xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 
29 #include <linux/dma-fence-array.h>
30 #include <linux/interval_tree_generic.h>
31 #include <linux/idr.h>
32 #include <linux/dma-buf.h>
33 
34 #include <drm/amdgpu_drm.h>
35 #include <drm/drm_drv.h>
36 #include "amdgpu.h"
37 #include "amdgpu_trace.h"
38 #include "amdgpu_amdkfd.h"
39 #include "amdgpu_gmc.h"
40 #include "amdgpu_xgmi.h"
41 #include "amdgpu_dma_buf.h"
42 #include "amdgpu_res_cursor.h"
43 #include "kfd_svm.h"
44 
45 /**
46  * DOC: GPUVM
47  *
48  * GPUVM is similar to the legacy gart on older asics, however
49  * rather than there being a single global gart table
50  * for the entire GPU, there are multiple VM page tables active
51  * at any given time.  The VM page tables can contain a mix
52  * vram pages and system memory pages and system memory pages
53  * can be mapped as snooped (cached system pages) or unsnooped
54  * (uncached system pages).
55  * Each VM has an ID associated with it and there is a page table
56  * associated with each VMID.  When execting a command buffer,
57  * the kernel tells the the ring what VMID to use for that command
58  * buffer.  VMIDs are allocated dynamically as commands are submitted.
59  * The userspace drivers maintain their own address space and the kernel
60  * sets up their pages tables accordingly when they submit their
61  * command buffers and a VMID is assigned.
62  * Cayman/Trinity support up to 8 active VMs at any given time;
63  * SI supports 16.
64  */
65 
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68 
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 		     START, LAST, static, amdgpu_vm_it)
71 
72 #undef START
73 #undef LAST
74 
75 /**
76  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77  */
78 struct amdgpu_prt_cb {
79 
80 	/**
81 	 * @adev: amdgpu device
82 	 */
83 	struct amdgpu_device *adev;
84 
85 	/**
86 	 * @cb: callback
87 	 */
88 	struct dma_fence_cb cb;
89 };
90 
91 /*
92  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
93  * happens while holding this lock anywhere to prevent deadlocks when
94  * an MMU notifier runs in reclaim-FS context.
95  */
96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
97 {
98 	mutex_lock(&vm->eviction_lock);
99 	vm->saved_flags = memalloc_noreclaim_save();
100 }
101 
102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
103 {
104 	if (mutex_trylock(&vm->eviction_lock)) {
105 		vm->saved_flags = memalloc_noreclaim_save();
106 		return 1;
107 	}
108 	return 0;
109 }
110 
111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
112 {
113 	memalloc_noreclaim_restore(vm->saved_flags);
114 	mutex_unlock(&vm->eviction_lock);
115 }
116 
117 /**
118  * amdgpu_vm_level_shift - return the addr shift for each level
119  *
120  * @adev: amdgpu_device pointer
121  * @level: VMPT level
122  *
123  * Returns:
124  * The number of bits the pfn needs to be right shifted for a level.
125  */
126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
127 				      unsigned level)
128 {
129 	switch (level) {
130 	case AMDGPU_VM_PDB2:
131 	case AMDGPU_VM_PDB1:
132 	case AMDGPU_VM_PDB0:
133 		return 9 * (AMDGPU_VM_PDB0 - level) +
134 			adev->vm_manager.block_size;
135 	case AMDGPU_VM_PTB:
136 		return 0;
137 	default:
138 		return ~0;
139 	}
140 }
141 
142 /**
143  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
144  *
145  * @adev: amdgpu_device pointer
146  * @level: VMPT level
147  *
148  * Returns:
149  * The number of entries in a page directory or page table.
150  */
151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
152 				      unsigned level)
153 {
154 	unsigned shift = amdgpu_vm_level_shift(adev,
155 					       adev->vm_manager.root_level);
156 
157 	if (level == adev->vm_manager.root_level)
158 		/* For the root directory */
159 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
160 			>> shift;
161 	else if (level != AMDGPU_VM_PTB)
162 		/* Everything in between */
163 		return 512;
164 	else
165 		/* For the page tables on the leaves */
166 		return AMDGPU_VM_PTE_COUNT(adev);
167 }
168 
169 /**
170  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
171  *
172  * @adev: amdgpu_device pointer
173  *
174  * Returns:
175  * The number of entries in the root page directory which needs the ATS setting.
176  */
177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
178 {
179 	unsigned shift;
180 
181 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
182 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
183 }
184 
185 /**
186  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187  *
188  * @adev: amdgpu_device pointer
189  * @level: VMPT level
190  *
191  * Returns:
192  * The mask to extract the entry number of a PD/PT from an address.
193  */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 				       unsigned int level)
196 {
197 	if (level <= adev->vm_manager.root_level)
198 		return 0xffffffff;
199 	else if (level != AMDGPU_VM_PTB)
200 		return 0x1ff;
201 	else
202 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204 
205 /**
206  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207  *
208  * @adev: amdgpu_device pointer
209  * @level: VMPT level
210  *
211  * Returns:
212  * The size of the BO for a page directory or page table in bytes.
213  */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218 
219 /**
220  * amdgpu_vm_bo_evicted - vm_bo is evicted
221  *
222  * @vm_bo: vm_bo which is evicted
223  *
224  * State for PDs/PTs and per VM BOs which are not at the location they should
225  * be.
226  */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 	struct amdgpu_vm *vm = vm_bo->vm;
230 	struct amdgpu_bo *bo = vm_bo->bo;
231 
232 	vm_bo->moved = true;
233 	if (bo->tbo.type == ttm_bo_type_kernel)
234 		list_move(&vm_bo->vm_status, &vm->evicted);
235 	else
236 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238 /**
239  * amdgpu_vm_bo_moved - vm_bo is moved
240  *
241  * @vm_bo: vm_bo which is moved
242  *
243  * State for per VM BOs which are moved, but that change is not yet reflected
244  * in the page tables.
245  */
246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
249 }
250 
251 /**
252  * amdgpu_vm_bo_idle - vm_bo is idle
253  *
254  * @vm_bo: vm_bo which is now idle
255  *
256  * State for PDs/PTs and per VM BOs which have gone through the state machine
257  * and are now idle.
258  */
259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
262 	vm_bo->moved = false;
263 }
264 
265 /**
266  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
267  *
268  * @vm_bo: vm_bo which is now invalidated
269  *
270  * State for normal BOs which are invalidated and that change not yet reflected
271  * in the PTs.
272  */
273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
274 {
275 	spin_lock(&vm_bo->vm->invalidated_lock);
276 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
277 	spin_unlock(&vm_bo->vm->invalidated_lock);
278 }
279 
280 /**
281  * amdgpu_vm_bo_relocated - vm_bo is reloacted
282  *
283  * @vm_bo: vm_bo which is relocated
284  *
285  * State for PDs/PTs which needs to update their parent PD.
286  * For the root PD, just move to idle state.
287  */
288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
289 {
290 	if (vm_bo->bo->parent)
291 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
292 	else
293 		amdgpu_vm_bo_idle(vm_bo);
294 }
295 
296 /**
297  * amdgpu_vm_bo_done - vm_bo is done
298  *
299  * @vm_bo: vm_bo which is now done
300  *
301  * State for normal BOs which are invalidated and that change has been updated
302  * in the PTs.
303  */
304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
305 {
306 	spin_lock(&vm_bo->vm->invalidated_lock);
307 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
308 	spin_unlock(&vm_bo->vm->invalidated_lock);
309 }
310 
311 /**
312  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
313  *
314  * @base: base structure for tracking BO usage in a VM
315  * @vm: vm to which bo is to be added
316  * @bo: amdgpu buffer object
317  *
318  * Initialize a bo_va_base structure and add it to the appropriate lists
319  *
320  */
321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
322 				   struct amdgpu_vm *vm,
323 				   struct amdgpu_bo *bo)
324 {
325 	base->vm = vm;
326 	base->bo = bo;
327 	base->next = NULL;
328 	INIT_LIST_HEAD(&base->vm_status);
329 
330 	if (!bo)
331 		return;
332 	base->next = bo->vm_bo;
333 	bo->vm_bo = base;
334 
335 	if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv)
336 		return;
337 
338 	vm->bulk_moveable = false;
339 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
340 		amdgpu_vm_bo_relocated(base);
341 	else
342 		amdgpu_vm_bo_idle(base);
343 
344 	if (bo->preferred_domains &
345 	    amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type))
346 		return;
347 
348 	/*
349 	 * we checked all the prerequisites, but it looks like this per vm bo
350 	 * is currently evicted. add the bo to the evicted list to make sure it
351 	 * is validated on next vm use to avoid fault.
352 	 * */
353 	amdgpu_vm_bo_evicted(base);
354 }
355 
356 /**
357  * amdgpu_vm_pt_parent - get the parent page directory
358  *
359  * @pt: child page table
360  *
361  * Helper to get the parent entry for the child page table. NULL if we are at
362  * the root page directory.
363  */
364 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt)
365 {
366 	struct amdgpu_bo *parent = pt->bo->parent;
367 
368 	if (!parent)
369 		return NULL;
370 
371 	return parent->vm_bo;
372 }
373 
374 /*
375  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
376  */
377 struct amdgpu_vm_pt_cursor {
378 	uint64_t pfn;
379 	struct amdgpu_vm_bo_base *parent;
380 	struct amdgpu_vm_bo_base *entry;
381 	unsigned level;
382 };
383 
384 /**
385  * amdgpu_vm_pt_start - start PD/PT walk
386  *
387  * @adev: amdgpu_device pointer
388  * @vm: amdgpu_vm structure
389  * @start: start address of the walk
390  * @cursor: state to initialize
391  *
392  * Initialize a amdgpu_vm_pt_cursor to start a walk.
393  */
394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
395 			       struct amdgpu_vm *vm, uint64_t start,
396 			       struct amdgpu_vm_pt_cursor *cursor)
397 {
398 	cursor->pfn = start;
399 	cursor->parent = NULL;
400 	cursor->entry = &vm->root;
401 	cursor->level = adev->vm_manager.root_level;
402 }
403 
404 /**
405  * amdgpu_vm_pt_descendant - go to child node
406  *
407  * @adev: amdgpu_device pointer
408  * @cursor: current state
409  *
410  * Walk to the child node of the current node.
411  * Returns:
412  * True if the walk was possible, false otherwise.
413  */
414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
415 				    struct amdgpu_vm_pt_cursor *cursor)
416 {
417 	unsigned mask, shift, idx;
418 
419 	if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry ||
420 	    !cursor->entry->bo)
421 		return false;
422 
423 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
424 	shift = amdgpu_vm_level_shift(adev, cursor->level);
425 
426 	++cursor->level;
427 	idx = (cursor->pfn >> shift) & mask;
428 	cursor->parent = cursor->entry;
429 	cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx];
430 	return true;
431 }
432 
433 /**
434  * amdgpu_vm_pt_sibling - go to sibling node
435  *
436  * @adev: amdgpu_device pointer
437  * @cursor: current state
438  *
439  * Walk to the sibling node of the current node.
440  * Returns:
441  * True if the walk was possible, false otherwise.
442  */
443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
444 				 struct amdgpu_vm_pt_cursor *cursor)
445 {
446 	unsigned shift, num_entries;
447 
448 	/* Root doesn't have a sibling */
449 	if (!cursor->parent)
450 		return false;
451 
452 	/* Go to our parents and see if we got a sibling */
453 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
454 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
455 
456 	if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1])
457 		return false;
458 
459 	cursor->pfn += 1ULL << shift;
460 	cursor->pfn &= ~((1ULL << shift) - 1);
461 	++cursor->entry;
462 	return true;
463 }
464 
465 /**
466  * amdgpu_vm_pt_ancestor - go to parent node
467  *
468  * @cursor: current state
469  *
470  * Walk to the parent node of the current node.
471  * Returns:
472  * True if the walk was possible, false otherwise.
473  */
474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
475 {
476 	if (!cursor->parent)
477 		return false;
478 
479 	--cursor->level;
480 	cursor->entry = cursor->parent;
481 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
482 	return true;
483 }
484 
485 /**
486  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
487  *
488  * @adev: amdgpu_device pointer
489  * @cursor: current state
490  *
491  * Walk the PD/PT tree to the next node.
492  */
493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
494 			      struct amdgpu_vm_pt_cursor *cursor)
495 {
496 	/* First try a newborn child */
497 	if (amdgpu_vm_pt_descendant(adev, cursor))
498 		return;
499 
500 	/* If that didn't worked try to find a sibling */
501 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
502 		/* No sibling, go to our parents and grandparents */
503 		if (!amdgpu_vm_pt_ancestor(cursor)) {
504 			cursor->pfn = ~0ll;
505 			return;
506 		}
507 	}
508 }
509 
510 /**
511  * amdgpu_vm_pt_first_dfs - start a deep first search
512  *
513  * @adev: amdgpu_device structure
514  * @vm: amdgpu_vm structure
515  * @start: optional cursor to start with
516  * @cursor: state to initialize
517  *
518  * Starts a deep first traversal of the PD/PT tree.
519  */
520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
521 				   struct amdgpu_vm *vm,
522 				   struct amdgpu_vm_pt_cursor *start,
523 				   struct amdgpu_vm_pt_cursor *cursor)
524 {
525 	if (start)
526 		*cursor = *start;
527 	else
528 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
529 	while (amdgpu_vm_pt_descendant(adev, cursor));
530 }
531 
532 /**
533  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
534  *
535  * @start: starting point for the search
536  * @entry: current entry
537  *
538  * Returns:
539  * True when the search should continue, false otherwise.
540  */
541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
542 				      struct amdgpu_vm_bo_base *entry)
543 {
544 	return entry && (!start || entry != start->entry);
545 }
546 
547 /**
548  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
549  *
550  * @adev: amdgpu_device structure
551  * @cursor: current state
552  *
553  * Move the cursor to the next node in a deep first search.
554  */
555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
556 				  struct amdgpu_vm_pt_cursor *cursor)
557 {
558 	if (!cursor->entry)
559 		return;
560 
561 	if (!cursor->parent)
562 		cursor->entry = NULL;
563 	else if (amdgpu_vm_pt_sibling(adev, cursor))
564 		while (amdgpu_vm_pt_descendant(adev, cursor));
565 	else
566 		amdgpu_vm_pt_ancestor(cursor);
567 }
568 
569 /*
570  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
571  */
572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
573 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
574 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
575 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
576 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
577 
578 /**
579  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
580  *
581  * @vm: vm providing the BOs
582  * @validated: head of validation list
583  * @entry: entry to add
584  *
585  * Add the page directory to the list of BOs to
586  * validate for command submission.
587  */
588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
589 			 struct list_head *validated,
590 			 struct amdgpu_bo_list_entry *entry)
591 {
592 	entry->priority = 0;
593 	entry->tv.bo = &vm->root.bo->tbo;
594 	/* Two for VM updates, one for TTM and one for the CS job */
595 	entry->tv.num_shared = 4;
596 	entry->user_pages = NULL;
597 	list_add(&entry->tv.head, validated);
598 }
599 
600 /**
601  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
602  *
603  * @bo: BO which was removed from the LRU
604  *
605  * Make sure the bulk_moveable flag is updated when a BO is removed from the
606  * LRU.
607  */
608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
609 {
610 	struct amdgpu_bo *abo;
611 	struct amdgpu_vm_bo_base *bo_base;
612 
613 	if (!amdgpu_bo_is_amdgpu_bo(bo))
614 		return;
615 
616 	if (bo->pin_count)
617 		return;
618 
619 	abo = ttm_to_amdgpu_bo(bo);
620 	if (!abo->parent)
621 		return;
622 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
623 		struct amdgpu_vm *vm = bo_base->vm;
624 
625 		if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv)
626 			vm->bulk_moveable = false;
627 	}
628 
629 }
630 /**
631  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
632  *
633  * @adev: amdgpu device pointer
634  * @vm: vm providing the BOs
635  *
636  * Move all BOs to the end of LRU and remember their positions to put them
637  * together.
638  */
639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
640 				struct amdgpu_vm *vm)
641 {
642 	struct amdgpu_vm_bo_base *bo_base;
643 
644 	if (vm->bulk_moveable) {
645 		spin_lock(&adev->mman.bdev.lru_lock);
646 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
647 		spin_unlock(&adev->mman.bdev.lru_lock);
648 		return;
649 	}
650 
651 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
652 
653 	spin_lock(&adev->mman.bdev.lru_lock);
654 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
655 		struct amdgpu_bo *bo = bo_base->bo;
656 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
657 
658 		if (!bo->parent)
659 			continue;
660 
661 		ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource,
662 					&vm->lru_bulk_move);
663 		if (shadow)
664 			ttm_bo_move_to_lru_tail(&shadow->tbo,
665 						shadow->tbo.resource,
666 						&vm->lru_bulk_move);
667 	}
668 	spin_unlock(&adev->mman.bdev.lru_lock);
669 
670 	vm->bulk_moveable = true;
671 }
672 
673 /**
674  * amdgpu_vm_validate_pt_bos - validate the page table BOs
675  *
676  * @adev: amdgpu device pointer
677  * @vm: vm providing the BOs
678  * @validate: callback to do the validation
679  * @param: parameter for the validation callback
680  *
681  * Validate the page table BOs on command submission if neccessary.
682  *
683  * Returns:
684  * Validation result.
685  */
686 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
687 			      int (*validate)(void *p, struct amdgpu_bo *bo),
688 			      void *param)
689 {
690 	struct amdgpu_vm_bo_base *bo_base, *tmp;
691 	int r;
692 
693 	vm->bulk_moveable &= list_empty(&vm->evicted);
694 
695 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
696 		struct amdgpu_bo *bo = bo_base->bo;
697 		struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo);
698 
699 		r = validate(param, bo);
700 		if (r)
701 			return r;
702 		if (shadow) {
703 			r = validate(param, shadow);
704 			if (r)
705 				return r;
706 		}
707 
708 		if (bo->tbo.type != ttm_bo_type_kernel) {
709 			amdgpu_vm_bo_moved(bo_base);
710 		} else {
711 			vm->update_funcs->map_table(to_amdgpu_bo_vm(bo));
712 			amdgpu_vm_bo_relocated(bo_base);
713 		}
714 	}
715 
716 	amdgpu_vm_eviction_lock(vm);
717 	vm->evicting = false;
718 	amdgpu_vm_eviction_unlock(vm);
719 
720 	return 0;
721 }
722 
723 /**
724  * amdgpu_vm_ready - check VM is ready for updates
725  *
726  * @vm: VM to check
727  *
728  * Check if all VM PDs/PTs are ready for updates
729  *
730  * Returns:
731  * True if eviction list is empty.
732  */
733 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
734 {
735 	return list_empty(&vm->evicted);
736 }
737 
738 /**
739  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
740  *
741  * @adev: amdgpu_device pointer
742  * @vm: VM to clear BO from
743  * @vmbo: BO to clear
744  * @immediate: use an immediate update
745  *
746  * Root PD needs to be reserved when calling this.
747  *
748  * Returns:
749  * 0 on success, errno otherwise.
750  */
751 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
752 			      struct amdgpu_vm *vm,
753 			      struct amdgpu_bo_vm *vmbo,
754 			      bool immediate)
755 {
756 	struct ttm_operation_ctx ctx = { true, false };
757 	unsigned level = adev->vm_manager.root_level;
758 	struct amdgpu_vm_update_params params;
759 	struct amdgpu_bo *ancestor = &vmbo->bo;
760 	struct amdgpu_bo *bo = &vmbo->bo;
761 	unsigned entries, ats_entries;
762 	uint64_t addr;
763 	int r;
764 
765 	/* Figure out our place in the hierarchy */
766 	if (ancestor->parent) {
767 		++level;
768 		while (ancestor->parent->parent) {
769 			++level;
770 			ancestor = ancestor->parent;
771 		}
772 	}
773 
774 	entries = amdgpu_bo_size(bo) / 8;
775 	if (!vm->pte_support_ats) {
776 		ats_entries = 0;
777 
778 	} else if (!bo->parent) {
779 		ats_entries = amdgpu_vm_num_ats_entries(adev);
780 		ats_entries = min(ats_entries, entries);
781 		entries -= ats_entries;
782 
783 	} else {
784 		struct amdgpu_vm_bo_base *pt;
785 
786 		pt = ancestor->vm_bo;
787 		ats_entries = amdgpu_vm_num_ats_entries(adev);
788 		if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) {
789 			ats_entries = 0;
790 		} else {
791 			ats_entries = entries;
792 			entries = 0;
793 		}
794 	}
795 
796 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
797 	if (r)
798 		return r;
799 
800 	if (vmbo->shadow) {
801 		struct amdgpu_bo *shadow = vmbo->shadow;
802 
803 		r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx);
804 		if (r)
805 			return r;
806 	}
807 
808 	r = vm->update_funcs->map_table(vmbo);
809 	if (r)
810 		return r;
811 
812 	memset(&params, 0, sizeof(params));
813 	params.adev = adev;
814 	params.vm = vm;
815 	params.immediate = immediate;
816 
817 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
818 	if (r)
819 		return r;
820 
821 	addr = 0;
822 	if (ats_entries) {
823 		uint64_t value = 0, flags;
824 
825 		flags = AMDGPU_PTE_DEFAULT_ATC;
826 		if (level != AMDGPU_VM_PTB) {
827 			/* Handle leaf PDEs as PTEs */
828 			flags |= AMDGPU_PDE_PTE;
829 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
830 		}
831 
832 		r = vm->update_funcs->update(&params, vmbo, addr, 0, ats_entries,
833 					     value, flags);
834 		if (r)
835 			return r;
836 
837 		addr += ats_entries * 8;
838 	}
839 
840 	if (entries) {
841 		uint64_t value = 0, flags = 0;
842 
843 		if (adev->asic_type >= CHIP_VEGA10) {
844 			if (level != AMDGPU_VM_PTB) {
845 				/* Handle leaf PDEs as PTEs */
846 				flags |= AMDGPU_PDE_PTE;
847 				amdgpu_gmc_get_vm_pde(adev, level,
848 						      &value, &flags);
849 			} else {
850 				/* Workaround for fault priority problem on GMC9 */
851 				flags = AMDGPU_PTE_EXECUTABLE;
852 			}
853 		}
854 
855 		r = vm->update_funcs->update(&params, vmbo, addr, 0, entries,
856 					     value, flags);
857 		if (r)
858 			return r;
859 	}
860 
861 	return vm->update_funcs->commit(&params, NULL);
862 }
863 
864 /**
865  * amdgpu_vm_pt_create - create bo for PD/PT
866  *
867  * @adev: amdgpu_device pointer
868  * @vm: requesting vm
869  * @level: the page table level
870  * @immediate: use a immediate update
871  * @vmbo: pointer to the buffer object pointer
872  */
873 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
874 			       struct amdgpu_vm *vm,
875 			       int level, bool immediate,
876 			       struct amdgpu_bo_vm **vmbo)
877 {
878 	struct amdgpu_bo_param bp;
879 	struct amdgpu_bo *bo;
880 	struct dma_resv *resv;
881 	unsigned int num_entries;
882 	int r;
883 
884 	memset(&bp, 0, sizeof(bp));
885 
886 	bp.size = amdgpu_vm_bo_size(adev, level);
887 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
888 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
889 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
890 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
891 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
892 
893 	if (level < AMDGPU_VM_PTB)
894 		num_entries = amdgpu_vm_num_entries(adev, level);
895 	else
896 		num_entries = 0;
897 
898 	bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries);
899 
900 	if (vm->use_cpu_for_update)
901 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
902 
903 	bp.type = ttm_bo_type_kernel;
904 	bp.no_wait_gpu = immediate;
905 	if (vm->root.bo)
906 		bp.resv = vm->root.bo->tbo.base.resv;
907 
908 	r = amdgpu_bo_create_vm(adev, &bp, vmbo);
909 	if (r)
910 		return r;
911 
912 	bo = &(*vmbo)->bo;
913 	if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) {
914 		(*vmbo)->shadow = NULL;
915 		return 0;
916 	}
917 
918 	if (!bp.resv)
919 		WARN_ON(dma_resv_lock(bo->tbo.base.resv,
920 				      NULL));
921 	resv = bp.resv;
922 	memset(&bp, 0, sizeof(bp));
923 	bp.size = amdgpu_vm_bo_size(adev, level);
924 	bp.domain = AMDGPU_GEM_DOMAIN_GTT;
925 	bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
926 	bp.type = ttm_bo_type_kernel;
927 	bp.resv = bo->tbo.base.resv;
928 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
929 
930 	r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow);
931 
932 	if (!resv)
933 		dma_resv_unlock(bo->tbo.base.resv);
934 
935 	if (r) {
936 		amdgpu_bo_unref(&bo);
937 		return r;
938 	}
939 
940 	(*vmbo)->shadow->parent = amdgpu_bo_ref(bo);
941 	amdgpu_bo_add_to_shadow_list(*vmbo);
942 
943 	return 0;
944 }
945 
946 /**
947  * amdgpu_vm_alloc_pts - Allocate a specific page table
948  *
949  * @adev: amdgpu_device pointer
950  * @vm: VM to allocate page tables for
951  * @cursor: Which page table to allocate
952  * @immediate: use an immediate update
953  *
954  * Make sure a specific page table or directory is allocated.
955  *
956  * Returns:
957  * 1 if page table needed to be allocated, 0 if page table was already
958  * allocated, negative errno if an error occurred.
959  */
960 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
961 			       struct amdgpu_vm *vm,
962 			       struct amdgpu_vm_pt_cursor *cursor,
963 			       bool immediate)
964 {
965 	struct amdgpu_vm_bo_base *entry = cursor->entry;
966 	struct amdgpu_bo *pt_bo;
967 	struct amdgpu_bo_vm *pt;
968 	int r;
969 
970 	if (entry->bo)
971 		return 0;
972 
973 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
974 	if (r)
975 		return r;
976 
977 	/* Keep a reference to the root directory to avoid
978 	 * freeing them up in the wrong order.
979 	 */
980 	pt_bo = &pt->bo;
981 	pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo);
982 	amdgpu_vm_bo_base_init(entry, vm, pt_bo);
983 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
984 	if (r)
985 		goto error_free_pt;
986 
987 	return 0;
988 
989 error_free_pt:
990 	amdgpu_bo_unref(&pt->shadow);
991 	amdgpu_bo_unref(&pt_bo);
992 	return r;
993 }
994 
995 /**
996  * amdgpu_vm_free_table - fre one PD/PT
997  *
998  * @entry: PDE to free
999  */
1000 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry)
1001 {
1002 	struct amdgpu_bo *shadow;
1003 
1004 	if (!entry->bo)
1005 		return;
1006 	shadow = amdgpu_bo_shadowed(entry->bo);
1007 	entry->bo->vm_bo = NULL;
1008 	list_del(&entry->vm_status);
1009 	amdgpu_bo_unref(&shadow);
1010 	amdgpu_bo_unref(&entry->bo);
1011 }
1012 
1013 /**
1014  * amdgpu_vm_free_pts - free PD/PT levels
1015  *
1016  * @adev: amdgpu device structure
1017  * @vm: amdgpu vm structure
1018  * @start: optional cursor where to start freeing PDs/PTs
1019  *
1020  * Free the page directory or page table level and all sub levels.
1021  */
1022 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
1023 			       struct amdgpu_vm *vm,
1024 			       struct amdgpu_vm_pt_cursor *start)
1025 {
1026 	struct amdgpu_vm_pt_cursor cursor;
1027 	struct amdgpu_vm_bo_base *entry;
1028 
1029 	vm->bulk_moveable = false;
1030 
1031 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1032 		amdgpu_vm_free_table(entry);
1033 
1034 	if (start)
1035 		amdgpu_vm_free_table(start->entry);
1036 }
1037 
1038 /**
1039  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1040  *
1041  * @adev: amdgpu_device pointer
1042  */
1043 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1044 {
1045 	const struct amdgpu_ip_block *ip_block;
1046 	bool has_compute_vm_bug;
1047 	struct amdgpu_ring *ring;
1048 	int i;
1049 
1050 	has_compute_vm_bug = false;
1051 
1052 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1053 	if (ip_block) {
1054 		/* Compute has a VM bug for GFX version < 7.
1055 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1056 		if (ip_block->version->major <= 7)
1057 			has_compute_vm_bug = true;
1058 		else if (ip_block->version->major == 8)
1059 			if (adev->gfx.mec_fw_version < 673)
1060 				has_compute_vm_bug = true;
1061 	}
1062 
1063 	for (i = 0; i < adev->num_rings; i++) {
1064 		ring = adev->rings[i];
1065 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1066 			/* only compute rings */
1067 			ring->has_compute_vm_bug = has_compute_vm_bug;
1068 		else
1069 			ring->has_compute_vm_bug = false;
1070 	}
1071 }
1072 
1073 /**
1074  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1075  *
1076  * @ring: ring on which the job will be submitted
1077  * @job: job to submit
1078  *
1079  * Returns:
1080  * True if sync is needed.
1081  */
1082 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1083 				  struct amdgpu_job *job)
1084 {
1085 	struct amdgpu_device *adev = ring->adev;
1086 	unsigned vmhub = ring->funcs->vmhub;
1087 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1088 	struct amdgpu_vmid *id;
1089 	bool gds_switch_needed;
1090 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1091 
1092 	if (job->vmid == 0)
1093 		return false;
1094 	id = &id_mgr->ids[job->vmid];
1095 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1096 		id->gds_base != job->gds_base ||
1097 		id->gds_size != job->gds_size ||
1098 		id->gws_base != job->gws_base ||
1099 		id->gws_size != job->gws_size ||
1100 		id->oa_base != job->oa_base ||
1101 		id->oa_size != job->oa_size);
1102 
1103 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1104 		return true;
1105 
1106 	return vm_flush_needed || gds_switch_needed;
1107 }
1108 
1109 /**
1110  * amdgpu_vm_flush - hardware flush the vm
1111  *
1112  * @ring: ring to use for flush
1113  * @job:  related job
1114  * @need_pipe_sync: is pipe sync needed
1115  *
1116  * Emit a VM flush when it is necessary.
1117  *
1118  * Returns:
1119  * 0 on success, errno otherwise.
1120  */
1121 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1122 		    bool need_pipe_sync)
1123 {
1124 	struct amdgpu_device *adev = ring->adev;
1125 	unsigned vmhub = ring->funcs->vmhub;
1126 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1127 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1128 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1129 		id->gds_base != job->gds_base ||
1130 		id->gds_size != job->gds_size ||
1131 		id->gws_base != job->gws_base ||
1132 		id->gws_size != job->gws_size ||
1133 		id->oa_base != job->oa_base ||
1134 		id->oa_size != job->oa_size);
1135 	bool vm_flush_needed = job->vm_needs_flush;
1136 	struct dma_fence *fence = NULL;
1137 	bool pasid_mapping_needed = false;
1138 	unsigned patch_offset = 0;
1139 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1140 	int r;
1141 
1142 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1143 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1144 
1145 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1146 		gds_switch_needed = true;
1147 		vm_flush_needed = true;
1148 		pasid_mapping_needed = true;
1149 	}
1150 
1151 	mutex_lock(&id_mgr->lock);
1152 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1153 	    !dma_fence_is_signaled(id->pasid_mapping))
1154 		pasid_mapping_needed = true;
1155 	mutex_unlock(&id_mgr->lock);
1156 
1157 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1158 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1159 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1160 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1161 		ring->funcs->emit_wreg;
1162 
1163 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1164 		return 0;
1165 
1166 	if (ring->funcs->init_cond_exec)
1167 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1168 
1169 	if (need_pipe_sync)
1170 		amdgpu_ring_emit_pipeline_sync(ring);
1171 
1172 	if (vm_flush_needed) {
1173 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1174 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1175 	}
1176 
1177 	if (pasid_mapping_needed)
1178 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1179 
1180 	if (vm_flush_needed || pasid_mapping_needed) {
1181 		r = amdgpu_fence_emit(ring, &fence, 0);
1182 		if (r)
1183 			return r;
1184 	}
1185 
1186 	if (vm_flush_needed) {
1187 		mutex_lock(&id_mgr->lock);
1188 		dma_fence_put(id->last_flush);
1189 		id->last_flush = dma_fence_get(fence);
1190 		id->current_gpu_reset_count =
1191 			atomic_read(&adev->gpu_reset_counter);
1192 		mutex_unlock(&id_mgr->lock);
1193 	}
1194 
1195 	if (pasid_mapping_needed) {
1196 		mutex_lock(&id_mgr->lock);
1197 		id->pasid = job->pasid;
1198 		dma_fence_put(id->pasid_mapping);
1199 		id->pasid_mapping = dma_fence_get(fence);
1200 		mutex_unlock(&id_mgr->lock);
1201 	}
1202 	dma_fence_put(fence);
1203 
1204 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1205 		id->gds_base = job->gds_base;
1206 		id->gds_size = job->gds_size;
1207 		id->gws_base = job->gws_base;
1208 		id->gws_size = job->gws_size;
1209 		id->oa_base = job->oa_base;
1210 		id->oa_size = job->oa_size;
1211 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1212 					    job->gds_size, job->gws_base,
1213 					    job->gws_size, job->oa_base,
1214 					    job->oa_size);
1215 	}
1216 
1217 	if (ring->funcs->patch_cond_exec)
1218 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1219 
1220 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1221 	if (ring->funcs->emit_switch_buffer) {
1222 		amdgpu_ring_emit_switch_buffer(ring);
1223 		amdgpu_ring_emit_switch_buffer(ring);
1224 	}
1225 	return 0;
1226 }
1227 
1228 /**
1229  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1230  *
1231  * @vm: requested vm
1232  * @bo: requested buffer object
1233  *
1234  * Find @bo inside the requested vm.
1235  * Search inside the @bos vm list for the requested vm
1236  * Returns the found bo_va or NULL if none is found
1237  *
1238  * Object has to be reserved!
1239  *
1240  * Returns:
1241  * Found bo_va or NULL.
1242  */
1243 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1244 				       struct amdgpu_bo *bo)
1245 {
1246 	struct amdgpu_vm_bo_base *base;
1247 
1248 	for (base = bo->vm_bo; base; base = base->next) {
1249 		if (base->vm != vm)
1250 			continue;
1251 
1252 		return container_of(base, struct amdgpu_bo_va, base);
1253 	}
1254 	return NULL;
1255 }
1256 
1257 /**
1258  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1259  *
1260  * @pages_addr: optional DMA address to use for lookup
1261  * @addr: the unmapped addr
1262  *
1263  * Look up the physical address of the page that the pte resolves
1264  * to.
1265  *
1266  * Returns:
1267  * The pointer for the page table entry.
1268  */
1269 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1270 {
1271 	uint64_t result;
1272 
1273 	/* page table offset */
1274 	result = pages_addr[addr >> PAGE_SHIFT];
1275 
1276 	/* in case cpu page size != gpu page size*/
1277 	result |= addr & (~PAGE_MASK);
1278 
1279 	result &= 0xFFFFFFFFFFFFF000ULL;
1280 
1281 	return result;
1282 }
1283 
1284 /**
1285  * amdgpu_vm_update_pde - update a single level in the hierarchy
1286  *
1287  * @params: parameters for the update
1288  * @vm: requested vm
1289  * @entry: entry to update
1290  *
1291  * Makes sure the requested entry in parent is up to date.
1292  */
1293 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1294 				struct amdgpu_vm *vm,
1295 				struct amdgpu_vm_bo_base *entry)
1296 {
1297 	struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry);
1298 	struct amdgpu_bo *bo = parent->bo, *pbo;
1299 	uint64_t pde, pt, flags;
1300 	unsigned level;
1301 
1302 	for (level = 0, pbo = bo->parent; pbo; ++level)
1303 		pbo = pbo->parent;
1304 
1305 	level += params->adev->vm_manager.root_level;
1306 	amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags);
1307 	pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8;
1308 	return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt,
1309 					1, 0, flags);
1310 }
1311 
1312 /**
1313  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1314  *
1315  * @adev: amdgpu_device pointer
1316  * @vm: related vm
1317  *
1318  * Mark all PD level as invalid after an error.
1319  */
1320 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1321 				     struct amdgpu_vm *vm)
1322 {
1323 	struct amdgpu_vm_pt_cursor cursor;
1324 	struct amdgpu_vm_bo_base *entry;
1325 
1326 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1327 		if (entry->bo && !entry->moved)
1328 			amdgpu_vm_bo_relocated(entry);
1329 }
1330 
1331 /**
1332  * amdgpu_vm_update_pdes - make sure that all directories are valid
1333  *
1334  * @adev: amdgpu_device pointer
1335  * @vm: requested vm
1336  * @immediate: submit immediately to the paging queue
1337  *
1338  * Makes sure all directories are up to date.
1339  *
1340  * Returns:
1341  * 0 for success, error for failure.
1342  */
1343 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1344 			  struct amdgpu_vm *vm, bool immediate)
1345 {
1346 	struct amdgpu_vm_update_params params;
1347 	int r;
1348 
1349 	if (list_empty(&vm->relocated))
1350 		return 0;
1351 
1352 	memset(&params, 0, sizeof(params));
1353 	params.adev = adev;
1354 	params.vm = vm;
1355 	params.immediate = immediate;
1356 
1357 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1358 	if (r)
1359 		return r;
1360 
1361 	while (!list_empty(&vm->relocated)) {
1362 		struct amdgpu_vm_bo_base *entry;
1363 
1364 		entry = list_first_entry(&vm->relocated,
1365 					 struct amdgpu_vm_bo_base,
1366 					 vm_status);
1367 		amdgpu_vm_bo_idle(entry);
1368 
1369 		r = amdgpu_vm_update_pde(&params, vm, entry);
1370 		if (r)
1371 			goto error;
1372 	}
1373 
1374 	r = vm->update_funcs->commit(&params, &vm->last_update);
1375 	if (r)
1376 		goto error;
1377 	return 0;
1378 
1379 error:
1380 	amdgpu_vm_invalidate_pds(adev, vm);
1381 	return r;
1382 }
1383 
1384 /*
1385  * amdgpu_vm_update_flags - figure out flags for PTE updates
1386  *
1387  * Make sure to set the right flags for the PTEs at the desired level.
1388  */
1389 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1390 				   struct amdgpu_bo_vm *pt, unsigned int level,
1391 				   uint64_t pe, uint64_t addr,
1392 				   unsigned int count, uint32_t incr,
1393 				   uint64_t flags)
1394 
1395 {
1396 	if (level != AMDGPU_VM_PTB) {
1397 		flags |= AMDGPU_PDE_PTE;
1398 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1399 
1400 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1401 		   !(flags & AMDGPU_PTE_VALID) &&
1402 		   !(flags & AMDGPU_PTE_PRT)) {
1403 
1404 		/* Workaround for fault priority problem on GMC9 */
1405 		flags |= AMDGPU_PTE_EXECUTABLE;
1406 	}
1407 
1408 	params->vm->update_funcs->update(params, pt, pe, addr, count, incr,
1409 					 flags);
1410 }
1411 
1412 /**
1413  * amdgpu_vm_fragment - get fragment for PTEs
1414  *
1415  * @params: see amdgpu_vm_update_params definition
1416  * @start: first PTE to handle
1417  * @end: last PTE to handle
1418  * @flags: hw mapping flags
1419  * @frag: resulting fragment size
1420  * @frag_end: end of this fragment
1421  *
1422  * Returns the first possible fragment for the start and end address.
1423  */
1424 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1425 			       uint64_t start, uint64_t end, uint64_t flags,
1426 			       unsigned int *frag, uint64_t *frag_end)
1427 {
1428 	/**
1429 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1430 	 * field in the PTE. When this field is set to a non-zero value, page
1431 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1432 	 * flags are considered valid for all PTEs within the fragment range
1433 	 * and corresponding mappings are assumed to be physically contiguous.
1434 	 *
1435 	 * The L1 TLB can store a single PTE for the whole fragment,
1436 	 * significantly increasing the space available for translation
1437 	 * caching. This leads to large improvements in throughput when the
1438 	 * TLB is under pressure.
1439 	 *
1440 	 * The L2 TLB distributes small and large fragments into two
1441 	 * asymmetric partitions. The large fragment cache is significantly
1442 	 * larger. Thus, we try to use large fragments wherever possible.
1443 	 * Userspace can support this by aligning virtual base address and
1444 	 * allocation size to the fragment size.
1445 	 *
1446 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1447 	 * is now directly feed with small/huge/giant pages from the walker.
1448 	 */
1449 	unsigned max_frag;
1450 
1451 	if (params->adev->asic_type < CHIP_VEGA10)
1452 		max_frag = params->adev->vm_manager.fragment_size;
1453 	else
1454 		max_frag = 31;
1455 
1456 	/* system pages are non continuously */
1457 	if (params->pages_addr) {
1458 		*frag = 0;
1459 		*frag_end = end;
1460 		return;
1461 	}
1462 
1463 	/* This intentionally wraps around if no bit is set */
1464 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1465 	if (*frag >= max_frag) {
1466 		*frag = max_frag;
1467 		*frag_end = end & ~((1ULL << max_frag) - 1);
1468 	} else {
1469 		*frag_end = start + (1 << *frag);
1470 	}
1471 }
1472 
1473 /**
1474  * amdgpu_vm_update_ptes - make sure that page tables are valid
1475  *
1476  * @params: see amdgpu_vm_update_params definition
1477  * @start: start of GPU address range
1478  * @end: end of GPU address range
1479  * @dst: destination address to map to, the next dst inside the function
1480  * @flags: mapping flags
1481  *
1482  * Update the page tables in the range @start - @end.
1483  *
1484  * Returns:
1485  * 0 for success, -EINVAL for failure.
1486  */
1487 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1488 				 uint64_t start, uint64_t end,
1489 				 uint64_t dst, uint64_t flags)
1490 {
1491 	struct amdgpu_device *adev = params->adev;
1492 	struct amdgpu_vm_pt_cursor cursor;
1493 	uint64_t frag_start = start, frag_end;
1494 	unsigned int frag;
1495 	int r;
1496 
1497 	/* figure out the initial fragment */
1498 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1499 
1500 	/* walk over the address space and update the PTs */
1501 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1502 	while (cursor.pfn < end) {
1503 		unsigned shift, parent_shift, mask;
1504 		uint64_t incr, entry_end, pe_start;
1505 		struct amdgpu_bo *pt;
1506 
1507 		if (!params->unlocked) {
1508 			/* make sure that the page tables covering the
1509 			 * address range are actually allocated
1510 			 */
1511 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1512 						&cursor, params->immediate);
1513 			if (r)
1514 				return r;
1515 		}
1516 
1517 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1518 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1519 		if (params->unlocked) {
1520 			/* Unlocked updates are only allowed on the leaves */
1521 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1522 				continue;
1523 		} else if (adev->asic_type < CHIP_VEGA10 &&
1524 			   (flags & AMDGPU_PTE_VALID)) {
1525 			/* No huge page support before GMC v9 */
1526 			if (cursor.level != AMDGPU_VM_PTB) {
1527 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1528 					return -ENOENT;
1529 				continue;
1530 			}
1531 		} else if (frag < shift) {
1532 			/* We can't use this level when the fragment size is
1533 			 * smaller than the address shift. Go to the next
1534 			 * child entry and try again.
1535 			 */
1536 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1537 				continue;
1538 		} else if (frag >= parent_shift) {
1539 			/* If the fragment size is even larger than the parent
1540 			 * shift we should go up one level and check it again.
1541 			 */
1542 			if (!amdgpu_vm_pt_ancestor(&cursor))
1543 				return -EINVAL;
1544 			continue;
1545 		}
1546 
1547 		pt = cursor.entry->bo;
1548 		if (!pt) {
1549 			/* We need all PDs and PTs for mapping something, */
1550 			if (flags & AMDGPU_PTE_VALID)
1551 				return -ENOENT;
1552 
1553 			/* but unmapping something can happen at a higher
1554 			 * level.
1555 			 */
1556 			if (!amdgpu_vm_pt_ancestor(&cursor))
1557 				return -EINVAL;
1558 
1559 			pt = cursor.entry->bo;
1560 			shift = parent_shift;
1561 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1562 				   1ULL << shift));
1563 		}
1564 
1565 		/* Looks good so far, calculate parameters for the update */
1566 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1567 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1568 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1569 		entry_end = ((uint64_t)mask + 1) << shift;
1570 		entry_end += cursor.pfn & ~(entry_end - 1);
1571 		entry_end = min(entry_end, end);
1572 
1573 		do {
1574 			struct amdgpu_vm *vm = params->vm;
1575 			uint64_t upd_end = min(entry_end, frag_end);
1576 			unsigned nptes = (upd_end - frag_start) >> shift;
1577 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1578 
1579 			/* This can happen when we set higher level PDs to
1580 			 * silent to stop fault floods.
1581 			 */
1582 			nptes = max(nptes, 1u);
1583 
1584 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1585 						    nptes, dst, incr, upd_flags,
1586 						    vm->task_info.pid,
1587 						    vm->immediate.fence_context);
1588 			amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt),
1589 					       cursor.level, pe_start, dst,
1590 					       nptes, incr, upd_flags);
1591 
1592 			pe_start += nptes * 8;
1593 			dst += nptes * incr;
1594 
1595 			frag_start = upd_end;
1596 			if (frag_start >= frag_end) {
1597 				/* figure out the next fragment */
1598 				amdgpu_vm_fragment(params, frag_start, end,
1599 						   flags, &frag, &frag_end);
1600 				if (frag < shift)
1601 					break;
1602 			}
1603 		} while (frag_start < entry_end);
1604 
1605 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1606 			/* Free all child entries.
1607 			 * Update the tables with the flags and addresses and free up subsequent
1608 			 * tables in the case of huge pages or freed up areas.
1609 			 * This is the maximum you can free, because all other page tables are not
1610 			 * completely covered by the range and so potentially still in use.
1611 			 */
1612 			while (cursor.pfn < frag_start) {
1613 				/* Make sure previous mapping is freed */
1614 				if (cursor.entry->bo) {
1615 					params->table_freed = true;
1616 					amdgpu_vm_free_pts(adev, params->vm, &cursor);
1617 				}
1618 				amdgpu_vm_pt_next(adev, &cursor);
1619 			}
1620 
1621 		} else if (frag >= shift) {
1622 			/* or just move on to the next on the same level. */
1623 			amdgpu_vm_pt_next(adev, &cursor);
1624 		}
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 /**
1631  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1632  *
1633  * @adev: amdgpu_device pointer of the VM
1634  * @bo_adev: amdgpu_device pointer of the mapped BO
1635  * @vm: requested vm
1636  * @immediate: immediate submission in a page fault
1637  * @unlocked: unlocked invalidation during MM callback
1638  * @resv: fences we need to sync to
1639  * @start: start of mapped range
1640  * @last: last mapped entry
1641  * @flags: flags for the entries
1642  * @offset: offset into nodes and pages_addr
1643  * @res: ttm_resource to map
1644  * @pages_addr: DMA addresses to use for mapping
1645  * @fence: optional resulting fence
1646  * @table_freed: return true if page table is freed
1647  *
1648  * Fill in the page table entries between @start and @last.
1649  *
1650  * Returns:
1651  * 0 for success, -EINVAL for failure.
1652  */
1653 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1654 				struct amdgpu_device *bo_adev,
1655 				struct amdgpu_vm *vm, bool immediate,
1656 				bool unlocked, struct dma_resv *resv,
1657 				uint64_t start, uint64_t last,
1658 				uint64_t flags, uint64_t offset,
1659 				struct ttm_resource *res,
1660 				dma_addr_t *pages_addr,
1661 				struct dma_fence **fence,
1662 				bool *table_freed)
1663 {
1664 	struct amdgpu_vm_update_params params;
1665 	struct amdgpu_res_cursor cursor;
1666 	enum amdgpu_sync_mode sync_mode;
1667 	int r, idx;
1668 
1669 	if (!drm_dev_enter(&adev->ddev, &idx))
1670 		return -ENODEV;
1671 
1672 	memset(&params, 0, sizeof(params));
1673 	params.adev = adev;
1674 	params.vm = vm;
1675 	params.immediate = immediate;
1676 	params.pages_addr = pages_addr;
1677 	params.unlocked = unlocked;
1678 
1679 	/* Implicitly sync to command submissions in the same VM before
1680 	 * unmapping. Sync to moving fences before mapping.
1681 	 */
1682 	if (!(flags & AMDGPU_PTE_VALID))
1683 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1684 	else
1685 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1686 
1687 	amdgpu_vm_eviction_lock(vm);
1688 	if (vm->evicting) {
1689 		r = -EBUSY;
1690 		goto error_unlock;
1691 	}
1692 
1693 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1694 		struct dma_fence *tmp = dma_fence_get_stub();
1695 
1696 		amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true);
1697 		swap(vm->last_unlocked, tmp);
1698 		dma_fence_put(tmp);
1699 	}
1700 
1701 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1702 	if (r)
1703 		goto error_unlock;
1704 
1705 	amdgpu_res_first(pages_addr ? NULL : res, offset,
1706 			 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor);
1707 	while (cursor.remaining) {
1708 		uint64_t tmp, num_entries, addr;
1709 
1710 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1711 		if (pages_addr) {
1712 			bool contiguous = true;
1713 
1714 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1715 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1716 				uint64_t count;
1717 
1718 				contiguous = pages_addr[pfn + 1] ==
1719 					pages_addr[pfn] + PAGE_SIZE;
1720 
1721 				tmp = num_entries /
1722 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1723 				for (count = 2; count < tmp; ++count) {
1724 					uint64_t idx = pfn + count;
1725 
1726 					if (contiguous != (pages_addr[idx] ==
1727 					    pages_addr[idx - 1] + PAGE_SIZE))
1728 						break;
1729 				}
1730 				num_entries = count *
1731 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1732 			}
1733 
1734 			if (!contiguous) {
1735 				addr = cursor.start;
1736 				params.pages_addr = pages_addr;
1737 			} else {
1738 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1739 				params.pages_addr = NULL;
1740 			}
1741 
1742 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1743 			addr = bo_adev->vm_manager.vram_base_offset +
1744 				cursor.start;
1745 		} else {
1746 			addr = 0;
1747 		}
1748 
1749 		tmp = start + num_entries;
1750 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1751 		if (r)
1752 			goto error_unlock;
1753 
1754 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1755 		start = tmp;
1756 	}
1757 
1758 	r = vm->update_funcs->commit(&params, fence);
1759 
1760 	if (table_freed)
1761 		*table_freed = *table_freed || params.table_freed;
1762 
1763 error_unlock:
1764 	amdgpu_vm_eviction_unlock(vm);
1765 	drm_dev_exit(idx);
1766 	return r;
1767 }
1768 
1769 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem,
1770 				uint64_t *gtt_mem, uint64_t *cpu_mem)
1771 {
1772 	struct amdgpu_bo_va *bo_va, *tmp;
1773 
1774 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
1775 		if (!bo_va->base.bo)
1776 			continue;
1777 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1778 				gtt_mem, cpu_mem);
1779 	}
1780 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
1781 		if (!bo_va->base.bo)
1782 			continue;
1783 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1784 				gtt_mem, cpu_mem);
1785 	}
1786 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
1787 		if (!bo_va->base.bo)
1788 			continue;
1789 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1790 				gtt_mem, cpu_mem);
1791 	}
1792 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
1793 		if (!bo_va->base.bo)
1794 			continue;
1795 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1796 				gtt_mem, cpu_mem);
1797 	}
1798 	spin_lock(&vm->invalidated_lock);
1799 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
1800 		if (!bo_va->base.bo)
1801 			continue;
1802 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1803 				gtt_mem, cpu_mem);
1804 	}
1805 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
1806 		if (!bo_va->base.bo)
1807 			continue;
1808 		amdgpu_bo_get_memory(bo_va->base.bo, vram_mem,
1809 				gtt_mem, cpu_mem);
1810 	}
1811 	spin_unlock(&vm->invalidated_lock);
1812 }
1813 /**
1814  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1815  *
1816  * @adev: amdgpu_device pointer
1817  * @bo_va: requested BO and VM object
1818  * @clear: if true clear the entries
1819  * @table_freed: return true if page table is freed
1820  *
1821  * Fill in the page table entries for @bo_va.
1822  *
1823  * Returns:
1824  * 0 for success, -EINVAL for failure.
1825  */
1826 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1827 			bool clear, bool *table_freed)
1828 {
1829 	struct amdgpu_bo *bo = bo_va->base.bo;
1830 	struct amdgpu_vm *vm = bo_va->base.vm;
1831 	struct amdgpu_bo_va_mapping *mapping;
1832 	dma_addr_t *pages_addr = NULL;
1833 	struct ttm_resource *mem;
1834 	struct dma_fence **last_update;
1835 	struct dma_resv *resv;
1836 	uint64_t flags;
1837 	struct amdgpu_device *bo_adev = adev;
1838 	int r;
1839 
1840 	if (clear || !bo) {
1841 		mem = NULL;
1842 		resv = vm->root.bo->tbo.base.resv;
1843 	} else {
1844 		struct drm_gem_object *obj = &bo->tbo.base;
1845 
1846 		resv = bo->tbo.base.resv;
1847 		if (obj->import_attach && bo_va->is_xgmi) {
1848 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1849 			struct drm_gem_object *gobj = dma_buf->priv;
1850 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1851 
1852 			if (abo->tbo.resource->mem_type == TTM_PL_VRAM)
1853 				bo = gem_to_amdgpu_bo(gobj);
1854 		}
1855 		mem = bo->tbo.resource;
1856 		if (mem->mem_type == TTM_PL_TT ||
1857 		    mem->mem_type == AMDGPU_PL_PREEMPT)
1858 			pages_addr = bo->tbo.ttm->dma_address;
1859 	}
1860 
1861 	if (bo) {
1862 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1863 
1864 		if (amdgpu_bo_encrypted(bo))
1865 			flags |= AMDGPU_PTE_TMZ;
1866 
1867 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1868 	} else {
1869 		flags = 0x0;
1870 	}
1871 
1872 	if (clear || (bo && bo->tbo.base.resv ==
1873 		      vm->root.bo->tbo.base.resv))
1874 		last_update = &vm->last_update;
1875 	else
1876 		last_update = &bo_va->last_pt_update;
1877 
1878 	if (!clear && bo_va->base.moved) {
1879 		bo_va->base.moved = false;
1880 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1881 
1882 	} else if (bo_va->cleared != clear) {
1883 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1884 	}
1885 
1886 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1887 		uint64_t update_flags = flags;
1888 
1889 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1890 		 * but in case of something, we filter the flags in first place
1891 		 */
1892 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1893 			update_flags &= ~AMDGPU_PTE_READABLE;
1894 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1895 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1896 
1897 		/* Apply ASIC specific mapping flags */
1898 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1899 
1900 		trace_amdgpu_vm_bo_update(mapping);
1901 
1902 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1903 						resv, mapping->start,
1904 						mapping->last, update_flags,
1905 						mapping->offset, mem,
1906 						pages_addr, last_update, table_freed);
1907 		if (r)
1908 			return r;
1909 	}
1910 
1911 	/* If the BO is not in its preferred location add it back to
1912 	 * the evicted list so that it gets validated again on the
1913 	 * next command submission.
1914 	 */
1915 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
1916 		uint32_t mem_type = bo->tbo.resource->mem_type;
1917 
1918 		if (!(bo->preferred_domains &
1919 		      amdgpu_mem_type_to_domain(mem_type)))
1920 			amdgpu_vm_bo_evicted(&bo_va->base);
1921 		else
1922 			amdgpu_vm_bo_idle(&bo_va->base);
1923 	} else {
1924 		amdgpu_vm_bo_done(&bo_va->base);
1925 	}
1926 
1927 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1928 	bo_va->cleared = clear;
1929 
1930 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1931 		list_for_each_entry(mapping, &bo_va->valids, list)
1932 			trace_amdgpu_vm_bo_mapping(mapping);
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /**
1939  * amdgpu_vm_update_prt_state - update the global PRT state
1940  *
1941  * @adev: amdgpu_device pointer
1942  */
1943 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1944 {
1945 	unsigned long flags;
1946 	bool enable;
1947 
1948 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1949 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1950 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1951 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1952 }
1953 
1954 /**
1955  * amdgpu_vm_prt_get - add a PRT user
1956  *
1957  * @adev: amdgpu_device pointer
1958  */
1959 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1960 {
1961 	if (!adev->gmc.gmc_funcs->set_prt)
1962 		return;
1963 
1964 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1965 		amdgpu_vm_update_prt_state(adev);
1966 }
1967 
1968 /**
1969  * amdgpu_vm_prt_put - drop a PRT user
1970  *
1971  * @adev: amdgpu_device pointer
1972  */
1973 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1974 {
1975 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1976 		amdgpu_vm_update_prt_state(adev);
1977 }
1978 
1979 /**
1980  * amdgpu_vm_prt_cb - callback for updating the PRT status
1981  *
1982  * @fence: fence for the callback
1983  * @_cb: the callback function
1984  */
1985 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1986 {
1987 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1988 
1989 	amdgpu_vm_prt_put(cb->adev);
1990 	kfree(cb);
1991 }
1992 
1993 /**
1994  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1995  *
1996  * @adev: amdgpu_device pointer
1997  * @fence: fence for the callback
1998  */
1999 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2000 				 struct dma_fence *fence)
2001 {
2002 	struct amdgpu_prt_cb *cb;
2003 
2004 	if (!adev->gmc.gmc_funcs->set_prt)
2005 		return;
2006 
2007 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2008 	if (!cb) {
2009 		/* Last resort when we are OOM */
2010 		if (fence)
2011 			dma_fence_wait(fence, false);
2012 
2013 		amdgpu_vm_prt_put(adev);
2014 	} else {
2015 		cb->adev = adev;
2016 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
2017 						     amdgpu_vm_prt_cb))
2018 			amdgpu_vm_prt_cb(fence, &cb->cb);
2019 	}
2020 }
2021 
2022 /**
2023  * amdgpu_vm_free_mapping - free a mapping
2024  *
2025  * @adev: amdgpu_device pointer
2026  * @vm: requested vm
2027  * @mapping: mapping to be freed
2028  * @fence: fence of the unmap operation
2029  *
2030  * Free a mapping and make sure we decrease the PRT usage count if applicable.
2031  */
2032 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2033 				   struct amdgpu_vm *vm,
2034 				   struct amdgpu_bo_va_mapping *mapping,
2035 				   struct dma_fence *fence)
2036 {
2037 	if (mapping->flags & AMDGPU_PTE_PRT)
2038 		amdgpu_vm_add_prt_cb(adev, fence);
2039 	kfree(mapping);
2040 }
2041 
2042 /**
2043  * amdgpu_vm_prt_fini - finish all prt mappings
2044  *
2045  * @adev: amdgpu_device pointer
2046  * @vm: requested vm
2047  *
2048  * Register a cleanup callback to disable PRT support after VM dies.
2049  */
2050 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2051 {
2052 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2053 	struct dma_fence *excl, **shared;
2054 	unsigned i, shared_count;
2055 	int r;
2056 
2057 	r = dma_resv_get_fences(resv, &excl, &shared_count, &shared);
2058 	if (r) {
2059 		/* Not enough memory to grab the fence list, as last resort
2060 		 * block for all the fences to complete.
2061 		 */
2062 		dma_resv_wait_timeout(resv, true, false,
2063 						    MAX_SCHEDULE_TIMEOUT);
2064 		return;
2065 	}
2066 
2067 	/* Add a callback for each fence in the reservation object */
2068 	amdgpu_vm_prt_get(adev);
2069 	amdgpu_vm_add_prt_cb(adev, excl);
2070 
2071 	for (i = 0; i < shared_count; ++i) {
2072 		amdgpu_vm_prt_get(adev);
2073 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2074 	}
2075 
2076 	kfree(shared);
2077 }
2078 
2079 /**
2080  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2081  *
2082  * @adev: amdgpu_device pointer
2083  * @vm: requested vm
2084  * @fence: optional resulting fence (unchanged if no work needed to be done
2085  * or if an error occurred)
2086  *
2087  * Make sure all freed BOs are cleared in the PT.
2088  * PTs have to be reserved and mutex must be locked!
2089  *
2090  * Returns:
2091  * 0 for success.
2092  *
2093  */
2094 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2095 			  struct amdgpu_vm *vm,
2096 			  struct dma_fence **fence)
2097 {
2098 	struct dma_resv *resv = vm->root.bo->tbo.base.resv;
2099 	struct amdgpu_bo_va_mapping *mapping;
2100 	uint64_t init_pte_value = 0;
2101 	struct dma_fence *f = NULL;
2102 	int r;
2103 
2104 	while (!list_empty(&vm->freed)) {
2105 		mapping = list_first_entry(&vm->freed,
2106 			struct amdgpu_bo_va_mapping, list);
2107 		list_del(&mapping->list);
2108 
2109 		if (vm->pte_support_ats &&
2110 		    mapping->start < AMDGPU_GMC_HOLE_START)
2111 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2112 
2113 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2114 						resv, mapping->start,
2115 						mapping->last, init_pte_value,
2116 						0, NULL, NULL, &f, NULL);
2117 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2118 		if (r) {
2119 			dma_fence_put(f);
2120 			return r;
2121 		}
2122 	}
2123 
2124 	if (fence && f) {
2125 		dma_fence_put(*fence);
2126 		*fence = f;
2127 	} else {
2128 		dma_fence_put(f);
2129 	}
2130 
2131 	return 0;
2132 
2133 }
2134 
2135 /**
2136  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2137  *
2138  * @adev: amdgpu_device pointer
2139  * @vm: requested vm
2140  *
2141  * Make sure all BOs which are moved are updated in the PTs.
2142  *
2143  * Returns:
2144  * 0 for success.
2145  *
2146  * PTs have to be reserved!
2147  */
2148 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2149 			   struct amdgpu_vm *vm)
2150 {
2151 	struct amdgpu_bo_va *bo_va, *tmp;
2152 	struct dma_resv *resv;
2153 	bool clear;
2154 	int r;
2155 
2156 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2157 		/* Per VM BOs never need to bo cleared in the page tables */
2158 		r = amdgpu_vm_bo_update(adev, bo_va, false, NULL);
2159 		if (r)
2160 			return r;
2161 	}
2162 
2163 	spin_lock(&vm->invalidated_lock);
2164 	while (!list_empty(&vm->invalidated)) {
2165 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2166 					 base.vm_status);
2167 		resv = bo_va->base.bo->tbo.base.resv;
2168 		spin_unlock(&vm->invalidated_lock);
2169 
2170 		/* Try to reserve the BO to avoid clearing its ptes */
2171 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2172 			clear = false;
2173 		/* Somebody else is using the BO right now */
2174 		else
2175 			clear = true;
2176 
2177 		r = amdgpu_vm_bo_update(adev, bo_va, clear, NULL);
2178 		if (r)
2179 			return r;
2180 
2181 		if (!clear)
2182 			dma_resv_unlock(resv);
2183 		spin_lock(&vm->invalidated_lock);
2184 	}
2185 	spin_unlock(&vm->invalidated_lock);
2186 
2187 	return 0;
2188 }
2189 
2190 /**
2191  * amdgpu_vm_bo_add - add a bo to a specific vm
2192  *
2193  * @adev: amdgpu_device pointer
2194  * @vm: requested vm
2195  * @bo: amdgpu buffer object
2196  *
2197  * Add @bo into the requested vm.
2198  * Add @bo to the list of bos associated with the vm
2199  *
2200  * Returns:
2201  * Newly added bo_va or NULL for failure
2202  *
2203  * Object has to be reserved!
2204  */
2205 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2206 				      struct amdgpu_vm *vm,
2207 				      struct amdgpu_bo *bo)
2208 {
2209 	struct amdgpu_bo_va *bo_va;
2210 
2211 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2212 	if (bo_va == NULL) {
2213 		return NULL;
2214 	}
2215 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2216 
2217 	bo_va->ref_count = 1;
2218 	INIT_LIST_HEAD(&bo_va->valids);
2219 	INIT_LIST_HEAD(&bo_va->invalids);
2220 
2221 	if (!bo)
2222 		return bo_va;
2223 
2224 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2225 		bo_va->is_xgmi = true;
2226 		/* Power up XGMI if it can be potentially used */
2227 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2228 	}
2229 
2230 	return bo_va;
2231 }
2232 
2233 
2234 /**
2235  * amdgpu_vm_bo_insert_map - insert a new mapping
2236  *
2237  * @adev: amdgpu_device pointer
2238  * @bo_va: bo_va to store the address
2239  * @mapping: the mapping to insert
2240  *
2241  * Insert a new mapping into all structures.
2242  */
2243 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2244 				    struct amdgpu_bo_va *bo_va,
2245 				    struct amdgpu_bo_va_mapping *mapping)
2246 {
2247 	struct amdgpu_vm *vm = bo_va->base.vm;
2248 	struct amdgpu_bo *bo = bo_va->base.bo;
2249 
2250 	mapping->bo_va = bo_va;
2251 	list_add(&mapping->list, &bo_va->invalids);
2252 	amdgpu_vm_it_insert(mapping, &vm->va);
2253 
2254 	if (mapping->flags & AMDGPU_PTE_PRT)
2255 		amdgpu_vm_prt_get(adev);
2256 
2257 	if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv &&
2258 	    !bo_va->base.moved) {
2259 		list_move(&bo_va->base.vm_status, &vm->moved);
2260 	}
2261 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2262 }
2263 
2264 /**
2265  * amdgpu_vm_bo_map - map bo inside a vm
2266  *
2267  * @adev: amdgpu_device pointer
2268  * @bo_va: bo_va to store the address
2269  * @saddr: where to map the BO
2270  * @offset: requested offset in the BO
2271  * @size: BO size in bytes
2272  * @flags: attributes of pages (read/write/valid/etc.)
2273  *
2274  * Add a mapping of the BO at the specefied addr into the VM.
2275  *
2276  * Returns:
2277  * 0 for success, error for failure.
2278  *
2279  * Object has to be reserved and unreserved outside!
2280  */
2281 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2282 		     struct amdgpu_bo_va *bo_va,
2283 		     uint64_t saddr, uint64_t offset,
2284 		     uint64_t size, uint64_t flags)
2285 {
2286 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2287 	struct amdgpu_bo *bo = bo_va->base.bo;
2288 	struct amdgpu_vm *vm = bo_va->base.vm;
2289 	uint64_t eaddr;
2290 
2291 	/* validate the parameters */
2292 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2293 	    size == 0 || size & ~PAGE_MASK)
2294 		return -EINVAL;
2295 
2296 	/* make sure object fit at this offset */
2297 	eaddr = saddr + size - 1;
2298 	if (saddr >= eaddr ||
2299 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2300 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2301 		return -EINVAL;
2302 
2303 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2304 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2305 
2306 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2307 	if (tmp) {
2308 		/* bo and tmp overlap, invalid addr */
2309 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2310 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2311 			tmp->start, tmp->last + 1);
2312 		return -EINVAL;
2313 	}
2314 
2315 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2316 	if (!mapping)
2317 		return -ENOMEM;
2318 
2319 	mapping->start = saddr;
2320 	mapping->last = eaddr;
2321 	mapping->offset = offset;
2322 	mapping->flags = flags;
2323 
2324 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2325 
2326 	return 0;
2327 }
2328 
2329 /**
2330  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2331  *
2332  * @adev: amdgpu_device pointer
2333  * @bo_va: bo_va to store the address
2334  * @saddr: where to map the BO
2335  * @offset: requested offset in the BO
2336  * @size: BO size in bytes
2337  * @flags: attributes of pages (read/write/valid/etc.)
2338  *
2339  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2340  * mappings as we do so.
2341  *
2342  * Returns:
2343  * 0 for success, error for failure.
2344  *
2345  * Object has to be reserved and unreserved outside!
2346  */
2347 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2348 			     struct amdgpu_bo_va *bo_va,
2349 			     uint64_t saddr, uint64_t offset,
2350 			     uint64_t size, uint64_t flags)
2351 {
2352 	struct amdgpu_bo_va_mapping *mapping;
2353 	struct amdgpu_bo *bo = bo_va->base.bo;
2354 	uint64_t eaddr;
2355 	int r;
2356 
2357 	/* validate the parameters */
2358 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2359 	    size == 0 || size & ~PAGE_MASK)
2360 		return -EINVAL;
2361 
2362 	/* make sure object fit at this offset */
2363 	eaddr = saddr + size - 1;
2364 	if (saddr >= eaddr ||
2365 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2366 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2367 		return -EINVAL;
2368 
2369 	/* Allocate all the needed memory */
2370 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2371 	if (!mapping)
2372 		return -ENOMEM;
2373 
2374 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2375 	if (r) {
2376 		kfree(mapping);
2377 		return r;
2378 	}
2379 
2380 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2381 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2382 
2383 	mapping->start = saddr;
2384 	mapping->last = eaddr;
2385 	mapping->offset = offset;
2386 	mapping->flags = flags;
2387 
2388 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2389 
2390 	return 0;
2391 }
2392 
2393 /**
2394  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2395  *
2396  * @adev: amdgpu_device pointer
2397  * @bo_va: bo_va to remove the address from
2398  * @saddr: where to the BO is mapped
2399  *
2400  * Remove a mapping of the BO at the specefied addr from the VM.
2401  *
2402  * Returns:
2403  * 0 for success, error for failure.
2404  *
2405  * Object has to be reserved and unreserved outside!
2406  */
2407 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2408 		       struct amdgpu_bo_va *bo_va,
2409 		       uint64_t saddr)
2410 {
2411 	struct amdgpu_bo_va_mapping *mapping;
2412 	struct amdgpu_vm *vm = bo_va->base.vm;
2413 	bool valid = true;
2414 
2415 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2416 
2417 	list_for_each_entry(mapping, &bo_va->valids, list) {
2418 		if (mapping->start == saddr)
2419 			break;
2420 	}
2421 
2422 	if (&mapping->list == &bo_va->valids) {
2423 		valid = false;
2424 
2425 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2426 			if (mapping->start == saddr)
2427 				break;
2428 		}
2429 
2430 		if (&mapping->list == &bo_va->invalids)
2431 			return -ENOENT;
2432 	}
2433 
2434 	list_del(&mapping->list);
2435 	amdgpu_vm_it_remove(mapping, &vm->va);
2436 	mapping->bo_va = NULL;
2437 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2438 
2439 	if (valid)
2440 		list_add(&mapping->list, &vm->freed);
2441 	else
2442 		amdgpu_vm_free_mapping(adev, vm, mapping,
2443 				       bo_va->last_pt_update);
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2450  *
2451  * @adev: amdgpu_device pointer
2452  * @vm: VM structure to use
2453  * @saddr: start of the range
2454  * @size: size of the range
2455  *
2456  * Remove all mappings in a range, split them as appropriate.
2457  *
2458  * Returns:
2459  * 0 for success, error for failure.
2460  */
2461 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2462 				struct amdgpu_vm *vm,
2463 				uint64_t saddr, uint64_t size)
2464 {
2465 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2466 	LIST_HEAD(removed);
2467 	uint64_t eaddr;
2468 
2469 	eaddr = saddr + size - 1;
2470 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2471 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2472 
2473 	/* Allocate all the needed memory */
2474 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2475 	if (!before)
2476 		return -ENOMEM;
2477 	INIT_LIST_HEAD(&before->list);
2478 
2479 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2480 	if (!after) {
2481 		kfree(before);
2482 		return -ENOMEM;
2483 	}
2484 	INIT_LIST_HEAD(&after->list);
2485 
2486 	/* Now gather all removed mappings */
2487 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2488 	while (tmp) {
2489 		/* Remember mapping split at the start */
2490 		if (tmp->start < saddr) {
2491 			before->start = tmp->start;
2492 			before->last = saddr - 1;
2493 			before->offset = tmp->offset;
2494 			before->flags = tmp->flags;
2495 			before->bo_va = tmp->bo_va;
2496 			list_add(&before->list, &tmp->bo_va->invalids);
2497 		}
2498 
2499 		/* Remember mapping split at the end */
2500 		if (tmp->last > eaddr) {
2501 			after->start = eaddr + 1;
2502 			after->last = tmp->last;
2503 			after->offset = tmp->offset;
2504 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2505 			after->flags = tmp->flags;
2506 			after->bo_va = tmp->bo_va;
2507 			list_add(&after->list, &tmp->bo_va->invalids);
2508 		}
2509 
2510 		list_del(&tmp->list);
2511 		list_add(&tmp->list, &removed);
2512 
2513 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2514 	}
2515 
2516 	/* And free them up */
2517 	list_for_each_entry_safe(tmp, next, &removed, list) {
2518 		amdgpu_vm_it_remove(tmp, &vm->va);
2519 		list_del(&tmp->list);
2520 
2521 		if (tmp->start < saddr)
2522 		    tmp->start = saddr;
2523 		if (tmp->last > eaddr)
2524 		    tmp->last = eaddr;
2525 
2526 		tmp->bo_va = NULL;
2527 		list_add(&tmp->list, &vm->freed);
2528 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2529 	}
2530 
2531 	/* Insert partial mapping before the range */
2532 	if (!list_empty(&before->list)) {
2533 		amdgpu_vm_it_insert(before, &vm->va);
2534 		if (before->flags & AMDGPU_PTE_PRT)
2535 			amdgpu_vm_prt_get(adev);
2536 	} else {
2537 		kfree(before);
2538 	}
2539 
2540 	/* Insert partial mapping after the range */
2541 	if (!list_empty(&after->list)) {
2542 		amdgpu_vm_it_insert(after, &vm->va);
2543 		if (after->flags & AMDGPU_PTE_PRT)
2544 			amdgpu_vm_prt_get(adev);
2545 	} else {
2546 		kfree(after);
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 /**
2553  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2554  *
2555  * @vm: the requested VM
2556  * @addr: the address
2557  *
2558  * Find a mapping by it's address.
2559  *
2560  * Returns:
2561  * The amdgpu_bo_va_mapping matching for addr or NULL
2562  *
2563  */
2564 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2565 							 uint64_t addr)
2566 {
2567 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2568 }
2569 
2570 /**
2571  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2572  *
2573  * @vm: the requested vm
2574  * @ticket: CS ticket
2575  *
2576  * Trace all mappings of BOs reserved during a command submission.
2577  */
2578 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2579 {
2580 	struct amdgpu_bo_va_mapping *mapping;
2581 
2582 	if (!trace_amdgpu_vm_bo_cs_enabled())
2583 		return;
2584 
2585 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2586 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2587 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2588 			struct amdgpu_bo *bo;
2589 
2590 			bo = mapping->bo_va->base.bo;
2591 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2592 			    ticket)
2593 				continue;
2594 		}
2595 
2596 		trace_amdgpu_vm_bo_cs(mapping);
2597 	}
2598 }
2599 
2600 /**
2601  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2602  *
2603  * @adev: amdgpu_device pointer
2604  * @bo_va: requested bo_va
2605  *
2606  * Remove @bo_va->bo from the requested vm.
2607  *
2608  * Object have to be reserved!
2609  */
2610 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2611 		      struct amdgpu_bo_va *bo_va)
2612 {
2613 	struct amdgpu_bo_va_mapping *mapping, *next;
2614 	struct amdgpu_bo *bo = bo_va->base.bo;
2615 	struct amdgpu_vm *vm = bo_va->base.vm;
2616 	struct amdgpu_vm_bo_base **base;
2617 
2618 	if (bo) {
2619 		if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2620 			vm->bulk_moveable = false;
2621 
2622 		for (base = &bo_va->base.bo->vm_bo; *base;
2623 		     base = &(*base)->next) {
2624 			if (*base != &bo_va->base)
2625 				continue;
2626 
2627 			*base = bo_va->base.next;
2628 			break;
2629 		}
2630 	}
2631 
2632 	spin_lock(&vm->invalidated_lock);
2633 	list_del(&bo_va->base.vm_status);
2634 	spin_unlock(&vm->invalidated_lock);
2635 
2636 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2637 		list_del(&mapping->list);
2638 		amdgpu_vm_it_remove(mapping, &vm->va);
2639 		mapping->bo_va = NULL;
2640 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2641 		list_add(&mapping->list, &vm->freed);
2642 	}
2643 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2644 		list_del(&mapping->list);
2645 		amdgpu_vm_it_remove(mapping, &vm->va);
2646 		amdgpu_vm_free_mapping(adev, vm, mapping,
2647 				       bo_va->last_pt_update);
2648 	}
2649 
2650 	dma_fence_put(bo_va->last_pt_update);
2651 
2652 	if (bo && bo_va->is_xgmi)
2653 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2654 
2655 	kfree(bo_va);
2656 }
2657 
2658 /**
2659  * amdgpu_vm_evictable - check if we can evict a VM
2660  *
2661  * @bo: A page table of the VM.
2662  *
2663  * Check if it is possible to evict a VM.
2664  */
2665 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2666 {
2667 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2668 
2669 	/* Page tables of a destroyed VM can go away immediately */
2670 	if (!bo_base || !bo_base->vm)
2671 		return true;
2672 
2673 	/* Don't evict VM page tables while they are busy */
2674 	if (!dma_resv_test_signaled(bo->tbo.base.resv, true))
2675 		return false;
2676 
2677 	/* Try to block ongoing updates */
2678 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2679 		return false;
2680 
2681 	/* Don't evict VM page tables while they are updated */
2682 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2683 		amdgpu_vm_eviction_unlock(bo_base->vm);
2684 		return false;
2685 	}
2686 
2687 	bo_base->vm->evicting = true;
2688 	amdgpu_vm_eviction_unlock(bo_base->vm);
2689 	return true;
2690 }
2691 
2692 /**
2693  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2694  *
2695  * @adev: amdgpu_device pointer
2696  * @bo: amdgpu buffer object
2697  * @evicted: is the BO evicted
2698  *
2699  * Mark @bo as invalid.
2700  */
2701 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2702 			     struct amdgpu_bo *bo, bool evicted)
2703 {
2704 	struct amdgpu_vm_bo_base *bo_base;
2705 
2706 	/* shadow bo doesn't have bo base, its validation needs its parent */
2707 	if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo))
2708 		bo = bo->parent;
2709 
2710 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2711 		struct amdgpu_vm *vm = bo_base->vm;
2712 
2713 		if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) {
2714 			amdgpu_vm_bo_evicted(bo_base);
2715 			continue;
2716 		}
2717 
2718 		if (bo_base->moved)
2719 			continue;
2720 		bo_base->moved = true;
2721 
2722 		if (bo->tbo.type == ttm_bo_type_kernel)
2723 			amdgpu_vm_bo_relocated(bo_base);
2724 		else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv)
2725 			amdgpu_vm_bo_moved(bo_base);
2726 		else
2727 			amdgpu_vm_bo_invalidated(bo_base);
2728 	}
2729 }
2730 
2731 /**
2732  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2733  *
2734  * @vm_size: VM size
2735  *
2736  * Returns:
2737  * VM page table as power of two
2738  */
2739 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2740 {
2741 	/* Total bits covered by PD + PTs */
2742 	unsigned bits = ilog2(vm_size) + 18;
2743 
2744 	/* Make sure the PD is 4K in size up to 8GB address space.
2745 	   Above that split equal between PD and PTs */
2746 	if (vm_size <= 8)
2747 		return (bits - 9);
2748 	else
2749 		return ((bits + 3) / 2);
2750 }
2751 
2752 /**
2753  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2754  *
2755  * @adev: amdgpu_device pointer
2756  * @min_vm_size: the minimum vm size in GB if it's set auto
2757  * @fragment_size_default: Default PTE fragment size
2758  * @max_level: max VMPT level
2759  * @max_bits: max address space size in bits
2760  *
2761  */
2762 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2763 			   uint32_t fragment_size_default, unsigned max_level,
2764 			   unsigned max_bits)
2765 {
2766 	unsigned int max_size = 1 << (max_bits - 30);
2767 	unsigned int vm_size;
2768 	uint64_t tmp;
2769 
2770 	/* adjust vm size first */
2771 	if (amdgpu_vm_size != -1) {
2772 		vm_size = amdgpu_vm_size;
2773 		if (vm_size > max_size) {
2774 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2775 				 amdgpu_vm_size, max_size);
2776 			vm_size = max_size;
2777 		}
2778 	} else {
2779 		struct sysinfo si;
2780 		unsigned int phys_ram_gb;
2781 
2782 		/* Optimal VM size depends on the amount of physical
2783 		 * RAM available. Underlying requirements and
2784 		 * assumptions:
2785 		 *
2786 		 *  - Need to map system memory and VRAM from all GPUs
2787 		 *     - VRAM from other GPUs not known here
2788 		 *     - Assume VRAM <= system memory
2789 		 *  - On GFX8 and older, VM space can be segmented for
2790 		 *    different MTYPEs
2791 		 *  - Need to allow room for fragmentation, guard pages etc.
2792 		 *
2793 		 * This adds up to a rough guess of system memory x3.
2794 		 * Round up to power of two to maximize the available
2795 		 * VM size with the given page table size.
2796 		 */
2797 		si_meminfo(&si);
2798 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2799 			       (1 << 30) - 1) >> 30;
2800 		vm_size = roundup_pow_of_two(
2801 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2802 	}
2803 
2804 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2805 
2806 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2807 	if (amdgpu_vm_block_size != -1)
2808 		tmp >>= amdgpu_vm_block_size - 9;
2809 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2810 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2811 	switch (adev->vm_manager.num_level) {
2812 	case 3:
2813 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2814 		break;
2815 	case 2:
2816 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2817 		break;
2818 	case 1:
2819 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2820 		break;
2821 	default:
2822 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2823 	}
2824 	/* block size depends on vm size and hw setup*/
2825 	if (amdgpu_vm_block_size != -1)
2826 		adev->vm_manager.block_size =
2827 			min((unsigned)amdgpu_vm_block_size, max_bits
2828 			    - AMDGPU_GPU_PAGE_SHIFT
2829 			    - 9 * adev->vm_manager.num_level);
2830 	else if (adev->vm_manager.num_level > 1)
2831 		adev->vm_manager.block_size = 9;
2832 	else
2833 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2834 
2835 	if (amdgpu_vm_fragment_size == -1)
2836 		adev->vm_manager.fragment_size = fragment_size_default;
2837 	else
2838 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2839 
2840 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2841 		 vm_size, adev->vm_manager.num_level + 1,
2842 		 adev->vm_manager.block_size,
2843 		 adev->vm_manager.fragment_size);
2844 }
2845 
2846 /**
2847  * amdgpu_vm_wait_idle - wait for the VM to become idle
2848  *
2849  * @vm: VM object to wait for
2850  * @timeout: timeout to wait for VM to become idle
2851  */
2852 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2853 {
2854 	timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true,
2855 					true, timeout);
2856 	if (timeout <= 0)
2857 		return timeout;
2858 
2859 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2860 }
2861 
2862 /**
2863  * amdgpu_vm_init - initialize a vm instance
2864  *
2865  * @adev: amdgpu_device pointer
2866  * @vm: requested vm
2867  * @pasid: Process address space identifier
2868  *
2869  * Init @vm fields.
2870  *
2871  * Returns:
2872  * 0 for success, error for failure.
2873  */
2874 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2875 {
2876 	struct amdgpu_bo *root_bo;
2877 	struct amdgpu_bo_vm *root;
2878 	int r, i;
2879 
2880 	vm->va = RB_ROOT_CACHED;
2881 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2882 		vm->reserved_vmid[i] = NULL;
2883 	INIT_LIST_HEAD(&vm->evicted);
2884 	INIT_LIST_HEAD(&vm->relocated);
2885 	INIT_LIST_HEAD(&vm->moved);
2886 	INIT_LIST_HEAD(&vm->idle);
2887 	INIT_LIST_HEAD(&vm->invalidated);
2888 	spin_lock_init(&vm->invalidated_lock);
2889 	INIT_LIST_HEAD(&vm->freed);
2890 	INIT_LIST_HEAD(&vm->done);
2891 
2892 	/* create scheduler entities for page table updates */
2893 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2894 				  adev->vm_manager.vm_pte_scheds,
2895 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2896 	if (r)
2897 		return r;
2898 
2899 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2900 				  adev->vm_manager.vm_pte_scheds,
2901 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2902 	if (r)
2903 		goto error_free_immediate;
2904 
2905 	vm->pte_support_ats = false;
2906 	vm->is_compute_context = false;
2907 
2908 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2909 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2910 
2911 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2912 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2913 	WARN_ONCE((vm->use_cpu_for_update &&
2914 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2915 		  "CPU update of VM recommended only for large BAR system\n");
2916 
2917 	if (vm->use_cpu_for_update)
2918 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2919 	else
2920 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2921 	vm->last_update = NULL;
2922 	vm->last_unlocked = dma_fence_get_stub();
2923 
2924 	mutex_init(&vm->eviction_lock);
2925 	vm->evicting = false;
2926 
2927 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2928 				false, &root);
2929 	if (r)
2930 		goto error_free_delayed;
2931 	root_bo = &root->bo;
2932 	r = amdgpu_bo_reserve(root_bo, true);
2933 	if (r)
2934 		goto error_free_root;
2935 
2936 	r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1);
2937 	if (r)
2938 		goto error_unreserve;
2939 
2940 	amdgpu_vm_bo_base_init(&vm->root, vm, root_bo);
2941 
2942 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2943 	if (r)
2944 		goto error_unreserve;
2945 
2946 	amdgpu_bo_unreserve(vm->root.bo);
2947 
2948 	if (pasid) {
2949 		unsigned long flags;
2950 
2951 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2952 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2953 			      GFP_ATOMIC);
2954 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2955 		if (r < 0)
2956 			goto error_free_root;
2957 
2958 		vm->pasid = pasid;
2959 	}
2960 
2961 	INIT_KFIFO(vm->faults);
2962 
2963 	return 0;
2964 
2965 error_unreserve:
2966 	amdgpu_bo_unreserve(vm->root.bo);
2967 
2968 error_free_root:
2969 	amdgpu_bo_unref(&root->shadow);
2970 	amdgpu_bo_unref(&root_bo);
2971 	vm->root.bo = NULL;
2972 
2973 error_free_delayed:
2974 	dma_fence_put(vm->last_unlocked);
2975 	drm_sched_entity_destroy(&vm->delayed);
2976 
2977 error_free_immediate:
2978 	drm_sched_entity_destroy(&vm->immediate);
2979 
2980 	return r;
2981 }
2982 
2983 /**
2984  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2985  *
2986  * @adev: amdgpu_device pointer
2987  * @vm: the VM to check
2988  *
2989  * check all entries of the root PD, if any subsequent PDs are allocated,
2990  * it means there are page table creating and filling, and is no a clean
2991  * VM
2992  *
2993  * Returns:
2994  *	0 if this VM is clean
2995  */
2996 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2997 					  struct amdgpu_vm *vm)
2998 {
2999 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
3000 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
3001 	unsigned int i = 0;
3002 
3003 	for (i = 0; i < entries; i++) {
3004 		if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo)
3005 			return -EINVAL;
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /**
3012  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3013  *
3014  * @adev: amdgpu_device pointer
3015  * @vm: requested vm
3016  * @pasid: pasid to use
3017  *
3018  * This only works on GFX VMs that don't have any BOs added and no
3019  * page tables allocated yet.
3020  *
3021  * Changes the following VM parameters:
3022  * - use_cpu_for_update
3023  * - pte_supports_ats
3024  * - pasid (old PASID is released, because compute manages its own PASIDs)
3025  *
3026  * Reinitializes the page directory to reflect the changed ATS
3027  * setting.
3028  *
3029  * Returns:
3030  * 0 for success, -errno for errors.
3031  */
3032 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
3033 			   u32 pasid)
3034 {
3035 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3036 	int r;
3037 
3038 	r = amdgpu_bo_reserve(vm->root.bo, true);
3039 	if (r)
3040 		return r;
3041 
3042 	/* Sanity checks */
3043 	r = amdgpu_vm_check_clean_reserved(adev, vm);
3044 	if (r)
3045 		goto unreserve_bo;
3046 
3047 	if (pasid) {
3048 		unsigned long flags;
3049 
3050 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3051 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3052 			      GFP_ATOMIC);
3053 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3054 
3055 		if (r == -ENOSPC)
3056 			goto unreserve_bo;
3057 		r = 0;
3058 	}
3059 
3060 	/* Check if PD needs to be reinitialized and do it before
3061 	 * changing any other state, in case it fails.
3062 	 */
3063 	if (pte_support_ats != vm->pte_support_ats) {
3064 		vm->pte_support_ats = pte_support_ats;
3065 		r = amdgpu_vm_clear_bo(adev, vm,
3066 				       to_amdgpu_bo_vm(vm->root.bo),
3067 				       false);
3068 		if (r)
3069 			goto free_idr;
3070 	}
3071 
3072 	/* Update VM state */
3073 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3074 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3075 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3076 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3077 	WARN_ONCE((vm->use_cpu_for_update &&
3078 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3079 		  "CPU update of VM recommended only for large BAR system\n");
3080 
3081 	if (vm->use_cpu_for_update) {
3082 		/* Sync with last SDMA update/clear before switching to CPU */
3083 		r = amdgpu_bo_sync_wait(vm->root.bo,
3084 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3085 		if (r)
3086 			goto free_idr;
3087 
3088 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3089 	} else {
3090 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3091 	}
3092 	dma_fence_put(vm->last_update);
3093 	vm->last_update = NULL;
3094 	vm->is_compute_context = true;
3095 
3096 	if (vm->pasid) {
3097 		unsigned long flags;
3098 
3099 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3100 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3101 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3102 
3103 		/* Free the original amdgpu allocated pasid
3104 		 * Will be replaced with kfd allocated pasid
3105 		 */
3106 		amdgpu_pasid_free(vm->pasid);
3107 		vm->pasid = 0;
3108 	}
3109 
3110 	/* Free the shadow bo for compute VM */
3111 	amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow);
3112 
3113 	if (pasid)
3114 		vm->pasid = pasid;
3115 
3116 	goto unreserve_bo;
3117 
3118 free_idr:
3119 	if (pasid) {
3120 		unsigned long flags;
3121 
3122 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3123 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3124 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3125 	}
3126 unreserve_bo:
3127 	amdgpu_bo_unreserve(vm->root.bo);
3128 	return r;
3129 }
3130 
3131 /**
3132  * amdgpu_vm_release_compute - release a compute vm
3133  * @adev: amdgpu_device pointer
3134  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3135  *
3136  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3137  * pasid from vm. Compute should stop use of vm after this call.
3138  */
3139 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3140 {
3141 	if (vm->pasid) {
3142 		unsigned long flags;
3143 
3144 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3145 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3146 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3147 	}
3148 	vm->pasid = 0;
3149 	vm->is_compute_context = false;
3150 }
3151 
3152 /**
3153  * amdgpu_vm_fini - tear down a vm instance
3154  *
3155  * @adev: amdgpu_device pointer
3156  * @vm: requested vm
3157  *
3158  * Tear down @vm.
3159  * Unbind the VM and remove all bos from the vm bo list
3160  */
3161 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3162 {
3163 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3164 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3165 	struct amdgpu_bo *root;
3166 	int i;
3167 
3168 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3169 
3170 	root = amdgpu_bo_ref(vm->root.bo);
3171 	amdgpu_bo_reserve(root, true);
3172 	if (vm->pasid) {
3173 		unsigned long flags;
3174 
3175 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3176 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3177 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3178 		vm->pasid = 0;
3179 	}
3180 
3181 	dma_fence_wait(vm->last_unlocked, false);
3182 	dma_fence_put(vm->last_unlocked);
3183 
3184 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3185 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3186 			amdgpu_vm_prt_fini(adev, vm);
3187 			prt_fini_needed = false;
3188 		}
3189 
3190 		list_del(&mapping->list);
3191 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3192 	}
3193 
3194 	amdgpu_vm_free_pts(adev, vm, NULL);
3195 	amdgpu_bo_unreserve(root);
3196 	amdgpu_bo_unref(&root);
3197 	WARN_ON(vm->root.bo);
3198 
3199 	drm_sched_entity_destroy(&vm->immediate);
3200 	drm_sched_entity_destroy(&vm->delayed);
3201 
3202 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3203 		dev_err(adev->dev, "still active bo inside vm\n");
3204 	}
3205 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3206 					     &vm->va.rb_root, rb) {
3207 		/* Don't remove the mapping here, we don't want to trigger a
3208 		 * rebalance and the tree is about to be destroyed anyway.
3209 		 */
3210 		list_del(&mapping->list);
3211 		kfree(mapping);
3212 	}
3213 
3214 	dma_fence_put(vm->last_update);
3215 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3216 		amdgpu_vmid_free_reserved(adev, vm, i);
3217 }
3218 
3219 /**
3220  * amdgpu_vm_manager_init - init the VM manager
3221  *
3222  * @adev: amdgpu_device pointer
3223  *
3224  * Initialize the VM manager structures
3225  */
3226 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3227 {
3228 	unsigned i;
3229 
3230 	/* Concurrent flushes are only possible starting with Vega10 and
3231 	 * are broken on Navi10 and Navi14.
3232 	 */
3233 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3234 					      adev->asic_type == CHIP_NAVI10 ||
3235 					      adev->asic_type == CHIP_NAVI14);
3236 	amdgpu_vmid_mgr_init(adev);
3237 
3238 	adev->vm_manager.fence_context =
3239 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3240 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3241 		adev->vm_manager.seqno[i] = 0;
3242 
3243 	spin_lock_init(&adev->vm_manager.prt_lock);
3244 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3245 
3246 	/* If not overridden by the user, by default, only in large BAR systems
3247 	 * Compute VM tables will be updated by CPU
3248 	 */
3249 #ifdef CONFIG_X86_64
3250 	if (amdgpu_vm_update_mode == -1) {
3251 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3252 			adev->vm_manager.vm_update_mode =
3253 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3254 		else
3255 			adev->vm_manager.vm_update_mode = 0;
3256 	} else
3257 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3258 #else
3259 	adev->vm_manager.vm_update_mode = 0;
3260 #endif
3261 
3262 	idr_init(&adev->vm_manager.pasid_idr);
3263 	spin_lock_init(&adev->vm_manager.pasid_lock);
3264 }
3265 
3266 /**
3267  * amdgpu_vm_manager_fini - cleanup VM manager
3268  *
3269  * @adev: amdgpu_device pointer
3270  *
3271  * Cleanup the VM manager and free resources.
3272  */
3273 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3274 {
3275 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3276 	idr_destroy(&adev->vm_manager.pasid_idr);
3277 
3278 	amdgpu_vmid_mgr_fini(adev);
3279 }
3280 
3281 /**
3282  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3283  *
3284  * @dev: drm device pointer
3285  * @data: drm_amdgpu_vm
3286  * @filp: drm file pointer
3287  *
3288  * Returns:
3289  * 0 for success, -errno for errors.
3290  */
3291 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3292 {
3293 	union drm_amdgpu_vm *args = data;
3294 	struct amdgpu_device *adev = drm_to_adev(dev);
3295 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3296 	long timeout = msecs_to_jiffies(2000);
3297 	int r;
3298 
3299 	switch (args->in.op) {
3300 	case AMDGPU_VM_OP_RESERVE_VMID:
3301 		/* We only have requirement to reserve vmid from gfxhub */
3302 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3303 					       AMDGPU_GFXHUB_0);
3304 		if (r)
3305 			return r;
3306 		break;
3307 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3308 		if (amdgpu_sriov_runtime(adev))
3309 			timeout = 8 * timeout;
3310 
3311 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3312 		 * not referenced anymore.
3313 		 */
3314 		r = amdgpu_bo_reserve(fpriv->vm.root.bo, true);
3315 		if (r)
3316 			return r;
3317 
3318 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3319 		if (r < 0)
3320 			return r;
3321 
3322 		amdgpu_bo_unreserve(fpriv->vm.root.bo);
3323 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3324 		break;
3325 	default:
3326 		return -EINVAL;
3327 	}
3328 
3329 	return 0;
3330 }
3331 
3332 /**
3333  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3334  *
3335  * @adev: drm device pointer
3336  * @pasid: PASID identifier for VM
3337  * @task_info: task_info to fill.
3338  */
3339 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3340 			 struct amdgpu_task_info *task_info)
3341 {
3342 	struct amdgpu_vm *vm;
3343 	unsigned long flags;
3344 
3345 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3346 
3347 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3348 	if (vm)
3349 		*task_info = vm->task_info;
3350 
3351 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3352 }
3353 
3354 /**
3355  * amdgpu_vm_set_task_info - Sets VMs task info.
3356  *
3357  * @vm: vm for which to set the info
3358  */
3359 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3360 {
3361 	if (vm->task_info.pid)
3362 		return;
3363 
3364 	vm->task_info.pid = current->pid;
3365 	get_task_comm(vm->task_info.task_name, current);
3366 
3367 	if (current->group_leader->mm != current->mm)
3368 		return;
3369 
3370 	vm->task_info.tgid = current->group_leader->pid;
3371 	get_task_comm(vm->task_info.process_name, current->group_leader);
3372 }
3373 
3374 /**
3375  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3376  * @adev: amdgpu device pointer
3377  * @pasid: PASID of the VM
3378  * @addr: Address of the fault
3379  *
3380  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3381  * shouldn't be reported any more.
3382  */
3383 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3384 			    uint64_t addr)
3385 {
3386 	bool is_compute_context = false;
3387 	struct amdgpu_bo *root;
3388 	unsigned long irqflags;
3389 	uint64_t value, flags;
3390 	struct amdgpu_vm *vm;
3391 	int r;
3392 
3393 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags);
3394 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3395 	if (vm) {
3396 		root = amdgpu_bo_ref(vm->root.bo);
3397 		is_compute_context = vm->is_compute_context;
3398 	} else {
3399 		root = NULL;
3400 	}
3401 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags);
3402 
3403 	if (!root)
3404 		return false;
3405 
3406 	addr /= AMDGPU_GPU_PAGE_SIZE;
3407 
3408 	if (is_compute_context &&
3409 	    !svm_range_restore_pages(adev, pasid, addr)) {
3410 		amdgpu_bo_unref(&root);
3411 		return true;
3412 	}
3413 
3414 	r = amdgpu_bo_reserve(root, true);
3415 	if (r)
3416 		goto error_unref;
3417 
3418 	/* Double check that the VM still exists */
3419 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags);
3420 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3421 	if (vm && vm->root.bo != root)
3422 		vm = NULL;
3423 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags);
3424 	if (!vm)
3425 		goto error_unlock;
3426 
3427 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3428 		AMDGPU_PTE_SYSTEM;
3429 
3430 	if (is_compute_context) {
3431 		/* Intentionally setting invalid PTE flag
3432 		 * combination to force a no-retry-fault
3433 		 */
3434 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3435 			AMDGPU_PTE_TF;
3436 		value = 0;
3437 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3438 		/* Redirect the access to the dummy page */
3439 		value = adev->dummy_page_addr;
3440 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3441 			AMDGPU_PTE_WRITEABLE;
3442 
3443 	} else {
3444 		/* Let the hw retry silently on the PTE */
3445 		value = 0;
3446 	}
3447 
3448 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3449 	if (r) {
3450 		pr_debug("failed %d to reserve fence slot\n", r);
3451 		goto error_unlock;
3452 	}
3453 
3454 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3455 					addr, flags, value, NULL, NULL, NULL,
3456 					NULL);
3457 	if (r)
3458 		goto error_unlock;
3459 
3460 	r = amdgpu_vm_update_pdes(adev, vm, true);
3461 
3462 error_unlock:
3463 	amdgpu_bo_unreserve(root);
3464 	if (r < 0)
3465 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3466 
3467 error_unref:
3468 	amdgpu_bo_unref(&root);
3469 
3470 	return false;
3471 }
3472 
3473 #if defined(CONFIG_DEBUG_FS)
3474 /**
3475  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3476  *
3477  * @vm: Requested VM for printing BO info
3478  * @m: debugfs file
3479  *
3480  * Print BO information in debugfs file for the VM
3481  */
3482 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3483 {
3484 	struct amdgpu_bo_va *bo_va, *tmp;
3485 	u64 total_idle = 0;
3486 	u64 total_evicted = 0;
3487 	u64 total_relocated = 0;
3488 	u64 total_moved = 0;
3489 	u64 total_invalidated = 0;
3490 	u64 total_done = 0;
3491 	unsigned int total_idle_objs = 0;
3492 	unsigned int total_evicted_objs = 0;
3493 	unsigned int total_relocated_objs = 0;
3494 	unsigned int total_moved_objs = 0;
3495 	unsigned int total_invalidated_objs = 0;
3496 	unsigned int total_done_objs = 0;
3497 	unsigned int id = 0;
3498 
3499 	seq_puts(m, "\tIdle BOs:\n");
3500 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3501 		if (!bo_va->base.bo)
3502 			continue;
3503 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3504 	}
3505 	total_idle_objs = id;
3506 	id = 0;
3507 
3508 	seq_puts(m, "\tEvicted BOs:\n");
3509 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3510 		if (!bo_va->base.bo)
3511 			continue;
3512 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3513 	}
3514 	total_evicted_objs = id;
3515 	id = 0;
3516 
3517 	seq_puts(m, "\tRelocated BOs:\n");
3518 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3519 		if (!bo_va->base.bo)
3520 			continue;
3521 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3522 	}
3523 	total_relocated_objs = id;
3524 	id = 0;
3525 
3526 	seq_puts(m, "\tMoved BOs:\n");
3527 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3528 		if (!bo_va->base.bo)
3529 			continue;
3530 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3531 	}
3532 	total_moved_objs = id;
3533 	id = 0;
3534 
3535 	seq_puts(m, "\tInvalidated BOs:\n");
3536 	spin_lock(&vm->invalidated_lock);
3537 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3538 		if (!bo_va->base.bo)
3539 			continue;
3540 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3541 	}
3542 	total_invalidated_objs = id;
3543 	id = 0;
3544 
3545 	seq_puts(m, "\tDone BOs:\n");
3546 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3547 		if (!bo_va->base.bo)
3548 			continue;
3549 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3550 	}
3551 	spin_unlock(&vm->invalidated_lock);
3552 	total_done_objs = id;
3553 
3554 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3555 		   total_idle_objs);
3556 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3557 		   total_evicted_objs);
3558 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3559 		   total_relocated_objs);
3560 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3561 		   total_moved_objs);
3562 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3563 		   total_invalidated_objs);
3564 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3565 		   total_done_objs);
3566 }
3567 #endif
3568