1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 379 380 vm->bulk_moveable = false; 381 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 382 amdgpu_vm_bo_relocated(base); 383 else 384 amdgpu_vm_bo_idle(base); 385 386 if (bo->preferred_domains & 387 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 388 return; 389 390 /* 391 * we checked all the prerequisites, but it looks like this per vm bo 392 * is currently evicted. add the bo to the evicted list to make sure it 393 * is validated on next vm use to avoid fault. 394 * */ 395 amdgpu_vm_bo_evicted(base); 396 } 397 398 /** 399 * amdgpu_vm_pt_parent - get the parent page directory 400 * 401 * @pt: child page table 402 * 403 * Helper to get the parent entry for the child page table. NULL if we are at 404 * the root page directory. 405 */ 406 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 407 { 408 struct amdgpu_bo *parent = pt->bo->parent; 409 410 if (!parent) 411 return NULL; 412 413 return parent->vm_bo; 414 } 415 416 /* 417 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 418 */ 419 struct amdgpu_vm_pt_cursor { 420 uint64_t pfn; 421 struct amdgpu_vm_bo_base *parent; 422 struct amdgpu_vm_bo_base *entry; 423 unsigned level; 424 }; 425 426 /** 427 * amdgpu_vm_pt_start - start PD/PT walk 428 * 429 * @adev: amdgpu_device pointer 430 * @vm: amdgpu_vm structure 431 * @start: start address of the walk 432 * @cursor: state to initialize 433 * 434 * Initialize a amdgpu_vm_pt_cursor to start a walk. 435 */ 436 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 437 struct amdgpu_vm *vm, uint64_t start, 438 struct amdgpu_vm_pt_cursor *cursor) 439 { 440 cursor->pfn = start; 441 cursor->parent = NULL; 442 cursor->entry = &vm->root; 443 cursor->level = adev->vm_manager.root_level; 444 } 445 446 /** 447 * amdgpu_vm_pt_descendant - go to child node 448 * 449 * @adev: amdgpu_device pointer 450 * @cursor: current state 451 * 452 * Walk to the child node of the current node. 453 * Returns: 454 * True if the walk was possible, false otherwise. 455 */ 456 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 457 struct amdgpu_vm_pt_cursor *cursor) 458 { 459 unsigned mask, shift, idx; 460 461 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 462 !cursor->entry->bo) 463 return false; 464 465 mask = amdgpu_vm_entries_mask(adev, cursor->level); 466 shift = amdgpu_vm_level_shift(adev, cursor->level); 467 468 ++cursor->level; 469 idx = (cursor->pfn >> shift) & mask; 470 cursor->parent = cursor->entry; 471 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 472 return true; 473 } 474 475 /** 476 * amdgpu_vm_pt_sibling - go to sibling node 477 * 478 * @adev: amdgpu_device pointer 479 * @cursor: current state 480 * 481 * Walk to the sibling node of the current node. 482 * Returns: 483 * True if the walk was possible, false otherwise. 484 */ 485 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 486 struct amdgpu_vm_pt_cursor *cursor) 487 { 488 unsigned shift, num_entries; 489 490 /* Root doesn't have a sibling */ 491 if (!cursor->parent) 492 return false; 493 494 /* Go to our parents and see if we got a sibling */ 495 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 496 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 497 498 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 499 return false; 500 501 cursor->pfn += 1ULL << shift; 502 cursor->pfn &= ~((1ULL << shift) - 1); 503 ++cursor->entry; 504 return true; 505 } 506 507 /** 508 * amdgpu_vm_pt_ancestor - go to parent node 509 * 510 * @cursor: current state 511 * 512 * Walk to the parent node of the current node. 513 * Returns: 514 * True if the walk was possible, false otherwise. 515 */ 516 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 517 { 518 if (!cursor->parent) 519 return false; 520 521 --cursor->level; 522 cursor->entry = cursor->parent; 523 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 524 return true; 525 } 526 527 /** 528 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 529 * 530 * @adev: amdgpu_device pointer 531 * @cursor: current state 532 * 533 * Walk the PD/PT tree to the next node. 534 */ 535 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 536 struct amdgpu_vm_pt_cursor *cursor) 537 { 538 /* First try a newborn child */ 539 if (amdgpu_vm_pt_descendant(adev, cursor)) 540 return; 541 542 /* If that didn't worked try to find a sibling */ 543 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 544 /* No sibling, go to our parents and grandparents */ 545 if (!amdgpu_vm_pt_ancestor(cursor)) { 546 cursor->pfn = ~0ll; 547 return; 548 } 549 } 550 } 551 552 /** 553 * amdgpu_vm_pt_first_dfs - start a deep first search 554 * 555 * @adev: amdgpu_device structure 556 * @vm: amdgpu_vm structure 557 * @start: optional cursor to start with 558 * @cursor: state to initialize 559 * 560 * Starts a deep first traversal of the PD/PT tree. 561 */ 562 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 563 struct amdgpu_vm *vm, 564 struct amdgpu_vm_pt_cursor *start, 565 struct amdgpu_vm_pt_cursor *cursor) 566 { 567 if (start) 568 *cursor = *start; 569 else 570 amdgpu_vm_pt_start(adev, vm, 0, cursor); 571 while (amdgpu_vm_pt_descendant(adev, cursor)); 572 } 573 574 /** 575 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 576 * 577 * @start: starting point for the search 578 * @entry: current entry 579 * 580 * Returns: 581 * True when the search should continue, false otherwise. 582 */ 583 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 584 struct amdgpu_vm_bo_base *entry) 585 { 586 return entry && (!start || entry != start->entry); 587 } 588 589 /** 590 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 591 * 592 * @adev: amdgpu_device structure 593 * @cursor: current state 594 * 595 * Move the cursor to the next node in a deep first search. 596 */ 597 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 598 struct amdgpu_vm_pt_cursor *cursor) 599 { 600 if (!cursor->entry) 601 return; 602 603 if (!cursor->parent) 604 cursor->entry = NULL; 605 else if (amdgpu_vm_pt_sibling(adev, cursor)) 606 while (amdgpu_vm_pt_descendant(adev, cursor)); 607 else 608 amdgpu_vm_pt_ancestor(cursor); 609 } 610 611 /* 612 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 613 */ 614 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 615 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 617 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 618 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 619 620 /** 621 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 622 * 623 * @vm: vm providing the BOs 624 * @validated: head of validation list 625 * @entry: entry to add 626 * 627 * Add the page directory to the list of BOs to 628 * validate for command submission. 629 */ 630 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 631 struct list_head *validated, 632 struct amdgpu_bo_list_entry *entry) 633 { 634 entry->priority = 0; 635 entry->tv.bo = &vm->root.bo->tbo; 636 /* Two for VM updates, one for TTM and one for the CS job */ 637 entry->tv.num_shared = 4; 638 entry->user_pages = NULL; 639 list_add(&entry->tv.head, validated); 640 } 641 642 /** 643 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 644 * 645 * @bo: BO which was removed from the LRU 646 * 647 * Make sure the bulk_moveable flag is updated when a BO is removed from the 648 * LRU. 649 */ 650 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 651 { 652 struct amdgpu_bo *abo; 653 struct amdgpu_vm_bo_base *bo_base; 654 655 if (!amdgpu_bo_is_amdgpu_bo(bo)) 656 return; 657 658 if (bo->pin_count) 659 return; 660 661 abo = ttm_to_amdgpu_bo(bo); 662 if (!abo->parent) 663 return; 664 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 665 struct amdgpu_vm *vm = bo_base->vm; 666 667 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 668 vm->bulk_moveable = false; 669 } 670 671 } 672 /** 673 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 674 * 675 * @adev: amdgpu device pointer 676 * @vm: vm providing the BOs 677 * 678 * Move all BOs to the end of LRU and remember their positions to put them 679 * together. 680 */ 681 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 682 struct amdgpu_vm *vm) 683 { 684 struct amdgpu_vm_bo_base *bo_base; 685 686 if (vm->bulk_moveable) { 687 spin_lock(&adev->mman.bdev.lru_lock); 688 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 689 spin_unlock(&adev->mman.bdev.lru_lock); 690 return; 691 } 692 693 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 694 695 spin_lock(&adev->mman.bdev.lru_lock); 696 list_for_each_entry(bo_base, &vm->idle, vm_status) { 697 struct amdgpu_bo *bo = bo_base->bo; 698 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 699 700 if (!bo->parent) 701 continue; 702 703 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 704 &vm->lru_bulk_move); 705 if (shadow) 706 ttm_bo_move_to_lru_tail(&shadow->tbo, 707 shadow->tbo.resource, 708 &vm->lru_bulk_move); 709 } 710 spin_unlock(&adev->mman.bdev.lru_lock); 711 712 vm->bulk_moveable = true; 713 } 714 715 /** 716 * amdgpu_vm_validate_pt_bos - validate the page table BOs 717 * 718 * @adev: amdgpu device pointer 719 * @vm: vm providing the BOs 720 * @validate: callback to do the validation 721 * @param: parameter for the validation callback 722 * 723 * Validate the page table BOs on command submission if neccessary. 724 * 725 * Returns: 726 * Validation result. 727 */ 728 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 729 int (*validate)(void *p, struct amdgpu_bo *bo), 730 void *param) 731 { 732 struct amdgpu_vm_bo_base *bo_base, *tmp; 733 int r; 734 735 vm->bulk_moveable &= list_empty(&vm->evicted); 736 737 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 738 struct amdgpu_bo *bo = bo_base->bo; 739 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 740 741 r = validate(param, bo); 742 if (r) 743 return r; 744 if (shadow) { 745 r = validate(param, shadow); 746 if (r) 747 return r; 748 } 749 750 if (bo->tbo.type != ttm_bo_type_kernel) { 751 amdgpu_vm_bo_moved(bo_base); 752 } else { 753 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 754 amdgpu_vm_bo_relocated(bo_base); 755 } 756 } 757 758 amdgpu_vm_eviction_lock(vm); 759 vm->evicting = false; 760 amdgpu_vm_eviction_unlock(vm); 761 762 return 0; 763 } 764 765 /** 766 * amdgpu_vm_ready - check VM is ready for updates 767 * 768 * @vm: VM to check 769 * 770 * Check if all VM PDs/PTs are ready for updates 771 * 772 * Returns: 773 * True if eviction list is empty. 774 */ 775 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 776 { 777 return list_empty(&vm->evicted); 778 } 779 780 /** 781 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 782 * 783 * @adev: amdgpu_device pointer 784 * @vm: VM to clear BO from 785 * @vmbo: BO to clear 786 * @immediate: use an immediate update 787 * 788 * Root PD needs to be reserved when calling this. 789 * 790 * Returns: 791 * 0 on success, errno otherwise. 792 */ 793 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 794 struct amdgpu_vm *vm, 795 struct amdgpu_bo_vm *vmbo, 796 bool immediate) 797 { 798 struct ttm_operation_ctx ctx = { true, false }; 799 unsigned level = adev->vm_manager.root_level; 800 struct amdgpu_vm_update_params params; 801 struct amdgpu_bo *ancestor = &vmbo->bo; 802 struct amdgpu_bo *bo = &vmbo->bo; 803 unsigned entries, ats_entries; 804 uint64_t addr; 805 int r, idx; 806 807 /* Figure out our place in the hierarchy */ 808 if (ancestor->parent) { 809 ++level; 810 while (ancestor->parent->parent) { 811 ++level; 812 ancestor = ancestor->parent; 813 } 814 } 815 816 entries = amdgpu_bo_size(bo) / 8; 817 if (!vm->pte_support_ats) { 818 ats_entries = 0; 819 820 } else if (!bo->parent) { 821 ats_entries = amdgpu_vm_num_ats_entries(adev); 822 ats_entries = min(ats_entries, entries); 823 entries -= ats_entries; 824 825 } else { 826 struct amdgpu_vm_bo_base *pt; 827 828 pt = ancestor->vm_bo; 829 ats_entries = amdgpu_vm_num_ats_entries(adev); 830 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 831 ats_entries = 0; 832 } else { 833 ats_entries = entries; 834 entries = 0; 835 } 836 } 837 838 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 839 if (r) 840 return r; 841 842 if (vmbo->shadow) { 843 struct amdgpu_bo *shadow = vmbo->shadow; 844 845 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 846 if (r) 847 return r; 848 } 849 850 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 851 return -ENODEV; 852 853 r = vm->update_funcs->map_table(vmbo); 854 if (r) 855 goto exit; 856 857 memset(¶ms, 0, sizeof(params)); 858 params.adev = adev; 859 params.vm = vm; 860 params.immediate = immediate; 861 862 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 863 if (r) 864 goto exit; 865 866 addr = 0; 867 if (ats_entries) { 868 uint64_t value = 0, flags; 869 870 flags = AMDGPU_PTE_DEFAULT_ATC; 871 if (level != AMDGPU_VM_PTB) { 872 /* Handle leaf PDEs as PTEs */ 873 flags |= AMDGPU_PDE_PTE; 874 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 875 } 876 877 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 878 value, flags); 879 if (r) 880 goto exit; 881 882 addr += ats_entries * 8; 883 } 884 885 if (entries) { 886 uint64_t value = 0, flags = 0; 887 888 if (adev->asic_type >= CHIP_VEGA10) { 889 if (level != AMDGPU_VM_PTB) { 890 /* Handle leaf PDEs as PTEs */ 891 flags |= AMDGPU_PDE_PTE; 892 amdgpu_gmc_get_vm_pde(adev, level, 893 &value, &flags); 894 } else { 895 /* Workaround for fault priority problem on GMC9 */ 896 flags = AMDGPU_PTE_EXECUTABLE; 897 } 898 } 899 900 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 901 value, flags); 902 if (r) 903 goto exit; 904 } 905 906 r = vm->update_funcs->commit(¶ms, NULL); 907 exit: 908 drm_dev_exit(idx); 909 return r; 910 } 911 912 /** 913 * amdgpu_vm_pt_create - create bo for PD/PT 914 * 915 * @adev: amdgpu_device pointer 916 * @vm: requesting vm 917 * @level: the page table level 918 * @immediate: use a immediate update 919 * @vmbo: pointer to the buffer object pointer 920 */ 921 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 922 struct amdgpu_vm *vm, 923 int level, bool immediate, 924 struct amdgpu_bo_vm **vmbo) 925 { 926 struct amdgpu_bo_param bp; 927 struct amdgpu_bo *bo; 928 struct dma_resv *resv; 929 unsigned int num_entries; 930 int r; 931 932 memset(&bp, 0, sizeof(bp)); 933 934 bp.size = amdgpu_vm_bo_size(adev, level); 935 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 936 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 937 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 938 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 939 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 940 941 if (level < AMDGPU_VM_PTB) 942 num_entries = amdgpu_vm_num_entries(adev, level); 943 else 944 num_entries = 0; 945 946 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 947 948 if (vm->use_cpu_for_update) 949 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 950 951 bp.type = ttm_bo_type_kernel; 952 bp.no_wait_gpu = immediate; 953 if (vm->root.bo) 954 bp.resv = vm->root.bo->tbo.base.resv; 955 956 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 957 if (r) 958 return r; 959 960 bo = &(*vmbo)->bo; 961 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 962 (*vmbo)->shadow = NULL; 963 return 0; 964 } 965 966 if (!bp.resv) 967 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 968 NULL)); 969 resv = bp.resv; 970 memset(&bp, 0, sizeof(bp)); 971 bp.size = amdgpu_vm_bo_size(adev, level); 972 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 973 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 974 bp.type = ttm_bo_type_kernel; 975 bp.resv = bo->tbo.base.resv; 976 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 977 978 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 979 980 if (!resv) 981 dma_resv_unlock(bo->tbo.base.resv); 982 983 if (r) { 984 amdgpu_bo_unref(&bo); 985 return r; 986 } 987 988 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 989 amdgpu_bo_add_to_shadow_list(*vmbo); 990 991 return 0; 992 } 993 994 /** 995 * amdgpu_vm_alloc_pts - Allocate a specific page table 996 * 997 * @adev: amdgpu_device pointer 998 * @vm: VM to allocate page tables for 999 * @cursor: Which page table to allocate 1000 * @immediate: use an immediate update 1001 * 1002 * Make sure a specific page table or directory is allocated. 1003 * 1004 * Returns: 1005 * 1 if page table needed to be allocated, 0 if page table was already 1006 * allocated, negative errno if an error occurred. 1007 */ 1008 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1009 struct amdgpu_vm *vm, 1010 struct amdgpu_vm_pt_cursor *cursor, 1011 bool immediate) 1012 { 1013 struct amdgpu_vm_bo_base *entry = cursor->entry; 1014 struct amdgpu_bo *pt_bo; 1015 struct amdgpu_bo_vm *pt; 1016 int r; 1017 1018 if (entry->bo) 1019 return 0; 1020 1021 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1022 if (r) 1023 return r; 1024 1025 /* Keep a reference to the root directory to avoid 1026 * freeing them up in the wrong order. 1027 */ 1028 pt_bo = &pt->bo; 1029 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1030 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1031 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1032 if (r) 1033 goto error_free_pt; 1034 1035 return 0; 1036 1037 error_free_pt: 1038 amdgpu_bo_unref(&pt->shadow); 1039 amdgpu_bo_unref(&pt_bo); 1040 return r; 1041 } 1042 1043 /** 1044 * amdgpu_vm_free_table - fre one PD/PT 1045 * 1046 * @entry: PDE to free 1047 */ 1048 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1049 { 1050 struct amdgpu_bo *shadow; 1051 1052 if (!entry->bo) 1053 return; 1054 shadow = amdgpu_bo_shadowed(entry->bo); 1055 entry->bo->vm_bo = NULL; 1056 list_del(&entry->vm_status); 1057 amdgpu_bo_unref(&shadow); 1058 amdgpu_bo_unref(&entry->bo); 1059 } 1060 1061 /** 1062 * amdgpu_vm_free_pts - free PD/PT levels 1063 * 1064 * @adev: amdgpu device structure 1065 * @vm: amdgpu vm structure 1066 * @start: optional cursor where to start freeing PDs/PTs 1067 * 1068 * Free the page directory or page table level and all sub levels. 1069 */ 1070 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1071 struct amdgpu_vm *vm, 1072 struct amdgpu_vm_pt_cursor *start) 1073 { 1074 struct amdgpu_vm_pt_cursor cursor; 1075 struct amdgpu_vm_bo_base *entry; 1076 1077 vm->bulk_moveable = false; 1078 1079 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1080 amdgpu_vm_free_table(entry); 1081 1082 if (start) 1083 amdgpu_vm_free_table(start->entry); 1084 } 1085 1086 /** 1087 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1088 * 1089 * @adev: amdgpu_device pointer 1090 */ 1091 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1092 { 1093 const struct amdgpu_ip_block *ip_block; 1094 bool has_compute_vm_bug; 1095 struct amdgpu_ring *ring; 1096 int i; 1097 1098 has_compute_vm_bug = false; 1099 1100 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1101 if (ip_block) { 1102 /* Compute has a VM bug for GFX version < 7. 1103 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1104 if (ip_block->version->major <= 7) 1105 has_compute_vm_bug = true; 1106 else if (ip_block->version->major == 8) 1107 if (adev->gfx.mec_fw_version < 673) 1108 has_compute_vm_bug = true; 1109 } 1110 1111 for (i = 0; i < adev->num_rings; i++) { 1112 ring = adev->rings[i]; 1113 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1114 /* only compute rings */ 1115 ring->has_compute_vm_bug = has_compute_vm_bug; 1116 else 1117 ring->has_compute_vm_bug = false; 1118 } 1119 } 1120 1121 /** 1122 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1123 * 1124 * @ring: ring on which the job will be submitted 1125 * @job: job to submit 1126 * 1127 * Returns: 1128 * True if sync is needed. 1129 */ 1130 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1131 struct amdgpu_job *job) 1132 { 1133 struct amdgpu_device *adev = ring->adev; 1134 unsigned vmhub = ring->funcs->vmhub; 1135 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1136 struct amdgpu_vmid *id; 1137 bool gds_switch_needed; 1138 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1139 1140 if (job->vmid == 0) 1141 return false; 1142 id = &id_mgr->ids[job->vmid]; 1143 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1144 id->gds_base != job->gds_base || 1145 id->gds_size != job->gds_size || 1146 id->gws_base != job->gws_base || 1147 id->gws_size != job->gws_size || 1148 id->oa_base != job->oa_base || 1149 id->oa_size != job->oa_size); 1150 1151 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1152 return true; 1153 1154 return vm_flush_needed || gds_switch_needed; 1155 } 1156 1157 /** 1158 * amdgpu_vm_flush - hardware flush the vm 1159 * 1160 * @ring: ring to use for flush 1161 * @job: related job 1162 * @need_pipe_sync: is pipe sync needed 1163 * 1164 * Emit a VM flush when it is necessary. 1165 * 1166 * Returns: 1167 * 0 on success, errno otherwise. 1168 */ 1169 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1170 bool need_pipe_sync) 1171 { 1172 struct amdgpu_device *adev = ring->adev; 1173 unsigned vmhub = ring->funcs->vmhub; 1174 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1175 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1176 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1177 id->gds_base != job->gds_base || 1178 id->gds_size != job->gds_size || 1179 id->gws_base != job->gws_base || 1180 id->gws_size != job->gws_size || 1181 id->oa_base != job->oa_base || 1182 id->oa_size != job->oa_size); 1183 bool vm_flush_needed = job->vm_needs_flush; 1184 struct dma_fence *fence = NULL; 1185 bool pasid_mapping_needed = false; 1186 unsigned patch_offset = 0; 1187 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1188 int r; 1189 1190 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1191 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1192 1193 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1194 gds_switch_needed = true; 1195 vm_flush_needed = true; 1196 pasid_mapping_needed = true; 1197 } 1198 1199 mutex_lock(&id_mgr->lock); 1200 if (id->pasid != job->pasid || !id->pasid_mapping || 1201 !dma_fence_is_signaled(id->pasid_mapping)) 1202 pasid_mapping_needed = true; 1203 mutex_unlock(&id_mgr->lock); 1204 1205 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1206 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1207 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1208 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1209 ring->funcs->emit_wreg; 1210 1211 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1212 return 0; 1213 1214 if (ring->funcs->init_cond_exec) 1215 patch_offset = amdgpu_ring_init_cond_exec(ring); 1216 1217 if (need_pipe_sync) 1218 amdgpu_ring_emit_pipeline_sync(ring); 1219 1220 if (vm_flush_needed) { 1221 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1222 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1223 } 1224 1225 if (pasid_mapping_needed) 1226 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1227 1228 if (vm_flush_needed || pasid_mapping_needed) { 1229 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1230 if (r) 1231 return r; 1232 } 1233 1234 if (vm_flush_needed) { 1235 mutex_lock(&id_mgr->lock); 1236 dma_fence_put(id->last_flush); 1237 id->last_flush = dma_fence_get(fence); 1238 id->current_gpu_reset_count = 1239 atomic_read(&adev->gpu_reset_counter); 1240 mutex_unlock(&id_mgr->lock); 1241 } 1242 1243 if (pasid_mapping_needed) { 1244 mutex_lock(&id_mgr->lock); 1245 id->pasid = job->pasid; 1246 dma_fence_put(id->pasid_mapping); 1247 id->pasid_mapping = dma_fence_get(fence); 1248 mutex_unlock(&id_mgr->lock); 1249 } 1250 dma_fence_put(fence); 1251 1252 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1253 id->gds_base = job->gds_base; 1254 id->gds_size = job->gds_size; 1255 id->gws_base = job->gws_base; 1256 id->gws_size = job->gws_size; 1257 id->oa_base = job->oa_base; 1258 id->oa_size = job->oa_size; 1259 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1260 job->gds_size, job->gws_base, 1261 job->gws_size, job->oa_base, 1262 job->oa_size); 1263 } 1264 1265 if (ring->funcs->patch_cond_exec) 1266 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1267 1268 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1269 if (ring->funcs->emit_switch_buffer) { 1270 amdgpu_ring_emit_switch_buffer(ring); 1271 amdgpu_ring_emit_switch_buffer(ring); 1272 } 1273 return 0; 1274 } 1275 1276 /** 1277 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1278 * 1279 * @vm: requested vm 1280 * @bo: requested buffer object 1281 * 1282 * Find @bo inside the requested vm. 1283 * Search inside the @bos vm list for the requested vm 1284 * Returns the found bo_va or NULL if none is found 1285 * 1286 * Object has to be reserved! 1287 * 1288 * Returns: 1289 * Found bo_va or NULL. 1290 */ 1291 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1292 struct amdgpu_bo *bo) 1293 { 1294 struct amdgpu_vm_bo_base *base; 1295 1296 for (base = bo->vm_bo; base; base = base->next) { 1297 if (base->vm != vm) 1298 continue; 1299 1300 return container_of(base, struct amdgpu_bo_va, base); 1301 } 1302 return NULL; 1303 } 1304 1305 /** 1306 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1307 * 1308 * @pages_addr: optional DMA address to use for lookup 1309 * @addr: the unmapped addr 1310 * 1311 * Look up the physical address of the page that the pte resolves 1312 * to. 1313 * 1314 * Returns: 1315 * The pointer for the page table entry. 1316 */ 1317 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1318 { 1319 uint64_t result; 1320 1321 /* page table offset */ 1322 result = pages_addr[addr >> PAGE_SHIFT]; 1323 1324 /* in case cpu page size != gpu page size*/ 1325 result |= addr & (~PAGE_MASK); 1326 1327 result &= 0xFFFFFFFFFFFFF000ULL; 1328 1329 return result; 1330 } 1331 1332 /** 1333 * amdgpu_vm_update_pde - update a single level in the hierarchy 1334 * 1335 * @params: parameters for the update 1336 * @vm: requested vm 1337 * @entry: entry to update 1338 * 1339 * Makes sure the requested entry in parent is up to date. 1340 */ 1341 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1342 struct amdgpu_vm *vm, 1343 struct amdgpu_vm_bo_base *entry) 1344 { 1345 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1346 struct amdgpu_bo *bo = parent->bo, *pbo; 1347 uint64_t pde, pt, flags; 1348 unsigned level; 1349 1350 for (level = 0, pbo = bo->parent; pbo; ++level) 1351 pbo = pbo->parent; 1352 1353 level += params->adev->vm_manager.root_level; 1354 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1355 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1356 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1357 1, 0, flags); 1358 } 1359 1360 /** 1361 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1362 * 1363 * @adev: amdgpu_device pointer 1364 * @vm: related vm 1365 * 1366 * Mark all PD level as invalid after an error. 1367 */ 1368 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1369 struct amdgpu_vm *vm) 1370 { 1371 struct amdgpu_vm_pt_cursor cursor; 1372 struct amdgpu_vm_bo_base *entry; 1373 1374 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1375 if (entry->bo && !entry->moved) 1376 amdgpu_vm_bo_relocated(entry); 1377 } 1378 1379 /** 1380 * amdgpu_vm_update_pdes - make sure that all directories are valid 1381 * 1382 * @adev: amdgpu_device pointer 1383 * @vm: requested vm 1384 * @immediate: submit immediately to the paging queue 1385 * 1386 * Makes sure all directories are up to date. 1387 * 1388 * Returns: 1389 * 0 for success, error for failure. 1390 */ 1391 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1392 struct amdgpu_vm *vm, bool immediate) 1393 { 1394 struct amdgpu_vm_update_params params; 1395 int r, idx; 1396 1397 if (list_empty(&vm->relocated)) 1398 return 0; 1399 1400 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1401 return -ENODEV; 1402 1403 memset(¶ms, 0, sizeof(params)); 1404 params.adev = adev; 1405 params.vm = vm; 1406 params.immediate = immediate; 1407 1408 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1409 if (r) 1410 goto exit; 1411 1412 while (!list_empty(&vm->relocated)) { 1413 struct amdgpu_vm_bo_base *entry; 1414 1415 entry = list_first_entry(&vm->relocated, 1416 struct amdgpu_vm_bo_base, 1417 vm_status); 1418 amdgpu_vm_bo_idle(entry); 1419 1420 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1421 if (r) 1422 goto error; 1423 } 1424 1425 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1426 if (r) 1427 goto error; 1428 drm_dev_exit(idx); 1429 return 0; 1430 1431 error: 1432 amdgpu_vm_invalidate_pds(adev, vm); 1433 exit: 1434 drm_dev_exit(idx); 1435 return r; 1436 } 1437 1438 /* 1439 * amdgpu_vm_update_flags - figure out flags for PTE updates 1440 * 1441 * Make sure to set the right flags for the PTEs at the desired level. 1442 */ 1443 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1444 struct amdgpu_bo_vm *pt, unsigned int level, 1445 uint64_t pe, uint64_t addr, 1446 unsigned int count, uint32_t incr, 1447 uint64_t flags) 1448 1449 { 1450 if (level != AMDGPU_VM_PTB) { 1451 flags |= AMDGPU_PDE_PTE; 1452 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1453 1454 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1455 !(flags & AMDGPU_PTE_VALID) && 1456 !(flags & AMDGPU_PTE_PRT)) { 1457 1458 /* Workaround for fault priority problem on GMC9 */ 1459 flags |= AMDGPU_PTE_EXECUTABLE; 1460 } 1461 1462 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1463 flags); 1464 } 1465 1466 /** 1467 * amdgpu_vm_fragment - get fragment for PTEs 1468 * 1469 * @params: see amdgpu_vm_update_params definition 1470 * @start: first PTE to handle 1471 * @end: last PTE to handle 1472 * @flags: hw mapping flags 1473 * @frag: resulting fragment size 1474 * @frag_end: end of this fragment 1475 * 1476 * Returns the first possible fragment for the start and end address. 1477 */ 1478 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1479 uint64_t start, uint64_t end, uint64_t flags, 1480 unsigned int *frag, uint64_t *frag_end) 1481 { 1482 /** 1483 * The MC L1 TLB supports variable sized pages, based on a fragment 1484 * field in the PTE. When this field is set to a non-zero value, page 1485 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1486 * flags are considered valid for all PTEs within the fragment range 1487 * and corresponding mappings are assumed to be physically contiguous. 1488 * 1489 * The L1 TLB can store a single PTE for the whole fragment, 1490 * significantly increasing the space available for translation 1491 * caching. This leads to large improvements in throughput when the 1492 * TLB is under pressure. 1493 * 1494 * The L2 TLB distributes small and large fragments into two 1495 * asymmetric partitions. The large fragment cache is significantly 1496 * larger. Thus, we try to use large fragments wherever possible. 1497 * Userspace can support this by aligning virtual base address and 1498 * allocation size to the fragment size. 1499 * 1500 * Starting with Vega10 the fragment size only controls the L1. The L2 1501 * is now directly feed with small/huge/giant pages from the walker. 1502 */ 1503 unsigned max_frag; 1504 1505 if (params->adev->asic_type < CHIP_VEGA10) 1506 max_frag = params->adev->vm_manager.fragment_size; 1507 else 1508 max_frag = 31; 1509 1510 /* system pages are non continuously */ 1511 if (params->pages_addr) { 1512 *frag = 0; 1513 *frag_end = end; 1514 return; 1515 } 1516 1517 /* This intentionally wraps around if no bit is set */ 1518 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1519 if (*frag >= max_frag) { 1520 *frag = max_frag; 1521 *frag_end = end & ~((1ULL << max_frag) - 1); 1522 } else { 1523 *frag_end = start + (1 << *frag); 1524 } 1525 } 1526 1527 /** 1528 * amdgpu_vm_update_ptes - make sure that page tables are valid 1529 * 1530 * @params: see amdgpu_vm_update_params definition 1531 * @start: start of GPU address range 1532 * @end: end of GPU address range 1533 * @dst: destination address to map to, the next dst inside the function 1534 * @flags: mapping flags 1535 * 1536 * Update the page tables in the range @start - @end. 1537 * 1538 * Returns: 1539 * 0 for success, -EINVAL for failure. 1540 */ 1541 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1542 uint64_t start, uint64_t end, 1543 uint64_t dst, uint64_t flags) 1544 { 1545 struct amdgpu_device *adev = params->adev; 1546 struct amdgpu_vm_pt_cursor cursor; 1547 uint64_t frag_start = start, frag_end; 1548 unsigned int frag; 1549 int r; 1550 1551 /* figure out the initial fragment */ 1552 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1553 1554 /* walk over the address space and update the PTs */ 1555 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1556 while (cursor.pfn < end) { 1557 unsigned shift, parent_shift, mask; 1558 uint64_t incr, entry_end, pe_start; 1559 struct amdgpu_bo *pt; 1560 1561 if (!params->unlocked) { 1562 /* make sure that the page tables covering the 1563 * address range are actually allocated 1564 */ 1565 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1566 &cursor, params->immediate); 1567 if (r) 1568 return r; 1569 } 1570 1571 shift = amdgpu_vm_level_shift(adev, cursor.level); 1572 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1573 if (params->unlocked) { 1574 /* Unlocked updates are only allowed on the leaves */ 1575 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1576 continue; 1577 } else if (adev->asic_type < CHIP_VEGA10 && 1578 (flags & AMDGPU_PTE_VALID)) { 1579 /* No huge page support before GMC v9 */ 1580 if (cursor.level != AMDGPU_VM_PTB) { 1581 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1582 return -ENOENT; 1583 continue; 1584 } 1585 } else if (frag < shift) { 1586 /* We can't use this level when the fragment size is 1587 * smaller than the address shift. Go to the next 1588 * child entry and try again. 1589 */ 1590 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1591 continue; 1592 } else if (frag >= parent_shift) { 1593 /* If the fragment size is even larger than the parent 1594 * shift we should go up one level and check it again. 1595 */ 1596 if (!amdgpu_vm_pt_ancestor(&cursor)) 1597 return -EINVAL; 1598 continue; 1599 } 1600 1601 pt = cursor.entry->bo; 1602 if (!pt) { 1603 /* We need all PDs and PTs for mapping something, */ 1604 if (flags & AMDGPU_PTE_VALID) 1605 return -ENOENT; 1606 1607 /* but unmapping something can happen at a higher 1608 * level. 1609 */ 1610 if (!amdgpu_vm_pt_ancestor(&cursor)) 1611 return -EINVAL; 1612 1613 pt = cursor.entry->bo; 1614 shift = parent_shift; 1615 frag_end = max(frag_end, ALIGN(frag_start + 1, 1616 1ULL << shift)); 1617 } 1618 1619 /* Looks good so far, calculate parameters for the update */ 1620 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1621 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1622 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1623 entry_end = ((uint64_t)mask + 1) << shift; 1624 entry_end += cursor.pfn & ~(entry_end - 1); 1625 entry_end = min(entry_end, end); 1626 1627 do { 1628 struct amdgpu_vm *vm = params->vm; 1629 uint64_t upd_end = min(entry_end, frag_end); 1630 unsigned nptes = (upd_end - frag_start) >> shift; 1631 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1632 1633 /* This can happen when we set higher level PDs to 1634 * silent to stop fault floods. 1635 */ 1636 nptes = max(nptes, 1u); 1637 1638 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1639 min(nptes, 32u), dst, incr, upd_flags, 1640 vm->task_info.pid, 1641 vm->immediate.fence_context); 1642 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1643 cursor.level, pe_start, dst, 1644 nptes, incr, upd_flags); 1645 1646 pe_start += nptes * 8; 1647 dst += nptes * incr; 1648 1649 frag_start = upd_end; 1650 if (frag_start >= frag_end) { 1651 /* figure out the next fragment */ 1652 amdgpu_vm_fragment(params, frag_start, end, 1653 flags, &frag, &frag_end); 1654 if (frag < shift) 1655 break; 1656 } 1657 } while (frag_start < entry_end); 1658 1659 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1660 /* Free all child entries. 1661 * Update the tables with the flags and addresses and free up subsequent 1662 * tables in the case of huge pages or freed up areas. 1663 * This is the maximum you can free, because all other page tables are not 1664 * completely covered by the range and so potentially still in use. 1665 */ 1666 while (cursor.pfn < frag_start) { 1667 /* Make sure previous mapping is freed */ 1668 if (cursor.entry->bo) { 1669 params->table_freed = true; 1670 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1671 } 1672 amdgpu_vm_pt_next(adev, &cursor); 1673 } 1674 1675 } else if (frag >= shift) { 1676 /* or just move on to the next on the same level. */ 1677 amdgpu_vm_pt_next(adev, &cursor); 1678 } 1679 } 1680 1681 return 0; 1682 } 1683 1684 /** 1685 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1686 * 1687 * @adev: amdgpu_device pointer of the VM 1688 * @bo_adev: amdgpu_device pointer of the mapped BO 1689 * @vm: requested vm 1690 * @immediate: immediate submission in a page fault 1691 * @unlocked: unlocked invalidation during MM callback 1692 * @resv: fences we need to sync to 1693 * @start: start of mapped range 1694 * @last: last mapped entry 1695 * @flags: flags for the entries 1696 * @offset: offset into nodes and pages_addr 1697 * @res: ttm_resource to map 1698 * @pages_addr: DMA addresses to use for mapping 1699 * @fence: optional resulting fence 1700 * @table_freed: return true if page table is freed 1701 * 1702 * Fill in the page table entries between @start and @last. 1703 * 1704 * Returns: 1705 * 0 for success, -EINVAL for failure. 1706 */ 1707 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1708 struct amdgpu_device *bo_adev, 1709 struct amdgpu_vm *vm, bool immediate, 1710 bool unlocked, struct dma_resv *resv, 1711 uint64_t start, uint64_t last, 1712 uint64_t flags, uint64_t offset, 1713 struct ttm_resource *res, 1714 dma_addr_t *pages_addr, 1715 struct dma_fence **fence, 1716 bool *table_freed) 1717 { 1718 struct amdgpu_vm_update_params params; 1719 struct amdgpu_res_cursor cursor; 1720 enum amdgpu_sync_mode sync_mode; 1721 int r, idx; 1722 1723 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1724 return -ENODEV; 1725 1726 memset(¶ms, 0, sizeof(params)); 1727 params.adev = adev; 1728 params.vm = vm; 1729 params.immediate = immediate; 1730 params.pages_addr = pages_addr; 1731 params.unlocked = unlocked; 1732 1733 /* Implicitly sync to command submissions in the same VM before 1734 * unmapping. Sync to moving fences before mapping. 1735 */ 1736 if (!(flags & AMDGPU_PTE_VALID)) 1737 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1738 else 1739 sync_mode = AMDGPU_SYNC_EXPLICIT; 1740 1741 amdgpu_vm_eviction_lock(vm); 1742 if (vm->evicting) { 1743 r = -EBUSY; 1744 goto error_unlock; 1745 } 1746 1747 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1748 struct dma_fence *tmp = dma_fence_get_stub(); 1749 1750 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1751 swap(vm->last_unlocked, tmp); 1752 dma_fence_put(tmp); 1753 } 1754 1755 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1756 if (r) 1757 goto error_unlock; 1758 1759 amdgpu_res_first(pages_addr ? NULL : res, offset, 1760 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1761 while (cursor.remaining) { 1762 uint64_t tmp, num_entries, addr; 1763 1764 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1765 if (pages_addr) { 1766 bool contiguous = true; 1767 1768 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1769 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1770 uint64_t count; 1771 1772 contiguous = pages_addr[pfn + 1] == 1773 pages_addr[pfn] + PAGE_SIZE; 1774 1775 tmp = num_entries / 1776 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1777 for (count = 2; count < tmp; ++count) { 1778 uint64_t idx = pfn + count; 1779 1780 if (contiguous != (pages_addr[idx] == 1781 pages_addr[idx - 1] + PAGE_SIZE)) 1782 break; 1783 } 1784 num_entries = count * 1785 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1786 } 1787 1788 if (!contiguous) { 1789 addr = cursor.start; 1790 params.pages_addr = pages_addr; 1791 } else { 1792 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1793 params.pages_addr = NULL; 1794 } 1795 1796 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1797 addr = bo_adev->vm_manager.vram_base_offset + 1798 cursor.start; 1799 } else { 1800 addr = 0; 1801 } 1802 1803 tmp = start + num_entries; 1804 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1805 if (r) 1806 goto error_unlock; 1807 1808 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1809 start = tmp; 1810 } 1811 1812 r = vm->update_funcs->commit(¶ms, fence); 1813 1814 if (table_freed) 1815 *table_freed = *table_freed || params.table_freed; 1816 1817 error_unlock: 1818 amdgpu_vm_eviction_unlock(vm); 1819 drm_dev_exit(idx); 1820 return r; 1821 } 1822 1823 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1824 uint64_t *gtt_mem, uint64_t *cpu_mem) 1825 { 1826 struct amdgpu_bo_va *bo_va, *tmp; 1827 1828 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1829 if (!bo_va->base.bo) 1830 continue; 1831 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1832 gtt_mem, cpu_mem); 1833 } 1834 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1835 if (!bo_va->base.bo) 1836 continue; 1837 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1838 gtt_mem, cpu_mem); 1839 } 1840 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1841 if (!bo_va->base.bo) 1842 continue; 1843 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1844 gtt_mem, cpu_mem); 1845 } 1846 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1847 if (!bo_va->base.bo) 1848 continue; 1849 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1850 gtt_mem, cpu_mem); 1851 } 1852 spin_lock(&vm->invalidated_lock); 1853 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1854 if (!bo_va->base.bo) 1855 continue; 1856 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1857 gtt_mem, cpu_mem); 1858 } 1859 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1860 if (!bo_va->base.bo) 1861 continue; 1862 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1863 gtt_mem, cpu_mem); 1864 } 1865 spin_unlock(&vm->invalidated_lock); 1866 } 1867 /** 1868 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1869 * 1870 * @adev: amdgpu_device pointer 1871 * @bo_va: requested BO and VM object 1872 * @clear: if true clear the entries 1873 * @table_freed: return true if page table is freed 1874 * 1875 * Fill in the page table entries for @bo_va. 1876 * 1877 * Returns: 1878 * 0 for success, -EINVAL for failure. 1879 */ 1880 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1881 bool clear, bool *table_freed) 1882 { 1883 struct amdgpu_bo *bo = bo_va->base.bo; 1884 struct amdgpu_vm *vm = bo_va->base.vm; 1885 struct amdgpu_bo_va_mapping *mapping; 1886 dma_addr_t *pages_addr = NULL; 1887 struct ttm_resource *mem; 1888 struct dma_fence **last_update; 1889 struct dma_resv *resv; 1890 uint64_t flags; 1891 struct amdgpu_device *bo_adev = adev; 1892 int r; 1893 1894 if (clear || !bo) { 1895 mem = NULL; 1896 resv = vm->root.bo->tbo.base.resv; 1897 } else { 1898 struct drm_gem_object *obj = &bo->tbo.base; 1899 1900 resv = bo->tbo.base.resv; 1901 if (obj->import_attach && bo_va->is_xgmi) { 1902 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1903 struct drm_gem_object *gobj = dma_buf->priv; 1904 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1905 1906 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1907 bo = gem_to_amdgpu_bo(gobj); 1908 } 1909 mem = bo->tbo.resource; 1910 if (mem->mem_type == TTM_PL_TT || 1911 mem->mem_type == AMDGPU_PL_PREEMPT) 1912 pages_addr = bo->tbo.ttm->dma_address; 1913 } 1914 1915 if (bo) { 1916 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1917 1918 if (amdgpu_bo_encrypted(bo)) 1919 flags |= AMDGPU_PTE_TMZ; 1920 1921 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1922 } else { 1923 flags = 0x0; 1924 } 1925 1926 if (clear || (bo && bo->tbo.base.resv == 1927 vm->root.bo->tbo.base.resv)) 1928 last_update = &vm->last_update; 1929 else 1930 last_update = &bo_va->last_pt_update; 1931 1932 if (!clear && bo_va->base.moved) { 1933 bo_va->base.moved = false; 1934 list_splice_init(&bo_va->valids, &bo_va->invalids); 1935 1936 } else if (bo_va->cleared != clear) { 1937 list_splice_init(&bo_va->valids, &bo_va->invalids); 1938 } 1939 1940 list_for_each_entry(mapping, &bo_va->invalids, list) { 1941 uint64_t update_flags = flags; 1942 1943 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1944 * but in case of something, we filter the flags in first place 1945 */ 1946 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1947 update_flags &= ~AMDGPU_PTE_READABLE; 1948 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1949 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1950 1951 /* Apply ASIC specific mapping flags */ 1952 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1953 1954 trace_amdgpu_vm_bo_update(mapping); 1955 1956 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1957 resv, mapping->start, 1958 mapping->last, update_flags, 1959 mapping->offset, mem, 1960 pages_addr, last_update, table_freed); 1961 if (r) 1962 return r; 1963 } 1964 1965 /* If the BO is not in its preferred location add it back to 1966 * the evicted list so that it gets validated again on the 1967 * next command submission. 1968 */ 1969 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1970 uint32_t mem_type = bo->tbo.resource->mem_type; 1971 1972 if (!(bo->preferred_domains & 1973 amdgpu_mem_type_to_domain(mem_type))) 1974 amdgpu_vm_bo_evicted(&bo_va->base); 1975 else 1976 amdgpu_vm_bo_idle(&bo_va->base); 1977 } else { 1978 amdgpu_vm_bo_done(&bo_va->base); 1979 } 1980 1981 list_splice_init(&bo_va->invalids, &bo_va->valids); 1982 bo_va->cleared = clear; 1983 1984 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1985 list_for_each_entry(mapping, &bo_va->valids, list) 1986 trace_amdgpu_vm_bo_mapping(mapping); 1987 } 1988 1989 return 0; 1990 } 1991 1992 /** 1993 * amdgpu_vm_update_prt_state - update the global PRT state 1994 * 1995 * @adev: amdgpu_device pointer 1996 */ 1997 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1998 { 1999 unsigned long flags; 2000 bool enable; 2001 2002 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2003 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2004 adev->gmc.gmc_funcs->set_prt(adev, enable); 2005 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2006 } 2007 2008 /** 2009 * amdgpu_vm_prt_get - add a PRT user 2010 * 2011 * @adev: amdgpu_device pointer 2012 */ 2013 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2014 { 2015 if (!adev->gmc.gmc_funcs->set_prt) 2016 return; 2017 2018 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2019 amdgpu_vm_update_prt_state(adev); 2020 } 2021 2022 /** 2023 * amdgpu_vm_prt_put - drop a PRT user 2024 * 2025 * @adev: amdgpu_device pointer 2026 */ 2027 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2028 { 2029 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2030 amdgpu_vm_update_prt_state(adev); 2031 } 2032 2033 /** 2034 * amdgpu_vm_prt_cb - callback for updating the PRT status 2035 * 2036 * @fence: fence for the callback 2037 * @_cb: the callback function 2038 */ 2039 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2040 { 2041 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2042 2043 amdgpu_vm_prt_put(cb->adev); 2044 kfree(cb); 2045 } 2046 2047 /** 2048 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2049 * 2050 * @adev: amdgpu_device pointer 2051 * @fence: fence for the callback 2052 */ 2053 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2054 struct dma_fence *fence) 2055 { 2056 struct amdgpu_prt_cb *cb; 2057 2058 if (!adev->gmc.gmc_funcs->set_prt) 2059 return; 2060 2061 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2062 if (!cb) { 2063 /* Last resort when we are OOM */ 2064 if (fence) 2065 dma_fence_wait(fence, false); 2066 2067 amdgpu_vm_prt_put(adev); 2068 } else { 2069 cb->adev = adev; 2070 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2071 amdgpu_vm_prt_cb)) 2072 amdgpu_vm_prt_cb(fence, &cb->cb); 2073 } 2074 } 2075 2076 /** 2077 * amdgpu_vm_free_mapping - free a mapping 2078 * 2079 * @adev: amdgpu_device pointer 2080 * @vm: requested vm 2081 * @mapping: mapping to be freed 2082 * @fence: fence of the unmap operation 2083 * 2084 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2085 */ 2086 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2087 struct amdgpu_vm *vm, 2088 struct amdgpu_bo_va_mapping *mapping, 2089 struct dma_fence *fence) 2090 { 2091 if (mapping->flags & AMDGPU_PTE_PRT) 2092 amdgpu_vm_add_prt_cb(adev, fence); 2093 kfree(mapping); 2094 } 2095 2096 /** 2097 * amdgpu_vm_prt_fini - finish all prt mappings 2098 * 2099 * @adev: amdgpu_device pointer 2100 * @vm: requested vm 2101 * 2102 * Register a cleanup callback to disable PRT support after VM dies. 2103 */ 2104 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2105 { 2106 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2107 struct dma_resv_iter cursor; 2108 struct dma_fence *fence; 2109 2110 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2111 /* Add a callback for each fence in the reservation object */ 2112 amdgpu_vm_prt_get(adev); 2113 amdgpu_vm_add_prt_cb(adev, fence); 2114 } 2115 } 2116 2117 /** 2118 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2119 * 2120 * @adev: amdgpu_device pointer 2121 * @vm: requested vm 2122 * @fence: optional resulting fence (unchanged if no work needed to be done 2123 * or if an error occurred) 2124 * 2125 * Make sure all freed BOs are cleared in the PT. 2126 * PTs have to be reserved and mutex must be locked! 2127 * 2128 * Returns: 2129 * 0 for success. 2130 * 2131 */ 2132 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2133 struct amdgpu_vm *vm, 2134 struct dma_fence **fence) 2135 { 2136 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2137 struct amdgpu_bo_va_mapping *mapping; 2138 uint64_t init_pte_value = 0; 2139 struct dma_fence *f = NULL; 2140 int r; 2141 2142 while (!list_empty(&vm->freed)) { 2143 mapping = list_first_entry(&vm->freed, 2144 struct amdgpu_bo_va_mapping, list); 2145 list_del(&mapping->list); 2146 2147 if (vm->pte_support_ats && 2148 mapping->start < AMDGPU_GMC_HOLE_START) 2149 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2150 2151 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2152 resv, mapping->start, 2153 mapping->last, init_pte_value, 2154 0, NULL, NULL, &f, NULL); 2155 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2156 if (r) { 2157 dma_fence_put(f); 2158 return r; 2159 } 2160 } 2161 2162 if (fence && f) { 2163 dma_fence_put(*fence); 2164 *fence = f; 2165 } else { 2166 dma_fence_put(f); 2167 } 2168 2169 return 0; 2170 2171 } 2172 2173 /** 2174 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2175 * 2176 * @adev: amdgpu_device pointer 2177 * @vm: requested vm 2178 * 2179 * Make sure all BOs which are moved are updated in the PTs. 2180 * 2181 * Returns: 2182 * 0 for success. 2183 * 2184 * PTs have to be reserved! 2185 */ 2186 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2187 struct amdgpu_vm *vm) 2188 { 2189 struct amdgpu_bo_va *bo_va, *tmp; 2190 struct dma_resv *resv; 2191 bool clear; 2192 int r; 2193 2194 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2195 /* Per VM BOs never need to bo cleared in the page tables */ 2196 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2197 if (r) 2198 return r; 2199 } 2200 2201 spin_lock(&vm->invalidated_lock); 2202 while (!list_empty(&vm->invalidated)) { 2203 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2204 base.vm_status); 2205 resv = bo_va->base.bo->tbo.base.resv; 2206 spin_unlock(&vm->invalidated_lock); 2207 2208 /* Try to reserve the BO to avoid clearing its ptes */ 2209 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2210 clear = false; 2211 /* Somebody else is using the BO right now */ 2212 else 2213 clear = true; 2214 2215 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2216 if (r) 2217 return r; 2218 2219 if (!clear) 2220 dma_resv_unlock(resv); 2221 spin_lock(&vm->invalidated_lock); 2222 } 2223 spin_unlock(&vm->invalidated_lock); 2224 2225 return 0; 2226 } 2227 2228 /** 2229 * amdgpu_vm_bo_add - add a bo to a specific vm 2230 * 2231 * @adev: amdgpu_device pointer 2232 * @vm: requested vm 2233 * @bo: amdgpu buffer object 2234 * 2235 * Add @bo into the requested vm. 2236 * Add @bo to the list of bos associated with the vm 2237 * 2238 * Returns: 2239 * Newly added bo_va or NULL for failure 2240 * 2241 * Object has to be reserved! 2242 */ 2243 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2244 struct amdgpu_vm *vm, 2245 struct amdgpu_bo *bo) 2246 { 2247 struct amdgpu_bo_va *bo_va; 2248 2249 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2250 if (bo_va == NULL) { 2251 return NULL; 2252 } 2253 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2254 2255 bo_va->ref_count = 1; 2256 INIT_LIST_HEAD(&bo_va->valids); 2257 INIT_LIST_HEAD(&bo_va->invalids); 2258 2259 if (!bo) 2260 return bo_va; 2261 2262 dma_resv_assert_held(bo->tbo.base.resv); 2263 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2264 bo_va->is_xgmi = true; 2265 /* Power up XGMI if it can be potentially used */ 2266 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2267 } 2268 2269 return bo_va; 2270 } 2271 2272 2273 /** 2274 * amdgpu_vm_bo_insert_map - insert a new mapping 2275 * 2276 * @adev: amdgpu_device pointer 2277 * @bo_va: bo_va to store the address 2278 * @mapping: the mapping to insert 2279 * 2280 * Insert a new mapping into all structures. 2281 */ 2282 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2283 struct amdgpu_bo_va *bo_va, 2284 struct amdgpu_bo_va_mapping *mapping) 2285 { 2286 struct amdgpu_vm *vm = bo_va->base.vm; 2287 struct amdgpu_bo *bo = bo_va->base.bo; 2288 2289 mapping->bo_va = bo_va; 2290 list_add(&mapping->list, &bo_va->invalids); 2291 amdgpu_vm_it_insert(mapping, &vm->va); 2292 2293 if (mapping->flags & AMDGPU_PTE_PRT) 2294 amdgpu_vm_prt_get(adev); 2295 2296 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2297 !bo_va->base.moved) { 2298 list_move(&bo_va->base.vm_status, &vm->moved); 2299 } 2300 trace_amdgpu_vm_bo_map(bo_va, mapping); 2301 } 2302 2303 /** 2304 * amdgpu_vm_bo_map - map bo inside a vm 2305 * 2306 * @adev: amdgpu_device pointer 2307 * @bo_va: bo_va to store the address 2308 * @saddr: where to map the BO 2309 * @offset: requested offset in the BO 2310 * @size: BO size in bytes 2311 * @flags: attributes of pages (read/write/valid/etc.) 2312 * 2313 * Add a mapping of the BO at the specefied addr into the VM. 2314 * 2315 * Returns: 2316 * 0 for success, error for failure. 2317 * 2318 * Object has to be reserved and unreserved outside! 2319 */ 2320 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2321 struct amdgpu_bo_va *bo_va, 2322 uint64_t saddr, uint64_t offset, 2323 uint64_t size, uint64_t flags) 2324 { 2325 struct amdgpu_bo_va_mapping *mapping, *tmp; 2326 struct amdgpu_bo *bo = bo_va->base.bo; 2327 struct amdgpu_vm *vm = bo_va->base.vm; 2328 uint64_t eaddr; 2329 2330 /* validate the parameters */ 2331 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2332 size == 0 || size & ~PAGE_MASK) 2333 return -EINVAL; 2334 2335 /* make sure object fit at this offset */ 2336 eaddr = saddr + size - 1; 2337 if (saddr >= eaddr || 2338 (bo && offset + size > amdgpu_bo_size(bo)) || 2339 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2340 return -EINVAL; 2341 2342 saddr /= AMDGPU_GPU_PAGE_SIZE; 2343 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2344 2345 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2346 if (tmp) { 2347 /* bo and tmp overlap, invalid addr */ 2348 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2349 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2350 tmp->start, tmp->last + 1); 2351 return -EINVAL; 2352 } 2353 2354 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2355 if (!mapping) 2356 return -ENOMEM; 2357 2358 mapping->start = saddr; 2359 mapping->last = eaddr; 2360 mapping->offset = offset; 2361 mapping->flags = flags; 2362 2363 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2364 2365 return 0; 2366 } 2367 2368 /** 2369 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2370 * 2371 * @adev: amdgpu_device pointer 2372 * @bo_va: bo_va to store the address 2373 * @saddr: where to map the BO 2374 * @offset: requested offset in the BO 2375 * @size: BO size in bytes 2376 * @flags: attributes of pages (read/write/valid/etc.) 2377 * 2378 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2379 * mappings as we do so. 2380 * 2381 * Returns: 2382 * 0 for success, error for failure. 2383 * 2384 * Object has to be reserved and unreserved outside! 2385 */ 2386 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2387 struct amdgpu_bo_va *bo_va, 2388 uint64_t saddr, uint64_t offset, 2389 uint64_t size, uint64_t flags) 2390 { 2391 struct amdgpu_bo_va_mapping *mapping; 2392 struct amdgpu_bo *bo = bo_va->base.bo; 2393 uint64_t eaddr; 2394 int r; 2395 2396 /* validate the parameters */ 2397 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2398 size == 0 || size & ~PAGE_MASK) 2399 return -EINVAL; 2400 2401 /* make sure object fit at this offset */ 2402 eaddr = saddr + size - 1; 2403 if (saddr >= eaddr || 2404 (bo && offset + size > amdgpu_bo_size(bo)) || 2405 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2406 return -EINVAL; 2407 2408 /* Allocate all the needed memory */ 2409 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2410 if (!mapping) 2411 return -ENOMEM; 2412 2413 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2414 if (r) { 2415 kfree(mapping); 2416 return r; 2417 } 2418 2419 saddr /= AMDGPU_GPU_PAGE_SIZE; 2420 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2421 2422 mapping->start = saddr; 2423 mapping->last = eaddr; 2424 mapping->offset = offset; 2425 mapping->flags = flags; 2426 2427 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2428 2429 return 0; 2430 } 2431 2432 /** 2433 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2434 * 2435 * @adev: amdgpu_device pointer 2436 * @bo_va: bo_va to remove the address from 2437 * @saddr: where to the BO is mapped 2438 * 2439 * Remove a mapping of the BO at the specefied addr from the VM. 2440 * 2441 * Returns: 2442 * 0 for success, error for failure. 2443 * 2444 * Object has to be reserved and unreserved outside! 2445 */ 2446 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2447 struct amdgpu_bo_va *bo_va, 2448 uint64_t saddr) 2449 { 2450 struct amdgpu_bo_va_mapping *mapping; 2451 struct amdgpu_vm *vm = bo_va->base.vm; 2452 bool valid = true; 2453 2454 saddr /= AMDGPU_GPU_PAGE_SIZE; 2455 2456 list_for_each_entry(mapping, &bo_va->valids, list) { 2457 if (mapping->start == saddr) 2458 break; 2459 } 2460 2461 if (&mapping->list == &bo_va->valids) { 2462 valid = false; 2463 2464 list_for_each_entry(mapping, &bo_va->invalids, list) { 2465 if (mapping->start == saddr) 2466 break; 2467 } 2468 2469 if (&mapping->list == &bo_va->invalids) 2470 return -ENOENT; 2471 } 2472 2473 list_del(&mapping->list); 2474 amdgpu_vm_it_remove(mapping, &vm->va); 2475 mapping->bo_va = NULL; 2476 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2477 2478 if (valid) 2479 list_add(&mapping->list, &vm->freed); 2480 else 2481 amdgpu_vm_free_mapping(adev, vm, mapping, 2482 bo_va->last_pt_update); 2483 2484 return 0; 2485 } 2486 2487 /** 2488 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2489 * 2490 * @adev: amdgpu_device pointer 2491 * @vm: VM structure to use 2492 * @saddr: start of the range 2493 * @size: size of the range 2494 * 2495 * Remove all mappings in a range, split them as appropriate. 2496 * 2497 * Returns: 2498 * 0 for success, error for failure. 2499 */ 2500 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2501 struct amdgpu_vm *vm, 2502 uint64_t saddr, uint64_t size) 2503 { 2504 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2505 LIST_HEAD(removed); 2506 uint64_t eaddr; 2507 2508 eaddr = saddr + size - 1; 2509 saddr /= AMDGPU_GPU_PAGE_SIZE; 2510 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2511 2512 /* Allocate all the needed memory */ 2513 before = kzalloc(sizeof(*before), GFP_KERNEL); 2514 if (!before) 2515 return -ENOMEM; 2516 INIT_LIST_HEAD(&before->list); 2517 2518 after = kzalloc(sizeof(*after), GFP_KERNEL); 2519 if (!after) { 2520 kfree(before); 2521 return -ENOMEM; 2522 } 2523 INIT_LIST_HEAD(&after->list); 2524 2525 /* Now gather all removed mappings */ 2526 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2527 while (tmp) { 2528 /* Remember mapping split at the start */ 2529 if (tmp->start < saddr) { 2530 before->start = tmp->start; 2531 before->last = saddr - 1; 2532 before->offset = tmp->offset; 2533 before->flags = tmp->flags; 2534 before->bo_va = tmp->bo_va; 2535 list_add(&before->list, &tmp->bo_va->invalids); 2536 } 2537 2538 /* Remember mapping split at the end */ 2539 if (tmp->last > eaddr) { 2540 after->start = eaddr + 1; 2541 after->last = tmp->last; 2542 after->offset = tmp->offset; 2543 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2544 after->flags = tmp->flags; 2545 after->bo_va = tmp->bo_va; 2546 list_add(&after->list, &tmp->bo_va->invalids); 2547 } 2548 2549 list_del(&tmp->list); 2550 list_add(&tmp->list, &removed); 2551 2552 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2553 } 2554 2555 /* And free them up */ 2556 list_for_each_entry_safe(tmp, next, &removed, list) { 2557 amdgpu_vm_it_remove(tmp, &vm->va); 2558 list_del(&tmp->list); 2559 2560 if (tmp->start < saddr) 2561 tmp->start = saddr; 2562 if (tmp->last > eaddr) 2563 tmp->last = eaddr; 2564 2565 tmp->bo_va = NULL; 2566 list_add(&tmp->list, &vm->freed); 2567 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2568 } 2569 2570 /* Insert partial mapping before the range */ 2571 if (!list_empty(&before->list)) { 2572 amdgpu_vm_it_insert(before, &vm->va); 2573 if (before->flags & AMDGPU_PTE_PRT) 2574 amdgpu_vm_prt_get(adev); 2575 } else { 2576 kfree(before); 2577 } 2578 2579 /* Insert partial mapping after the range */ 2580 if (!list_empty(&after->list)) { 2581 amdgpu_vm_it_insert(after, &vm->va); 2582 if (after->flags & AMDGPU_PTE_PRT) 2583 amdgpu_vm_prt_get(adev); 2584 } else { 2585 kfree(after); 2586 } 2587 2588 return 0; 2589 } 2590 2591 /** 2592 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2593 * 2594 * @vm: the requested VM 2595 * @addr: the address 2596 * 2597 * Find a mapping by it's address. 2598 * 2599 * Returns: 2600 * The amdgpu_bo_va_mapping matching for addr or NULL 2601 * 2602 */ 2603 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2604 uint64_t addr) 2605 { 2606 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2607 } 2608 2609 /** 2610 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2611 * 2612 * @vm: the requested vm 2613 * @ticket: CS ticket 2614 * 2615 * Trace all mappings of BOs reserved during a command submission. 2616 */ 2617 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2618 { 2619 struct amdgpu_bo_va_mapping *mapping; 2620 2621 if (!trace_amdgpu_vm_bo_cs_enabled()) 2622 return; 2623 2624 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2625 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2626 if (mapping->bo_va && mapping->bo_va->base.bo) { 2627 struct amdgpu_bo *bo; 2628 2629 bo = mapping->bo_va->base.bo; 2630 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2631 ticket) 2632 continue; 2633 } 2634 2635 trace_amdgpu_vm_bo_cs(mapping); 2636 } 2637 } 2638 2639 /** 2640 * amdgpu_vm_bo_del - remove a bo from a specific vm 2641 * 2642 * @adev: amdgpu_device pointer 2643 * @bo_va: requested bo_va 2644 * 2645 * Remove @bo_va->bo from the requested vm. 2646 * 2647 * Object have to be reserved! 2648 */ 2649 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 2650 struct amdgpu_bo_va *bo_va) 2651 { 2652 struct amdgpu_bo_va_mapping *mapping, *next; 2653 struct amdgpu_bo *bo = bo_va->base.bo; 2654 struct amdgpu_vm *vm = bo_va->base.vm; 2655 struct amdgpu_vm_bo_base **base; 2656 2657 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 2658 2659 if (bo) { 2660 dma_resv_assert_held(bo->tbo.base.resv); 2661 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2662 vm->bulk_moveable = false; 2663 2664 for (base = &bo_va->base.bo->vm_bo; *base; 2665 base = &(*base)->next) { 2666 if (*base != &bo_va->base) 2667 continue; 2668 2669 *base = bo_va->base.next; 2670 break; 2671 } 2672 } 2673 2674 spin_lock(&vm->invalidated_lock); 2675 list_del(&bo_va->base.vm_status); 2676 spin_unlock(&vm->invalidated_lock); 2677 2678 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2679 list_del(&mapping->list); 2680 amdgpu_vm_it_remove(mapping, &vm->va); 2681 mapping->bo_va = NULL; 2682 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2683 list_add(&mapping->list, &vm->freed); 2684 } 2685 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2686 list_del(&mapping->list); 2687 amdgpu_vm_it_remove(mapping, &vm->va); 2688 amdgpu_vm_free_mapping(adev, vm, mapping, 2689 bo_va->last_pt_update); 2690 } 2691 2692 dma_fence_put(bo_va->last_pt_update); 2693 2694 if (bo && bo_va->is_xgmi) 2695 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2696 2697 kfree(bo_va); 2698 } 2699 2700 /** 2701 * amdgpu_vm_evictable - check if we can evict a VM 2702 * 2703 * @bo: A page table of the VM. 2704 * 2705 * Check if it is possible to evict a VM. 2706 */ 2707 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2708 { 2709 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2710 2711 /* Page tables of a destroyed VM can go away immediately */ 2712 if (!bo_base || !bo_base->vm) 2713 return true; 2714 2715 /* Don't evict VM page tables while they are busy */ 2716 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2717 return false; 2718 2719 /* Try to block ongoing updates */ 2720 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2721 return false; 2722 2723 /* Don't evict VM page tables while they are updated */ 2724 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2725 amdgpu_vm_eviction_unlock(bo_base->vm); 2726 return false; 2727 } 2728 2729 bo_base->vm->evicting = true; 2730 amdgpu_vm_eviction_unlock(bo_base->vm); 2731 return true; 2732 } 2733 2734 /** 2735 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2736 * 2737 * @adev: amdgpu_device pointer 2738 * @bo: amdgpu buffer object 2739 * @evicted: is the BO evicted 2740 * 2741 * Mark @bo as invalid. 2742 */ 2743 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2744 struct amdgpu_bo *bo, bool evicted) 2745 { 2746 struct amdgpu_vm_bo_base *bo_base; 2747 2748 /* shadow bo doesn't have bo base, its validation needs its parent */ 2749 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2750 bo = bo->parent; 2751 2752 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2753 struct amdgpu_vm *vm = bo_base->vm; 2754 2755 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2756 amdgpu_vm_bo_evicted(bo_base); 2757 continue; 2758 } 2759 2760 if (bo_base->moved) 2761 continue; 2762 bo_base->moved = true; 2763 2764 if (bo->tbo.type == ttm_bo_type_kernel) 2765 amdgpu_vm_bo_relocated(bo_base); 2766 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2767 amdgpu_vm_bo_moved(bo_base); 2768 else 2769 amdgpu_vm_bo_invalidated(bo_base); 2770 } 2771 } 2772 2773 /** 2774 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2775 * 2776 * @vm_size: VM size 2777 * 2778 * Returns: 2779 * VM page table as power of two 2780 */ 2781 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2782 { 2783 /* Total bits covered by PD + PTs */ 2784 unsigned bits = ilog2(vm_size) + 18; 2785 2786 /* Make sure the PD is 4K in size up to 8GB address space. 2787 Above that split equal between PD and PTs */ 2788 if (vm_size <= 8) 2789 return (bits - 9); 2790 else 2791 return ((bits + 3) / 2); 2792 } 2793 2794 /** 2795 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2796 * 2797 * @adev: amdgpu_device pointer 2798 * @min_vm_size: the minimum vm size in GB if it's set auto 2799 * @fragment_size_default: Default PTE fragment size 2800 * @max_level: max VMPT level 2801 * @max_bits: max address space size in bits 2802 * 2803 */ 2804 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2805 uint32_t fragment_size_default, unsigned max_level, 2806 unsigned max_bits) 2807 { 2808 unsigned int max_size = 1 << (max_bits - 30); 2809 unsigned int vm_size; 2810 uint64_t tmp; 2811 2812 /* adjust vm size first */ 2813 if (amdgpu_vm_size != -1) { 2814 vm_size = amdgpu_vm_size; 2815 if (vm_size > max_size) { 2816 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2817 amdgpu_vm_size, max_size); 2818 vm_size = max_size; 2819 } 2820 } else { 2821 struct sysinfo si; 2822 unsigned int phys_ram_gb; 2823 2824 /* Optimal VM size depends on the amount of physical 2825 * RAM available. Underlying requirements and 2826 * assumptions: 2827 * 2828 * - Need to map system memory and VRAM from all GPUs 2829 * - VRAM from other GPUs not known here 2830 * - Assume VRAM <= system memory 2831 * - On GFX8 and older, VM space can be segmented for 2832 * different MTYPEs 2833 * - Need to allow room for fragmentation, guard pages etc. 2834 * 2835 * This adds up to a rough guess of system memory x3. 2836 * Round up to power of two to maximize the available 2837 * VM size with the given page table size. 2838 */ 2839 si_meminfo(&si); 2840 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2841 (1 << 30) - 1) >> 30; 2842 vm_size = roundup_pow_of_two( 2843 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2844 } 2845 2846 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2847 2848 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2849 if (amdgpu_vm_block_size != -1) 2850 tmp >>= amdgpu_vm_block_size - 9; 2851 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2852 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2853 switch (adev->vm_manager.num_level) { 2854 case 3: 2855 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2856 break; 2857 case 2: 2858 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2859 break; 2860 case 1: 2861 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2862 break; 2863 default: 2864 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2865 } 2866 /* block size depends on vm size and hw setup*/ 2867 if (amdgpu_vm_block_size != -1) 2868 adev->vm_manager.block_size = 2869 min((unsigned)amdgpu_vm_block_size, max_bits 2870 - AMDGPU_GPU_PAGE_SHIFT 2871 - 9 * adev->vm_manager.num_level); 2872 else if (adev->vm_manager.num_level > 1) 2873 adev->vm_manager.block_size = 9; 2874 else 2875 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2876 2877 if (amdgpu_vm_fragment_size == -1) 2878 adev->vm_manager.fragment_size = fragment_size_default; 2879 else 2880 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2881 2882 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2883 vm_size, adev->vm_manager.num_level + 1, 2884 adev->vm_manager.block_size, 2885 adev->vm_manager.fragment_size); 2886 } 2887 2888 /** 2889 * amdgpu_vm_wait_idle - wait for the VM to become idle 2890 * 2891 * @vm: VM object to wait for 2892 * @timeout: timeout to wait for VM to become idle 2893 */ 2894 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2895 { 2896 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2897 true, timeout); 2898 if (timeout <= 0) 2899 return timeout; 2900 2901 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2902 } 2903 2904 /** 2905 * amdgpu_vm_init - initialize a vm instance 2906 * 2907 * @adev: amdgpu_device pointer 2908 * @vm: requested vm 2909 * 2910 * Init @vm fields. 2911 * 2912 * Returns: 2913 * 0 for success, error for failure. 2914 */ 2915 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2916 { 2917 struct amdgpu_bo *root_bo; 2918 struct amdgpu_bo_vm *root; 2919 int r, i; 2920 2921 vm->va = RB_ROOT_CACHED; 2922 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2923 vm->reserved_vmid[i] = NULL; 2924 INIT_LIST_HEAD(&vm->evicted); 2925 INIT_LIST_HEAD(&vm->relocated); 2926 INIT_LIST_HEAD(&vm->moved); 2927 INIT_LIST_HEAD(&vm->idle); 2928 INIT_LIST_HEAD(&vm->invalidated); 2929 spin_lock_init(&vm->invalidated_lock); 2930 INIT_LIST_HEAD(&vm->freed); 2931 INIT_LIST_HEAD(&vm->done); 2932 2933 /* create scheduler entities for page table updates */ 2934 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2935 adev->vm_manager.vm_pte_scheds, 2936 adev->vm_manager.vm_pte_num_scheds, NULL); 2937 if (r) 2938 return r; 2939 2940 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2941 adev->vm_manager.vm_pte_scheds, 2942 adev->vm_manager.vm_pte_num_scheds, NULL); 2943 if (r) 2944 goto error_free_immediate; 2945 2946 vm->pte_support_ats = false; 2947 vm->is_compute_context = false; 2948 2949 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2950 AMDGPU_VM_USE_CPU_FOR_GFX); 2951 2952 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2953 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2954 WARN_ONCE((vm->use_cpu_for_update && 2955 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2956 "CPU update of VM recommended only for large BAR system\n"); 2957 2958 if (vm->use_cpu_for_update) 2959 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2960 else 2961 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2962 vm->last_update = NULL; 2963 vm->last_unlocked = dma_fence_get_stub(); 2964 2965 mutex_init(&vm->eviction_lock); 2966 vm->evicting = false; 2967 2968 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2969 false, &root); 2970 if (r) 2971 goto error_free_delayed; 2972 root_bo = &root->bo; 2973 r = amdgpu_bo_reserve(root_bo, true); 2974 if (r) 2975 goto error_free_root; 2976 2977 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2978 if (r) 2979 goto error_unreserve; 2980 2981 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2982 2983 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2984 if (r) 2985 goto error_unreserve; 2986 2987 amdgpu_bo_unreserve(vm->root.bo); 2988 2989 INIT_KFIFO(vm->faults); 2990 2991 return 0; 2992 2993 error_unreserve: 2994 amdgpu_bo_unreserve(vm->root.bo); 2995 2996 error_free_root: 2997 amdgpu_bo_unref(&root->shadow); 2998 amdgpu_bo_unref(&root_bo); 2999 vm->root.bo = NULL; 3000 3001 error_free_delayed: 3002 dma_fence_put(vm->last_unlocked); 3003 drm_sched_entity_destroy(&vm->delayed); 3004 3005 error_free_immediate: 3006 drm_sched_entity_destroy(&vm->immediate); 3007 3008 return r; 3009 } 3010 3011 /** 3012 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3013 * 3014 * @adev: amdgpu_device pointer 3015 * @vm: the VM to check 3016 * 3017 * check all entries of the root PD, if any subsequent PDs are allocated, 3018 * it means there are page table creating and filling, and is no a clean 3019 * VM 3020 * 3021 * Returns: 3022 * 0 if this VM is clean 3023 */ 3024 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3025 struct amdgpu_vm *vm) 3026 { 3027 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3028 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3029 unsigned int i = 0; 3030 3031 for (i = 0; i < entries; i++) { 3032 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3033 return -EINVAL; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3041 * 3042 * @adev: amdgpu_device pointer 3043 * @vm: requested vm 3044 * 3045 * This only works on GFX VMs that don't have any BOs added and no 3046 * page tables allocated yet. 3047 * 3048 * Changes the following VM parameters: 3049 * - use_cpu_for_update 3050 * - pte_supports_ats 3051 * 3052 * Reinitializes the page directory to reflect the changed ATS 3053 * setting. 3054 * 3055 * Returns: 3056 * 0 for success, -errno for errors. 3057 */ 3058 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3059 { 3060 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3061 int r; 3062 3063 r = amdgpu_bo_reserve(vm->root.bo, true); 3064 if (r) 3065 return r; 3066 3067 /* Sanity checks */ 3068 r = amdgpu_vm_check_clean_reserved(adev, vm); 3069 if (r) 3070 goto unreserve_bo; 3071 3072 /* Check if PD needs to be reinitialized and do it before 3073 * changing any other state, in case it fails. 3074 */ 3075 if (pte_support_ats != vm->pte_support_ats) { 3076 vm->pte_support_ats = pte_support_ats; 3077 r = amdgpu_vm_clear_bo(adev, vm, 3078 to_amdgpu_bo_vm(vm->root.bo), 3079 false); 3080 if (r) 3081 goto unreserve_bo; 3082 } 3083 3084 /* Update VM state */ 3085 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3086 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3087 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3088 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3089 WARN_ONCE((vm->use_cpu_for_update && 3090 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3091 "CPU update of VM recommended only for large BAR system\n"); 3092 3093 if (vm->use_cpu_for_update) { 3094 /* Sync with last SDMA update/clear before switching to CPU */ 3095 r = amdgpu_bo_sync_wait(vm->root.bo, 3096 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3097 if (r) 3098 goto unreserve_bo; 3099 3100 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3101 } else { 3102 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3103 } 3104 dma_fence_put(vm->last_update); 3105 vm->last_update = NULL; 3106 vm->is_compute_context = true; 3107 3108 /* Free the shadow bo for compute VM */ 3109 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3110 3111 goto unreserve_bo; 3112 3113 unreserve_bo: 3114 amdgpu_bo_unreserve(vm->root.bo); 3115 return r; 3116 } 3117 3118 /** 3119 * amdgpu_vm_release_compute - release a compute vm 3120 * @adev: amdgpu_device pointer 3121 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3122 * 3123 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3124 * pasid from vm. Compute should stop use of vm after this call. 3125 */ 3126 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3127 { 3128 amdgpu_vm_set_pasid(adev, vm, 0); 3129 vm->is_compute_context = false; 3130 } 3131 3132 /** 3133 * amdgpu_vm_fini - tear down a vm instance 3134 * 3135 * @adev: amdgpu_device pointer 3136 * @vm: requested vm 3137 * 3138 * Tear down @vm. 3139 * Unbind the VM and remove all bos from the vm bo list 3140 */ 3141 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3142 { 3143 struct amdgpu_bo_va_mapping *mapping, *tmp; 3144 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3145 struct amdgpu_bo *root; 3146 int i; 3147 3148 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3149 3150 root = amdgpu_bo_ref(vm->root.bo); 3151 amdgpu_bo_reserve(root, true); 3152 amdgpu_vm_set_pasid(adev, vm, 0); 3153 dma_fence_wait(vm->last_unlocked, false); 3154 dma_fence_put(vm->last_unlocked); 3155 3156 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3157 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3158 amdgpu_vm_prt_fini(adev, vm); 3159 prt_fini_needed = false; 3160 } 3161 3162 list_del(&mapping->list); 3163 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3164 } 3165 3166 amdgpu_vm_free_pts(adev, vm, NULL); 3167 amdgpu_bo_unreserve(root); 3168 amdgpu_bo_unref(&root); 3169 WARN_ON(vm->root.bo); 3170 3171 drm_sched_entity_destroy(&vm->immediate); 3172 drm_sched_entity_destroy(&vm->delayed); 3173 3174 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3175 dev_err(adev->dev, "still active bo inside vm\n"); 3176 } 3177 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3178 &vm->va.rb_root, rb) { 3179 /* Don't remove the mapping here, we don't want to trigger a 3180 * rebalance and the tree is about to be destroyed anyway. 3181 */ 3182 list_del(&mapping->list); 3183 kfree(mapping); 3184 } 3185 3186 dma_fence_put(vm->last_update); 3187 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3188 amdgpu_vmid_free_reserved(adev, vm, i); 3189 } 3190 3191 /** 3192 * amdgpu_vm_manager_init - init the VM manager 3193 * 3194 * @adev: amdgpu_device pointer 3195 * 3196 * Initialize the VM manager structures 3197 */ 3198 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3199 { 3200 unsigned i; 3201 3202 /* Concurrent flushes are only possible starting with Vega10 and 3203 * are broken on Navi10 and Navi14. 3204 */ 3205 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3206 adev->asic_type == CHIP_NAVI10 || 3207 adev->asic_type == CHIP_NAVI14); 3208 amdgpu_vmid_mgr_init(adev); 3209 3210 adev->vm_manager.fence_context = 3211 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3212 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3213 adev->vm_manager.seqno[i] = 0; 3214 3215 spin_lock_init(&adev->vm_manager.prt_lock); 3216 atomic_set(&adev->vm_manager.num_prt_users, 0); 3217 3218 /* If not overridden by the user, by default, only in large BAR systems 3219 * Compute VM tables will be updated by CPU 3220 */ 3221 #ifdef CONFIG_X86_64 3222 if (amdgpu_vm_update_mode == -1) { 3223 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3224 adev->vm_manager.vm_update_mode = 3225 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3226 else 3227 adev->vm_manager.vm_update_mode = 0; 3228 } else 3229 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3230 #else 3231 adev->vm_manager.vm_update_mode = 0; 3232 #endif 3233 3234 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3235 } 3236 3237 /** 3238 * amdgpu_vm_manager_fini - cleanup VM manager 3239 * 3240 * @adev: amdgpu_device pointer 3241 * 3242 * Cleanup the VM manager and free resources. 3243 */ 3244 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3245 { 3246 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3247 xa_destroy(&adev->vm_manager.pasids); 3248 3249 amdgpu_vmid_mgr_fini(adev); 3250 } 3251 3252 /** 3253 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3254 * 3255 * @dev: drm device pointer 3256 * @data: drm_amdgpu_vm 3257 * @filp: drm file pointer 3258 * 3259 * Returns: 3260 * 0 for success, -errno for errors. 3261 */ 3262 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3263 { 3264 union drm_amdgpu_vm *args = data; 3265 struct amdgpu_device *adev = drm_to_adev(dev); 3266 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3267 long timeout = msecs_to_jiffies(2000); 3268 int r; 3269 3270 switch (args->in.op) { 3271 case AMDGPU_VM_OP_RESERVE_VMID: 3272 /* We only have requirement to reserve vmid from gfxhub */ 3273 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3274 AMDGPU_GFXHUB_0); 3275 if (r) 3276 return r; 3277 break; 3278 case AMDGPU_VM_OP_UNRESERVE_VMID: 3279 if (amdgpu_sriov_runtime(adev)) 3280 timeout = 8 * timeout; 3281 3282 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3283 * not referenced anymore. 3284 */ 3285 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3286 if (r) 3287 return r; 3288 3289 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3290 if (r < 0) 3291 return r; 3292 3293 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3294 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3295 break; 3296 default: 3297 return -EINVAL; 3298 } 3299 3300 return 0; 3301 } 3302 3303 /** 3304 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3305 * 3306 * @adev: drm device pointer 3307 * @pasid: PASID identifier for VM 3308 * @task_info: task_info to fill. 3309 */ 3310 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3311 struct amdgpu_task_info *task_info) 3312 { 3313 struct amdgpu_vm *vm; 3314 unsigned long flags; 3315 3316 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3317 3318 vm = xa_load(&adev->vm_manager.pasids, pasid); 3319 if (vm) 3320 *task_info = vm->task_info; 3321 3322 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3323 } 3324 3325 /** 3326 * amdgpu_vm_set_task_info - Sets VMs task info. 3327 * 3328 * @vm: vm for which to set the info 3329 */ 3330 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3331 { 3332 if (vm->task_info.pid) 3333 return; 3334 3335 vm->task_info.pid = current->pid; 3336 get_task_comm(vm->task_info.task_name, current); 3337 3338 if (current->group_leader->mm != current->mm) 3339 return; 3340 3341 vm->task_info.tgid = current->group_leader->pid; 3342 get_task_comm(vm->task_info.process_name, current->group_leader); 3343 } 3344 3345 /** 3346 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3347 * @adev: amdgpu device pointer 3348 * @pasid: PASID of the VM 3349 * @addr: Address of the fault 3350 * @write_fault: true is write fault, false is read fault 3351 * 3352 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3353 * shouldn't be reported any more. 3354 */ 3355 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3356 uint64_t addr, bool write_fault) 3357 { 3358 bool is_compute_context = false; 3359 struct amdgpu_bo *root; 3360 unsigned long irqflags; 3361 uint64_t value, flags; 3362 struct amdgpu_vm *vm; 3363 int r; 3364 3365 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3366 vm = xa_load(&adev->vm_manager.pasids, pasid); 3367 if (vm) { 3368 root = amdgpu_bo_ref(vm->root.bo); 3369 is_compute_context = vm->is_compute_context; 3370 } else { 3371 root = NULL; 3372 } 3373 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3374 3375 if (!root) 3376 return false; 3377 3378 addr /= AMDGPU_GPU_PAGE_SIZE; 3379 3380 if (is_compute_context && 3381 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3382 amdgpu_bo_unref(&root); 3383 return true; 3384 } 3385 3386 r = amdgpu_bo_reserve(root, true); 3387 if (r) 3388 goto error_unref; 3389 3390 /* Double check that the VM still exists */ 3391 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3392 vm = xa_load(&adev->vm_manager.pasids, pasid); 3393 if (vm && vm->root.bo != root) 3394 vm = NULL; 3395 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3396 if (!vm) 3397 goto error_unlock; 3398 3399 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3400 AMDGPU_PTE_SYSTEM; 3401 3402 if (is_compute_context) { 3403 /* Intentionally setting invalid PTE flag 3404 * combination to force a no-retry-fault 3405 */ 3406 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3407 AMDGPU_PTE_TF; 3408 value = 0; 3409 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3410 /* Redirect the access to the dummy page */ 3411 value = adev->dummy_page_addr; 3412 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3413 AMDGPU_PTE_WRITEABLE; 3414 3415 } else { 3416 /* Let the hw retry silently on the PTE */ 3417 value = 0; 3418 } 3419 3420 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3421 if (r) { 3422 pr_debug("failed %d to reserve fence slot\n", r); 3423 goto error_unlock; 3424 } 3425 3426 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3427 addr, flags, value, NULL, NULL, NULL, 3428 NULL); 3429 if (r) 3430 goto error_unlock; 3431 3432 r = amdgpu_vm_update_pdes(adev, vm, true); 3433 3434 error_unlock: 3435 amdgpu_bo_unreserve(root); 3436 if (r < 0) 3437 DRM_ERROR("Can't handle page fault (%d)\n", r); 3438 3439 error_unref: 3440 amdgpu_bo_unref(&root); 3441 3442 return false; 3443 } 3444 3445 #if defined(CONFIG_DEBUG_FS) 3446 /** 3447 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3448 * 3449 * @vm: Requested VM for printing BO info 3450 * @m: debugfs file 3451 * 3452 * Print BO information in debugfs file for the VM 3453 */ 3454 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3455 { 3456 struct amdgpu_bo_va *bo_va, *tmp; 3457 u64 total_idle = 0; 3458 u64 total_evicted = 0; 3459 u64 total_relocated = 0; 3460 u64 total_moved = 0; 3461 u64 total_invalidated = 0; 3462 u64 total_done = 0; 3463 unsigned int total_idle_objs = 0; 3464 unsigned int total_evicted_objs = 0; 3465 unsigned int total_relocated_objs = 0; 3466 unsigned int total_moved_objs = 0; 3467 unsigned int total_invalidated_objs = 0; 3468 unsigned int total_done_objs = 0; 3469 unsigned int id = 0; 3470 3471 seq_puts(m, "\tIdle BOs:\n"); 3472 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3473 if (!bo_va->base.bo) 3474 continue; 3475 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3476 } 3477 total_idle_objs = id; 3478 id = 0; 3479 3480 seq_puts(m, "\tEvicted BOs:\n"); 3481 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3482 if (!bo_va->base.bo) 3483 continue; 3484 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3485 } 3486 total_evicted_objs = id; 3487 id = 0; 3488 3489 seq_puts(m, "\tRelocated BOs:\n"); 3490 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3491 if (!bo_va->base.bo) 3492 continue; 3493 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3494 } 3495 total_relocated_objs = id; 3496 id = 0; 3497 3498 seq_puts(m, "\tMoved BOs:\n"); 3499 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3500 if (!bo_va->base.bo) 3501 continue; 3502 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3503 } 3504 total_moved_objs = id; 3505 id = 0; 3506 3507 seq_puts(m, "\tInvalidated BOs:\n"); 3508 spin_lock(&vm->invalidated_lock); 3509 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3510 if (!bo_va->base.bo) 3511 continue; 3512 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3513 } 3514 total_invalidated_objs = id; 3515 id = 0; 3516 3517 seq_puts(m, "\tDone BOs:\n"); 3518 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3519 if (!bo_va->base.bo) 3520 continue; 3521 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3522 } 3523 spin_unlock(&vm->invalidated_lock); 3524 total_done_objs = id; 3525 3526 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3527 total_idle_objs); 3528 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3529 total_evicted_objs); 3530 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3531 total_relocated_objs); 3532 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3533 total_moved_objs); 3534 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3535 total_invalidated_objs); 3536 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3537 total_done_objs); 3538 } 3539 #endif 3540