1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When executing a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /** 92 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 93 * 94 * @adev: amdgpu_device pointer 95 * @vm: amdgpu_vm pointer 96 * @pasid: the pasid the VM is using on this GPU 97 * 98 * Set the pasid this VM is using on this GPU, can also be used to remove the 99 * pasid by passing in zero. 100 * 101 */ 102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 103 u32 pasid) 104 { 105 int r; 106 107 if (vm->pasid == pasid) 108 return 0; 109 110 if (vm->pasid) { 111 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 112 if (r < 0) 113 return r; 114 115 vm->pasid = 0; 116 } 117 118 if (pasid) { 119 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 120 GFP_KERNEL)); 121 if (r < 0) 122 return r; 123 124 vm->pasid = pasid; 125 } 126 127 128 return 0; 129 } 130 131 /* 132 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 133 * happens while holding this lock anywhere to prevent deadlocks when 134 * an MMU notifier runs in reclaim-FS context. 135 */ 136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 137 { 138 mutex_lock(&vm->eviction_lock); 139 vm->saved_flags = memalloc_noreclaim_save(); 140 } 141 142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 143 { 144 if (mutex_trylock(&vm->eviction_lock)) { 145 vm->saved_flags = memalloc_noreclaim_save(); 146 return 1; 147 } 148 return 0; 149 } 150 151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 152 { 153 memalloc_noreclaim_restore(vm->saved_flags); 154 mutex_unlock(&vm->eviction_lock); 155 } 156 157 /** 158 * amdgpu_vm_level_shift - return the addr shift for each level 159 * 160 * @adev: amdgpu_device pointer 161 * @level: VMPT level 162 * 163 * Returns: 164 * The number of bits the pfn needs to be right shifted for a level. 165 */ 166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 167 unsigned level) 168 { 169 switch (level) { 170 case AMDGPU_VM_PDB2: 171 case AMDGPU_VM_PDB1: 172 case AMDGPU_VM_PDB0: 173 return 9 * (AMDGPU_VM_PDB0 - level) + 174 adev->vm_manager.block_size; 175 case AMDGPU_VM_PTB: 176 return 0; 177 default: 178 return ~0; 179 } 180 } 181 182 /** 183 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 184 * 185 * @adev: amdgpu_device pointer 186 * @level: VMPT level 187 * 188 * Returns: 189 * The number of entries in a page directory or page table. 190 */ 191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 192 unsigned level) 193 { 194 unsigned shift = amdgpu_vm_level_shift(adev, 195 adev->vm_manager.root_level); 196 197 if (level == adev->vm_manager.root_level) 198 /* For the root directory */ 199 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 200 >> shift; 201 else if (level != AMDGPU_VM_PTB) 202 /* Everything in between */ 203 return 512; 204 else 205 /* For the page tables on the leaves */ 206 return AMDGPU_VM_PTE_COUNT(adev); 207 } 208 209 /** 210 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 211 * 212 * @adev: amdgpu_device pointer 213 * 214 * Returns: 215 * The number of entries in the root page directory which needs the ATS setting. 216 */ 217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 218 { 219 unsigned shift; 220 221 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 222 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 223 } 224 225 /** 226 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 227 * 228 * @adev: amdgpu_device pointer 229 * @level: VMPT level 230 * 231 * Returns: 232 * The mask to extract the entry number of a PD/PT from an address. 233 */ 234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 235 unsigned int level) 236 { 237 if (level <= adev->vm_manager.root_level) 238 return 0xffffffff; 239 else if (level != AMDGPU_VM_PTB) 240 return 0x1ff; 241 else 242 return AMDGPU_VM_PTE_COUNT(adev) - 1; 243 } 244 245 /** 246 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 247 * 248 * @adev: amdgpu_device pointer 249 * @level: VMPT level 250 * 251 * Returns: 252 * The size of the BO for a page directory or page table in bytes. 253 */ 254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 255 { 256 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 257 } 258 259 /** 260 * amdgpu_vm_bo_evicted - vm_bo is evicted 261 * 262 * @vm_bo: vm_bo which is evicted 263 * 264 * State for PDs/PTs and per VM BOs which are not at the location they should 265 * be. 266 */ 267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 struct amdgpu_vm *vm = vm_bo->vm; 270 struct amdgpu_bo *bo = vm_bo->bo; 271 272 vm_bo->moved = true; 273 if (bo->tbo.type == ttm_bo_type_kernel) 274 list_move(&vm_bo->vm_status, &vm->evicted); 275 else 276 list_move_tail(&vm_bo->vm_status, &vm->evicted); 277 } 278 /** 279 * amdgpu_vm_bo_moved - vm_bo is moved 280 * 281 * @vm_bo: vm_bo which is moved 282 * 283 * State for per VM BOs which are moved, but that change is not yet reflected 284 * in the page tables. 285 */ 286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 289 } 290 291 /** 292 * amdgpu_vm_bo_idle - vm_bo is idle 293 * 294 * @vm_bo: vm_bo which is now idle 295 * 296 * State for PDs/PTs and per VM BOs which have gone through the state machine 297 * and are now idle. 298 */ 299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 300 { 301 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 302 vm_bo->moved = false; 303 } 304 305 /** 306 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 307 * 308 * @vm_bo: vm_bo which is now invalidated 309 * 310 * State for normal BOs which are invalidated and that change not yet reflected 311 * in the PTs. 312 */ 313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 314 { 315 spin_lock(&vm_bo->vm->invalidated_lock); 316 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 317 spin_unlock(&vm_bo->vm->invalidated_lock); 318 } 319 320 /** 321 * amdgpu_vm_bo_relocated - vm_bo is reloacted 322 * 323 * @vm_bo: vm_bo which is relocated 324 * 325 * State for PDs/PTs which needs to update their parent PD. 326 * For the root PD, just move to idle state. 327 */ 328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 329 { 330 if (vm_bo->bo->parent) 331 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 332 else 333 amdgpu_vm_bo_idle(vm_bo); 334 } 335 336 /** 337 * amdgpu_vm_bo_done - vm_bo is done 338 * 339 * @vm_bo: vm_bo which is now done 340 * 341 * State for normal BOs which are invalidated and that change has been updated 342 * in the PTs. 343 */ 344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 345 { 346 spin_lock(&vm_bo->vm->invalidated_lock); 347 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 348 spin_unlock(&vm_bo->vm->invalidated_lock); 349 } 350 351 /** 352 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 353 * 354 * @base: base structure for tracking BO usage in a VM 355 * @vm: vm to which bo is to be added 356 * @bo: amdgpu buffer object 357 * 358 * Initialize a bo_va_base structure and add it to the appropriate lists 359 * 360 */ 361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 362 struct amdgpu_vm *vm, 363 struct amdgpu_bo *bo) 364 { 365 base->vm = vm; 366 base->bo = bo; 367 base->next = NULL; 368 INIT_LIST_HEAD(&base->vm_status); 369 370 if (!bo) 371 return; 372 base->next = bo->vm_bo; 373 bo->vm_bo = base; 374 375 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 376 return; 377 378 vm->bulk_moveable = false; 379 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 380 amdgpu_vm_bo_relocated(base); 381 else 382 amdgpu_vm_bo_idle(base); 383 384 if (bo->preferred_domains & 385 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 386 return; 387 388 /* 389 * we checked all the prerequisites, but it looks like this per vm bo 390 * is currently evicted. add the bo to the evicted list to make sure it 391 * is validated on next vm use to avoid fault. 392 * */ 393 amdgpu_vm_bo_evicted(base); 394 } 395 396 /** 397 * amdgpu_vm_pt_parent - get the parent page directory 398 * 399 * @pt: child page table 400 * 401 * Helper to get the parent entry for the child page table. NULL if we are at 402 * the root page directory. 403 */ 404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 405 { 406 struct amdgpu_bo *parent = pt->bo->parent; 407 408 if (!parent) 409 return NULL; 410 411 return parent->vm_bo; 412 } 413 414 /* 415 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 416 */ 417 struct amdgpu_vm_pt_cursor { 418 uint64_t pfn; 419 struct amdgpu_vm_bo_base *parent; 420 struct amdgpu_vm_bo_base *entry; 421 unsigned level; 422 }; 423 424 /** 425 * amdgpu_vm_pt_start - start PD/PT walk 426 * 427 * @adev: amdgpu_device pointer 428 * @vm: amdgpu_vm structure 429 * @start: start address of the walk 430 * @cursor: state to initialize 431 * 432 * Initialize a amdgpu_vm_pt_cursor to start a walk. 433 */ 434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 435 struct amdgpu_vm *vm, uint64_t start, 436 struct amdgpu_vm_pt_cursor *cursor) 437 { 438 cursor->pfn = start; 439 cursor->parent = NULL; 440 cursor->entry = &vm->root; 441 cursor->level = adev->vm_manager.root_level; 442 } 443 444 /** 445 * amdgpu_vm_pt_descendant - go to child node 446 * 447 * @adev: amdgpu_device pointer 448 * @cursor: current state 449 * 450 * Walk to the child node of the current node. 451 * Returns: 452 * True if the walk was possible, false otherwise. 453 */ 454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 455 struct amdgpu_vm_pt_cursor *cursor) 456 { 457 unsigned mask, shift, idx; 458 459 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 460 !cursor->entry->bo) 461 return false; 462 463 mask = amdgpu_vm_entries_mask(adev, cursor->level); 464 shift = amdgpu_vm_level_shift(adev, cursor->level); 465 466 ++cursor->level; 467 idx = (cursor->pfn >> shift) & mask; 468 cursor->parent = cursor->entry; 469 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 470 return true; 471 } 472 473 /** 474 * amdgpu_vm_pt_sibling - go to sibling node 475 * 476 * @adev: amdgpu_device pointer 477 * @cursor: current state 478 * 479 * Walk to the sibling node of the current node. 480 * Returns: 481 * True if the walk was possible, false otherwise. 482 */ 483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 484 struct amdgpu_vm_pt_cursor *cursor) 485 { 486 unsigned shift, num_entries; 487 488 /* Root doesn't have a sibling */ 489 if (!cursor->parent) 490 return false; 491 492 /* Go to our parents and see if we got a sibling */ 493 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 494 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 495 496 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 497 return false; 498 499 cursor->pfn += 1ULL << shift; 500 cursor->pfn &= ~((1ULL << shift) - 1); 501 ++cursor->entry; 502 return true; 503 } 504 505 /** 506 * amdgpu_vm_pt_ancestor - go to parent node 507 * 508 * @cursor: current state 509 * 510 * Walk to the parent node of the current node. 511 * Returns: 512 * True if the walk was possible, false otherwise. 513 */ 514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 515 { 516 if (!cursor->parent) 517 return false; 518 519 --cursor->level; 520 cursor->entry = cursor->parent; 521 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 522 return true; 523 } 524 525 /** 526 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next node. 532 */ 533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 /* First try a newborn child */ 537 if (amdgpu_vm_pt_descendant(adev, cursor)) 538 return; 539 540 /* If that didn't worked try to find a sibling */ 541 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 542 /* No sibling, go to our parents and grandparents */ 543 if (!amdgpu_vm_pt_ancestor(cursor)) { 544 cursor->pfn = ~0ll; 545 return; 546 } 547 } 548 } 549 550 /** 551 * amdgpu_vm_pt_first_dfs - start a deep first search 552 * 553 * @adev: amdgpu_device structure 554 * @vm: amdgpu_vm structure 555 * @start: optional cursor to start with 556 * @cursor: state to initialize 557 * 558 * Starts a deep first traversal of the PD/PT tree. 559 */ 560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 561 struct amdgpu_vm *vm, 562 struct amdgpu_vm_pt_cursor *start, 563 struct amdgpu_vm_pt_cursor *cursor) 564 { 565 if (start) 566 *cursor = *start; 567 else 568 amdgpu_vm_pt_start(adev, vm, 0, cursor); 569 while (amdgpu_vm_pt_descendant(adev, cursor)); 570 } 571 572 /** 573 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 574 * 575 * @start: starting point for the search 576 * @entry: current entry 577 * 578 * Returns: 579 * True when the search should continue, false otherwise. 580 */ 581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 582 struct amdgpu_vm_bo_base *entry) 583 { 584 return entry && (!start || entry != start->entry); 585 } 586 587 /** 588 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 589 * 590 * @adev: amdgpu_device structure 591 * @cursor: current state 592 * 593 * Move the cursor to the next node in a deep first search. 594 */ 595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 596 struct amdgpu_vm_pt_cursor *cursor) 597 { 598 if (!cursor->entry) 599 return; 600 601 if (!cursor->parent) 602 cursor->entry = NULL; 603 else if (amdgpu_vm_pt_sibling(adev, cursor)) 604 while (amdgpu_vm_pt_descendant(adev, cursor)); 605 else 606 amdgpu_vm_pt_ancestor(cursor); 607 } 608 609 /* 610 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 611 */ 612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 613 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 614 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 615 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 616 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 617 618 /** 619 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 620 * 621 * @vm: vm providing the BOs 622 * @validated: head of validation list 623 * @entry: entry to add 624 * 625 * Add the page directory to the list of BOs to 626 * validate for command submission. 627 */ 628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 629 struct list_head *validated, 630 struct amdgpu_bo_list_entry *entry) 631 { 632 entry->priority = 0; 633 entry->tv.bo = &vm->root.bo->tbo; 634 /* Two for VM updates, one for TTM and one for the CS job */ 635 entry->tv.num_shared = 4; 636 entry->user_pages = NULL; 637 list_add(&entry->tv.head, validated); 638 } 639 640 /** 641 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 642 * 643 * @bo: BO which was removed from the LRU 644 * 645 * Make sure the bulk_moveable flag is updated when a BO is removed from the 646 * LRU. 647 */ 648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 649 { 650 struct amdgpu_bo *abo; 651 struct amdgpu_vm_bo_base *bo_base; 652 653 if (!amdgpu_bo_is_amdgpu_bo(bo)) 654 return; 655 656 if (bo->pin_count) 657 return; 658 659 abo = ttm_to_amdgpu_bo(bo); 660 if (!abo->parent) 661 return; 662 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 663 struct amdgpu_vm *vm = bo_base->vm; 664 665 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 666 vm->bulk_moveable = false; 667 } 668 669 } 670 /** 671 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 672 * 673 * @adev: amdgpu device pointer 674 * @vm: vm providing the BOs 675 * 676 * Move all BOs to the end of LRU and remember their positions to put them 677 * together. 678 */ 679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 680 struct amdgpu_vm *vm) 681 { 682 struct amdgpu_vm_bo_base *bo_base; 683 684 if (vm->bulk_moveable) { 685 spin_lock(&adev->mman.bdev.lru_lock); 686 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 687 spin_unlock(&adev->mman.bdev.lru_lock); 688 return; 689 } 690 691 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 692 693 spin_lock(&adev->mman.bdev.lru_lock); 694 list_for_each_entry(bo_base, &vm->idle, vm_status) { 695 struct amdgpu_bo *bo = bo_base->bo; 696 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 697 698 if (!bo->parent) 699 continue; 700 701 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 702 &vm->lru_bulk_move); 703 if (shadow) 704 ttm_bo_move_to_lru_tail(&shadow->tbo, 705 shadow->tbo.resource, 706 &vm->lru_bulk_move); 707 } 708 spin_unlock(&adev->mman.bdev.lru_lock); 709 710 vm->bulk_moveable = true; 711 } 712 713 /** 714 * amdgpu_vm_validate_pt_bos - validate the page table BOs 715 * 716 * @adev: amdgpu device pointer 717 * @vm: vm providing the BOs 718 * @validate: callback to do the validation 719 * @param: parameter for the validation callback 720 * 721 * Validate the page table BOs on command submission if neccessary. 722 * 723 * Returns: 724 * Validation result. 725 */ 726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 727 int (*validate)(void *p, struct amdgpu_bo *bo), 728 void *param) 729 { 730 struct amdgpu_vm_bo_base *bo_base, *tmp; 731 int r; 732 733 vm->bulk_moveable &= list_empty(&vm->evicted); 734 735 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 736 struct amdgpu_bo *bo = bo_base->bo; 737 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 738 739 r = validate(param, bo); 740 if (r) 741 return r; 742 if (shadow) { 743 r = validate(param, shadow); 744 if (r) 745 return r; 746 } 747 748 if (bo->tbo.type != ttm_bo_type_kernel) { 749 amdgpu_vm_bo_moved(bo_base); 750 } else { 751 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 752 amdgpu_vm_bo_relocated(bo_base); 753 } 754 } 755 756 amdgpu_vm_eviction_lock(vm); 757 vm->evicting = false; 758 amdgpu_vm_eviction_unlock(vm); 759 760 return 0; 761 } 762 763 /** 764 * amdgpu_vm_ready - check VM is ready for updates 765 * 766 * @vm: VM to check 767 * 768 * Check if all VM PDs/PTs are ready for updates 769 * 770 * Returns: 771 * True if eviction list is empty. 772 */ 773 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 774 { 775 return list_empty(&vm->evicted); 776 } 777 778 /** 779 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 780 * 781 * @adev: amdgpu_device pointer 782 * @vm: VM to clear BO from 783 * @vmbo: BO to clear 784 * @immediate: use an immediate update 785 * 786 * Root PD needs to be reserved when calling this. 787 * 788 * Returns: 789 * 0 on success, errno otherwise. 790 */ 791 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 792 struct amdgpu_vm *vm, 793 struct amdgpu_bo_vm *vmbo, 794 bool immediate) 795 { 796 struct ttm_operation_ctx ctx = { true, false }; 797 unsigned level = adev->vm_manager.root_level; 798 struct amdgpu_vm_update_params params; 799 struct amdgpu_bo *ancestor = &vmbo->bo; 800 struct amdgpu_bo *bo = &vmbo->bo; 801 unsigned entries, ats_entries; 802 uint64_t addr; 803 int r, idx; 804 805 /* Figure out our place in the hierarchy */ 806 if (ancestor->parent) { 807 ++level; 808 while (ancestor->parent->parent) { 809 ++level; 810 ancestor = ancestor->parent; 811 } 812 } 813 814 entries = amdgpu_bo_size(bo) / 8; 815 if (!vm->pte_support_ats) { 816 ats_entries = 0; 817 818 } else if (!bo->parent) { 819 ats_entries = amdgpu_vm_num_ats_entries(adev); 820 ats_entries = min(ats_entries, entries); 821 entries -= ats_entries; 822 823 } else { 824 struct amdgpu_vm_bo_base *pt; 825 826 pt = ancestor->vm_bo; 827 ats_entries = amdgpu_vm_num_ats_entries(adev); 828 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 829 ats_entries = 0; 830 } else { 831 ats_entries = entries; 832 entries = 0; 833 } 834 } 835 836 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 837 if (r) 838 return r; 839 840 if (vmbo->shadow) { 841 struct amdgpu_bo *shadow = vmbo->shadow; 842 843 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 844 if (r) 845 return r; 846 } 847 848 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 849 return -ENODEV; 850 851 r = vm->update_funcs->map_table(vmbo); 852 if (r) 853 goto exit; 854 855 memset(¶ms, 0, sizeof(params)); 856 params.adev = adev; 857 params.vm = vm; 858 params.immediate = immediate; 859 860 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 861 if (r) 862 goto exit; 863 864 addr = 0; 865 if (ats_entries) { 866 uint64_t value = 0, flags; 867 868 flags = AMDGPU_PTE_DEFAULT_ATC; 869 if (level != AMDGPU_VM_PTB) { 870 /* Handle leaf PDEs as PTEs */ 871 flags |= AMDGPU_PDE_PTE; 872 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 873 } 874 875 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 876 value, flags); 877 if (r) 878 goto exit; 879 880 addr += ats_entries * 8; 881 } 882 883 if (entries) { 884 uint64_t value = 0, flags = 0; 885 886 if (adev->asic_type >= CHIP_VEGA10) { 887 if (level != AMDGPU_VM_PTB) { 888 /* Handle leaf PDEs as PTEs */ 889 flags |= AMDGPU_PDE_PTE; 890 amdgpu_gmc_get_vm_pde(adev, level, 891 &value, &flags); 892 } else { 893 /* Workaround for fault priority problem on GMC9 */ 894 flags = AMDGPU_PTE_EXECUTABLE; 895 } 896 } 897 898 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 899 value, flags); 900 if (r) 901 goto exit; 902 } 903 904 r = vm->update_funcs->commit(¶ms, NULL); 905 exit: 906 drm_dev_exit(idx); 907 return r; 908 } 909 910 /** 911 * amdgpu_vm_pt_create - create bo for PD/PT 912 * 913 * @adev: amdgpu_device pointer 914 * @vm: requesting vm 915 * @level: the page table level 916 * @immediate: use a immediate update 917 * @vmbo: pointer to the buffer object pointer 918 */ 919 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 920 struct amdgpu_vm *vm, 921 int level, bool immediate, 922 struct amdgpu_bo_vm **vmbo) 923 { 924 struct amdgpu_bo_param bp; 925 struct amdgpu_bo *bo; 926 struct dma_resv *resv; 927 unsigned int num_entries; 928 int r; 929 930 memset(&bp, 0, sizeof(bp)); 931 932 bp.size = amdgpu_vm_bo_size(adev, level); 933 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 934 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 935 bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain); 936 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 937 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 938 939 if (level < AMDGPU_VM_PTB) 940 num_entries = amdgpu_vm_num_entries(adev, level); 941 else 942 num_entries = 0; 943 944 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 945 946 if (vm->use_cpu_for_update) 947 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 948 949 bp.type = ttm_bo_type_kernel; 950 bp.no_wait_gpu = immediate; 951 if (vm->root.bo) 952 bp.resv = vm->root.bo->tbo.base.resv; 953 954 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 955 if (r) 956 return r; 957 958 bo = &(*vmbo)->bo; 959 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 960 (*vmbo)->shadow = NULL; 961 return 0; 962 } 963 964 if (!bp.resv) 965 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 966 NULL)); 967 resv = bp.resv; 968 memset(&bp, 0, sizeof(bp)); 969 bp.size = amdgpu_vm_bo_size(adev, level); 970 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 971 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 972 bp.type = ttm_bo_type_kernel; 973 bp.resv = bo->tbo.base.resv; 974 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 975 976 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 977 978 if (!resv) 979 dma_resv_unlock(bo->tbo.base.resv); 980 981 if (r) { 982 amdgpu_bo_unref(&bo); 983 return r; 984 } 985 986 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 987 amdgpu_bo_add_to_shadow_list(*vmbo); 988 989 return 0; 990 } 991 992 /** 993 * amdgpu_vm_alloc_pts - Allocate a specific page table 994 * 995 * @adev: amdgpu_device pointer 996 * @vm: VM to allocate page tables for 997 * @cursor: Which page table to allocate 998 * @immediate: use an immediate update 999 * 1000 * Make sure a specific page table or directory is allocated. 1001 * 1002 * Returns: 1003 * 1 if page table needed to be allocated, 0 if page table was already 1004 * allocated, negative errno if an error occurred. 1005 */ 1006 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 1007 struct amdgpu_vm *vm, 1008 struct amdgpu_vm_pt_cursor *cursor, 1009 bool immediate) 1010 { 1011 struct amdgpu_vm_bo_base *entry = cursor->entry; 1012 struct amdgpu_bo *pt_bo; 1013 struct amdgpu_bo_vm *pt; 1014 int r; 1015 1016 if (entry->bo) 1017 return 0; 1018 1019 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 1020 if (r) 1021 return r; 1022 1023 /* Keep a reference to the root directory to avoid 1024 * freeing them up in the wrong order. 1025 */ 1026 pt_bo = &pt->bo; 1027 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 1028 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 1029 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 1030 if (r) 1031 goto error_free_pt; 1032 1033 return 0; 1034 1035 error_free_pt: 1036 amdgpu_bo_unref(&pt->shadow); 1037 amdgpu_bo_unref(&pt_bo); 1038 return r; 1039 } 1040 1041 /** 1042 * amdgpu_vm_free_table - fre one PD/PT 1043 * 1044 * @entry: PDE to free 1045 */ 1046 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1047 { 1048 struct amdgpu_bo *shadow; 1049 1050 if (!entry->bo) 1051 return; 1052 shadow = amdgpu_bo_shadowed(entry->bo); 1053 entry->bo->vm_bo = NULL; 1054 list_del(&entry->vm_status); 1055 amdgpu_bo_unref(&shadow); 1056 amdgpu_bo_unref(&entry->bo); 1057 } 1058 1059 /** 1060 * amdgpu_vm_free_pts - free PD/PT levels 1061 * 1062 * @adev: amdgpu device structure 1063 * @vm: amdgpu vm structure 1064 * @start: optional cursor where to start freeing PDs/PTs 1065 * 1066 * Free the page directory or page table level and all sub levels. 1067 */ 1068 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1069 struct amdgpu_vm *vm, 1070 struct amdgpu_vm_pt_cursor *start) 1071 { 1072 struct amdgpu_vm_pt_cursor cursor; 1073 struct amdgpu_vm_bo_base *entry; 1074 1075 vm->bulk_moveable = false; 1076 1077 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1078 amdgpu_vm_free_table(entry); 1079 1080 if (start) 1081 amdgpu_vm_free_table(start->entry); 1082 } 1083 1084 /** 1085 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1086 * 1087 * @adev: amdgpu_device pointer 1088 */ 1089 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1090 { 1091 const struct amdgpu_ip_block *ip_block; 1092 bool has_compute_vm_bug; 1093 struct amdgpu_ring *ring; 1094 int i; 1095 1096 has_compute_vm_bug = false; 1097 1098 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1099 if (ip_block) { 1100 /* Compute has a VM bug for GFX version < 7. 1101 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1102 if (ip_block->version->major <= 7) 1103 has_compute_vm_bug = true; 1104 else if (ip_block->version->major == 8) 1105 if (adev->gfx.mec_fw_version < 673) 1106 has_compute_vm_bug = true; 1107 } 1108 1109 for (i = 0; i < adev->num_rings; i++) { 1110 ring = adev->rings[i]; 1111 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1112 /* only compute rings */ 1113 ring->has_compute_vm_bug = has_compute_vm_bug; 1114 else 1115 ring->has_compute_vm_bug = false; 1116 } 1117 } 1118 1119 /** 1120 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1121 * 1122 * @ring: ring on which the job will be submitted 1123 * @job: job to submit 1124 * 1125 * Returns: 1126 * True if sync is needed. 1127 */ 1128 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1129 struct amdgpu_job *job) 1130 { 1131 struct amdgpu_device *adev = ring->adev; 1132 unsigned vmhub = ring->funcs->vmhub; 1133 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1134 struct amdgpu_vmid *id; 1135 bool gds_switch_needed; 1136 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1137 1138 if (job->vmid == 0) 1139 return false; 1140 id = &id_mgr->ids[job->vmid]; 1141 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1142 id->gds_base != job->gds_base || 1143 id->gds_size != job->gds_size || 1144 id->gws_base != job->gws_base || 1145 id->gws_size != job->gws_size || 1146 id->oa_base != job->oa_base || 1147 id->oa_size != job->oa_size); 1148 1149 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1150 return true; 1151 1152 return vm_flush_needed || gds_switch_needed; 1153 } 1154 1155 /** 1156 * amdgpu_vm_flush - hardware flush the vm 1157 * 1158 * @ring: ring to use for flush 1159 * @job: related job 1160 * @need_pipe_sync: is pipe sync needed 1161 * 1162 * Emit a VM flush when it is necessary. 1163 * 1164 * Returns: 1165 * 0 on success, errno otherwise. 1166 */ 1167 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1168 bool need_pipe_sync) 1169 { 1170 struct amdgpu_device *adev = ring->adev; 1171 unsigned vmhub = ring->funcs->vmhub; 1172 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1173 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1174 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1175 id->gds_base != job->gds_base || 1176 id->gds_size != job->gds_size || 1177 id->gws_base != job->gws_base || 1178 id->gws_size != job->gws_size || 1179 id->oa_base != job->oa_base || 1180 id->oa_size != job->oa_size); 1181 bool vm_flush_needed = job->vm_needs_flush; 1182 struct dma_fence *fence = NULL; 1183 bool pasid_mapping_needed = false; 1184 unsigned patch_offset = 0; 1185 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1186 int r; 1187 1188 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1189 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1190 1191 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1192 gds_switch_needed = true; 1193 vm_flush_needed = true; 1194 pasid_mapping_needed = true; 1195 } 1196 1197 mutex_lock(&id_mgr->lock); 1198 if (id->pasid != job->pasid || !id->pasid_mapping || 1199 !dma_fence_is_signaled(id->pasid_mapping)) 1200 pasid_mapping_needed = true; 1201 mutex_unlock(&id_mgr->lock); 1202 1203 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1204 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1205 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1206 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1207 ring->funcs->emit_wreg; 1208 1209 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1210 return 0; 1211 1212 if (ring->funcs->init_cond_exec) 1213 patch_offset = amdgpu_ring_init_cond_exec(ring); 1214 1215 if (need_pipe_sync) 1216 amdgpu_ring_emit_pipeline_sync(ring); 1217 1218 if (vm_flush_needed) { 1219 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1220 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1221 } 1222 1223 if (pasid_mapping_needed) 1224 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1225 1226 if (vm_flush_needed || pasid_mapping_needed) { 1227 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 1228 if (r) 1229 return r; 1230 } 1231 1232 if (vm_flush_needed) { 1233 mutex_lock(&id_mgr->lock); 1234 dma_fence_put(id->last_flush); 1235 id->last_flush = dma_fence_get(fence); 1236 id->current_gpu_reset_count = 1237 atomic_read(&adev->gpu_reset_counter); 1238 mutex_unlock(&id_mgr->lock); 1239 } 1240 1241 if (pasid_mapping_needed) { 1242 mutex_lock(&id_mgr->lock); 1243 id->pasid = job->pasid; 1244 dma_fence_put(id->pasid_mapping); 1245 id->pasid_mapping = dma_fence_get(fence); 1246 mutex_unlock(&id_mgr->lock); 1247 } 1248 dma_fence_put(fence); 1249 1250 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1251 id->gds_base = job->gds_base; 1252 id->gds_size = job->gds_size; 1253 id->gws_base = job->gws_base; 1254 id->gws_size = job->gws_size; 1255 id->oa_base = job->oa_base; 1256 id->oa_size = job->oa_size; 1257 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1258 job->gds_size, job->gws_base, 1259 job->gws_size, job->oa_base, 1260 job->oa_size); 1261 } 1262 1263 if (ring->funcs->patch_cond_exec) 1264 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1265 1266 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1267 if (ring->funcs->emit_switch_buffer) { 1268 amdgpu_ring_emit_switch_buffer(ring); 1269 amdgpu_ring_emit_switch_buffer(ring); 1270 } 1271 return 0; 1272 } 1273 1274 /** 1275 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1276 * 1277 * @vm: requested vm 1278 * @bo: requested buffer object 1279 * 1280 * Find @bo inside the requested vm. 1281 * Search inside the @bos vm list for the requested vm 1282 * Returns the found bo_va or NULL if none is found 1283 * 1284 * Object has to be reserved! 1285 * 1286 * Returns: 1287 * Found bo_va or NULL. 1288 */ 1289 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1290 struct amdgpu_bo *bo) 1291 { 1292 struct amdgpu_vm_bo_base *base; 1293 1294 for (base = bo->vm_bo; base; base = base->next) { 1295 if (base->vm != vm) 1296 continue; 1297 1298 return container_of(base, struct amdgpu_bo_va, base); 1299 } 1300 return NULL; 1301 } 1302 1303 /** 1304 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1305 * 1306 * @pages_addr: optional DMA address to use for lookup 1307 * @addr: the unmapped addr 1308 * 1309 * Look up the physical address of the page that the pte resolves 1310 * to. 1311 * 1312 * Returns: 1313 * The pointer for the page table entry. 1314 */ 1315 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1316 { 1317 uint64_t result; 1318 1319 /* page table offset */ 1320 result = pages_addr[addr >> PAGE_SHIFT]; 1321 1322 /* in case cpu page size != gpu page size*/ 1323 result |= addr & (~PAGE_MASK); 1324 1325 result &= 0xFFFFFFFFFFFFF000ULL; 1326 1327 return result; 1328 } 1329 1330 /** 1331 * amdgpu_vm_update_pde - update a single level in the hierarchy 1332 * 1333 * @params: parameters for the update 1334 * @vm: requested vm 1335 * @entry: entry to update 1336 * 1337 * Makes sure the requested entry in parent is up to date. 1338 */ 1339 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1340 struct amdgpu_vm *vm, 1341 struct amdgpu_vm_bo_base *entry) 1342 { 1343 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1344 struct amdgpu_bo *bo = parent->bo, *pbo; 1345 uint64_t pde, pt, flags; 1346 unsigned level; 1347 1348 for (level = 0, pbo = bo->parent; pbo; ++level) 1349 pbo = pbo->parent; 1350 1351 level += params->adev->vm_manager.root_level; 1352 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1353 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1354 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1355 1, 0, flags); 1356 } 1357 1358 /** 1359 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1360 * 1361 * @adev: amdgpu_device pointer 1362 * @vm: related vm 1363 * 1364 * Mark all PD level as invalid after an error. 1365 */ 1366 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1367 struct amdgpu_vm *vm) 1368 { 1369 struct amdgpu_vm_pt_cursor cursor; 1370 struct amdgpu_vm_bo_base *entry; 1371 1372 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1373 if (entry->bo && !entry->moved) 1374 amdgpu_vm_bo_relocated(entry); 1375 } 1376 1377 /** 1378 * amdgpu_vm_update_pdes - make sure that all directories are valid 1379 * 1380 * @adev: amdgpu_device pointer 1381 * @vm: requested vm 1382 * @immediate: submit immediately to the paging queue 1383 * 1384 * Makes sure all directories are up to date. 1385 * 1386 * Returns: 1387 * 0 for success, error for failure. 1388 */ 1389 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1390 struct amdgpu_vm *vm, bool immediate) 1391 { 1392 struct amdgpu_vm_update_params params; 1393 int r, idx; 1394 1395 if (list_empty(&vm->relocated)) 1396 return 0; 1397 1398 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1399 return -ENODEV; 1400 1401 memset(¶ms, 0, sizeof(params)); 1402 params.adev = adev; 1403 params.vm = vm; 1404 params.immediate = immediate; 1405 1406 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1407 if (r) 1408 goto exit; 1409 1410 while (!list_empty(&vm->relocated)) { 1411 struct amdgpu_vm_bo_base *entry; 1412 1413 entry = list_first_entry(&vm->relocated, 1414 struct amdgpu_vm_bo_base, 1415 vm_status); 1416 amdgpu_vm_bo_idle(entry); 1417 1418 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1419 if (r) 1420 goto error; 1421 } 1422 1423 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1424 if (r) 1425 goto error; 1426 drm_dev_exit(idx); 1427 return 0; 1428 1429 error: 1430 amdgpu_vm_invalidate_pds(adev, vm); 1431 exit: 1432 drm_dev_exit(idx); 1433 return r; 1434 } 1435 1436 /* 1437 * amdgpu_vm_update_flags - figure out flags for PTE updates 1438 * 1439 * Make sure to set the right flags for the PTEs at the desired level. 1440 */ 1441 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1442 struct amdgpu_bo_vm *pt, unsigned int level, 1443 uint64_t pe, uint64_t addr, 1444 unsigned int count, uint32_t incr, 1445 uint64_t flags) 1446 1447 { 1448 if (level != AMDGPU_VM_PTB) { 1449 flags |= AMDGPU_PDE_PTE; 1450 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1451 1452 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1453 !(flags & AMDGPU_PTE_VALID) && 1454 !(flags & AMDGPU_PTE_PRT)) { 1455 1456 /* Workaround for fault priority problem on GMC9 */ 1457 flags |= AMDGPU_PTE_EXECUTABLE; 1458 } 1459 1460 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1461 flags); 1462 } 1463 1464 /** 1465 * amdgpu_vm_fragment - get fragment for PTEs 1466 * 1467 * @params: see amdgpu_vm_update_params definition 1468 * @start: first PTE to handle 1469 * @end: last PTE to handle 1470 * @flags: hw mapping flags 1471 * @frag: resulting fragment size 1472 * @frag_end: end of this fragment 1473 * 1474 * Returns the first possible fragment for the start and end address. 1475 */ 1476 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1477 uint64_t start, uint64_t end, uint64_t flags, 1478 unsigned int *frag, uint64_t *frag_end) 1479 { 1480 /** 1481 * The MC L1 TLB supports variable sized pages, based on a fragment 1482 * field in the PTE. When this field is set to a non-zero value, page 1483 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1484 * flags are considered valid for all PTEs within the fragment range 1485 * and corresponding mappings are assumed to be physically contiguous. 1486 * 1487 * The L1 TLB can store a single PTE for the whole fragment, 1488 * significantly increasing the space available for translation 1489 * caching. This leads to large improvements in throughput when the 1490 * TLB is under pressure. 1491 * 1492 * The L2 TLB distributes small and large fragments into two 1493 * asymmetric partitions. The large fragment cache is significantly 1494 * larger. Thus, we try to use large fragments wherever possible. 1495 * Userspace can support this by aligning virtual base address and 1496 * allocation size to the fragment size. 1497 * 1498 * Starting with Vega10 the fragment size only controls the L1. The L2 1499 * is now directly feed with small/huge/giant pages from the walker. 1500 */ 1501 unsigned max_frag; 1502 1503 if (params->adev->asic_type < CHIP_VEGA10) 1504 max_frag = params->adev->vm_manager.fragment_size; 1505 else 1506 max_frag = 31; 1507 1508 /* system pages are non continuously */ 1509 if (params->pages_addr) { 1510 *frag = 0; 1511 *frag_end = end; 1512 return; 1513 } 1514 1515 /* This intentionally wraps around if no bit is set */ 1516 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1517 if (*frag >= max_frag) { 1518 *frag = max_frag; 1519 *frag_end = end & ~((1ULL << max_frag) - 1); 1520 } else { 1521 *frag_end = start + (1 << *frag); 1522 } 1523 } 1524 1525 /** 1526 * amdgpu_vm_update_ptes - make sure that page tables are valid 1527 * 1528 * @params: see amdgpu_vm_update_params definition 1529 * @start: start of GPU address range 1530 * @end: end of GPU address range 1531 * @dst: destination address to map to, the next dst inside the function 1532 * @flags: mapping flags 1533 * 1534 * Update the page tables in the range @start - @end. 1535 * 1536 * Returns: 1537 * 0 for success, -EINVAL for failure. 1538 */ 1539 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1540 uint64_t start, uint64_t end, 1541 uint64_t dst, uint64_t flags) 1542 { 1543 struct amdgpu_device *adev = params->adev; 1544 struct amdgpu_vm_pt_cursor cursor; 1545 uint64_t frag_start = start, frag_end; 1546 unsigned int frag; 1547 int r; 1548 1549 /* figure out the initial fragment */ 1550 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1551 1552 /* walk over the address space and update the PTs */ 1553 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1554 while (cursor.pfn < end) { 1555 unsigned shift, parent_shift, mask; 1556 uint64_t incr, entry_end, pe_start; 1557 struct amdgpu_bo *pt; 1558 1559 if (!params->unlocked) { 1560 /* make sure that the page tables covering the 1561 * address range are actually allocated 1562 */ 1563 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1564 &cursor, params->immediate); 1565 if (r) 1566 return r; 1567 } 1568 1569 shift = amdgpu_vm_level_shift(adev, cursor.level); 1570 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1571 if (params->unlocked) { 1572 /* Unlocked updates are only allowed on the leaves */ 1573 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1574 continue; 1575 } else if (adev->asic_type < CHIP_VEGA10 && 1576 (flags & AMDGPU_PTE_VALID)) { 1577 /* No huge page support before GMC v9 */ 1578 if (cursor.level != AMDGPU_VM_PTB) { 1579 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1580 return -ENOENT; 1581 continue; 1582 } 1583 } else if (frag < shift) { 1584 /* We can't use this level when the fragment size is 1585 * smaller than the address shift. Go to the next 1586 * child entry and try again. 1587 */ 1588 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1589 continue; 1590 } else if (frag >= parent_shift) { 1591 /* If the fragment size is even larger than the parent 1592 * shift we should go up one level and check it again. 1593 */ 1594 if (!amdgpu_vm_pt_ancestor(&cursor)) 1595 return -EINVAL; 1596 continue; 1597 } 1598 1599 pt = cursor.entry->bo; 1600 if (!pt) { 1601 /* We need all PDs and PTs for mapping something, */ 1602 if (flags & AMDGPU_PTE_VALID) 1603 return -ENOENT; 1604 1605 /* but unmapping something can happen at a higher 1606 * level. 1607 */ 1608 if (!amdgpu_vm_pt_ancestor(&cursor)) 1609 return -EINVAL; 1610 1611 pt = cursor.entry->bo; 1612 shift = parent_shift; 1613 frag_end = max(frag_end, ALIGN(frag_start + 1, 1614 1ULL << shift)); 1615 } 1616 1617 /* Looks good so far, calculate parameters for the update */ 1618 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1619 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1620 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1621 entry_end = ((uint64_t)mask + 1) << shift; 1622 entry_end += cursor.pfn & ~(entry_end - 1); 1623 entry_end = min(entry_end, end); 1624 1625 do { 1626 struct amdgpu_vm *vm = params->vm; 1627 uint64_t upd_end = min(entry_end, frag_end); 1628 unsigned nptes = (upd_end - frag_start) >> shift; 1629 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1630 1631 /* This can happen when we set higher level PDs to 1632 * silent to stop fault floods. 1633 */ 1634 nptes = max(nptes, 1u); 1635 1636 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1637 nptes, dst, incr, upd_flags, 1638 vm->task_info.pid, 1639 vm->immediate.fence_context); 1640 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1641 cursor.level, pe_start, dst, 1642 nptes, incr, upd_flags); 1643 1644 pe_start += nptes * 8; 1645 dst += nptes * incr; 1646 1647 frag_start = upd_end; 1648 if (frag_start >= frag_end) { 1649 /* figure out the next fragment */ 1650 amdgpu_vm_fragment(params, frag_start, end, 1651 flags, &frag, &frag_end); 1652 if (frag < shift) 1653 break; 1654 } 1655 } while (frag_start < entry_end); 1656 1657 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1658 /* Free all child entries. 1659 * Update the tables with the flags and addresses and free up subsequent 1660 * tables in the case of huge pages or freed up areas. 1661 * This is the maximum you can free, because all other page tables are not 1662 * completely covered by the range and so potentially still in use. 1663 */ 1664 while (cursor.pfn < frag_start) { 1665 /* Make sure previous mapping is freed */ 1666 if (cursor.entry->bo) { 1667 params->table_freed = true; 1668 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1669 } 1670 amdgpu_vm_pt_next(adev, &cursor); 1671 } 1672 1673 } else if (frag >= shift) { 1674 /* or just move on to the next on the same level. */ 1675 amdgpu_vm_pt_next(adev, &cursor); 1676 } 1677 } 1678 1679 return 0; 1680 } 1681 1682 /** 1683 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1684 * 1685 * @adev: amdgpu_device pointer of the VM 1686 * @bo_adev: amdgpu_device pointer of the mapped BO 1687 * @vm: requested vm 1688 * @immediate: immediate submission in a page fault 1689 * @unlocked: unlocked invalidation during MM callback 1690 * @resv: fences we need to sync to 1691 * @start: start of mapped range 1692 * @last: last mapped entry 1693 * @flags: flags for the entries 1694 * @offset: offset into nodes and pages_addr 1695 * @res: ttm_resource to map 1696 * @pages_addr: DMA addresses to use for mapping 1697 * @fence: optional resulting fence 1698 * @table_freed: return true if page table is freed 1699 * 1700 * Fill in the page table entries between @start and @last. 1701 * 1702 * Returns: 1703 * 0 for success, -EINVAL for failure. 1704 */ 1705 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1706 struct amdgpu_device *bo_adev, 1707 struct amdgpu_vm *vm, bool immediate, 1708 bool unlocked, struct dma_resv *resv, 1709 uint64_t start, uint64_t last, 1710 uint64_t flags, uint64_t offset, 1711 struct ttm_resource *res, 1712 dma_addr_t *pages_addr, 1713 struct dma_fence **fence, 1714 bool *table_freed) 1715 { 1716 struct amdgpu_vm_update_params params; 1717 struct amdgpu_res_cursor cursor; 1718 enum amdgpu_sync_mode sync_mode; 1719 int r, idx; 1720 1721 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1722 return -ENODEV; 1723 1724 memset(¶ms, 0, sizeof(params)); 1725 params.adev = adev; 1726 params.vm = vm; 1727 params.immediate = immediate; 1728 params.pages_addr = pages_addr; 1729 params.unlocked = unlocked; 1730 1731 /* Implicitly sync to command submissions in the same VM before 1732 * unmapping. Sync to moving fences before mapping. 1733 */ 1734 if (!(flags & AMDGPU_PTE_VALID)) 1735 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1736 else 1737 sync_mode = AMDGPU_SYNC_EXPLICIT; 1738 1739 amdgpu_vm_eviction_lock(vm); 1740 if (vm->evicting) { 1741 r = -EBUSY; 1742 goto error_unlock; 1743 } 1744 1745 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1746 struct dma_fence *tmp = dma_fence_get_stub(); 1747 1748 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1749 swap(vm->last_unlocked, tmp); 1750 dma_fence_put(tmp); 1751 } 1752 1753 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1754 if (r) 1755 goto error_unlock; 1756 1757 amdgpu_res_first(pages_addr ? NULL : res, offset, 1758 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1759 while (cursor.remaining) { 1760 uint64_t tmp, num_entries, addr; 1761 1762 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1763 if (pages_addr) { 1764 bool contiguous = true; 1765 1766 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1767 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1768 uint64_t count; 1769 1770 contiguous = pages_addr[pfn + 1] == 1771 pages_addr[pfn] + PAGE_SIZE; 1772 1773 tmp = num_entries / 1774 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1775 for (count = 2; count < tmp; ++count) { 1776 uint64_t idx = pfn + count; 1777 1778 if (contiguous != (pages_addr[idx] == 1779 pages_addr[idx - 1] + PAGE_SIZE)) 1780 break; 1781 } 1782 num_entries = count * 1783 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1784 } 1785 1786 if (!contiguous) { 1787 addr = cursor.start; 1788 params.pages_addr = pages_addr; 1789 } else { 1790 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1791 params.pages_addr = NULL; 1792 } 1793 1794 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1795 addr = bo_adev->vm_manager.vram_base_offset + 1796 cursor.start; 1797 } else { 1798 addr = 0; 1799 } 1800 1801 tmp = start + num_entries; 1802 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1803 if (r) 1804 goto error_unlock; 1805 1806 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1807 start = tmp; 1808 } 1809 1810 r = vm->update_funcs->commit(¶ms, fence); 1811 1812 if (table_freed) 1813 *table_freed = *table_freed || params.table_freed; 1814 1815 error_unlock: 1816 amdgpu_vm_eviction_unlock(vm); 1817 drm_dev_exit(idx); 1818 return r; 1819 } 1820 1821 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1822 uint64_t *gtt_mem, uint64_t *cpu_mem) 1823 { 1824 struct amdgpu_bo_va *bo_va, *tmp; 1825 1826 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1827 if (!bo_va->base.bo) 1828 continue; 1829 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1830 gtt_mem, cpu_mem); 1831 } 1832 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1833 if (!bo_va->base.bo) 1834 continue; 1835 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1836 gtt_mem, cpu_mem); 1837 } 1838 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1839 if (!bo_va->base.bo) 1840 continue; 1841 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1842 gtt_mem, cpu_mem); 1843 } 1844 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1845 if (!bo_va->base.bo) 1846 continue; 1847 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1848 gtt_mem, cpu_mem); 1849 } 1850 spin_lock(&vm->invalidated_lock); 1851 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1852 if (!bo_va->base.bo) 1853 continue; 1854 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1855 gtt_mem, cpu_mem); 1856 } 1857 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1858 if (!bo_va->base.bo) 1859 continue; 1860 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1861 gtt_mem, cpu_mem); 1862 } 1863 spin_unlock(&vm->invalidated_lock); 1864 } 1865 /** 1866 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1867 * 1868 * @adev: amdgpu_device pointer 1869 * @bo_va: requested BO and VM object 1870 * @clear: if true clear the entries 1871 * @table_freed: return true if page table is freed 1872 * 1873 * Fill in the page table entries for @bo_va. 1874 * 1875 * Returns: 1876 * 0 for success, -EINVAL for failure. 1877 */ 1878 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1879 bool clear, bool *table_freed) 1880 { 1881 struct amdgpu_bo *bo = bo_va->base.bo; 1882 struct amdgpu_vm *vm = bo_va->base.vm; 1883 struct amdgpu_bo_va_mapping *mapping; 1884 dma_addr_t *pages_addr = NULL; 1885 struct ttm_resource *mem; 1886 struct dma_fence **last_update; 1887 struct dma_resv *resv; 1888 uint64_t flags; 1889 struct amdgpu_device *bo_adev = adev; 1890 int r; 1891 1892 if (clear || !bo) { 1893 mem = NULL; 1894 resv = vm->root.bo->tbo.base.resv; 1895 } else { 1896 struct drm_gem_object *obj = &bo->tbo.base; 1897 1898 resv = bo->tbo.base.resv; 1899 if (obj->import_attach && bo_va->is_xgmi) { 1900 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1901 struct drm_gem_object *gobj = dma_buf->priv; 1902 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1903 1904 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1905 bo = gem_to_amdgpu_bo(gobj); 1906 } 1907 mem = bo->tbo.resource; 1908 if (mem->mem_type == TTM_PL_TT || 1909 mem->mem_type == AMDGPU_PL_PREEMPT) 1910 pages_addr = bo->tbo.ttm->dma_address; 1911 } 1912 1913 if (bo) { 1914 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1915 1916 if (amdgpu_bo_encrypted(bo)) 1917 flags |= AMDGPU_PTE_TMZ; 1918 1919 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1920 } else { 1921 flags = 0x0; 1922 } 1923 1924 if (clear || (bo && bo->tbo.base.resv == 1925 vm->root.bo->tbo.base.resv)) 1926 last_update = &vm->last_update; 1927 else 1928 last_update = &bo_va->last_pt_update; 1929 1930 if (!clear && bo_va->base.moved) { 1931 bo_va->base.moved = false; 1932 list_splice_init(&bo_va->valids, &bo_va->invalids); 1933 1934 } else if (bo_va->cleared != clear) { 1935 list_splice_init(&bo_va->valids, &bo_va->invalids); 1936 } 1937 1938 list_for_each_entry(mapping, &bo_va->invalids, list) { 1939 uint64_t update_flags = flags; 1940 1941 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1942 * but in case of something, we filter the flags in first place 1943 */ 1944 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1945 update_flags &= ~AMDGPU_PTE_READABLE; 1946 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1947 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1948 1949 /* Apply ASIC specific mapping flags */ 1950 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1951 1952 trace_amdgpu_vm_bo_update(mapping); 1953 1954 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1955 resv, mapping->start, 1956 mapping->last, update_flags, 1957 mapping->offset, mem, 1958 pages_addr, last_update, table_freed); 1959 if (r) 1960 return r; 1961 } 1962 1963 /* If the BO is not in its preferred location add it back to 1964 * the evicted list so that it gets validated again on the 1965 * next command submission. 1966 */ 1967 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1968 uint32_t mem_type = bo->tbo.resource->mem_type; 1969 1970 if (!(bo->preferred_domains & 1971 amdgpu_mem_type_to_domain(mem_type))) 1972 amdgpu_vm_bo_evicted(&bo_va->base); 1973 else 1974 amdgpu_vm_bo_idle(&bo_va->base); 1975 } else { 1976 amdgpu_vm_bo_done(&bo_va->base); 1977 } 1978 1979 list_splice_init(&bo_va->invalids, &bo_va->valids); 1980 bo_va->cleared = clear; 1981 1982 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1983 list_for_each_entry(mapping, &bo_va->valids, list) 1984 trace_amdgpu_vm_bo_mapping(mapping); 1985 } 1986 1987 return 0; 1988 } 1989 1990 /** 1991 * amdgpu_vm_update_prt_state - update the global PRT state 1992 * 1993 * @adev: amdgpu_device pointer 1994 */ 1995 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1996 { 1997 unsigned long flags; 1998 bool enable; 1999 2000 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2001 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2002 adev->gmc.gmc_funcs->set_prt(adev, enable); 2003 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2004 } 2005 2006 /** 2007 * amdgpu_vm_prt_get - add a PRT user 2008 * 2009 * @adev: amdgpu_device pointer 2010 */ 2011 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2012 { 2013 if (!adev->gmc.gmc_funcs->set_prt) 2014 return; 2015 2016 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2017 amdgpu_vm_update_prt_state(adev); 2018 } 2019 2020 /** 2021 * amdgpu_vm_prt_put - drop a PRT user 2022 * 2023 * @adev: amdgpu_device pointer 2024 */ 2025 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2026 { 2027 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2028 amdgpu_vm_update_prt_state(adev); 2029 } 2030 2031 /** 2032 * amdgpu_vm_prt_cb - callback for updating the PRT status 2033 * 2034 * @fence: fence for the callback 2035 * @_cb: the callback function 2036 */ 2037 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2038 { 2039 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2040 2041 amdgpu_vm_prt_put(cb->adev); 2042 kfree(cb); 2043 } 2044 2045 /** 2046 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2047 * 2048 * @adev: amdgpu_device pointer 2049 * @fence: fence for the callback 2050 */ 2051 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2052 struct dma_fence *fence) 2053 { 2054 struct amdgpu_prt_cb *cb; 2055 2056 if (!adev->gmc.gmc_funcs->set_prt) 2057 return; 2058 2059 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2060 if (!cb) { 2061 /* Last resort when we are OOM */ 2062 if (fence) 2063 dma_fence_wait(fence, false); 2064 2065 amdgpu_vm_prt_put(adev); 2066 } else { 2067 cb->adev = adev; 2068 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2069 amdgpu_vm_prt_cb)) 2070 amdgpu_vm_prt_cb(fence, &cb->cb); 2071 } 2072 } 2073 2074 /** 2075 * amdgpu_vm_free_mapping - free a mapping 2076 * 2077 * @adev: amdgpu_device pointer 2078 * @vm: requested vm 2079 * @mapping: mapping to be freed 2080 * @fence: fence of the unmap operation 2081 * 2082 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2083 */ 2084 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2085 struct amdgpu_vm *vm, 2086 struct amdgpu_bo_va_mapping *mapping, 2087 struct dma_fence *fence) 2088 { 2089 if (mapping->flags & AMDGPU_PTE_PRT) 2090 amdgpu_vm_add_prt_cb(adev, fence); 2091 kfree(mapping); 2092 } 2093 2094 /** 2095 * amdgpu_vm_prt_fini - finish all prt mappings 2096 * 2097 * @adev: amdgpu_device pointer 2098 * @vm: requested vm 2099 * 2100 * Register a cleanup callback to disable PRT support after VM dies. 2101 */ 2102 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2103 { 2104 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2105 struct dma_resv_iter cursor; 2106 struct dma_fence *fence; 2107 2108 dma_resv_for_each_fence(&cursor, resv, true, fence) { 2109 /* Add a callback for each fence in the reservation object */ 2110 amdgpu_vm_prt_get(adev); 2111 amdgpu_vm_add_prt_cb(adev, fence); 2112 } 2113 } 2114 2115 /** 2116 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2117 * 2118 * @adev: amdgpu_device pointer 2119 * @vm: requested vm 2120 * @fence: optional resulting fence (unchanged if no work needed to be done 2121 * or if an error occurred) 2122 * 2123 * Make sure all freed BOs are cleared in the PT. 2124 * PTs have to be reserved and mutex must be locked! 2125 * 2126 * Returns: 2127 * 0 for success. 2128 * 2129 */ 2130 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2131 struct amdgpu_vm *vm, 2132 struct dma_fence **fence) 2133 { 2134 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2135 struct amdgpu_bo_va_mapping *mapping; 2136 uint64_t init_pte_value = 0; 2137 struct dma_fence *f = NULL; 2138 int r; 2139 2140 while (!list_empty(&vm->freed)) { 2141 mapping = list_first_entry(&vm->freed, 2142 struct amdgpu_bo_va_mapping, list); 2143 list_del(&mapping->list); 2144 2145 if (vm->pte_support_ats && 2146 mapping->start < AMDGPU_GMC_HOLE_START) 2147 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2148 2149 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2150 resv, mapping->start, 2151 mapping->last, init_pte_value, 2152 0, NULL, NULL, &f, NULL); 2153 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2154 if (r) { 2155 dma_fence_put(f); 2156 return r; 2157 } 2158 } 2159 2160 if (fence && f) { 2161 dma_fence_put(*fence); 2162 *fence = f; 2163 } else { 2164 dma_fence_put(f); 2165 } 2166 2167 return 0; 2168 2169 } 2170 2171 /** 2172 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2173 * 2174 * @adev: amdgpu_device pointer 2175 * @vm: requested vm 2176 * 2177 * Make sure all BOs which are moved are updated in the PTs. 2178 * 2179 * Returns: 2180 * 0 for success. 2181 * 2182 * PTs have to be reserved! 2183 */ 2184 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2185 struct amdgpu_vm *vm) 2186 { 2187 struct amdgpu_bo_va *bo_va, *tmp; 2188 struct dma_resv *resv; 2189 bool clear; 2190 int r; 2191 2192 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2193 /* Per VM BOs never need to bo cleared in the page tables */ 2194 r = amdgpu_vm_bo_update(adev, bo_va, false, NULL); 2195 if (r) 2196 return r; 2197 } 2198 2199 spin_lock(&vm->invalidated_lock); 2200 while (!list_empty(&vm->invalidated)) { 2201 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2202 base.vm_status); 2203 resv = bo_va->base.bo->tbo.base.resv; 2204 spin_unlock(&vm->invalidated_lock); 2205 2206 /* Try to reserve the BO to avoid clearing its ptes */ 2207 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2208 clear = false; 2209 /* Somebody else is using the BO right now */ 2210 else 2211 clear = true; 2212 2213 r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL); 2214 if (r) 2215 return r; 2216 2217 if (!clear) 2218 dma_resv_unlock(resv); 2219 spin_lock(&vm->invalidated_lock); 2220 } 2221 spin_unlock(&vm->invalidated_lock); 2222 2223 return 0; 2224 } 2225 2226 /** 2227 * amdgpu_vm_bo_add - add a bo to a specific vm 2228 * 2229 * @adev: amdgpu_device pointer 2230 * @vm: requested vm 2231 * @bo: amdgpu buffer object 2232 * 2233 * Add @bo into the requested vm. 2234 * Add @bo to the list of bos associated with the vm 2235 * 2236 * Returns: 2237 * Newly added bo_va or NULL for failure 2238 * 2239 * Object has to be reserved! 2240 */ 2241 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2242 struct amdgpu_vm *vm, 2243 struct amdgpu_bo *bo) 2244 { 2245 struct amdgpu_bo_va *bo_va; 2246 2247 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2248 if (bo_va == NULL) { 2249 return NULL; 2250 } 2251 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2252 2253 bo_va->ref_count = 1; 2254 INIT_LIST_HEAD(&bo_va->valids); 2255 INIT_LIST_HEAD(&bo_va->invalids); 2256 2257 if (!bo) 2258 return bo_va; 2259 2260 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2261 bo_va->is_xgmi = true; 2262 /* Power up XGMI if it can be potentially used */ 2263 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2264 } 2265 2266 return bo_va; 2267 } 2268 2269 2270 /** 2271 * amdgpu_vm_bo_insert_map - insert a new mapping 2272 * 2273 * @adev: amdgpu_device pointer 2274 * @bo_va: bo_va to store the address 2275 * @mapping: the mapping to insert 2276 * 2277 * Insert a new mapping into all structures. 2278 */ 2279 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2280 struct amdgpu_bo_va *bo_va, 2281 struct amdgpu_bo_va_mapping *mapping) 2282 { 2283 struct amdgpu_vm *vm = bo_va->base.vm; 2284 struct amdgpu_bo *bo = bo_va->base.bo; 2285 2286 mapping->bo_va = bo_va; 2287 list_add(&mapping->list, &bo_va->invalids); 2288 amdgpu_vm_it_insert(mapping, &vm->va); 2289 2290 if (mapping->flags & AMDGPU_PTE_PRT) 2291 amdgpu_vm_prt_get(adev); 2292 2293 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2294 !bo_va->base.moved) { 2295 list_move(&bo_va->base.vm_status, &vm->moved); 2296 } 2297 trace_amdgpu_vm_bo_map(bo_va, mapping); 2298 } 2299 2300 /** 2301 * amdgpu_vm_bo_map - map bo inside a vm 2302 * 2303 * @adev: amdgpu_device pointer 2304 * @bo_va: bo_va to store the address 2305 * @saddr: where to map the BO 2306 * @offset: requested offset in the BO 2307 * @size: BO size in bytes 2308 * @flags: attributes of pages (read/write/valid/etc.) 2309 * 2310 * Add a mapping of the BO at the specefied addr into the VM. 2311 * 2312 * Returns: 2313 * 0 for success, error for failure. 2314 * 2315 * Object has to be reserved and unreserved outside! 2316 */ 2317 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2318 struct amdgpu_bo_va *bo_va, 2319 uint64_t saddr, uint64_t offset, 2320 uint64_t size, uint64_t flags) 2321 { 2322 struct amdgpu_bo_va_mapping *mapping, *tmp; 2323 struct amdgpu_bo *bo = bo_va->base.bo; 2324 struct amdgpu_vm *vm = bo_va->base.vm; 2325 uint64_t eaddr; 2326 2327 /* validate the parameters */ 2328 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2329 size == 0 || size & ~PAGE_MASK) 2330 return -EINVAL; 2331 2332 /* make sure object fit at this offset */ 2333 eaddr = saddr + size - 1; 2334 if (saddr >= eaddr || 2335 (bo && offset + size > amdgpu_bo_size(bo)) || 2336 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2337 return -EINVAL; 2338 2339 saddr /= AMDGPU_GPU_PAGE_SIZE; 2340 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2341 2342 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2343 if (tmp) { 2344 /* bo and tmp overlap, invalid addr */ 2345 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2346 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2347 tmp->start, tmp->last + 1); 2348 return -EINVAL; 2349 } 2350 2351 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2352 if (!mapping) 2353 return -ENOMEM; 2354 2355 mapping->start = saddr; 2356 mapping->last = eaddr; 2357 mapping->offset = offset; 2358 mapping->flags = flags; 2359 2360 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2361 2362 return 0; 2363 } 2364 2365 /** 2366 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2367 * 2368 * @adev: amdgpu_device pointer 2369 * @bo_va: bo_va to store the address 2370 * @saddr: where to map the BO 2371 * @offset: requested offset in the BO 2372 * @size: BO size in bytes 2373 * @flags: attributes of pages (read/write/valid/etc.) 2374 * 2375 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2376 * mappings as we do so. 2377 * 2378 * Returns: 2379 * 0 for success, error for failure. 2380 * 2381 * Object has to be reserved and unreserved outside! 2382 */ 2383 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2384 struct amdgpu_bo_va *bo_va, 2385 uint64_t saddr, uint64_t offset, 2386 uint64_t size, uint64_t flags) 2387 { 2388 struct amdgpu_bo_va_mapping *mapping; 2389 struct amdgpu_bo *bo = bo_va->base.bo; 2390 uint64_t eaddr; 2391 int r; 2392 2393 /* validate the parameters */ 2394 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2395 size == 0 || size & ~PAGE_MASK) 2396 return -EINVAL; 2397 2398 /* make sure object fit at this offset */ 2399 eaddr = saddr + size - 1; 2400 if (saddr >= eaddr || 2401 (bo && offset + size > amdgpu_bo_size(bo)) || 2402 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2403 return -EINVAL; 2404 2405 /* Allocate all the needed memory */ 2406 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2407 if (!mapping) 2408 return -ENOMEM; 2409 2410 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2411 if (r) { 2412 kfree(mapping); 2413 return r; 2414 } 2415 2416 saddr /= AMDGPU_GPU_PAGE_SIZE; 2417 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2418 2419 mapping->start = saddr; 2420 mapping->last = eaddr; 2421 mapping->offset = offset; 2422 mapping->flags = flags; 2423 2424 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2425 2426 return 0; 2427 } 2428 2429 /** 2430 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2431 * 2432 * @adev: amdgpu_device pointer 2433 * @bo_va: bo_va to remove the address from 2434 * @saddr: where to the BO is mapped 2435 * 2436 * Remove a mapping of the BO at the specefied addr from the VM. 2437 * 2438 * Returns: 2439 * 0 for success, error for failure. 2440 * 2441 * Object has to be reserved and unreserved outside! 2442 */ 2443 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2444 struct amdgpu_bo_va *bo_va, 2445 uint64_t saddr) 2446 { 2447 struct amdgpu_bo_va_mapping *mapping; 2448 struct amdgpu_vm *vm = bo_va->base.vm; 2449 bool valid = true; 2450 2451 saddr /= AMDGPU_GPU_PAGE_SIZE; 2452 2453 list_for_each_entry(mapping, &bo_va->valids, list) { 2454 if (mapping->start == saddr) 2455 break; 2456 } 2457 2458 if (&mapping->list == &bo_va->valids) { 2459 valid = false; 2460 2461 list_for_each_entry(mapping, &bo_va->invalids, list) { 2462 if (mapping->start == saddr) 2463 break; 2464 } 2465 2466 if (&mapping->list == &bo_va->invalids) 2467 return -ENOENT; 2468 } 2469 2470 list_del(&mapping->list); 2471 amdgpu_vm_it_remove(mapping, &vm->va); 2472 mapping->bo_va = NULL; 2473 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2474 2475 if (valid) 2476 list_add(&mapping->list, &vm->freed); 2477 else 2478 amdgpu_vm_free_mapping(adev, vm, mapping, 2479 bo_va->last_pt_update); 2480 2481 return 0; 2482 } 2483 2484 /** 2485 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2486 * 2487 * @adev: amdgpu_device pointer 2488 * @vm: VM structure to use 2489 * @saddr: start of the range 2490 * @size: size of the range 2491 * 2492 * Remove all mappings in a range, split them as appropriate. 2493 * 2494 * Returns: 2495 * 0 for success, error for failure. 2496 */ 2497 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2498 struct amdgpu_vm *vm, 2499 uint64_t saddr, uint64_t size) 2500 { 2501 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2502 LIST_HEAD(removed); 2503 uint64_t eaddr; 2504 2505 eaddr = saddr + size - 1; 2506 saddr /= AMDGPU_GPU_PAGE_SIZE; 2507 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2508 2509 /* Allocate all the needed memory */ 2510 before = kzalloc(sizeof(*before), GFP_KERNEL); 2511 if (!before) 2512 return -ENOMEM; 2513 INIT_LIST_HEAD(&before->list); 2514 2515 after = kzalloc(sizeof(*after), GFP_KERNEL); 2516 if (!after) { 2517 kfree(before); 2518 return -ENOMEM; 2519 } 2520 INIT_LIST_HEAD(&after->list); 2521 2522 /* Now gather all removed mappings */ 2523 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2524 while (tmp) { 2525 /* Remember mapping split at the start */ 2526 if (tmp->start < saddr) { 2527 before->start = tmp->start; 2528 before->last = saddr - 1; 2529 before->offset = tmp->offset; 2530 before->flags = tmp->flags; 2531 before->bo_va = tmp->bo_va; 2532 list_add(&before->list, &tmp->bo_va->invalids); 2533 } 2534 2535 /* Remember mapping split at the end */ 2536 if (tmp->last > eaddr) { 2537 after->start = eaddr + 1; 2538 after->last = tmp->last; 2539 after->offset = tmp->offset; 2540 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2541 after->flags = tmp->flags; 2542 after->bo_va = tmp->bo_va; 2543 list_add(&after->list, &tmp->bo_va->invalids); 2544 } 2545 2546 list_del(&tmp->list); 2547 list_add(&tmp->list, &removed); 2548 2549 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2550 } 2551 2552 /* And free them up */ 2553 list_for_each_entry_safe(tmp, next, &removed, list) { 2554 amdgpu_vm_it_remove(tmp, &vm->va); 2555 list_del(&tmp->list); 2556 2557 if (tmp->start < saddr) 2558 tmp->start = saddr; 2559 if (tmp->last > eaddr) 2560 tmp->last = eaddr; 2561 2562 tmp->bo_va = NULL; 2563 list_add(&tmp->list, &vm->freed); 2564 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2565 } 2566 2567 /* Insert partial mapping before the range */ 2568 if (!list_empty(&before->list)) { 2569 amdgpu_vm_it_insert(before, &vm->va); 2570 if (before->flags & AMDGPU_PTE_PRT) 2571 amdgpu_vm_prt_get(adev); 2572 } else { 2573 kfree(before); 2574 } 2575 2576 /* Insert partial mapping after the range */ 2577 if (!list_empty(&after->list)) { 2578 amdgpu_vm_it_insert(after, &vm->va); 2579 if (after->flags & AMDGPU_PTE_PRT) 2580 amdgpu_vm_prt_get(adev); 2581 } else { 2582 kfree(after); 2583 } 2584 2585 return 0; 2586 } 2587 2588 /** 2589 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2590 * 2591 * @vm: the requested VM 2592 * @addr: the address 2593 * 2594 * Find a mapping by it's address. 2595 * 2596 * Returns: 2597 * The amdgpu_bo_va_mapping matching for addr or NULL 2598 * 2599 */ 2600 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2601 uint64_t addr) 2602 { 2603 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2604 } 2605 2606 /** 2607 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2608 * 2609 * @vm: the requested vm 2610 * @ticket: CS ticket 2611 * 2612 * Trace all mappings of BOs reserved during a command submission. 2613 */ 2614 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2615 { 2616 struct amdgpu_bo_va_mapping *mapping; 2617 2618 if (!trace_amdgpu_vm_bo_cs_enabled()) 2619 return; 2620 2621 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2622 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2623 if (mapping->bo_va && mapping->bo_va->base.bo) { 2624 struct amdgpu_bo *bo; 2625 2626 bo = mapping->bo_va->base.bo; 2627 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2628 ticket) 2629 continue; 2630 } 2631 2632 trace_amdgpu_vm_bo_cs(mapping); 2633 } 2634 } 2635 2636 /** 2637 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2638 * 2639 * @adev: amdgpu_device pointer 2640 * @bo_va: requested bo_va 2641 * 2642 * Remove @bo_va->bo from the requested vm. 2643 * 2644 * Object have to be reserved! 2645 */ 2646 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2647 struct amdgpu_bo_va *bo_va) 2648 { 2649 struct amdgpu_bo_va_mapping *mapping, *next; 2650 struct amdgpu_bo *bo = bo_va->base.bo; 2651 struct amdgpu_vm *vm = bo_va->base.vm; 2652 struct amdgpu_vm_bo_base **base; 2653 2654 if (bo) { 2655 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2656 vm->bulk_moveable = false; 2657 2658 for (base = &bo_va->base.bo->vm_bo; *base; 2659 base = &(*base)->next) { 2660 if (*base != &bo_va->base) 2661 continue; 2662 2663 *base = bo_va->base.next; 2664 break; 2665 } 2666 } 2667 2668 spin_lock(&vm->invalidated_lock); 2669 list_del(&bo_va->base.vm_status); 2670 spin_unlock(&vm->invalidated_lock); 2671 2672 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2673 list_del(&mapping->list); 2674 amdgpu_vm_it_remove(mapping, &vm->va); 2675 mapping->bo_va = NULL; 2676 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2677 list_add(&mapping->list, &vm->freed); 2678 } 2679 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2680 list_del(&mapping->list); 2681 amdgpu_vm_it_remove(mapping, &vm->va); 2682 amdgpu_vm_free_mapping(adev, vm, mapping, 2683 bo_va->last_pt_update); 2684 } 2685 2686 dma_fence_put(bo_va->last_pt_update); 2687 2688 if (bo && bo_va->is_xgmi) 2689 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2690 2691 kfree(bo_va); 2692 } 2693 2694 /** 2695 * amdgpu_vm_evictable - check if we can evict a VM 2696 * 2697 * @bo: A page table of the VM. 2698 * 2699 * Check if it is possible to evict a VM. 2700 */ 2701 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2702 { 2703 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2704 2705 /* Page tables of a destroyed VM can go away immediately */ 2706 if (!bo_base || !bo_base->vm) 2707 return true; 2708 2709 /* Don't evict VM page tables while they are busy */ 2710 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2711 return false; 2712 2713 /* Try to block ongoing updates */ 2714 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2715 return false; 2716 2717 /* Don't evict VM page tables while they are updated */ 2718 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2719 amdgpu_vm_eviction_unlock(bo_base->vm); 2720 return false; 2721 } 2722 2723 bo_base->vm->evicting = true; 2724 amdgpu_vm_eviction_unlock(bo_base->vm); 2725 return true; 2726 } 2727 2728 /** 2729 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2730 * 2731 * @adev: amdgpu_device pointer 2732 * @bo: amdgpu buffer object 2733 * @evicted: is the BO evicted 2734 * 2735 * Mark @bo as invalid. 2736 */ 2737 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2738 struct amdgpu_bo *bo, bool evicted) 2739 { 2740 struct amdgpu_vm_bo_base *bo_base; 2741 2742 /* shadow bo doesn't have bo base, its validation needs its parent */ 2743 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2744 bo = bo->parent; 2745 2746 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2747 struct amdgpu_vm *vm = bo_base->vm; 2748 2749 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2750 amdgpu_vm_bo_evicted(bo_base); 2751 continue; 2752 } 2753 2754 if (bo_base->moved) 2755 continue; 2756 bo_base->moved = true; 2757 2758 if (bo->tbo.type == ttm_bo_type_kernel) 2759 amdgpu_vm_bo_relocated(bo_base); 2760 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2761 amdgpu_vm_bo_moved(bo_base); 2762 else 2763 amdgpu_vm_bo_invalidated(bo_base); 2764 } 2765 } 2766 2767 /** 2768 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2769 * 2770 * @vm_size: VM size 2771 * 2772 * Returns: 2773 * VM page table as power of two 2774 */ 2775 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2776 { 2777 /* Total bits covered by PD + PTs */ 2778 unsigned bits = ilog2(vm_size) + 18; 2779 2780 /* Make sure the PD is 4K in size up to 8GB address space. 2781 Above that split equal between PD and PTs */ 2782 if (vm_size <= 8) 2783 return (bits - 9); 2784 else 2785 return ((bits + 3) / 2); 2786 } 2787 2788 /** 2789 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2790 * 2791 * @adev: amdgpu_device pointer 2792 * @min_vm_size: the minimum vm size in GB if it's set auto 2793 * @fragment_size_default: Default PTE fragment size 2794 * @max_level: max VMPT level 2795 * @max_bits: max address space size in bits 2796 * 2797 */ 2798 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2799 uint32_t fragment_size_default, unsigned max_level, 2800 unsigned max_bits) 2801 { 2802 unsigned int max_size = 1 << (max_bits - 30); 2803 unsigned int vm_size; 2804 uint64_t tmp; 2805 2806 /* adjust vm size first */ 2807 if (amdgpu_vm_size != -1) { 2808 vm_size = amdgpu_vm_size; 2809 if (vm_size > max_size) { 2810 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2811 amdgpu_vm_size, max_size); 2812 vm_size = max_size; 2813 } 2814 } else { 2815 struct sysinfo si; 2816 unsigned int phys_ram_gb; 2817 2818 /* Optimal VM size depends on the amount of physical 2819 * RAM available. Underlying requirements and 2820 * assumptions: 2821 * 2822 * - Need to map system memory and VRAM from all GPUs 2823 * - VRAM from other GPUs not known here 2824 * - Assume VRAM <= system memory 2825 * - On GFX8 and older, VM space can be segmented for 2826 * different MTYPEs 2827 * - Need to allow room for fragmentation, guard pages etc. 2828 * 2829 * This adds up to a rough guess of system memory x3. 2830 * Round up to power of two to maximize the available 2831 * VM size with the given page table size. 2832 */ 2833 si_meminfo(&si); 2834 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2835 (1 << 30) - 1) >> 30; 2836 vm_size = roundup_pow_of_two( 2837 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2838 } 2839 2840 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2841 2842 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2843 if (amdgpu_vm_block_size != -1) 2844 tmp >>= amdgpu_vm_block_size - 9; 2845 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2846 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2847 switch (adev->vm_manager.num_level) { 2848 case 3: 2849 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2850 break; 2851 case 2: 2852 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2853 break; 2854 case 1: 2855 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2856 break; 2857 default: 2858 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2859 } 2860 /* block size depends on vm size and hw setup*/ 2861 if (amdgpu_vm_block_size != -1) 2862 adev->vm_manager.block_size = 2863 min((unsigned)amdgpu_vm_block_size, max_bits 2864 - AMDGPU_GPU_PAGE_SHIFT 2865 - 9 * adev->vm_manager.num_level); 2866 else if (adev->vm_manager.num_level > 1) 2867 adev->vm_manager.block_size = 9; 2868 else 2869 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2870 2871 if (amdgpu_vm_fragment_size == -1) 2872 adev->vm_manager.fragment_size = fragment_size_default; 2873 else 2874 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2875 2876 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2877 vm_size, adev->vm_manager.num_level + 1, 2878 adev->vm_manager.block_size, 2879 adev->vm_manager.fragment_size); 2880 } 2881 2882 /** 2883 * amdgpu_vm_wait_idle - wait for the VM to become idle 2884 * 2885 * @vm: VM object to wait for 2886 * @timeout: timeout to wait for VM to become idle 2887 */ 2888 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2889 { 2890 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2891 true, timeout); 2892 if (timeout <= 0) 2893 return timeout; 2894 2895 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2896 } 2897 2898 /** 2899 * amdgpu_vm_init - initialize a vm instance 2900 * 2901 * @adev: amdgpu_device pointer 2902 * @vm: requested vm 2903 * 2904 * Init @vm fields. 2905 * 2906 * Returns: 2907 * 0 for success, error for failure. 2908 */ 2909 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2910 { 2911 struct amdgpu_bo *root_bo; 2912 struct amdgpu_bo_vm *root; 2913 int r, i; 2914 2915 vm->va = RB_ROOT_CACHED; 2916 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2917 vm->reserved_vmid[i] = NULL; 2918 INIT_LIST_HEAD(&vm->evicted); 2919 INIT_LIST_HEAD(&vm->relocated); 2920 INIT_LIST_HEAD(&vm->moved); 2921 INIT_LIST_HEAD(&vm->idle); 2922 INIT_LIST_HEAD(&vm->invalidated); 2923 spin_lock_init(&vm->invalidated_lock); 2924 INIT_LIST_HEAD(&vm->freed); 2925 INIT_LIST_HEAD(&vm->done); 2926 2927 /* create scheduler entities for page table updates */ 2928 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2929 adev->vm_manager.vm_pte_scheds, 2930 adev->vm_manager.vm_pte_num_scheds, NULL); 2931 if (r) 2932 return r; 2933 2934 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2935 adev->vm_manager.vm_pte_scheds, 2936 adev->vm_manager.vm_pte_num_scheds, NULL); 2937 if (r) 2938 goto error_free_immediate; 2939 2940 vm->pte_support_ats = false; 2941 vm->is_compute_context = false; 2942 2943 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2944 AMDGPU_VM_USE_CPU_FOR_GFX); 2945 2946 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2947 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2948 WARN_ONCE((vm->use_cpu_for_update && 2949 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2950 "CPU update of VM recommended only for large BAR system\n"); 2951 2952 if (vm->use_cpu_for_update) 2953 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2954 else 2955 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2956 vm->last_update = NULL; 2957 vm->last_unlocked = dma_fence_get_stub(); 2958 2959 mutex_init(&vm->eviction_lock); 2960 vm->evicting = false; 2961 2962 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2963 false, &root); 2964 if (r) 2965 goto error_free_delayed; 2966 root_bo = &root->bo; 2967 r = amdgpu_bo_reserve(root_bo, true); 2968 if (r) 2969 goto error_free_root; 2970 2971 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2972 if (r) 2973 goto error_unreserve; 2974 2975 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2976 2977 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2978 if (r) 2979 goto error_unreserve; 2980 2981 amdgpu_bo_unreserve(vm->root.bo); 2982 2983 INIT_KFIFO(vm->faults); 2984 2985 return 0; 2986 2987 error_unreserve: 2988 amdgpu_bo_unreserve(vm->root.bo); 2989 2990 error_free_root: 2991 amdgpu_bo_unref(&root->shadow); 2992 amdgpu_bo_unref(&root_bo); 2993 vm->root.bo = NULL; 2994 2995 error_free_delayed: 2996 dma_fence_put(vm->last_unlocked); 2997 drm_sched_entity_destroy(&vm->delayed); 2998 2999 error_free_immediate: 3000 drm_sched_entity_destroy(&vm->immediate); 3001 3002 return r; 3003 } 3004 3005 /** 3006 * amdgpu_vm_check_clean_reserved - check if a VM is clean 3007 * 3008 * @adev: amdgpu_device pointer 3009 * @vm: the VM to check 3010 * 3011 * check all entries of the root PD, if any subsequent PDs are allocated, 3012 * it means there are page table creating and filling, and is no a clean 3013 * VM 3014 * 3015 * Returns: 3016 * 0 if this VM is clean 3017 */ 3018 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 3019 struct amdgpu_vm *vm) 3020 { 3021 enum amdgpu_vm_level root = adev->vm_manager.root_level; 3022 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3023 unsigned int i = 0; 3024 3025 for (i = 0; i < entries; i++) { 3026 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3027 return -EINVAL; 3028 } 3029 3030 return 0; 3031 } 3032 3033 /** 3034 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3035 * 3036 * @adev: amdgpu_device pointer 3037 * @vm: requested vm 3038 * 3039 * This only works on GFX VMs that don't have any BOs added and no 3040 * page tables allocated yet. 3041 * 3042 * Changes the following VM parameters: 3043 * - use_cpu_for_update 3044 * - pte_supports_ats 3045 * 3046 * Reinitializes the page directory to reflect the changed ATS 3047 * setting. 3048 * 3049 * Returns: 3050 * 0 for success, -errno for errors. 3051 */ 3052 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3053 { 3054 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3055 int r; 3056 3057 r = amdgpu_bo_reserve(vm->root.bo, true); 3058 if (r) 3059 return r; 3060 3061 /* Sanity checks */ 3062 r = amdgpu_vm_check_clean_reserved(adev, vm); 3063 if (r) 3064 goto unreserve_bo; 3065 3066 /* Check if PD needs to be reinitialized and do it before 3067 * changing any other state, in case it fails. 3068 */ 3069 if (pte_support_ats != vm->pte_support_ats) { 3070 vm->pte_support_ats = pte_support_ats; 3071 r = amdgpu_vm_clear_bo(adev, vm, 3072 to_amdgpu_bo_vm(vm->root.bo), 3073 false); 3074 if (r) 3075 goto unreserve_bo; 3076 } 3077 3078 /* Update VM state */ 3079 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3080 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3081 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3082 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3083 WARN_ONCE((vm->use_cpu_for_update && 3084 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3085 "CPU update of VM recommended only for large BAR system\n"); 3086 3087 if (vm->use_cpu_for_update) { 3088 /* Sync with last SDMA update/clear before switching to CPU */ 3089 r = amdgpu_bo_sync_wait(vm->root.bo, 3090 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3091 if (r) 3092 goto unreserve_bo; 3093 3094 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3095 } else { 3096 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3097 } 3098 dma_fence_put(vm->last_update); 3099 vm->last_update = NULL; 3100 vm->is_compute_context = true; 3101 3102 /* Free the shadow bo for compute VM */ 3103 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3104 3105 goto unreserve_bo; 3106 3107 unreserve_bo: 3108 amdgpu_bo_unreserve(vm->root.bo); 3109 return r; 3110 } 3111 3112 /** 3113 * amdgpu_vm_release_compute - release a compute vm 3114 * @adev: amdgpu_device pointer 3115 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3116 * 3117 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3118 * pasid from vm. Compute should stop use of vm after this call. 3119 */ 3120 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3121 { 3122 amdgpu_vm_set_pasid(adev, vm, 0); 3123 vm->is_compute_context = false; 3124 } 3125 3126 /** 3127 * amdgpu_vm_fini - tear down a vm instance 3128 * 3129 * @adev: amdgpu_device pointer 3130 * @vm: requested vm 3131 * 3132 * Tear down @vm. 3133 * Unbind the VM and remove all bos from the vm bo list 3134 */ 3135 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3136 { 3137 struct amdgpu_bo_va_mapping *mapping, *tmp; 3138 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3139 struct amdgpu_bo *root; 3140 int i; 3141 3142 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3143 3144 root = amdgpu_bo_ref(vm->root.bo); 3145 amdgpu_bo_reserve(root, true); 3146 amdgpu_vm_set_pasid(adev, vm, 0); 3147 dma_fence_wait(vm->last_unlocked, false); 3148 dma_fence_put(vm->last_unlocked); 3149 3150 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3151 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3152 amdgpu_vm_prt_fini(adev, vm); 3153 prt_fini_needed = false; 3154 } 3155 3156 list_del(&mapping->list); 3157 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3158 } 3159 3160 amdgpu_vm_free_pts(adev, vm, NULL); 3161 amdgpu_bo_unreserve(root); 3162 amdgpu_bo_unref(&root); 3163 WARN_ON(vm->root.bo); 3164 3165 drm_sched_entity_destroy(&vm->immediate); 3166 drm_sched_entity_destroy(&vm->delayed); 3167 3168 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3169 dev_err(adev->dev, "still active bo inside vm\n"); 3170 } 3171 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3172 &vm->va.rb_root, rb) { 3173 /* Don't remove the mapping here, we don't want to trigger a 3174 * rebalance and the tree is about to be destroyed anyway. 3175 */ 3176 list_del(&mapping->list); 3177 kfree(mapping); 3178 } 3179 3180 dma_fence_put(vm->last_update); 3181 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3182 amdgpu_vmid_free_reserved(adev, vm, i); 3183 } 3184 3185 /** 3186 * amdgpu_vm_manager_init - init the VM manager 3187 * 3188 * @adev: amdgpu_device pointer 3189 * 3190 * Initialize the VM manager structures 3191 */ 3192 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3193 { 3194 unsigned i; 3195 3196 /* Concurrent flushes are only possible starting with Vega10 and 3197 * are broken on Navi10 and Navi14. 3198 */ 3199 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3200 adev->asic_type == CHIP_NAVI10 || 3201 adev->asic_type == CHIP_NAVI14); 3202 amdgpu_vmid_mgr_init(adev); 3203 3204 adev->vm_manager.fence_context = 3205 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3206 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3207 adev->vm_manager.seqno[i] = 0; 3208 3209 spin_lock_init(&adev->vm_manager.prt_lock); 3210 atomic_set(&adev->vm_manager.num_prt_users, 0); 3211 3212 /* If not overridden by the user, by default, only in large BAR systems 3213 * Compute VM tables will be updated by CPU 3214 */ 3215 #ifdef CONFIG_X86_64 3216 if (amdgpu_vm_update_mode == -1) { 3217 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3218 adev->vm_manager.vm_update_mode = 3219 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3220 else 3221 adev->vm_manager.vm_update_mode = 0; 3222 } else 3223 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3224 #else 3225 adev->vm_manager.vm_update_mode = 0; 3226 #endif 3227 3228 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 3229 } 3230 3231 /** 3232 * amdgpu_vm_manager_fini - cleanup VM manager 3233 * 3234 * @adev: amdgpu_device pointer 3235 * 3236 * Cleanup the VM manager and free resources. 3237 */ 3238 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3239 { 3240 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 3241 xa_destroy(&adev->vm_manager.pasids); 3242 3243 amdgpu_vmid_mgr_fini(adev); 3244 } 3245 3246 /** 3247 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3248 * 3249 * @dev: drm device pointer 3250 * @data: drm_amdgpu_vm 3251 * @filp: drm file pointer 3252 * 3253 * Returns: 3254 * 0 for success, -errno for errors. 3255 */ 3256 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3257 { 3258 union drm_amdgpu_vm *args = data; 3259 struct amdgpu_device *adev = drm_to_adev(dev); 3260 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3261 long timeout = msecs_to_jiffies(2000); 3262 int r; 3263 3264 switch (args->in.op) { 3265 case AMDGPU_VM_OP_RESERVE_VMID: 3266 /* We only have requirement to reserve vmid from gfxhub */ 3267 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3268 AMDGPU_GFXHUB_0); 3269 if (r) 3270 return r; 3271 break; 3272 case AMDGPU_VM_OP_UNRESERVE_VMID: 3273 if (amdgpu_sriov_runtime(adev)) 3274 timeout = 8 * timeout; 3275 3276 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3277 * not referenced anymore. 3278 */ 3279 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3280 if (r) 3281 return r; 3282 3283 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3284 if (r < 0) 3285 return r; 3286 3287 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3288 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3289 break; 3290 default: 3291 return -EINVAL; 3292 } 3293 3294 return 0; 3295 } 3296 3297 /** 3298 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3299 * 3300 * @adev: drm device pointer 3301 * @pasid: PASID identifier for VM 3302 * @task_info: task_info to fill. 3303 */ 3304 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3305 struct amdgpu_task_info *task_info) 3306 { 3307 struct amdgpu_vm *vm; 3308 unsigned long flags; 3309 3310 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 3311 3312 vm = xa_load(&adev->vm_manager.pasids, pasid); 3313 if (vm) 3314 *task_info = vm->task_info; 3315 3316 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 3317 } 3318 3319 /** 3320 * amdgpu_vm_set_task_info - Sets VMs task info. 3321 * 3322 * @vm: vm for which to set the info 3323 */ 3324 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3325 { 3326 if (vm->task_info.pid) 3327 return; 3328 3329 vm->task_info.pid = current->pid; 3330 get_task_comm(vm->task_info.task_name, current); 3331 3332 if (current->group_leader->mm != current->mm) 3333 return; 3334 3335 vm->task_info.tgid = current->group_leader->pid; 3336 get_task_comm(vm->task_info.process_name, current->group_leader); 3337 } 3338 3339 /** 3340 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3341 * @adev: amdgpu device pointer 3342 * @pasid: PASID of the VM 3343 * @addr: Address of the fault 3344 * @write_fault: true is write fault, false is read fault 3345 * 3346 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3347 * shouldn't be reported any more. 3348 */ 3349 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3350 uint64_t addr, bool write_fault) 3351 { 3352 bool is_compute_context = false; 3353 struct amdgpu_bo *root; 3354 unsigned long irqflags; 3355 uint64_t value, flags; 3356 struct amdgpu_vm *vm; 3357 int r; 3358 3359 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3360 vm = xa_load(&adev->vm_manager.pasids, pasid); 3361 if (vm) { 3362 root = amdgpu_bo_ref(vm->root.bo); 3363 is_compute_context = vm->is_compute_context; 3364 } else { 3365 root = NULL; 3366 } 3367 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3368 3369 if (!root) 3370 return false; 3371 3372 addr /= AMDGPU_GPU_PAGE_SIZE; 3373 3374 if (is_compute_context && 3375 !svm_range_restore_pages(adev, pasid, addr, write_fault)) { 3376 amdgpu_bo_unref(&root); 3377 return true; 3378 } 3379 3380 r = amdgpu_bo_reserve(root, true); 3381 if (r) 3382 goto error_unref; 3383 3384 /* Double check that the VM still exists */ 3385 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 3386 vm = xa_load(&adev->vm_manager.pasids, pasid); 3387 if (vm && vm->root.bo != root) 3388 vm = NULL; 3389 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 3390 if (!vm) 3391 goto error_unlock; 3392 3393 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3394 AMDGPU_PTE_SYSTEM; 3395 3396 if (is_compute_context) { 3397 /* Intentionally setting invalid PTE flag 3398 * combination to force a no-retry-fault 3399 */ 3400 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3401 AMDGPU_PTE_TF; 3402 value = 0; 3403 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3404 /* Redirect the access to the dummy page */ 3405 value = adev->dummy_page_addr; 3406 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3407 AMDGPU_PTE_WRITEABLE; 3408 3409 } else { 3410 /* Let the hw retry silently on the PTE */ 3411 value = 0; 3412 } 3413 3414 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3415 if (r) { 3416 pr_debug("failed %d to reserve fence slot\n", r); 3417 goto error_unlock; 3418 } 3419 3420 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3421 addr, flags, value, NULL, NULL, NULL, 3422 NULL); 3423 if (r) 3424 goto error_unlock; 3425 3426 r = amdgpu_vm_update_pdes(adev, vm, true); 3427 3428 error_unlock: 3429 amdgpu_bo_unreserve(root); 3430 if (r < 0) 3431 DRM_ERROR("Can't handle page fault (%d)\n", r); 3432 3433 error_unref: 3434 amdgpu_bo_unref(&root); 3435 3436 return false; 3437 } 3438 3439 #if defined(CONFIG_DEBUG_FS) 3440 /** 3441 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3442 * 3443 * @vm: Requested VM for printing BO info 3444 * @m: debugfs file 3445 * 3446 * Print BO information in debugfs file for the VM 3447 */ 3448 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3449 { 3450 struct amdgpu_bo_va *bo_va, *tmp; 3451 u64 total_idle = 0; 3452 u64 total_evicted = 0; 3453 u64 total_relocated = 0; 3454 u64 total_moved = 0; 3455 u64 total_invalidated = 0; 3456 u64 total_done = 0; 3457 unsigned int total_idle_objs = 0; 3458 unsigned int total_evicted_objs = 0; 3459 unsigned int total_relocated_objs = 0; 3460 unsigned int total_moved_objs = 0; 3461 unsigned int total_invalidated_objs = 0; 3462 unsigned int total_done_objs = 0; 3463 unsigned int id = 0; 3464 3465 seq_puts(m, "\tIdle BOs:\n"); 3466 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3467 if (!bo_va->base.bo) 3468 continue; 3469 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3470 } 3471 total_idle_objs = id; 3472 id = 0; 3473 3474 seq_puts(m, "\tEvicted BOs:\n"); 3475 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3476 if (!bo_va->base.bo) 3477 continue; 3478 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3479 } 3480 total_evicted_objs = id; 3481 id = 0; 3482 3483 seq_puts(m, "\tRelocated BOs:\n"); 3484 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3485 if (!bo_va->base.bo) 3486 continue; 3487 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3488 } 3489 total_relocated_objs = id; 3490 id = 0; 3491 3492 seq_puts(m, "\tMoved BOs:\n"); 3493 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3494 if (!bo_va->base.bo) 3495 continue; 3496 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3497 } 3498 total_moved_objs = id; 3499 id = 0; 3500 3501 seq_puts(m, "\tInvalidated BOs:\n"); 3502 spin_lock(&vm->invalidated_lock); 3503 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3504 if (!bo_va->base.bo) 3505 continue; 3506 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3507 } 3508 total_invalidated_objs = id; 3509 id = 0; 3510 3511 seq_puts(m, "\tDone BOs:\n"); 3512 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3513 if (!bo_va->base.bo) 3514 continue; 3515 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3516 } 3517 spin_unlock(&vm->invalidated_lock); 3518 total_done_objs = id; 3519 3520 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3521 total_idle_objs); 3522 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3523 total_evicted_objs); 3524 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3525 total_relocated_objs); 3526 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3527 total_moved_objs); 3528 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3529 total_invalidated_objs); 3530 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3531 total_done_objs); 3532 } 3533 #endif 3534