1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 41 /** 42 * DOC: GPUVM 43 * 44 * GPUVM is similar to the legacy gart on older asics, however 45 * rather than there being a single global gart table 46 * for the entire GPU, there are multiple VM page tables active 47 * at any given time. The VM page tables can contain a mix 48 * vram pages and system memory pages and system memory pages 49 * can be mapped as snooped (cached system pages) or unsnooped 50 * (uncached system pages). 51 * Each VM has an ID associated with it and there is a page table 52 * associated with each VMID. When execting a command buffer, 53 * the kernel tells the the ring what VMID to use for that command 54 * buffer. VMIDs are allocated dynamically as commands are submitted. 55 * The userspace drivers maintain their own address space and the kernel 56 * sets up their pages tables accordingly when they submit their 57 * command buffers and a VMID is assigned. 58 * Cayman/Trinity support up to 8 active VMs at any given time; 59 * SI supports 16. 60 */ 61 62 #define START(node) ((node)->start) 63 #define LAST(node) ((node)->last) 64 65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 66 START, LAST, static, amdgpu_vm_it) 67 68 #undef START 69 #undef LAST 70 71 /** 72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 73 */ 74 struct amdgpu_prt_cb { 75 76 /** 77 * @adev: amdgpu device 78 */ 79 struct amdgpu_device *adev; 80 81 /** 82 * @cb: callback 83 */ 84 struct dma_fence_cb cb; 85 }; 86 87 /* 88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 89 * happens while holding this lock anywhere to prevent deadlocks when 90 * an MMU notifier runs in reclaim-FS context. 91 */ 92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 93 { 94 mutex_lock(&vm->eviction_lock); 95 vm->saved_flags = memalloc_nofs_save(); 96 } 97 98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 99 { 100 if (mutex_trylock(&vm->eviction_lock)) { 101 vm->saved_flags = memalloc_nofs_save(); 102 return 1; 103 } 104 return 0; 105 } 106 107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 108 { 109 memalloc_nofs_restore(vm->saved_flags); 110 mutex_unlock(&vm->eviction_lock); 111 } 112 113 /** 114 * amdgpu_vm_level_shift - return the addr shift for each level 115 * 116 * @adev: amdgpu_device pointer 117 * @level: VMPT level 118 * 119 * Returns: 120 * The number of bits the pfn needs to be right shifted for a level. 121 */ 122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 123 unsigned level) 124 { 125 switch (level) { 126 case AMDGPU_VM_PDB2: 127 case AMDGPU_VM_PDB1: 128 case AMDGPU_VM_PDB0: 129 return 9 * (AMDGPU_VM_PDB0 - level) + 130 adev->vm_manager.block_size; 131 case AMDGPU_VM_PTB: 132 return 0; 133 default: 134 return ~0; 135 } 136 } 137 138 /** 139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 140 * 141 * @adev: amdgpu_device pointer 142 * @level: VMPT level 143 * 144 * Returns: 145 * The number of entries in a page directory or page table. 146 */ 147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 148 unsigned level) 149 { 150 unsigned shift = amdgpu_vm_level_shift(adev, 151 adev->vm_manager.root_level); 152 153 if (level == adev->vm_manager.root_level) 154 /* For the root directory */ 155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 156 >> shift; 157 else if (level != AMDGPU_VM_PTB) 158 /* Everything in between */ 159 return 512; 160 else 161 /* For the page tables on the leaves */ 162 return AMDGPU_VM_PTE_COUNT(adev); 163 } 164 165 /** 166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 167 * 168 * @adev: amdgpu_device pointer 169 * 170 * Returns: 171 * The number of entries in the root page directory which needs the ATS setting. 172 */ 173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 174 { 175 unsigned shift; 176 177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 179 } 180 181 /** 182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 183 * 184 * @adev: amdgpu_device pointer 185 * @level: VMPT level 186 * 187 * Returns: 188 * The mask to extract the entry number of a PD/PT from an address. 189 */ 190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 191 unsigned int level) 192 { 193 if (level <= adev->vm_manager.root_level) 194 return 0xffffffff; 195 else if (level != AMDGPU_VM_PTB) 196 return 0x1ff; 197 else 198 return AMDGPU_VM_PTE_COUNT(adev) - 1; 199 } 200 201 /** 202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 203 * 204 * @adev: amdgpu_device pointer 205 * @level: VMPT level 206 * 207 * Returns: 208 * The size of the BO for a page directory or page table in bytes. 209 */ 210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 211 { 212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 213 } 214 215 /** 216 * amdgpu_vm_bo_evicted - vm_bo is evicted 217 * 218 * @vm_bo: vm_bo which is evicted 219 * 220 * State for PDs/PTs and per VM BOs which are not at the location they should 221 * be. 222 */ 223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 224 { 225 struct amdgpu_vm *vm = vm_bo->vm; 226 struct amdgpu_bo *bo = vm_bo->bo; 227 228 vm_bo->moved = true; 229 if (bo->tbo.type == ttm_bo_type_kernel) 230 list_move(&vm_bo->vm_status, &vm->evicted); 231 else 232 list_move_tail(&vm_bo->vm_status, &vm->evicted); 233 } 234 /** 235 * amdgpu_vm_bo_moved - vm_bo is moved 236 * 237 * @vm_bo: vm_bo which is moved 238 * 239 * State for per VM BOs which are moved, but that change is not yet reflected 240 * in the page tables. 241 */ 242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 243 { 244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 245 } 246 247 /** 248 * amdgpu_vm_bo_idle - vm_bo is idle 249 * 250 * @vm_bo: vm_bo which is now idle 251 * 252 * State for PDs/PTs and per VM BOs which have gone through the state machine 253 * and are now idle. 254 */ 255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 256 { 257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 258 vm_bo->moved = false; 259 } 260 261 /** 262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 263 * 264 * @vm_bo: vm_bo which is now invalidated 265 * 266 * State for normal BOs which are invalidated and that change not yet reflected 267 * in the PTs. 268 */ 269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 270 { 271 spin_lock(&vm_bo->vm->invalidated_lock); 272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 273 spin_unlock(&vm_bo->vm->invalidated_lock); 274 } 275 276 /** 277 * amdgpu_vm_bo_relocated - vm_bo is reloacted 278 * 279 * @vm_bo: vm_bo which is relocated 280 * 281 * State for PDs/PTs which needs to update their parent PD. 282 * For the root PD, just move to idle state. 283 */ 284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 285 { 286 if (vm_bo->bo->parent) 287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 288 else 289 amdgpu_vm_bo_idle(vm_bo); 290 } 291 292 /** 293 * amdgpu_vm_bo_done - vm_bo is done 294 * 295 * @vm_bo: vm_bo which is now done 296 * 297 * State for normal BOs which are invalidated and that change has been updated 298 * in the PTs. 299 */ 300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 301 { 302 spin_lock(&vm_bo->vm->invalidated_lock); 303 list_del_init(&vm_bo->vm_status); 304 spin_unlock(&vm_bo->vm->invalidated_lock); 305 } 306 307 /** 308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 309 * 310 * @base: base structure for tracking BO usage in a VM 311 * @vm: vm to which bo is to be added 312 * @bo: amdgpu buffer object 313 * 314 * Initialize a bo_va_base structure and add it to the appropriate lists 315 * 316 */ 317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 318 struct amdgpu_vm *vm, 319 struct amdgpu_bo *bo) 320 { 321 base->vm = vm; 322 base->bo = bo; 323 base->next = NULL; 324 INIT_LIST_HEAD(&base->vm_status); 325 326 if (!bo) 327 return; 328 base->next = bo->vm_bo; 329 bo->vm_bo = base; 330 331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 332 return; 333 334 vm->bulk_moveable = false; 335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 336 amdgpu_vm_bo_relocated(base); 337 else 338 amdgpu_vm_bo_idle(base); 339 340 if (bo->preferred_domains & 341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 342 return; 343 344 /* 345 * we checked all the prerequisites, but it looks like this per vm bo 346 * is currently evicted. add the bo to the evicted list to make sure it 347 * is validated on next vm use to avoid fault. 348 * */ 349 amdgpu_vm_bo_evicted(base); 350 } 351 352 /** 353 * amdgpu_vm_pt_parent - get the parent page directory 354 * 355 * @pt: child page table 356 * 357 * Helper to get the parent entry for the child page table. NULL if we are at 358 * the root page directory. 359 */ 360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 361 { 362 struct amdgpu_bo *parent = pt->base.bo->parent; 363 364 if (!parent) 365 return NULL; 366 367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 368 } 369 370 /* 371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 372 */ 373 struct amdgpu_vm_pt_cursor { 374 uint64_t pfn; 375 struct amdgpu_vm_pt *parent; 376 struct amdgpu_vm_pt *entry; 377 unsigned level; 378 }; 379 380 /** 381 * amdgpu_vm_pt_start - start PD/PT walk 382 * 383 * @adev: amdgpu_device pointer 384 * @vm: amdgpu_vm structure 385 * @start: start address of the walk 386 * @cursor: state to initialize 387 * 388 * Initialize a amdgpu_vm_pt_cursor to start a walk. 389 */ 390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 391 struct amdgpu_vm *vm, uint64_t start, 392 struct amdgpu_vm_pt_cursor *cursor) 393 { 394 cursor->pfn = start; 395 cursor->parent = NULL; 396 cursor->entry = &vm->root; 397 cursor->level = adev->vm_manager.root_level; 398 } 399 400 /** 401 * amdgpu_vm_pt_descendant - go to child node 402 * 403 * @adev: amdgpu_device pointer 404 * @cursor: current state 405 * 406 * Walk to the child node of the current node. 407 * Returns: 408 * True if the walk was possible, false otherwise. 409 */ 410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 411 struct amdgpu_vm_pt_cursor *cursor) 412 { 413 unsigned mask, shift, idx; 414 415 if (!cursor->entry->entries) 416 return false; 417 418 BUG_ON(!cursor->entry->base.bo); 419 mask = amdgpu_vm_entries_mask(adev, cursor->level); 420 shift = amdgpu_vm_level_shift(adev, cursor->level); 421 422 ++cursor->level; 423 idx = (cursor->pfn >> shift) & mask; 424 cursor->parent = cursor->entry; 425 cursor->entry = &cursor->entry->entries[idx]; 426 return true; 427 } 428 429 /** 430 * amdgpu_vm_pt_sibling - go to sibling node 431 * 432 * @adev: amdgpu_device pointer 433 * @cursor: current state 434 * 435 * Walk to the sibling node of the current node. 436 * Returns: 437 * True if the walk was possible, false otherwise. 438 */ 439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 440 struct amdgpu_vm_pt_cursor *cursor) 441 { 442 unsigned shift, num_entries; 443 444 /* Root doesn't have a sibling */ 445 if (!cursor->parent) 446 return false; 447 448 /* Go to our parents and see if we got a sibling */ 449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 451 452 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 453 return false; 454 455 cursor->pfn += 1ULL << shift; 456 cursor->pfn &= ~((1ULL << shift) - 1); 457 ++cursor->entry; 458 return true; 459 } 460 461 /** 462 * amdgpu_vm_pt_ancestor - go to parent node 463 * 464 * @cursor: current state 465 * 466 * Walk to the parent node of the current node. 467 * Returns: 468 * True if the walk was possible, false otherwise. 469 */ 470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 471 { 472 if (!cursor->parent) 473 return false; 474 475 --cursor->level; 476 cursor->entry = cursor->parent; 477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 478 return true; 479 } 480 481 /** 482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 483 * 484 * @adev: amdgpu_device pointer 485 * @cursor: current state 486 * 487 * Walk the PD/PT tree to the next node. 488 */ 489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 490 struct amdgpu_vm_pt_cursor *cursor) 491 { 492 /* First try a newborn child */ 493 if (amdgpu_vm_pt_descendant(adev, cursor)) 494 return; 495 496 /* If that didn't worked try to find a sibling */ 497 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 498 /* No sibling, go to our parents and grandparents */ 499 if (!amdgpu_vm_pt_ancestor(cursor)) { 500 cursor->pfn = ~0ll; 501 return; 502 } 503 } 504 } 505 506 /** 507 * amdgpu_vm_pt_first_dfs - start a deep first search 508 * 509 * @adev: amdgpu_device structure 510 * @vm: amdgpu_vm structure 511 * @start: optional cursor to start with 512 * @cursor: state to initialize 513 * 514 * Starts a deep first traversal of the PD/PT tree. 515 */ 516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 517 struct amdgpu_vm *vm, 518 struct amdgpu_vm_pt_cursor *start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 if (start) 522 *cursor = *start; 523 else 524 amdgpu_vm_pt_start(adev, vm, 0, cursor); 525 while (amdgpu_vm_pt_descendant(adev, cursor)); 526 } 527 528 /** 529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 530 * 531 * @start: starting point for the search 532 * @entry: current entry 533 * 534 * Returns: 535 * True when the search should continue, false otherwise. 536 */ 537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 538 struct amdgpu_vm_pt *entry) 539 { 540 return entry && (!start || entry != start->entry); 541 } 542 543 /** 544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 545 * 546 * @adev: amdgpu_device structure 547 * @cursor: current state 548 * 549 * Move the cursor to the next node in a deep first search. 550 */ 551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 552 struct amdgpu_vm_pt_cursor *cursor) 553 { 554 if (!cursor->entry) 555 return; 556 557 if (!cursor->parent) 558 cursor->entry = NULL; 559 else if (amdgpu_vm_pt_sibling(adev, cursor)) 560 while (amdgpu_vm_pt_descendant(adev, cursor)); 561 else 562 amdgpu_vm_pt_ancestor(cursor); 563 } 564 565 /* 566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 567 */ 568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 571 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 573 574 /** 575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 576 * 577 * @vm: vm providing the BOs 578 * @validated: head of validation list 579 * @entry: entry to add 580 * 581 * Add the page directory to the list of BOs to 582 * validate for command submission. 583 */ 584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 585 struct list_head *validated, 586 struct amdgpu_bo_list_entry *entry) 587 { 588 entry->priority = 0; 589 entry->tv.bo = &vm->root.base.bo->tbo; 590 /* Two for VM updates, one for TTM and one for the CS job */ 591 entry->tv.num_shared = 4; 592 entry->user_pages = NULL; 593 list_add(&entry->tv.head, validated); 594 } 595 596 /** 597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 598 * 599 * @bo: BO which was removed from the LRU 600 * 601 * Make sure the bulk_moveable flag is updated when a BO is removed from the 602 * LRU. 603 */ 604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 605 { 606 struct amdgpu_bo *abo; 607 struct amdgpu_vm_bo_base *bo_base; 608 609 if (!amdgpu_bo_is_amdgpu_bo(bo)) 610 return; 611 612 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 613 return; 614 615 abo = ttm_to_amdgpu_bo(bo); 616 if (!abo->parent) 617 return; 618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 619 struct amdgpu_vm *vm = bo_base->vm; 620 621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 622 vm->bulk_moveable = false; 623 } 624 625 } 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&ttm_bo_glob.lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&ttm_bo_glob.lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&ttm_bo_glob.lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&ttm_bo_glob.lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 return r; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 vm->update_funcs->map_table(bo); 699 amdgpu_vm_bo_relocated(bo_base); 700 } 701 } 702 703 amdgpu_vm_eviction_lock(vm); 704 vm->evicting = false; 705 amdgpu_vm_eviction_unlock(vm); 706 707 return 0; 708 } 709 710 /** 711 * amdgpu_vm_ready - check VM is ready for updates 712 * 713 * @vm: VM to check 714 * 715 * Check if all VM PDs/PTs are ready for updates 716 * 717 * Returns: 718 * True if eviction list is empty. 719 */ 720 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 721 { 722 return list_empty(&vm->evicted); 723 } 724 725 /** 726 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 727 * 728 * @adev: amdgpu_device pointer 729 * @vm: VM to clear BO from 730 * @bo: BO to clear 731 * @immediate: use an immediate update 732 * 733 * Root PD needs to be reserved when calling this. 734 * 735 * Returns: 736 * 0 on success, errno otherwise. 737 */ 738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 739 struct amdgpu_vm *vm, 740 struct amdgpu_bo *bo, 741 bool immediate) 742 { 743 struct ttm_operation_ctx ctx = { true, false }; 744 unsigned level = adev->vm_manager.root_level; 745 struct amdgpu_vm_update_params params; 746 struct amdgpu_bo *ancestor = bo; 747 unsigned entries, ats_entries; 748 uint64_t addr; 749 int r; 750 751 /* Figure out our place in the hierarchy */ 752 if (ancestor->parent) { 753 ++level; 754 while (ancestor->parent->parent) { 755 ++level; 756 ancestor = ancestor->parent; 757 } 758 } 759 760 entries = amdgpu_bo_size(bo) / 8; 761 if (!vm->pte_support_ats) { 762 ats_entries = 0; 763 764 } else if (!bo->parent) { 765 ats_entries = amdgpu_vm_num_ats_entries(adev); 766 ats_entries = min(ats_entries, entries); 767 entries -= ats_entries; 768 769 } else { 770 struct amdgpu_vm_pt *pt; 771 772 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 773 ats_entries = amdgpu_vm_num_ats_entries(adev); 774 if ((pt - vm->root.entries) >= ats_entries) { 775 ats_entries = 0; 776 } else { 777 ats_entries = entries; 778 entries = 0; 779 } 780 } 781 782 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 783 if (r) 784 return r; 785 786 if (bo->shadow) { 787 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 788 &ctx); 789 if (r) 790 return r; 791 } 792 793 r = vm->update_funcs->map_table(bo); 794 if (r) 795 return r; 796 797 memset(¶ms, 0, sizeof(params)); 798 params.adev = adev; 799 params.vm = vm; 800 params.immediate = immediate; 801 802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 803 if (r) 804 return r; 805 806 addr = 0; 807 if (ats_entries) { 808 uint64_t value = 0, flags; 809 810 flags = AMDGPU_PTE_DEFAULT_ATC; 811 if (level != AMDGPU_VM_PTB) { 812 /* Handle leaf PDEs as PTEs */ 813 flags |= AMDGPU_PDE_PTE; 814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 815 } 816 817 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 818 value, flags); 819 if (r) 820 return r; 821 822 addr += ats_entries * 8; 823 } 824 825 if (entries) { 826 uint64_t value = 0, flags = 0; 827 828 if (adev->asic_type >= CHIP_VEGA10) { 829 if (level != AMDGPU_VM_PTB) { 830 /* Handle leaf PDEs as PTEs */ 831 flags |= AMDGPU_PDE_PTE; 832 amdgpu_gmc_get_vm_pde(adev, level, 833 &value, &flags); 834 } else { 835 /* Workaround for fault priority problem on GMC9 */ 836 flags = AMDGPU_PTE_EXECUTABLE; 837 } 838 } 839 840 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 841 value, flags); 842 if (r) 843 return r; 844 } 845 846 return vm->update_funcs->commit(¶ms, NULL); 847 } 848 849 /** 850 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 851 * 852 * @adev: amdgpu_device pointer 853 * @vm: requesting vm 854 * @level: the page table level 855 * @immediate: use a immediate update 856 * @bp: resulting BO allocation parameters 857 */ 858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 859 int level, bool immediate, 860 struct amdgpu_bo_param *bp) 861 { 862 memset(bp, 0, sizeof(*bp)); 863 864 bp->size = amdgpu_vm_bo_size(adev, level); 865 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 866 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 867 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 868 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 869 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 870 if (vm->use_cpu_for_update) 871 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 872 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 873 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 874 bp->type = ttm_bo_type_kernel; 875 bp->no_wait_gpu = immediate; 876 if (vm->root.base.bo) 877 bp->resv = vm->root.base.bo->tbo.base.resv; 878 } 879 880 /** 881 * amdgpu_vm_alloc_pts - Allocate a specific page table 882 * 883 * @adev: amdgpu_device pointer 884 * @vm: VM to allocate page tables for 885 * @cursor: Which page table to allocate 886 * @immediate: use an immediate update 887 * 888 * Make sure a specific page table or directory is allocated. 889 * 890 * Returns: 891 * 1 if page table needed to be allocated, 0 if page table was already 892 * allocated, negative errno if an error occurred. 893 */ 894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 895 struct amdgpu_vm *vm, 896 struct amdgpu_vm_pt_cursor *cursor, 897 bool immediate) 898 { 899 struct amdgpu_vm_pt *entry = cursor->entry; 900 struct amdgpu_bo_param bp; 901 struct amdgpu_bo *pt; 902 int r; 903 904 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 905 unsigned num_entries; 906 907 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 908 entry->entries = kvmalloc_array(num_entries, 909 sizeof(*entry->entries), 910 GFP_KERNEL | __GFP_ZERO); 911 if (!entry->entries) 912 return -ENOMEM; 913 } 914 915 if (entry->base.bo) 916 return 0; 917 918 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp); 919 920 r = amdgpu_bo_create(adev, &bp, &pt); 921 if (r) 922 return r; 923 924 /* Keep a reference to the root directory to avoid 925 * freeing them up in the wrong order. 926 */ 927 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 928 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 929 930 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 931 if (r) 932 goto error_free_pt; 933 934 return 0; 935 936 error_free_pt: 937 amdgpu_bo_unref(&pt->shadow); 938 amdgpu_bo_unref(&pt); 939 return r; 940 } 941 942 /** 943 * amdgpu_vm_free_table - fre one PD/PT 944 * 945 * @entry: PDE to free 946 */ 947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 948 { 949 if (entry->base.bo) { 950 entry->base.bo->vm_bo = NULL; 951 list_del(&entry->base.vm_status); 952 amdgpu_bo_unref(&entry->base.bo->shadow); 953 amdgpu_bo_unref(&entry->base.bo); 954 } 955 kvfree(entry->entries); 956 entry->entries = NULL; 957 } 958 959 /** 960 * amdgpu_vm_free_pts - free PD/PT levels 961 * 962 * @adev: amdgpu device structure 963 * @vm: amdgpu vm structure 964 * @start: optional cursor where to start freeing PDs/PTs 965 * 966 * Free the page directory or page table level and all sub levels. 967 */ 968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 969 struct amdgpu_vm *vm, 970 struct amdgpu_vm_pt_cursor *start) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 vm->bulk_moveable = false; 976 977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 978 amdgpu_vm_free_table(entry); 979 980 if (start) 981 amdgpu_vm_free_table(start->entry); 982 } 983 984 /** 985 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 986 * 987 * @adev: amdgpu_device pointer 988 */ 989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 990 { 991 const struct amdgpu_ip_block *ip_block; 992 bool has_compute_vm_bug; 993 struct amdgpu_ring *ring; 994 int i; 995 996 has_compute_vm_bug = false; 997 998 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 999 if (ip_block) { 1000 /* Compute has a VM bug for GFX version < 7. 1001 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1002 if (ip_block->version->major <= 7) 1003 has_compute_vm_bug = true; 1004 else if (ip_block->version->major == 8) 1005 if (adev->gfx.mec_fw_version < 673) 1006 has_compute_vm_bug = true; 1007 } 1008 1009 for (i = 0; i < adev->num_rings; i++) { 1010 ring = adev->rings[i]; 1011 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1012 /* only compute rings */ 1013 ring->has_compute_vm_bug = has_compute_vm_bug; 1014 else 1015 ring->has_compute_vm_bug = false; 1016 } 1017 } 1018 1019 /** 1020 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1021 * 1022 * @ring: ring on which the job will be submitted 1023 * @job: job to submit 1024 * 1025 * Returns: 1026 * True if sync is needed. 1027 */ 1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1029 struct amdgpu_job *job) 1030 { 1031 struct amdgpu_device *adev = ring->adev; 1032 unsigned vmhub = ring->funcs->vmhub; 1033 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1034 struct amdgpu_vmid *id; 1035 bool gds_switch_needed; 1036 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1037 1038 if (job->vmid == 0) 1039 return false; 1040 id = &id_mgr->ids[job->vmid]; 1041 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1042 id->gds_base != job->gds_base || 1043 id->gds_size != job->gds_size || 1044 id->gws_base != job->gws_base || 1045 id->gws_size != job->gws_size || 1046 id->oa_base != job->oa_base || 1047 id->oa_size != job->oa_size); 1048 1049 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1050 return true; 1051 1052 return vm_flush_needed || gds_switch_needed; 1053 } 1054 1055 /** 1056 * amdgpu_vm_flush - hardware flush the vm 1057 * 1058 * @ring: ring to use for flush 1059 * @job: related job 1060 * @need_pipe_sync: is pipe sync needed 1061 * 1062 * Emit a VM flush when it is necessary. 1063 * 1064 * Returns: 1065 * 0 on success, errno otherwise. 1066 */ 1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1068 bool need_pipe_sync) 1069 { 1070 struct amdgpu_device *adev = ring->adev; 1071 unsigned vmhub = ring->funcs->vmhub; 1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1075 id->gds_base != job->gds_base || 1076 id->gds_size != job->gds_size || 1077 id->gws_base != job->gws_base || 1078 id->gws_size != job->gws_size || 1079 id->oa_base != job->oa_base || 1080 id->oa_size != job->oa_size); 1081 bool vm_flush_needed = job->vm_needs_flush; 1082 struct dma_fence *fence = NULL; 1083 bool pasid_mapping_needed = false; 1084 unsigned patch_offset = 0; 1085 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1086 int r; 1087 1088 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1089 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1090 1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1092 gds_switch_needed = true; 1093 vm_flush_needed = true; 1094 pasid_mapping_needed = true; 1095 } 1096 1097 mutex_lock(&id_mgr->lock); 1098 if (id->pasid != job->pasid || !id->pasid_mapping || 1099 !dma_fence_is_signaled(id->pasid_mapping)) 1100 pasid_mapping_needed = true; 1101 mutex_unlock(&id_mgr->lock); 1102 1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1107 ring->funcs->emit_wreg; 1108 1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1110 return 0; 1111 1112 if (ring->funcs->init_cond_exec) 1113 patch_offset = amdgpu_ring_init_cond_exec(ring); 1114 1115 if (need_pipe_sync) 1116 amdgpu_ring_emit_pipeline_sync(ring); 1117 1118 if (vm_flush_needed) { 1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1121 } 1122 1123 if (pasid_mapping_needed) 1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1125 1126 if (vm_flush_needed || pasid_mapping_needed) { 1127 r = amdgpu_fence_emit(ring, &fence, 0); 1128 if (r) 1129 return r; 1130 } 1131 1132 if (vm_flush_needed) { 1133 mutex_lock(&id_mgr->lock); 1134 dma_fence_put(id->last_flush); 1135 id->last_flush = dma_fence_get(fence); 1136 id->current_gpu_reset_count = 1137 atomic_read(&adev->gpu_reset_counter); 1138 mutex_unlock(&id_mgr->lock); 1139 } 1140 1141 if (pasid_mapping_needed) { 1142 mutex_lock(&id_mgr->lock); 1143 id->pasid = job->pasid; 1144 dma_fence_put(id->pasid_mapping); 1145 id->pasid_mapping = dma_fence_get(fence); 1146 mutex_unlock(&id_mgr->lock); 1147 } 1148 dma_fence_put(fence); 1149 1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1151 id->gds_base = job->gds_base; 1152 id->gds_size = job->gds_size; 1153 id->gws_base = job->gws_base; 1154 id->gws_size = job->gws_size; 1155 id->oa_base = job->oa_base; 1156 id->oa_size = job->oa_size; 1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1158 job->gds_size, job->gws_base, 1159 job->gws_size, job->oa_base, 1160 job->oa_size); 1161 } 1162 1163 if (ring->funcs->patch_cond_exec) 1164 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1165 1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1167 if (ring->funcs->emit_switch_buffer) { 1168 amdgpu_ring_emit_switch_buffer(ring); 1169 amdgpu_ring_emit_switch_buffer(ring); 1170 } 1171 return 0; 1172 } 1173 1174 /** 1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1176 * 1177 * @vm: requested vm 1178 * @bo: requested buffer object 1179 * 1180 * Find @bo inside the requested vm. 1181 * Search inside the @bos vm list for the requested vm 1182 * Returns the found bo_va or NULL if none is found 1183 * 1184 * Object has to be reserved! 1185 * 1186 * Returns: 1187 * Found bo_va or NULL. 1188 */ 1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1190 struct amdgpu_bo *bo) 1191 { 1192 struct amdgpu_vm_bo_base *base; 1193 1194 for (base = bo->vm_bo; base; base = base->next) { 1195 if (base->vm != vm) 1196 continue; 1197 1198 return container_of(base, struct amdgpu_bo_va, base); 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1205 * 1206 * @pages_addr: optional DMA address to use for lookup 1207 * @addr: the unmapped addr 1208 * 1209 * Look up the physical address of the page that the pte resolves 1210 * to. 1211 * 1212 * Returns: 1213 * The pointer for the page table entry. 1214 */ 1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1216 { 1217 uint64_t result; 1218 1219 /* page table offset */ 1220 result = pages_addr[addr >> PAGE_SHIFT]; 1221 1222 /* in case cpu page size != gpu page size*/ 1223 result |= addr & (~PAGE_MASK); 1224 1225 result &= 0xFFFFFFFFFFFFF000ULL; 1226 1227 return result; 1228 } 1229 1230 /** 1231 * amdgpu_vm_update_pde - update a single level in the hierarchy 1232 * 1233 * @params: parameters for the update 1234 * @vm: requested vm 1235 * @entry: entry to update 1236 * 1237 * Makes sure the requested entry in parent is up to date. 1238 */ 1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1240 struct amdgpu_vm *vm, 1241 struct amdgpu_vm_pt *entry) 1242 { 1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1244 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1245 uint64_t pde, pt, flags; 1246 unsigned level; 1247 1248 for (level = 0, pbo = bo->parent; pbo; ++level) 1249 pbo = pbo->parent; 1250 1251 level += params->adev->vm_manager.root_level; 1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1253 pde = (entry - parent->entries) * 8; 1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1255 } 1256 1257 /** 1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1259 * 1260 * @adev: amdgpu_device pointer 1261 * @vm: related vm 1262 * 1263 * Mark all PD level as invalid after an error. 1264 */ 1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1266 struct amdgpu_vm *vm) 1267 { 1268 struct amdgpu_vm_pt_cursor cursor; 1269 struct amdgpu_vm_pt *entry; 1270 1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1272 if (entry->base.bo && !entry->base.moved) 1273 amdgpu_vm_bo_relocated(&entry->base); 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pdes - make sure that all directories are valid 1278 * 1279 * @adev: amdgpu_device pointer 1280 * @vm: requested vm 1281 * @immediate: submit immediately to the paging queue 1282 * 1283 * Makes sure all directories are up to date. 1284 * 1285 * Returns: 1286 * 0 for success, error for failure. 1287 */ 1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1289 struct amdgpu_vm *vm, bool immediate) 1290 { 1291 struct amdgpu_vm_update_params params; 1292 int r; 1293 1294 if (list_empty(&vm->relocated)) 1295 return 0; 1296 1297 memset(¶ms, 0, sizeof(params)); 1298 params.adev = adev; 1299 params.vm = vm; 1300 params.immediate = immediate; 1301 1302 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1303 if (r) 1304 return r; 1305 1306 while (!list_empty(&vm->relocated)) { 1307 struct amdgpu_vm_pt *entry; 1308 1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1310 base.vm_status); 1311 amdgpu_vm_bo_idle(&entry->base); 1312 1313 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1314 if (r) 1315 goto error; 1316 } 1317 1318 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1319 if (r) 1320 goto error; 1321 return 0; 1322 1323 error: 1324 amdgpu_vm_invalidate_pds(adev, vm); 1325 return r; 1326 } 1327 1328 /* 1329 * amdgpu_vm_update_flags - figure out flags for PTE updates 1330 * 1331 * Make sure to set the right flags for the PTEs at the desired level. 1332 */ 1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1334 struct amdgpu_bo *bo, unsigned level, 1335 uint64_t pe, uint64_t addr, 1336 unsigned count, uint32_t incr, 1337 uint64_t flags) 1338 1339 { 1340 if (level != AMDGPU_VM_PTB) { 1341 flags |= AMDGPU_PDE_PTE; 1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1343 1344 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1345 !(flags & AMDGPU_PTE_VALID) && 1346 !(flags & AMDGPU_PTE_PRT)) { 1347 1348 /* Workaround for fault priority problem on GMC9 */ 1349 flags |= AMDGPU_PTE_EXECUTABLE; 1350 } 1351 1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1353 flags); 1354 } 1355 1356 /** 1357 * amdgpu_vm_fragment - get fragment for PTEs 1358 * 1359 * @params: see amdgpu_vm_update_params definition 1360 * @start: first PTE to handle 1361 * @end: last PTE to handle 1362 * @flags: hw mapping flags 1363 * @frag: resulting fragment size 1364 * @frag_end: end of this fragment 1365 * 1366 * Returns the first possible fragment for the start and end address. 1367 */ 1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1369 uint64_t start, uint64_t end, uint64_t flags, 1370 unsigned int *frag, uint64_t *frag_end) 1371 { 1372 /** 1373 * The MC L1 TLB supports variable sized pages, based on a fragment 1374 * field in the PTE. When this field is set to a non-zero value, page 1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1376 * flags are considered valid for all PTEs within the fragment range 1377 * and corresponding mappings are assumed to be physically contiguous. 1378 * 1379 * The L1 TLB can store a single PTE for the whole fragment, 1380 * significantly increasing the space available for translation 1381 * caching. This leads to large improvements in throughput when the 1382 * TLB is under pressure. 1383 * 1384 * The L2 TLB distributes small and large fragments into two 1385 * asymmetric partitions. The large fragment cache is significantly 1386 * larger. Thus, we try to use large fragments wherever possible. 1387 * Userspace can support this by aligning virtual base address and 1388 * allocation size to the fragment size. 1389 * 1390 * Starting with Vega10 the fragment size only controls the L1. The L2 1391 * is now directly feed with small/huge/giant pages from the walker. 1392 */ 1393 unsigned max_frag; 1394 1395 if (params->adev->asic_type < CHIP_VEGA10) 1396 max_frag = params->adev->vm_manager.fragment_size; 1397 else 1398 max_frag = 31; 1399 1400 /* system pages are non continuously */ 1401 if (params->pages_addr) { 1402 *frag = 0; 1403 *frag_end = end; 1404 return; 1405 } 1406 1407 /* This intentionally wraps around if no bit is set */ 1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1409 if (*frag >= max_frag) { 1410 *frag = max_frag; 1411 *frag_end = end & ~((1ULL << max_frag) - 1); 1412 } else { 1413 *frag_end = start + (1 << *frag); 1414 } 1415 } 1416 1417 /** 1418 * amdgpu_vm_update_ptes - make sure that page tables are valid 1419 * 1420 * @params: see amdgpu_vm_update_params definition 1421 * @start: start of GPU address range 1422 * @end: end of GPU address range 1423 * @dst: destination address to map to, the next dst inside the function 1424 * @flags: mapping flags 1425 * 1426 * Update the page tables in the range @start - @end. 1427 * 1428 * Returns: 1429 * 0 for success, -EINVAL for failure. 1430 */ 1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1432 uint64_t start, uint64_t end, 1433 uint64_t dst, uint64_t flags) 1434 { 1435 struct amdgpu_device *adev = params->adev; 1436 struct amdgpu_vm_pt_cursor cursor; 1437 uint64_t frag_start = start, frag_end; 1438 unsigned int frag; 1439 int r; 1440 1441 /* figure out the initial fragment */ 1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1443 1444 /* walk over the address space and update the PTs */ 1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1446 while (cursor.pfn < end) { 1447 unsigned shift, parent_shift, mask; 1448 uint64_t incr, entry_end, pe_start; 1449 struct amdgpu_bo *pt; 1450 1451 if (!params->unlocked) { 1452 /* make sure that the page tables covering the 1453 * address range are actually allocated 1454 */ 1455 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1456 &cursor, params->immediate); 1457 if (r) 1458 return r; 1459 } 1460 1461 shift = amdgpu_vm_level_shift(adev, cursor.level); 1462 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1463 if (params->unlocked) { 1464 /* Unlocked updates are only allowed on the leaves */ 1465 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1466 continue; 1467 } else if (adev->asic_type < CHIP_VEGA10 && 1468 (flags & AMDGPU_PTE_VALID)) { 1469 /* No huge page support before GMC v9 */ 1470 if (cursor.level != AMDGPU_VM_PTB) { 1471 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1472 return -ENOENT; 1473 continue; 1474 } 1475 } else if (frag < shift) { 1476 /* We can't use this level when the fragment size is 1477 * smaller than the address shift. Go to the next 1478 * child entry and try again. 1479 */ 1480 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1481 continue; 1482 } else if (frag >= parent_shift) { 1483 /* If the fragment size is even larger than the parent 1484 * shift we should go up one level and check it again. 1485 */ 1486 if (!amdgpu_vm_pt_ancestor(&cursor)) 1487 return -EINVAL; 1488 continue; 1489 } 1490 1491 pt = cursor.entry->base.bo; 1492 if (!pt) { 1493 /* We need all PDs and PTs for mapping something, */ 1494 if (flags & AMDGPU_PTE_VALID) 1495 return -ENOENT; 1496 1497 /* but unmapping something can happen at a higher 1498 * level. 1499 */ 1500 if (!amdgpu_vm_pt_ancestor(&cursor)) 1501 return -EINVAL; 1502 1503 pt = cursor.entry->base.bo; 1504 shift = parent_shift; 1505 } 1506 1507 /* Looks good so far, calculate parameters for the update */ 1508 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1509 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1510 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1511 entry_end = ((uint64_t)mask + 1) << shift; 1512 entry_end += cursor.pfn & ~(entry_end - 1); 1513 entry_end = min(entry_end, end); 1514 1515 do { 1516 uint64_t upd_end = min(entry_end, frag_end); 1517 unsigned nptes = (upd_end - frag_start) >> shift; 1518 1519 /* This can happen when we set higher level PDs to 1520 * silent to stop fault floods. 1521 */ 1522 nptes = max(nptes, 1u); 1523 amdgpu_vm_update_flags(params, pt, cursor.level, 1524 pe_start, dst, nptes, incr, 1525 flags | AMDGPU_PTE_FRAG(frag)); 1526 1527 pe_start += nptes * 8; 1528 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1529 1530 frag_start = upd_end; 1531 if (frag_start >= frag_end) { 1532 /* figure out the next fragment */ 1533 amdgpu_vm_fragment(params, frag_start, end, 1534 flags, &frag, &frag_end); 1535 if (frag < shift) 1536 break; 1537 } 1538 } while (frag_start < entry_end); 1539 1540 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1541 /* Free all child entries. 1542 * Update the tables with the flags and addresses and free up subsequent 1543 * tables in the case of huge pages or freed up areas. 1544 * This is the maximum you can free, because all other page tables are not 1545 * completely covered by the range and so potentially still in use. 1546 */ 1547 while (cursor.pfn < frag_start) { 1548 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1549 amdgpu_vm_pt_next(adev, &cursor); 1550 } 1551 1552 } else if (frag >= shift) { 1553 /* or just move on to the next on the same level. */ 1554 amdgpu_vm_pt_next(adev, &cursor); 1555 } 1556 } 1557 1558 return 0; 1559 } 1560 1561 /** 1562 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1563 * 1564 * @adev: amdgpu_device pointer 1565 * @vm: requested vm 1566 * @immediate: immediate submission in a page fault 1567 * @unlocked: unlocked invalidation during MM callback 1568 * @resv: fences we need to sync to 1569 * @start: start of mapped range 1570 * @last: last mapped entry 1571 * @flags: flags for the entries 1572 * @addr: addr to set the area to 1573 * @pages_addr: DMA addresses to use for mapping 1574 * @fence: optional resulting fence 1575 * 1576 * Fill in the page table entries between @start and @last. 1577 * 1578 * Returns: 1579 * 0 for success, -EINVAL for failure. 1580 */ 1581 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1582 struct amdgpu_vm *vm, bool immediate, 1583 bool unlocked, struct dma_resv *resv, 1584 uint64_t start, uint64_t last, 1585 uint64_t flags, uint64_t addr, 1586 dma_addr_t *pages_addr, 1587 struct dma_fence **fence) 1588 { 1589 struct amdgpu_vm_update_params params; 1590 enum amdgpu_sync_mode sync_mode; 1591 int r; 1592 1593 memset(¶ms, 0, sizeof(params)); 1594 params.adev = adev; 1595 params.vm = vm; 1596 params.immediate = immediate; 1597 params.pages_addr = pages_addr; 1598 params.unlocked = unlocked; 1599 1600 /* Implicitly sync to command submissions in the same VM before 1601 * unmapping. Sync to moving fences before mapping. 1602 */ 1603 if (!(flags & AMDGPU_PTE_VALID)) 1604 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1605 else 1606 sync_mode = AMDGPU_SYNC_EXPLICIT; 1607 1608 amdgpu_vm_eviction_lock(vm); 1609 if (vm->evicting) { 1610 r = -EBUSY; 1611 goto error_unlock; 1612 } 1613 1614 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1615 struct dma_fence *tmp = dma_fence_get_stub(); 1616 1617 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1618 swap(vm->last_unlocked, tmp); 1619 dma_fence_put(tmp); 1620 } 1621 1622 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1623 if (r) 1624 goto error_unlock; 1625 1626 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1627 if (r) 1628 goto error_unlock; 1629 1630 r = vm->update_funcs->commit(¶ms, fence); 1631 1632 error_unlock: 1633 amdgpu_vm_eviction_unlock(vm); 1634 return r; 1635 } 1636 1637 /** 1638 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1639 * 1640 * @adev: amdgpu_device pointer 1641 * @resv: fences we need to sync to 1642 * @pages_addr: DMA addresses to use for mapping 1643 * @vm: requested vm 1644 * @mapping: mapped range and flags to use for the update 1645 * @flags: HW flags for the mapping 1646 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1647 * @nodes: array of drm_mm_nodes with the MC addresses 1648 * @fence: optional resulting fence 1649 * 1650 * Split the mapping into smaller chunks so that each update fits 1651 * into a SDMA IB. 1652 * 1653 * Returns: 1654 * 0 for success, -EINVAL for failure. 1655 */ 1656 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1657 struct dma_resv *resv, 1658 dma_addr_t *pages_addr, 1659 struct amdgpu_vm *vm, 1660 struct amdgpu_bo_va_mapping *mapping, 1661 uint64_t flags, 1662 struct amdgpu_device *bo_adev, 1663 struct drm_mm_node *nodes, 1664 struct dma_fence **fence) 1665 { 1666 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1667 uint64_t pfn, start = mapping->start; 1668 int r; 1669 1670 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1671 * but in case of something, we filter the flags in first place 1672 */ 1673 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1674 flags &= ~AMDGPU_PTE_READABLE; 1675 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1676 flags &= ~AMDGPU_PTE_WRITEABLE; 1677 1678 /* Apply ASIC specific mapping flags */ 1679 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1680 1681 trace_amdgpu_vm_bo_update(mapping); 1682 1683 pfn = mapping->offset >> PAGE_SHIFT; 1684 if (nodes) { 1685 while (pfn >= nodes->size) { 1686 pfn -= nodes->size; 1687 ++nodes; 1688 } 1689 } 1690 1691 do { 1692 dma_addr_t *dma_addr = NULL; 1693 uint64_t max_entries; 1694 uint64_t addr, last; 1695 1696 max_entries = mapping->last - start + 1; 1697 if (nodes) { 1698 addr = nodes->start << PAGE_SHIFT; 1699 max_entries = min((nodes->size - pfn) * 1700 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries); 1701 } else { 1702 addr = 0; 1703 } 1704 1705 if (pages_addr) { 1706 uint64_t count; 1707 1708 for (count = 1; 1709 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1710 ++count) { 1711 uint64_t idx = pfn + count; 1712 1713 if (pages_addr[idx] != 1714 (pages_addr[idx - 1] + PAGE_SIZE)) 1715 break; 1716 } 1717 1718 if (count < min_linear_pages) { 1719 addr = pfn << PAGE_SHIFT; 1720 dma_addr = pages_addr; 1721 } else { 1722 addr = pages_addr[pfn]; 1723 max_entries = count * 1724 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1725 } 1726 1727 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1728 addr += bo_adev->vm_manager.vram_base_offset; 1729 addr += pfn << PAGE_SHIFT; 1730 } 1731 1732 last = start + max_entries - 1; 1733 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 1734 start, last, flags, addr, 1735 dma_addr, fence); 1736 if (r) 1737 return r; 1738 1739 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1740 if (nodes && nodes->size == pfn) { 1741 pfn = 0; 1742 ++nodes; 1743 } 1744 start = last + 1; 1745 1746 } while (unlikely(start != mapping->last + 1)); 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1753 * 1754 * @adev: amdgpu_device pointer 1755 * @bo_va: requested BO and VM object 1756 * @clear: if true clear the entries 1757 * 1758 * Fill in the page table entries for @bo_va. 1759 * 1760 * Returns: 1761 * 0 for success, -EINVAL for failure. 1762 */ 1763 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1764 bool clear) 1765 { 1766 struct amdgpu_bo *bo = bo_va->base.bo; 1767 struct amdgpu_vm *vm = bo_va->base.vm; 1768 struct amdgpu_bo_va_mapping *mapping; 1769 dma_addr_t *pages_addr = NULL; 1770 struct ttm_resource *mem; 1771 struct drm_mm_node *nodes; 1772 struct dma_fence **last_update; 1773 struct dma_resv *resv; 1774 uint64_t flags; 1775 struct amdgpu_device *bo_adev = adev; 1776 int r; 1777 1778 if (clear || !bo) { 1779 mem = NULL; 1780 nodes = NULL; 1781 resv = vm->root.base.bo->tbo.base.resv; 1782 } else { 1783 struct drm_gem_object *obj = &bo->tbo.base; 1784 struct ttm_dma_tt *ttm; 1785 1786 resv = bo->tbo.base.resv; 1787 if (obj->import_attach && bo_va->is_xgmi) { 1788 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1789 struct drm_gem_object *gobj = dma_buf->priv; 1790 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1791 1792 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1793 bo = gem_to_amdgpu_bo(gobj); 1794 } 1795 mem = &bo->tbo.mem; 1796 nodes = mem->mm_node; 1797 if (mem->mem_type == TTM_PL_TT) { 1798 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1799 pages_addr = ttm->dma_address; 1800 } 1801 } 1802 1803 if (bo) { 1804 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1805 1806 if (amdgpu_bo_encrypted(bo)) 1807 flags |= AMDGPU_PTE_TMZ; 1808 1809 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1810 } else { 1811 flags = 0x0; 1812 } 1813 1814 if (clear || (bo && bo->tbo.base.resv == 1815 vm->root.base.bo->tbo.base.resv)) 1816 last_update = &vm->last_update; 1817 else 1818 last_update = &bo_va->last_pt_update; 1819 1820 if (!clear && bo_va->base.moved) { 1821 bo_va->base.moved = false; 1822 list_splice_init(&bo_va->valids, &bo_va->invalids); 1823 1824 } else if (bo_va->cleared != clear) { 1825 list_splice_init(&bo_va->valids, &bo_va->invalids); 1826 } 1827 1828 list_for_each_entry(mapping, &bo_va->invalids, list) { 1829 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm, 1830 mapping, flags, bo_adev, nodes, 1831 last_update); 1832 if (r) 1833 return r; 1834 } 1835 1836 /* If the BO is not in its preferred location add it back to 1837 * the evicted list so that it gets validated again on the 1838 * next command submission. 1839 */ 1840 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1841 uint32_t mem_type = bo->tbo.mem.mem_type; 1842 1843 if (!(bo->preferred_domains & 1844 amdgpu_mem_type_to_domain(mem_type))) 1845 amdgpu_vm_bo_evicted(&bo_va->base); 1846 else 1847 amdgpu_vm_bo_idle(&bo_va->base); 1848 } else { 1849 amdgpu_vm_bo_done(&bo_va->base); 1850 } 1851 1852 list_splice_init(&bo_va->invalids, &bo_va->valids); 1853 bo_va->cleared = clear; 1854 1855 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1856 list_for_each_entry(mapping, &bo_va->valids, list) 1857 trace_amdgpu_vm_bo_mapping(mapping); 1858 } 1859 1860 return 0; 1861 } 1862 1863 /** 1864 * amdgpu_vm_update_prt_state - update the global PRT state 1865 * 1866 * @adev: amdgpu_device pointer 1867 */ 1868 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1869 { 1870 unsigned long flags; 1871 bool enable; 1872 1873 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1874 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1875 adev->gmc.gmc_funcs->set_prt(adev, enable); 1876 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1877 } 1878 1879 /** 1880 * amdgpu_vm_prt_get - add a PRT user 1881 * 1882 * @adev: amdgpu_device pointer 1883 */ 1884 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1885 { 1886 if (!adev->gmc.gmc_funcs->set_prt) 1887 return; 1888 1889 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1890 amdgpu_vm_update_prt_state(adev); 1891 } 1892 1893 /** 1894 * amdgpu_vm_prt_put - drop a PRT user 1895 * 1896 * @adev: amdgpu_device pointer 1897 */ 1898 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1899 { 1900 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1901 amdgpu_vm_update_prt_state(adev); 1902 } 1903 1904 /** 1905 * amdgpu_vm_prt_cb - callback for updating the PRT status 1906 * 1907 * @fence: fence for the callback 1908 * @_cb: the callback function 1909 */ 1910 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1911 { 1912 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1913 1914 amdgpu_vm_prt_put(cb->adev); 1915 kfree(cb); 1916 } 1917 1918 /** 1919 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1920 * 1921 * @adev: amdgpu_device pointer 1922 * @fence: fence for the callback 1923 */ 1924 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1925 struct dma_fence *fence) 1926 { 1927 struct amdgpu_prt_cb *cb; 1928 1929 if (!adev->gmc.gmc_funcs->set_prt) 1930 return; 1931 1932 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1933 if (!cb) { 1934 /* Last resort when we are OOM */ 1935 if (fence) 1936 dma_fence_wait(fence, false); 1937 1938 amdgpu_vm_prt_put(adev); 1939 } else { 1940 cb->adev = adev; 1941 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1942 amdgpu_vm_prt_cb)) 1943 amdgpu_vm_prt_cb(fence, &cb->cb); 1944 } 1945 } 1946 1947 /** 1948 * amdgpu_vm_free_mapping - free a mapping 1949 * 1950 * @adev: amdgpu_device pointer 1951 * @vm: requested vm 1952 * @mapping: mapping to be freed 1953 * @fence: fence of the unmap operation 1954 * 1955 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1956 */ 1957 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1958 struct amdgpu_vm *vm, 1959 struct amdgpu_bo_va_mapping *mapping, 1960 struct dma_fence *fence) 1961 { 1962 if (mapping->flags & AMDGPU_PTE_PRT) 1963 amdgpu_vm_add_prt_cb(adev, fence); 1964 kfree(mapping); 1965 } 1966 1967 /** 1968 * amdgpu_vm_prt_fini - finish all prt mappings 1969 * 1970 * @adev: amdgpu_device pointer 1971 * @vm: requested vm 1972 * 1973 * Register a cleanup callback to disable PRT support after VM dies. 1974 */ 1975 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1976 { 1977 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1978 struct dma_fence *excl, **shared; 1979 unsigned i, shared_count; 1980 int r; 1981 1982 r = dma_resv_get_fences_rcu(resv, &excl, 1983 &shared_count, &shared); 1984 if (r) { 1985 /* Not enough memory to grab the fence list, as last resort 1986 * block for all the fences to complete. 1987 */ 1988 dma_resv_wait_timeout_rcu(resv, true, false, 1989 MAX_SCHEDULE_TIMEOUT); 1990 return; 1991 } 1992 1993 /* Add a callback for each fence in the reservation object */ 1994 amdgpu_vm_prt_get(adev); 1995 amdgpu_vm_add_prt_cb(adev, excl); 1996 1997 for (i = 0; i < shared_count; ++i) { 1998 amdgpu_vm_prt_get(adev); 1999 amdgpu_vm_add_prt_cb(adev, shared[i]); 2000 } 2001 2002 kfree(shared); 2003 } 2004 2005 /** 2006 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2007 * 2008 * @adev: amdgpu_device pointer 2009 * @vm: requested vm 2010 * @fence: optional resulting fence (unchanged if no work needed to be done 2011 * or if an error occurred) 2012 * 2013 * Make sure all freed BOs are cleared in the PT. 2014 * PTs have to be reserved and mutex must be locked! 2015 * 2016 * Returns: 2017 * 0 for success. 2018 * 2019 */ 2020 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2021 struct amdgpu_vm *vm, 2022 struct dma_fence **fence) 2023 { 2024 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2025 struct amdgpu_bo_va_mapping *mapping; 2026 uint64_t init_pte_value = 0; 2027 struct dma_fence *f = NULL; 2028 int r; 2029 2030 while (!list_empty(&vm->freed)) { 2031 mapping = list_first_entry(&vm->freed, 2032 struct amdgpu_bo_va_mapping, list); 2033 list_del(&mapping->list); 2034 2035 if (vm->pte_support_ats && 2036 mapping->start < AMDGPU_GMC_HOLE_START) 2037 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2038 2039 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 2040 mapping->start, mapping->last, 2041 init_pte_value, 0, NULL, &f); 2042 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2043 if (r) { 2044 dma_fence_put(f); 2045 return r; 2046 } 2047 } 2048 2049 if (fence && f) { 2050 dma_fence_put(*fence); 2051 *fence = f; 2052 } else { 2053 dma_fence_put(f); 2054 } 2055 2056 return 0; 2057 2058 } 2059 2060 /** 2061 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2062 * 2063 * @adev: amdgpu_device pointer 2064 * @vm: requested vm 2065 * 2066 * Make sure all BOs which are moved are updated in the PTs. 2067 * 2068 * Returns: 2069 * 0 for success. 2070 * 2071 * PTs have to be reserved! 2072 */ 2073 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2074 struct amdgpu_vm *vm) 2075 { 2076 struct amdgpu_bo_va *bo_va, *tmp; 2077 struct dma_resv *resv; 2078 bool clear; 2079 int r; 2080 2081 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2082 /* Per VM BOs never need to bo cleared in the page tables */ 2083 r = amdgpu_vm_bo_update(adev, bo_va, false); 2084 if (r) 2085 return r; 2086 } 2087 2088 spin_lock(&vm->invalidated_lock); 2089 while (!list_empty(&vm->invalidated)) { 2090 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2091 base.vm_status); 2092 resv = bo_va->base.bo->tbo.base.resv; 2093 spin_unlock(&vm->invalidated_lock); 2094 2095 /* Try to reserve the BO to avoid clearing its ptes */ 2096 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2097 clear = false; 2098 /* Somebody else is using the BO right now */ 2099 else 2100 clear = true; 2101 2102 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2103 if (r) 2104 return r; 2105 2106 if (!clear) 2107 dma_resv_unlock(resv); 2108 spin_lock(&vm->invalidated_lock); 2109 } 2110 spin_unlock(&vm->invalidated_lock); 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * amdgpu_vm_bo_add - add a bo to a specific vm 2117 * 2118 * @adev: amdgpu_device pointer 2119 * @vm: requested vm 2120 * @bo: amdgpu buffer object 2121 * 2122 * Add @bo into the requested vm. 2123 * Add @bo to the list of bos associated with the vm 2124 * 2125 * Returns: 2126 * Newly added bo_va or NULL for failure 2127 * 2128 * Object has to be reserved! 2129 */ 2130 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2131 struct amdgpu_vm *vm, 2132 struct amdgpu_bo *bo) 2133 { 2134 struct amdgpu_bo_va *bo_va; 2135 2136 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2137 if (bo_va == NULL) { 2138 return NULL; 2139 } 2140 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2141 2142 bo_va->ref_count = 1; 2143 INIT_LIST_HEAD(&bo_va->valids); 2144 INIT_LIST_HEAD(&bo_va->invalids); 2145 2146 if (!bo) 2147 return bo_va; 2148 2149 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2150 bo_va->is_xgmi = true; 2151 /* Power up XGMI if it can be potentially used */ 2152 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2153 } 2154 2155 return bo_va; 2156 } 2157 2158 2159 /** 2160 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2161 * 2162 * @adev: amdgpu_device pointer 2163 * @bo_va: bo_va to store the address 2164 * @mapping: the mapping to insert 2165 * 2166 * Insert a new mapping into all structures. 2167 */ 2168 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2169 struct amdgpu_bo_va *bo_va, 2170 struct amdgpu_bo_va_mapping *mapping) 2171 { 2172 struct amdgpu_vm *vm = bo_va->base.vm; 2173 struct amdgpu_bo *bo = bo_va->base.bo; 2174 2175 mapping->bo_va = bo_va; 2176 list_add(&mapping->list, &bo_va->invalids); 2177 amdgpu_vm_it_insert(mapping, &vm->va); 2178 2179 if (mapping->flags & AMDGPU_PTE_PRT) 2180 amdgpu_vm_prt_get(adev); 2181 2182 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2183 !bo_va->base.moved) { 2184 list_move(&bo_va->base.vm_status, &vm->moved); 2185 } 2186 trace_amdgpu_vm_bo_map(bo_va, mapping); 2187 } 2188 2189 /** 2190 * amdgpu_vm_bo_map - map bo inside a vm 2191 * 2192 * @adev: amdgpu_device pointer 2193 * @bo_va: bo_va to store the address 2194 * @saddr: where to map the BO 2195 * @offset: requested offset in the BO 2196 * @size: BO size in bytes 2197 * @flags: attributes of pages (read/write/valid/etc.) 2198 * 2199 * Add a mapping of the BO at the specefied addr into the VM. 2200 * 2201 * Returns: 2202 * 0 for success, error for failure. 2203 * 2204 * Object has to be reserved and unreserved outside! 2205 */ 2206 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2207 struct amdgpu_bo_va *bo_va, 2208 uint64_t saddr, uint64_t offset, 2209 uint64_t size, uint64_t flags) 2210 { 2211 struct amdgpu_bo_va_mapping *mapping, *tmp; 2212 struct amdgpu_bo *bo = bo_va->base.bo; 2213 struct amdgpu_vm *vm = bo_va->base.vm; 2214 uint64_t eaddr; 2215 2216 /* validate the parameters */ 2217 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2218 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2219 return -EINVAL; 2220 2221 /* make sure object fit at this offset */ 2222 eaddr = saddr + size - 1; 2223 if (saddr >= eaddr || 2224 (bo && offset + size > amdgpu_bo_size(bo)) || 2225 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2226 return -EINVAL; 2227 2228 saddr /= AMDGPU_GPU_PAGE_SIZE; 2229 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2230 2231 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2232 if (tmp) { 2233 /* bo and tmp overlap, invalid addr */ 2234 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2235 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2236 tmp->start, tmp->last + 1); 2237 return -EINVAL; 2238 } 2239 2240 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2241 if (!mapping) 2242 return -ENOMEM; 2243 2244 mapping->start = saddr; 2245 mapping->last = eaddr; 2246 mapping->offset = offset; 2247 mapping->flags = flags; 2248 2249 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2250 2251 return 0; 2252 } 2253 2254 /** 2255 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2256 * 2257 * @adev: amdgpu_device pointer 2258 * @bo_va: bo_va to store the address 2259 * @saddr: where to map the BO 2260 * @offset: requested offset in the BO 2261 * @size: BO size in bytes 2262 * @flags: attributes of pages (read/write/valid/etc.) 2263 * 2264 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2265 * mappings as we do so. 2266 * 2267 * Returns: 2268 * 0 for success, error for failure. 2269 * 2270 * Object has to be reserved and unreserved outside! 2271 */ 2272 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2273 struct amdgpu_bo_va *bo_va, 2274 uint64_t saddr, uint64_t offset, 2275 uint64_t size, uint64_t flags) 2276 { 2277 struct amdgpu_bo_va_mapping *mapping; 2278 struct amdgpu_bo *bo = bo_va->base.bo; 2279 uint64_t eaddr; 2280 int r; 2281 2282 /* validate the parameters */ 2283 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2284 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2285 return -EINVAL; 2286 2287 /* make sure object fit at this offset */ 2288 eaddr = saddr + size - 1; 2289 if (saddr >= eaddr || 2290 (bo && offset + size > amdgpu_bo_size(bo)) || 2291 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2292 return -EINVAL; 2293 2294 /* Allocate all the needed memory */ 2295 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2296 if (!mapping) 2297 return -ENOMEM; 2298 2299 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2300 if (r) { 2301 kfree(mapping); 2302 return r; 2303 } 2304 2305 saddr /= AMDGPU_GPU_PAGE_SIZE; 2306 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2307 2308 mapping->start = saddr; 2309 mapping->last = eaddr; 2310 mapping->offset = offset; 2311 mapping->flags = flags; 2312 2313 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2314 2315 return 0; 2316 } 2317 2318 /** 2319 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2320 * 2321 * @adev: amdgpu_device pointer 2322 * @bo_va: bo_va to remove the address from 2323 * @saddr: where to the BO is mapped 2324 * 2325 * Remove a mapping of the BO at the specefied addr from the VM. 2326 * 2327 * Returns: 2328 * 0 for success, error for failure. 2329 * 2330 * Object has to be reserved and unreserved outside! 2331 */ 2332 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2333 struct amdgpu_bo_va *bo_va, 2334 uint64_t saddr) 2335 { 2336 struct amdgpu_bo_va_mapping *mapping; 2337 struct amdgpu_vm *vm = bo_va->base.vm; 2338 bool valid = true; 2339 2340 saddr /= AMDGPU_GPU_PAGE_SIZE; 2341 2342 list_for_each_entry(mapping, &bo_va->valids, list) { 2343 if (mapping->start == saddr) 2344 break; 2345 } 2346 2347 if (&mapping->list == &bo_va->valids) { 2348 valid = false; 2349 2350 list_for_each_entry(mapping, &bo_va->invalids, list) { 2351 if (mapping->start == saddr) 2352 break; 2353 } 2354 2355 if (&mapping->list == &bo_va->invalids) 2356 return -ENOENT; 2357 } 2358 2359 list_del(&mapping->list); 2360 amdgpu_vm_it_remove(mapping, &vm->va); 2361 mapping->bo_va = NULL; 2362 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2363 2364 if (valid) 2365 list_add(&mapping->list, &vm->freed); 2366 else 2367 amdgpu_vm_free_mapping(adev, vm, mapping, 2368 bo_va->last_pt_update); 2369 2370 return 0; 2371 } 2372 2373 /** 2374 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2375 * 2376 * @adev: amdgpu_device pointer 2377 * @vm: VM structure to use 2378 * @saddr: start of the range 2379 * @size: size of the range 2380 * 2381 * Remove all mappings in a range, split them as appropriate. 2382 * 2383 * Returns: 2384 * 0 for success, error for failure. 2385 */ 2386 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2387 struct amdgpu_vm *vm, 2388 uint64_t saddr, uint64_t size) 2389 { 2390 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2391 LIST_HEAD(removed); 2392 uint64_t eaddr; 2393 2394 eaddr = saddr + size - 1; 2395 saddr /= AMDGPU_GPU_PAGE_SIZE; 2396 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2397 2398 /* Allocate all the needed memory */ 2399 before = kzalloc(sizeof(*before), GFP_KERNEL); 2400 if (!before) 2401 return -ENOMEM; 2402 INIT_LIST_HEAD(&before->list); 2403 2404 after = kzalloc(sizeof(*after), GFP_KERNEL); 2405 if (!after) { 2406 kfree(before); 2407 return -ENOMEM; 2408 } 2409 INIT_LIST_HEAD(&after->list); 2410 2411 /* Now gather all removed mappings */ 2412 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2413 while (tmp) { 2414 /* Remember mapping split at the start */ 2415 if (tmp->start < saddr) { 2416 before->start = tmp->start; 2417 before->last = saddr - 1; 2418 before->offset = tmp->offset; 2419 before->flags = tmp->flags; 2420 before->bo_va = tmp->bo_va; 2421 list_add(&before->list, &tmp->bo_va->invalids); 2422 } 2423 2424 /* Remember mapping split at the end */ 2425 if (tmp->last > eaddr) { 2426 after->start = eaddr + 1; 2427 after->last = tmp->last; 2428 after->offset = tmp->offset; 2429 after->offset += after->start - tmp->start; 2430 after->flags = tmp->flags; 2431 after->bo_va = tmp->bo_va; 2432 list_add(&after->list, &tmp->bo_va->invalids); 2433 } 2434 2435 list_del(&tmp->list); 2436 list_add(&tmp->list, &removed); 2437 2438 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2439 } 2440 2441 /* And free them up */ 2442 list_for_each_entry_safe(tmp, next, &removed, list) { 2443 amdgpu_vm_it_remove(tmp, &vm->va); 2444 list_del(&tmp->list); 2445 2446 if (tmp->start < saddr) 2447 tmp->start = saddr; 2448 if (tmp->last > eaddr) 2449 tmp->last = eaddr; 2450 2451 tmp->bo_va = NULL; 2452 list_add(&tmp->list, &vm->freed); 2453 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2454 } 2455 2456 /* Insert partial mapping before the range */ 2457 if (!list_empty(&before->list)) { 2458 amdgpu_vm_it_insert(before, &vm->va); 2459 if (before->flags & AMDGPU_PTE_PRT) 2460 amdgpu_vm_prt_get(adev); 2461 } else { 2462 kfree(before); 2463 } 2464 2465 /* Insert partial mapping after the range */ 2466 if (!list_empty(&after->list)) { 2467 amdgpu_vm_it_insert(after, &vm->va); 2468 if (after->flags & AMDGPU_PTE_PRT) 2469 amdgpu_vm_prt_get(adev); 2470 } else { 2471 kfree(after); 2472 } 2473 2474 return 0; 2475 } 2476 2477 /** 2478 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2479 * 2480 * @vm: the requested VM 2481 * @addr: the address 2482 * 2483 * Find a mapping by it's address. 2484 * 2485 * Returns: 2486 * The amdgpu_bo_va_mapping matching for addr or NULL 2487 * 2488 */ 2489 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2490 uint64_t addr) 2491 { 2492 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2493 } 2494 2495 /** 2496 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2497 * 2498 * @vm: the requested vm 2499 * @ticket: CS ticket 2500 * 2501 * Trace all mappings of BOs reserved during a command submission. 2502 */ 2503 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2504 { 2505 struct amdgpu_bo_va_mapping *mapping; 2506 2507 if (!trace_amdgpu_vm_bo_cs_enabled()) 2508 return; 2509 2510 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2511 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2512 if (mapping->bo_va && mapping->bo_va->base.bo) { 2513 struct amdgpu_bo *bo; 2514 2515 bo = mapping->bo_va->base.bo; 2516 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2517 ticket) 2518 continue; 2519 } 2520 2521 trace_amdgpu_vm_bo_cs(mapping); 2522 } 2523 } 2524 2525 /** 2526 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2527 * 2528 * @adev: amdgpu_device pointer 2529 * @bo_va: requested bo_va 2530 * 2531 * Remove @bo_va->bo from the requested vm. 2532 * 2533 * Object have to be reserved! 2534 */ 2535 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2536 struct amdgpu_bo_va *bo_va) 2537 { 2538 struct amdgpu_bo_va_mapping *mapping, *next; 2539 struct amdgpu_bo *bo = bo_va->base.bo; 2540 struct amdgpu_vm *vm = bo_va->base.vm; 2541 struct amdgpu_vm_bo_base **base; 2542 2543 if (bo) { 2544 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2545 vm->bulk_moveable = false; 2546 2547 for (base = &bo_va->base.bo->vm_bo; *base; 2548 base = &(*base)->next) { 2549 if (*base != &bo_va->base) 2550 continue; 2551 2552 *base = bo_va->base.next; 2553 break; 2554 } 2555 } 2556 2557 spin_lock(&vm->invalidated_lock); 2558 list_del(&bo_va->base.vm_status); 2559 spin_unlock(&vm->invalidated_lock); 2560 2561 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2562 list_del(&mapping->list); 2563 amdgpu_vm_it_remove(mapping, &vm->va); 2564 mapping->bo_va = NULL; 2565 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2566 list_add(&mapping->list, &vm->freed); 2567 } 2568 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2569 list_del(&mapping->list); 2570 amdgpu_vm_it_remove(mapping, &vm->va); 2571 amdgpu_vm_free_mapping(adev, vm, mapping, 2572 bo_va->last_pt_update); 2573 } 2574 2575 dma_fence_put(bo_va->last_pt_update); 2576 2577 if (bo && bo_va->is_xgmi) 2578 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2579 2580 kfree(bo_va); 2581 } 2582 2583 /** 2584 * amdgpu_vm_evictable - check if we can evict a VM 2585 * 2586 * @bo: A page table of the VM. 2587 * 2588 * Check if it is possible to evict a VM. 2589 */ 2590 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2591 { 2592 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2593 2594 /* Page tables of a destroyed VM can go away immediately */ 2595 if (!bo_base || !bo_base->vm) 2596 return true; 2597 2598 /* Don't evict VM page tables while they are busy */ 2599 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2600 return false; 2601 2602 /* Try to block ongoing updates */ 2603 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2604 return false; 2605 2606 /* Don't evict VM page tables while they are updated */ 2607 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2608 amdgpu_vm_eviction_unlock(bo_base->vm); 2609 return false; 2610 } 2611 2612 bo_base->vm->evicting = true; 2613 amdgpu_vm_eviction_unlock(bo_base->vm); 2614 return true; 2615 } 2616 2617 /** 2618 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2619 * 2620 * @adev: amdgpu_device pointer 2621 * @bo: amdgpu buffer object 2622 * @evicted: is the BO evicted 2623 * 2624 * Mark @bo as invalid. 2625 */ 2626 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2627 struct amdgpu_bo *bo, bool evicted) 2628 { 2629 struct amdgpu_vm_bo_base *bo_base; 2630 2631 /* shadow bo doesn't have bo base, its validation needs its parent */ 2632 if (bo->parent && bo->parent->shadow == bo) 2633 bo = bo->parent; 2634 2635 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2636 struct amdgpu_vm *vm = bo_base->vm; 2637 2638 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2639 amdgpu_vm_bo_evicted(bo_base); 2640 continue; 2641 } 2642 2643 if (bo_base->moved) 2644 continue; 2645 bo_base->moved = true; 2646 2647 if (bo->tbo.type == ttm_bo_type_kernel) 2648 amdgpu_vm_bo_relocated(bo_base); 2649 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2650 amdgpu_vm_bo_moved(bo_base); 2651 else 2652 amdgpu_vm_bo_invalidated(bo_base); 2653 } 2654 } 2655 2656 /** 2657 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2658 * 2659 * @vm_size: VM size 2660 * 2661 * Returns: 2662 * VM page table as power of two 2663 */ 2664 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2665 { 2666 /* Total bits covered by PD + PTs */ 2667 unsigned bits = ilog2(vm_size) + 18; 2668 2669 /* Make sure the PD is 4K in size up to 8GB address space. 2670 Above that split equal between PD and PTs */ 2671 if (vm_size <= 8) 2672 return (bits - 9); 2673 else 2674 return ((bits + 3) / 2); 2675 } 2676 2677 /** 2678 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2679 * 2680 * @adev: amdgpu_device pointer 2681 * @min_vm_size: the minimum vm size in GB if it's set auto 2682 * @fragment_size_default: Default PTE fragment size 2683 * @max_level: max VMPT level 2684 * @max_bits: max address space size in bits 2685 * 2686 */ 2687 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2688 uint32_t fragment_size_default, unsigned max_level, 2689 unsigned max_bits) 2690 { 2691 unsigned int max_size = 1 << (max_bits - 30); 2692 unsigned int vm_size; 2693 uint64_t tmp; 2694 2695 /* adjust vm size first */ 2696 if (amdgpu_vm_size != -1) { 2697 vm_size = amdgpu_vm_size; 2698 if (vm_size > max_size) { 2699 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2700 amdgpu_vm_size, max_size); 2701 vm_size = max_size; 2702 } 2703 } else { 2704 struct sysinfo si; 2705 unsigned int phys_ram_gb; 2706 2707 /* Optimal VM size depends on the amount of physical 2708 * RAM available. Underlying requirements and 2709 * assumptions: 2710 * 2711 * - Need to map system memory and VRAM from all GPUs 2712 * - VRAM from other GPUs not known here 2713 * - Assume VRAM <= system memory 2714 * - On GFX8 and older, VM space can be segmented for 2715 * different MTYPEs 2716 * - Need to allow room for fragmentation, guard pages etc. 2717 * 2718 * This adds up to a rough guess of system memory x3. 2719 * Round up to power of two to maximize the available 2720 * VM size with the given page table size. 2721 */ 2722 si_meminfo(&si); 2723 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2724 (1 << 30) - 1) >> 30; 2725 vm_size = roundup_pow_of_two( 2726 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2727 } 2728 2729 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2730 2731 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2732 if (amdgpu_vm_block_size != -1) 2733 tmp >>= amdgpu_vm_block_size - 9; 2734 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2735 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2736 switch (adev->vm_manager.num_level) { 2737 case 3: 2738 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2739 break; 2740 case 2: 2741 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2742 break; 2743 case 1: 2744 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2745 break; 2746 default: 2747 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2748 } 2749 /* block size depends on vm size and hw setup*/ 2750 if (amdgpu_vm_block_size != -1) 2751 adev->vm_manager.block_size = 2752 min((unsigned)amdgpu_vm_block_size, max_bits 2753 - AMDGPU_GPU_PAGE_SHIFT 2754 - 9 * adev->vm_manager.num_level); 2755 else if (adev->vm_manager.num_level > 1) 2756 adev->vm_manager.block_size = 9; 2757 else 2758 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2759 2760 if (amdgpu_vm_fragment_size == -1) 2761 adev->vm_manager.fragment_size = fragment_size_default; 2762 else 2763 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2764 2765 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2766 vm_size, adev->vm_manager.num_level + 1, 2767 adev->vm_manager.block_size, 2768 adev->vm_manager.fragment_size); 2769 } 2770 2771 /** 2772 * amdgpu_vm_wait_idle - wait for the VM to become idle 2773 * 2774 * @vm: VM object to wait for 2775 * @timeout: timeout to wait for VM to become idle 2776 */ 2777 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2778 { 2779 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2780 true, true, timeout); 2781 if (timeout <= 0) 2782 return timeout; 2783 2784 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2785 } 2786 2787 /** 2788 * amdgpu_vm_init - initialize a vm instance 2789 * 2790 * @adev: amdgpu_device pointer 2791 * @vm: requested vm 2792 * @vm_context: Indicates if it GFX or Compute context 2793 * @pasid: Process address space identifier 2794 * 2795 * Init @vm fields. 2796 * 2797 * Returns: 2798 * 0 for success, error for failure. 2799 */ 2800 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2801 int vm_context, unsigned int pasid) 2802 { 2803 struct amdgpu_bo_param bp; 2804 struct amdgpu_bo *root; 2805 int r, i; 2806 2807 vm->va = RB_ROOT_CACHED; 2808 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2809 vm->reserved_vmid[i] = NULL; 2810 INIT_LIST_HEAD(&vm->evicted); 2811 INIT_LIST_HEAD(&vm->relocated); 2812 INIT_LIST_HEAD(&vm->moved); 2813 INIT_LIST_HEAD(&vm->idle); 2814 INIT_LIST_HEAD(&vm->invalidated); 2815 spin_lock_init(&vm->invalidated_lock); 2816 INIT_LIST_HEAD(&vm->freed); 2817 2818 2819 /* create scheduler entities for page table updates */ 2820 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2821 adev->vm_manager.vm_pte_scheds, 2822 adev->vm_manager.vm_pte_num_scheds, NULL); 2823 if (r) 2824 return r; 2825 2826 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2827 adev->vm_manager.vm_pte_scheds, 2828 adev->vm_manager.vm_pte_num_scheds, NULL); 2829 if (r) 2830 goto error_free_immediate; 2831 2832 vm->pte_support_ats = false; 2833 vm->is_compute_context = false; 2834 2835 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2836 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2837 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2838 2839 if (adev->asic_type == CHIP_RAVEN) 2840 vm->pte_support_ats = true; 2841 } else { 2842 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2843 AMDGPU_VM_USE_CPU_FOR_GFX); 2844 } 2845 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2846 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2847 WARN_ONCE((vm->use_cpu_for_update && 2848 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2849 "CPU update of VM recommended only for large BAR system\n"); 2850 2851 if (vm->use_cpu_for_update) 2852 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2853 else 2854 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2855 vm->last_update = NULL; 2856 vm->last_unlocked = dma_fence_get_stub(); 2857 2858 mutex_init(&vm->eviction_lock); 2859 vm->evicting = false; 2860 2861 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2862 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2863 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2864 r = amdgpu_bo_create(adev, &bp, &root); 2865 if (r) 2866 goto error_free_delayed; 2867 2868 r = amdgpu_bo_reserve(root, true); 2869 if (r) 2870 goto error_free_root; 2871 2872 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2873 if (r) 2874 goto error_unreserve; 2875 2876 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2877 2878 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2879 if (r) 2880 goto error_unreserve; 2881 2882 amdgpu_bo_unreserve(vm->root.base.bo); 2883 2884 if (pasid) { 2885 unsigned long flags; 2886 2887 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2888 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2889 GFP_ATOMIC); 2890 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2891 if (r < 0) 2892 goto error_free_root; 2893 2894 vm->pasid = pasid; 2895 } 2896 2897 INIT_KFIFO(vm->faults); 2898 2899 return 0; 2900 2901 error_unreserve: 2902 amdgpu_bo_unreserve(vm->root.base.bo); 2903 2904 error_free_root: 2905 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2906 amdgpu_bo_unref(&vm->root.base.bo); 2907 vm->root.base.bo = NULL; 2908 2909 error_free_delayed: 2910 dma_fence_put(vm->last_unlocked); 2911 drm_sched_entity_destroy(&vm->delayed); 2912 2913 error_free_immediate: 2914 drm_sched_entity_destroy(&vm->immediate); 2915 2916 return r; 2917 } 2918 2919 /** 2920 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2921 * 2922 * @adev: amdgpu_device pointer 2923 * @vm: the VM to check 2924 * 2925 * check all entries of the root PD, if any subsequent PDs are allocated, 2926 * it means there are page table creating and filling, and is no a clean 2927 * VM 2928 * 2929 * Returns: 2930 * 0 if this VM is clean 2931 */ 2932 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2933 struct amdgpu_vm *vm) 2934 { 2935 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2936 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2937 unsigned int i = 0; 2938 2939 if (!(vm->root.entries)) 2940 return 0; 2941 2942 for (i = 0; i < entries; i++) { 2943 if (vm->root.entries[i].base.bo) 2944 return -EINVAL; 2945 } 2946 2947 return 0; 2948 } 2949 2950 /** 2951 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2952 * 2953 * @adev: amdgpu_device pointer 2954 * @vm: requested vm 2955 * @pasid: pasid to use 2956 * 2957 * This only works on GFX VMs that don't have any BOs added and no 2958 * page tables allocated yet. 2959 * 2960 * Changes the following VM parameters: 2961 * - use_cpu_for_update 2962 * - pte_supports_ats 2963 * - pasid (old PASID is released, because compute manages its own PASIDs) 2964 * 2965 * Reinitializes the page directory to reflect the changed ATS 2966 * setting. 2967 * 2968 * Returns: 2969 * 0 for success, -errno for errors. 2970 */ 2971 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2972 unsigned int pasid) 2973 { 2974 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2975 int r; 2976 2977 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2978 if (r) 2979 return r; 2980 2981 /* Sanity checks */ 2982 r = amdgpu_vm_check_clean_reserved(adev, vm); 2983 if (r) 2984 goto unreserve_bo; 2985 2986 if (pasid) { 2987 unsigned long flags; 2988 2989 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2990 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2991 GFP_ATOMIC); 2992 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2993 2994 if (r == -ENOSPC) 2995 goto unreserve_bo; 2996 r = 0; 2997 } 2998 2999 /* Check if PD needs to be reinitialized and do it before 3000 * changing any other state, in case it fails. 3001 */ 3002 if (pte_support_ats != vm->pte_support_ats) { 3003 vm->pte_support_ats = pte_support_ats; 3004 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 3005 if (r) 3006 goto free_idr; 3007 } 3008 3009 /* Update VM state */ 3010 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3011 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3012 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3013 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3014 WARN_ONCE((vm->use_cpu_for_update && 3015 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3016 "CPU update of VM recommended only for large BAR system\n"); 3017 3018 if (vm->use_cpu_for_update) { 3019 /* Sync with last SDMA update/clear before switching to CPU */ 3020 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3021 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3022 if (r) 3023 goto free_idr; 3024 3025 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3026 } else { 3027 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3028 } 3029 dma_fence_put(vm->last_update); 3030 vm->last_update = NULL; 3031 vm->is_compute_context = true; 3032 3033 if (vm->pasid) { 3034 unsigned long flags; 3035 3036 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3037 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3038 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3039 3040 /* Free the original amdgpu allocated pasid 3041 * Will be replaced with kfd allocated pasid 3042 */ 3043 amdgpu_pasid_free(vm->pasid); 3044 vm->pasid = 0; 3045 } 3046 3047 /* Free the shadow bo for compute VM */ 3048 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3049 3050 if (pasid) 3051 vm->pasid = pasid; 3052 3053 goto unreserve_bo; 3054 3055 free_idr: 3056 if (pasid) { 3057 unsigned long flags; 3058 3059 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3060 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3061 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3062 } 3063 unreserve_bo: 3064 amdgpu_bo_unreserve(vm->root.base.bo); 3065 return r; 3066 } 3067 3068 /** 3069 * amdgpu_vm_release_compute - release a compute vm 3070 * @adev: amdgpu_device pointer 3071 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3072 * 3073 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3074 * pasid from vm. Compute should stop use of vm after this call. 3075 */ 3076 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3077 { 3078 if (vm->pasid) { 3079 unsigned long flags; 3080 3081 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3082 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3083 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3084 } 3085 vm->pasid = 0; 3086 vm->is_compute_context = false; 3087 } 3088 3089 /** 3090 * amdgpu_vm_fini - tear down a vm instance 3091 * 3092 * @adev: amdgpu_device pointer 3093 * @vm: requested vm 3094 * 3095 * Tear down @vm. 3096 * Unbind the VM and remove all bos from the vm bo list 3097 */ 3098 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3099 { 3100 struct amdgpu_bo_va_mapping *mapping, *tmp; 3101 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3102 struct amdgpu_bo *root; 3103 int i; 3104 3105 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3106 3107 root = amdgpu_bo_ref(vm->root.base.bo); 3108 amdgpu_bo_reserve(root, true); 3109 if (vm->pasid) { 3110 unsigned long flags; 3111 3112 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3113 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3114 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3115 vm->pasid = 0; 3116 } 3117 3118 dma_fence_wait(vm->last_unlocked, false); 3119 dma_fence_put(vm->last_unlocked); 3120 3121 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3122 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3123 amdgpu_vm_prt_fini(adev, vm); 3124 prt_fini_needed = false; 3125 } 3126 3127 list_del(&mapping->list); 3128 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3129 } 3130 3131 amdgpu_vm_free_pts(adev, vm, NULL); 3132 amdgpu_bo_unreserve(root); 3133 amdgpu_bo_unref(&root); 3134 WARN_ON(vm->root.base.bo); 3135 3136 drm_sched_entity_destroy(&vm->immediate); 3137 drm_sched_entity_destroy(&vm->delayed); 3138 3139 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3140 dev_err(adev->dev, "still active bo inside vm\n"); 3141 } 3142 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3143 &vm->va.rb_root, rb) { 3144 /* Don't remove the mapping here, we don't want to trigger a 3145 * rebalance and the tree is about to be destroyed anyway. 3146 */ 3147 list_del(&mapping->list); 3148 kfree(mapping); 3149 } 3150 3151 dma_fence_put(vm->last_update); 3152 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3153 amdgpu_vmid_free_reserved(adev, vm, i); 3154 } 3155 3156 /** 3157 * amdgpu_vm_manager_init - init the VM manager 3158 * 3159 * @adev: amdgpu_device pointer 3160 * 3161 * Initialize the VM manager structures 3162 */ 3163 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3164 { 3165 unsigned i; 3166 3167 amdgpu_vmid_mgr_init(adev); 3168 3169 adev->vm_manager.fence_context = 3170 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3171 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3172 adev->vm_manager.seqno[i] = 0; 3173 3174 spin_lock_init(&adev->vm_manager.prt_lock); 3175 atomic_set(&adev->vm_manager.num_prt_users, 0); 3176 3177 /* If not overridden by the user, by default, only in large BAR systems 3178 * Compute VM tables will be updated by CPU 3179 */ 3180 #ifdef CONFIG_X86_64 3181 if (amdgpu_vm_update_mode == -1) { 3182 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3183 adev->vm_manager.vm_update_mode = 3184 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3185 else 3186 adev->vm_manager.vm_update_mode = 0; 3187 } else 3188 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3189 #else 3190 adev->vm_manager.vm_update_mode = 0; 3191 #endif 3192 3193 idr_init(&adev->vm_manager.pasid_idr); 3194 spin_lock_init(&adev->vm_manager.pasid_lock); 3195 } 3196 3197 /** 3198 * amdgpu_vm_manager_fini - cleanup VM manager 3199 * 3200 * @adev: amdgpu_device pointer 3201 * 3202 * Cleanup the VM manager and free resources. 3203 */ 3204 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3205 { 3206 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3207 idr_destroy(&adev->vm_manager.pasid_idr); 3208 3209 amdgpu_vmid_mgr_fini(adev); 3210 } 3211 3212 /** 3213 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3214 * 3215 * @dev: drm device pointer 3216 * @data: drm_amdgpu_vm 3217 * @filp: drm file pointer 3218 * 3219 * Returns: 3220 * 0 for success, -errno for errors. 3221 */ 3222 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3223 { 3224 union drm_amdgpu_vm *args = data; 3225 struct amdgpu_device *adev = drm_to_adev(dev); 3226 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3227 long timeout = msecs_to_jiffies(2000); 3228 int r; 3229 3230 switch (args->in.op) { 3231 case AMDGPU_VM_OP_RESERVE_VMID: 3232 /* We only have requirement to reserve vmid from gfxhub */ 3233 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3234 AMDGPU_GFXHUB_0); 3235 if (r) 3236 return r; 3237 break; 3238 case AMDGPU_VM_OP_UNRESERVE_VMID: 3239 if (amdgpu_sriov_runtime(adev)) 3240 timeout = 8 * timeout; 3241 3242 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3243 * not referenced anymore. 3244 */ 3245 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3246 if (r) 3247 return r; 3248 3249 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3250 if (r < 0) 3251 return r; 3252 3253 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3254 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3255 break; 3256 default: 3257 return -EINVAL; 3258 } 3259 3260 return 0; 3261 } 3262 3263 /** 3264 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3265 * 3266 * @adev: drm device pointer 3267 * @pasid: PASID identifier for VM 3268 * @task_info: task_info to fill. 3269 */ 3270 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3271 struct amdgpu_task_info *task_info) 3272 { 3273 struct amdgpu_vm *vm; 3274 unsigned long flags; 3275 3276 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3277 3278 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3279 if (vm) 3280 *task_info = vm->task_info; 3281 3282 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3283 } 3284 3285 /** 3286 * amdgpu_vm_set_task_info - Sets VMs task info. 3287 * 3288 * @vm: vm for which to set the info 3289 */ 3290 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3291 { 3292 if (vm->task_info.pid) 3293 return; 3294 3295 vm->task_info.pid = current->pid; 3296 get_task_comm(vm->task_info.task_name, current); 3297 3298 if (current->group_leader->mm != current->mm) 3299 return; 3300 3301 vm->task_info.tgid = current->group_leader->pid; 3302 get_task_comm(vm->task_info.process_name, current->group_leader); 3303 } 3304 3305 /** 3306 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3307 * @adev: amdgpu device pointer 3308 * @pasid: PASID of the VM 3309 * @addr: Address of the fault 3310 * 3311 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3312 * shouldn't be reported any more. 3313 */ 3314 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid, 3315 uint64_t addr) 3316 { 3317 struct amdgpu_bo *root; 3318 uint64_t value, flags; 3319 struct amdgpu_vm *vm; 3320 long r; 3321 3322 spin_lock(&adev->vm_manager.pasid_lock); 3323 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3324 if (vm) 3325 root = amdgpu_bo_ref(vm->root.base.bo); 3326 else 3327 root = NULL; 3328 spin_unlock(&adev->vm_manager.pasid_lock); 3329 3330 if (!root) 3331 return false; 3332 3333 r = amdgpu_bo_reserve(root, true); 3334 if (r) 3335 goto error_unref; 3336 3337 /* Double check that the VM still exists */ 3338 spin_lock(&adev->vm_manager.pasid_lock); 3339 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3340 if (vm && vm->root.base.bo != root) 3341 vm = NULL; 3342 spin_unlock(&adev->vm_manager.pasid_lock); 3343 if (!vm) 3344 goto error_unlock; 3345 3346 addr /= AMDGPU_GPU_PAGE_SIZE; 3347 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3348 AMDGPU_PTE_SYSTEM; 3349 3350 if (vm->is_compute_context) { 3351 /* Intentionally setting invalid PTE flag 3352 * combination to force a no-retry-fault 3353 */ 3354 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3355 AMDGPU_PTE_TF; 3356 value = 0; 3357 3358 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3359 /* Redirect the access to the dummy page */ 3360 value = adev->dummy_page_addr; 3361 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3362 AMDGPU_PTE_WRITEABLE; 3363 3364 } else { 3365 /* Let the hw retry silently on the PTE */ 3366 value = 0; 3367 } 3368 3369 r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr, 3370 addr + 1, flags, value, NULL, NULL); 3371 if (r) 3372 goto error_unlock; 3373 3374 r = amdgpu_vm_update_pdes(adev, vm, true); 3375 3376 error_unlock: 3377 amdgpu_bo_unreserve(root); 3378 if (r < 0) 3379 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3380 3381 error_unref: 3382 amdgpu_bo_unref(&root); 3383 3384 return false; 3385 } 3386