_type_kernel) { 396 amdgpu_vm_bo_moved(bo_base); 397 } else { 398 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 399 amdgpu_vm_bo_relocated(bo_base); 400 } 401 spin_lock(&vm->status_lock); 402 } 403 spin_unlock(&vm->status_lock); 404 405 amdgpu_vm_eviction_lock(vm); 406 vm->evicting = false; 407 amdgpu_vm_eviction_unlock(vm); 408 409 return 0; 410 } 411 412 /** 413 * amdgpu_vm_ready - check VM is ready for updates 414 * 415 * @vm: VM to check 416 * 417 * Check if all VM PDs/PTs are ready for updates 418 * 419 * Returns: 420 * True if VM is not evicting. 421 */ 422 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 423 { 424 bool empty; 425 bool ret; 426 427 amdgpu_vm_eviction_lock(vm); 428 ret = !vm->evicting; 429 amdgpu_vm_eviction_unlock(vm); 430 431 spin_lock(&vm->status_lock); 432 empty = list_empty(&vm->evicted); 433 spin_unlock(&vm->status_lock); 434 435 return ret && empty; 436 } 437 438 /** 439 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 440 * 441 * @adev: amdgpu_device pointer 442 */ 443 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 444 { 445 const struct amdgpu_ip_block *ip_block; 446 bool has_compute_vm_bug; 447 struct amdgpu_ring *ring; 448 int i; 449 450 has_compute_vm_bug = false; 451 452 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 453 if (ip_block) { 454 /* Compute has a VM bug for GFX version < 7. 455 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 456 if (ip_block->version->major <= 7) 457 has_compute_vm_bug = true; 458 else if (ip_block->version->major == 8) 459 if (adev->gfx.mec_fw_version < 673) 460 has_compute_vm_bug = true; 461 } 462 463 for (i = 0; i < adev->num_rings; i++) { 464 ring = adev->rings[i]; 465 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 466 /* only compute rings */ 467 ring->has_compute_vm_bug = has_compute_vm_bug; 468 else 469 ring->has_compute_vm_bug = false; 470 } 471 } 472 473 /** 474 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 475 * 476 * @ring: ring on which the job will be submitted 477 * @job: job to submit 478 * 479 * Returns: 480 * True if sync is needed. 481 */ 482 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 483 struct amdgpu_job *job) 484 { 485 struct amdgpu_device *adev = ring->adev; 486 unsigned vmhub = ring->vm_hub; 487 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 488 489 if (job->vmid == 0) 490 return false; 491 492 if (job->vm_needs_flush || ring->has_compute_vm_bug) 493 return true; 494 495 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 496 return true; 497 498 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 499 return true; 500 501 return false; 502 } 503 504 /** 505 * amdgpu_vm_flush - hardware flush the vm 506 * 507 * @ring: ring to use for flush 508 * @job: related job 509 * @need_pipe_sync: is pipe sync needed 510 * 511 * Emit a VM flush when it is necessary. 512 * 513 * Returns: 514 * 0 on success, errno otherwise. 515 */ 516 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 517 bool need_pipe_sync) 518 { 519 struct amdgpu_device *adev = ring->adev; 520 unsigned vmhub = ring->vm_hub; 521 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 522 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 523 bool spm_update_needed = job->spm_update_needed; 524 bool gds_switch_needed = ring->funcs->emit_gds_switch && 525 job->gds_switch_needed; 526 bool vm_flush_needed = job->vm_needs_flush; 527 struct dma_fence *fence = NULL; 528 bool pasid_mapping_needed = false; 529 unsigned patch_offset = 0; 530 int r; 531 532 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 533 gds_switch_needed = true; 534 vm_flush_needed = true; 535 pasid_mapping_needed = true; 536 spm_update_needed = true; 537 } 538 539 mutex_lock(&id_mgr->lock); 540 if (id->pasid != job->pasid || !id->pasid_mapping || 541 !dma_fence_is_signaled(id->pasid_mapping)) 542 pasid_mapping_needed = true; 543 mutex_unlock(&id_mgr->lock); 544 545 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 546 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 547 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 548 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 549 ring->funcs->emit_wreg; 550 551 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 552 return 0; 553 554 amdgpu_ring_ib_begin(ring); 555 if (ring->funcs->init_cond_exec) 556 patch_offset = amdgpu_ring_init_cond_exec(ring); 557 558 if (need_pipe_sync) 559 amdgpu_ring_emit_pipeline_sync(ring); 560 561 if (vm_flush_needed) { 562 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 563 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 564 } 565 566 if (pasid_mapping_needed) 567 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 568 569 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 570 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 571 572 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 573 gds_switch_needed) { 574 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 575 job->gds_size, job->gws_base, 576 job->gws_size, job->oa_base, 577 job->oa_size); 578 } 579 580 if (vm_flush_needed || pasid_mapping_needed) { 581 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 582 if (r) 583 return r; 584 } 585 586 if (vm_flush_needed) { 587 mutex_lock(&id_mgr->lock); 588 dma_fence_put(id->last_flush); 589 id->last_flush = dma_fence_get(fence); 590 id->current_gpu_reset_count = 591 atomic_read(&adev->gpu_reset_counter); 592 mutex_unlock(&id_mgr->lock); 593 } 594 595 if (pasid_mapping_needed) { 596 mutex_lock(&id_mgr->lock); 597 id->pasid = job->pasid; 598 dma_fence_put(id->pasid_mapping); 599 id->pasid_mapping = dma_fence_get(fence); 600 mutex_unlock(&id_mgr->lock); 601 } 602 dma_fence_put(fence); 603 604 if (ring->funcs->patch_cond_exec) 605 amdgpu_ring_patch_cond_exec(ring, patch_offset); 606 607 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 608 if (ring->funcs->emit_switch_buffer) { 609 amdgpu_ring_emit_switch_buffer(ring); 610 amdgpu_ring_emit_switch_buffer(ring); 611 } 612 amdgpu_ring_ib_end(ring); 613 return 0; 614 } 615 616 /** 617 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 618 * 619 * @vm: requested vm 620 * @bo: requested buffer object 621 * 622 * Find @bo inside the requested vm. 623 * Search inside the @bos vm list for the requested vm 624 * Returns the found bo_va or NULL if none is found 625 * 626 * Object has to be reserved! 627 * 628 * Returns: 629 * Found bo_va or NULL. 630 */ 631 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 632 struct amdgpu_bo *bo) 633 { 634 struct amdgpu_vm_bo_base *base; 635 636 for (base = bo->vm_bo; base; base = base->next) { 637 if (base->vm != vm) 638 continue; 639 640 return container_of(base, struct amdgpu_bo_va, base); 641 } 642 return NULL; 643 } 644 645 /** 646 * amdgpu_vm_map_gart - Resolve gart mapping of addr 647 * 648 * @pages_addr: optional DMA address to use for lookup 649 * @addr: the unmapped addr 650 * 651 * Look up the physical address of the page that the pte resolves 652 * to. 653 * 654 * Returns: 655 * The pointer for the page table entry. 656 */ 657 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 658 { 659 uint64_t result; 660 661 /* page table offset */ 662 result = pages_addr[addr >> PAGE_SHIFT]; 663 664 /* in case cpu page size != gpu page size*/ 665 result |= addr & (~PAGE_MASK); 666 667 result &= 0xFFFFFFFFFFFFF000ULL; 668 669 return result; 670 } 671 672 /** 673 * amdgpu_vm_update_pdes - make sure that all directories are valid 674 * 675 * @adev: amdgpu_device pointer 676 * @vm: requested vm 677 * @immediate: submit immediately to the paging queue 678 * 679 * Makes sure all directories are up to date. 680 * 681 * Returns: 682 * 0 for success, error for failure. 683 */ 684 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 685 struct amdgpu_vm *vm, bool immediate) 686 { 687 struct amdgpu_vm_update_params params; 688 struct amdgpu_vm_bo_base *entry; 689 bool flush_tlb_needed = false; 690 LIST_HEAD(relocated); 691 int r, idx; 692 693 spin_lock(&vm->status_lock); 694 list_splice_init(&vm->relocated, &relocated); 695 spin_unlock(&vm->status_lock); 696 697 if (list_empty(&relocated)) 698 return 0; 699 700 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 701 return -ENODEV; 702 703 memset(¶ms, 0, sizeof(params)); 704 params.adev = adev; 705 params.vm = vm; 706 params.immediate = immediate; 707 708 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 709 if (r) 710 goto error; 711 712 list_for_each_entry(entry, &relocated, vm_status) { 713 /* vm_flush_needed after updating moved PDEs */ 714 flush_tlb_needed |= entry->moved; 715 716 r = amdgpu_vm_pde_update(¶ms, entry); 717 if (r) 718 goto error; 719 } 720 721 r = vm->update_funcs->commit(¶ms, &vm->last_update); 722 if (r) 723 goto error; 724 725 if (flush_tlb_needed) 726 atomic64_inc(&vm->tlb_seq); 727 728 while (!list_empty(&relocated)) { 729 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 730 vm_status); 731 amdgpu_vm_bo_idle(entry); 732 } 733 734 error: 735 drm_dev_exit(idx); 736 return r; 737 } 738 739 /** 740 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 741 * @fence: unused 742 * @cb: the callback structure 743 * 744 * Increments the tlb sequence to make sure that future CS execute a VM flush. 745 */ 746 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 747 struct dma_fence_cb *cb) 748 { 749 struct amdgpu_vm_tlb_seq_cb *tlb_cb; 750 751 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 752 atomic64_inc(&tlb_cb->vm->tlb_seq); 753 kfree(tlb_cb); 754 } 755 756 /** 757 * amdgpu_vm_update_range - update a range in the vm page table 758 * 759 * @adev: amdgpu_device pointer to use for commands 760 * @vm: the VM to update the range 761 * @immediate: immediate submission in a page fault 762 * @unlocked: unlocked invalidation during MM callback 763 * @flush_tlb: trigger tlb invalidation after update completed 764 * @resv: fences we need to sync to 765 * @start: start of mapped range 766 * @last: last mapped entry 767 * @flags: flags for the entries 768 * @offset: offset into nodes and pages_addr 769 * @vram_base: base for vram mappings 770 * @res: ttm_resource to map 771 * @pages_addr: DMA addresses to use for mapping 772 * @fence: optional resulting fence 773 * 774 * Fill in the page table entries between @start and @last. 775 * 776 * Returns: 777 * 0 for success, negative erro code for failure. 778 */ 779 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 780 bool immediate, bool unlocked, bool flush_tlb, 781 struct dma_resv *resv, uint64_t start, uint64_t last, 782 uint64_t flags, uint64_t offset, uint64_t vram_base, 783 struct ttm_resource *res, dma_addr_t *pages_addr, 784 struct dma_fence **fence) 785 { 786 struct amdgpu_vm_update_params params; 787 struct amdgpu_vm_tlb_seq_cb *tlb_cb; 788 struct amdgpu_res_cursor cursor; 789 enum amdgpu_sync_mode sync_mode; 790 int r, idx; 791 792 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 793 return -ENODEV; 794 795 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 796 if (!tlb_cb) { 797 r = -ENOMEM; 798 goto error_unlock; 799 } 800 801 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 802 * heavy-weight flush TLB unconditionally. 803 */ 804 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 805 adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0); 806 807 /* 808 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 809 */ 810 flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0); 811 812 memset(¶ms, 0, sizeof(params)); 813 params.adev = adev; 814 params.vm = vm; 815 params.immediate = immediate; 816 params.pages_addr = pages_addr; 817 params.unlocked = unlocked; 818 819 /* Implicitly sync to command submissions in the same VM before 820 * unmapping. Sync to moving fences before mapping. 821 */ 822 if (!(flags & AMDGPU_PTE_VALID)) 823 sync_mode = AMDGPU_SYNC_EQ_OWNER; 824 else 825 sync_mode = AMDGPU_SYNC_EXPLICIT; 826 827 amdgpu_vm_eviction_lock(vm); 828 if (vm->evicting) { 829 r = -EBUSY; 830 goto error_free; 831 } 832 833 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 834 struct dma_fence *tmp = dma_fence_get_stub(); 835 836 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 837 swap(vm->last_unlocked, tmp); 838 dma_fence_put(tmp); 839 } 840 841 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 842 if (r) 843 goto error_free; 844 845 amdgpu_res_first(pages_addr ? NULL : res, offset, 846 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 847 while (cursor.remaining) { 848 uint64_t tmp, num_entries, addr; 849 850 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 851 if (pages_addr) { 852 bool contiguous = true; 853 854 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 855 uint64_t pfn = cursor.start >> PAGE_SHIFT; 856 uint64_t count; 857 858 contiguous = pages_addr[pfn + 1] == 859 pages_addr[pfn] + PAGE_SIZE; 860 861 tmp = num_entries / 862 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 863 for (count = 2; count < tmp; ++count) { 864 uint64_t idx = pfn + count; 865 866 if (contiguous != (pages_addr[idx] == 867 pages_addr[idx - 1] + PAGE_SIZE)) 868 break; 869 } 870 if (!contiguous) 871 count--; 872 num_entries = count * 873 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 874 } 875 876 if (!contiguous) { 877 addr = cursor.start; 878 params.pages_addr = pages_addr; 879 } else { 880 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 881 params.pages_addr = NULL; 882 } 883 884 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 885 addr = vram_base + cursor.start; 886 } else { 887 addr = 0; 888 } 889 890 tmp = start + num_entries; 891 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 892 if (r) 893 goto error_free; 894 895 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 896 start = tmp; 897 } 898 899 r = vm->update_funcs->commit(¶ms, fence); 900 901 if (flush_tlb || params.table_freed) { 902 tlb_cb->vm = vm; 903 if (fence && *fence && 904 !dma_fence_add_callback(*fence, &tlb_cb->cb, 905 amdgpu_vm_tlb_seq_cb)) { 906 dma_fence_put(vm->last_tlb_flush); 907 vm->last_tlb_flush = dma_fence_get(*fence); 908 } else { 909 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 910 } 911 tlb_cb = NULL; 912 } 913 914 error_free: 915 kfree(tlb_cb); 916 917 error_unlock: 918 amdgpu_vm_eviction_unlock(vm); 919 drm_dev_exit(idx); 920 return r; 921 } 922 923 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 924 struct amdgpu_mem_stats *stats) 925 { 926 struct amdgpu_bo_va *bo_va, *tmp; 927 928 spin_lock(&vm->status_lock); 929 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 930 if (!bo_va->base.bo) 931 continue; 932 amdgpu_bo_get_memory(bo_va->base.bo, stats); 933 } 934 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 935 if (!bo_va->base.bo) 936 continue; 937 amdgpu_bo_get_memory(bo_va->base.bo, stats); 938 } 939 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 940 if (!bo_va->base.bo) 941 continue; 942 amdgpu_bo_get_memory(bo_va->base.bo, stats); 943 } 944 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 945 if (!bo_va->base.bo) 946 continue; 947 amdgpu_bo_get_memory(bo_va->base.bo, stats); 948 } 949 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 950 if (!bo_va->base.bo) 951 continue; 952 amdgpu_bo_get_memory(bo_va->base.bo, stats); 953 } 954 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 955 if (!bo_va->base.bo) 956 continue; 957 amdgpu_bo_get_memory(bo_va->base.bo, stats); 958 } 959 spin_unlock(&vm->status_lock); 960 } 961 962 /** 963 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 964 * 965 * @adev: amdgpu_device pointer 966 * @bo_va: requested BO and VM object 967 * @clear: if true clear the entries 968 * 969 * Fill in the page table entries for @bo_va. 970 * 971 * Returns: 972 * 0 for success, -EINVAL for failure. 973 */ 974 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 975 bool clear) 976 { 977 struct amdgpu_bo *bo = bo_va->base.bo; 978 struct amdgpu_vm *vm = bo_va->base.vm; 979 struct amdgpu_bo_va_mapping *mapping; 980 dma_addr_t *pages_addr = NULL; 981 struct ttm_resource *mem; 982 struct dma_fence **last_update; 983 bool flush_tlb = clear; 984 struct dma_resv *resv; 985 uint64_t vram_base; 986 uint64_t flags; 987 int r; 988 989 if (clear || !bo) { 990 mem = NULL; 991 resv = vm->root.bo->tbo.base.resv; 992 } else { 993 struct drm_gem_object *obj = &bo->tbo.base; 994 995 resv = bo->tbo.base.resv; 996 if (obj->import_attach && bo_va->is_xgmi) { 997 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 998 struct drm_gem_object *gobj = dma_buf->priv; 999 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1000 1001 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1002 bo = gem_to_amdgpu_bo(gobj); 1003 } 1004 mem = bo->tbo.resource; 1005 if (mem->mem_type == TTM_PL_TT || 1006 mem->mem_type == AMDGPU_PL_PREEMPT) 1007 pages_addr = bo->tbo.ttm->dma_address; 1008 } 1009 1010 if (bo) { 1011 struct amdgpu_device *bo_adev; 1012 1013 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1014 1015 if (amdgpu_bo_encrypted(bo)) 1016 flags |= AMDGPU_PTE_TMZ; 1017 1018 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1019 vram_base = bo_adev->vm_manager.vram_base_offset; 1020 } else { 1021 flags = 0x0; 1022 vram_base = 0; 1023 } 1024 1025 if (clear || (bo && bo->tbo.base.resv == 1026 vm->root.bo->tbo.base.resv)) 1027 last_update = &vm->last_update; 1028 else 1029 last_update = &bo_va->last_pt_update; 1030 1031 if (!clear && bo_va->base.moved) { 1032 flush_tlb = true; 1033 list_splice_init(&bo_va->valids, &bo_va->invalids); 1034 1035 } else if (bo_va->cleared != clear) { 1036 list_splice_init(&bo_va->valids, &bo_va->invalids); 1037 } 1038 1039 list_for_each_entry(mapping, &bo_va->invalids, list) { 1040 uint64_t update_flags = flags; 1041 1042 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1043 * but in case of something, we filter the flags in first place 1044 */ 1045 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1046 update_flags &= ~AMDGPU_PTE_READABLE; 1047 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1048 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1049 1050 /* Apply ASIC specific mapping flags */ 1051 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1052 1053 trace_amdgpu_vm_bo_update(mapping); 1054 1055 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1056 resv, mapping->start, mapping->last, 1057 update_flags, mapping->offset, 1058 vram_base, mem, pages_addr, 1059 last_update); 1060 if (r) 1061 return r; 1062 } 1063 1064 /* If the BO is not in its preferred location add it back to 1065 * the evicted list so that it gets validated again on the 1066 * next command submission. 1067 */ 1068 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1069 uint32_t mem_type = bo->tbo.resource->mem_type; 1070 1071 if (!(bo->preferred_domains & 1072 amdgpu_mem_type_to_domain(mem_type))) 1073 amdgpu_vm_bo_evicted(&bo_va->base); 1074 else 1075 amdgpu_vm_bo_idle(&bo_va->base); 1076 } else { 1077 amdgpu_vm_bo_done(&bo_va->base); 1078 } 1079 1080 list_splice_init(&bo_va->invalids, &bo_va->valids); 1081 bo_va->cleared = clear; 1082 bo_va->base.moved = false; 1083 1084 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1085 list_for_each_entry(mapping, &bo_va->valids, list) 1086 trace_amdgpu_vm_bo_mapping(mapping); 1087 } 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * amdgpu_vm_update_prt_state - update the global PRT state 1094 * 1095 * @adev: amdgpu_device pointer 1096 */ 1097 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1098 { 1099 unsigned long flags; 1100 bool enable; 1101 1102 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1103 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1104 adev->gmc.gmc_funcs->set_prt(adev, enable); 1105 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1106 } 1107 1108 /** 1109 * amdgpu_vm_prt_get - add a PRT user 1110 * 1111 * @adev: amdgpu_device pointer 1112 */ 1113 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1114 { 1115 if (!adev->gmc.gmc_funcs->set_prt) 1116 return; 1117 1118 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1119 amdgpu_vm_update_prt_state(adev); 1120 } 1121 1122 /** 1123 * amdgpu_vm_prt_put - drop a PRT user 1124 * 1125 * @adev: amdgpu_device pointer 1126 */ 1127 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1128 { 1129 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1130 amdgpu_vm_update_prt_state(adev); 1131 } 1132 1133 /** 1134 * amdgpu_vm_prt_cb - callback for updating the PRT status 1135 * 1136 * @fence: fence for the callback 1137 * @_cb: the callback function 1138 */ 1139 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1140 { 1141 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1142 1143 amdgpu_vm_prt_put(cb->adev); 1144 kfree(cb); 1145 } 1146 1147 /** 1148 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1149 * 1150 * @adev: amdgpu_device pointer 1151 * @fence: fence for the callback 1152 */ 1153 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1154 struct dma_fence *fence) 1155 { 1156 struct amdgpu_prt_cb *cb; 1157 1158 if (!adev->gmc.gmc_funcs->set_prt) 1159 return; 1160 1161 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1162 if (!cb) { 1163 /* Last resort when we are OOM */ 1164 if (fence) 1165 dma_fence_wait(fence, false); 1166 1167 amdgpu_vm_prt_put(adev); 1168 } else { 1169 cb->adev = adev; 1170 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1171 amdgpu_vm_prt_cb)) 1172 amdgpu_vm_prt_cb(fence, &cb->cb); 1173 } 1174 } 1175 1176 /** 1177 * amdgpu_vm_free_mapping - free a mapping 1178 * 1179 * @adev: amdgpu_device pointer 1180 * @vm: requested vm 1181 * @mapping: mapping to be freed 1182 * @fence: fence of the unmap operation 1183 * 1184 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1185 */ 1186 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1187 struct amdgpu_vm *vm, 1188 struct amdgpu_bo_va_mapping *mapping, 1189 struct dma_fence *fence) 1190 { 1191 if (mapping->flags & AMDGPU_PTE_PRT) 1192 amdgpu_vm_add_prt_cb(adev, fence); 1193 kfree(mapping); 1194 } 1195 1196 /** 1197 * amdgpu_vm_prt_fini - finish all prt mappings 1198 * 1199 * @adev: amdgpu_device pointer 1200 * @vm: requested vm 1201 * 1202 * Register a cleanup callback to disable PRT support after VM dies. 1203 */ 1204 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1205 { 1206 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1207 struct dma_resv_iter cursor; 1208 struct dma_fence *fence; 1209 1210 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1211 /* Add a callback for each fence in the reservation object */ 1212 amdgpu_vm_prt_get(adev); 1213 amdgpu_vm_add_prt_cb(adev, fence); 1214 } 1215 } 1216 1217 /** 1218 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1219 * 1220 * @adev: amdgpu_device pointer 1221 * @vm: requested vm 1222 * @fence: optional resulting fence (unchanged if no work needed to be done 1223 * or if an error occurred) 1224 * 1225 * Make sure all freed BOs are cleared in the PT. 1226 * PTs have to be reserved and mutex must be locked! 1227 * 1228 * Returns: 1229 * 0 for success. 1230 * 1231 */ 1232 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1233 struct amdgpu_vm *vm, 1234 struct dma_fence **fence) 1235 { 1236 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1237 struct amdgpu_bo_va_mapping *mapping; 1238 uint64_t init_pte_value = 0; 1239 struct dma_fence *f = NULL; 1240 int r; 1241 1242 while (!list_empty(&vm->freed)) { 1243 mapping = list_first_entry(&vm->freed, 1244 struct amdgpu_bo_va_mapping, list); 1245 list_del(&mapping->list); 1246 1247 if (vm->pte_support_ats && 1248 mapping->start < AMDGPU_GMC_HOLE_START) 1249 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1250 1251 r = amdgpu_vm_update_range(adev, vm, false, false, true, resv, 1252 mapping->start, mapping->last, 1253 init_pte_value, 0, 0, NULL, NULL, 1254 &f); 1255 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1256 if (r) { 1257 dma_fence_put(f); 1258 return r; 1259 } 1260 } 1261 1262 if (fence && f) { 1263 dma_fence_put(*fence); 1264 *fence = f; 1265 } else { 1266 dma_fence_put(f); 1267 } 1268 1269 return 0; 1270 1271 } 1272 1273 /** 1274 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1275 * 1276 * @adev: amdgpu_device pointer 1277 * @vm: requested vm 1278 * 1279 * Make sure all BOs which are moved are updated in the PTs. 1280 * 1281 * Returns: 1282 * 0 for success. 1283 * 1284 * PTs have to be reserved! 1285 */ 1286 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1287 struct amdgpu_vm *vm) 1288 { 1289 struct amdgpu_bo_va *bo_va; 1290 struct dma_resv *resv; 1291 bool clear; 1292 int r; 1293 1294 spin_lock(&vm->status_lock); 1295 while (!list_empty(&vm->moved)) { 1296 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1297 base.vm_status); 1298 spin_unlock(&vm->status_lock); 1299 1300 /* Per VM BOs never need to bo cleared in the page tables */ 1301 r = amdgpu_vm_bo_update(adev, bo_va, false); 1302 if (r) 1303 return r; 1304 spin_lock(&vm->status_lock); 1305 } 1306 1307 while (!list_empty(&vm->invalidated)) { 1308 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1309 base.vm_status); 1310 resv = bo_va->base.bo->tbo.base.resv; 1311 spin_unlock(&vm->status_lock); 1312 1313 /* Try to reserve the BO to avoid clearing its ptes */ 1314 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 1315 clear = false; 1316 /* Somebody else is using the BO right now */ 1317 else 1318 clear = true; 1319 1320 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1321 if (r) 1322 return r; 1323 1324 if (!clear) 1325 dma_resv_unlock(resv); 1326 spin_lock(&vm->status_lock); 1327 } 1328 spin_unlock(&vm->status_lock); 1329 1330 return 0; 1331 } 1332 1333 /** 1334 * amdgpu_vm_bo_add - add a bo to a specific vm 1335 * 1336 * @adev: amdgpu_device pointer 1337 * @vm: requested vm 1338 * @bo: amdgpu buffer object 1339 * 1340 * Add @bo into the requested vm. 1341 * Add @bo to the list of bos associated with the vm 1342 * 1343 * Returns: 1344 * Newly added bo_va or NULL for failure 1345 * 1346 * Object has to be reserved! 1347 */ 1348 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1349 struct amdgpu_vm *vm, 1350 struct amdgpu_bo *bo) 1351 { 1352 struct amdgpu_bo_va *bo_va; 1353 1354 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1355 if (bo_va == NULL) { 1356 return NULL; 1357 } 1358 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1359 1360 bo_va->ref_count = 1; 1361 bo_va->last_pt_update = dma_fence_get_stub(); 1362 INIT_LIST_HEAD(&bo_va->valids); 1363 INIT_LIST_HEAD(&bo_va->invalids); 1364 1365 if (!bo) 1366 return bo_va; 1367 1368 dma_resv_assert_held(bo->tbo.base.resv); 1369 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1370 bo_va->is_xgmi = true; 1371 /* Power up XGMI if it can be potentially used */ 1372 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1373 } 1374 1375 return bo_va; 1376 } 1377 1378 1379 /** 1380 * amdgpu_vm_bo_insert_map - insert a new mapping 1381 * 1382 * @adev: amdgpu_device pointer 1383 * @bo_va: bo_va to store the address 1384 * @mapping: the mapping to insert 1385 * 1386 * Insert a new mapping into all structures. 1387 */ 1388 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1389 struct amdgpu_bo_va *bo_va, 1390 struct amdgpu_bo_va_mapping *mapping) 1391 { 1392 struct amdgpu_vm *vm = bo_va->base.vm; 1393 struct amdgpu_bo *bo = bo_va->base.bo; 1394 1395 mapping->bo_va = bo_va; 1396 list_add(&mapping->list, &bo_va->invalids); 1397 amdgpu_vm_it_insert(mapping, &vm->va); 1398 1399 if (mapping->flags & AMDGPU_PTE_PRT) 1400 amdgpu_vm_prt_get(adev); 1401 1402 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 1403 !bo_va->base.moved) { 1404 amdgpu_vm_bo_moved(&bo_va->base); 1405 } 1406 trace_amdgpu_vm_bo_map(bo_va, mapping); 1407 } 1408 1409 /** 1410 * amdgpu_vm_bo_map - map bo inside a vm 1411 * 1412 * @adev: amdgpu_device pointer 1413 * @bo_va: bo_va to store the address 1414 * @saddr: where to map the BO 1415 * @offset: requested offset in the BO 1416 * @size: BO size in bytes 1417 * @flags: attributes of pages (read/write/valid/etc.) 1418 * 1419 * Add a mapping of the BO at the specefied addr into the VM. 1420 * 1421 * Returns: 1422 * 0 for success, error for failure. 1423 * 1424 * Object has to be reserved and unreserved outside! 1425 */ 1426 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1427 struct amdgpu_bo_va *bo_va, 1428 uint64_t saddr, uint64_t offset, 1429 uint64_t size, uint64_t flags) 1430 { 1431 struct amdgpu_bo_va_mapping *mapping, *tmp; 1432 struct amdgpu_bo *bo = bo_va->base.bo; 1433 struct amdgpu_vm *vm = bo_va->base.vm; 1434 uint64_t eaddr; 1435 1436 /* validate the parameters */ 1437 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) 1438 return -EINVAL; 1439 if (saddr + size <= saddr || offset + size <= offset) 1440 return -EINVAL; 1441 1442 /* make sure object fit at this offset */ 1443 eaddr = saddr + size - 1; 1444 if ((bo && offset + size > amdgpu_bo_size(bo)) || 1445 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 1446 return -EINVAL; 1447 1448 saddr /= AMDGPU_GPU_PAGE_SIZE; 1449 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1450 1451 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1452 if (tmp) { 1453 /* bo and tmp overlap, invalid addr */ 1454 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1455 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1456 tmp->start, tmp->last + 1); 1457 return -EINVAL; 1458 } 1459 1460 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1461 if (!mapping) 1462 return -ENOMEM; 1463 1464 mapping->start = saddr; 1465 mapping->last = eaddr; 1466 mapping->offset = offset; 1467 mapping->flags = flags; 1468 1469 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1476 * 1477 * @adev: amdgpu_device pointer 1478 * @bo_va: bo_va to store the address 1479 * @saddr: where to map the BO 1480 * @offset: requested offset in the BO 1481 * @size: BO size in bytes 1482 * @flags: attributes of pages (read/write/valid/etc.) 1483 * 1484 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1485 * mappings as we do so. 1486 * 1487 * Returns: 1488 * 0 for success, error for failure. 1489 * 1490 * Object has to be reserved and unreserved outside! 1491 */ 1492 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1493 struct amdgpu_bo_va *bo_va, 1494 uint64_t saddr, uint64_t offset, 1495 uint64_t size, uint64_t flags) 1496 { 1497 struct amdgpu_bo_va_mapping *mapping; 1498 struct amdgpu_bo *bo = bo_va->base.bo; 1499 uint64_t eaddr; 1500 int r; 1501 1502 /* validate the parameters */ 1503 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) 1504 return -EINVAL; 1505 if (saddr + size <= saddr || offset + size <= offset) 1506 return -EINVAL; 1507 1508 /* make sure object fit at this offset */ 1509 eaddr = saddr + size - 1; 1510 if ((bo && offset + size > amdgpu_bo_size(bo)) || 1511 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 1512 return -EINVAL; 1513 1514 /* Allocate all the needed memory */ 1515 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1516 if (!mapping) 1517 return -ENOMEM; 1518 1519 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1520 if (r) { 1521 kfree(mapping); 1522 return r; 1523 } 1524 1525 saddr /= AMDGPU_GPU_PAGE_SIZE; 1526 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1527 1528 mapping->start = saddr; 1529 mapping->last = eaddr; 1530 mapping->offset = offset; 1531 mapping->flags = flags; 1532 1533 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1534 1535 return 0; 1536 } 1537 1538 /** 1539 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1540 * 1541 * @adev: amdgpu_device pointer 1542 * @bo_va: bo_va to remove the address from 1543 * @saddr: where to the BO is mapped 1544 * 1545 * Remove a mapping of the BO at the specefied addr from the VM. 1546 * 1547 * Returns: 1548 * 0 for success, error for failure. 1549 * 1550 * Object has to be reserved and unreserved outside! 1551 */ 1552 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1553 struct amdgpu_bo_va *bo_va, 1554 uint64_t saddr) 1555 { 1556 struct amdgpu_bo_va_mapping *mapping; 1557 struct amdgpu_vm *vm = bo_va->base.vm; 1558 bool valid = true; 1559 1560 saddr /= AMDGPU_GPU_PAGE_SIZE; 1561 1562 list_for_each_entry(mapping, &bo_va->valids, list) { 1563 if (mapping->start == saddr) 1564 break; 1565 } 1566 1567 if (&mapping->list == &bo_va->valids) { 1568 valid = false; 1569 1570 list_for_each_entry(mapping, &bo_va->invalids, list) { 1571 if (mapping->start == saddr) 1572 break; 1573 } 1574 1575 if (&mapping->list == &bo_va->invalids) 1576 return -ENOENT; 1577 } 1578 1579 list_del(&mapping->list); 1580 amdgpu_vm_it_remove(mapping, &vm->va); 1581 mapping->bo_va = NULL; 1582 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1583 1584 if (valid) 1585 list_add(&mapping->list, &vm->freed); 1586 else 1587 amdgpu_vm_free_mapping(adev, vm, mapping, 1588 bo_va->last_pt_update); 1589 1590 return 0; 1591 } 1592 1593 /** 1594 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1595 * 1596 * @adev: amdgpu_device pointer 1597 * @vm: VM structure to use 1598 * @saddr: start of the range 1599 * @size: size of the range 1600 * 1601 * Remove all mappings in a range, split them as appropriate. 1602 * 1603 * Returns: 1604 * 0 for success, error for failure. 1605 */ 1606 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1607 struct amdgpu_vm *vm, 1608 uint64_t saddr, uint64_t size) 1609 { 1610 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1611 LIST_HEAD(removed); 1612 uint64_t eaddr; 1613 1614 eaddr = saddr + size - 1; 1615 saddr /= AMDGPU_GPU_PAGE_SIZE; 1616 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1617 1618 /* Allocate all the needed memory */ 1619 before = kzalloc(sizeof(*before), GFP_KERNEL); 1620 if (!before) 1621 return -ENOMEM; 1622 INIT_LIST_HEAD(&before->list); 1623 1624 after = kzalloc(sizeof(*after), GFP_KERNEL); 1625 if (!after) { 1626 kfree(before); 1627 return -ENOMEM; 1628 } 1629 INIT_LIST_HEAD(&after->list); 1630 1631 /* Now gather all removed mappings */ 1632 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1633 while (tmp) { 1634 /* Remember mapping split at the start */ 1635 if (tmp->start < saddr) { 1636 before->start = tmp->start; 1637 before->last = saddr - 1; 1638 before->offset = tmp->offset; 1639 before->flags = tmp->flags; 1640 before->bo_va = tmp->bo_va; 1641 list_add(&before->list, &tmp->bo_va->invalids); 1642 } 1643 1644 /* Remember mapping split at the end */ 1645 if (tmp->last > eaddr) { 1646 after->start = eaddr + 1; 1647 after->last = tmp->last; 1648 after->offset = tmp->offset; 1649 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1650 after->flags = tmp->flags; 1651 after->bo_va = tmp->bo_va; 1652 list_add(&after->list, &tmp->bo_va->invalids); 1653 } 1654 1655 list_del(&tmp->list); 1656 list_add(&tmp->list, &removed); 1657 1658 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1659 } 1660 1661 /* And free them up */ 1662 list_for_each_entry_safe(tmp, next, &removed, list) { 1663 amdgpu_vm_it_remove(tmp, &vm->va); 1664 list_del(&tmp->list); 1665 1666 if (tmp->start < saddr) 1667 tmp->start = saddr; 1668 if (tmp->last > eaddr) 1669 tmp->last = eaddr; 1670 1671 tmp->bo_va = NULL; 1672 list_add(&tmp->list, &vm->freed); 1673 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1674 } 1675 1676 /* Insert partial mapping before the range */ 1677 if (!list_empty(&before->list)) { 1678 amdgpu_vm_it_insert(before, &vm->va); 1679 if (before->flags & AMDGPU_PTE_PRT) 1680 amdgpu_vm_prt_get(adev); 1681 } else { 1682 kfree(before); 1683 } 1684 1685 /* Insert partial mapping after the range */ 1686 if (!list_empty(&after->list)) { 1687 amdgpu_vm_it_insert(after, &vm->va); 1688 if (after->flags & AMDGPU_PTE_PRT) 1689 amdgpu_vm_prt_get(adev); 1690 } else { 1691 kfree(after); 1692 } 1693 1694 return 0; 1695 } 1696 1697 /** 1698 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1699 * 1700 * @vm: the requested VM 1701 * @addr: the address 1702 * 1703 * Find a mapping by it's address. 1704 * 1705 * Returns: 1706 * The amdgpu_bo_va_mapping matching for addr or NULL 1707 * 1708 */ 1709 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 1710 uint64_t addr) 1711 { 1712 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 1713 } 1714 1715 /** 1716 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 1717 * 1718 * @vm: the requested vm 1719 * @ticket: CS ticket 1720 * 1721 * Trace all mappings of BOs reserved during a command submission. 1722 */ 1723 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 1724 { 1725 struct amdgpu_bo_va_mapping *mapping; 1726 1727 if (!trace_amdgpu_vm_bo_cs_enabled()) 1728 return; 1729 1730 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 1731 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 1732 if (mapping->bo_va && mapping->bo_va->base.bo) { 1733 struct amdgpu_bo *bo; 1734 1735 bo = mapping->bo_va->base.bo; 1736 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 1737 ticket) 1738 continue; 1739 } 1740 1741 trace_amdgpu_vm_bo_cs(mapping); 1742 } 1743 } 1744 1745 /** 1746 * amdgpu_vm_bo_del - remove a bo from a specific vm 1747 * 1748 * @adev: amdgpu_device pointer 1749 * @bo_va: requested bo_va 1750 * 1751 * Remove @bo_va->bo from the requested vm. 1752 * 1753 * Object have to be reserved! 1754 */ 1755 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 1756 struct amdgpu_bo_va *bo_va) 1757 { 1758 struct amdgpu_bo_va_mapping *mapping, *next; 1759 struct amdgpu_bo *bo = bo_va->base.bo; 1760 struct amdgpu_vm *vm = bo_va->base.vm; 1761 struct amdgpu_vm_bo_base **base; 1762 1763 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 1764 1765 if (bo) { 1766 dma_resv_assert_held(bo->tbo.base.resv); 1767 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 1768 ttm_bo_set_bulk_move(&bo->tbo, NULL); 1769 1770 for (base = &bo_va->base.bo->vm_bo; *base; 1771 base = &(*base)->next) { 1772 if (*base != &bo_va->base) 1773 continue; 1774 1775 *base = bo_va->base.next; 1776 break; 1777 } 1778 } 1779 1780 spin_lock(&vm->status_lock); 1781 list_del(&bo_va->base.vm_status); 1782 spin_unlock(&vm->status_lock); 1783 1784 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1785 list_del(&mapping->list); 1786 amdgpu_vm_it_remove(mapping, &vm->va); 1787 mapping->bo_va = NULL; 1788 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1789 list_add(&mapping->list, &vm->freed); 1790 } 1791 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1792 list_del(&mapping->list); 1793 amdgpu_vm_it_remove(mapping, &vm->va); 1794 amdgpu_vm_free_mapping(adev, vm, mapping, 1795 bo_va->last_pt_update); 1796 } 1797 1798 dma_fence_put(bo_va->last_pt_update); 1799 1800 if (bo && bo_va->is_xgmi) 1801 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 1802 1803 kfree(bo_va); 1804 } 1805 1806 /** 1807 * amdgpu_vm_evictable - check if we can evict a VM 1808 * 1809 * @bo: A page table of the VM. 1810 * 1811 * Check if it is possible to evict a VM. 1812 */ 1813 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 1814 { 1815 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 1816 1817 /* Page tables of a destroyed VM can go away immediately */ 1818 if (!bo_base || !bo_base->vm) 1819 return true; 1820 1821 /* Don't evict VM page tables while they are busy */ 1822 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 1823 return false; 1824 1825 /* Try to block ongoing updates */ 1826 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 1827 return false; 1828 1829 /* Don't evict VM page tables while they are updated */ 1830 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 1831 amdgpu_vm_eviction_unlock(bo_base->vm); 1832 return false; 1833 } 1834 1835 bo_base->vm->evicting = true; 1836 amdgpu_vm_eviction_unlock(bo_base->vm); 1837 return true; 1838 } 1839 1840 /** 1841 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1842 * 1843 * @adev: amdgpu_device pointer 1844 * @bo: amdgpu buffer object 1845 * @evicted: is the BO evicted 1846 * 1847 * Mark @bo as invalid. 1848 */ 1849 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1850 struct amdgpu_bo *bo, bool evicted) 1851 { 1852 struct amdgpu_vm_bo_base *bo_base; 1853 1854 /* shadow bo doesn't have bo base, its validation needs its parent */ 1855 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 1856 bo = bo->parent; 1857 1858 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 1859 struct amdgpu_vm *vm = bo_base->vm; 1860 1861 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1862 amdgpu_vm_bo_evicted(bo_base); 1863 continue; 1864 } 1865 1866 if (bo_base->moved) 1867 continue; 1868 bo_base->moved = true; 1869 1870 if (bo->tbo.type == ttm_bo_type_kernel) 1871 amdgpu_vm_bo_relocated(bo_base); 1872 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 1873 amdgpu_vm_bo_moved(bo_base); 1874 else 1875 amdgpu_vm_bo_invalidated(bo_base); 1876 } 1877 } 1878 1879 /** 1880 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 1881 * 1882 * @vm_size: VM size 1883 * 1884 * Returns: 1885 * VM page table as power of two 1886 */ 1887 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 1888 { 1889 /* Total bits covered by PD + PTs */ 1890 unsigned bits = ilog2(vm_size) + 18; 1891 1892 /* Make sure the PD is 4K in size up to 8GB address space. 1893 Above that split equal between PD and PTs */ 1894 if (vm_size <= 8) 1895 return (bits - 9); 1896 else 1897 return ((bits + 3) / 2); 1898 } 1899 1900 /** 1901 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 1902 * 1903 * @adev: amdgpu_device pointer 1904 * @min_vm_size: the minimum vm size in GB if it's set auto 1905 * @fragment_size_default: Default PTE fragment size 1906 * @max_level: max VMPT level 1907 * @max_bits: max address space size in bits 1908 * 1909 */ 1910 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 1911 uint32_t fragment_size_default, unsigned max_level, 1912 unsigned max_bits) 1913 { 1914 unsigned int max_size = 1 << (max_bits - 30); 1915 unsigned int vm_size; 1916 uint64_t tmp; 1917 1918 /* adjust vm size first */ 1919 if (amdgpu_vm_size != -1) { 1920 vm_size = amdgpu_vm_size; 1921 if (vm_size > max_size) { 1922 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 1923 amdgpu_vm_size, max_size); 1924 vm_size = max_size; 1925 } 1926 } else { 1927 struct sysinfo si; 1928 unsigned int phys_ram_gb; 1929 1930 /* Optimal VM size depends on the amount of physical 1931 * RAM available. Underlying requirements and 1932 * assumptions: 1933 * 1934 * - Need to map system memory and VRAM from all GPUs 1935 * - VRAM from other GPUs not known here 1936 * - Assume VRAM <= system memory 1937 * - On GFX8 and older, VM space can be segmented for 1938 * different MTYPEs 1939 * - Need to allow room for fragmentation, guard pages etc. 1940 * 1941 * This adds up to a rough guess of system memory x3. 1942 * Round up to power of two to maximize the available 1943 * VM size with the given page table size. 1944 */ 1945 si_meminfo(&si); 1946 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 1947 (1 << 30) - 1) >> 30; 1948 vm_size = roundup_pow_of_two( 1949 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 1950 } 1951 1952 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 1953 1954 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 1955 if (amdgpu_vm_block_size != -1) 1956 tmp >>= amdgpu_vm_block_size - 9; 1957 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 1958 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 1959 switch (adev->vm_manager.num_level) { 1960 case 3: 1961 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 1962 break; 1963 case 2: 1964 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 1965 break; 1966 case 1: 1967 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 1968 break; 1969 default: 1970 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 1971 } 1972 /* block size depends on vm size and hw setup*/ 1973 if (amdgpu_vm_block_size != -1) 1974 adev->vm_manager.block_size = 1975 min((unsigned)amdgpu_vm_block_size, max_bits 1976 - AMDGPU_GPU_PAGE_SHIFT 1977 - 9 * adev->vm_manager.num_level); 1978 else if (adev->vm_manager.num_level > 1) 1979 adev->vm_manager.block_size = 9; 1980 else 1981 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 1982 1983 if (amdgpu_vm_fragment_size == -1) 1984 adev->vm_manager.fragment_size = fragment_size_default; 1985 else 1986 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 1987 1988 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 1989 vm_size, adev->vm_manager.num_level + 1, 1990 adev->vm_manager.block_size, 1991 adev->vm_manager.fragment_size); 1992 } 1993 1994 /** 1995 * amdgpu_vm_wait_idle - wait for the VM to become idle 1996 * 1997 * @vm: VM object to wait for 1998 * @timeout: timeout to wait for VM to become idle 1999 */ 2000 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2001 { 2002 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2003 DMA_RESV_USAGE_BOOKKEEP, 2004 true, timeout); 2005 if (timeout <= 0) 2006 return timeout; 2007 2008 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2009 } 2010 2011 /** 2012 * amdgpu_vm_init - initialize a vm instance 2013 * 2014 * @adev: amdgpu_device pointer 2015 * @vm: requested vm 2016 * 2017 * Init @vm fields. 2018 * 2019 * Returns: 2020 * 0 for success, error for failure. 2021 */ 2022 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2023 { 2024 struct amdgpu_bo *root_bo; 2025 struct amdgpu_bo_vm *root; 2026 int r, i; 2027 2028 vm->va = RB_ROOT_CACHED; 2029 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2030 vm->reserved_vmid[i] = NULL; 2031 INIT_LIST_HEAD(&vm->evicted); 2032 INIT_LIST_HEAD(&vm->relocated); 2033 INIT_LIST_HEAD(&vm->moved); 2034 INIT_LIST_HEAD(&vm->idle); 2035 INIT_LIST_HEAD(&vm->invalidated); 2036 spin_lock_init(&vm->status_lock); 2037 INIT_LIST_HEAD(&vm->freed); 2038 INIT_LIST_HEAD(&vm->done); 2039 INIT_LIST_HEAD(&vm->pt_freed); 2040 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2041 2042 /* create scheduler entities for page table updates */ 2043 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2044 adev->vm_manager.vm_pte_scheds, 2045 adev->vm_manager.vm_pte_num_scheds, NULL); 2046 if (r) 2047 return r; 2048 2049 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2050 adev->vm_manager.vm_pte_scheds, 2051 adev->vm_manager.vm_pte_num_scheds, NULL); 2052 if (r) 2053 goto error_free_immediate; 2054 2055 vm->pte_support_ats = false; 2056 vm->is_compute_context = false; 2057 2058 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2059 AMDGPU_VM_USE_CPU_FOR_GFX); 2060 2061 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2062 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2063 WARN_ONCE((vm->use_cpu_for_update && 2064 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2065 "CPU update of VM recommended only for large BAR system\n"); 2066 2067 if (vm->use_cpu_for_update) 2068 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2069 else 2070 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2071 2072 vm->last_update = dma_fence_get_stub(); 2073 vm->last_unlocked = dma_fence_get_stub(); 2074 vm->last_tlb_flush = dma_fence_get_stub(); 2075 2076 mutex_init(&vm->eviction_lock); 2077 vm->evicting = false; 2078 2079 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2080 false, &root); 2081 if (r) 2082 goto error_free_delayed; 2083 root_bo = &root->bo; 2084 r = amdgpu_bo_reserve(root_bo, true); 2085 if (r) 2086 goto error_free_root; 2087 2088 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2089 if (r) 2090 goto error_unreserve; 2091 2092 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2093 2094 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2095 if (r) 2096 goto error_unreserve; 2097 2098 amdgpu_bo_unreserve(vm->root.bo); 2099 2100 INIT_KFIFO(vm->faults); 2101 2102 return 0; 2103 2104 error_unreserve: 2105 amdgpu_bo_unreserve(vm->root.bo); 2106 2107 error_free_root: 2108 amdgpu_bo_unref(&root->shadow); 2109 amdgpu_bo_unref(&root_bo); 2110 vm->root.bo = NULL; 2111 2112 error_free_delayed: 2113 dma_fence_put(vm->last_tlb_flush); 2114 dma_fence_put(vm->last_unlocked); 2115 drm_sched_entity_destroy(&vm->delayed); 2116 2117 error_free_immediate: 2118 drm_sched_entity_destroy(&vm->immediate); 2119 2120 return r; 2121 } 2122 2123 /** 2124 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2125 * 2126 * @adev: amdgpu_device pointer 2127 * @vm: requested vm 2128 * 2129 * This only works on GFX VMs that don't have any BOs added and no 2130 * page tables allocated yet. 2131 * 2132 * Changes the following VM parameters: 2133 * - use_cpu_for_update 2134 * - pte_supports_ats 2135 * 2136 * Reinitializes the page directory to reflect the changed ATS 2137 * setting. 2138 * 2139 * Returns: 2140 * 0 for success, -errno for errors. 2141 */ 2142 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2143 { 2144 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2145 int r; 2146 2147 r = amdgpu_bo_reserve(vm->root.bo, true); 2148 if (r) 2149 return r; 2150 2151 /* Sanity checks */ 2152 if (!amdgpu_vm_pt_is_root_clean(adev, vm)) { 2153 r = -EINVAL; 2154 goto unreserve_bo; 2155 } 2156 2157 /* Check if PD needs to be reinitialized and do it before 2158 * changing any other state, in case it fails. 2159 */ 2160 if (pte_support_ats != vm->pte_support_ats) { 2161 vm->pte_support_ats = pte_support_ats; 2162 r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo), 2163 false); 2164 if (r) 2165 goto unreserve_bo; 2166 } 2167 2168 /* Update VM state */ 2169 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2170 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2171 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2172 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2173 WARN_ONCE((vm->use_cpu_for_update && 2174 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2175 "CPU update of VM recommended only for large BAR system\n"); 2176 2177 if (vm->use_cpu_for_update) { 2178 /* Sync with last SDMA update/clear before switching to CPU */ 2179 r = amdgpu_bo_sync_wait(vm->root.bo, 2180 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2181 if (r) 2182 goto unreserve_bo; 2183 2184 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2185 } else { 2186 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2187 } 2188 /* 2189 * Make sure root PD gets mapped. As vm_update_mode could be changed 2190 * when turning a GFX VM into a compute VM. 2191 */ 2192 r = vm->update_funcs->map_table(to_amdgpu_bo_vm(vm->root.bo)); 2193 if (r) 2194 goto unreserve_bo; 2195 2196 dma_fence_put(vm->last_update); 2197 vm->last_update = dma_fence_get_stub(); 2198 vm->is_compute_context = true; 2199 2200 /* Free the shadow bo for compute VM */ 2201 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 2202 2203 goto unreserve_bo; 2204 2205 unreserve_bo: 2206 amdgpu_bo_unreserve(vm->root.bo); 2207 return r; 2208 } 2209 2210 /** 2211 * amdgpu_vm_release_compute - release a compute vm 2212 * @adev: amdgpu_device pointer 2213 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2214 * 2215 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2216 * pasid from vm. Compute should stop use of vm after this call. 2217 */ 2218 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2219 { 2220 amdgpu_vm_set_pasid(adev, vm, 0); 2221 vm->is_compute_context = false; 2222 } 2223 2224 /** 2225 * amdgpu_vm_fini - tear down a vm instance 2226 * 2227 * @adev: amdgpu_device pointer 2228 * @vm: requested vm 2229 * 2230 * Tear down @vm. 2231 * Unbind the VM and remove all bos from the vm bo list 2232 */ 2233 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2234 { 2235 struct amdgpu_bo_va_mapping *mapping, *tmp; 2236 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2237 struct amdgpu_bo *root; 2238 unsigned long flags; 2239 int i; 2240 2241 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2242 2243 flush_work(&vm->pt_free_work); 2244 2245 root = amdgpu_bo_ref(vm->root.bo); 2246 amdgpu_bo_reserve(root, true); 2247 amdgpu_vm_set_pasid(adev, vm, 0); 2248 dma_fence_wait(vm->last_unlocked, false); 2249 dma_fence_put(vm->last_unlocked); 2250 dma_fence_wait(vm->last_tlb_flush, false); 2251 /* Make sure that all fence callbacks have completed */ 2252 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2253 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2254 dma_fence_put(vm->last_tlb_flush); 2255 2256 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2257 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2258 amdgpu_vm_prt_fini(adev, vm); 2259 prt_fini_needed = false; 2260 } 2261 2262 list_del(&mapping->list); 2263 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2264 } 2265 2266 amdgpu_vm_pt_free_root(adev, vm); 2267 amdgpu_bo_unreserve(root); 2268 amdgpu_bo_unref(&root); 2269 WARN_ON(vm->root.bo); 2270 2271 drm_sched_entity_destroy(&vm->immediate); 2272 drm_sched_entity_destroy(&vm->delayed); 2273 2274 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2275 dev_err(adev->dev, "still active bo inside vm\n"); 2276 } 2277 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2278 &vm->va.rb_root, rb) { 2279 /* Don't remove the mapping here, we don't want to trigger a 2280 * rebalance and the tree is about to be destroyed anyway. 2281 */ 2282 list_del(&mapping->list); 2283 kfree(mapping); 2284 } 2285 2286 dma_fence_put(vm->last_update); 2287 2288 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2289 if (vm->reserved_vmid[i]) { 2290 amdgpu_vmid_free_reserved(adev, i); 2291 vm->reserved_vmid[i] = false; 2292 } 2293 } 2294 2295 } 2296 2297 /** 2298 * amdgpu_vm_manager_init - init the VM manager 2299 * 2300 * @adev: amdgpu_device pointer 2301 * 2302 * Initialize the VM manager structures 2303 */ 2304 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2305 { 2306 unsigned i; 2307 2308 /* Concurrent flushes are only possible starting with Vega10 and 2309 * are broken on Navi10 and Navi14. 2310 */ 2311 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2312 adev->asic_type == CHIP_NAVI10 || 2313 adev->asic_type == CHIP_NAVI14); 2314 amdgpu_vmid_mgr_init(adev); 2315 2316 adev->vm_manager.fence_context = 2317 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2318 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2319 adev->vm_manager.seqno[i] = 0; 2320 2321 spin_lock_init(&adev->vm_manager.prt_lock); 2322 atomic_set(&adev->vm_manager.num_prt_users, 0); 2323 2324 /* If not overridden by the user, by default, only in large BAR systems 2325 * Compute VM tables will be updated by CPU 2326 */ 2327 #ifdef CONFIG_X86_64 2328 if (amdgpu_vm_update_mode == -1) { 2329 /* For asic with VF MMIO access protection 2330 * avoid using CPU for VM table updates 2331 */ 2332 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2333 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2334 adev->vm_manager.vm_update_mode = 2335 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2336 else 2337 adev->vm_manager.vm_update_mode = 0; 2338 } else 2339 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2340 #else 2341 adev->vm_manager.vm_update_mode = 0; 2342 #endif 2343 2344 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2345 } 2346 2347 /** 2348 * amdgpu_vm_manager_fini - cleanup VM manager 2349 * 2350 * @adev: amdgpu_device pointer 2351 * 2352 * Cleanup the VM manager and free resources. 2353 */ 2354 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2355 { 2356 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2357 xa_destroy(&adev->vm_manager.pasids); 2358 2359 amdgpu_vmid_mgr_fini(adev); 2360 } 2361 2362 /** 2363 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2364 * 2365 * @dev: drm device pointer 2366 * @data: drm_amdgpu_vm 2367 * @filp: drm file pointer 2368 * 2369 * Returns: 2370 * 0 for success, -errno for errors. 2371 */ 2372 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2373 { 2374 union drm_amdgpu_vm *args = data; 2375 struct amdgpu_device *adev = drm_to_adev(dev); 2376 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2377 2378 /* No valid flags defined yet */ 2379 if (args->in.flags) 2380 return -EINVAL; 2381 2382 switch (args->in.op) { 2383 case AMDGPU_VM_OP_RESERVE_VMID: 2384 /* We only have requirement to reserve vmid from gfxhub */ 2385 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2386 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2387 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2388 } 2389 2390 break; 2391 case AMDGPU_VM_OP_UNRESERVE_VMID: 2392 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2393 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2394 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2395 } 2396 break; 2397 default: 2398 return -EINVAL; 2399 } 2400 2401 return 0; 2402 } 2403 2404 /** 2405 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 2406 * 2407 * @adev: drm device pointer 2408 * @pasid: PASID identifier for VM 2409 * @task_info: task_info to fill. 2410 */ 2411 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 2412 struct amdgpu_task_info *task_info) 2413 { 2414 struct amdgpu_vm *vm; 2415 unsigned long flags; 2416 2417 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2418 2419 vm = xa_load(&adev->vm_manager.pasids, pasid); 2420 if (vm) 2421 *task_info = vm->task_info; 2422 2423 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2424 } 2425 2426 /** 2427 * amdgpu_vm_set_task_info - Sets VMs task info. 2428 * 2429 * @vm: vm for which to set the info 2430 */ 2431 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2432 { 2433 if (vm->task_info.pid) 2434 return; 2435 2436 vm->task_info.pid = current->pid; 2437 get_task_comm(vm->task_info.task_name, current); 2438 2439 if (current->group_leader->mm != current->mm) 2440 return; 2441 2442 vm->task_info.tgid = current->group_leader->pid; 2443 get_task_comm(vm->task_info.process_name, current->group_leader); 2444 } 2445 2446 /** 2447 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2448 * @adev: amdgpu device pointer 2449 * @pasid: PASID of the VM 2450 * @vmid: VMID, only used for GFX 9.4.3. 2451 * @node_id: Node_id received in IH cookie. Only applicable for 2452 * GFX 9.4.3. 2453 * @addr: Address of the fault 2454 * @write_fault: true is write fault, false is read fault 2455 * 2456 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2457 * shouldn't be reported any more. 2458 */ 2459 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2460 u32 vmid, u32 node_id, uint64_t addr, 2461 bool write_fault) 2462 { 2463 bool is_compute_context = false; 2464 struct amdgpu_bo *root; 2465 unsigned long irqflags; 2466 uint64_t value, flags; 2467 struct amdgpu_vm *vm; 2468 int r; 2469 2470 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2471 vm = xa_load(&adev->vm_manager.pasids, pasid); 2472 if (vm) { 2473 root = amdgpu_bo_ref(vm->root.bo); 2474 is_compute_context = vm->is_compute_context; 2475 } else { 2476 root = NULL; 2477 } 2478 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2479 2480 if (!root) 2481 return false; 2482 2483 addr /= AMDGPU_GPU_PAGE_SIZE; 2484 2485 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2486 node_id, addr, write_fault)) { 2487 amdgpu_bo_unref(&root); 2488 return true; 2489 } 2490 2491 r = amdgpu_bo_reserve(root, true); 2492 if (r) 2493 goto error_unref; 2494 2495 /* Double check that the VM still exists */ 2496 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2497 vm = xa_load(&adev->vm_manager.pasids, pasid); 2498 if (vm && vm->root.bo != root) 2499 vm = NULL; 2500 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2501 if (!vm) 2502 goto error_unlock; 2503 2504 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2505 AMDGPU_PTE_SYSTEM; 2506 2507 if (is_compute_context) { 2508 /* Intentionally setting invalid PTE flag 2509 * combination to force a no-retry-fault 2510 */ 2511 flags = AMDGPU_PTE_SNOOPED | AMDGPU_PTE_PRT; 2512 value = 0; 2513 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2514 /* Redirect the access to the dummy page */ 2515 value = adev->dummy_page_addr; 2516 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2517 AMDGPU_PTE_WRITEABLE; 2518 2519 } else { 2520 /* Let the hw retry silently on the PTE */ 2521 value = 0; 2522 } 2523 2524 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2525 if (r) { 2526 pr_debug("failed %d to reserve fence slot\n", r); 2527 goto error_unlock; 2528 } 2529 2530 r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr, 2531 addr, flags, value, 0, NULL, NULL, NULL); 2532 if (r) 2533 goto error_unlock; 2534 2535 r = amdgpu_vm_update_pdes(adev, vm, true); 2536 2537 error_unlock: 2538 amdgpu_bo_unreserve(root); 2539 if (r < 0) 2540 DRM_ERROR("Can't handle page fault (%d)\n", r); 2541 2542 error_unref: 2543 amdgpu_bo_unref(&root); 2544 2545 return false; 2546 } 2547 2548 #if defined(CONFIG_DEBUG_FS) 2549 /** 2550 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2551 * 2552 * @vm: Requested VM for printing BO info 2553 * @m: debugfs file 2554 * 2555 * Print BO information in debugfs file for the VM 2556 */ 2557 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2558 { 2559 struct amdgpu_bo_va *bo_va, *tmp; 2560 u64 total_idle = 0; 2561 u64 total_evicted = 0; 2562 u64 total_relocated = 0; 2563 u64 total_moved = 0; 2564 u64 total_invalidated = 0; 2565 u64 total_done = 0; 2566 unsigned int total_idle_objs = 0; 2567 unsigned int total_evicted_objs = 0; 2568 unsigned int total_relocated_objs = 0; 2569 unsigned int total_moved_objs = 0; 2570 unsigned int total_invalidated_objs = 0; 2571 unsigned int total_done_objs = 0; 2572 unsigned int id = 0; 2573 2574 spin_lock(&vm->status_lock); 2575 seq_puts(m, "\tIdle BOs:\n"); 2576 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2577 if (!bo_va->base.bo) 2578 continue; 2579 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2580 } 2581 total_idle_objs = id; 2582 id = 0; 2583 2584 seq_puts(m, "\tEvicted BOs:\n"); 2585 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2586 if (!bo_va->base.bo) 2587 continue; 2588 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2589 } 2590 total_evicted_objs = id; 2591 id = 0; 2592 2593 seq_puts(m, "\tRelocated BOs:\n"); 2594 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2595 if (!bo_va->base.bo) 2596 continue; 2597 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2598 } 2599 total_relocated_objs = id; 2600 id = 0; 2601 2602 seq_puts(m, "\tMoved BOs:\n"); 2603 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2604 if (!bo_va->base.bo) 2605 continue; 2606 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2607 } 2608 total_moved_objs = id; 2609 id = 0; 2610 2611 seq_puts(m, "\tInvalidated BOs:\n"); 2612 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2613 if (!bo_va->base.bo) 2614 continue; 2615 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2616 } 2617 total_invalidated_objs = id; 2618 id = 0; 2619 2620 seq_puts(m, "\tDone BOs:\n"); 2621 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2622 if (!bo_va->base.bo) 2623 continue; 2624 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2625 } 2626 spin_unlock(&vm->status_lock); 2627 total_done_objs = id; 2628 2629 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2630 total_idle_objs); 2631 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2632 total_evicted_objs); 2633 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2634 total_relocated_objs); 2635 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2636 total_moved_objs); 2637 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2638 total_invalidated_objs); 2639 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2640 total_done_objs); 2641 } 2642 #endif 2643