1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When executing a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
379 
380 	vm->bulk_moveable = false;
381 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
382 		amdgpu_vm_bo_relocated(base);
383 	else
384 		amdgpu_vm_bo_idle(base);
385 
386 	if (bo->preferred_domains &
387 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
388 		return;
389 
390 	/*
391 	 * we checked all the prerequisites, but it looks like this per vm bo
392 	 * is currently evicted. add the bo to the evicted list to make sure it
393 	 * is validated on next vm use to avoid fault.
394 	 * */
395 	amdgpu_vm_bo_evicted(base);
396 }
397 
398 /**
399  * amdgpu_vm_pt_parent - get the parent page directory
400  *
401  * @pt: child page table
402  *
403  * Helper to get the parent entry for the child page table. NULL if we are at
404  * the root page directory.
405  */
406 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
407 {
408 	struct amdgpu_bo *parent = pt->bo->parent;
409 
410 	if (!parent)
411 		return NULL;
412 
413 	return parent->vm_bo;
414 }
415 
416 /*
417  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
418  */
419 struct amdgpu_vm_pt_cursor {
420 	uint64_t pfn;
421 	struct amdgpu_vm_bo_base *parent;
422 	struct amdgpu_vm_bo_base *entry;
423 	unsigned level;
424 };
425 
426 /**
427  * amdgpu_vm_pt_start - start PD/PT walk
428  *
429  * @adev: amdgpu_device pointer
430  * @vm: amdgpu_vm structure
431  * @start: start address of the walk
432  * @cursor: state to initialize
433  *
434  * Initialize a amdgpu_vm_pt_cursor to start a walk.
435  */
436 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
437 			       struct amdgpu_vm *vm, uint64_t start,
438 			       struct amdgpu_vm_pt_cursor *cursor)
439 {
440 	cursor->pfn = start;
441 	cursor->parent = NULL;
442 	cursor->entry = &vm->root;
443 	cursor->level = adev->vm_manager.root_level;
444 }
445 
446 /**
447  * amdgpu_vm_pt_descendant - go to child node
448  *
449  * @adev: amdgpu_device pointer
450  * @cursor: current state
451  *
452  * Walk to the child node of the current node.
453  * Returns:
454  * True if the walk was possible, false otherwise.
455  */
456 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
457 				    struct amdgpu_vm_pt_cursor *cursor)
458 {
459 	unsigned mask, shift, idx;
460 
461 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
462 	    !cursor->entry->bo)
463 		return false;
464 
465 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
466 	shift = amdgpu_vm_level_shift(adev, cursor->level);
467 
468 	++cursor->level;
469 	idx = (cursor->pfn >> shift) & mask;
470 	cursor->parent = cursor->entry;
471 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
472 	return true;
473 }
474 
475 /**
476  * amdgpu_vm_pt_sibling - go to sibling node
477  *
478  * @adev: amdgpu_device pointer
479  * @cursor: current state
480  *
481  * Walk to the sibling node of the current node.
482  * Returns:
483  * True if the walk was possible, false otherwise.
484  */
485 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
486 				 struct amdgpu_vm_pt_cursor *cursor)
487 {
488 	unsigned shift, num_entries;
489 
490 	/* Root doesn't have a sibling */
491 	if (!cursor->parent)
492 		return false;
493 
494 	/* Go to our parents and see if we got a sibling */
495 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
496 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
497 
498 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
499 		return false;
500 
501 	cursor->pfn += 1ULL << shift;
502 	cursor->pfn &= ~((1ULL << shift) - 1);
503 	++cursor->entry;
504 	return true;
505 }
506 
507 /**
508  * amdgpu_vm_pt_ancestor - go to parent node
509  *
510  * @cursor: current state
511  *
512  * Walk to the parent node of the current node.
513  * Returns:
514  * True if the walk was possible, false otherwise.
515  */
516 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
517 {
518 	if (!cursor->parent)
519 		return false;
520 
521 	--cursor->level;
522 	cursor->entry = cursor->parent;
523 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
524 	return true;
525 }
526 
527 /**
528  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
529  *
530  * @adev: amdgpu_device pointer
531  * @cursor: current state
532  *
533  * Walk the PD/PT tree to the next node.
534  */
535 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
536 			      struct amdgpu_vm_pt_cursor *cursor)
537 {
538 	/* First try a newborn child */
539 	if (amdgpu_vm_pt_descendant(adev, cursor))
540 		return;
541 
542 	/* If that didn't worked try to find a sibling */
543 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
544 		/* No sibling, go to our parents and grandparents */
545 		if (!amdgpu_vm_pt_ancestor(cursor)) {
546 			cursor->pfn = ~0ll;
547 			return;
548 		}
549 	}
550 }
551 
552 /**
553  * amdgpu_vm_pt_first_dfs - start a deep first search
554  *
555  * @adev: amdgpu_device structure
556  * @vm: amdgpu_vm structure
557  * @start: optional cursor to start with
558  * @cursor: state to initialize
559  *
560  * Starts a deep first traversal of the PD/PT tree.
561  */
562 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
563 				   struct amdgpu_vm *vm,
564 				   struct amdgpu_vm_pt_cursor *start,
565 				   struct amdgpu_vm_pt_cursor *cursor)
566 {
567 	if (start)
568 		*cursor = *start;
569 	else
570 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
571 	while (amdgpu_vm_pt_descendant(adev, cursor));
572 }
573 
574 /**
575  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
576  *
577  * @start: starting point for the search
578  * @entry: current entry
579  *
580  * Returns:
581  * True when the search should continue, false otherwise.
582  */
583 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
584 				      struct amdgpu_vm_bo_base *entry)
585 {
586 	return entry && (!start || entry != start->entry);
587 }
588 
589 /**
590  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
591  *
592  * @adev: amdgpu_device structure
593  * @cursor: current state
594  *
595  * Move the cursor to the next node in a deep first search.
596  */
597 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
598 				  struct amdgpu_vm_pt_cursor *cursor)
599 {
600 	if (!cursor->entry)
601 		return;
602 
603 	if (!cursor->parent)
604 		cursor->entry = NULL;
605 	else if (amdgpu_vm_pt_sibling(adev, cursor))
606 		while (amdgpu_vm_pt_descendant(adev, cursor));
607 	else
608 		amdgpu_vm_pt_ancestor(cursor);
609 }
610 
611 /*
612  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
613  */
614 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
615 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
617 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
618 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
619 
620 /**
621  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
622  *
623  * @vm: vm providing the BOs
624  * @validated: head of validation list
625  * @entry: entry to add
626  *
627  * Add the page directory to the list of BOs to
628  * validate for command submission.
629  */
630 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
631 			 struct list_head *validated,
632 			 struct amdgpu_bo_list_entry *entry)
633 {
634 	entry->priority = 0;
635 	entry->tv.bo = &vm->root.bo->tbo;
636 	/* Two for VM updates, one for TTM and one for the CS job */
637 	entry->tv.num_shared = 4;
638 	entry->user_pages = NULL;
639 	list_add(&entry->tv.head, validated);
640 }
641 
642 /**
643  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
644  *
645  * @bo: BO which was removed from the LRU
646  *
647  * Make sure the bulk_moveable flag is updated when a BO is removed from the
648  * LRU.
649  */
650 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
651 {
652 	struct amdgpu_bo *abo;
653 	struct amdgpu_vm_bo_base *bo_base;
654 
655 	if (!amdgpu_bo_is_amdgpu_bo(bo))
656 		return;
657 
658 	if (bo->pin_count)
659 		return;
660 
661 	abo = ttm_to_amdgpu_bo(bo);
662 	if (!abo->parent)
663 		return;
664 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
665 		struct amdgpu_vm *vm = bo_base->vm;
666 
667 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
668 			vm->bulk_moveable = false;
669 	}
670 
671 }
672 /**
673  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
674  *
675  * @adev: amdgpu device pointer
676  * @vm: vm providing the BOs
677  *
678  * Move all BOs to the end of LRU and remember their positions to put them
679  * together.
680  */
681 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
682 				struct amdgpu_vm *vm)
683 {
684 	struct amdgpu_vm_bo_base *bo_base;
685 
686 	if (vm->bulk_moveable) {
687 		spin_lock(&adev->mman.bdev.lru_lock);
688 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
689 		spin_unlock(&adev->mman.bdev.lru_lock);
690 		return;
691 	}
692 
693 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
694 
695 	spin_lock(&adev->mman.bdev.lru_lock);
696 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
697 		struct amdgpu_bo *bo = bo_base->bo;
698 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
699 
700 		if (!bo->parent)
701 			continue;
702 
703 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
704 					&vm->lru_bulk_move);
705 		if (shadow)
706 			ttm_bo_move_to_lru_tail(&shadow->tbo,
707 						shadow->tbo.resource,
708 						&vm->lru_bulk_move);
709 	}
710 	spin_unlock(&adev->mman.bdev.lru_lock);
711 
712 	vm->bulk_moveable = true;
713 }
714 
715 /**
716  * amdgpu_vm_validate_pt_bos - validate the page table BOs
717  *
718  * @adev: amdgpu device pointer
719  * @vm: vm providing the BOs
720  * @validate: callback to do the validation
721  * @param: parameter for the validation callback
722  *
723  * Validate the page table BOs on command submission if neccessary.
724  *
725  * Returns:
726  * Validation result.
727  */
728 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
729 			      int (*validate)(void *p, struct amdgpu_bo *bo),
730 			      void *param)
731 {
732 	struct amdgpu_vm_bo_base *bo_base, *tmp;
733 	int r;
734 
735 	vm->bulk_moveable &= list_empty(&vm->evicted);
736 
737 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
738 		struct amdgpu_bo *bo = bo_base->bo;
739 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
740 
741 		r = validate(param, bo);
742 		if (r)
743 			return r;
744 		if (shadow) {
745 			r = validate(param, shadow);
746 			if (r)
747 				return r;
748 		}
749 
750 		if (bo->tbo.type != ttm_bo_type_kernel) {
751 			amdgpu_vm_bo_moved(bo_base);
752 		} else {
753 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
754 			amdgpu_vm_bo_relocated(bo_base);
755 		}
756 	}
757 
758 	amdgpu_vm_eviction_lock(vm);
759 	vm->evicting = false;
760 	amdgpu_vm_eviction_unlock(vm);
761 
762 	return 0;
763 }
764 
765 /**
766  * amdgpu_vm_ready - check VM is ready for updates
767  *
768  * @vm: VM to check
769  *
770  * Check if all VM PDs/PTs are ready for updates
771  *
772  * Returns:
773  * True if eviction list is empty.
774  */
775 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
776 {
777 	return list_empty(&vm->evicted);
778 }
779 
780 /**
781  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
782  *
783  * @adev: amdgpu_device pointer
784  * @vm: VM to clear BO from
785  * @vmbo: BO to clear
786  * @immediate: use an immediate update
787  *
788  * Root PD needs to be reserved when calling this.
789  *
790  * Returns:
791  * 0 on success, errno otherwise.
792  */
793 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
794 			      struct amdgpu_vm *vm,
795 			      struct amdgpu_bo_vm *vmbo,
796 			      bool immediate)
797 {
798 	struct ttm_operation_ctx ctx = { true, false };
799 	unsigned level = adev->vm_manager.root_level;
800 	struct amdgpu_vm_update_params params;
801 	struct amdgpu_bo *ancestor = &vmbo->bo;
802 	struct amdgpu_bo *bo = &vmbo->bo;
803 	unsigned entries, ats_entries;
804 	uint64_t addr;
805 	int r, idx;
806 
807 	/* Figure out our place in the hierarchy */
808 	if (ancestor->parent) {
809 		++level;
810 		while (ancestor->parent->parent) {
811 			++level;
812 			ancestor = ancestor->parent;
813 		}
814 	}
815 
816 	entries = amdgpu_bo_size(bo) / 8;
817 	if (!vm->pte_support_ats) {
818 		ats_entries = 0;
819 
820 	} else if (!bo->parent) {
821 		ats_entries = amdgpu_vm_num_ats_entries(adev);
822 		ats_entries = min(ats_entries, entries);
823 		entries -= ats_entries;
824 
825 	} else {
826 		struct amdgpu_vm_bo_base *pt;
827 
828 		pt = ancestor->vm_bo;
829 		ats_entries = amdgpu_vm_num_ats_entries(adev);
830 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
831 			ats_entries = 0;
832 		} else {
833 			ats_entries = entries;
834 			entries = 0;
835 		}
836 	}
837 
838 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
839 	if (r)
840 		return r;
841 
842 	if (vmbo->shadow) {
843 		struct amdgpu_bo *shadow = vmbo->shadow;
844 
845 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
846 		if (r)
847 			return r;
848 	}
849 
850 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
851 		return -ENODEV;
852 
853 	r = vm->update_funcs->map_table(vmbo);
854 	if (r)
855 		goto exit;
856 
857 	memset(&params, 0, sizeof(params));
858 	params.adev = adev;
859 	params.vm = vm;
860 	params.immediate = immediate;
861 
862 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
863 	if (r)
864 		goto exit;
865 
866 	addr = 0;
867 	if (ats_entries) {
868 		uint64_t value = 0, flags;
869 
870 		flags = AMDGPU_PTE_DEFAULT_ATC;
871 		if (level != AMDGPU_VM_PTB) {
872 			/* Handle leaf PDEs as PTEs */
873 			flags |= AMDGPU_PDE_PTE;
874 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
875 		}
876 
877 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
878 					     value, flags);
879 		if (r)
880 			goto exit;
881 
882 		addr += ats_entries * 8;
883 	}
884 
885 	if (entries) {
886 		uint64_t value = 0, flags = 0;
887 
888 		if (adev->asic_type >= CHIP_VEGA10) {
889 			if (level != AMDGPU_VM_PTB) {
890 				/* Handle leaf PDEs as PTEs */
891 				flags |= AMDGPU_PDE_PTE;
892 				amdgpu_gmc_get_vm_pde(adev, level,
893 						      &value, &flags);
894 			} else {
895 				/* Workaround for fault priority problem on GMC9 */
896 				flags = AMDGPU_PTE_EXECUTABLE;
897 			}
898 		}
899 
900 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
901 					     value, flags);
902 		if (r)
903 			goto exit;
904 	}
905 
906 	r = vm->update_funcs->commit(&params, NULL);
907 exit:
908 	drm_dev_exit(idx);
909 	return r;
910 }
911 
912 /**
913  * amdgpu_vm_pt_create - create bo for PD/PT
914  *
915  * @adev: amdgpu_device pointer
916  * @vm: requesting vm
917  * @level: the page table level
918  * @immediate: use a immediate update
919  * @vmbo: pointer to the buffer object pointer
920  */
921 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
922 			       struct amdgpu_vm *vm,
923 			       int level, bool immediate,
924 			       struct amdgpu_bo_vm **vmbo)
925 {
926 	struct amdgpu_bo_param bp;
927 	struct amdgpu_bo *bo;
928 	struct dma_resv *resv;
929 	unsigned int num_entries;
930 	int r;
931 
932 	memset(&bp, 0, sizeof(bp));
933 
934 	bp.size = amdgpu_vm_bo_size(adev, level);
935 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
936 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
937 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
938 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
939 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
940 
941 	if (level < AMDGPU_VM_PTB)
942 		num_entries = amdgpu_vm_num_entries(adev, level);
943 	else
944 		num_entries = 0;
945 
946 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
947 
948 	if (vm->use_cpu_for_update)
949 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
950 
951 	bp.type = ttm_bo_type_kernel;
952 	bp.no_wait_gpu = immediate;
953 	if (vm->root.bo)
954 		bp.resv = vm->root.bo->tbo.base.resv;
955 
956 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
957 	if (r)
958 		return r;
959 
960 	bo = &(*vmbo)->bo;
961 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
962 		(*vmbo)->shadow = NULL;
963 		return 0;
964 	}
965 
966 	if (!bp.resv)
967 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
968 				      NULL));
969 	resv = bp.resv;
970 	memset(&bp, 0, sizeof(bp));
971 	bp.size = amdgpu_vm_bo_size(adev, level);
972 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
973 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
974 	bp.type = ttm_bo_type_kernel;
975 	bp.resv = bo->tbo.base.resv;
976 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
977 
978 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
979 
980 	if (!resv)
981 		dma_resv_unlock(bo->tbo.base.resv);
982 
983 	if (r) {
984 		amdgpu_bo_unref(&bo);
985 		return r;
986 	}
987 
988 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
989 	amdgpu_bo_add_to_shadow_list(*vmbo);
990 
991 	return 0;
992 }
993 
994 /**
995  * amdgpu_vm_alloc_pts - Allocate a specific page table
996  *
997  * @adev: amdgpu_device pointer
998  * @vm: VM to allocate page tables for
999  * @cursor: Which page table to allocate
1000  * @immediate: use an immediate update
1001  *
1002  * Make sure a specific page table or directory is allocated.
1003  *
1004  * Returns:
1005  * 1 if page table needed to be allocated, 0 if page table was already
1006  * allocated, negative errno if an error occurred.
1007  */
1008 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1009 			       struct amdgpu_vm *vm,
1010 			       struct amdgpu_vm_pt_cursor *cursor,
1011 			       bool immediate)
1012 {
1013 	struct amdgpu_vm_bo_base *entry = cursor->entry;
1014 	struct amdgpu_bo *pt_bo;
1015 	struct amdgpu_bo_vm *pt;
1016 	int r;
1017 
1018 	if (entry->bo)
1019 		return 0;
1020 
1021 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1022 	if (r)
1023 		return r;
1024 
1025 	/* Keep a reference to the root directory to avoid
1026 	 * freeing them up in the wrong order.
1027 	 */
1028 	pt_bo = &pt->bo;
1029 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1030 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1031 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1032 	if (r)
1033 		goto error_free_pt;
1034 
1035 	return 0;
1036 
1037 error_free_pt:
1038 	amdgpu_bo_unref(&pt->shadow);
1039 	amdgpu_bo_unref(&pt_bo);
1040 	return r;
1041 }
1042 
1043 /**
1044  * amdgpu_vm_free_table - fre one PD/PT
1045  *
1046  * @entry: PDE to free
1047  */
1048 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1049 {
1050 	struct amdgpu_bo *shadow;
1051 
1052 	if (!entry->bo)
1053 		return;
1054 	shadow = amdgpu_bo_shadowed(entry->bo);
1055 	entry->bo->vm_bo = NULL;
1056 	list_del(&entry->vm_status);
1057 	amdgpu_bo_unref(&shadow);
1058 	amdgpu_bo_unref(&entry->bo);
1059 }
1060 
1061 /**
1062  * amdgpu_vm_free_pts - free PD/PT levels
1063  *
1064  * @adev: amdgpu device structure
1065  * @vm: amdgpu vm structure
1066  * @start: optional cursor where to start freeing PDs/PTs
1067  *
1068  * Free the page directory or page table level and all sub levels.
1069  */
1070 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1071 			       struct amdgpu_vm *vm,
1072 			       struct amdgpu_vm_pt_cursor *start)
1073 {
1074 	struct amdgpu_vm_pt_cursor cursor;
1075 	struct amdgpu_vm_bo_base *entry;
1076 
1077 	vm->bulk_moveable = false;
1078 
1079 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1080 		amdgpu_vm_free_table(entry);
1081 
1082 	if (start)
1083 		amdgpu_vm_free_table(start->entry);
1084 }
1085 
1086 /**
1087  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1088  *
1089  * @adev: amdgpu_device pointer
1090  */
1091 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1092 {
1093 	const struct amdgpu_ip_block *ip_block;
1094 	bool has_compute_vm_bug;
1095 	struct amdgpu_ring *ring;
1096 	int i;
1097 
1098 	has_compute_vm_bug = false;
1099 
1100 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1101 	if (ip_block) {
1102 		/* Compute has a VM bug for GFX version < 7.
1103 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1104 		if (ip_block->version->major <= 7)
1105 			has_compute_vm_bug = true;
1106 		else if (ip_block->version->major == 8)
1107 			if (adev->gfx.mec_fw_version < 673)
1108 				has_compute_vm_bug = true;
1109 	}
1110 
1111 	for (i = 0; i < adev->num_rings; i++) {
1112 		ring = adev->rings[i];
1113 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1114 			/* only compute rings */
1115 			ring->has_compute_vm_bug = has_compute_vm_bug;
1116 		else
1117 			ring->has_compute_vm_bug = false;
1118 	}
1119 }
1120 
1121 /**
1122  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1123  *
1124  * @ring: ring on which the job will be submitted
1125  * @job: job to submit
1126  *
1127  * Returns:
1128  * True if sync is needed.
1129  */
1130 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1131 				  struct amdgpu_job *job)
1132 {
1133 	struct amdgpu_device *adev = ring->adev;
1134 	unsigned vmhub = ring->funcs->vmhub;
1135 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1136 	struct amdgpu_vmid *id;
1137 	bool gds_switch_needed;
1138 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1139 
1140 	if (job->vmid == 0)
1141 		return false;
1142 	id = &id_mgr->ids[job->vmid];
1143 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1144 		id->gds_base != job->gds_base ||
1145 		id->gds_size != job->gds_size ||
1146 		id->gws_base != job->gws_base ||
1147 		id->gws_size != job->gws_size ||
1148 		id->oa_base != job->oa_base ||
1149 		id->oa_size != job->oa_size);
1150 
1151 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1152 		return true;
1153 
1154 	return vm_flush_needed || gds_switch_needed;
1155 }
1156 
1157 /**
1158  * amdgpu_vm_flush - hardware flush the vm
1159  *
1160  * @ring: ring to use for flush
1161  * @job:  related job
1162  * @need_pipe_sync: is pipe sync needed
1163  *
1164  * Emit a VM flush when it is necessary.
1165  *
1166  * Returns:
1167  * 0 on success, errno otherwise.
1168  */
1169 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1170 		    bool need_pipe_sync)
1171 {
1172 	struct amdgpu_device *adev = ring->adev;
1173 	unsigned vmhub = ring->funcs->vmhub;
1174 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1175 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1176 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1177 		id->gds_base != job->gds_base ||
1178 		id->gds_size != job->gds_size ||
1179 		id->gws_base != job->gws_base ||
1180 		id->gws_size != job->gws_size ||
1181 		id->oa_base != job->oa_base ||
1182 		id->oa_size != job->oa_size);
1183 	bool vm_flush_needed = job->vm_needs_flush;
1184 	struct dma_fence *fence = NULL;
1185 	bool pasid_mapping_needed = false;
1186 	unsigned patch_offset = 0;
1187 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1188 	int r;
1189 
1190 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1191 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1192 
1193 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1194 		gds_switch_needed = true;
1195 		vm_flush_needed = true;
1196 		pasid_mapping_needed = true;
1197 	}
1198 
1199 	mutex_lock(&id_mgr->lock);
1200 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1201 	    !dma_fence_is_signaled(id->pasid_mapping))
1202 		pasid_mapping_needed = true;
1203 	mutex_unlock(&id_mgr->lock);
1204 
1205 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1206 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1207 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1208 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1209 		ring->funcs->emit_wreg;
1210 
1211 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1212 		return 0;
1213 
1214 	if (ring->funcs->init_cond_exec)
1215 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1216 
1217 	if (need_pipe_sync)
1218 		amdgpu_ring_emit_pipeline_sync(ring);
1219 
1220 	if (vm_flush_needed) {
1221 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1222 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1223 	}
1224 
1225 	if (pasid_mapping_needed)
1226 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1227 
1228 	if (vm_flush_needed || pasid_mapping_needed) {
1229 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1230 		if (r)
1231 			return r;
1232 	}
1233 
1234 	if (vm_flush_needed) {
1235 		mutex_lock(&id_mgr->lock);
1236 		dma_fence_put(id->last_flush);
1237 		id->last_flush = dma_fence_get(fence);
1238 		id->current_gpu_reset_count =
1239 			atomic_read(&adev->gpu_reset_counter);
1240 		mutex_unlock(&id_mgr->lock);
1241 	}
1242 
1243 	if (pasid_mapping_needed) {
1244 		mutex_lock(&id_mgr->lock);
1245 		id->pasid = job->pasid;
1246 		dma_fence_put(id->pasid_mapping);
1247 		id->pasid_mapping = dma_fence_get(fence);
1248 		mutex_unlock(&id_mgr->lock);
1249 	}
1250 	dma_fence_put(fence);
1251 
1252 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1253 		id->gds_base = job->gds_base;
1254 		id->gds_size = job->gds_size;
1255 		id->gws_base = job->gws_base;
1256 		id->gws_size = job->gws_size;
1257 		id->oa_base = job->oa_base;
1258 		id->oa_size = job->oa_size;
1259 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1260 					    job->gds_size, job->gws_base,
1261 					    job->gws_size, job->oa_base,
1262 					    job->oa_size);
1263 	}
1264 
1265 	if (ring->funcs->patch_cond_exec)
1266 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1267 
1268 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1269 	if (ring->funcs->emit_switch_buffer) {
1270 		amdgpu_ring_emit_switch_buffer(ring);
1271 		amdgpu_ring_emit_switch_buffer(ring);
1272 	}
1273 	return 0;
1274 }
1275 
1276 /**
1277  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1278  *
1279  * @vm: requested vm
1280  * @bo: requested buffer object
1281  *
1282  * Find @bo inside the requested vm.
1283  * Search inside the @bos vm list for the requested vm
1284  * Returns the found bo_va or NULL if none is found
1285  *
1286  * Object has to be reserved!
1287  *
1288  * Returns:
1289  * Found bo_va or NULL.
1290  */
1291 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1292 				       struct amdgpu_bo *bo)
1293 {
1294 	struct amdgpu_vm_bo_base *base;
1295 
1296 	for (base = bo->vm_bo; base; base = base->next) {
1297 		if (base->vm != vm)
1298 			continue;
1299 
1300 		return container_of(base, struct amdgpu_bo_va, base);
1301 	}
1302 	return NULL;
1303 }
1304 
1305 /**
1306  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1307  *
1308  * @pages_addr: optional DMA address to use for lookup
1309  * @addr: the unmapped addr
1310  *
1311  * Look up the physical address of the page that the pte resolves
1312  * to.
1313  *
1314  * Returns:
1315  * The pointer for the page table entry.
1316  */
1317 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1318 {
1319 	uint64_t result;
1320 
1321 	/* page table offset */
1322 	result = pages_addr[addr >> PAGE_SHIFT];
1323 
1324 	/* in case cpu page size != gpu page size*/
1325 	result |= addr & (~PAGE_MASK);
1326 
1327 	result &= 0xFFFFFFFFFFFFF000ULL;
1328 
1329 	return result;
1330 }
1331 
1332 /**
1333  * amdgpu_vm_update_pde - update a single level in the hierarchy
1334  *
1335  * @params: parameters for the update
1336  * @vm: requested vm
1337  * @entry: entry to update
1338  *
1339  * Makes sure the requested entry in parent is up to date.
1340  */
1341 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1342 				struct amdgpu_vm *vm,
1343 				struct amdgpu_vm_bo_base *entry)
1344 {
1345 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1346 	struct amdgpu_bo *bo = parent->bo, *pbo;
1347 	uint64_t pde, pt, flags;
1348 	unsigned level;
1349 
1350 	for (level = 0, pbo = bo->parent; pbo; ++level)
1351 		pbo = pbo->parent;
1352 
1353 	level += params->adev->vm_manager.root_level;
1354 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1355 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1356 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1357 					1, 0, flags);
1358 }
1359 
1360 /**
1361  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1362  *
1363  * @adev: amdgpu_device pointer
1364  * @vm: related vm
1365  *
1366  * Mark all PD level as invalid after an error.
1367  */
1368 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1369 				     struct amdgpu_vm *vm)
1370 {
1371 	struct amdgpu_vm_pt_cursor cursor;
1372 	struct amdgpu_vm_bo_base *entry;
1373 
1374 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1375 		if (entry->bo && !entry->moved)
1376 			amdgpu_vm_bo_relocated(entry);
1377 }
1378 
1379 /**
1380  * amdgpu_vm_update_pdes - make sure that all directories are valid
1381  *
1382  * @adev: amdgpu_device pointer
1383  * @vm: requested vm
1384  * @immediate: submit immediately to the paging queue
1385  *
1386  * Makes sure all directories are up to date.
1387  *
1388  * Returns:
1389  * 0 for success, error for failure.
1390  */
1391 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1392 			  struct amdgpu_vm *vm, bool immediate)
1393 {
1394 	struct amdgpu_vm_update_params params;
1395 	int r, idx;
1396 
1397 	if (list_empty(&vm->relocated))
1398 		return 0;
1399 
1400 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1401 		return -ENODEV;
1402 
1403 	memset(&params, 0, sizeof(params));
1404 	params.adev = adev;
1405 	params.vm = vm;
1406 	params.immediate = immediate;
1407 
1408 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1409 	if (r)
1410 		goto exit;
1411 
1412 	while (!list_empty(&vm->relocated)) {
1413 		struct amdgpu_vm_bo_base *entry;
1414 
1415 		entry = list_first_entry(&vm->relocated,
1416 					 struct amdgpu_vm_bo_base,
1417 					 vm_status);
1418 		amdgpu_vm_bo_idle(entry);
1419 
1420 		r = amdgpu_vm_update_pde(&params, vm, entry);
1421 		if (r)
1422 			goto error;
1423 	}
1424 
1425 	r = vm->update_funcs->commit(&params, &vm->last_update);
1426 	if (r)
1427 		goto error;
1428 	drm_dev_exit(idx);
1429 	return 0;
1430 
1431 error:
1432 	amdgpu_vm_invalidate_pds(adev, vm);
1433 exit:
1434 	drm_dev_exit(idx);
1435 	return r;
1436 }
1437 
1438 /*
1439  * amdgpu_vm_update_flags - figure out flags for PTE updates
1440  *
1441  * Make sure to set the right flags for the PTEs at the desired level.
1442  */
1443 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1444 				   struct amdgpu_bo_vm *pt, unsigned int level,
1445 				   uint64_t pe, uint64_t addr,
1446 				   unsigned int count, uint32_t incr,
1447 				   uint64_t flags)
1448 
1449 {
1450 	if (level != AMDGPU_VM_PTB) {
1451 		flags |= AMDGPU_PDE_PTE;
1452 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1453 
1454 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1455 		   !(flags & AMDGPU_PTE_VALID) &&
1456 		   !(flags & AMDGPU_PTE_PRT)) {
1457 
1458 		/* Workaround for fault priority problem on GMC9 */
1459 		flags |= AMDGPU_PTE_EXECUTABLE;
1460 	}
1461 
1462 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1463 					 flags);
1464 }
1465 
1466 /**
1467  * amdgpu_vm_fragment - get fragment for PTEs
1468  *
1469  * @params: see amdgpu_vm_update_params definition
1470  * @start: first PTE to handle
1471  * @end: last PTE to handle
1472  * @flags: hw mapping flags
1473  * @frag: resulting fragment size
1474  * @frag_end: end of this fragment
1475  *
1476  * Returns the first possible fragment for the start and end address.
1477  */
1478 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1479 			       uint64_t start, uint64_t end, uint64_t flags,
1480 			       unsigned int *frag, uint64_t *frag_end)
1481 {
1482 	/**
1483 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1484 	 * field in the PTE. When this field is set to a non-zero value, page
1485 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1486 	 * flags are considered valid for all PTEs within the fragment range
1487 	 * and corresponding mappings are assumed to be physically contiguous.
1488 	 *
1489 	 * The L1 TLB can store a single PTE for the whole fragment,
1490 	 * significantly increasing the space available for translation
1491 	 * caching. This leads to large improvements in throughput when the
1492 	 * TLB is under pressure.
1493 	 *
1494 	 * The L2 TLB distributes small and large fragments into two
1495 	 * asymmetric partitions. The large fragment cache is significantly
1496 	 * larger. Thus, we try to use large fragments wherever possible.
1497 	 * Userspace can support this by aligning virtual base address and
1498 	 * allocation size to the fragment size.
1499 	 *
1500 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1501 	 * is now directly feed with small/huge/giant pages from the walker.
1502 	 */
1503 	unsigned max_frag;
1504 
1505 	if (params->adev->asic_type < CHIP_VEGA10)
1506 		max_frag = params->adev->vm_manager.fragment_size;
1507 	else
1508 		max_frag = 31;
1509 
1510 	/* system pages are non continuously */
1511 	if (params->pages_addr) {
1512 		*frag = 0;
1513 		*frag_end = end;
1514 		return;
1515 	}
1516 
1517 	/* This intentionally wraps around if no bit is set */
1518 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1519 	if (*frag >= max_frag) {
1520 		*frag = max_frag;
1521 		*frag_end = end & ~((1ULL << max_frag) - 1);
1522 	} else {
1523 		*frag_end = start + (1 << *frag);
1524 	}
1525 }
1526 
1527 /**
1528  * amdgpu_vm_update_ptes - make sure that page tables are valid
1529  *
1530  * @params: see amdgpu_vm_update_params definition
1531  * @start: start of GPU address range
1532  * @end: end of GPU address range
1533  * @dst: destination address to map to, the next dst inside the function
1534  * @flags: mapping flags
1535  *
1536  * Update the page tables in the range @start - @end.
1537  *
1538  * Returns:
1539  * 0 for success, -EINVAL for failure.
1540  */
1541 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1542 				 uint64_t start, uint64_t end,
1543 				 uint64_t dst, uint64_t flags)
1544 {
1545 	struct amdgpu_device *adev = params->adev;
1546 	struct amdgpu_vm_pt_cursor cursor;
1547 	uint64_t frag_start = start, frag_end;
1548 	unsigned int frag;
1549 	int r;
1550 
1551 	/* figure out the initial fragment */
1552 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1553 
1554 	/* walk over the address space and update the PTs */
1555 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1556 	while (cursor.pfn < end) {
1557 		unsigned shift, parent_shift, mask;
1558 		uint64_t incr, entry_end, pe_start;
1559 		struct amdgpu_bo *pt;
1560 
1561 		if (!params->unlocked) {
1562 			/* make sure that the page tables covering the
1563 			 * address range are actually allocated
1564 			 */
1565 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1566 						&cursor, params->immediate);
1567 			if (r)
1568 				return r;
1569 		}
1570 
1571 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1572 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1573 		if (params->unlocked) {
1574 			/* Unlocked updates are only allowed on the leaves */
1575 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1576 				continue;
1577 		} else if (adev->asic_type < CHIP_VEGA10 &&
1578 			   (flags & AMDGPU_PTE_VALID)) {
1579 			/* No huge page support before GMC v9 */
1580 			if (cursor.level != AMDGPU_VM_PTB) {
1581 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1582 					return -ENOENT;
1583 				continue;
1584 			}
1585 		} else if (frag < shift) {
1586 			/* We can't use this level when the fragment size is
1587 			 * smaller than the address shift. Go to the next
1588 			 * child entry and try again.
1589 			 */
1590 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1591 				continue;
1592 		} else if (frag >= parent_shift) {
1593 			/* If the fragment size is even larger than the parent
1594 			 * shift we should go up one level and check it again.
1595 			 */
1596 			if (!amdgpu_vm_pt_ancestor(&cursor))
1597 				return -EINVAL;
1598 			continue;
1599 		}
1600 
1601 		pt = cursor.entry->bo;
1602 		if (!pt) {
1603 			/* We need all PDs and PTs for mapping something, */
1604 			if (flags & AMDGPU_PTE_VALID)
1605 				return -ENOENT;
1606 
1607 			/* but unmapping something can happen at a higher
1608 			 * level.
1609 			 */
1610 			if (!amdgpu_vm_pt_ancestor(&cursor))
1611 				return -EINVAL;
1612 
1613 			pt = cursor.entry->bo;
1614 			shift = parent_shift;
1615 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1616 				   1ULL << shift));
1617 		}
1618 
1619 		/* Looks good so far, calculate parameters for the update */
1620 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1621 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1622 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1623 		entry_end = ((uint64_t)mask + 1) << shift;
1624 		entry_end += cursor.pfn & ~(entry_end - 1);
1625 		entry_end = min(entry_end, end);
1626 
1627 		do {
1628 			struct amdgpu_vm *vm = params->vm;
1629 			uint64_t upd_end = min(entry_end, frag_end);
1630 			unsigned nptes = (upd_end - frag_start) >> shift;
1631 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1632 
1633 			/* This can happen when we set higher level PDs to
1634 			 * silent to stop fault floods.
1635 			 */
1636 			nptes = max(nptes, 1u);
1637 
1638 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1639 						    min(nptes, 32u), dst, incr, upd_flags,
1640 						    vm->task_info.pid,
1641 						    vm->immediate.fence_context);
1642 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1643 					       cursor.level, pe_start, dst,
1644 					       nptes, incr, upd_flags);
1645 
1646 			pe_start += nptes * 8;
1647 			dst += nptes * incr;
1648 
1649 			frag_start = upd_end;
1650 			if (frag_start >= frag_end) {
1651 				/* figure out the next fragment */
1652 				amdgpu_vm_fragment(params, frag_start, end,
1653 						   flags, &frag, &frag_end);
1654 				if (frag < shift)
1655 					break;
1656 			}
1657 		} while (frag_start < entry_end);
1658 
1659 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1660 			/* Free all child entries.
1661 			 * Update the tables with the flags and addresses and free up subsequent
1662 			 * tables in the case of huge pages or freed up areas.
1663 			 * This is the maximum you can free, because all other page tables are not
1664 			 * completely covered by the range and so potentially still in use.
1665 			 */
1666 			while (cursor.pfn < frag_start) {
1667 				/* Make sure previous mapping is freed */
1668 				if (cursor.entry->bo) {
1669 					params->table_freed = true;
1670 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1671 				}
1672 				amdgpu_vm_pt_next(adev, &cursor);
1673 			}
1674 
1675 		} else if (frag >= shift) {
1676 			/* or just move on to the next on the same level. */
1677 			amdgpu_vm_pt_next(adev, &cursor);
1678 		}
1679 	}
1680 
1681 	return 0;
1682 }
1683 
1684 /**
1685  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1686  *
1687  * @adev: amdgpu_device pointer of the VM
1688  * @bo_adev: amdgpu_device pointer of the mapped BO
1689  * @vm: requested vm
1690  * @immediate: immediate submission in a page fault
1691  * @unlocked: unlocked invalidation during MM callback
1692  * @resv: fences we need to sync to
1693  * @start: start of mapped range
1694  * @last: last mapped entry
1695  * @flags: flags for the entries
1696  * @offset: offset into nodes and pages_addr
1697  * @res: ttm_resource to map
1698  * @pages_addr: DMA addresses to use for mapping
1699  * @fence: optional resulting fence
1700  * @table_freed: return true if page table is freed
1701  *
1702  * Fill in the page table entries between @start and @last.
1703  *
1704  * Returns:
1705  * 0 for success, -EINVAL for failure.
1706  */
1707 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1708 				struct amdgpu_device *bo_adev,
1709 				struct amdgpu_vm *vm, bool immediate,
1710 				bool unlocked, struct dma_resv *resv,
1711 				uint64_t start, uint64_t last,
1712 				uint64_t flags, uint64_t offset,
1713 				struct ttm_resource *res,
1714 				dma_addr_t *pages_addr,
1715 				struct dma_fence **fence,
1716 				bool *table_freed)
1717 {
1718 	struct amdgpu_vm_update_params params;
1719 	struct amdgpu_res_cursor cursor;
1720 	enum amdgpu_sync_mode sync_mode;
1721 	int r, idx;
1722 
1723 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1724 		return -ENODEV;
1725 
1726 	memset(&params, 0, sizeof(params));
1727 	params.adev = adev;
1728 	params.vm = vm;
1729 	params.immediate = immediate;
1730 	params.pages_addr = pages_addr;
1731 	params.unlocked = unlocked;
1732 
1733 	/* Implicitly sync to command submissions in the same VM before
1734 	 * unmapping. Sync to moving fences before mapping.
1735 	 */
1736 	if (!(flags & AMDGPU_PTE_VALID))
1737 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1738 	else
1739 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1740 
1741 	amdgpu_vm_eviction_lock(vm);
1742 	if (vm->evicting) {
1743 		r = -EBUSY;
1744 		goto error_unlock;
1745 	}
1746 
1747 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1748 		struct dma_fence *tmp = dma_fence_get_stub();
1749 
1750 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1751 		swap(vm->last_unlocked, tmp);
1752 		dma_fence_put(tmp);
1753 	}
1754 
1755 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1756 	if (r)
1757 		goto error_unlock;
1758 
1759 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1760 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1761 	while (cursor.remaining) {
1762 		uint64_t tmp, num_entries, addr;
1763 
1764 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1765 		if (pages_addr) {
1766 			bool contiguous = true;
1767 
1768 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1769 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1770 				uint64_t count;
1771 
1772 				contiguous = pages_addr[pfn + 1] ==
1773 					pages_addr[pfn] + PAGE_SIZE;
1774 
1775 				tmp = num_entries /
1776 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1777 				for (count = 2; count < tmp; ++count) {
1778 					uint64_t idx = pfn + count;
1779 
1780 					if (contiguous != (pages_addr[idx] ==
1781 					    pages_addr[idx - 1] + PAGE_SIZE))
1782 						break;
1783 				}
1784 				num_entries = count *
1785 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1786 			}
1787 
1788 			if (!contiguous) {
1789 				addr = cursor.start;
1790 				params.pages_addr = pages_addr;
1791 			} else {
1792 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1793 				params.pages_addr = NULL;
1794 			}
1795 
1796 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1797 			addr = bo_adev->vm_manager.vram_base_offset +
1798 				cursor.start;
1799 		} else {
1800 			addr = 0;
1801 		}
1802 
1803 		tmp = start + num_entries;
1804 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1805 		if (r)
1806 			goto error_unlock;
1807 
1808 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1809 		start = tmp;
1810 	}
1811 
1812 	r = vm->update_funcs->commit(&params, fence);
1813 
1814 	if (table_freed)
1815 		*table_freed = *table_freed || params.table_freed;
1816 
1817 error_unlock:
1818 	amdgpu_vm_eviction_unlock(vm);
1819 	drm_dev_exit(idx);
1820 	return r;
1821 }
1822 
1823 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1824 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1825 {
1826 	struct amdgpu_bo_va *bo_va, *tmp;
1827 
1828 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1829 		if (!bo_va->base.bo)
1830 			continue;
1831 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1832 				gtt_mem, cpu_mem);
1833 	}
1834 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1835 		if (!bo_va->base.bo)
1836 			continue;
1837 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1838 				gtt_mem, cpu_mem);
1839 	}
1840 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1841 		if (!bo_va->base.bo)
1842 			continue;
1843 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1844 				gtt_mem, cpu_mem);
1845 	}
1846 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1847 		if (!bo_va->base.bo)
1848 			continue;
1849 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1850 				gtt_mem, cpu_mem);
1851 	}
1852 	spin_lock(&vm->invalidated_lock);
1853 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1854 		if (!bo_va->base.bo)
1855 			continue;
1856 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1857 				gtt_mem, cpu_mem);
1858 	}
1859 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1860 		if (!bo_va->base.bo)
1861 			continue;
1862 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1863 				gtt_mem, cpu_mem);
1864 	}
1865 	spin_unlock(&vm->invalidated_lock);
1866 }
1867 /**
1868  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1869  *
1870  * @adev: amdgpu_device pointer
1871  * @bo_va: requested BO and VM object
1872  * @clear: if true clear the entries
1873  * @table_freed: return true if page table is freed
1874  *
1875  * Fill in the page table entries for @bo_va.
1876  *
1877  * Returns:
1878  * 0 for success, -EINVAL for failure.
1879  */
1880 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1881 			bool clear, bool *table_freed)
1882 {
1883 	struct amdgpu_bo *bo = bo_va->base.bo;
1884 	struct amdgpu_vm *vm = bo_va->base.vm;
1885 	struct amdgpu_bo_va_mapping *mapping;
1886 	dma_addr_t *pages_addr = NULL;
1887 	struct ttm_resource *mem;
1888 	struct dma_fence **last_update;
1889 	struct dma_resv *resv;
1890 	uint64_t flags;
1891 	struct amdgpu_device *bo_adev = adev;
1892 	int r;
1893 
1894 	if (clear || !bo) {
1895 		mem = NULL;
1896 		resv = vm->root.bo->tbo.base.resv;
1897 	} else {
1898 		struct drm_gem_object *obj = &bo->tbo.base;
1899 
1900 		resv = bo->tbo.base.resv;
1901 		if (obj->import_attach && bo_va->is_xgmi) {
1902 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1903 			struct drm_gem_object *gobj = dma_buf->priv;
1904 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1905 
1906 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1907 				bo = gem_to_amdgpu_bo(gobj);
1908 		}
1909 		mem = bo->tbo.resource;
1910 		if (mem->mem_type == TTM_PL_TT ||
1911 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1912 			pages_addr = bo->tbo.ttm->dma_address;
1913 	}
1914 
1915 	if (bo) {
1916 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1917 
1918 		if (amdgpu_bo_encrypted(bo))
1919 			flags |= AMDGPU_PTE_TMZ;
1920 
1921 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1922 	} else {
1923 		flags = 0x0;
1924 	}
1925 
1926 	if (clear || (bo && bo->tbo.base.resv ==
1927 		      vm->root.bo->tbo.base.resv))
1928 		last_update = &vm->last_update;
1929 	else
1930 		last_update = &bo_va->last_pt_update;
1931 
1932 	if (!clear && bo_va->base.moved) {
1933 		bo_va->base.moved = false;
1934 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1935 
1936 	} else if (bo_va->cleared != clear) {
1937 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1938 	}
1939 
1940 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1941 		uint64_t update_flags = flags;
1942 
1943 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1944 		 * but in case of something, we filter the flags in first place
1945 		 */
1946 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1947 			update_flags &= ~AMDGPU_PTE_READABLE;
1948 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1949 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1950 
1951 		/* Apply ASIC specific mapping flags */
1952 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1953 
1954 		trace_amdgpu_vm_bo_update(mapping);
1955 
1956 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1957 						resv, mapping->start,
1958 						mapping->last, update_flags,
1959 						mapping->offset, mem,
1960 						pages_addr, last_update, table_freed);
1961 		if (r)
1962 			return r;
1963 	}
1964 
1965 	/* If the BO is not in its preferred location add it back to
1966 	 * the evicted list so that it gets validated again on the
1967 	 * next command submission.
1968 	 */
1969 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1970 		uint32_t mem_type = bo->tbo.resource->mem_type;
1971 
1972 		if (!(bo->preferred_domains &
1973 		      amdgpu_mem_type_to_domain(mem_type)))
1974 			amdgpu_vm_bo_evicted(&bo_va->base);
1975 		else
1976 			amdgpu_vm_bo_idle(&bo_va->base);
1977 	} else {
1978 		amdgpu_vm_bo_done(&bo_va->base);
1979 	}
1980 
1981 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1982 	bo_va->cleared = clear;
1983 
1984 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1985 		list_for_each_entry(mapping, &bo_va->valids, list)
1986 			trace_amdgpu_vm_bo_mapping(mapping);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /**
1993  * amdgpu_vm_update_prt_state - update the global PRT state
1994  *
1995  * @adev: amdgpu_device pointer
1996  */
1997 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1998 {
1999 	unsigned long flags;
2000 	bool enable;
2001 
2002 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2003 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2004 	adev->gmc.gmc_funcs->set_prt(adev, enable);
2005 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2006 }
2007 
2008 /**
2009  * amdgpu_vm_prt_get - add a PRT user
2010  *
2011  * @adev: amdgpu_device pointer
2012  */
2013 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2014 {
2015 	if (!adev->gmc.gmc_funcs->set_prt)
2016 		return;
2017 
2018 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2019 		amdgpu_vm_update_prt_state(adev);
2020 }
2021 
2022 /**
2023  * amdgpu_vm_prt_put - drop a PRT user
2024  *
2025  * @adev: amdgpu_device pointer
2026  */
2027 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2028 {
2029 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2030 		amdgpu_vm_update_prt_state(adev);
2031 }
2032 
2033 /**
2034  * amdgpu_vm_prt_cb - callback for updating the PRT status
2035  *
2036  * @fence: fence for the callback
2037  * @_cb: the callback function
2038  */
2039 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2040 {
2041 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2042 
2043 	amdgpu_vm_prt_put(cb->adev);
2044 	kfree(cb);
2045 }
2046 
2047 /**
2048  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2049  *
2050  * @adev: amdgpu_device pointer
2051  * @fence: fence for the callback
2052  */
2053 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2054 				 struct dma_fence *fence)
2055 {
2056 	struct amdgpu_prt_cb *cb;
2057 
2058 	if (!adev->gmc.gmc_funcs->set_prt)
2059 		return;
2060 
2061 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2062 	if (!cb) {
2063 		/* Last resort when we are OOM */
2064 		if (fence)
2065 			dma_fence_wait(fence, false);
2066 
2067 		amdgpu_vm_prt_put(adev);
2068 	} else {
2069 		cb->adev = adev;
2070 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2071 						     amdgpu_vm_prt_cb))
2072 			amdgpu_vm_prt_cb(fence, &cb->cb);
2073 	}
2074 }
2075 
2076 /**
2077  * amdgpu_vm_free_mapping - free a mapping
2078  *
2079  * @adev: amdgpu_device pointer
2080  * @vm: requested vm
2081  * @mapping: mapping to be freed
2082  * @fence: fence of the unmap operation
2083  *
2084  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2085  */
2086 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2087 				   struct amdgpu_vm *vm,
2088 				   struct amdgpu_bo_va_mapping *mapping,
2089 				   struct dma_fence *fence)
2090 {
2091 	if (mapping->flags & AMDGPU_PTE_PRT)
2092 		amdgpu_vm_add_prt_cb(adev, fence);
2093 	kfree(mapping);
2094 }
2095 
2096 /**
2097  * amdgpu_vm_prt_fini - finish all prt mappings
2098  *
2099  * @adev: amdgpu_device pointer
2100  * @vm: requested vm
2101  *
2102  * Register a cleanup callback to disable PRT support after VM dies.
2103  */
2104 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2105 {
2106 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2107 	struct dma_resv_iter cursor;
2108 	struct dma_fence *fence;
2109 
2110 	dma_resv_for_each_fence(&cursor, resv, true, fence) {
2111 		/* Add a callback for each fence in the reservation object */
2112 		amdgpu_vm_prt_get(adev);
2113 		amdgpu_vm_add_prt_cb(adev, fence);
2114 	}
2115 }
2116 
2117 /**
2118  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2119  *
2120  * @adev: amdgpu_device pointer
2121  * @vm: requested vm
2122  * @fence: optional resulting fence (unchanged if no work needed to be done
2123  * or if an error occurred)
2124  *
2125  * Make sure all freed BOs are cleared in the PT.
2126  * PTs have to be reserved and mutex must be locked!
2127  *
2128  * Returns:
2129  * 0 for success.
2130  *
2131  */
2132 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2133 			  struct amdgpu_vm *vm,
2134 			  struct dma_fence **fence)
2135 {
2136 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2137 	struct amdgpu_bo_va_mapping *mapping;
2138 	uint64_t init_pte_value = 0;
2139 	struct dma_fence *f = NULL;
2140 	int r;
2141 
2142 	while (!list_empty(&vm->freed)) {
2143 		mapping = list_first_entry(&vm->freed,
2144 			struct amdgpu_bo_va_mapping, list);
2145 		list_del(&mapping->list);
2146 
2147 		if (vm->pte_support_ats &&
2148 		    mapping->start < AMDGPU_GMC_HOLE_START)
2149 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2150 
2151 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2152 						resv, mapping->start,
2153 						mapping->last, init_pte_value,
2154 						0, NULL, NULL, &f, NULL);
2155 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2156 		if (r) {
2157 			dma_fence_put(f);
2158 			return r;
2159 		}
2160 	}
2161 
2162 	if (fence && f) {
2163 		dma_fence_put(*fence);
2164 		*fence = f;
2165 	} else {
2166 		dma_fence_put(f);
2167 	}
2168 
2169 	return 0;
2170 
2171 }
2172 
2173 /**
2174  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2175  *
2176  * @adev: amdgpu_device pointer
2177  * @vm: requested vm
2178  *
2179  * Make sure all BOs which are moved are updated in the PTs.
2180  *
2181  * Returns:
2182  * 0 for success.
2183  *
2184  * PTs have to be reserved!
2185  */
2186 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2187 			   struct amdgpu_vm *vm)
2188 {
2189 	struct amdgpu_bo_va *bo_va, *tmp;
2190 	struct dma_resv *resv;
2191 	bool clear;
2192 	int r;
2193 
2194 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2195 		/* Per VM BOs never need to bo cleared in the page tables */
2196 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2197 		if (r)
2198 			return r;
2199 	}
2200 
2201 	spin_lock(&vm->invalidated_lock);
2202 	while (!list_empty(&vm->invalidated)) {
2203 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2204 					 base.vm_status);
2205 		resv = bo_va->base.bo->tbo.base.resv;
2206 		spin_unlock(&vm->invalidated_lock);
2207 
2208 		/* Try to reserve the BO to avoid clearing its ptes */
2209 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2210 			clear = false;
2211 		/* Somebody else is using the BO right now */
2212 		else
2213 			clear = true;
2214 
2215 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2216 		if (r)
2217 			return r;
2218 
2219 		if (!clear)
2220 			dma_resv_unlock(resv);
2221 		spin_lock(&vm->invalidated_lock);
2222 	}
2223 	spin_unlock(&vm->invalidated_lock);
2224 
2225 	return 0;
2226 }
2227 
2228 /**
2229  * amdgpu_vm_bo_add - add a bo to a specific vm
2230  *
2231  * @adev: amdgpu_device pointer
2232  * @vm: requested vm
2233  * @bo: amdgpu buffer object
2234  *
2235  * Add @bo into the requested vm.
2236  * Add @bo to the list of bos associated with the vm
2237  *
2238  * Returns:
2239  * Newly added bo_va or NULL for failure
2240  *
2241  * Object has to be reserved!
2242  */
2243 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2244 				      struct amdgpu_vm *vm,
2245 				      struct amdgpu_bo *bo)
2246 {
2247 	struct amdgpu_bo_va *bo_va;
2248 
2249 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2250 	if (bo_va == NULL) {
2251 		return NULL;
2252 	}
2253 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2254 
2255 	bo_va->ref_count = 1;
2256 	INIT_LIST_HEAD(&bo_va->valids);
2257 	INIT_LIST_HEAD(&bo_va->invalids);
2258 
2259 	if (!bo)
2260 		return bo_va;
2261 
2262 	dma_resv_assert_held(bo->tbo.base.resv);
2263 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2264 		bo_va->is_xgmi = true;
2265 		/* Power up XGMI if it can be potentially used */
2266 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2267 	}
2268 
2269 	return bo_va;
2270 }
2271 
2272 
2273 /**
2274  * amdgpu_vm_bo_insert_map - insert a new mapping
2275  *
2276  * @adev: amdgpu_device pointer
2277  * @bo_va: bo_va to store the address
2278  * @mapping: the mapping to insert
2279  *
2280  * Insert a new mapping into all structures.
2281  */
2282 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2283 				    struct amdgpu_bo_va *bo_va,
2284 				    struct amdgpu_bo_va_mapping *mapping)
2285 {
2286 	struct amdgpu_vm *vm = bo_va->base.vm;
2287 	struct amdgpu_bo *bo = bo_va->base.bo;
2288 
2289 	mapping->bo_va = bo_va;
2290 	list_add(&mapping->list, &bo_va->invalids);
2291 	amdgpu_vm_it_insert(mapping, &vm->va);
2292 
2293 	if (mapping->flags & AMDGPU_PTE_PRT)
2294 		amdgpu_vm_prt_get(adev);
2295 
2296 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2297 	    !bo_va->base.moved) {
2298 		list_move(&bo_va->base.vm_status, &vm->moved);
2299 	}
2300 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2301 }
2302 
2303 /**
2304  * amdgpu_vm_bo_map - map bo inside a vm
2305  *
2306  * @adev: amdgpu_device pointer
2307  * @bo_va: bo_va to store the address
2308  * @saddr: where to map the BO
2309  * @offset: requested offset in the BO
2310  * @size: BO size in bytes
2311  * @flags: attributes of pages (read/write/valid/etc.)
2312  *
2313  * Add a mapping of the BO at the specefied addr into the VM.
2314  *
2315  * Returns:
2316  * 0 for success, error for failure.
2317  *
2318  * Object has to be reserved and unreserved outside!
2319  */
2320 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2321 		     struct amdgpu_bo_va *bo_va,
2322 		     uint64_t saddr, uint64_t offset,
2323 		     uint64_t size, uint64_t flags)
2324 {
2325 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2326 	struct amdgpu_bo *bo = bo_va->base.bo;
2327 	struct amdgpu_vm *vm = bo_va->base.vm;
2328 	uint64_t eaddr;
2329 
2330 	/* validate the parameters */
2331 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2332 	    size == 0 || size & ~PAGE_MASK)
2333 		return -EINVAL;
2334 
2335 	/* make sure object fit at this offset */
2336 	eaddr = saddr + size - 1;
2337 	if (saddr >= eaddr ||
2338 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2339 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2340 		return -EINVAL;
2341 
2342 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2343 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2344 
2345 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2346 	if (tmp) {
2347 		/* bo and tmp overlap, invalid addr */
2348 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2349 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2350 			tmp->start, tmp->last + 1);
2351 		return -EINVAL;
2352 	}
2353 
2354 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2355 	if (!mapping)
2356 		return -ENOMEM;
2357 
2358 	mapping->start = saddr;
2359 	mapping->last = eaddr;
2360 	mapping->offset = offset;
2361 	mapping->flags = flags;
2362 
2363 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2364 
2365 	return 0;
2366 }
2367 
2368 /**
2369  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2370  *
2371  * @adev: amdgpu_device pointer
2372  * @bo_va: bo_va to store the address
2373  * @saddr: where to map the BO
2374  * @offset: requested offset in the BO
2375  * @size: BO size in bytes
2376  * @flags: attributes of pages (read/write/valid/etc.)
2377  *
2378  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2379  * mappings as we do so.
2380  *
2381  * Returns:
2382  * 0 for success, error for failure.
2383  *
2384  * Object has to be reserved and unreserved outside!
2385  */
2386 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2387 			     struct amdgpu_bo_va *bo_va,
2388 			     uint64_t saddr, uint64_t offset,
2389 			     uint64_t size, uint64_t flags)
2390 {
2391 	struct amdgpu_bo_va_mapping *mapping;
2392 	struct amdgpu_bo *bo = bo_va->base.bo;
2393 	uint64_t eaddr;
2394 	int r;
2395 
2396 	/* validate the parameters */
2397 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2398 	    size == 0 || size & ~PAGE_MASK)
2399 		return -EINVAL;
2400 
2401 	/* make sure object fit at this offset */
2402 	eaddr = saddr + size - 1;
2403 	if (saddr >= eaddr ||
2404 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2405 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2406 		return -EINVAL;
2407 
2408 	/* Allocate all the needed memory */
2409 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2410 	if (!mapping)
2411 		return -ENOMEM;
2412 
2413 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2414 	if (r) {
2415 		kfree(mapping);
2416 		return r;
2417 	}
2418 
2419 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2420 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2421 
2422 	mapping->start = saddr;
2423 	mapping->last = eaddr;
2424 	mapping->offset = offset;
2425 	mapping->flags = flags;
2426 
2427 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2428 
2429 	return 0;
2430 }
2431 
2432 /**
2433  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2434  *
2435  * @adev: amdgpu_device pointer
2436  * @bo_va: bo_va to remove the address from
2437  * @saddr: where to the BO is mapped
2438  *
2439  * Remove a mapping of the BO at the specefied addr from the VM.
2440  *
2441  * Returns:
2442  * 0 for success, error for failure.
2443  *
2444  * Object has to be reserved and unreserved outside!
2445  */
2446 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2447 		       struct amdgpu_bo_va *bo_va,
2448 		       uint64_t saddr)
2449 {
2450 	struct amdgpu_bo_va_mapping *mapping;
2451 	struct amdgpu_vm *vm = bo_va->base.vm;
2452 	bool valid = true;
2453 
2454 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2455 
2456 	list_for_each_entry(mapping, &bo_va->valids, list) {
2457 		if (mapping->start == saddr)
2458 			break;
2459 	}
2460 
2461 	if (&mapping->list == &bo_va->valids) {
2462 		valid = false;
2463 
2464 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2465 			if (mapping->start == saddr)
2466 				break;
2467 		}
2468 
2469 		if (&mapping->list == &bo_va->invalids)
2470 			return -ENOENT;
2471 	}
2472 
2473 	list_del(&mapping->list);
2474 	amdgpu_vm_it_remove(mapping, &vm->va);
2475 	mapping->bo_va = NULL;
2476 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2477 
2478 	if (valid)
2479 		list_add(&mapping->list, &vm->freed);
2480 	else
2481 		amdgpu_vm_free_mapping(adev, vm, mapping,
2482 				       bo_va->last_pt_update);
2483 
2484 	return 0;
2485 }
2486 
2487 /**
2488  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2489  *
2490  * @adev: amdgpu_device pointer
2491  * @vm: VM structure to use
2492  * @saddr: start of the range
2493  * @size: size of the range
2494  *
2495  * Remove all mappings in a range, split them as appropriate.
2496  *
2497  * Returns:
2498  * 0 for success, error for failure.
2499  */
2500 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2501 				struct amdgpu_vm *vm,
2502 				uint64_t saddr, uint64_t size)
2503 {
2504 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2505 	LIST_HEAD(removed);
2506 	uint64_t eaddr;
2507 
2508 	eaddr = saddr + size - 1;
2509 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2510 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2511 
2512 	/* Allocate all the needed memory */
2513 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2514 	if (!before)
2515 		return -ENOMEM;
2516 	INIT_LIST_HEAD(&before->list);
2517 
2518 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2519 	if (!after) {
2520 		kfree(before);
2521 		return -ENOMEM;
2522 	}
2523 	INIT_LIST_HEAD(&after->list);
2524 
2525 	/* Now gather all removed mappings */
2526 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2527 	while (tmp) {
2528 		/* Remember mapping split at the start */
2529 		if (tmp->start < saddr) {
2530 			before->start = tmp->start;
2531 			before->last = saddr - 1;
2532 			before->offset = tmp->offset;
2533 			before->flags = tmp->flags;
2534 			before->bo_va = tmp->bo_va;
2535 			list_add(&before->list, &tmp->bo_va->invalids);
2536 		}
2537 
2538 		/* Remember mapping split at the end */
2539 		if (tmp->last > eaddr) {
2540 			after->start = eaddr + 1;
2541 			after->last = tmp->last;
2542 			after->offset = tmp->offset;
2543 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2544 			after->flags = tmp->flags;
2545 			after->bo_va = tmp->bo_va;
2546 			list_add(&after->list, &tmp->bo_va->invalids);
2547 		}
2548 
2549 		list_del(&tmp->list);
2550 		list_add(&tmp->list, &removed);
2551 
2552 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2553 	}
2554 
2555 	/* And free them up */
2556 	list_for_each_entry_safe(tmp, next, &removed, list) {
2557 		amdgpu_vm_it_remove(tmp, &vm->va);
2558 		list_del(&tmp->list);
2559 
2560 		if (tmp->start < saddr)
2561 		    tmp->start = saddr;
2562 		if (tmp->last > eaddr)
2563 		    tmp->last = eaddr;
2564 
2565 		tmp->bo_va = NULL;
2566 		list_add(&tmp->list, &vm->freed);
2567 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2568 	}
2569 
2570 	/* Insert partial mapping before the range */
2571 	if (!list_empty(&before->list)) {
2572 		amdgpu_vm_it_insert(before, &vm->va);
2573 		if (before->flags & AMDGPU_PTE_PRT)
2574 			amdgpu_vm_prt_get(adev);
2575 	} else {
2576 		kfree(before);
2577 	}
2578 
2579 	/* Insert partial mapping after the range */
2580 	if (!list_empty(&after->list)) {
2581 		amdgpu_vm_it_insert(after, &vm->va);
2582 		if (after->flags & AMDGPU_PTE_PRT)
2583 			amdgpu_vm_prt_get(adev);
2584 	} else {
2585 		kfree(after);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /**
2592  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2593  *
2594  * @vm: the requested VM
2595  * @addr: the address
2596  *
2597  * Find a mapping by it's address.
2598  *
2599  * Returns:
2600  * The amdgpu_bo_va_mapping matching for addr or NULL
2601  *
2602  */
2603 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2604 							 uint64_t addr)
2605 {
2606 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2607 }
2608 
2609 /**
2610  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2611  *
2612  * @vm: the requested vm
2613  * @ticket: CS ticket
2614  *
2615  * Trace all mappings of BOs reserved during a command submission.
2616  */
2617 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2618 {
2619 	struct amdgpu_bo_va_mapping *mapping;
2620 
2621 	if (!trace_amdgpu_vm_bo_cs_enabled())
2622 		return;
2623 
2624 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2625 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2626 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2627 			struct amdgpu_bo *bo;
2628 
2629 			bo = mapping->bo_va->base.bo;
2630 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2631 			    ticket)
2632 				continue;
2633 		}
2634 
2635 		trace_amdgpu_vm_bo_cs(mapping);
2636 	}
2637 }
2638 
2639 /**
2640  * amdgpu_vm_bo_del - remove a bo from a specific vm
2641  *
2642  * @adev: amdgpu_device pointer
2643  * @bo_va: requested bo_va
2644  *
2645  * Remove @bo_va->bo from the requested vm.
2646  *
2647  * Object have to be reserved!
2648  */
2649 void amdgpu_vm_bo_del(struct amdgpu_device *adev,
2650 		      struct amdgpu_bo_va *bo_va)
2651 {
2652 	struct amdgpu_bo_va_mapping *mapping, *next;
2653 	struct amdgpu_bo *bo = bo_va->base.bo;
2654 	struct amdgpu_vm *vm = bo_va->base.vm;
2655 	struct amdgpu_vm_bo_base **base;
2656 
2657 	dma_resv_assert_held(vm->root.bo->tbo.base.resv);
2658 
2659 	if (bo) {
2660 		dma_resv_assert_held(bo->tbo.base.resv);
2661 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2662 			vm->bulk_moveable = false;
2663 
2664 		for (base = &bo_va->base.bo->vm_bo; *base;
2665 		     base = &(*base)->next) {
2666 			if (*base != &bo_va->base)
2667 				continue;
2668 
2669 			*base = bo_va->base.next;
2670 			break;
2671 		}
2672 	}
2673 
2674 	spin_lock(&vm->invalidated_lock);
2675 	list_del(&bo_va->base.vm_status);
2676 	spin_unlock(&vm->invalidated_lock);
2677 
2678 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2679 		list_del(&mapping->list);
2680 		amdgpu_vm_it_remove(mapping, &vm->va);
2681 		mapping->bo_va = NULL;
2682 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2683 		list_add(&mapping->list, &vm->freed);
2684 	}
2685 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2686 		list_del(&mapping->list);
2687 		amdgpu_vm_it_remove(mapping, &vm->va);
2688 		amdgpu_vm_free_mapping(adev, vm, mapping,
2689 				       bo_va->last_pt_update);
2690 	}
2691 
2692 	dma_fence_put(bo_va->last_pt_update);
2693 
2694 	if (bo && bo_va->is_xgmi)
2695 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2696 
2697 	kfree(bo_va);
2698 }
2699 
2700 /**
2701  * amdgpu_vm_evictable - check if we can evict a VM
2702  *
2703  * @bo: A page table of the VM.
2704  *
2705  * Check if it is possible to evict a VM.
2706  */
2707 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2708 {
2709 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2710 
2711 	/* Page tables of a destroyed VM can go away immediately */
2712 	if (!bo_base || !bo_base->vm)
2713 		return true;
2714 
2715 	/* Don't evict VM page tables while they are busy */
2716 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2717 		return false;
2718 
2719 	/* Try to block ongoing updates */
2720 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2721 		return false;
2722 
2723 	/* Don't evict VM page tables while they are updated */
2724 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2725 		amdgpu_vm_eviction_unlock(bo_base->vm);
2726 		return false;
2727 	}
2728 
2729 	bo_base->vm->evicting = true;
2730 	amdgpu_vm_eviction_unlock(bo_base->vm);
2731 	return true;
2732 }
2733 
2734 /**
2735  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2736  *
2737  * @adev: amdgpu_device pointer
2738  * @bo: amdgpu buffer object
2739  * @evicted: is the BO evicted
2740  *
2741  * Mark @bo as invalid.
2742  */
2743 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2744 			     struct amdgpu_bo *bo, bool evicted)
2745 {
2746 	struct amdgpu_vm_bo_base *bo_base;
2747 
2748 	/* shadow bo doesn't have bo base, its validation needs its parent */
2749 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2750 		bo = bo->parent;
2751 
2752 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2753 		struct amdgpu_vm *vm = bo_base->vm;
2754 
2755 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2756 			amdgpu_vm_bo_evicted(bo_base);
2757 			continue;
2758 		}
2759 
2760 		if (bo_base->moved)
2761 			continue;
2762 		bo_base->moved = true;
2763 
2764 		if (bo->tbo.type == ttm_bo_type_kernel)
2765 			amdgpu_vm_bo_relocated(bo_base);
2766 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2767 			amdgpu_vm_bo_moved(bo_base);
2768 		else
2769 			amdgpu_vm_bo_invalidated(bo_base);
2770 	}
2771 }
2772 
2773 /**
2774  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2775  *
2776  * @vm_size: VM size
2777  *
2778  * Returns:
2779  * VM page table as power of two
2780  */
2781 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2782 {
2783 	/* Total bits covered by PD + PTs */
2784 	unsigned bits = ilog2(vm_size) + 18;
2785 
2786 	/* Make sure the PD is 4K in size up to 8GB address space.
2787 	   Above that split equal between PD and PTs */
2788 	if (vm_size <= 8)
2789 		return (bits - 9);
2790 	else
2791 		return ((bits + 3) / 2);
2792 }
2793 
2794 /**
2795  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2796  *
2797  * @adev: amdgpu_device pointer
2798  * @min_vm_size: the minimum vm size in GB if it's set auto
2799  * @fragment_size_default: Default PTE fragment size
2800  * @max_level: max VMPT level
2801  * @max_bits: max address space size in bits
2802  *
2803  */
2804 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2805 			   uint32_t fragment_size_default, unsigned max_level,
2806 			   unsigned max_bits)
2807 {
2808 	unsigned int max_size = 1 << (max_bits - 30);
2809 	unsigned int vm_size;
2810 	uint64_t tmp;
2811 
2812 	/* adjust vm size first */
2813 	if (amdgpu_vm_size != -1) {
2814 		vm_size = amdgpu_vm_size;
2815 		if (vm_size > max_size) {
2816 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2817 				 amdgpu_vm_size, max_size);
2818 			vm_size = max_size;
2819 		}
2820 	} else {
2821 		struct sysinfo si;
2822 		unsigned int phys_ram_gb;
2823 
2824 		/* Optimal VM size depends on the amount of physical
2825 		 * RAM available. Underlying requirements and
2826 		 * assumptions:
2827 		 *
2828 		 *  - Need to map system memory and VRAM from all GPUs
2829 		 *     - VRAM from other GPUs not known here
2830 		 *     - Assume VRAM <= system memory
2831 		 *  - On GFX8 and older, VM space can be segmented for
2832 		 *    different MTYPEs
2833 		 *  - Need to allow room for fragmentation, guard pages etc.
2834 		 *
2835 		 * This adds up to a rough guess of system memory x3.
2836 		 * Round up to power of two to maximize the available
2837 		 * VM size with the given page table size.
2838 		 */
2839 		si_meminfo(&si);
2840 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2841 			       (1 << 30) - 1) >> 30;
2842 		vm_size = roundup_pow_of_two(
2843 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2844 	}
2845 
2846 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2847 
2848 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2849 	if (amdgpu_vm_block_size != -1)
2850 		tmp >>= amdgpu_vm_block_size - 9;
2851 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2852 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2853 	switch (adev->vm_manager.num_level) {
2854 	case 3:
2855 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2856 		break;
2857 	case 2:
2858 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2859 		break;
2860 	case 1:
2861 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2862 		break;
2863 	default:
2864 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2865 	}
2866 	/* block size depends on vm size and hw setup*/
2867 	if (amdgpu_vm_block_size != -1)
2868 		adev->vm_manager.block_size =
2869 			min((unsigned)amdgpu_vm_block_size, max_bits
2870 			    - AMDGPU_GPU_PAGE_SHIFT
2871 			    - 9 * adev->vm_manager.num_level);
2872 	else if (adev->vm_manager.num_level > 1)
2873 		adev->vm_manager.block_size = 9;
2874 	else
2875 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2876 
2877 	if (amdgpu_vm_fragment_size == -1)
2878 		adev->vm_manager.fragment_size = fragment_size_default;
2879 	else
2880 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2881 
2882 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2883 		 vm_size, adev->vm_manager.num_level + 1,
2884 		 adev->vm_manager.block_size,
2885 		 adev->vm_manager.fragment_size);
2886 }
2887 
2888 /**
2889  * amdgpu_vm_wait_idle - wait for the VM to become idle
2890  *
2891  * @vm: VM object to wait for
2892  * @timeout: timeout to wait for VM to become idle
2893  */
2894 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2895 {
2896 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2897 					true, timeout);
2898 	if (timeout <= 0)
2899 		return timeout;
2900 
2901 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2902 }
2903 
2904 /**
2905  * amdgpu_vm_init - initialize a vm instance
2906  *
2907  * @adev: amdgpu_device pointer
2908  * @vm: requested vm
2909  *
2910  * Init @vm fields.
2911  *
2912  * Returns:
2913  * 0 for success, error for failure.
2914  */
2915 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2916 {
2917 	struct amdgpu_bo *root_bo;
2918 	struct amdgpu_bo_vm *root;
2919 	int r, i;
2920 
2921 	vm->va = RB_ROOT_CACHED;
2922 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2923 		vm->reserved_vmid[i] = NULL;
2924 	INIT_LIST_HEAD(&vm->evicted);
2925 	INIT_LIST_HEAD(&vm->relocated);
2926 	INIT_LIST_HEAD(&vm->moved);
2927 	INIT_LIST_HEAD(&vm->idle);
2928 	INIT_LIST_HEAD(&vm->invalidated);
2929 	spin_lock_init(&vm->invalidated_lock);
2930 	INIT_LIST_HEAD(&vm->freed);
2931 	INIT_LIST_HEAD(&vm->done);
2932 
2933 	/* create scheduler entities for page table updates */
2934 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2935 				  adev->vm_manager.vm_pte_scheds,
2936 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2937 	if (r)
2938 		return r;
2939 
2940 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2941 				  adev->vm_manager.vm_pte_scheds,
2942 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2943 	if (r)
2944 		goto error_free_immediate;
2945 
2946 	vm->pte_support_ats = false;
2947 	vm->is_compute_context = false;
2948 
2949 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2950 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2951 
2952 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2953 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2954 	WARN_ONCE((vm->use_cpu_for_update &&
2955 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2956 		  "CPU update of VM recommended only for large BAR system\n");
2957 
2958 	if (vm->use_cpu_for_update)
2959 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2960 	else
2961 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2962 	vm->last_update = NULL;
2963 	vm->last_unlocked = dma_fence_get_stub();
2964 
2965 	mutex_init(&vm->eviction_lock);
2966 	vm->evicting = false;
2967 
2968 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2969 				false, &root);
2970 	if (r)
2971 		goto error_free_delayed;
2972 	root_bo = &root->bo;
2973 	r = amdgpu_bo_reserve(root_bo, true);
2974 	if (r)
2975 		goto error_free_root;
2976 
2977 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2978 	if (r)
2979 		goto error_unreserve;
2980 
2981 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2982 
2983 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2984 	if (r)
2985 		goto error_unreserve;
2986 
2987 	amdgpu_bo_unreserve(vm->root.bo);
2988 
2989 	INIT_KFIFO(vm->faults);
2990 
2991 	return 0;
2992 
2993 error_unreserve:
2994 	amdgpu_bo_unreserve(vm->root.bo);
2995 
2996 error_free_root:
2997 	amdgpu_bo_unref(&root->shadow);
2998 	amdgpu_bo_unref(&root_bo);
2999 	vm->root.bo = NULL;
3000 
3001 error_free_delayed:
3002 	dma_fence_put(vm->last_unlocked);
3003 	drm_sched_entity_destroy(&vm->delayed);
3004 
3005 error_free_immediate:
3006 	drm_sched_entity_destroy(&vm->immediate);
3007 
3008 	return r;
3009 }
3010 
3011 /**
3012  * amdgpu_vm_check_clean_reserved - check if a VM is clean
3013  *
3014  * @adev: amdgpu_device pointer
3015  * @vm: the VM to check
3016  *
3017  * check all entries of the root PD, if any subsequent PDs are allocated,
3018  * it means there are page table creating and filling, and is no a clean
3019  * VM
3020  *
3021  * Returns:
3022  *	0 if this VM is clean
3023  */
3024 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3025 					  struct amdgpu_vm *vm)
3026 {
3027 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3028 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3029 	unsigned int i = 0;
3030 
3031 	for (i = 0; i < entries; i++) {
3032 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3033 			return -EINVAL;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3041  *
3042  * @adev: amdgpu_device pointer
3043  * @vm: requested vm
3044  *
3045  * This only works on GFX VMs that don't have any BOs added and no
3046  * page tables allocated yet.
3047  *
3048  * Changes the following VM parameters:
3049  * - use_cpu_for_update
3050  * - pte_supports_ats
3051  *
3052  * Reinitializes the page directory to reflect the changed ATS
3053  * setting.
3054  *
3055  * Returns:
3056  * 0 for success, -errno for errors.
3057  */
3058 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3059 {
3060 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3061 	int r;
3062 
3063 	r = amdgpu_bo_reserve(vm->root.bo, true);
3064 	if (r)
3065 		return r;
3066 
3067 	/* Sanity checks */
3068 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3069 	if (r)
3070 		goto unreserve_bo;
3071 
3072 	/* Check if PD needs to be reinitialized and do it before
3073 	 * changing any other state, in case it fails.
3074 	 */
3075 	if (pte_support_ats != vm->pte_support_ats) {
3076 		vm->pte_support_ats = pte_support_ats;
3077 		r = amdgpu_vm_clear_bo(adev, vm,
3078 				       to_amdgpu_bo_vm(vm->root.bo),
3079 				       false);
3080 		if (r)
3081 			goto unreserve_bo;
3082 	}
3083 
3084 	/* Update VM state */
3085 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3086 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3087 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3088 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3089 	WARN_ONCE((vm->use_cpu_for_update &&
3090 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3091 		  "CPU update of VM recommended only for large BAR system\n");
3092 
3093 	if (vm->use_cpu_for_update) {
3094 		/* Sync with last SDMA update/clear before switching to CPU */
3095 		r = amdgpu_bo_sync_wait(vm->root.bo,
3096 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3097 		if (r)
3098 			goto unreserve_bo;
3099 
3100 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3101 	} else {
3102 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3103 	}
3104 	dma_fence_put(vm->last_update);
3105 	vm->last_update = NULL;
3106 	vm->is_compute_context = true;
3107 
3108 	/* Free the shadow bo for compute VM */
3109 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3110 
3111 	goto unreserve_bo;
3112 
3113 unreserve_bo:
3114 	amdgpu_bo_unreserve(vm->root.bo);
3115 	return r;
3116 }
3117 
3118 /**
3119  * amdgpu_vm_release_compute - release a compute vm
3120  * @adev: amdgpu_device pointer
3121  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3122  *
3123  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3124  * pasid from vm. Compute should stop use of vm after this call.
3125  */
3126 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3127 {
3128 	amdgpu_vm_set_pasid(adev, vm, 0);
3129 	vm->is_compute_context = false;
3130 }
3131 
3132 /**
3133  * amdgpu_vm_fini - tear down a vm instance
3134  *
3135  * @adev: amdgpu_device pointer
3136  * @vm: requested vm
3137  *
3138  * Tear down @vm.
3139  * Unbind the VM and remove all bos from the vm bo list
3140  */
3141 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3142 {
3143 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3144 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3145 	struct amdgpu_bo *root;
3146 	int i;
3147 
3148 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3149 
3150 	root = amdgpu_bo_ref(vm->root.bo);
3151 	amdgpu_bo_reserve(root, true);
3152 	amdgpu_vm_set_pasid(adev, vm, 0);
3153 	dma_fence_wait(vm->last_unlocked, false);
3154 	dma_fence_put(vm->last_unlocked);
3155 
3156 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3157 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3158 			amdgpu_vm_prt_fini(adev, vm);
3159 			prt_fini_needed = false;
3160 		}
3161 
3162 		list_del(&mapping->list);
3163 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3164 	}
3165 
3166 	amdgpu_vm_free_pts(adev, vm, NULL);
3167 	amdgpu_bo_unreserve(root);
3168 	amdgpu_bo_unref(&root);
3169 	WARN_ON(vm->root.bo);
3170 
3171 	drm_sched_entity_destroy(&vm->immediate);
3172 	drm_sched_entity_destroy(&vm->delayed);
3173 
3174 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3175 		dev_err(adev->dev, "still active bo inside vm\n");
3176 	}
3177 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3178 					     &vm->va.rb_root, rb) {
3179 		/* Don't remove the mapping here, we don't want to trigger a
3180 		 * rebalance and the tree is about to be destroyed anyway.
3181 		 */
3182 		list_del(&mapping->list);
3183 		kfree(mapping);
3184 	}
3185 
3186 	dma_fence_put(vm->last_update);
3187 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3188 		amdgpu_vmid_free_reserved(adev, vm, i);
3189 }
3190 
3191 /**
3192  * amdgpu_vm_manager_init - init the VM manager
3193  *
3194  * @adev: amdgpu_device pointer
3195  *
3196  * Initialize the VM manager structures
3197  */
3198 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3199 {
3200 	unsigned i;
3201 
3202 	/* Concurrent flushes are only possible starting with Vega10 and
3203 	 * are broken on Navi10 and Navi14.
3204 	 */
3205 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3206 					      adev->asic_type == CHIP_NAVI10 ||
3207 					      adev->asic_type == CHIP_NAVI14);
3208 	amdgpu_vmid_mgr_init(adev);
3209 
3210 	adev->vm_manager.fence_context =
3211 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3212 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3213 		adev->vm_manager.seqno[i] = 0;
3214 
3215 	spin_lock_init(&adev->vm_manager.prt_lock);
3216 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3217 
3218 	/* If not overridden by the user, by default, only in large BAR systems
3219 	 * Compute VM tables will be updated by CPU
3220 	 */
3221 #ifdef CONFIG_X86_64
3222 	if (amdgpu_vm_update_mode == -1) {
3223 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3224 			adev->vm_manager.vm_update_mode =
3225 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3226 		else
3227 			adev->vm_manager.vm_update_mode = 0;
3228 	} else
3229 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3230 #else
3231 	adev->vm_manager.vm_update_mode = 0;
3232 #endif
3233 
3234 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3235 }
3236 
3237 /**
3238  * amdgpu_vm_manager_fini - cleanup VM manager
3239  *
3240  * @adev: amdgpu_device pointer
3241  *
3242  * Cleanup the VM manager and free resources.
3243  */
3244 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3245 {
3246 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3247 	xa_destroy(&adev->vm_manager.pasids);
3248 
3249 	amdgpu_vmid_mgr_fini(adev);
3250 }
3251 
3252 /**
3253  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3254  *
3255  * @dev: drm device pointer
3256  * @data: drm_amdgpu_vm
3257  * @filp: drm file pointer
3258  *
3259  * Returns:
3260  * 0 for success, -errno for errors.
3261  */
3262 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3263 {
3264 	union drm_amdgpu_vm *args = data;
3265 	struct amdgpu_device *adev = drm_to_adev(dev);
3266 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3267 	long timeout = msecs_to_jiffies(2000);
3268 	int r;
3269 
3270 	switch (args->in.op) {
3271 	case AMDGPU_VM_OP_RESERVE_VMID:
3272 		/* We only have requirement to reserve vmid from gfxhub */
3273 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3274 					       AMDGPU_GFXHUB_0);
3275 		if (r)
3276 			return r;
3277 		break;
3278 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3279 		if (amdgpu_sriov_runtime(adev))
3280 			timeout = 8 * timeout;
3281 
3282 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3283 		 * not referenced anymore.
3284 		 */
3285 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3286 		if (r)
3287 			return r;
3288 
3289 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3290 		if (r < 0)
3291 			return r;
3292 
3293 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3294 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3295 		break;
3296 	default:
3297 		return -EINVAL;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 /**
3304  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3305  *
3306  * @adev: drm device pointer
3307  * @pasid: PASID identifier for VM
3308  * @task_info: task_info to fill.
3309  */
3310 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3311 			 struct amdgpu_task_info *task_info)
3312 {
3313 	struct amdgpu_vm *vm;
3314 	unsigned long flags;
3315 
3316 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3317 
3318 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3319 	if (vm)
3320 		*task_info = vm->task_info;
3321 
3322 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3323 }
3324 
3325 /**
3326  * amdgpu_vm_set_task_info - Sets VMs task info.
3327  *
3328  * @vm: vm for which to set the info
3329  */
3330 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3331 {
3332 	if (vm->task_info.pid)
3333 		return;
3334 
3335 	vm->task_info.pid = current->pid;
3336 	get_task_comm(vm->task_info.task_name, current);
3337 
3338 	if (current->group_leader->mm != current->mm)
3339 		return;
3340 
3341 	vm->task_info.tgid = current->group_leader->pid;
3342 	get_task_comm(vm->task_info.process_name, current->group_leader);
3343 }
3344 
3345 /**
3346  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3347  * @adev: amdgpu device pointer
3348  * @pasid: PASID of the VM
3349  * @addr: Address of the fault
3350  * @write_fault: true is write fault, false is read fault
3351  *
3352  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3353  * shouldn't be reported any more.
3354  */
3355 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3356 			    uint64_t addr, bool write_fault)
3357 {
3358 	bool is_compute_context = false;
3359 	struct amdgpu_bo *root;
3360 	unsigned long irqflags;
3361 	uint64_t value, flags;
3362 	struct amdgpu_vm *vm;
3363 	int r;
3364 
3365 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3366 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3367 	if (vm) {
3368 		root = amdgpu_bo_ref(vm->root.bo);
3369 		is_compute_context = vm->is_compute_context;
3370 	} else {
3371 		root = NULL;
3372 	}
3373 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3374 
3375 	if (!root)
3376 		return false;
3377 
3378 	addr /= AMDGPU_GPU_PAGE_SIZE;
3379 
3380 	if (is_compute_context &&
3381 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3382 		amdgpu_bo_unref(&root);
3383 		return true;
3384 	}
3385 
3386 	r = amdgpu_bo_reserve(root, true);
3387 	if (r)
3388 		goto error_unref;
3389 
3390 	/* Double check that the VM still exists */
3391 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3392 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3393 	if (vm && vm->root.bo != root)
3394 		vm = NULL;
3395 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3396 	if (!vm)
3397 		goto error_unlock;
3398 
3399 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3400 		AMDGPU_PTE_SYSTEM;
3401 
3402 	if (is_compute_context) {
3403 		/* Intentionally setting invalid PTE flag
3404 		 * combination to force a no-retry-fault
3405 		 */
3406 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3407 			AMDGPU_PTE_TF;
3408 		value = 0;
3409 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3410 		/* Redirect the access to the dummy page */
3411 		value = adev->dummy_page_addr;
3412 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3413 			AMDGPU_PTE_WRITEABLE;
3414 
3415 	} else {
3416 		/* Let the hw retry silently on the PTE */
3417 		value = 0;
3418 	}
3419 
3420 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3421 	if (r) {
3422 		pr_debug("failed %d to reserve fence slot\n", r);
3423 		goto error_unlock;
3424 	}
3425 
3426 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3427 					addr, flags, value, NULL, NULL, NULL,
3428 					NULL);
3429 	if (r)
3430 		goto error_unlock;
3431 
3432 	r = amdgpu_vm_update_pdes(adev, vm, true);
3433 
3434 error_unlock:
3435 	amdgpu_bo_unreserve(root);
3436 	if (r < 0)
3437 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3438 
3439 error_unref:
3440 	amdgpu_bo_unref(&root);
3441 
3442 	return false;
3443 }
3444 
3445 #if defined(CONFIG_DEBUG_FS)
3446 /**
3447  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3448  *
3449  * @vm: Requested VM for printing BO info
3450  * @m: debugfs file
3451  *
3452  * Print BO information in debugfs file for the VM
3453  */
3454 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3455 {
3456 	struct amdgpu_bo_va *bo_va, *tmp;
3457 	u64 total_idle = 0;
3458 	u64 total_evicted = 0;
3459 	u64 total_relocated = 0;
3460 	u64 total_moved = 0;
3461 	u64 total_invalidated = 0;
3462 	u64 total_done = 0;
3463 	unsigned int total_idle_objs = 0;
3464 	unsigned int total_evicted_objs = 0;
3465 	unsigned int total_relocated_objs = 0;
3466 	unsigned int total_moved_objs = 0;
3467 	unsigned int total_invalidated_objs = 0;
3468 	unsigned int total_done_objs = 0;
3469 	unsigned int id = 0;
3470 
3471 	seq_puts(m, "\tIdle BOs:\n");
3472 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3473 		if (!bo_va->base.bo)
3474 			continue;
3475 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3476 	}
3477 	total_idle_objs = id;
3478 	id = 0;
3479 
3480 	seq_puts(m, "\tEvicted BOs:\n");
3481 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3482 		if (!bo_va->base.bo)
3483 			continue;
3484 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3485 	}
3486 	total_evicted_objs = id;
3487 	id = 0;
3488 
3489 	seq_puts(m, "\tRelocated BOs:\n");
3490 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3491 		if (!bo_va->base.bo)
3492 			continue;
3493 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3494 	}
3495 	total_relocated_objs = id;
3496 	id = 0;
3497 
3498 	seq_puts(m, "\tMoved BOs:\n");
3499 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3500 		if (!bo_va->base.bo)
3501 			continue;
3502 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3503 	}
3504 	total_moved_objs = id;
3505 	id = 0;
3506 
3507 	seq_puts(m, "\tInvalidated BOs:\n");
3508 	spin_lock(&vm->invalidated_lock);
3509 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3510 		if (!bo_va->base.bo)
3511 			continue;
3512 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3513 	}
3514 	total_invalidated_objs = id;
3515 	id = 0;
3516 
3517 	seq_puts(m, "\tDone BOs:\n");
3518 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3519 		if (!bo_va->base.bo)
3520 			continue;
3521 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3522 	}
3523 	spin_unlock(&vm->invalidated_lock);
3524 	total_done_objs = id;
3525 
3526 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3527 		   total_idle_objs);
3528 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3529 		   total_evicted_objs);
3530 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3531 		   total_relocated_objs);
3532 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3533 		   total_moved_objs);
3534 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3535 		   total_invalidated_objs);
3536 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3537 		   total_done_objs);
3538 }
3539 #endif
3540