1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When executing a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /**
92  * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping
93  *
94  * @adev: amdgpu_device pointer
95  * @vm: amdgpu_vm pointer
96  * @pasid: the pasid the VM is using on this GPU
97  *
98  * Set the pasid this VM is using on this GPU, can also be used to remove the
99  * pasid by passing in zero.
100  *
101  */
102 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm,
103 			u32 pasid)
104 {
105 	int r;
106 
107 	if (vm->pasid == pasid)
108 		return 0;
109 
110 	if (vm->pasid) {
111 		r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid));
112 		if (r < 0)
113 			return r;
114 
115 		vm->pasid = 0;
116 	}
117 
118 	if (pasid) {
119 		r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm,
120 					GFP_KERNEL));
121 		if (r < 0)
122 			return r;
123 
124 		vm->pasid = pasid;
125 	}
126 
127 
128 	return 0;
129 }
130 
131 /*
132  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
133  * happens while holding this lock anywhere to prevent deadlocks when
134  * an MMU notifier runs in reclaim-FS context.
135  */
136 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
137 {
138 	mutex_lock(&vm->eviction_lock);
139 	vm->saved_flags = memalloc_noreclaim_save();
140 }
141 
142 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
143 {
144 	if (mutex_trylock(&vm->eviction_lock)) {
145 		vm->saved_flags = memalloc_noreclaim_save();
146 		return 1;
147 	}
148 	return 0;
149 }
150 
151 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
152 {
153 	memalloc_noreclaim_restore(vm->saved_flags);
154 	mutex_unlock(&vm->eviction_lock);
155 }
156 
157 /**
158  * amdgpu_vm_level_shift - return the addr shift for each level
159  *
160  * @adev: amdgpu_device pointer
161  * @level: VMPT level
162  *
163  * Returns:
164  * The number of bits the pfn needs to be right shifted for a level.
165  */
166 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
167 				      unsigned level)
168 {
169 	switch (level) {
170 	case AMDGPU_VM_PDB2:
171 	case AMDGPU_VM_PDB1:
172 	case AMDGPU_VM_PDB0:
173 		return 9 * (AMDGPU_VM_PDB0 - level) +
174 			adev->vm_manager.block_size;
175 	case AMDGPU_VM_PTB:
176 		return 0;
177 	default:
178 		return ~0;
179 	}
180 }
181 
182 /**
183  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
184  *
185  * @adev: amdgpu_device pointer
186  * @level: VMPT level
187  *
188  * Returns:
189  * The number of entries in a page directory or page table.
190  */
191 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
192 				      unsigned level)
193 {
194 	unsigned shift = amdgpu_vm_level_shift(adev,
195 					       adev->vm_manager.root_level);
196 
197 	if (level == adev->vm_manager.root_level)
198 		/* For the root directory */
199 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
200 			>> shift;
201 	else if (level != AMDGPU_VM_PTB)
202 		/* Everything in between */
203 		return 512;
204 	else
205 		/* For the page tables on the leaves */
206 		return AMDGPU_VM_PTE_COUNT(adev);
207 }
208 
209 /**
210  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
211  *
212  * @adev: amdgpu_device pointer
213  *
214  * Returns:
215  * The number of entries in the root page directory which needs the ATS setting.
216  */
217 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
218 {
219 	unsigned shift;
220 
221 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
222 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
223 }
224 
225 /**
226  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
227  *
228  * @adev: amdgpu_device pointer
229  * @level: VMPT level
230  *
231  * Returns:
232  * The mask to extract the entry number of a PD/PT from an address.
233  */
234 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
235 				       unsigned int level)
236 {
237 	if (level <= adev->vm_manager.root_level)
238 		return 0xffffffff;
239 	else if (level != AMDGPU_VM_PTB)
240 		return 0x1ff;
241 	else
242 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
243 }
244 
245 /**
246  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
247  *
248  * @adev: amdgpu_device pointer
249  * @level: VMPT level
250  *
251  * Returns:
252  * The size of the BO for a page directory or page table in bytes.
253  */
254 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
255 {
256 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
257 }
258 
259 /**
260  * amdgpu_vm_bo_evicted - vm_bo is evicted
261  *
262  * @vm_bo: vm_bo which is evicted
263  *
264  * State for PDs/PTs and per VM BOs which are not at the location they should
265  * be.
266  */
267 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
268 {
269 	struct amdgpu_vm *vm = vm_bo->vm;
270 	struct amdgpu_bo *bo = vm_bo->bo;
271 
272 	vm_bo->moved = true;
273 	if (bo->tbo.type == ttm_bo_type_kernel)
274 		list_move(&vm_bo->vm_status, &vm->evicted);
275 	else
276 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
277 }
278 /**
279  * amdgpu_vm_bo_moved - vm_bo is moved
280  *
281  * @vm_bo: vm_bo which is moved
282  *
283  * State for per VM BOs which are moved, but that change is not yet reflected
284  * in the page tables.
285  */
286 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
289 }
290 
291 /**
292  * amdgpu_vm_bo_idle - vm_bo is idle
293  *
294  * @vm_bo: vm_bo which is now idle
295  *
296  * State for PDs/PTs and per VM BOs which have gone through the state machine
297  * and are now idle.
298  */
299 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
300 {
301 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
302 	vm_bo->moved = false;
303 }
304 
305 /**
306  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
307  *
308  * @vm_bo: vm_bo which is now invalidated
309  *
310  * State for normal BOs which are invalidated and that change not yet reflected
311  * in the PTs.
312  */
313 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
314 {
315 	spin_lock(&vm_bo->vm->invalidated_lock);
316 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
317 	spin_unlock(&vm_bo->vm->invalidated_lock);
318 }
319 
320 /**
321  * amdgpu_vm_bo_relocated - vm_bo is reloacted
322  *
323  * @vm_bo: vm_bo which is relocated
324  *
325  * State for PDs/PTs which needs to update their parent PD.
326  * For the root PD, just move to idle state.
327  */
328 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
329 {
330 	if (vm_bo->bo->parent)
331 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
332 	else
333 		amdgpu_vm_bo_idle(vm_bo);
334 }
335 
336 /**
337  * amdgpu_vm_bo_done - vm_bo is done
338  *
339  * @vm_bo: vm_bo which is now done
340  *
341  * State for normal BOs which are invalidated and that change has been updated
342  * in the PTs.
343  */
344 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
345 {
346 	spin_lock(&vm_bo->vm->invalidated_lock);
347 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
348 	spin_unlock(&vm_bo->vm->invalidated_lock);
349 }
350 
351 /**
352  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
353  *
354  * @base: base structure for tracking BO usage in a VM
355  * @vm: vm to which bo is to be added
356  * @bo: amdgpu buffer object
357  *
358  * Initialize a bo_va_base structure and add it to the appropriate lists
359  *
360  */
361 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
362 				   struct amdgpu_vm *vm,
363 				   struct amdgpu_bo *bo)
364 {
365 	base->vm = vm;
366 	base->bo = bo;
367 	base->next = NULL;
368 	INIT_LIST_HEAD(&base->vm_status);
369 
370 	if (!bo)
371 		return;
372 	base->next = bo->vm_bo;
373 	bo->vm_bo = base;
374 
375 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
376 		return;
377 
378 	vm->bulk_moveable = false;
379 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
380 		amdgpu_vm_bo_relocated(base);
381 	else
382 		amdgpu_vm_bo_idle(base);
383 
384 	if (bo->preferred_domains &
385 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
386 		return;
387 
388 	/*
389 	 * we checked all the prerequisites, but it looks like this per vm bo
390 	 * is currently evicted. add the bo to the evicted list to make sure it
391 	 * is validated on next vm use to avoid fault.
392 	 * */
393 	amdgpu_vm_bo_evicted(base);
394 }
395 
396 /**
397  * amdgpu_vm_pt_parent - get the parent page directory
398  *
399  * @pt: child page table
400  *
401  * Helper to get the parent entry for the child page table. NULL if we are at
402  * the root page directory.
403  */
404 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
405 {
406 	struct amdgpu_bo *parent = pt->bo->parent;
407 
408 	if (!parent)
409 		return NULL;
410 
411 	return parent->vm_bo;
412 }
413 
414 /*
415  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
416  */
417 struct amdgpu_vm_pt_cursor {
418 	uint64_t pfn;
419 	struct amdgpu_vm_bo_base *parent;
420 	struct amdgpu_vm_bo_base *entry;
421 	unsigned level;
422 };
423 
424 /**
425  * amdgpu_vm_pt_start - start PD/PT walk
426  *
427  * @adev: amdgpu_device pointer
428  * @vm: amdgpu_vm structure
429  * @start: start address of the walk
430  * @cursor: state to initialize
431  *
432  * Initialize a amdgpu_vm_pt_cursor to start a walk.
433  */
434 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
435 			       struct amdgpu_vm *vm, uint64_t start,
436 			       struct amdgpu_vm_pt_cursor *cursor)
437 {
438 	cursor->pfn = start;
439 	cursor->parent = NULL;
440 	cursor->entry = &vm->root;
441 	cursor->level = adev->vm_manager.root_level;
442 }
443 
444 /**
445  * amdgpu_vm_pt_descendant - go to child node
446  *
447  * @adev: amdgpu_device pointer
448  * @cursor: current state
449  *
450  * Walk to the child node of the current node.
451  * Returns:
452  * True if the walk was possible, false otherwise.
453  */
454 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
455 				    struct amdgpu_vm_pt_cursor *cursor)
456 {
457 	unsigned mask, shift, idx;
458 
459 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
460 	    !cursor->entry->bo)
461 		return false;
462 
463 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
464 	shift = amdgpu_vm_level_shift(adev, cursor->level);
465 
466 	++cursor->level;
467 	idx = (cursor->pfn >> shift) & mask;
468 	cursor->parent = cursor->entry;
469 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
470 	return true;
471 }
472 
473 /**
474  * amdgpu_vm_pt_sibling - go to sibling node
475  *
476  * @adev: amdgpu_device pointer
477  * @cursor: current state
478  *
479  * Walk to the sibling node of the current node.
480  * Returns:
481  * True if the walk was possible, false otherwise.
482  */
483 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
484 				 struct amdgpu_vm_pt_cursor *cursor)
485 {
486 	unsigned shift, num_entries;
487 
488 	/* Root doesn't have a sibling */
489 	if (!cursor->parent)
490 		return false;
491 
492 	/* Go to our parents and see if we got a sibling */
493 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
494 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
495 
496 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
497 		return false;
498 
499 	cursor->pfn += 1ULL << shift;
500 	cursor->pfn &= ~((1ULL << shift) - 1);
501 	++cursor->entry;
502 	return true;
503 }
504 
505 /**
506  * amdgpu_vm_pt_ancestor - go to parent node
507  *
508  * @cursor: current state
509  *
510  * Walk to the parent node of the current node.
511  * Returns:
512  * True if the walk was possible, false otherwise.
513  */
514 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
515 {
516 	if (!cursor->parent)
517 		return false;
518 
519 	--cursor->level;
520 	cursor->entry = cursor->parent;
521 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
522 	return true;
523 }
524 
525 /**
526  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
527  *
528  * @adev: amdgpu_device pointer
529  * @cursor: current state
530  *
531  * Walk the PD/PT tree to the next node.
532  */
533 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
534 			      struct amdgpu_vm_pt_cursor *cursor)
535 {
536 	/* First try a newborn child */
537 	if (amdgpu_vm_pt_descendant(adev, cursor))
538 		return;
539 
540 	/* If that didn't worked try to find a sibling */
541 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
542 		/* No sibling, go to our parents and grandparents */
543 		if (!amdgpu_vm_pt_ancestor(cursor)) {
544 			cursor->pfn = ~0ll;
545 			return;
546 		}
547 	}
548 }
549 
550 /**
551  * amdgpu_vm_pt_first_dfs - start a deep first search
552  *
553  * @adev: amdgpu_device structure
554  * @vm: amdgpu_vm structure
555  * @start: optional cursor to start with
556  * @cursor: state to initialize
557  *
558  * Starts a deep first traversal of the PD/PT tree.
559  */
560 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
561 				   struct amdgpu_vm *vm,
562 				   struct amdgpu_vm_pt_cursor *start,
563 				   struct amdgpu_vm_pt_cursor *cursor)
564 {
565 	if (start)
566 		*cursor = *start;
567 	else
568 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
569 	while (amdgpu_vm_pt_descendant(adev, cursor));
570 }
571 
572 /**
573  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
574  *
575  * @start: starting point for the search
576  * @entry: current entry
577  *
578  * Returns:
579  * True when the search should continue, false otherwise.
580  */
581 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
582 				      struct amdgpu_vm_bo_base *entry)
583 {
584 	return entry && (!start || entry != start->entry);
585 }
586 
587 /**
588  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
589  *
590  * @adev: amdgpu_device structure
591  * @cursor: current state
592  *
593  * Move the cursor to the next node in a deep first search.
594  */
595 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
596 				  struct amdgpu_vm_pt_cursor *cursor)
597 {
598 	if (!cursor->entry)
599 		return;
600 
601 	if (!cursor->parent)
602 		cursor->entry = NULL;
603 	else if (amdgpu_vm_pt_sibling(adev, cursor))
604 		while (amdgpu_vm_pt_descendant(adev, cursor));
605 	else
606 		amdgpu_vm_pt_ancestor(cursor);
607 }
608 
609 /*
610  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
611  */
612 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
613 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
614 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
615 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
616 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
617 
618 /**
619  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
620  *
621  * @vm: vm providing the BOs
622  * @validated: head of validation list
623  * @entry: entry to add
624  *
625  * Add the page directory to the list of BOs to
626  * validate for command submission.
627  */
628 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
629 			 struct list_head *validated,
630 			 struct amdgpu_bo_list_entry *entry)
631 {
632 	entry->priority = 0;
633 	entry->tv.bo = &vm->root.bo->tbo;
634 	/* Two for VM updates, one for TTM and one for the CS job */
635 	entry->tv.num_shared = 4;
636 	entry->user_pages = NULL;
637 	list_add(&entry->tv.head, validated);
638 }
639 
640 /**
641  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
642  *
643  * @bo: BO which was removed from the LRU
644  *
645  * Make sure the bulk_moveable flag is updated when a BO is removed from the
646  * LRU.
647  */
648 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
649 {
650 	struct amdgpu_bo *abo;
651 	struct amdgpu_vm_bo_base *bo_base;
652 
653 	if (!amdgpu_bo_is_amdgpu_bo(bo))
654 		return;
655 
656 	if (bo->pin_count)
657 		return;
658 
659 	abo = ttm_to_amdgpu_bo(bo);
660 	if (!abo->parent)
661 		return;
662 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
663 		struct amdgpu_vm *vm = bo_base->vm;
664 
665 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
666 			vm->bulk_moveable = false;
667 	}
668 
669 }
670 /**
671  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  *
676  * Move all BOs to the end of LRU and remember their positions to put them
677  * together.
678  */
679 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
680 				struct amdgpu_vm *vm)
681 {
682 	struct amdgpu_vm_bo_base *bo_base;
683 
684 	if (vm->bulk_moveable) {
685 		spin_lock(&adev->mman.bdev.lru_lock);
686 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
687 		spin_unlock(&adev->mman.bdev.lru_lock);
688 		return;
689 	}
690 
691 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
692 
693 	spin_lock(&adev->mman.bdev.lru_lock);
694 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
695 		struct amdgpu_bo *bo = bo_base->bo;
696 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
697 
698 		if (!bo->parent)
699 			continue;
700 
701 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
702 					&vm->lru_bulk_move);
703 		if (shadow)
704 			ttm_bo_move_to_lru_tail(&shadow->tbo,
705 						shadow->tbo.resource,
706 						&vm->lru_bulk_move);
707 	}
708 	spin_unlock(&adev->mman.bdev.lru_lock);
709 
710 	vm->bulk_moveable = true;
711 }
712 
713 /**
714  * amdgpu_vm_validate_pt_bos - validate the page table BOs
715  *
716  * @adev: amdgpu device pointer
717  * @vm: vm providing the BOs
718  * @validate: callback to do the validation
719  * @param: parameter for the validation callback
720  *
721  * Validate the page table BOs on command submission if neccessary.
722  *
723  * Returns:
724  * Validation result.
725  */
726 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
727 			      int (*validate)(void *p, struct amdgpu_bo *bo),
728 			      void *param)
729 {
730 	struct amdgpu_vm_bo_base *bo_base, *tmp;
731 	int r;
732 
733 	vm->bulk_moveable &= list_empty(&vm->evicted);
734 
735 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
736 		struct amdgpu_bo *bo = bo_base->bo;
737 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
738 
739 		r = validate(param, bo);
740 		if (r)
741 			return r;
742 		if (shadow) {
743 			r = validate(param, shadow);
744 			if (r)
745 				return r;
746 		}
747 
748 		if (bo->tbo.type != ttm_bo_type_kernel) {
749 			amdgpu_vm_bo_moved(bo_base);
750 		} else {
751 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
752 			amdgpu_vm_bo_relocated(bo_base);
753 		}
754 	}
755 
756 	amdgpu_vm_eviction_lock(vm);
757 	vm->evicting = false;
758 	amdgpu_vm_eviction_unlock(vm);
759 
760 	return 0;
761 }
762 
763 /**
764  * amdgpu_vm_ready - check VM is ready for updates
765  *
766  * @vm: VM to check
767  *
768  * Check if all VM PDs/PTs are ready for updates
769  *
770  * Returns:
771  * True if eviction list is empty.
772  */
773 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
774 {
775 	return list_empty(&vm->evicted);
776 }
777 
778 /**
779  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
780  *
781  * @adev: amdgpu_device pointer
782  * @vm: VM to clear BO from
783  * @vmbo: BO to clear
784  * @immediate: use an immediate update
785  *
786  * Root PD needs to be reserved when calling this.
787  *
788  * Returns:
789  * 0 on success, errno otherwise.
790  */
791 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
792 			      struct amdgpu_vm *vm,
793 			      struct amdgpu_bo_vm *vmbo,
794 			      bool immediate)
795 {
796 	struct ttm_operation_ctx ctx = { true, false };
797 	unsigned level = adev->vm_manager.root_level;
798 	struct amdgpu_vm_update_params params;
799 	struct amdgpu_bo *ancestor = &vmbo->bo;
800 	struct amdgpu_bo *bo = &vmbo->bo;
801 	unsigned entries, ats_entries;
802 	uint64_t addr;
803 	int r, idx;
804 
805 	/* Figure out our place in the hierarchy */
806 	if (ancestor->parent) {
807 		++level;
808 		while (ancestor->parent->parent) {
809 			++level;
810 			ancestor = ancestor->parent;
811 		}
812 	}
813 
814 	entries = amdgpu_bo_size(bo) / 8;
815 	if (!vm->pte_support_ats) {
816 		ats_entries = 0;
817 
818 	} else if (!bo->parent) {
819 		ats_entries = amdgpu_vm_num_ats_entries(adev);
820 		ats_entries = min(ats_entries, entries);
821 		entries -= ats_entries;
822 
823 	} else {
824 		struct amdgpu_vm_bo_base *pt;
825 
826 		pt = ancestor->vm_bo;
827 		ats_entries = amdgpu_vm_num_ats_entries(adev);
828 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
829 			ats_entries = 0;
830 		} else {
831 			ats_entries = entries;
832 			entries = 0;
833 		}
834 	}
835 
836 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
837 	if (r)
838 		return r;
839 
840 	if (vmbo->shadow) {
841 		struct amdgpu_bo *shadow = vmbo->shadow;
842 
843 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
844 		if (r)
845 			return r;
846 	}
847 
848 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
849 		return -ENODEV;
850 
851 	r = vm->update_funcs->map_table(vmbo);
852 	if (r)
853 		goto exit;
854 
855 	memset(&params, 0, sizeof(params));
856 	params.adev = adev;
857 	params.vm = vm;
858 	params.immediate = immediate;
859 
860 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
861 	if (r)
862 		goto exit;
863 
864 	addr = 0;
865 	if (ats_entries) {
866 		uint64_t value = 0, flags;
867 
868 		flags = AMDGPU_PTE_DEFAULT_ATC;
869 		if (level != AMDGPU_VM_PTB) {
870 			/* Handle leaf PDEs as PTEs */
871 			flags |= AMDGPU_PDE_PTE;
872 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
873 		}
874 
875 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
876 					     value, flags);
877 		if (r)
878 			goto exit;
879 
880 		addr += ats_entries * 8;
881 	}
882 
883 	if (entries) {
884 		uint64_t value = 0, flags = 0;
885 
886 		if (adev->asic_type >= CHIP_VEGA10) {
887 			if (level != AMDGPU_VM_PTB) {
888 				/* Handle leaf PDEs as PTEs */
889 				flags |= AMDGPU_PDE_PTE;
890 				amdgpu_gmc_get_vm_pde(adev, level,
891 						      &value, &flags);
892 			} else {
893 				/* Workaround for fault priority problem on GMC9 */
894 				flags = AMDGPU_PTE_EXECUTABLE;
895 			}
896 		}
897 
898 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
899 					     value, flags);
900 		if (r)
901 			goto exit;
902 	}
903 
904 	r = vm->update_funcs->commit(&params, NULL);
905 exit:
906 	drm_dev_exit(idx);
907 	return r;
908 }
909 
910 /**
911  * amdgpu_vm_pt_create - create bo for PD/PT
912  *
913  * @adev: amdgpu_device pointer
914  * @vm: requesting vm
915  * @level: the page table level
916  * @immediate: use a immediate update
917  * @vmbo: pointer to the buffer object pointer
918  */
919 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
920 			       struct amdgpu_vm *vm,
921 			       int level, bool immediate,
922 			       struct amdgpu_bo_vm **vmbo)
923 {
924 	struct amdgpu_bo_param bp;
925 	struct amdgpu_bo *bo;
926 	struct dma_resv *resv;
927 	unsigned int num_entries;
928 	int r;
929 
930 	memset(&bp, 0, sizeof(bp));
931 
932 	bp.size = amdgpu_vm_bo_size(adev, level);
933 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
934 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
935 	bp.domain = amdgpu_bo_get_preferred_domain(adev, bp.domain);
936 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
937 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
938 
939 	if (level < AMDGPU_VM_PTB)
940 		num_entries = amdgpu_vm_num_entries(adev, level);
941 	else
942 		num_entries = 0;
943 
944 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
945 
946 	if (vm->use_cpu_for_update)
947 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
948 
949 	bp.type = ttm_bo_type_kernel;
950 	bp.no_wait_gpu = immediate;
951 	if (vm->root.bo)
952 		bp.resv = vm->root.bo->tbo.base.resv;
953 
954 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
955 	if (r)
956 		return r;
957 
958 	bo = &(*vmbo)->bo;
959 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
960 		(*vmbo)->shadow = NULL;
961 		return 0;
962 	}
963 
964 	if (!bp.resv)
965 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
966 				      NULL));
967 	resv = bp.resv;
968 	memset(&bp, 0, sizeof(bp));
969 	bp.size = amdgpu_vm_bo_size(adev, level);
970 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
971 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
972 	bp.type = ttm_bo_type_kernel;
973 	bp.resv = bo->tbo.base.resv;
974 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
975 
976 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
977 
978 	if (!resv)
979 		dma_resv_unlock(bo->tbo.base.resv);
980 
981 	if (r) {
982 		amdgpu_bo_unref(&bo);
983 		return r;
984 	}
985 
986 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
987 	amdgpu_bo_add_to_shadow_list(*vmbo);
988 
989 	return 0;
990 }
991 
992 /**
993  * amdgpu_vm_alloc_pts - Allocate a specific page table
994  *
995  * @adev: amdgpu_device pointer
996  * @vm: VM to allocate page tables for
997  * @cursor: Which page table to allocate
998  * @immediate: use an immediate update
999  *
1000  * Make sure a specific page table or directory is allocated.
1001  *
1002  * Returns:
1003  * 1 if page table needed to be allocated, 0 if page table was already
1004  * allocated, negative errno if an error occurred.
1005  */
1006 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
1007 			       struct amdgpu_vm *vm,
1008 			       struct amdgpu_vm_pt_cursor *cursor,
1009 			       bool immediate)
1010 {
1011 	struct amdgpu_vm_bo_base *entry = cursor->entry;
1012 	struct amdgpu_bo *pt_bo;
1013 	struct amdgpu_bo_vm *pt;
1014 	int r;
1015 
1016 	if (entry->bo)
1017 		return 0;
1018 
1019 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
1020 	if (r)
1021 		return r;
1022 
1023 	/* Keep a reference to the root directory to avoid
1024 	 * freeing them up in the wrong order.
1025 	 */
1026 	pt_bo = &pt->bo;
1027 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
1028 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
1029 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
1030 	if (r)
1031 		goto error_free_pt;
1032 
1033 	return 0;
1034 
1035 error_free_pt:
1036 	amdgpu_bo_unref(&pt->shadow);
1037 	amdgpu_bo_unref(&pt_bo);
1038 	return r;
1039 }
1040 
1041 /**
1042  * amdgpu_vm_free_table - fre one PD/PT
1043  *
1044  * @entry: PDE to free
1045  */
1046 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1047 {
1048 	struct amdgpu_bo *shadow;
1049 
1050 	if (!entry->bo)
1051 		return;
1052 	shadow = amdgpu_bo_shadowed(entry->bo);
1053 	entry->bo->vm_bo = NULL;
1054 	list_del(&entry->vm_status);
1055 	amdgpu_bo_unref(&shadow);
1056 	amdgpu_bo_unref(&entry->bo);
1057 }
1058 
1059 /**
1060  * amdgpu_vm_free_pts - free PD/PT levels
1061  *
1062  * @adev: amdgpu device structure
1063  * @vm: amdgpu vm structure
1064  * @start: optional cursor where to start freeing PDs/PTs
1065  *
1066  * Free the page directory or page table level and all sub levels.
1067  */
1068 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1069 			       struct amdgpu_vm *vm,
1070 			       struct amdgpu_vm_pt_cursor *start)
1071 {
1072 	struct amdgpu_vm_pt_cursor cursor;
1073 	struct amdgpu_vm_bo_base *entry;
1074 
1075 	vm->bulk_moveable = false;
1076 
1077 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1078 		amdgpu_vm_free_table(entry);
1079 
1080 	if (start)
1081 		amdgpu_vm_free_table(start->entry);
1082 }
1083 
1084 /**
1085  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1086  *
1087  * @adev: amdgpu_device pointer
1088  */
1089 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1090 {
1091 	const struct amdgpu_ip_block *ip_block;
1092 	bool has_compute_vm_bug;
1093 	struct amdgpu_ring *ring;
1094 	int i;
1095 
1096 	has_compute_vm_bug = false;
1097 
1098 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1099 	if (ip_block) {
1100 		/* Compute has a VM bug for GFX version < 7.
1101 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1102 		if (ip_block->version->major <= 7)
1103 			has_compute_vm_bug = true;
1104 		else if (ip_block->version->major == 8)
1105 			if (adev->gfx.mec_fw_version < 673)
1106 				has_compute_vm_bug = true;
1107 	}
1108 
1109 	for (i = 0; i < adev->num_rings; i++) {
1110 		ring = adev->rings[i];
1111 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1112 			/* only compute rings */
1113 			ring->has_compute_vm_bug = has_compute_vm_bug;
1114 		else
1115 			ring->has_compute_vm_bug = false;
1116 	}
1117 }
1118 
1119 /**
1120  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1121  *
1122  * @ring: ring on which the job will be submitted
1123  * @job: job to submit
1124  *
1125  * Returns:
1126  * True if sync is needed.
1127  */
1128 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1129 				  struct amdgpu_job *job)
1130 {
1131 	struct amdgpu_device *adev = ring->adev;
1132 	unsigned vmhub = ring->funcs->vmhub;
1133 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1134 	struct amdgpu_vmid *id;
1135 	bool gds_switch_needed;
1136 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1137 
1138 	if (job->vmid == 0)
1139 		return false;
1140 	id = &id_mgr->ids[job->vmid];
1141 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1142 		id->gds_base != job->gds_base ||
1143 		id->gds_size != job->gds_size ||
1144 		id->gws_base != job->gws_base ||
1145 		id->gws_size != job->gws_size ||
1146 		id->oa_base != job->oa_base ||
1147 		id->oa_size != job->oa_size);
1148 
1149 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1150 		return true;
1151 
1152 	return vm_flush_needed || gds_switch_needed;
1153 }
1154 
1155 /**
1156  * amdgpu_vm_flush - hardware flush the vm
1157  *
1158  * @ring: ring to use for flush
1159  * @job:  related job
1160  * @need_pipe_sync: is pipe sync needed
1161  *
1162  * Emit a VM flush when it is necessary.
1163  *
1164  * Returns:
1165  * 0 on success, errno otherwise.
1166  */
1167 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1168 		    bool need_pipe_sync)
1169 {
1170 	struct amdgpu_device *adev = ring->adev;
1171 	unsigned vmhub = ring->funcs->vmhub;
1172 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1173 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1174 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1175 		id->gds_base != job->gds_base ||
1176 		id->gds_size != job->gds_size ||
1177 		id->gws_base != job->gws_base ||
1178 		id->gws_size != job->gws_size ||
1179 		id->oa_base != job->oa_base ||
1180 		id->oa_size != job->oa_size);
1181 	bool vm_flush_needed = job->vm_needs_flush;
1182 	struct dma_fence *fence = NULL;
1183 	bool pasid_mapping_needed = false;
1184 	unsigned patch_offset = 0;
1185 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1186 	int r;
1187 
1188 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1189 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1190 
1191 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1192 		gds_switch_needed = true;
1193 		vm_flush_needed = true;
1194 		pasid_mapping_needed = true;
1195 	}
1196 
1197 	mutex_lock(&id_mgr->lock);
1198 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1199 	    !dma_fence_is_signaled(id->pasid_mapping))
1200 		pasid_mapping_needed = true;
1201 	mutex_unlock(&id_mgr->lock);
1202 
1203 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1204 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1205 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1206 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1207 		ring->funcs->emit_wreg;
1208 
1209 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1210 		return 0;
1211 
1212 	if (ring->funcs->init_cond_exec)
1213 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1214 
1215 	if (need_pipe_sync)
1216 		amdgpu_ring_emit_pipeline_sync(ring);
1217 
1218 	if (vm_flush_needed) {
1219 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1220 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1221 	}
1222 
1223 	if (pasid_mapping_needed)
1224 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1225 
1226 	if (vm_flush_needed || pasid_mapping_needed) {
1227 		r = amdgpu_fence_emit(ring, &fence, NULL, 0);
1228 		if (r)
1229 			return r;
1230 	}
1231 
1232 	if (vm_flush_needed) {
1233 		mutex_lock(&id_mgr->lock);
1234 		dma_fence_put(id->last_flush);
1235 		id->last_flush = dma_fence_get(fence);
1236 		id->current_gpu_reset_count =
1237 			atomic_read(&adev->gpu_reset_counter);
1238 		mutex_unlock(&id_mgr->lock);
1239 	}
1240 
1241 	if (pasid_mapping_needed) {
1242 		mutex_lock(&id_mgr->lock);
1243 		id->pasid = job->pasid;
1244 		dma_fence_put(id->pasid_mapping);
1245 		id->pasid_mapping = dma_fence_get(fence);
1246 		mutex_unlock(&id_mgr->lock);
1247 	}
1248 	dma_fence_put(fence);
1249 
1250 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1251 		id->gds_base = job->gds_base;
1252 		id->gds_size = job->gds_size;
1253 		id->gws_base = job->gws_base;
1254 		id->gws_size = job->gws_size;
1255 		id->oa_base = job->oa_base;
1256 		id->oa_size = job->oa_size;
1257 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1258 					    job->gds_size, job->gws_base,
1259 					    job->gws_size, job->oa_base,
1260 					    job->oa_size);
1261 	}
1262 
1263 	if (ring->funcs->patch_cond_exec)
1264 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1265 
1266 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1267 	if (ring->funcs->emit_switch_buffer) {
1268 		amdgpu_ring_emit_switch_buffer(ring);
1269 		amdgpu_ring_emit_switch_buffer(ring);
1270 	}
1271 	return 0;
1272 }
1273 
1274 /**
1275  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1276  *
1277  * @vm: requested vm
1278  * @bo: requested buffer object
1279  *
1280  * Find @bo inside the requested vm.
1281  * Search inside the @bos vm list for the requested vm
1282  * Returns the found bo_va or NULL if none is found
1283  *
1284  * Object has to be reserved!
1285  *
1286  * Returns:
1287  * Found bo_va or NULL.
1288  */
1289 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1290 				       struct amdgpu_bo *bo)
1291 {
1292 	struct amdgpu_vm_bo_base *base;
1293 
1294 	for (base = bo->vm_bo; base; base = base->next) {
1295 		if (base->vm != vm)
1296 			continue;
1297 
1298 		return container_of(base, struct amdgpu_bo_va, base);
1299 	}
1300 	return NULL;
1301 }
1302 
1303 /**
1304  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1305  *
1306  * @pages_addr: optional DMA address to use for lookup
1307  * @addr: the unmapped addr
1308  *
1309  * Look up the physical address of the page that the pte resolves
1310  * to.
1311  *
1312  * Returns:
1313  * The pointer for the page table entry.
1314  */
1315 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1316 {
1317 	uint64_t result;
1318 
1319 	/* page table offset */
1320 	result = pages_addr[addr >> PAGE_SHIFT];
1321 
1322 	/* in case cpu page size != gpu page size*/
1323 	result |= addr & (~PAGE_MASK);
1324 
1325 	result &= 0xFFFFFFFFFFFFF000ULL;
1326 
1327 	return result;
1328 }
1329 
1330 /**
1331  * amdgpu_vm_update_pde - update a single level in the hierarchy
1332  *
1333  * @params: parameters for the update
1334  * @vm: requested vm
1335  * @entry: entry to update
1336  *
1337  * Makes sure the requested entry in parent is up to date.
1338  */
1339 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1340 				struct amdgpu_vm *vm,
1341 				struct amdgpu_vm_bo_base *entry)
1342 {
1343 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1344 	struct amdgpu_bo *bo = parent->bo, *pbo;
1345 	uint64_t pde, pt, flags;
1346 	unsigned level;
1347 
1348 	for (level = 0, pbo = bo->parent; pbo; ++level)
1349 		pbo = pbo->parent;
1350 
1351 	level += params->adev->vm_manager.root_level;
1352 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1353 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1354 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1355 					1, 0, flags);
1356 }
1357 
1358 /**
1359  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1360  *
1361  * @adev: amdgpu_device pointer
1362  * @vm: related vm
1363  *
1364  * Mark all PD level as invalid after an error.
1365  */
1366 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1367 				     struct amdgpu_vm *vm)
1368 {
1369 	struct amdgpu_vm_pt_cursor cursor;
1370 	struct amdgpu_vm_bo_base *entry;
1371 
1372 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1373 		if (entry->bo && !entry->moved)
1374 			amdgpu_vm_bo_relocated(entry);
1375 }
1376 
1377 /**
1378  * amdgpu_vm_update_pdes - make sure that all directories are valid
1379  *
1380  * @adev: amdgpu_device pointer
1381  * @vm: requested vm
1382  * @immediate: submit immediately to the paging queue
1383  *
1384  * Makes sure all directories are up to date.
1385  *
1386  * Returns:
1387  * 0 for success, error for failure.
1388  */
1389 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1390 			  struct amdgpu_vm *vm, bool immediate)
1391 {
1392 	struct amdgpu_vm_update_params params;
1393 	int r, idx;
1394 
1395 	if (list_empty(&vm->relocated))
1396 		return 0;
1397 
1398 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1399 		return -ENODEV;
1400 
1401 	memset(&params, 0, sizeof(params));
1402 	params.adev = adev;
1403 	params.vm = vm;
1404 	params.immediate = immediate;
1405 
1406 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1407 	if (r)
1408 		goto exit;
1409 
1410 	while (!list_empty(&vm->relocated)) {
1411 		struct amdgpu_vm_bo_base *entry;
1412 
1413 		entry = list_first_entry(&vm->relocated,
1414 					 struct amdgpu_vm_bo_base,
1415 					 vm_status);
1416 		amdgpu_vm_bo_idle(entry);
1417 
1418 		r = amdgpu_vm_update_pde(&params, vm, entry);
1419 		if (r)
1420 			goto error;
1421 	}
1422 
1423 	r = vm->update_funcs->commit(&params, &vm->last_update);
1424 	if (r)
1425 		goto error;
1426 	drm_dev_exit(idx);
1427 	return 0;
1428 
1429 error:
1430 	amdgpu_vm_invalidate_pds(adev, vm);
1431 exit:
1432 	drm_dev_exit(idx);
1433 	return r;
1434 }
1435 
1436 /*
1437  * amdgpu_vm_update_flags - figure out flags for PTE updates
1438  *
1439  * Make sure to set the right flags for the PTEs at the desired level.
1440  */
1441 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1442 				   struct amdgpu_bo_vm *pt, unsigned int level,
1443 				   uint64_t pe, uint64_t addr,
1444 				   unsigned int count, uint32_t incr,
1445 				   uint64_t flags)
1446 
1447 {
1448 	if (level != AMDGPU_VM_PTB) {
1449 		flags |= AMDGPU_PDE_PTE;
1450 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1451 
1452 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1453 		   !(flags & AMDGPU_PTE_VALID) &&
1454 		   !(flags & AMDGPU_PTE_PRT)) {
1455 
1456 		/* Workaround for fault priority problem on GMC9 */
1457 		flags |= AMDGPU_PTE_EXECUTABLE;
1458 	}
1459 
1460 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1461 					 flags);
1462 }
1463 
1464 /**
1465  * amdgpu_vm_fragment - get fragment for PTEs
1466  *
1467  * @params: see amdgpu_vm_update_params definition
1468  * @start: first PTE to handle
1469  * @end: last PTE to handle
1470  * @flags: hw mapping flags
1471  * @frag: resulting fragment size
1472  * @frag_end: end of this fragment
1473  *
1474  * Returns the first possible fragment for the start and end address.
1475  */
1476 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1477 			       uint64_t start, uint64_t end, uint64_t flags,
1478 			       unsigned int *frag, uint64_t *frag_end)
1479 {
1480 	/**
1481 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1482 	 * field in the PTE. When this field is set to a non-zero value, page
1483 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1484 	 * flags are considered valid for all PTEs within the fragment range
1485 	 * and corresponding mappings are assumed to be physically contiguous.
1486 	 *
1487 	 * The L1 TLB can store a single PTE for the whole fragment,
1488 	 * significantly increasing the space available for translation
1489 	 * caching. This leads to large improvements in throughput when the
1490 	 * TLB is under pressure.
1491 	 *
1492 	 * The L2 TLB distributes small and large fragments into two
1493 	 * asymmetric partitions. The large fragment cache is significantly
1494 	 * larger. Thus, we try to use large fragments wherever possible.
1495 	 * Userspace can support this by aligning virtual base address and
1496 	 * allocation size to the fragment size.
1497 	 *
1498 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1499 	 * is now directly feed with small/huge/giant pages from the walker.
1500 	 */
1501 	unsigned max_frag;
1502 
1503 	if (params->adev->asic_type < CHIP_VEGA10)
1504 		max_frag = params->adev->vm_manager.fragment_size;
1505 	else
1506 		max_frag = 31;
1507 
1508 	/* system pages are non continuously */
1509 	if (params->pages_addr) {
1510 		*frag = 0;
1511 		*frag_end = end;
1512 		return;
1513 	}
1514 
1515 	/* This intentionally wraps around if no bit is set */
1516 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1517 	if (*frag >= max_frag) {
1518 		*frag = max_frag;
1519 		*frag_end = end & ~((1ULL << max_frag) - 1);
1520 	} else {
1521 		*frag_end = start + (1 << *frag);
1522 	}
1523 }
1524 
1525 /**
1526  * amdgpu_vm_update_ptes - make sure that page tables are valid
1527  *
1528  * @params: see amdgpu_vm_update_params definition
1529  * @start: start of GPU address range
1530  * @end: end of GPU address range
1531  * @dst: destination address to map to, the next dst inside the function
1532  * @flags: mapping flags
1533  *
1534  * Update the page tables in the range @start - @end.
1535  *
1536  * Returns:
1537  * 0 for success, -EINVAL for failure.
1538  */
1539 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1540 				 uint64_t start, uint64_t end,
1541 				 uint64_t dst, uint64_t flags)
1542 {
1543 	struct amdgpu_device *adev = params->adev;
1544 	struct amdgpu_vm_pt_cursor cursor;
1545 	uint64_t frag_start = start, frag_end;
1546 	unsigned int frag;
1547 	int r;
1548 
1549 	/* figure out the initial fragment */
1550 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1551 
1552 	/* walk over the address space and update the PTs */
1553 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1554 	while (cursor.pfn < end) {
1555 		unsigned shift, parent_shift, mask;
1556 		uint64_t incr, entry_end, pe_start;
1557 		struct amdgpu_bo *pt;
1558 
1559 		if (!params->unlocked) {
1560 			/* make sure that the page tables covering the
1561 			 * address range are actually allocated
1562 			 */
1563 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1564 						&cursor, params->immediate);
1565 			if (r)
1566 				return r;
1567 		}
1568 
1569 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1570 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1571 		if (params->unlocked) {
1572 			/* Unlocked updates are only allowed on the leaves */
1573 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1574 				continue;
1575 		} else if (adev->asic_type < CHIP_VEGA10 &&
1576 			   (flags & AMDGPU_PTE_VALID)) {
1577 			/* No huge page support before GMC v9 */
1578 			if (cursor.level != AMDGPU_VM_PTB) {
1579 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1580 					return -ENOENT;
1581 				continue;
1582 			}
1583 		} else if (frag < shift) {
1584 			/* We can't use this level when the fragment size is
1585 			 * smaller than the address shift. Go to the next
1586 			 * child entry and try again.
1587 			 */
1588 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1589 				continue;
1590 		} else if (frag >= parent_shift) {
1591 			/* If the fragment size is even larger than the parent
1592 			 * shift we should go up one level and check it again.
1593 			 */
1594 			if (!amdgpu_vm_pt_ancestor(&cursor))
1595 				return -EINVAL;
1596 			continue;
1597 		}
1598 
1599 		pt = cursor.entry->bo;
1600 		if (!pt) {
1601 			/* We need all PDs and PTs for mapping something, */
1602 			if (flags & AMDGPU_PTE_VALID)
1603 				return -ENOENT;
1604 
1605 			/* but unmapping something can happen at a higher
1606 			 * level.
1607 			 */
1608 			if (!amdgpu_vm_pt_ancestor(&cursor))
1609 				return -EINVAL;
1610 
1611 			pt = cursor.entry->bo;
1612 			shift = parent_shift;
1613 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1614 				   1ULL << shift));
1615 		}
1616 
1617 		/* Looks good so far, calculate parameters for the update */
1618 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1619 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1620 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1621 		entry_end = ((uint64_t)mask + 1) << shift;
1622 		entry_end += cursor.pfn & ~(entry_end - 1);
1623 		entry_end = min(entry_end, end);
1624 
1625 		do {
1626 			struct amdgpu_vm *vm = params->vm;
1627 			uint64_t upd_end = min(entry_end, frag_end);
1628 			unsigned nptes = (upd_end - frag_start) >> shift;
1629 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1630 
1631 			/* This can happen when we set higher level PDs to
1632 			 * silent to stop fault floods.
1633 			 */
1634 			nptes = max(nptes, 1u);
1635 
1636 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1637 						    nptes, dst, incr, upd_flags,
1638 						    vm->task_info.pid,
1639 						    vm->immediate.fence_context);
1640 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1641 					       cursor.level, pe_start, dst,
1642 					       nptes, incr, upd_flags);
1643 
1644 			pe_start += nptes * 8;
1645 			dst += nptes * incr;
1646 
1647 			frag_start = upd_end;
1648 			if (frag_start >= frag_end) {
1649 				/* figure out the next fragment */
1650 				amdgpu_vm_fragment(params, frag_start, end,
1651 						   flags, &frag, &frag_end);
1652 				if (frag < shift)
1653 					break;
1654 			}
1655 		} while (frag_start < entry_end);
1656 
1657 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1658 			/* Free all child entries.
1659 			 * Update the tables with the flags and addresses and free up subsequent
1660 			 * tables in the case of huge pages or freed up areas.
1661 			 * This is the maximum you can free, because all other page tables are not
1662 			 * completely covered by the range and so potentially still in use.
1663 			 */
1664 			while (cursor.pfn < frag_start) {
1665 				/* Make sure previous mapping is freed */
1666 				if (cursor.entry->bo) {
1667 					params->table_freed = true;
1668 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1669 				}
1670 				amdgpu_vm_pt_next(adev, &cursor);
1671 			}
1672 
1673 		} else if (frag >= shift) {
1674 			/* or just move on to the next on the same level. */
1675 			amdgpu_vm_pt_next(adev, &cursor);
1676 		}
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 /**
1683  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1684  *
1685  * @adev: amdgpu_device pointer of the VM
1686  * @bo_adev: amdgpu_device pointer of the mapped BO
1687  * @vm: requested vm
1688  * @immediate: immediate submission in a page fault
1689  * @unlocked: unlocked invalidation during MM callback
1690  * @resv: fences we need to sync to
1691  * @start: start of mapped range
1692  * @last: last mapped entry
1693  * @flags: flags for the entries
1694  * @offset: offset into nodes and pages_addr
1695  * @res: ttm_resource to map
1696  * @pages_addr: DMA addresses to use for mapping
1697  * @fence: optional resulting fence
1698  * @table_freed: return true if page table is freed
1699  *
1700  * Fill in the page table entries between @start and @last.
1701  *
1702  * Returns:
1703  * 0 for success, -EINVAL for failure.
1704  */
1705 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1706 				struct amdgpu_device *bo_adev,
1707 				struct amdgpu_vm *vm, bool immediate,
1708 				bool unlocked, struct dma_resv *resv,
1709 				uint64_t start, uint64_t last,
1710 				uint64_t flags, uint64_t offset,
1711 				struct ttm_resource *res,
1712 				dma_addr_t *pages_addr,
1713 				struct dma_fence **fence,
1714 				bool *table_freed)
1715 {
1716 	struct amdgpu_vm_update_params params;
1717 	struct amdgpu_res_cursor cursor;
1718 	enum amdgpu_sync_mode sync_mode;
1719 	int r, idx;
1720 
1721 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1722 		return -ENODEV;
1723 
1724 	memset(&params, 0, sizeof(params));
1725 	params.adev = adev;
1726 	params.vm = vm;
1727 	params.immediate = immediate;
1728 	params.pages_addr = pages_addr;
1729 	params.unlocked = unlocked;
1730 
1731 	/* Implicitly sync to command submissions in the same VM before
1732 	 * unmapping. Sync to moving fences before mapping.
1733 	 */
1734 	if (!(flags & AMDGPU_PTE_VALID))
1735 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1736 	else
1737 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1738 
1739 	amdgpu_vm_eviction_lock(vm);
1740 	if (vm->evicting) {
1741 		r = -EBUSY;
1742 		goto error_unlock;
1743 	}
1744 
1745 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1746 		struct dma_fence *tmp = dma_fence_get_stub();
1747 
1748 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1749 		swap(vm->last_unlocked, tmp);
1750 		dma_fence_put(tmp);
1751 	}
1752 
1753 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1754 	if (r)
1755 		goto error_unlock;
1756 
1757 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1758 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1759 	while (cursor.remaining) {
1760 		uint64_t tmp, num_entries, addr;
1761 
1762 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1763 		if (pages_addr) {
1764 			bool contiguous = true;
1765 
1766 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1767 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1768 				uint64_t count;
1769 
1770 				contiguous = pages_addr[pfn + 1] ==
1771 					pages_addr[pfn] + PAGE_SIZE;
1772 
1773 				tmp = num_entries /
1774 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1775 				for (count = 2; count < tmp; ++count) {
1776 					uint64_t idx = pfn + count;
1777 
1778 					if (contiguous != (pages_addr[idx] ==
1779 					    pages_addr[idx - 1] + PAGE_SIZE))
1780 						break;
1781 				}
1782 				num_entries = count *
1783 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1784 			}
1785 
1786 			if (!contiguous) {
1787 				addr = cursor.start;
1788 				params.pages_addr = pages_addr;
1789 			} else {
1790 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1791 				params.pages_addr = NULL;
1792 			}
1793 
1794 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1795 			addr = bo_adev->vm_manager.vram_base_offset +
1796 				cursor.start;
1797 		} else {
1798 			addr = 0;
1799 		}
1800 
1801 		tmp = start + num_entries;
1802 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1803 		if (r)
1804 			goto error_unlock;
1805 
1806 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1807 		start = tmp;
1808 	}
1809 
1810 	r = vm->update_funcs->commit(&params, fence);
1811 
1812 	if (table_freed)
1813 		*table_freed = *table_freed || params.table_freed;
1814 
1815 error_unlock:
1816 	amdgpu_vm_eviction_unlock(vm);
1817 	drm_dev_exit(idx);
1818 	return r;
1819 }
1820 
1821 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1822 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1823 {
1824 	struct amdgpu_bo_va *bo_va, *tmp;
1825 
1826 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1827 		if (!bo_va->base.bo)
1828 			continue;
1829 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1830 				gtt_mem, cpu_mem);
1831 	}
1832 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1833 		if (!bo_va->base.bo)
1834 			continue;
1835 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1836 				gtt_mem, cpu_mem);
1837 	}
1838 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1839 		if (!bo_va->base.bo)
1840 			continue;
1841 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1842 				gtt_mem, cpu_mem);
1843 	}
1844 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1845 		if (!bo_va->base.bo)
1846 			continue;
1847 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1848 				gtt_mem, cpu_mem);
1849 	}
1850 	spin_lock(&vm->invalidated_lock);
1851 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1852 		if (!bo_va->base.bo)
1853 			continue;
1854 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1855 				gtt_mem, cpu_mem);
1856 	}
1857 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1858 		if (!bo_va->base.bo)
1859 			continue;
1860 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1861 				gtt_mem, cpu_mem);
1862 	}
1863 	spin_unlock(&vm->invalidated_lock);
1864 }
1865 /**
1866  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1867  *
1868  * @adev: amdgpu_device pointer
1869  * @bo_va: requested BO and VM object
1870  * @clear: if true clear the entries
1871  * @table_freed: return true if page table is freed
1872  *
1873  * Fill in the page table entries for @bo_va.
1874  *
1875  * Returns:
1876  * 0 for success, -EINVAL for failure.
1877  */
1878 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1879 			bool clear, bool *table_freed)
1880 {
1881 	struct amdgpu_bo *bo = bo_va->base.bo;
1882 	struct amdgpu_vm *vm = bo_va->base.vm;
1883 	struct amdgpu_bo_va_mapping *mapping;
1884 	dma_addr_t *pages_addr = NULL;
1885 	struct ttm_resource *mem;
1886 	struct dma_fence **last_update;
1887 	struct dma_resv *resv;
1888 	uint64_t flags;
1889 	struct amdgpu_device *bo_adev = adev;
1890 	int r;
1891 
1892 	if (clear || !bo) {
1893 		mem = NULL;
1894 		resv = vm->root.bo->tbo.base.resv;
1895 	} else {
1896 		struct drm_gem_object *obj = &bo->tbo.base;
1897 
1898 		resv = bo->tbo.base.resv;
1899 		if (obj->import_attach && bo_va->is_xgmi) {
1900 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1901 			struct drm_gem_object *gobj = dma_buf->priv;
1902 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1903 
1904 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1905 				bo = gem_to_amdgpu_bo(gobj);
1906 		}
1907 		mem = bo->tbo.resource;
1908 		if (mem->mem_type == TTM_PL_TT ||
1909 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1910 			pages_addr = bo->tbo.ttm->dma_address;
1911 	}
1912 
1913 	if (bo) {
1914 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1915 
1916 		if (amdgpu_bo_encrypted(bo))
1917 			flags |= AMDGPU_PTE_TMZ;
1918 
1919 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1920 	} else {
1921 		flags = 0x0;
1922 	}
1923 
1924 	if (clear || (bo && bo->tbo.base.resv ==
1925 		      vm->root.bo->tbo.base.resv))
1926 		last_update = &vm->last_update;
1927 	else
1928 		last_update = &bo_va->last_pt_update;
1929 
1930 	if (!clear && bo_va->base.moved) {
1931 		bo_va->base.moved = false;
1932 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1933 
1934 	} else if (bo_va->cleared != clear) {
1935 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1936 	}
1937 
1938 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1939 		uint64_t update_flags = flags;
1940 
1941 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1942 		 * but in case of something, we filter the flags in first place
1943 		 */
1944 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1945 			update_flags &= ~AMDGPU_PTE_READABLE;
1946 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1947 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1948 
1949 		/* Apply ASIC specific mapping flags */
1950 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1951 
1952 		trace_amdgpu_vm_bo_update(mapping);
1953 
1954 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1955 						resv, mapping->start,
1956 						mapping->last, update_flags,
1957 						mapping->offset, mem,
1958 						pages_addr, last_update, table_freed);
1959 		if (r)
1960 			return r;
1961 	}
1962 
1963 	/* If the BO is not in its preferred location add it back to
1964 	 * the evicted list so that it gets validated again on the
1965 	 * next command submission.
1966 	 */
1967 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1968 		uint32_t mem_type = bo->tbo.resource->mem_type;
1969 
1970 		if (!(bo->preferred_domains &
1971 		      amdgpu_mem_type_to_domain(mem_type)))
1972 			amdgpu_vm_bo_evicted(&bo_va->base);
1973 		else
1974 			amdgpu_vm_bo_idle(&bo_va->base);
1975 	} else {
1976 		amdgpu_vm_bo_done(&bo_va->base);
1977 	}
1978 
1979 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1980 	bo_va->cleared = clear;
1981 
1982 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1983 		list_for_each_entry(mapping, &bo_va->valids, list)
1984 			trace_amdgpu_vm_bo_mapping(mapping);
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 /**
1991  * amdgpu_vm_update_prt_state - update the global PRT state
1992  *
1993  * @adev: amdgpu_device pointer
1994  */
1995 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1996 {
1997 	unsigned long flags;
1998 	bool enable;
1999 
2000 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2001 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2002 	adev->gmc.gmc_funcs->set_prt(adev, enable);
2003 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2004 }
2005 
2006 /**
2007  * amdgpu_vm_prt_get - add a PRT user
2008  *
2009  * @adev: amdgpu_device pointer
2010  */
2011 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2012 {
2013 	if (!adev->gmc.gmc_funcs->set_prt)
2014 		return;
2015 
2016 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2017 		amdgpu_vm_update_prt_state(adev);
2018 }
2019 
2020 /**
2021  * amdgpu_vm_prt_put - drop a PRT user
2022  *
2023  * @adev: amdgpu_device pointer
2024  */
2025 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2026 {
2027 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2028 		amdgpu_vm_update_prt_state(adev);
2029 }
2030 
2031 /**
2032  * amdgpu_vm_prt_cb - callback for updating the PRT status
2033  *
2034  * @fence: fence for the callback
2035  * @_cb: the callback function
2036  */
2037 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2038 {
2039 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2040 
2041 	amdgpu_vm_prt_put(cb->adev);
2042 	kfree(cb);
2043 }
2044 
2045 /**
2046  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2047  *
2048  * @adev: amdgpu_device pointer
2049  * @fence: fence for the callback
2050  */
2051 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2052 				 struct dma_fence *fence)
2053 {
2054 	struct amdgpu_prt_cb *cb;
2055 
2056 	if (!adev->gmc.gmc_funcs->set_prt)
2057 		return;
2058 
2059 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2060 	if (!cb) {
2061 		/* Last resort when we are OOM */
2062 		if (fence)
2063 			dma_fence_wait(fence, false);
2064 
2065 		amdgpu_vm_prt_put(adev);
2066 	} else {
2067 		cb->adev = adev;
2068 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2069 						     amdgpu_vm_prt_cb))
2070 			amdgpu_vm_prt_cb(fence, &cb->cb);
2071 	}
2072 }
2073 
2074 /**
2075  * amdgpu_vm_free_mapping - free a mapping
2076  *
2077  * @adev: amdgpu_device pointer
2078  * @vm: requested vm
2079  * @mapping: mapping to be freed
2080  * @fence: fence of the unmap operation
2081  *
2082  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2083  */
2084 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2085 				   struct amdgpu_vm *vm,
2086 				   struct amdgpu_bo_va_mapping *mapping,
2087 				   struct dma_fence *fence)
2088 {
2089 	if (mapping->flags & AMDGPU_PTE_PRT)
2090 		amdgpu_vm_add_prt_cb(adev, fence);
2091 	kfree(mapping);
2092 }
2093 
2094 /**
2095  * amdgpu_vm_prt_fini - finish all prt mappings
2096  *
2097  * @adev: amdgpu_device pointer
2098  * @vm: requested vm
2099  *
2100  * Register a cleanup callback to disable PRT support after VM dies.
2101  */
2102 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2103 {
2104 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2105 	struct dma_resv_iter cursor;
2106 	struct dma_fence *fence;
2107 
2108 	dma_resv_for_each_fence(&cursor, resv, true, fence) {
2109 		/* Add a callback for each fence in the reservation object */
2110 		amdgpu_vm_prt_get(adev);
2111 		amdgpu_vm_add_prt_cb(adev, fence);
2112 	}
2113 }
2114 
2115 /**
2116  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2117  *
2118  * @adev: amdgpu_device pointer
2119  * @vm: requested vm
2120  * @fence: optional resulting fence (unchanged if no work needed to be done
2121  * or if an error occurred)
2122  *
2123  * Make sure all freed BOs are cleared in the PT.
2124  * PTs have to be reserved and mutex must be locked!
2125  *
2126  * Returns:
2127  * 0 for success.
2128  *
2129  */
2130 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2131 			  struct amdgpu_vm *vm,
2132 			  struct dma_fence **fence)
2133 {
2134 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2135 	struct amdgpu_bo_va_mapping *mapping;
2136 	uint64_t init_pte_value = 0;
2137 	struct dma_fence *f = NULL;
2138 	int r;
2139 
2140 	while (!list_empty(&vm->freed)) {
2141 		mapping = list_first_entry(&vm->freed,
2142 			struct amdgpu_bo_va_mapping, list);
2143 		list_del(&mapping->list);
2144 
2145 		if (vm->pte_support_ats &&
2146 		    mapping->start < AMDGPU_GMC_HOLE_START)
2147 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2148 
2149 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2150 						resv, mapping->start,
2151 						mapping->last, init_pte_value,
2152 						0, NULL, NULL, &f, NULL);
2153 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2154 		if (r) {
2155 			dma_fence_put(f);
2156 			return r;
2157 		}
2158 	}
2159 
2160 	if (fence && f) {
2161 		dma_fence_put(*fence);
2162 		*fence = f;
2163 	} else {
2164 		dma_fence_put(f);
2165 	}
2166 
2167 	return 0;
2168 
2169 }
2170 
2171 /**
2172  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2173  *
2174  * @adev: amdgpu_device pointer
2175  * @vm: requested vm
2176  *
2177  * Make sure all BOs which are moved are updated in the PTs.
2178  *
2179  * Returns:
2180  * 0 for success.
2181  *
2182  * PTs have to be reserved!
2183  */
2184 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2185 			   struct amdgpu_vm *vm)
2186 {
2187 	struct amdgpu_bo_va *bo_va, *tmp;
2188 	struct dma_resv *resv;
2189 	bool clear;
2190 	int r;
2191 
2192 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2193 		/* Per VM BOs never need to bo cleared in the page tables */
2194 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2195 		if (r)
2196 			return r;
2197 	}
2198 
2199 	spin_lock(&vm->invalidated_lock);
2200 	while (!list_empty(&vm->invalidated)) {
2201 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2202 					 base.vm_status);
2203 		resv = bo_va->base.bo->tbo.base.resv;
2204 		spin_unlock(&vm->invalidated_lock);
2205 
2206 		/* Try to reserve the BO to avoid clearing its ptes */
2207 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2208 			clear = false;
2209 		/* Somebody else is using the BO right now */
2210 		else
2211 			clear = true;
2212 
2213 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2214 		if (r)
2215 			return r;
2216 
2217 		if (!clear)
2218 			dma_resv_unlock(resv);
2219 		spin_lock(&vm->invalidated_lock);
2220 	}
2221 	spin_unlock(&vm->invalidated_lock);
2222 
2223 	return 0;
2224 }
2225 
2226 /**
2227  * amdgpu_vm_bo_add - add a bo to a specific vm
2228  *
2229  * @adev: amdgpu_device pointer
2230  * @vm: requested vm
2231  * @bo: amdgpu buffer object
2232  *
2233  * Add @bo into the requested vm.
2234  * Add @bo to the list of bos associated with the vm
2235  *
2236  * Returns:
2237  * Newly added bo_va or NULL for failure
2238  *
2239  * Object has to be reserved!
2240  */
2241 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2242 				      struct amdgpu_vm *vm,
2243 				      struct amdgpu_bo *bo)
2244 {
2245 	struct amdgpu_bo_va *bo_va;
2246 
2247 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2248 	if (bo_va == NULL) {
2249 		return NULL;
2250 	}
2251 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2252 
2253 	bo_va->ref_count = 1;
2254 	INIT_LIST_HEAD(&bo_va->valids);
2255 	INIT_LIST_HEAD(&bo_va->invalids);
2256 
2257 	if (!bo)
2258 		return bo_va;
2259 
2260 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2261 		bo_va->is_xgmi = true;
2262 		/* Power up XGMI if it can be potentially used */
2263 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2264 	}
2265 
2266 	return bo_va;
2267 }
2268 
2269 
2270 /**
2271  * amdgpu_vm_bo_insert_map - insert a new mapping
2272  *
2273  * @adev: amdgpu_device pointer
2274  * @bo_va: bo_va to store the address
2275  * @mapping: the mapping to insert
2276  *
2277  * Insert a new mapping into all structures.
2278  */
2279 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2280 				    struct amdgpu_bo_va *bo_va,
2281 				    struct amdgpu_bo_va_mapping *mapping)
2282 {
2283 	struct amdgpu_vm *vm = bo_va->base.vm;
2284 	struct amdgpu_bo *bo = bo_va->base.bo;
2285 
2286 	mapping->bo_va = bo_va;
2287 	list_add(&mapping->list, &bo_va->invalids);
2288 	amdgpu_vm_it_insert(mapping, &vm->va);
2289 
2290 	if (mapping->flags & AMDGPU_PTE_PRT)
2291 		amdgpu_vm_prt_get(adev);
2292 
2293 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2294 	    !bo_va->base.moved) {
2295 		list_move(&bo_va->base.vm_status, &vm->moved);
2296 	}
2297 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2298 }
2299 
2300 /**
2301  * amdgpu_vm_bo_map - map bo inside a vm
2302  *
2303  * @adev: amdgpu_device pointer
2304  * @bo_va: bo_va to store the address
2305  * @saddr: where to map the BO
2306  * @offset: requested offset in the BO
2307  * @size: BO size in bytes
2308  * @flags: attributes of pages (read/write/valid/etc.)
2309  *
2310  * Add a mapping of the BO at the specefied addr into the VM.
2311  *
2312  * Returns:
2313  * 0 for success, error for failure.
2314  *
2315  * Object has to be reserved and unreserved outside!
2316  */
2317 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2318 		     struct amdgpu_bo_va *bo_va,
2319 		     uint64_t saddr, uint64_t offset,
2320 		     uint64_t size, uint64_t flags)
2321 {
2322 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2323 	struct amdgpu_bo *bo = bo_va->base.bo;
2324 	struct amdgpu_vm *vm = bo_va->base.vm;
2325 	uint64_t eaddr;
2326 
2327 	/* validate the parameters */
2328 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2329 	    size == 0 || size & ~PAGE_MASK)
2330 		return -EINVAL;
2331 
2332 	/* make sure object fit at this offset */
2333 	eaddr = saddr + size - 1;
2334 	if (saddr >= eaddr ||
2335 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2336 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2337 		return -EINVAL;
2338 
2339 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2340 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2341 
2342 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2343 	if (tmp) {
2344 		/* bo and tmp overlap, invalid addr */
2345 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2346 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2347 			tmp->start, tmp->last + 1);
2348 		return -EINVAL;
2349 	}
2350 
2351 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2352 	if (!mapping)
2353 		return -ENOMEM;
2354 
2355 	mapping->start = saddr;
2356 	mapping->last = eaddr;
2357 	mapping->offset = offset;
2358 	mapping->flags = flags;
2359 
2360 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2361 
2362 	return 0;
2363 }
2364 
2365 /**
2366  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2367  *
2368  * @adev: amdgpu_device pointer
2369  * @bo_va: bo_va to store the address
2370  * @saddr: where to map the BO
2371  * @offset: requested offset in the BO
2372  * @size: BO size in bytes
2373  * @flags: attributes of pages (read/write/valid/etc.)
2374  *
2375  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2376  * mappings as we do so.
2377  *
2378  * Returns:
2379  * 0 for success, error for failure.
2380  *
2381  * Object has to be reserved and unreserved outside!
2382  */
2383 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2384 			     struct amdgpu_bo_va *bo_va,
2385 			     uint64_t saddr, uint64_t offset,
2386 			     uint64_t size, uint64_t flags)
2387 {
2388 	struct amdgpu_bo_va_mapping *mapping;
2389 	struct amdgpu_bo *bo = bo_va->base.bo;
2390 	uint64_t eaddr;
2391 	int r;
2392 
2393 	/* validate the parameters */
2394 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2395 	    size == 0 || size & ~PAGE_MASK)
2396 		return -EINVAL;
2397 
2398 	/* make sure object fit at this offset */
2399 	eaddr = saddr + size - 1;
2400 	if (saddr >= eaddr ||
2401 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2402 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2403 		return -EINVAL;
2404 
2405 	/* Allocate all the needed memory */
2406 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2407 	if (!mapping)
2408 		return -ENOMEM;
2409 
2410 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2411 	if (r) {
2412 		kfree(mapping);
2413 		return r;
2414 	}
2415 
2416 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2417 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2418 
2419 	mapping->start = saddr;
2420 	mapping->last = eaddr;
2421 	mapping->offset = offset;
2422 	mapping->flags = flags;
2423 
2424 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2425 
2426 	return 0;
2427 }
2428 
2429 /**
2430  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2431  *
2432  * @adev: amdgpu_device pointer
2433  * @bo_va: bo_va to remove the address from
2434  * @saddr: where to the BO is mapped
2435  *
2436  * Remove a mapping of the BO at the specefied addr from the VM.
2437  *
2438  * Returns:
2439  * 0 for success, error for failure.
2440  *
2441  * Object has to be reserved and unreserved outside!
2442  */
2443 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2444 		       struct amdgpu_bo_va *bo_va,
2445 		       uint64_t saddr)
2446 {
2447 	struct amdgpu_bo_va_mapping *mapping;
2448 	struct amdgpu_vm *vm = bo_va->base.vm;
2449 	bool valid = true;
2450 
2451 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2452 
2453 	list_for_each_entry(mapping, &bo_va->valids, list) {
2454 		if (mapping->start == saddr)
2455 			break;
2456 	}
2457 
2458 	if (&mapping->list == &bo_va->valids) {
2459 		valid = false;
2460 
2461 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2462 			if (mapping->start == saddr)
2463 				break;
2464 		}
2465 
2466 		if (&mapping->list == &bo_va->invalids)
2467 			return -ENOENT;
2468 	}
2469 
2470 	list_del(&mapping->list);
2471 	amdgpu_vm_it_remove(mapping, &vm->va);
2472 	mapping->bo_va = NULL;
2473 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2474 
2475 	if (valid)
2476 		list_add(&mapping->list, &vm->freed);
2477 	else
2478 		amdgpu_vm_free_mapping(adev, vm, mapping,
2479 				       bo_va->last_pt_update);
2480 
2481 	return 0;
2482 }
2483 
2484 /**
2485  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2486  *
2487  * @adev: amdgpu_device pointer
2488  * @vm: VM structure to use
2489  * @saddr: start of the range
2490  * @size: size of the range
2491  *
2492  * Remove all mappings in a range, split them as appropriate.
2493  *
2494  * Returns:
2495  * 0 for success, error for failure.
2496  */
2497 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2498 				struct amdgpu_vm *vm,
2499 				uint64_t saddr, uint64_t size)
2500 {
2501 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2502 	LIST_HEAD(removed);
2503 	uint64_t eaddr;
2504 
2505 	eaddr = saddr + size - 1;
2506 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2507 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2508 
2509 	/* Allocate all the needed memory */
2510 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2511 	if (!before)
2512 		return -ENOMEM;
2513 	INIT_LIST_HEAD(&before->list);
2514 
2515 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2516 	if (!after) {
2517 		kfree(before);
2518 		return -ENOMEM;
2519 	}
2520 	INIT_LIST_HEAD(&after->list);
2521 
2522 	/* Now gather all removed mappings */
2523 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2524 	while (tmp) {
2525 		/* Remember mapping split at the start */
2526 		if (tmp->start < saddr) {
2527 			before->start = tmp->start;
2528 			before->last = saddr - 1;
2529 			before->offset = tmp->offset;
2530 			before->flags = tmp->flags;
2531 			before->bo_va = tmp->bo_va;
2532 			list_add(&before->list, &tmp->bo_va->invalids);
2533 		}
2534 
2535 		/* Remember mapping split at the end */
2536 		if (tmp->last > eaddr) {
2537 			after->start = eaddr + 1;
2538 			after->last = tmp->last;
2539 			after->offset = tmp->offset;
2540 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2541 			after->flags = tmp->flags;
2542 			after->bo_va = tmp->bo_va;
2543 			list_add(&after->list, &tmp->bo_va->invalids);
2544 		}
2545 
2546 		list_del(&tmp->list);
2547 		list_add(&tmp->list, &removed);
2548 
2549 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2550 	}
2551 
2552 	/* And free them up */
2553 	list_for_each_entry_safe(tmp, next, &removed, list) {
2554 		amdgpu_vm_it_remove(tmp, &vm->va);
2555 		list_del(&tmp->list);
2556 
2557 		if (tmp->start < saddr)
2558 		    tmp->start = saddr;
2559 		if (tmp->last > eaddr)
2560 		    tmp->last = eaddr;
2561 
2562 		tmp->bo_va = NULL;
2563 		list_add(&tmp->list, &vm->freed);
2564 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2565 	}
2566 
2567 	/* Insert partial mapping before the range */
2568 	if (!list_empty(&before->list)) {
2569 		amdgpu_vm_it_insert(before, &vm->va);
2570 		if (before->flags & AMDGPU_PTE_PRT)
2571 			amdgpu_vm_prt_get(adev);
2572 	} else {
2573 		kfree(before);
2574 	}
2575 
2576 	/* Insert partial mapping after the range */
2577 	if (!list_empty(&after->list)) {
2578 		amdgpu_vm_it_insert(after, &vm->va);
2579 		if (after->flags & AMDGPU_PTE_PRT)
2580 			amdgpu_vm_prt_get(adev);
2581 	} else {
2582 		kfree(after);
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 /**
2589  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2590  *
2591  * @vm: the requested VM
2592  * @addr: the address
2593  *
2594  * Find a mapping by it's address.
2595  *
2596  * Returns:
2597  * The amdgpu_bo_va_mapping matching for addr or NULL
2598  *
2599  */
2600 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2601 							 uint64_t addr)
2602 {
2603 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2604 }
2605 
2606 /**
2607  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2608  *
2609  * @vm: the requested vm
2610  * @ticket: CS ticket
2611  *
2612  * Trace all mappings of BOs reserved during a command submission.
2613  */
2614 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2615 {
2616 	struct amdgpu_bo_va_mapping *mapping;
2617 
2618 	if (!trace_amdgpu_vm_bo_cs_enabled())
2619 		return;
2620 
2621 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2622 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2623 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2624 			struct amdgpu_bo *bo;
2625 
2626 			bo = mapping->bo_va->base.bo;
2627 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2628 			    ticket)
2629 				continue;
2630 		}
2631 
2632 		trace_amdgpu_vm_bo_cs(mapping);
2633 	}
2634 }
2635 
2636 /**
2637  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2638  *
2639  * @adev: amdgpu_device pointer
2640  * @bo_va: requested bo_va
2641  *
2642  * Remove @bo_va->bo from the requested vm.
2643  *
2644  * Object have to be reserved!
2645  */
2646 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2647 		      struct amdgpu_bo_va *bo_va)
2648 {
2649 	struct amdgpu_bo_va_mapping *mapping, *next;
2650 	struct amdgpu_bo *bo = bo_va->base.bo;
2651 	struct amdgpu_vm *vm = bo_va->base.vm;
2652 	struct amdgpu_vm_bo_base **base;
2653 
2654 	if (bo) {
2655 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2656 			vm->bulk_moveable = false;
2657 
2658 		for (base = &bo_va->base.bo->vm_bo; *base;
2659 		     base = &(*base)->next) {
2660 			if (*base != &bo_va->base)
2661 				continue;
2662 
2663 			*base = bo_va->base.next;
2664 			break;
2665 		}
2666 	}
2667 
2668 	spin_lock(&vm->invalidated_lock);
2669 	list_del(&bo_va->base.vm_status);
2670 	spin_unlock(&vm->invalidated_lock);
2671 
2672 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2673 		list_del(&mapping->list);
2674 		amdgpu_vm_it_remove(mapping, &vm->va);
2675 		mapping->bo_va = NULL;
2676 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2677 		list_add(&mapping->list, &vm->freed);
2678 	}
2679 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2680 		list_del(&mapping->list);
2681 		amdgpu_vm_it_remove(mapping, &vm->va);
2682 		amdgpu_vm_free_mapping(adev, vm, mapping,
2683 				       bo_va->last_pt_update);
2684 	}
2685 
2686 	dma_fence_put(bo_va->last_pt_update);
2687 
2688 	if (bo && bo_va->is_xgmi)
2689 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2690 
2691 	kfree(bo_va);
2692 }
2693 
2694 /**
2695  * amdgpu_vm_evictable - check if we can evict a VM
2696  *
2697  * @bo: A page table of the VM.
2698  *
2699  * Check if it is possible to evict a VM.
2700  */
2701 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2702 {
2703 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2704 
2705 	/* Page tables of a destroyed VM can go away immediately */
2706 	if (!bo_base || !bo_base->vm)
2707 		return true;
2708 
2709 	/* Don't evict VM page tables while they are busy */
2710 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2711 		return false;
2712 
2713 	/* Try to block ongoing updates */
2714 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2715 		return false;
2716 
2717 	/* Don't evict VM page tables while they are updated */
2718 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2719 		amdgpu_vm_eviction_unlock(bo_base->vm);
2720 		return false;
2721 	}
2722 
2723 	bo_base->vm->evicting = true;
2724 	amdgpu_vm_eviction_unlock(bo_base->vm);
2725 	return true;
2726 }
2727 
2728 /**
2729  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2730  *
2731  * @adev: amdgpu_device pointer
2732  * @bo: amdgpu buffer object
2733  * @evicted: is the BO evicted
2734  *
2735  * Mark @bo as invalid.
2736  */
2737 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2738 			     struct amdgpu_bo *bo, bool evicted)
2739 {
2740 	struct amdgpu_vm_bo_base *bo_base;
2741 
2742 	/* shadow bo doesn't have bo base, its validation needs its parent */
2743 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2744 		bo = bo->parent;
2745 
2746 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2747 		struct amdgpu_vm *vm = bo_base->vm;
2748 
2749 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2750 			amdgpu_vm_bo_evicted(bo_base);
2751 			continue;
2752 		}
2753 
2754 		if (bo_base->moved)
2755 			continue;
2756 		bo_base->moved = true;
2757 
2758 		if (bo->tbo.type == ttm_bo_type_kernel)
2759 			amdgpu_vm_bo_relocated(bo_base);
2760 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2761 			amdgpu_vm_bo_moved(bo_base);
2762 		else
2763 			amdgpu_vm_bo_invalidated(bo_base);
2764 	}
2765 }
2766 
2767 /**
2768  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2769  *
2770  * @vm_size: VM size
2771  *
2772  * Returns:
2773  * VM page table as power of two
2774  */
2775 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2776 {
2777 	/* Total bits covered by PD + PTs */
2778 	unsigned bits = ilog2(vm_size) + 18;
2779 
2780 	/* Make sure the PD is 4K in size up to 8GB address space.
2781 	   Above that split equal between PD and PTs */
2782 	if (vm_size <= 8)
2783 		return (bits - 9);
2784 	else
2785 		return ((bits + 3) / 2);
2786 }
2787 
2788 /**
2789  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2790  *
2791  * @adev: amdgpu_device pointer
2792  * @min_vm_size: the minimum vm size in GB if it's set auto
2793  * @fragment_size_default: Default PTE fragment size
2794  * @max_level: max VMPT level
2795  * @max_bits: max address space size in bits
2796  *
2797  */
2798 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2799 			   uint32_t fragment_size_default, unsigned max_level,
2800 			   unsigned max_bits)
2801 {
2802 	unsigned int max_size = 1 << (max_bits - 30);
2803 	unsigned int vm_size;
2804 	uint64_t tmp;
2805 
2806 	/* adjust vm size first */
2807 	if (amdgpu_vm_size != -1) {
2808 		vm_size = amdgpu_vm_size;
2809 		if (vm_size > max_size) {
2810 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2811 				 amdgpu_vm_size, max_size);
2812 			vm_size = max_size;
2813 		}
2814 	} else {
2815 		struct sysinfo si;
2816 		unsigned int phys_ram_gb;
2817 
2818 		/* Optimal VM size depends on the amount of physical
2819 		 * RAM available. Underlying requirements and
2820 		 * assumptions:
2821 		 *
2822 		 *  - Need to map system memory and VRAM from all GPUs
2823 		 *     - VRAM from other GPUs not known here
2824 		 *     - Assume VRAM <= system memory
2825 		 *  - On GFX8 and older, VM space can be segmented for
2826 		 *    different MTYPEs
2827 		 *  - Need to allow room for fragmentation, guard pages etc.
2828 		 *
2829 		 * This adds up to a rough guess of system memory x3.
2830 		 * Round up to power of two to maximize the available
2831 		 * VM size with the given page table size.
2832 		 */
2833 		si_meminfo(&si);
2834 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2835 			       (1 << 30) - 1) >> 30;
2836 		vm_size = roundup_pow_of_two(
2837 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2838 	}
2839 
2840 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2841 
2842 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2843 	if (amdgpu_vm_block_size != -1)
2844 		tmp >>= amdgpu_vm_block_size - 9;
2845 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2846 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2847 	switch (adev->vm_manager.num_level) {
2848 	case 3:
2849 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2850 		break;
2851 	case 2:
2852 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2853 		break;
2854 	case 1:
2855 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2856 		break;
2857 	default:
2858 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2859 	}
2860 	/* block size depends on vm size and hw setup*/
2861 	if (amdgpu_vm_block_size != -1)
2862 		adev->vm_manager.block_size =
2863 			min((unsigned)amdgpu_vm_block_size, max_bits
2864 			    - AMDGPU_GPU_PAGE_SHIFT
2865 			    - 9 * adev->vm_manager.num_level);
2866 	else if (adev->vm_manager.num_level > 1)
2867 		adev->vm_manager.block_size = 9;
2868 	else
2869 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2870 
2871 	if (amdgpu_vm_fragment_size == -1)
2872 		adev->vm_manager.fragment_size = fragment_size_default;
2873 	else
2874 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2875 
2876 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2877 		 vm_size, adev->vm_manager.num_level + 1,
2878 		 adev->vm_manager.block_size,
2879 		 adev->vm_manager.fragment_size);
2880 }
2881 
2882 /**
2883  * amdgpu_vm_wait_idle - wait for the VM to become idle
2884  *
2885  * @vm: VM object to wait for
2886  * @timeout: timeout to wait for VM to become idle
2887  */
2888 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2889 {
2890 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2891 					true, timeout);
2892 	if (timeout <= 0)
2893 		return timeout;
2894 
2895 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2896 }
2897 
2898 /**
2899  * amdgpu_vm_init - initialize a vm instance
2900  *
2901  * @adev: amdgpu_device pointer
2902  * @vm: requested vm
2903  *
2904  * Init @vm fields.
2905  *
2906  * Returns:
2907  * 0 for success, error for failure.
2908  */
2909 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2910 {
2911 	struct amdgpu_bo *root_bo;
2912 	struct amdgpu_bo_vm *root;
2913 	int r, i;
2914 
2915 	vm->va = RB_ROOT_CACHED;
2916 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2917 		vm->reserved_vmid[i] = NULL;
2918 	INIT_LIST_HEAD(&vm->evicted);
2919 	INIT_LIST_HEAD(&vm->relocated);
2920 	INIT_LIST_HEAD(&vm->moved);
2921 	INIT_LIST_HEAD(&vm->idle);
2922 	INIT_LIST_HEAD(&vm->invalidated);
2923 	spin_lock_init(&vm->invalidated_lock);
2924 	INIT_LIST_HEAD(&vm->freed);
2925 	INIT_LIST_HEAD(&vm->done);
2926 
2927 	/* create scheduler entities for page table updates */
2928 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2929 				  adev->vm_manager.vm_pte_scheds,
2930 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2931 	if (r)
2932 		return r;
2933 
2934 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2935 				  adev->vm_manager.vm_pte_scheds,
2936 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2937 	if (r)
2938 		goto error_free_immediate;
2939 
2940 	vm->pte_support_ats = false;
2941 	vm->is_compute_context = false;
2942 
2943 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2944 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2945 
2946 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2947 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2948 	WARN_ONCE((vm->use_cpu_for_update &&
2949 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2950 		  "CPU update of VM recommended only for large BAR system\n");
2951 
2952 	if (vm->use_cpu_for_update)
2953 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2954 	else
2955 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2956 	vm->last_update = NULL;
2957 	vm->last_unlocked = dma_fence_get_stub();
2958 
2959 	mutex_init(&vm->eviction_lock);
2960 	vm->evicting = false;
2961 
2962 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2963 				false, &root);
2964 	if (r)
2965 		goto error_free_delayed;
2966 	root_bo = &root->bo;
2967 	r = amdgpu_bo_reserve(root_bo, true);
2968 	if (r)
2969 		goto error_free_root;
2970 
2971 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2972 	if (r)
2973 		goto error_unreserve;
2974 
2975 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2976 
2977 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2978 	if (r)
2979 		goto error_unreserve;
2980 
2981 	amdgpu_bo_unreserve(vm->root.bo);
2982 
2983 	INIT_KFIFO(vm->faults);
2984 
2985 	return 0;
2986 
2987 error_unreserve:
2988 	amdgpu_bo_unreserve(vm->root.bo);
2989 
2990 error_free_root:
2991 	amdgpu_bo_unref(&root->shadow);
2992 	amdgpu_bo_unref(&root_bo);
2993 	vm->root.bo = NULL;
2994 
2995 error_free_delayed:
2996 	dma_fence_put(vm->last_unlocked);
2997 	drm_sched_entity_destroy(&vm->delayed);
2998 
2999 error_free_immediate:
3000 	drm_sched_entity_destroy(&vm->immediate);
3001 
3002 	return r;
3003 }
3004 
3005 /**
3006  * amdgpu_vm_check_clean_reserved - check if a VM is clean
3007  *
3008  * @adev: amdgpu_device pointer
3009  * @vm: the VM to check
3010  *
3011  * check all entries of the root PD, if any subsequent PDs are allocated,
3012  * it means there are page table creating and filling, and is no a clean
3013  * VM
3014  *
3015  * Returns:
3016  *	0 if this VM is clean
3017  */
3018 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
3019 					  struct amdgpu_vm *vm)
3020 {
3021 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3022 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3023 	unsigned int i = 0;
3024 
3025 	for (i = 0; i < entries; i++) {
3026 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3027 			return -EINVAL;
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3035  *
3036  * @adev: amdgpu_device pointer
3037  * @vm: requested vm
3038  *
3039  * This only works on GFX VMs that don't have any BOs added and no
3040  * page tables allocated yet.
3041  *
3042  * Changes the following VM parameters:
3043  * - use_cpu_for_update
3044  * - pte_supports_ats
3045  *
3046  * Reinitializes the page directory to reflect the changed ATS
3047  * setting.
3048  *
3049  * Returns:
3050  * 0 for success, -errno for errors.
3051  */
3052 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3053 {
3054 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3055 	int r;
3056 
3057 	r = amdgpu_bo_reserve(vm->root.bo, true);
3058 	if (r)
3059 		return r;
3060 
3061 	/* Sanity checks */
3062 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3063 	if (r)
3064 		goto unreserve_bo;
3065 
3066 	/* Check if PD needs to be reinitialized and do it before
3067 	 * changing any other state, in case it fails.
3068 	 */
3069 	if (pte_support_ats != vm->pte_support_ats) {
3070 		vm->pte_support_ats = pte_support_ats;
3071 		r = amdgpu_vm_clear_bo(adev, vm,
3072 				       to_amdgpu_bo_vm(vm->root.bo),
3073 				       false);
3074 		if (r)
3075 			goto unreserve_bo;
3076 	}
3077 
3078 	/* Update VM state */
3079 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3080 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3081 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3082 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3083 	WARN_ONCE((vm->use_cpu_for_update &&
3084 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3085 		  "CPU update of VM recommended only for large BAR system\n");
3086 
3087 	if (vm->use_cpu_for_update) {
3088 		/* Sync with last SDMA update/clear before switching to CPU */
3089 		r = amdgpu_bo_sync_wait(vm->root.bo,
3090 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3091 		if (r)
3092 			goto unreserve_bo;
3093 
3094 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3095 	} else {
3096 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3097 	}
3098 	dma_fence_put(vm->last_update);
3099 	vm->last_update = NULL;
3100 	vm->is_compute_context = true;
3101 
3102 	/* Free the shadow bo for compute VM */
3103 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3104 
3105 	goto unreserve_bo;
3106 
3107 unreserve_bo:
3108 	amdgpu_bo_unreserve(vm->root.bo);
3109 	return r;
3110 }
3111 
3112 /**
3113  * amdgpu_vm_release_compute - release a compute vm
3114  * @adev: amdgpu_device pointer
3115  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3116  *
3117  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3118  * pasid from vm. Compute should stop use of vm after this call.
3119  */
3120 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3121 {
3122 	amdgpu_vm_set_pasid(adev, vm, 0);
3123 	vm->is_compute_context = false;
3124 }
3125 
3126 /**
3127  * amdgpu_vm_fini - tear down a vm instance
3128  *
3129  * @adev: amdgpu_device pointer
3130  * @vm: requested vm
3131  *
3132  * Tear down @vm.
3133  * Unbind the VM and remove all bos from the vm bo list
3134  */
3135 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3136 {
3137 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3138 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3139 	struct amdgpu_bo *root;
3140 	int i;
3141 
3142 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3143 
3144 	root = amdgpu_bo_ref(vm->root.bo);
3145 	amdgpu_bo_reserve(root, true);
3146 	amdgpu_vm_set_pasid(adev, vm, 0);
3147 	dma_fence_wait(vm->last_unlocked, false);
3148 	dma_fence_put(vm->last_unlocked);
3149 
3150 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3151 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3152 			amdgpu_vm_prt_fini(adev, vm);
3153 			prt_fini_needed = false;
3154 		}
3155 
3156 		list_del(&mapping->list);
3157 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3158 	}
3159 
3160 	amdgpu_vm_free_pts(adev, vm, NULL);
3161 	amdgpu_bo_unreserve(root);
3162 	amdgpu_bo_unref(&root);
3163 	WARN_ON(vm->root.bo);
3164 
3165 	drm_sched_entity_destroy(&vm->immediate);
3166 	drm_sched_entity_destroy(&vm->delayed);
3167 
3168 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3169 		dev_err(adev->dev, "still active bo inside vm\n");
3170 	}
3171 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3172 					     &vm->va.rb_root, rb) {
3173 		/* Don't remove the mapping here, we don't want to trigger a
3174 		 * rebalance and the tree is about to be destroyed anyway.
3175 		 */
3176 		list_del(&mapping->list);
3177 		kfree(mapping);
3178 	}
3179 
3180 	dma_fence_put(vm->last_update);
3181 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3182 		amdgpu_vmid_free_reserved(adev, vm, i);
3183 }
3184 
3185 /**
3186  * amdgpu_vm_manager_init - init the VM manager
3187  *
3188  * @adev: amdgpu_device pointer
3189  *
3190  * Initialize the VM manager structures
3191  */
3192 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3193 {
3194 	unsigned i;
3195 
3196 	/* Concurrent flushes are only possible starting with Vega10 and
3197 	 * are broken on Navi10 and Navi14.
3198 	 */
3199 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3200 					      adev->asic_type == CHIP_NAVI10 ||
3201 					      adev->asic_type == CHIP_NAVI14);
3202 	amdgpu_vmid_mgr_init(adev);
3203 
3204 	adev->vm_manager.fence_context =
3205 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3206 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3207 		adev->vm_manager.seqno[i] = 0;
3208 
3209 	spin_lock_init(&adev->vm_manager.prt_lock);
3210 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3211 
3212 	/* If not overridden by the user, by default, only in large BAR systems
3213 	 * Compute VM tables will be updated by CPU
3214 	 */
3215 #ifdef CONFIG_X86_64
3216 	if (amdgpu_vm_update_mode == -1) {
3217 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3218 			adev->vm_manager.vm_update_mode =
3219 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3220 		else
3221 			adev->vm_manager.vm_update_mode = 0;
3222 	} else
3223 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3224 #else
3225 	adev->vm_manager.vm_update_mode = 0;
3226 #endif
3227 
3228 	xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ);
3229 }
3230 
3231 /**
3232  * amdgpu_vm_manager_fini - cleanup VM manager
3233  *
3234  * @adev: amdgpu_device pointer
3235  *
3236  * Cleanup the VM manager and free resources.
3237  */
3238 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3239 {
3240 	WARN_ON(!xa_empty(&adev->vm_manager.pasids));
3241 	xa_destroy(&adev->vm_manager.pasids);
3242 
3243 	amdgpu_vmid_mgr_fini(adev);
3244 }
3245 
3246 /**
3247  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3248  *
3249  * @dev: drm device pointer
3250  * @data: drm_amdgpu_vm
3251  * @filp: drm file pointer
3252  *
3253  * Returns:
3254  * 0 for success, -errno for errors.
3255  */
3256 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3257 {
3258 	union drm_amdgpu_vm *args = data;
3259 	struct amdgpu_device *adev = drm_to_adev(dev);
3260 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3261 	long timeout = msecs_to_jiffies(2000);
3262 	int r;
3263 
3264 	switch (args->in.op) {
3265 	case AMDGPU_VM_OP_RESERVE_VMID:
3266 		/* We only have requirement to reserve vmid from gfxhub */
3267 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3268 					       AMDGPU_GFXHUB_0);
3269 		if (r)
3270 			return r;
3271 		break;
3272 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3273 		if (amdgpu_sriov_runtime(adev))
3274 			timeout = 8 * timeout;
3275 
3276 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3277 		 * not referenced anymore.
3278 		 */
3279 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3280 		if (r)
3281 			return r;
3282 
3283 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3284 		if (r < 0)
3285 			return r;
3286 
3287 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3288 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3289 		break;
3290 	default:
3291 		return -EINVAL;
3292 	}
3293 
3294 	return 0;
3295 }
3296 
3297 /**
3298  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3299  *
3300  * @adev: drm device pointer
3301  * @pasid: PASID identifier for VM
3302  * @task_info: task_info to fill.
3303  */
3304 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3305 			 struct amdgpu_task_info *task_info)
3306 {
3307 	struct amdgpu_vm *vm;
3308 	unsigned long flags;
3309 
3310 	xa_lock_irqsave(&adev->vm_manager.pasids, flags);
3311 
3312 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3313 	if (vm)
3314 		*task_info = vm->task_info;
3315 
3316 	xa_unlock_irqrestore(&adev->vm_manager.pasids, flags);
3317 }
3318 
3319 /**
3320  * amdgpu_vm_set_task_info - Sets VMs task info.
3321  *
3322  * @vm: vm for which to set the info
3323  */
3324 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3325 {
3326 	if (vm->task_info.pid)
3327 		return;
3328 
3329 	vm->task_info.pid = current->pid;
3330 	get_task_comm(vm->task_info.task_name, current);
3331 
3332 	if (current->group_leader->mm != current->mm)
3333 		return;
3334 
3335 	vm->task_info.tgid = current->group_leader->pid;
3336 	get_task_comm(vm->task_info.process_name, current->group_leader);
3337 }
3338 
3339 /**
3340  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3341  * @adev: amdgpu device pointer
3342  * @pasid: PASID of the VM
3343  * @addr: Address of the fault
3344  * @write_fault: true is write fault, false is read fault
3345  *
3346  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3347  * shouldn't be reported any more.
3348  */
3349 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3350 			    uint64_t addr, bool write_fault)
3351 {
3352 	bool is_compute_context = false;
3353 	struct amdgpu_bo *root;
3354 	unsigned long irqflags;
3355 	uint64_t value, flags;
3356 	struct amdgpu_vm *vm;
3357 	int r;
3358 
3359 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3360 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3361 	if (vm) {
3362 		root = amdgpu_bo_ref(vm->root.bo);
3363 		is_compute_context = vm->is_compute_context;
3364 	} else {
3365 		root = NULL;
3366 	}
3367 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3368 
3369 	if (!root)
3370 		return false;
3371 
3372 	addr /= AMDGPU_GPU_PAGE_SIZE;
3373 
3374 	if (is_compute_context &&
3375 	    !svm_range_restore_pages(adev, pasid, addr, write_fault)) {
3376 		amdgpu_bo_unref(&root);
3377 		return true;
3378 	}
3379 
3380 	r = amdgpu_bo_reserve(root, true);
3381 	if (r)
3382 		goto error_unref;
3383 
3384 	/* Double check that the VM still exists */
3385 	xa_lock_irqsave(&adev->vm_manager.pasids, irqflags);
3386 	vm = xa_load(&adev->vm_manager.pasids, pasid);
3387 	if (vm && vm->root.bo != root)
3388 		vm = NULL;
3389 	xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags);
3390 	if (!vm)
3391 		goto error_unlock;
3392 
3393 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3394 		AMDGPU_PTE_SYSTEM;
3395 
3396 	if (is_compute_context) {
3397 		/* Intentionally setting invalid PTE flag
3398 		 * combination to force a no-retry-fault
3399 		 */
3400 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3401 			AMDGPU_PTE_TF;
3402 		value = 0;
3403 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3404 		/* Redirect the access to the dummy page */
3405 		value = adev->dummy_page_addr;
3406 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3407 			AMDGPU_PTE_WRITEABLE;
3408 
3409 	} else {
3410 		/* Let the hw retry silently on the PTE */
3411 		value = 0;
3412 	}
3413 
3414 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3415 	if (r) {
3416 		pr_debug("failed %d to reserve fence slot\n", r);
3417 		goto error_unlock;
3418 	}
3419 
3420 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3421 					addr, flags, value, NULL, NULL, NULL,
3422 					NULL);
3423 	if (r)
3424 		goto error_unlock;
3425 
3426 	r = amdgpu_vm_update_pdes(adev, vm, true);
3427 
3428 error_unlock:
3429 	amdgpu_bo_unreserve(root);
3430 	if (r < 0)
3431 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3432 
3433 error_unref:
3434 	amdgpu_bo_unref(&root);
3435 
3436 	return false;
3437 }
3438 
3439 #if defined(CONFIG_DEBUG_FS)
3440 /**
3441  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3442  *
3443  * @vm: Requested VM for printing BO info
3444  * @m: debugfs file
3445  *
3446  * Print BO information in debugfs file for the VM
3447  */
3448 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3449 {
3450 	struct amdgpu_bo_va *bo_va, *tmp;
3451 	u64 total_idle = 0;
3452 	u64 total_evicted = 0;
3453 	u64 total_relocated = 0;
3454 	u64 total_moved = 0;
3455 	u64 total_invalidated = 0;
3456 	u64 total_done = 0;
3457 	unsigned int total_idle_objs = 0;
3458 	unsigned int total_evicted_objs = 0;
3459 	unsigned int total_relocated_objs = 0;
3460 	unsigned int total_moved_objs = 0;
3461 	unsigned int total_invalidated_objs = 0;
3462 	unsigned int total_done_objs = 0;
3463 	unsigned int id = 0;
3464 
3465 	seq_puts(m, "\tIdle BOs:\n");
3466 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3467 		if (!bo_va->base.bo)
3468 			continue;
3469 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3470 	}
3471 	total_idle_objs = id;
3472 	id = 0;
3473 
3474 	seq_puts(m, "\tEvicted BOs:\n");
3475 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3476 		if (!bo_va->base.bo)
3477 			continue;
3478 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3479 	}
3480 	total_evicted_objs = id;
3481 	id = 0;
3482 
3483 	seq_puts(m, "\tRelocated BOs:\n");
3484 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3485 		if (!bo_va->base.bo)
3486 			continue;
3487 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3488 	}
3489 	total_relocated_objs = id;
3490 	id = 0;
3491 
3492 	seq_puts(m, "\tMoved BOs:\n");
3493 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3494 		if (!bo_va->base.bo)
3495 			continue;
3496 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3497 	}
3498 	total_moved_objs = id;
3499 	id = 0;
3500 
3501 	seq_puts(m, "\tInvalidated BOs:\n");
3502 	spin_lock(&vm->invalidated_lock);
3503 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3504 		if (!bo_va->base.bo)
3505 			continue;
3506 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3507 	}
3508 	total_invalidated_objs = id;
3509 	id = 0;
3510 
3511 	seq_puts(m, "\tDone BOs:\n");
3512 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3513 		if (!bo_va->base.bo)
3514 			continue;
3515 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3516 	}
3517 	spin_unlock(&vm->invalidated_lock);
3518 	total_done_objs = id;
3519 
3520 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3521 		   total_idle_objs);
3522 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3523 		   total_evicted_objs);
3524 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3525 		   total_relocated_objs);
3526 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3527 		   total_moved_objs);
3528 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3529 		   total_invalidated_objs);
3530 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3531 		   total_done_objs);
3532 }
3533 #endif
3534