1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include <drm/ttm/ttm_tt.h> 37 #include <drm/drm_exec.h> 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_amdkfd.h" 41 #include "amdgpu_gmc.h" 42 #include "amdgpu_xgmi.h" 43 #include "amdgpu_dma_buf.h" 44 #include "amdgpu_res_cursor.h" 45 #include "kfd_svm.h" 46 47 /** 48 * DOC: GPUVM 49 * 50 * GPUVM is the MMU functionality provided on the GPU. 51 * GPUVM is similar to the legacy GART on older asics, however 52 * rather than there being a single global GART table 53 * for the entire GPU, there can be multiple GPUVM page tables active 54 * at any given time. The GPUVM page tables can contain a mix 55 * VRAM pages and system pages (both memory and MMIO) and system pages 56 * can be mapped as snooped (cached system pages) or unsnooped 57 * (uncached system pages). 58 * 59 * Each active GPUVM has an ID associated with it and there is a page table 60 * linked with each VMID. When executing a command buffer, 61 * the kernel tells the engine what VMID to use for that command 62 * buffer. VMIDs are allocated dynamically as commands are submitted. 63 * The userspace drivers maintain their own address space and the kernel 64 * sets up their pages tables accordingly when they submit their 65 * command buffers and a VMID is assigned. 66 * The hardware supports up to 16 active GPUVMs at any given time. 67 * 68 * Each GPUVM is represented by a 1-2 or 1-5 level page table, depending 69 * on the ASIC family. GPUVM supports RWX attributes on each page as well 70 * as other features such as encryption and caching attributes. 71 * 72 * VMID 0 is special. It is the GPUVM used for the kernel driver. In 73 * addition to an aperture managed by a page table, VMID 0 also has 74 * several other apertures. There is an aperture for direct access to VRAM 75 * and there is a legacy AGP aperture which just forwards accesses directly 76 * to the matching system physical addresses (or IOVAs when an IOMMU is 77 * present). These apertures provide direct access to these memories without 78 * incurring the overhead of a page table. VMID 0 is used by the kernel 79 * driver for tasks like memory management. 80 * 81 * GPU clients (i.e., engines on the GPU) use GPUVM VMIDs to access memory. 82 * For user applications, each application can have their own unique GPUVM 83 * address space. The application manages the address space and the kernel 84 * driver manages the GPUVM page tables for each process. If an GPU client 85 * accesses an invalid page, it will generate a GPU page fault, similar to 86 * accessing an invalid page on a CPU. 87 */ 88 89 #define START(node) ((node)->start) 90 #define LAST(node) ((node)->last) 91 92 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 93 START, LAST, static, amdgpu_vm_it) 94 95 #undef START 96 #undef LAST 97 98 /** 99 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 100 */ 101 struct amdgpu_prt_cb { 102 103 /** 104 * @adev: amdgpu device 105 */ 106 struct amdgpu_device *adev; 107 108 /** 109 * @cb: callback 110 */ 111 struct dma_fence_cb cb; 112 }; 113 114 /** 115 * struct amdgpu_vm_tlb_seq_struct - Helper to increment the TLB flush sequence 116 */ 117 struct amdgpu_vm_tlb_seq_struct { 118 /** 119 * @vm: pointer to the amdgpu_vm structure to set the fence sequence on 120 */ 121 struct amdgpu_vm *vm; 122 123 /** 124 * @cb: callback 125 */ 126 struct dma_fence_cb cb; 127 }; 128 129 /** 130 * amdgpu_vm_set_pasid - manage pasid and vm ptr mapping 131 * 132 * @adev: amdgpu_device pointer 133 * @vm: amdgpu_vm pointer 134 * @pasid: the pasid the VM is using on this GPU 135 * 136 * Set the pasid this VM is using on this GPU, can also be used to remove the 137 * pasid by passing in zero. 138 * 139 */ 140 int amdgpu_vm_set_pasid(struct amdgpu_device *adev, struct amdgpu_vm *vm, 141 u32 pasid) 142 { 143 int r; 144 145 if (vm->pasid == pasid) 146 return 0; 147 148 if (vm->pasid) { 149 r = xa_err(xa_erase_irq(&adev->vm_manager.pasids, vm->pasid)); 150 if (r < 0) 151 return r; 152 153 vm->pasid = 0; 154 } 155 156 if (pasid) { 157 r = xa_err(xa_store_irq(&adev->vm_manager.pasids, pasid, vm, 158 GFP_KERNEL)); 159 if (r < 0) 160 return r; 161 162 vm->pasid = pasid; 163 } 164 165 166 return 0; 167 } 168 169 /** 170 * amdgpu_vm_bo_evicted - vm_bo is evicted 171 * 172 * @vm_bo: vm_bo which is evicted 173 * 174 * State for PDs/PTs and per VM BOs which are not at the location they should 175 * be. 176 */ 177 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 178 { 179 struct amdgpu_vm *vm = vm_bo->vm; 180 struct amdgpu_bo *bo = vm_bo->bo; 181 182 vm_bo->moved = true; 183 spin_lock(&vm_bo->vm->status_lock); 184 if (bo->tbo.type == ttm_bo_type_kernel) 185 list_move(&vm_bo->vm_status, &vm->evicted); 186 else 187 list_move_tail(&vm_bo->vm_status, &vm->evicted); 188 spin_unlock(&vm_bo->vm->status_lock); 189 } 190 /** 191 * amdgpu_vm_bo_moved - vm_bo is moved 192 * 193 * @vm_bo: vm_bo which is moved 194 * 195 * State for per VM BOs which are moved, but that change is not yet reflected 196 * in the page tables. 197 */ 198 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 199 { 200 spin_lock(&vm_bo->vm->status_lock); 201 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 202 spin_unlock(&vm_bo->vm->status_lock); 203 } 204 205 /** 206 * amdgpu_vm_bo_idle - vm_bo is idle 207 * 208 * @vm_bo: vm_bo which is now idle 209 * 210 * State for PDs/PTs and per VM BOs which have gone through the state machine 211 * and are now idle. 212 */ 213 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 214 { 215 spin_lock(&vm_bo->vm->status_lock); 216 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 217 spin_unlock(&vm_bo->vm->status_lock); 218 vm_bo->moved = false; 219 } 220 221 /** 222 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 223 * 224 * @vm_bo: vm_bo which is now invalidated 225 * 226 * State for normal BOs which are invalidated and that change not yet reflected 227 * in the PTs. 228 */ 229 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 230 { 231 spin_lock(&vm_bo->vm->status_lock); 232 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 233 spin_unlock(&vm_bo->vm->status_lock); 234 } 235 236 /** 237 * amdgpu_vm_bo_relocated - vm_bo is reloacted 238 * 239 * @vm_bo: vm_bo which is relocated 240 * 241 * State for PDs/PTs which needs to update their parent PD. 242 * For the root PD, just move to idle state. 243 */ 244 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 if (vm_bo->bo->parent) { 247 spin_lock(&vm_bo->vm->status_lock); 248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 249 spin_unlock(&vm_bo->vm->status_lock); 250 } else { 251 amdgpu_vm_bo_idle(vm_bo); 252 } 253 } 254 255 /** 256 * amdgpu_vm_bo_done - vm_bo is done 257 * 258 * @vm_bo: vm_bo which is now done 259 * 260 * State for normal BOs which are invalidated and that change has been updated 261 * in the PTs. 262 */ 263 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 264 { 265 spin_lock(&vm_bo->vm->status_lock); 266 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 267 spin_unlock(&vm_bo->vm->status_lock); 268 } 269 270 /** 271 * amdgpu_vm_bo_reset_state_machine - reset the vm_bo state machine 272 * @vm: the VM which state machine to reset 273 * 274 * Move all vm_bo object in the VM into a state where they will be updated 275 * again during validation. 276 */ 277 static void amdgpu_vm_bo_reset_state_machine(struct amdgpu_vm *vm) 278 { 279 struct amdgpu_vm_bo_base *vm_bo, *tmp; 280 281 spin_lock(&vm->status_lock); 282 list_splice_init(&vm->done, &vm->invalidated); 283 list_for_each_entry(vm_bo, &vm->invalidated, vm_status) 284 vm_bo->moved = true; 285 list_for_each_entry_safe(vm_bo, tmp, &vm->idle, vm_status) { 286 struct amdgpu_bo *bo = vm_bo->bo; 287 288 vm_bo->moved = true; 289 if (!bo || bo->tbo.type != ttm_bo_type_kernel) 290 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 291 else if (bo->parent) 292 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 293 } 294 spin_unlock(&vm->status_lock); 295 } 296 297 /** 298 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 299 * 300 * @base: base structure for tracking BO usage in a VM 301 * @vm: vm to which bo is to be added 302 * @bo: amdgpu buffer object 303 * 304 * Initialize a bo_va_base structure and add it to the appropriate lists 305 * 306 */ 307 void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 308 struct amdgpu_vm *vm, struct amdgpu_bo *bo) 309 { 310 base->vm = vm; 311 base->bo = bo; 312 base->next = NULL; 313 INIT_LIST_HEAD(&base->vm_status); 314 315 if (!bo) 316 return; 317 base->next = bo->vm_bo; 318 bo->vm_bo = base; 319 320 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 321 return; 322 323 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 324 325 ttm_bo_set_bulk_move(&bo->tbo, &vm->lru_bulk_move); 326 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 327 amdgpu_vm_bo_relocated(base); 328 else 329 amdgpu_vm_bo_idle(base); 330 331 if (bo->preferred_domains & 332 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 333 return; 334 335 /* 336 * we checked all the prerequisites, but it looks like this per vm bo 337 * is currently evicted. add the bo to the evicted list to make sure it 338 * is validated on next vm use to avoid fault. 339 * */ 340 amdgpu_vm_bo_evicted(base); 341 } 342 343 /** 344 * amdgpu_vm_lock_pd - lock PD in drm_exec 345 * 346 * @vm: vm providing the BOs 347 * @exec: drm execution context 348 * @num_fences: number of extra fences to reserve 349 * 350 * Lock the VM root PD in the DRM execution context. 351 */ 352 int amdgpu_vm_lock_pd(struct amdgpu_vm *vm, struct drm_exec *exec, 353 unsigned int num_fences) 354 { 355 /* We need at least two fences for the VM PD/PT updates */ 356 return drm_exec_prepare_obj(exec, &vm->root.bo->tbo.base, 357 2 + num_fences); 358 } 359 360 /** 361 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 362 * 363 * @adev: amdgpu device pointer 364 * @vm: vm providing the BOs 365 * 366 * Move all BOs to the end of LRU and remember their positions to put them 367 * together. 368 */ 369 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 370 struct amdgpu_vm *vm) 371 { 372 spin_lock(&adev->mman.bdev.lru_lock); 373 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 374 spin_unlock(&adev->mman.bdev.lru_lock); 375 } 376 377 /* Create scheduler entities for page table updates */ 378 static int amdgpu_vm_init_entities(struct amdgpu_device *adev, 379 struct amdgpu_vm *vm) 380 { 381 int r; 382 383 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 384 adev->vm_manager.vm_pte_scheds, 385 adev->vm_manager.vm_pte_num_scheds, NULL); 386 if (r) 387 goto error; 388 389 return drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 390 adev->vm_manager.vm_pte_scheds, 391 adev->vm_manager.vm_pte_num_scheds, NULL); 392 393 error: 394 drm_sched_entity_destroy(&vm->immediate); 395 return r; 396 } 397 398 /* Destroy the entities for page table updates again */ 399 static void amdgpu_vm_fini_entities(struct amdgpu_vm *vm) 400 { 401 drm_sched_entity_destroy(&vm->immediate); 402 drm_sched_entity_destroy(&vm->delayed); 403 } 404 405 /** 406 * amdgpu_vm_generation - return the page table re-generation counter 407 * @adev: the amdgpu_device 408 * @vm: optional VM to check, might be NULL 409 * 410 * Returns a page table re-generation token to allow checking if submissions 411 * are still valid to use this VM. The VM parameter might be NULL in which case 412 * just the VRAM lost counter will be used. 413 */ 414 uint64_t amdgpu_vm_generation(struct amdgpu_device *adev, struct amdgpu_vm *vm) 415 { 416 uint64_t result = (u64)atomic_read(&adev->vram_lost_counter) << 32; 417 418 if (!vm) 419 return result; 420 421 result += vm->generation; 422 /* Add one if the page tables will be re-generated on next CS */ 423 if (drm_sched_entity_error(&vm->delayed)) 424 ++result; 425 426 return result; 427 } 428 429 /** 430 * amdgpu_vm_validate_pt_bos - validate the page table BOs 431 * 432 * @adev: amdgpu device pointer 433 * @vm: vm providing the BOs 434 * @validate: callback to do the validation 435 * @param: parameter for the validation callback 436 * 437 * Validate the page table BOs on command submission if neccessary. 438 * 439 * Returns: 440 * Validation result. 441 */ 442 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 443 int (*validate)(void *p, struct amdgpu_bo *bo), 444 void *param) 445 { 446 struct amdgpu_vm_bo_base *bo_base; 447 struct amdgpu_bo *shadow; 448 struct amdgpu_bo *bo; 449 int r; 450 451 if (drm_sched_entity_error(&vm->delayed)) { 452 ++vm->generation; 453 amdgpu_vm_bo_reset_state_machine(vm); 454 amdgpu_vm_fini_entities(vm); 455 r = amdgpu_vm_init_entities(adev, vm); 456 if (r) 457 return r; 458 } 459 460 spin_lock(&vm->status_lock); 461 while (!list_empty(&vm->evicted)) { 462 bo_base = list_first_entry(&vm->evicted, 463 struct amdgpu_vm_bo_base, 464 vm_status); 465 spin_unlock(&vm->status_lock); 466 467 bo = bo_base->bo; 468 shadow = amdgpu_bo_shadowed(bo); 469 470 r = validate(param, bo); 471 if (r) 472 return r; 473 if (shadow) { 474 r = validate(param, shadow); 475 if (r) 476 return r; 477 } 478 479 if (bo->tbo.type != ttm_bo_type_kernel) { 480 amdgpu_vm_bo_moved(bo_base); 481 } else { 482 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 483 amdgpu_vm_bo_relocated(bo_base); 484 } 485 spin_lock(&vm->status_lock); 486 } 487 spin_unlock(&vm->status_lock); 488 489 amdgpu_vm_eviction_lock(vm); 490 vm->evicting = false; 491 amdgpu_vm_eviction_unlock(vm); 492 493 return 0; 494 } 495 496 /** 497 * amdgpu_vm_ready - check VM is ready for updates 498 * 499 * @vm: VM to check 500 * 501 * Check if all VM PDs/PTs are ready for updates 502 * 503 * Returns: 504 * True if VM is not evicting. 505 */ 506 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 507 { 508 bool empty; 509 bool ret; 510 511 amdgpu_vm_eviction_lock(vm); 512 ret = !vm->evicting; 513 amdgpu_vm_eviction_unlock(vm); 514 515 spin_lock(&vm->status_lock); 516 empty = list_empty(&vm->evicted); 517 spin_unlock(&vm->status_lock); 518 519 return ret && empty; 520 } 521 522 /** 523 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 524 * 525 * @adev: amdgpu_device pointer 526 */ 527 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 528 { 529 const struct amdgpu_ip_block *ip_block; 530 bool has_compute_vm_bug; 531 struct amdgpu_ring *ring; 532 int i; 533 534 has_compute_vm_bug = false; 535 536 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 537 if (ip_block) { 538 /* Compute has a VM bug for GFX version < 7. 539 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 540 if (ip_block->version->major <= 7) 541 has_compute_vm_bug = true; 542 else if (ip_block->version->major == 8) 543 if (adev->gfx.mec_fw_version < 673) 544 has_compute_vm_bug = true; 545 } 546 547 for (i = 0; i < adev->num_rings; i++) { 548 ring = adev->rings[i]; 549 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 550 /* only compute rings */ 551 ring->has_compute_vm_bug = has_compute_vm_bug; 552 else 553 ring->has_compute_vm_bug = false; 554 } 555 } 556 557 /** 558 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 559 * 560 * @ring: ring on which the job will be submitted 561 * @job: job to submit 562 * 563 * Returns: 564 * True if sync is needed. 565 */ 566 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 567 struct amdgpu_job *job) 568 { 569 struct amdgpu_device *adev = ring->adev; 570 unsigned vmhub = ring->vm_hub; 571 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 572 573 if (job->vmid == 0) 574 return false; 575 576 if (job->vm_needs_flush || ring->has_compute_vm_bug) 577 return true; 578 579 if (ring->funcs->emit_gds_switch && job->gds_switch_needed) 580 return true; 581 582 if (amdgpu_vmid_had_gpu_reset(adev, &id_mgr->ids[job->vmid])) 583 return true; 584 585 return false; 586 } 587 588 /** 589 * amdgpu_vm_flush - hardware flush the vm 590 * 591 * @ring: ring to use for flush 592 * @job: related job 593 * @need_pipe_sync: is pipe sync needed 594 * 595 * Emit a VM flush when it is necessary. 596 * 597 * Returns: 598 * 0 on success, errno otherwise. 599 */ 600 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 601 bool need_pipe_sync) 602 { 603 struct amdgpu_device *adev = ring->adev; 604 unsigned vmhub = ring->vm_hub; 605 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 606 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 607 bool spm_update_needed = job->spm_update_needed; 608 bool gds_switch_needed = ring->funcs->emit_gds_switch && 609 job->gds_switch_needed; 610 bool vm_flush_needed = job->vm_needs_flush; 611 struct dma_fence *fence = NULL; 612 bool pasid_mapping_needed = false; 613 unsigned patch_offset = 0; 614 int r; 615 616 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 617 gds_switch_needed = true; 618 vm_flush_needed = true; 619 pasid_mapping_needed = true; 620 spm_update_needed = true; 621 } 622 623 mutex_lock(&id_mgr->lock); 624 if (id->pasid != job->pasid || !id->pasid_mapping || 625 !dma_fence_is_signaled(id->pasid_mapping)) 626 pasid_mapping_needed = true; 627 mutex_unlock(&id_mgr->lock); 628 629 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 630 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 631 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 632 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 633 ring->funcs->emit_wreg; 634 635 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 636 return 0; 637 638 amdgpu_ring_ib_begin(ring); 639 if (ring->funcs->init_cond_exec) 640 patch_offset = amdgpu_ring_init_cond_exec(ring); 641 642 if (need_pipe_sync) 643 amdgpu_ring_emit_pipeline_sync(ring); 644 645 if (vm_flush_needed) { 646 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 647 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 648 } 649 650 if (pasid_mapping_needed) 651 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 652 653 if (spm_update_needed && adev->gfx.rlc.funcs->update_spm_vmid) 654 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 655 656 if (!ring->is_mes_queue && ring->funcs->emit_gds_switch && 657 gds_switch_needed) { 658 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 659 job->gds_size, job->gws_base, 660 job->gws_size, job->oa_base, 661 job->oa_size); 662 } 663 664 if (vm_flush_needed || pasid_mapping_needed) { 665 r = amdgpu_fence_emit(ring, &fence, NULL, 0); 666 if (r) 667 return r; 668 } 669 670 if (vm_flush_needed) { 671 mutex_lock(&id_mgr->lock); 672 dma_fence_put(id->last_flush); 673 id->last_flush = dma_fence_get(fence); 674 id->current_gpu_reset_count = 675 atomic_read(&adev->gpu_reset_counter); 676 mutex_unlock(&id_mgr->lock); 677 } 678 679 if (pasid_mapping_needed) { 680 mutex_lock(&id_mgr->lock); 681 id->pasid = job->pasid; 682 dma_fence_put(id->pasid_mapping); 683 id->pasid_mapping = dma_fence_get(fence); 684 mutex_unlock(&id_mgr->lock); 685 } 686 dma_fence_put(fence); 687 688 if (ring->funcs->patch_cond_exec) 689 amdgpu_ring_patch_cond_exec(ring, patch_offset); 690 691 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 692 if (ring->funcs->emit_switch_buffer) { 693 amdgpu_ring_emit_switch_buffer(ring); 694 amdgpu_ring_emit_switch_buffer(ring); 695 } 696 amdgpu_ring_ib_end(ring); 697 return 0; 698 } 699 700 /** 701 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 702 * 703 * @vm: requested vm 704 * @bo: requested buffer object 705 * 706 * Find @bo inside the requested vm. 707 * Search inside the @bos vm list for the requested vm 708 * Returns the found bo_va or NULL if none is found 709 * 710 * Object has to be reserved! 711 * 712 * Returns: 713 * Found bo_va or NULL. 714 */ 715 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 716 struct amdgpu_bo *bo) 717 { 718 struct amdgpu_vm_bo_base *base; 719 720 for (base = bo->vm_bo; base; base = base->next) { 721 if (base->vm != vm) 722 continue; 723 724 return container_of(base, struct amdgpu_bo_va, base); 725 } 726 return NULL; 727 } 728 729 /** 730 * amdgpu_vm_map_gart - Resolve gart mapping of addr 731 * 732 * @pages_addr: optional DMA address to use for lookup 733 * @addr: the unmapped addr 734 * 735 * Look up the physical address of the page that the pte resolves 736 * to. 737 * 738 * Returns: 739 * The pointer for the page table entry. 740 */ 741 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 742 { 743 uint64_t result; 744 745 /* page table offset */ 746 result = pages_addr[addr >> PAGE_SHIFT]; 747 748 /* in case cpu page size != gpu page size*/ 749 result |= addr & (~PAGE_MASK); 750 751 result &= 0xFFFFFFFFFFFFF000ULL; 752 753 return result; 754 } 755 756 /** 757 * amdgpu_vm_update_pdes - make sure that all directories are valid 758 * 759 * @adev: amdgpu_device pointer 760 * @vm: requested vm 761 * @immediate: submit immediately to the paging queue 762 * 763 * Makes sure all directories are up to date. 764 * 765 * Returns: 766 * 0 for success, error for failure. 767 */ 768 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 769 struct amdgpu_vm *vm, bool immediate) 770 { 771 struct amdgpu_vm_update_params params; 772 struct amdgpu_vm_bo_base *entry; 773 bool flush_tlb_needed = false; 774 LIST_HEAD(relocated); 775 int r, idx; 776 777 spin_lock(&vm->status_lock); 778 list_splice_init(&vm->relocated, &relocated); 779 spin_unlock(&vm->status_lock); 780 781 if (list_empty(&relocated)) 782 return 0; 783 784 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 785 return -ENODEV; 786 787 memset(¶ms, 0, sizeof(params)); 788 params.adev = adev; 789 params.vm = vm; 790 params.immediate = immediate; 791 792 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 793 if (r) 794 goto error; 795 796 list_for_each_entry(entry, &relocated, vm_status) { 797 /* vm_flush_needed after updating moved PDEs */ 798 flush_tlb_needed |= entry->moved; 799 800 r = amdgpu_vm_pde_update(¶ms, entry); 801 if (r) 802 goto error; 803 } 804 805 r = vm->update_funcs->commit(¶ms, &vm->last_update); 806 if (r) 807 goto error; 808 809 if (flush_tlb_needed) 810 atomic64_inc(&vm->tlb_seq); 811 812 while (!list_empty(&relocated)) { 813 entry = list_first_entry(&relocated, struct amdgpu_vm_bo_base, 814 vm_status); 815 amdgpu_vm_bo_idle(entry); 816 } 817 818 error: 819 drm_dev_exit(idx); 820 return r; 821 } 822 823 /** 824 * amdgpu_vm_tlb_seq_cb - make sure to increment tlb sequence 825 * @fence: unused 826 * @cb: the callback structure 827 * 828 * Increments the tlb sequence to make sure that future CS execute a VM flush. 829 */ 830 static void amdgpu_vm_tlb_seq_cb(struct dma_fence *fence, 831 struct dma_fence_cb *cb) 832 { 833 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 834 835 tlb_cb = container_of(cb, typeof(*tlb_cb), cb); 836 atomic64_inc(&tlb_cb->vm->tlb_seq); 837 kfree(tlb_cb); 838 } 839 840 /** 841 * amdgpu_vm_update_range - update a range in the vm page table 842 * 843 * @adev: amdgpu_device pointer to use for commands 844 * @vm: the VM to update the range 845 * @immediate: immediate submission in a page fault 846 * @unlocked: unlocked invalidation during MM callback 847 * @flush_tlb: trigger tlb invalidation after update completed 848 * @resv: fences we need to sync to 849 * @start: start of mapped range 850 * @last: last mapped entry 851 * @flags: flags for the entries 852 * @offset: offset into nodes and pages_addr 853 * @vram_base: base for vram mappings 854 * @res: ttm_resource to map 855 * @pages_addr: DMA addresses to use for mapping 856 * @fence: optional resulting fence 857 * 858 * Fill in the page table entries between @start and @last. 859 * 860 * Returns: 861 * 0 for success, negative erro code for failure. 862 */ 863 int amdgpu_vm_update_range(struct amdgpu_device *adev, struct amdgpu_vm *vm, 864 bool immediate, bool unlocked, bool flush_tlb, 865 struct dma_resv *resv, uint64_t start, uint64_t last, 866 uint64_t flags, uint64_t offset, uint64_t vram_base, 867 struct ttm_resource *res, dma_addr_t *pages_addr, 868 struct dma_fence **fence) 869 { 870 struct amdgpu_vm_update_params params; 871 struct amdgpu_vm_tlb_seq_struct *tlb_cb; 872 struct amdgpu_res_cursor cursor; 873 enum amdgpu_sync_mode sync_mode; 874 int r, idx; 875 876 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 877 return -ENODEV; 878 879 tlb_cb = kmalloc(sizeof(*tlb_cb), GFP_KERNEL); 880 if (!tlb_cb) { 881 r = -ENOMEM; 882 goto error_unlock; 883 } 884 885 /* Vega20+XGMI where PTEs get inadvertently cached in L2 texture cache, 886 * heavy-weight flush TLB unconditionally. 887 */ 888 flush_tlb |= adev->gmc.xgmi.num_physical_nodes && 889 adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 0); 890 891 /* 892 * On GFX8 and older any 8 PTE block with a valid bit set enters the TLB 893 */ 894 flush_tlb |= adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 0); 895 896 memset(¶ms, 0, sizeof(params)); 897 params.adev = adev; 898 params.vm = vm; 899 params.immediate = immediate; 900 params.pages_addr = pages_addr; 901 params.unlocked = unlocked; 902 903 /* Implicitly sync to command submissions in the same VM before 904 * unmapping. Sync to moving fences before mapping. 905 */ 906 if (!(flags & AMDGPU_PTE_VALID)) 907 sync_mode = AMDGPU_SYNC_EQ_OWNER; 908 else 909 sync_mode = AMDGPU_SYNC_EXPLICIT; 910 911 amdgpu_vm_eviction_lock(vm); 912 if (vm->evicting) { 913 r = -EBUSY; 914 goto error_free; 915 } 916 917 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 918 struct dma_fence *tmp = dma_fence_get_stub(); 919 920 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 921 swap(vm->last_unlocked, tmp); 922 dma_fence_put(tmp); 923 } 924 925 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 926 if (r) 927 goto error_free; 928 929 amdgpu_res_first(pages_addr ? NULL : res, offset, 930 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 931 while (cursor.remaining) { 932 uint64_t tmp, num_entries, addr; 933 934 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 935 if (pages_addr) { 936 bool contiguous = true; 937 938 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 939 uint64_t pfn = cursor.start >> PAGE_SHIFT; 940 uint64_t count; 941 942 contiguous = pages_addr[pfn + 1] == 943 pages_addr[pfn] + PAGE_SIZE; 944 945 tmp = num_entries / 946 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 947 for (count = 2; count < tmp; ++count) { 948 uint64_t idx = pfn + count; 949 950 if (contiguous != (pages_addr[idx] == 951 pages_addr[idx - 1] + PAGE_SIZE)) 952 break; 953 } 954 if (!contiguous) 955 count--; 956 num_entries = count * 957 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 958 } 959 960 if (!contiguous) { 961 addr = cursor.start; 962 params.pages_addr = pages_addr; 963 } else { 964 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 965 params.pages_addr = NULL; 966 } 967 968 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 969 addr = vram_base + cursor.start; 970 } else { 971 addr = 0; 972 } 973 974 tmp = start + num_entries; 975 r = amdgpu_vm_ptes_update(¶ms, start, tmp, addr, flags); 976 if (r) 977 goto error_free; 978 979 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 980 start = tmp; 981 } 982 983 r = vm->update_funcs->commit(¶ms, fence); 984 985 if (flush_tlb || params.table_freed) { 986 tlb_cb->vm = vm; 987 if (fence && *fence && 988 !dma_fence_add_callback(*fence, &tlb_cb->cb, 989 amdgpu_vm_tlb_seq_cb)) { 990 dma_fence_put(vm->last_tlb_flush); 991 vm->last_tlb_flush = dma_fence_get(*fence); 992 } else { 993 amdgpu_vm_tlb_seq_cb(NULL, &tlb_cb->cb); 994 } 995 tlb_cb = NULL; 996 } 997 998 error_free: 999 kfree(tlb_cb); 1000 1001 error_unlock: 1002 amdgpu_vm_eviction_unlock(vm); 1003 drm_dev_exit(idx); 1004 return r; 1005 } 1006 1007 static void amdgpu_vm_bo_get_memory(struct amdgpu_bo_va *bo_va, 1008 struct amdgpu_mem_stats *stats) 1009 { 1010 struct amdgpu_vm *vm = bo_va->base.vm; 1011 struct amdgpu_bo *bo = bo_va->base.bo; 1012 1013 if (!bo) 1014 return; 1015 1016 /* 1017 * For now ignore BOs which are currently locked and potentially 1018 * changing their location. 1019 */ 1020 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv && 1021 !dma_resv_trylock(bo->tbo.base.resv)) 1022 return; 1023 1024 amdgpu_bo_get_memory(bo, stats); 1025 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 1026 dma_resv_unlock(bo->tbo.base.resv); 1027 } 1028 1029 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, 1030 struct amdgpu_mem_stats *stats) 1031 { 1032 struct amdgpu_bo_va *bo_va, *tmp; 1033 1034 spin_lock(&vm->status_lock); 1035 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) 1036 amdgpu_vm_bo_get_memory(bo_va, stats); 1037 1038 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) 1039 amdgpu_vm_bo_get_memory(bo_va, stats); 1040 1041 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) 1042 amdgpu_vm_bo_get_memory(bo_va, stats); 1043 1044 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) 1045 amdgpu_vm_bo_get_memory(bo_va, stats); 1046 1047 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) 1048 amdgpu_vm_bo_get_memory(bo_va, stats); 1049 1050 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) 1051 amdgpu_vm_bo_get_memory(bo_va, stats); 1052 spin_unlock(&vm->status_lock); 1053 } 1054 1055 /** 1056 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1057 * 1058 * @adev: amdgpu_device pointer 1059 * @bo_va: requested BO and VM object 1060 * @clear: if true clear the entries 1061 * 1062 * Fill in the page table entries for @bo_va. 1063 * 1064 * Returns: 1065 * 0 for success, -EINVAL for failure. 1066 */ 1067 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1068 bool clear) 1069 { 1070 struct amdgpu_bo *bo = bo_va->base.bo; 1071 struct amdgpu_vm *vm = bo_va->base.vm; 1072 struct amdgpu_bo_va_mapping *mapping; 1073 dma_addr_t *pages_addr = NULL; 1074 struct ttm_resource *mem; 1075 struct dma_fence **last_update; 1076 bool flush_tlb = clear; 1077 struct dma_resv *resv; 1078 uint64_t vram_base; 1079 uint64_t flags; 1080 int r; 1081 1082 if (clear || !bo) { 1083 mem = NULL; 1084 resv = vm->root.bo->tbo.base.resv; 1085 } else { 1086 struct drm_gem_object *obj = &bo->tbo.base; 1087 1088 resv = bo->tbo.base.resv; 1089 if (obj->import_attach && bo_va->is_xgmi) { 1090 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1091 struct drm_gem_object *gobj = dma_buf->priv; 1092 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1093 1094 if (abo->tbo.resource && 1095 abo->tbo.resource->mem_type == TTM_PL_VRAM) 1096 bo = gem_to_amdgpu_bo(gobj); 1097 } 1098 mem = bo->tbo.resource; 1099 if (mem && (mem->mem_type == TTM_PL_TT || 1100 mem->mem_type == AMDGPU_PL_PREEMPT)) 1101 pages_addr = bo->tbo.ttm->dma_address; 1102 } 1103 1104 if (bo) { 1105 struct amdgpu_device *bo_adev; 1106 1107 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1108 1109 if (amdgpu_bo_encrypted(bo)) 1110 flags |= AMDGPU_PTE_TMZ; 1111 1112 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1113 vram_base = bo_adev->vm_manager.vram_base_offset; 1114 } else { 1115 flags = 0x0; 1116 vram_base = 0; 1117 } 1118 1119 if (clear || (bo && bo->tbo.base.resv == 1120 vm->root.bo->tbo.base.resv)) 1121 last_update = &vm->last_update; 1122 else 1123 last_update = &bo_va->last_pt_update; 1124 1125 if (!clear && bo_va->base.moved) { 1126 flush_tlb = true; 1127 list_splice_init(&bo_va->valids, &bo_va->invalids); 1128 1129 } else if (bo_va->cleared != clear) { 1130 list_splice_init(&bo_va->valids, &bo_va->invalids); 1131 } 1132 1133 list_for_each_entry(mapping, &bo_va->invalids, list) { 1134 uint64_t update_flags = flags; 1135 1136 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1137 * but in case of something, we filter the flags in first place 1138 */ 1139 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1140 update_flags &= ~AMDGPU_PTE_READABLE; 1141 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1142 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1143 1144 /* Apply ASIC specific mapping flags */ 1145 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1146 1147 trace_amdgpu_vm_bo_update(mapping); 1148 1149 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, 1150 resv, mapping->start, mapping->last, 1151 update_flags, mapping->offset, 1152 vram_base, mem, pages_addr, 1153 last_update); 1154 if (r) 1155 return r; 1156 } 1157 1158 /* If the BO is not in its preferred location add it back to 1159 * the evicted list so that it gets validated again on the 1160 * next command submission. 1161 */ 1162 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1163 uint32_t mem_type = bo->tbo.resource->mem_type; 1164 1165 if (!(bo->preferred_domains & 1166 amdgpu_mem_type_to_domain(mem_type))) 1167 amdgpu_vm_bo_evicted(&bo_va->base); 1168 else 1169 amdgpu_vm_bo_idle(&bo_va->base); 1170 } else { 1171 amdgpu_vm_bo_done(&bo_va->base); 1172 } 1173 1174 list_splice_init(&bo_va->invalids, &bo_va->valids); 1175 bo_va->cleared = clear; 1176 bo_va->base.moved = false; 1177 1178 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1179 list_for_each_entry(mapping, &bo_va->valids, list) 1180 trace_amdgpu_vm_bo_mapping(mapping); 1181 } 1182 1183 return 0; 1184 } 1185 1186 /** 1187 * amdgpu_vm_update_prt_state - update the global PRT state 1188 * 1189 * @adev: amdgpu_device pointer 1190 */ 1191 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1192 { 1193 unsigned long flags; 1194 bool enable; 1195 1196 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1197 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1198 adev->gmc.gmc_funcs->set_prt(adev, enable); 1199 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1200 } 1201 1202 /** 1203 * amdgpu_vm_prt_get - add a PRT user 1204 * 1205 * @adev: amdgpu_device pointer 1206 */ 1207 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1208 { 1209 if (!adev->gmc.gmc_funcs->set_prt) 1210 return; 1211 1212 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1213 amdgpu_vm_update_prt_state(adev); 1214 } 1215 1216 /** 1217 * amdgpu_vm_prt_put - drop a PRT user 1218 * 1219 * @adev: amdgpu_device pointer 1220 */ 1221 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1222 { 1223 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1224 amdgpu_vm_update_prt_state(adev); 1225 } 1226 1227 /** 1228 * amdgpu_vm_prt_cb - callback for updating the PRT status 1229 * 1230 * @fence: fence for the callback 1231 * @_cb: the callback function 1232 */ 1233 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1234 { 1235 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1236 1237 amdgpu_vm_prt_put(cb->adev); 1238 kfree(cb); 1239 } 1240 1241 /** 1242 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1243 * 1244 * @adev: amdgpu_device pointer 1245 * @fence: fence for the callback 1246 */ 1247 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1248 struct dma_fence *fence) 1249 { 1250 struct amdgpu_prt_cb *cb; 1251 1252 if (!adev->gmc.gmc_funcs->set_prt) 1253 return; 1254 1255 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1256 if (!cb) { 1257 /* Last resort when we are OOM */ 1258 if (fence) 1259 dma_fence_wait(fence, false); 1260 1261 amdgpu_vm_prt_put(adev); 1262 } else { 1263 cb->adev = adev; 1264 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1265 amdgpu_vm_prt_cb)) 1266 amdgpu_vm_prt_cb(fence, &cb->cb); 1267 } 1268 } 1269 1270 /** 1271 * amdgpu_vm_free_mapping - free a mapping 1272 * 1273 * @adev: amdgpu_device pointer 1274 * @vm: requested vm 1275 * @mapping: mapping to be freed 1276 * @fence: fence of the unmap operation 1277 * 1278 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1279 */ 1280 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1281 struct amdgpu_vm *vm, 1282 struct amdgpu_bo_va_mapping *mapping, 1283 struct dma_fence *fence) 1284 { 1285 if (mapping->flags & AMDGPU_PTE_PRT) 1286 amdgpu_vm_add_prt_cb(adev, fence); 1287 kfree(mapping); 1288 } 1289 1290 /** 1291 * amdgpu_vm_prt_fini - finish all prt mappings 1292 * 1293 * @adev: amdgpu_device pointer 1294 * @vm: requested vm 1295 * 1296 * Register a cleanup callback to disable PRT support after VM dies. 1297 */ 1298 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1299 { 1300 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1301 struct dma_resv_iter cursor; 1302 struct dma_fence *fence; 1303 1304 dma_resv_for_each_fence(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP, fence) { 1305 /* Add a callback for each fence in the reservation object */ 1306 amdgpu_vm_prt_get(adev); 1307 amdgpu_vm_add_prt_cb(adev, fence); 1308 } 1309 } 1310 1311 /** 1312 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1313 * 1314 * @adev: amdgpu_device pointer 1315 * @vm: requested vm 1316 * @fence: optional resulting fence (unchanged if no work needed to be done 1317 * or if an error occurred) 1318 * 1319 * Make sure all freed BOs are cleared in the PT. 1320 * PTs have to be reserved and mutex must be locked! 1321 * 1322 * Returns: 1323 * 0 for success. 1324 * 1325 */ 1326 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1327 struct amdgpu_vm *vm, 1328 struct dma_fence **fence) 1329 { 1330 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 1331 struct amdgpu_bo_va_mapping *mapping; 1332 uint64_t init_pte_value = 0; 1333 struct dma_fence *f = NULL; 1334 int r; 1335 1336 while (!list_empty(&vm->freed)) { 1337 mapping = list_first_entry(&vm->freed, 1338 struct amdgpu_bo_va_mapping, list); 1339 list_del(&mapping->list); 1340 1341 if (vm->pte_support_ats && 1342 mapping->start < AMDGPU_GMC_HOLE_START) 1343 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1344 1345 r = amdgpu_vm_update_range(adev, vm, false, false, true, resv, 1346 mapping->start, mapping->last, 1347 init_pte_value, 0, 0, NULL, NULL, 1348 &f); 1349 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1350 if (r) { 1351 dma_fence_put(f); 1352 return r; 1353 } 1354 } 1355 1356 if (fence && f) { 1357 dma_fence_put(*fence); 1358 *fence = f; 1359 } else { 1360 dma_fence_put(f); 1361 } 1362 1363 return 0; 1364 1365 } 1366 1367 /** 1368 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1369 * 1370 * @adev: amdgpu_device pointer 1371 * @vm: requested vm 1372 * 1373 * Make sure all BOs which are moved are updated in the PTs. 1374 * 1375 * Returns: 1376 * 0 for success. 1377 * 1378 * PTs have to be reserved! 1379 */ 1380 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1381 struct amdgpu_vm *vm) 1382 { 1383 struct amdgpu_bo_va *bo_va; 1384 struct dma_resv *resv; 1385 bool clear; 1386 int r; 1387 1388 spin_lock(&vm->status_lock); 1389 while (!list_empty(&vm->moved)) { 1390 bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, 1391 base.vm_status); 1392 spin_unlock(&vm->status_lock); 1393 1394 /* Per VM BOs never need to bo cleared in the page tables */ 1395 r = amdgpu_vm_bo_update(adev, bo_va, false); 1396 if (r) 1397 return r; 1398 spin_lock(&vm->status_lock); 1399 } 1400 1401 while (!list_empty(&vm->invalidated)) { 1402 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 1403 base.vm_status); 1404 resv = bo_va->base.bo->tbo.base.resv; 1405 spin_unlock(&vm->status_lock); 1406 1407 /* Try to reserve the BO to avoid clearing its ptes */ 1408 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 1409 clear = false; 1410 /* Somebody else is using the BO right now */ 1411 else 1412 clear = true; 1413 1414 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1415 if (r) 1416 return r; 1417 1418 if (!clear) 1419 dma_resv_unlock(resv); 1420 spin_lock(&vm->status_lock); 1421 } 1422 spin_unlock(&vm->status_lock); 1423 1424 return 0; 1425 } 1426 1427 /** 1428 * amdgpu_vm_bo_add - add a bo to a specific vm 1429 * 1430 * @adev: amdgpu_device pointer 1431 * @vm: requested vm 1432 * @bo: amdgpu buffer object 1433 * 1434 * Add @bo into the requested vm. 1435 * Add @bo to the list of bos associated with the vm 1436 * 1437 * Returns: 1438 * Newly added bo_va or NULL for failure 1439 * 1440 * Object has to be reserved! 1441 */ 1442 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1443 struct amdgpu_vm *vm, 1444 struct amdgpu_bo *bo) 1445 { 1446 struct amdgpu_bo_va *bo_va; 1447 1448 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1449 if (bo_va == NULL) { 1450 return NULL; 1451 } 1452 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 1453 1454 bo_va->ref_count = 1; 1455 bo_va->last_pt_update = dma_fence_get_stub(); 1456 INIT_LIST_HEAD(&bo_va->valids); 1457 INIT_LIST_HEAD(&bo_va->invalids); 1458 1459 if (!bo) 1460 return bo_va; 1461 1462 dma_resv_assert_held(bo->tbo.base.resv); 1463 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 1464 bo_va->is_xgmi = true; 1465 /* Power up XGMI if it can be potentially used */ 1466 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 1467 } 1468 1469 return bo_va; 1470 } 1471 1472 1473 /** 1474 * amdgpu_vm_bo_insert_map - insert a new mapping 1475 * 1476 * @adev: amdgpu_device pointer 1477 * @bo_va: bo_va to store the address 1478 * @mapping: the mapping to insert 1479 * 1480 * Insert a new mapping into all structures. 1481 */ 1482 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1483 struct amdgpu_bo_va *bo_va, 1484 struct amdgpu_bo_va_mapping *mapping) 1485 { 1486 struct amdgpu_vm *vm = bo_va->base.vm; 1487 struct amdgpu_bo *bo = bo_va->base.bo; 1488 1489 mapping->bo_va = bo_va; 1490 list_add(&mapping->list, &bo_va->invalids); 1491 amdgpu_vm_it_insert(mapping, &vm->va); 1492 1493 if (mapping->flags & AMDGPU_PTE_PRT) 1494 amdgpu_vm_prt_get(adev); 1495 1496 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 1497 !bo_va->base.moved) { 1498 amdgpu_vm_bo_moved(&bo_va->base); 1499 } 1500 trace_amdgpu_vm_bo_map(bo_va, mapping); 1501 } 1502 1503 /** 1504 * amdgpu_vm_bo_map - map bo inside a vm 1505 * 1506 * @adev: amdgpu_device pointer 1507 * @bo_va: bo_va to store the address 1508 * @saddr: where to map the BO 1509 * @offset: requested offset in the BO 1510 * @size: BO size in bytes 1511 * @flags: attributes of pages (read/write/valid/etc.) 1512 * 1513 * Add a mapping of the BO at the specefied addr into the VM. 1514 * 1515 * Returns: 1516 * 0 for success, error for failure. 1517 * 1518 * Object has to be reserved and unreserved outside! 1519 */ 1520 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1521 struct amdgpu_bo_va *bo_va, 1522 uint64_t saddr, uint64_t offset, 1523 uint64_t size, uint64_t flags) 1524 { 1525 struct amdgpu_bo_va_mapping *mapping, *tmp; 1526 struct amdgpu_bo *bo = bo_va->base.bo; 1527 struct amdgpu_vm *vm = bo_va->base.vm; 1528 uint64_t eaddr; 1529 1530 /* validate the parameters */ 1531 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) 1532 return -EINVAL; 1533 if (saddr + size <= saddr || offset + size <= offset) 1534 return -EINVAL; 1535 1536 /* make sure object fit at this offset */ 1537 eaddr = saddr + size - 1; 1538 if ((bo && offset + size > amdgpu_bo_size(bo)) || 1539 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 1540 return -EINVAL; 1541 1542 saddr /= AMDGPU_GPU_PAGE_SIZE; 1543 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1544 1545 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1546 if (tmp) { 1547 /* bo and tmp overlap, invalid addr */ 1548 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1549 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1550 tmp->start, tmp->last + 1); 1551 return -EINVAL; 1552 } 1553 1554 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1555 if (!mapping) 1556 return -ENOMEM; 1557 1558 mapping->start = saddr; 1559 mapping->last = eaddr; 1560 mapping->offset = offset; 1561 mapping->flags = flags; 1562 1563 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1570 * 1571 * @adev: amdgpu_device pointer 1572 * @bo_va: bo_va to store the address 1573 * @saddr: where to map the BO 1574 * @offset: requested offset in the BO 1575 * @size: BO size in bytes 1576 * @flags: attributes of pages (read/write/valid/etc.) 1577 * 1578 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1579 * mappings as we do so. 1580 * 1581 * Returns: 1582 * 0 for success, error for failure. 1583 * 1584 * Object has to be reserved and unreserved outside! 1585 */ 1586 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1587 struct amdgpu_bo_va *bo_va, 1588 uint64_t saddr, uint64_t offset, 1589 uint64_t size, uint64_t flags) 1590 { 1591 struct amdgpu_bo_va_mapping *mapping; 1592 struct amdgpu_bo *bo = bo_va->base.bo; 1593 uint64_t eaddr; 1594 int r; 1595 1596 /* validate the parameters */ 1597 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || size & ~PAGE_MASK) 1598 return -EINVAL; 1599 if (saddr + size <= saddr || offset + size <= offset) 1600 return -EINVAL; 1601 1602 /* make sure object fit at this offset */ 1603 eaddr = saddr + size - 1; 1604 if ((bo && offset + size > amdgpu_bo_size(bo)) || 1605 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 1606 return -EINVAL; 1607 1608 /* Allocate all the needed memory */ 1609 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1610 if (!mapping) 1611 return -ENOMEM; 1612 1613 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1614 if (r) { 1615 kfree(mapping); 1616 return r; 1617 } 1618 1619 saddr /= AMDGPU_GPU_PAGE_SIZE; 1620 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1621 1622 mapping->start = saddr; 1623 mapping->last = eaddr; 1624 mapping->offset = offset; 1625 mapping->flags = flags; 1626 1627 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1628 1629 return 0; 1630 } 1631 1632 /** 1633 * amdgpu_vm_bo_unmap - remove bo mapping from vm 1634 * 1635 * @adev: amdgpu_device pointer 1636 * @bo_va: bo_va to remove the address from 1637 * @saddr: where to the BO is mapped 1638 * 1639 * Remove a mapping of the BO at the specefied addr from the VM. 1640 * 1641 * Returns: 1642 * 0 for success, error for failure. 1643 * 1644 * Object has to be reserved and unreserved outside! 1645 */ 1646 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 1647 struct amdgpu_bo_va *bo_va, 1648 uint64_t saddr) 1649 { 1650 struct amdgpu_bo_va_mapping *mapping; 1651 struct amdgpu_vm *vm = bo_va->base.vm; 1652 bool valid = true; 1653 1654 saddr /= AMDGPU_GPU_PAGE_SIZE; 1655 1656 list_for_each_entry(mapping, &bo_va->valids, list) { 1657 if (mapping->start == saddr) 1658 break; 1659 } 1660 1661 if (&mapping->list == &bo_va->valids) { 1662 valid = false; 1663 1664 list_for_each_entry(mapping, &bo_va->invalids, list) { 1665 if (mapping->start == saddr) 1666 break; 1667 } 1668 1669 if (&mapping->list == &bo_va->invalids) 1670 return -ENOENT; 1671 } 1672 1673 list_del(&mapping->list); 1674 amdgpu_vm_it_remove(mapping, &vm->va); 1675 mapping->bo_va = NULL; 1676 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1677 1678 if (valid) 1679 list_add(&mapping->list, &vm->freed); 1680 else 1681 amdgpu_vm_free_mapping(adev, vm, mapping, 1682 bo_va->last_pt_update); 1683 1684 return 0; 1685 } 1686 1687 /** 1688 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 1689 * 1690 * @adev: amdgpu_device pointer 1691 * @vm: VM structure to use 1692 * @saddr: start of the range 1693 * @size: size of the range 1694 * 1695 * Remove all mappings in a range, split them as appropriate. 1696 * 1697 * Returns: 1698 * 0 for success, error for failure. 1699 */ 1700 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 1701 struct amdgpu_vm *vm, 1702 uint64_t saddr, uint64_t size) 1703 { 1704 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 1705 LIST_HEAD(removed); 1706 uint64_t eaddr; 1707 1708 eaddr = saddr + size - 1; 1709 saddr /= AMDGPU_GPU_PAGE_SIZE; 1710 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1711 1712 /* Allocate all the needed memory */ 1713 before = kzalloc(sizeof(*before), GFP_KERNEL); 1714 if (!before) 1715 return -ENOMEM; 1716 INIT_LIST_HEAD(&before->list); 1717 1718 after = kzalloc(sizeof(*after), GFP_KERNEL); 1719 if (!after) { 1720 kfree(before); 1721 return -ENOMEM; 1722 } 1723 INIT_LIST_HEAD(&after->list); 1724 1725 /* Now gather all removed mappings */ 1726 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1727 while (tmp) { 1728 /* Remember mapping split at the start */ 1729 if (tmp->start < saddr) { 1730 before->start = tmp->start; 1731 before->last = saddr - 1; 1732 before->offset = tmp->offset; 1733 before->flags = tmp->flags; 1734 before->bo_va = tmp->bo_va; 1735 list_add(&before->list, &tmp->bo_va->invalids); 1736 } 1737 1738 /* Remember mapping split at the end */ 1739 if (tmp->last > eaddr) { 1740 after->start = eaddr + 1; 1741 after->last = tmp->last; 1742 after->offset = tmp->offset; 1743 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 1744 after->flags = tmp->flags; 1745 after->bo_va = tmp->bo_va; 1746 list_add(&after->list, &tmp->bo_va->invalids); 1747 } 1748 1749 list_del(&tmp->list); 1750 list_add(&tmp->list, &removed); 1751 1752 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 1753 } 1754 1755 /* And free them up */ 1756 list_for_each_entry_safe(tmp, next, &removed, list) { 1757 amdgpu_vm_it_remove(tmp, &vm->va); 1758 list_del(&tmp->list); 1759 1760 if (tmp->start < saddr) 1761 tmp->start = saddr; 1762 if (tmp->last > eaddr) 1763 tmp->last = eaddr; 1764 1765 tmp->bo_va = NULL; 1766 list_add(&tmp->list, &vm->freed); 1767 trace_amdgpu_vm_bo_unmap(NULL, tmp); 1768 } 1769 1770 /* Insert partial mapping before the range */ 1771 if (!list_empty(&before->list)) { 1772 struct amdgpu_bo *bo = before->bo_va->base.bo; 1773 1774 amdgpu_vm_it_insert(before, &vm->va); 1775 if (before->flags & AMDGPU_PTE_PRT) 1776 amdgpu_vm_prt_get(adev); 1777 1778 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 1779 !before->bo_va->base.moved) 1780 amdgpu_vm_bo_moved(&before->bo_va->base); 1781 } else { 1782 kfree(before); 1783 } 1784 1785 /* Insert partial mapping after the range */ 1786 if (!list_empty(&after->list)) { 1787 struct amdgpu_bo *bo = after->bo_va->base.bo; 1788 1789 amdgpu_vm_it_insert(after, &vm->va); 1790 if (after->flags & AMDGPU_PTE_PRT) 1791 amdgpu_vm_prt_get(adev); 1792 1793 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 1794 !after->bo_va->base.moved) 1795 amdgpu_vm_bo_moved(&after->bo_va->base); 1796 } else { 1797 kfree(after); 1798 } 1799 1800 return 0; 1801 } 1802 1803 /** 1804 * amdgpu_vm_bo_lookup_mapping - find mapping by address 1805 * 1806 * @vm: the requested VM 1807 * @addr: the address 1808 * 1809 * Find a mapping by it's address. 1810 * 1811 * Returns: 1812 * The amdgpu_bo_va_mapping matching for addr or NULL 1813 * 1814 */ 1815 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 1816 uint64_t addr) 1817 { 1818 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 1819 } 1820 1821 /** 1822 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 1823 * 1824 * @vm: the requested vm 1825 * @ticket: CS ticket 1826 * 1827 * Trace all mappings of BOs reserved during a command submission. 1828 */ 1829 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 1830 { 1831 struct amdgpu_bo_va_mapping *mapping; 1832 1833 if (!trace_amdgpu_vm_bo_cs_enabled()) 1834 return; 1835 1836 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 1837 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 1838 if (mapping->bo_va && mapping->bo_va->base.bo) { 1839 struct amdgpu_bo *bo; 1840 1841 bo = mapping->bo_va->base.bo; 1842 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 1843 ticket) 1844 continue; 1845 } 1846 1847 trace_amdgpu_vm_bo_cs(mapping); 1848 } 1849 } 1850 1851 /** 1852 * amdgpu_vm_bo_del - remove a bo from a specific vm 1853 * 1854 * @adev: amdgpu_device pointer 1855 * @bo_va: requested bo_va 1856 * 1857 * Remove @bo_va->bo from the requested vm. 1858 * 1859 * Object have to be reserved! 1860 */ 1861 void amdgpu_vm_bo_del(struct amdgpu_device *adev, 1862 struct amdgpu_bo_va *bo_va) 1863 { 1864 struct amdgpu_bo_va_mapping *mapping, *next; 1865 struct amdgpu_bo *bo = bo_va->base.bo; 1866 struct amdgpu_vm *vm = bo_va->base.vm; 1867 struct amdgpu_vm_bo_base **base; 1868 1869 dma_resv_assert_held(vm->root.bo->tbo.base.resv); 1870 1871 if (bo) { 1872 dma_resv_assert_held(bo->tbo.base.resv); 1873 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 1874 ttm_bo_set_bulk_move(&bo->tbo, NULL); 1875 1876 for (base = &bo_va->base.bo->vm_bo; *base; 1877 base = &(*base)->next) { 1878 if (*base != &bo_va->base) 1879 continue; 1880 1881 *base = bo_va->base.next; 1882 break; 1883 } 1884 } 1885 1886 spin_lock(&vm->status_lock); 1887 list_del(&bo_va->base.vm_status); 1888 spin_unlock(&vm->status_lock); 1889 1890 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 1891 list_del(&mapping->list); 1892 amdgpu_vm_it_remove(mapping, &vm->va); 1893 mapping->bo_va = NULL; 1894 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 1895 list_add(&mapping->list, &vm->freed); 1896 } 1897 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 1898 list_del(&mapping->list); 1899 amdgpu_vm_it_remove(mapping, &vm->va); 1900 amdgpu_vm_free_mapping(adev, vm, mapping, 1901 bo_va->last_pt_update); 1902 } 1903 1904 dma_fence_put(bo_va->last_pt_update); 1905 1906 if (bo && bo_va->is_xgmi) 1907 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 1908 1909 kfree(bo_va); 1910 } 1911 1912 /** 1913 * amdgpu_vm_evictable - check if we can evict a VM 1914 * 1915 * @bo: A page table of the VM. 1916 * 1917 * Check if it is possible to evict a VM. 1918 */ 1919 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 1920 { 1921 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 1922 1923 /* Page tables of a destroyed VM can go away immediately */ 1924 if (!bo_base || !bo_base->vm) 1925 return true; 1926 1927 /* Don't evict VM page tables while they are busy */ 1928 if (!dma_resv_test_signaled(bo->tbo.base.resv, DMA_RESV_USAGE_BOOKKEEP)) 1929 return false; 1930 1931 /* Try to block ongoing updates */ 1932 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 1933 return false; 1934 1935 /* Don't evict VM page tables while they are updated */ 1936 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 1937 amdgpu_vm_eviction_unlock(bo_base->vm); 1938 return false; 1939 } 1940 1941 bo_base->vm->evicting = true; 1942 amdgpu_vm_eviction_unlock(bo_base->vm); 1943 return true; 1944 } 1945 1946 /** 1947 * amdgpu_vm_bo_invalidate - mark the bo as invalid 1948 * 1949 * @adev: amdgpu_device pointer 1950 * @bo: amdgpu buffer object 1951 * @evicted: is the BO evicted 1952 * 1953 * Mark @bo as invalid. 1954 */ 1955 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 1956 struct amdgpu_bo *bo, bool evicted) 1957 { 1958 struct amdgpu_vm_bo_base *bo_base; 1959 1960 /* shadow bo doesn't have bo base, its validation needs its parent */ 1961 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 1962 bo = bo->parent; 1963 1964 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 1965 struct amdgpu_vm *vm = bo_base->vm; 1966 1967 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1968 amdgpu_vm_bo_evicted(bo_base); 1969 continue; 1970 } 1971 1972 if (bo_base->moved) 1973 continue; 1974 bo_base->moved = true; 1975 1976 if (bo->tbo.type == ttm_bo_type_kernel) 1977 amdgpu_vm_bo_relocated(bo_base); 1978 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 1979 amdgpu_vm_bo_moved(bo_base); 1980 else 1981 amdgpu_vm_bo_invalidated(bo_base); 1982 } 1983 } 1984 1985 /** 1986 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 1987 * 1988 * @vm_size: VM size 1989 * 1990 * Returns: 1991 * VM page table as power of two 1992 */ 1993 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 1994 { 1995 /* Total bits covered by PD + PTs */ 1996 unsigned bits = ilog2(vm_size) + 18; 1997 1998 /* Make sure the PD is 4K in size up to 8GB address space. 1999 Above that split equal between PD and PTs */ 2000 if (vm_size <= 8) 2001 return (bits - 9); 2002 else 2003 return ((bits + 3) / 2); 2004 } 2005 2006 /** 2007 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2008 * 2009 * @adev: amdgpu_device pointer 2010 * @min_vm_size: the minimum vm size in GB if it's set auto 2011 * @fragment_size_default: Default PTE fragment size 2012 * @max_level: max VMPT level 2013 * @max_bits: max address space size in bits 2014 * 2015 */ 2016 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2017 uint32_t fragment_size_default, unsigned max_level, 2018 unsigned max_bits) 2019 { 2020 unsigned int max_size = 1 << (max_bits - 30); 2021 unsigned int vm_size; 2022 uint64_t tmp; 2023 2024 /* adjust vm size first */ 2025 if (amdgpu_vm_size != -1) { 2026 vm_size = amdgpu_vm_size; 2027 if (vm_size > max_size) { 2028 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2029 amdgpu_vm_size, max_size); 2030 vm_size = max_size; 2031 } 2032 } else { 2033 struct sysinfo si; 2034 unsigned int phys_ram_gb; 2035 2036 /* Optimal VM size depends on the amount of physical 2037 * RAM available. Underlying requirements and 2038 * assumptions: 2039 * 2040 * - Need to map system memory and VRAM from all GPUs 2041 * - VRAM from other GPUs not known here 2042 * - Assume VRAM <= system memory 2043 * - On GFX8 and older, VM space can be segmented for 2044 * different MTYPEs 2045 * - Need to allow room for fragmentation, guard pages etc. 2046 * 2047 * This adds up to a rough guess of system memory x3. 2048 * Round up to power of two to maximize the available 2049 * VM size with the given page table size. 2050 */ 2051 si_meminfo(&si); 2052 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2053 (1 << 30) - 1) >> 30; 2054 vm_size = roundup_pow_of_two( 2055 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2056 } 2057 2058 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2059 2060 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2061 if (amdgpu_vm_block_size != -1) 2062 tmp >>= amdgpu_vm_block_size - 9; 2063 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2064 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2065 switch (adev->vm_manager.num_level) { 2066 case 3: 2067 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2068 break; 2069 case 2: 2070 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2071 break; 2072 case 1: 2073 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2074 break; 2075 default: 2076 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2077 } 2078 /* block size depends on vm size and hw setup*/ 2079 if (amdgpu_vm_block_size != -1) 2080 adev->vm_manager.block_size = 2081 min((unsigned)amdgpu_vm_block_size, max_bits 2082 - AMDGPU_GPU_PAGE_SHIFT 2083 - 9 * adev->vm_manager.num_level); 2084 else if (adev->vm_manager.num_level > 1) 2085 adev->vm_manager.block_size = 9; 2086 else 2087 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2088 2089 if (amdgpu_vm_fragment_size == -1) 2090 adev->vm_manager.fragment_size = fragment_size_default; 2091 else 2092 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2093 2094 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2095 vm_size, adev->vm_manager.num_level + 1, 2096 adev->vm_manager.block_size, 2097 adev->vm_manager.fragment_size); 2098 } 2099 2100 /** 2101 * amdgpu_vm_wait_idle - wait for the VM to become idle 2102 * 2103 * @vm: VM object to wait for 2104 * @timeout: timeout to wait for VM to become idle 2105 */ 2106 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2107 { 2108 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, 2109 DMA_RESV_USAGE_BOOKKEEP, 2110 true, timeout); 2111 if (timeout <= 0) 2112 return timeout; 2113 2114 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2115 } 2116 2117 /** 2118 * amdgpu_vm_init - initialize a vm instance 2119 * 2120 * @adev: amdgpu_device pointer 2121 * @vm: requested vm 2122 * @xcp_id: GPU partition selection id 2123 * 2124 * Init @vm fields. 2125 * 2126 * Returns: 2127 * 0 for success, error for failure. 2128 */ 2129 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2130 int32_t xcp_id) 2131 { 2132 struct amdgpu_bo *root_bo; 2133 struct amdgpu_bo_vm *root; 2134 int r, i; 2135 2136 vm->va = RB_ROOT_CACHED; 2137 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2138 vm->reserved_vmid[i] = NULL; 2139 INIT_LIST_HEAD(&vm->evicted); 2140 INIT_LIST_HEAD(&vm->relocated); 2141 INIT_LIST_HEAD(&vm->moved); 2142 INIT_LIST_HEAD(&vm->idle); 2143 INIT_LIST_HEAD(&vm->invalidated); 2144 spin_lock_init(&vm->status_lock); 2145 INIT_LIST_HEAD(&vm->freed); 2146 INIT_LIST_HEAD(&vm->done); 2147 INIT_LIST_HEAD(&vm->pt_freed); 2148 INIT_WORK(&vm->pt_free_work, amdgpu_vm_pt_free_work); 2149 INIT_KFIFO(vm->faults); 2150 2151 r = amdgpu_vm_init_entities(adev, vm); 2152 if (r) 2153 return r; 2154 2155 vm->pte_support_ats = false; 2156 vm->is_compute_context = false; 2157 2158 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2159 AMDGPU_VM_USE_CPU_FOR_GFX); 2160 2161 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2162 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2163 WARN_ONCE((vm->use_cpu_for_update && 2164 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2165 "CPU update of VM recommended only for large BAR system\n"); 2166 2167 if (vm->use_cpu_for_update) 2168 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2169 else 2170 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2171 2172 vm->last_update = dma_fence_get_stub(); 2173 vm->last_unlocked = dma_fence_get_stub(); 2174 vm->last_tlb_flush = dma_fence_get_stub(); 2175 vm->generation = 0; 2176 2177 mutex_init(&vm->eviction_lock); 2178 vm->evicting = false; 2179 2180 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2181 false, &root, xcp_id); 2182 if (r) 2183 goto error_free_delayed; 2184 2185 root_bo = amdgpu_bo_ref(&root->bo); 2186 r = amdgpu_bo_reserve(root_bo, true); 2187 if (r) { 2188 amdgpu_bo_unref(&root->shadow); 2189 amdgpu_bo_unref(&root_bo); 2190 goto error_free_delayed; 2191 } 2192 2193 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2194 r = dma_resv_reserve_fences(root_bo->tbo.base.resv, 1); 2195 if (r) 2196 goto error_free_root; 2197 2198 r = amdgpu_vm_pt_clear(adev, vm, root, false); 2199 if (r) 2200 goto error_free_root; 2201 2202 amdgpu_bo_unreserve(vm->root.bo); 2203 amdgpu_bo_unref(&root_bo); 2204 2205 return 0; 2206 2207 error_free_root: 2208 amdgpu_vm_pt_free_root(adev, vm); 2209 amdgpu_bo_unreserve(vm->root.bo); 2210 amdgpu_bo_unref(&root_bo); 2211 2212 error_free_delayed: 2213 dma_fence_put(vm->last_tlb_flush); 2214 dma_fence_put(vm->last_unlocked); 2215 amdgpu_vm_fini_entities(vm); 2216 2217 return r; 2218 } 2219 2220 /** 2221 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2222 * 2223 * @adev: amdgpu_device pointer 2224 * @vm: requested vm 2225 * 2226 * This only works on GFX VMs that don't have any BOs added and no 2227 * page tables allocated yet. 2228 * 2229 * Changes the following VM parameters: 2230 * - use_cpu_for_update 2231 * - pte_supports_ats 2232 * 2233 * Reinitializes the page directory to reflect the changed ATS 2234 * setting. 2235 * 2236 * Returns: 2237 * 0 for success, -errno for errors. 2238 */ 2239 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2240 { 2241 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2242 int r; 2243 2244 r = amdgpu_bo_reserve(vm->root.bo, true); 2245 if (r) 2246 return r; 2247 2248 /* Check if PD needs to be reinitialized and do it before 2249 * changing any other state, in case it fails. 2250 */ 2251 if (pte_support_ats != vm->pte_support_ats) { 2252 /* Sanity checks */ 2253 if (!amdgpu_vm_pt_is_root_clean(adev, vm)) { 2254 r = -EINVAL; 2255 goto unreserve_bo; 2256 } 2257 2258 vm->pte_support_ats = pte_support_ats; 2259 r = amdgpu_vm_pt_clear(adev, vm, to_amdgpu_bo_vm(vm->root.bo), 2260 false); 2261 if (r) 2262 goto unreserve_bo; 2263 } 2264 2265 /* Update VM state */ 2266 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2267 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2268 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2269 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2270 WARN_ONCE((vm->use_cpu_for_update && 2271 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2272 "CPU update of VM recommended only for large BAR system\n"); 2273 2274 if (vm->use_cpu_for_update) { 2275 /* Sync with last SDMA update/clear before switching to CPU */ 2276 r = amdgpu_bo_sync_wait(vm->root.bo, 2277 AMDGPU_FENCE_OWNER_UNDEFINED, true); 2278 if (r) 2279 goto unreserve_bo; 2280 2281 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2282 r = amdgpu_vm_pt_map_tables(adev, vm); 2283 if (r) 2284 goto unreserve_bo; 2285 2286 } else { 2287 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2288 } 2289 2290 dma_fence_put(vm->last_update); 2291 vm->last_update = dma_fence_get_stub(); 2292 vm->is_compute_context = true; 2293 2294 /* Free the shadow bo for compute VM */ 2295 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 2296 2297 goto unreserve_bo; 2298 2299 unreserve_bo: 2300 amdgpu_bo_unreserve(vm->root.bo); 2301 return r; 2302 } 2303 2304 /** 2305 * amdgpu_vm_release_compute - release a compute vm 2306 * @adev: amdgpu_device pointer 2307 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 2308 * 2309 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 2310 * pasid from vm. Compute should stop use of vm after this call. 2311 */ 2312 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2313 { 2314 amdgpu_vm_set_pasid(adev, vm, 0); 2315 vm->is_compute_context = false; 2316 } 2317 2318 /** 2319 * amdgpu_vm_fini - tear down a vm instance 2320 * 2321 * @adev: amdgpu_device pointer 2322 * @vm: requested vm 2323 * 2324 * Tear down @vm. 2325 * Unbind the VM and remove all bos from the vm bo list 2326 */ 2327 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2328 { 2329 struct amdgpu_bo_va_mapping *mapping, *tmp; 2330 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2331 struct amdgpu_bo *root; 2332 unsigned long flags; 2333 int i; 2334 2335 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 2336 2337 flush_work(&vm->pt_free_work); 2338 2339 root = amdgpu_bo_ref(vm->root.bo); 2340 amdgpu_bo_reserve(root, true); 2341 amdgpu_vm_set_pasid(adev, vm, 0); 2342 dma_fence_wait(vm->last_unlocked, false); 2343 dma_fence_put(vm->last_unlocked); 2344 dma_fence_wait(vm->last_tlb_flush, false); 2345 /* Make sure that all fence callbacks have completed */ 2346 spin_lock_irqsave(vm->last_tlb_flush->lock, flags); 2347 spin_unlock_irqrestore(vm->last_tlb_flush->lock, flags); 2348 dma_fence_put(vm->last_tlb_flush); 2349 2350 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2351 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2352 amdgpu_vm_prt_fini(adev, vm); 2353 prt_fini_needed = false; 2354 } 2355 2356 list_del(&mapping->list); 2357 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2358 } 2359 2360 amdgpu_vm_pt_free_root(adev, vm); 2361 amdgpu_bo_unreserve(root); 2362 amdgpu_bo_unref(&root); 2363 WARN_ON(vm->root.bo); 2364 2365 amdgpu_vm_fini_entities(vm); 2366 2367 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2368 dev_err(adev->dev, "still active bo inside vm\n"); 2369 } 2370 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2371 &vm->va.rb_root, rb) { 2372 /* Don't remove the mapping here, we don't want to trigger a 2373 * rebalance and the tree is about to be destroyed anyway. 2374 */ 2375 list_del(&mapping->list); 2376 kfree(mapping); 2377 } 2378 2379 dma_fence_put(vm->last_update); 2380 2381 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) { 2382 if (vm->reserved_vmid[i]) { 2383 amdgpu_vmid_free_reserved(adev, i); 2384 vm->reserved_vmid[i] = false; 2385 } 2386 } 2387 2388 } 2389 2390 /** 2391 * amdgpu_vm_manager_init - init the VM manager 2392 * 2393 * @adev: amdgpu_device pointer 2394 * 2395 * Initialize the VM manager structures 2396 */ 2397 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2398 { 2399 unsigned i; 2400 2401 /* Concurrent flushes are only possible starting with Vega10 and 2402 * are broken on Navi10 and Navi14. 2403 */ 2404 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 2405 adev->asic_type == CHIP_NAVI10 || 2406 adev->asic_type == CHIP_NAVI14); 2407 amdgpu_vmid_mgr_init(adev); 2408 2409 adev->vm_manager.fence_context = 2410 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2411 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2412 adev->vm_manager.seqno[i] = 0; 2413 2414 spin_lock_init(&adev->vm_manager.prt_lock); 2415 atomic_set(&adev->vm_manager.num_prt_users, 0); 2416 2417 /* If not overridden by the user, by default, only in large BAR systems 2418 * Compute VM tables will be updated by CPU 2419 */ 2420 #ifdef CONFIG_X86_64 2421 if (amdgpu_vm_update_mode == -1) { 2422 /* For asic with VF MMIO access protection 2423 * avoid using CPU for VM table updates 2424 */ 2425 if (amdgpu_gmc_vram_full_visible(&adev->gmc) && 2426 !amdgpu_sriov_vf_mmio_access_protection(adev)) 2427 adev->vm_manager.vm_update_mode = 2428 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2429 else 2430 adev->vm_manager.vm_update_mode = 0; 2431 } else 2432 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2433 #else 2434 adev->vm_manager.vm_update_mode = 0; 2435 #endif 2436 2437 xa_init_flags(&adev->vm_manager.pasids, XA_FLAGS_LOCK_IRQ); 2438 } 2439 2440 /** 2441 * amdgpu_vm_manager_fini - cleanup VM manager 2442 * 2443 * @adev: amdgpu_device pointer 2444 * 2445 * Cleanup the VM manager and free resources. 2446 */ 2447 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2448 { 2449 WARN_ON(!xa_empty(&adev->vm_manager.pasids)); 2450 xa_destroy(&adev->vm_manager.pasids); 2451 2452 amdgpu_vmid_mgr_fini(adev); 2453 } 2454 2455 /** 2456 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 2457 * 2458 * @dev: drm device pointer 2459 * @data: drm_amdgpu_vm 2460 * @filp: drm file pointer 2461 * 2462 * Returns: 2463 * 0 for success, -errno for errors. 2464 */ 2465 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2466 { 2467 union drm_amdgpu_vm *args = data; 2468 struct amdgpu_device *adev = drm_to_adev(dev); 2469 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2470 2471 /* No valid flags defined yet */ 2472 if (args->in.flags) 2473 return -EINVAL; 2474 2475 switch (args->in.op) { 2476 case AMDGPU_VM_OP_RESERVE_VMID: 2477 /* We only have requirement to reserve vmid from gfxhub */ 2478 if (!fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2479 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(0)); 2480 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = true; 2481 } 2482 2483 break; 2484 case AMDGPU_VM_OP_UNRESERVE_VMID: 2485 if (fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)]) { 2486 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(0)); 2487 fpriv->vm.reserved_vmid[AMDGPU_GFXHUB(0)] = false; 2488 } 2489 break; 2490 default: 2491 return -EINVAL; 2492 } 2493 2494 return 0; 2495 } 2496 2497 /** 2498 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 2499 * 2500 * @adev: drm device pointer 2501 * @pasid: PASID identifier for VM 2502 * @task_info: task_info to fill. 2503 */ 2504 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 2505 struct amdgpu_task_info *task_info) 2506 { 2507 struct amdgpu_vm *vm; 2508 unsigned long flags; 2509 2510 xa_lock_irqsave(&adev->vm_manager.pasids, flags); 2511 2512 vm = xa_load(&adev->vm_manager.pasids, pasid); 2513 if (vm) 2514 *task_info = vm->task_info; 2515 2516 xa_unlock_irqrestore(&adev->vm_manager.pasids, flags); 2517 } 2518 2519 /** 2520 * amdgpu_vm_set_task_info - Sets VMs task info. 2521 * 2522 * @vm: vm for which to set the info 2523 */ 2524 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 2525 { 2526 if (vm->task_info.pid) 2527 return; 2528 2529 vm->task_info.pid = current->pid; 2530 get_task_comm(vm->task_info.task_name, current); 2531 2532 if (current->group_leader->mm != current->mm) 2533 return; 2534 2535 vm->task_info.tgid = current->group_leader->pid; 2536 get_task_comm(vm->task_info.process_name, current->group_leader); 2537 } 2538 2539 /** 2540 * amdgpu_vm_handle_fault - graceful handling of VM faults. 2541 * @adev: amdgpu device pointer 2542 * @pasid: PASID of the VM 2543 * @vmid: VMID, only used for GFX 9.4.3. 2544 * @node_id: Node_id received in IH cookie. Only applicable for 2545 * GFX 9.4.3. 2546 * @addr: Address of the fault 2547 * @write_fault: true is write fault, false is read fault 2548 * 2549 * Try to gracefully handle a VM fault. Return true if the fault was handled and 2550 * shouldn't be reported any more. 2551 */ 2552 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 2553 u32 vmid, u32 node_id, uint64_t addr, 2554 bool write_fault) 2555 { 2556 bool is_compute_context = false; 2557 struct amdgpu_bo *root; 2558 unsigned long irqflags; 2559 uint64_t value, flags; 2560 struct amdgpu_vm *vm; 2561 int r; 2562 2563 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2564 vm = xa_load(&adev->vm_manager.pasids, pasid); 2565 if (vm) { 2566 root = amdgpu_bo_ref(vm->root.bo); 2567 is_compute_context = vm->is_compute_context; 2568 } else { 2569 root = NULL; 2570 } 2571 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2572 2573 if (!root) 2574 return false; 2575 2576 addr /= AMDGPU_GPU_PAGE_SIZE; 2577 2578 if (is_compute_context && !svm_range_restore_pages(adev, pasid, vmid, 2579 node_id, addr, write_fault)) { 2580 amdgpu_bo_unref(&root); 2581 return true; 2582 } 2583 2584 r = amdgpu_bo_reserve(root, true); 2585 if (r) 2586 goto error_unref; 2587 2588 /* Double check that the VM still exists */ 2589 xa_lock_irqsave(&adev->vm_manager.pasids, irqflags); 2590 vm = xa_load(&adev->vm_manager.pasids, pasid); 2591 if (vm && vm->root.bo != root) 2592 vm = NULL; 2593 xa_unlock_irqrestore(&adev->vm_manager.pasids, irqflags); 2594 if (!vm) 2595 goto error_unlock; 2596 2597 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 2598 AMDGPU_PTE_SYSTEM; 2599 2600 if (is_compute_context) { 2601 /* Intentionally setting invalid PTE flag 2602 * combination to force a no-retry-fault 2603 */ 2604 flags = AMDGPU_VM_NORETRY_FLAGS; 2605 value = 0; 2606 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 2607 /* Redirect the access to the dummy page */ 2608 value = adev->dummy_page_addr; 2609 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 2610 AMDGPU_PTE_WRITEABLE; 2611 2612 } else { 2613 /* Let the hw retry silently on the PTE */ 2614 value = 0; 2615 } 2616 2617 r = dma_resv_reserve_fences(root->tbo.base.resv, 1); 2618 if (r) { 2619 pr_debug("failed %d to reserve fence slot\n", r); 2620 goto error_unlock; 2621 } 2622 2623 r = amdgpu_vm_update_range(adev, vm, true, false, false, NULL, addr, 2624 addr, flags, value, 0, NULL, NULL, NULL); 2625 if (r) 2626 goto error_unlock; 2627 2628 r = amdgpu_vm_update_pdes(adev, vm, true); 2629 2630 error_unlock: 2631 amdgpu_bo_unreserve(root); 2632 if (r < 0) 2633 DRM_ERROR("Can't handle page fault (%d)\n", r); 2634 2635 error_unref: 2636 amdgpu_bo_unref(&root); 2637 2638 return false; 2639 } 2640 2641 #if defined(CONFIG_DEBUG_FS) 2642 /** 2643 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 2644 * 2645 * @vm: Requested VM for printing BO info 2646 * @m: debugfs file 2647 * 2648 * Print BO information in debugfs file for the VM 2649 */ 2650 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 2651 { 2652 struct amdgpu_bo_va *bo_va, *tmp; 2653 u64 total_idle = 0; 2654 u64 total_evicted = 0; 2655 u64 total_relocated = 0; 2656 u64 total_moved = 0; 2657 u64 total_invalidated = 0; 2658 u64 total_done = 0; 2659 unsigned int total_idle_objs = 0; 2660 unsigned int total_evicted_objs = 0; 2661 unsigned int total_relocated_objs = 0; 2662 unsigned int total_moved_objs = 0; 2663 unsigned int total_invalidated_objs = 0; 2664 unsigned int total_done_objs = 0; 2665 unsigned int id = 0; 2666 2667 spin_lock(&vm->status_lock); 2668 seq_puts(m, "\tIdle BOs:\n"); 2669 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 2670 if (!bo_va->base.bo) 2671 continue; 2672 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2673 } 2674 total_idle_objs = id; 2675 id = 0; 2676 2677 seq_puts(m, "\tEvicted BOs:\n"); 2678 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 2679 if (!bo_va->base.bo) 2680 continue; 2681 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2682 } 2683 total_evicted_objs = id; 2684 id = 0; 2685 2686 seq_puts(m, "\tRelocated BOs:\n"); 2687 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 2688 if (!bo_va->base.bo) 2689 continue; 2690 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2691 } 2692 total_relocated_objs = id; 2693 id = 0; 2694 2695 seq_puts(m, "\tMoved BOs:\n"); 2696 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2697 if (!bo_va->base.bo) 2698 continue; 2699 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2700 } 2701 total_moved_objs = id; 2702 id = 0; 2703 2704 seq_puts(m, "\tInvalidated BOs:\n"); 2705 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 2706 if (!bo_va->base.bo) 2707 continue; 2708 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2709 } 2710 total_invalidated_objs = id; 2711 id = 0; 2712 2713 seq_puts(m, "\tDone BOs:\n"); 2714 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 2715 if (!bo_va->base.bo) 2716 continue; 2717 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 2718 } 2719 spin_unlock(&vm->status_lock); 2720 total_done_objs = id; 2721 2722 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 2723 total_idle_objs); 2724 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 2725 total_evicted_objs); 2726 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 2727 total_relocated_objs); 2728 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 2729 total_moved_objs); 2730 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 2731 total_invalidated_objs); 2732 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 2733 total_done_objs); 2734 } 2735 #endif 2736