1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33 
34 /*
35  * GPUVM
36  * GPUVM is similar to the legacy gart on older asics, however
37  * rather than there being a single global gart table
38  * for the entire GPU, there are multiple VM page tables active
39  * at any given time.  The VM page tables can contain a mix
40  * vram pages and system memory pages and system memory pages
41  * can be mapped as snooped (cached system pages) or unsnooped
42  * (uncached system pages).
43  * Each VM has an ID associated with it and there is a page table
44  * associated with each VMID.  When execting a command buffer,
45  * the kernel tells the the ring what VMID to use for that command
46  * buffer.  VMIDs are allocated dynamically as commands are submitted.
47  * The userspace drivers maintain their own address space and the kernel
48  * sets up their pages tables accordingly when they submit their
49  * command buffers and a VMID is assigned.
50  * Cayman/Trinity support up to 8 active VMs at any given time;
51  * SI supports 16.
52  */
53 
54 /* Special value that no flush is necessary */
55 #define AMDGPU_VM_NO_FLUSH (~0ll)
56 
57 /* Local structure. Encapsulate some VM table update parameters to reduce
58  * the number of function parameters
59  */
60 struct amdgpu_vm_update_params {
61 	/* address where to copy page table entries from */
62 	uint64_t src;
63 	/* DMA addresses to use for mapping */
64 	dma_addr_t *pages_addr;
65 	/* indirect buffer to fill with commands */
66 	struct amdgpu_ib *ib;
67 };
68 
69 /**
70  * amdgpu_vm_num_pde - return the number of page directory entries
71  *
72  * @adev: amdgpu_device pointer
73  *
74  * Calculate the number of page directory entries.
75  */
76 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
77 {
78 	return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
79 }
80 
81 /**
82  * amdgpu_vm_directory_size - returns the size of the page directory in bytes
83  *
84  * @adev: amdgpu_device pointer
85  *
86  * Calculate the size of the page directory in bytes.
87  */
88 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
89 {
90 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
91 }
92 
93 /**
94  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
95  *
96  * @vm: vm providing the BOs
97  * @validated: head of validation list
98  * @entry: entry to add
99  *
100  * Add the page directory to the list of BOs to
101  * validate for command submission.
102  */
103 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
104 			 struct list_head *validated,
105 			 struct amdgpu_bo_list_entry *entry)
106 {
107 	entry->robj = vm->page_directory;
108 	entry->priority = 0;
109 	entry->tv.bo = &vm->page_directory->tbo;
110 	entry->tv.shared = true;
111 	entry->user_pages = NULL;
112 	list_add(&entry->tv.head, validated);
113 }
114 
115 /**
116  * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
117  *
118  * @adev: amdgpu device pointer
119  * @vm: vm providing the BOs
120  * @duplicates: head of duplicates list
121  *
122  * Add the page directory to the BO duplicates list
123  * for command submission.
124  */
125 void amdgpu_vm_get_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
126 			  struct list_head *duplicates)
127 {
128 	uint64_t num_evictions;
129 	unsigned i;
130 
131 	/* We only need to validate the page tables
132 	 * if they aren't already valid.
133 	 */
134 	num_evictions = atomic64_read(&adev->num_evictions);
135 	if (num_evictions == vm->last_eviction_counter)
136 		return;
137 
138 	/* add the vm page table to the list */
139 	for (i = 0; i <= vm->max_pde_used; ++i) {
140 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
141 
142 		if (!entry->robj)
143 			continue;
144 
145 		list_add(&entry->tv.head, duplicates);
146 	}
147 
148 }
149 
150 /**
151  * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
152  *
153  * @adev: amdgpu device instance
154  * @vm: vm providing the BOs
155  *
156  * Move the PT BOs to the tail of the LRU.
157  */
158 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
159 				  struct amdgpu_vm *vm)
160 {
161 	struct ttm_bo_global *glob = adev->mman.bdev.glob;
162 	unsigned i;
163 
164 	spin_lock(&glob->lru_lock);
165 	for (i = 0; i <= vm->max_pde_used; ++i) {
166 		struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
167 
168 		if (!entry->robj)
169 			continue;
170 
171 		ttm_bo_move_to_lru_tail(&entry->robj->tbo);
172 	}
173 	spin_unlock(&glob->lru_lock);
174 }
175 
176 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev,
177 			      struct amdgpu_vm_id *id)
178 {
179 	return id->current_gpu_reset_count !=
180 		atomic_read(&adev->gpu_reset_counter) ? true : false;
181 }
182 
183 /**
184  * amdgpu_vm_grab_id - allocate the next free VMID
185  *
186  * @vm: vm to allocate id for
187  * @ring: ring we want to submit job to
188  * @sync: sync object where we add dependencies
189  * @fence: fence protecting ID from reuse
190  *
191  * Allocate an id for the vm, adding fences to the sync obj as necessary.
192  */
193 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
194 		      struct amdgpu_sync *sync, struct fence *fence,
195 		      struct amdgpu_job *job)
196 {
197 	struct amdgpu_device *adev = ring->adev;
198 	uint64_t fence_context = adev->fence_context + ring->idx;
199 	struct fence *updates = sync->last_vm_update;
200 	struct amdgpu_vm_id *id, *idle;
201 	struct fence **fences;
202 	unsigned i;
203 	int r = 0;
204 
205 	fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
206 			       GFP_KERNEL);
207 	if (!fences)
208 		return -ENOMEM;
209 
210 	mutex_lock(&adev->vm_manager.lock);
211 
212 	/* Check if we have an idle VMID */
213 	i = 0;
214 	list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
215 		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
216 		if (!fences[i])
217 			break;
218 		++i;
219 	}
220 
221 	/* If we can't find a idle VMID to use, wait till one becomes available */
222 	if (&idle->list == &adev->vm_manager.ids_lru) {
223 		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
224 		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
225 		struct fence_array *array;
226 		unsigned j;
227 
228 		for (j = 0; j < i; ++j)
229 			fence_get(fences[j]);
230 
231 		array = fence_array_create(i, fences, fence_context,
232 					   seqno, true);
233 		if (!array) {
234 			for (j = 0; j < i; ++j)
235 				fence_put(fences[j]);
236 			kfree(fences);
237 			r = -ENOMEM;
238 			goto error;
239 		}
240 
241 
242 		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
243 		fence_put(&array->base);
244 		if (r)
245 			goto error;
246 
247 		mutex_unlock(&adev->vm_manager.lock);
248 		return 0;
249 
250 	}
251 	kfree(fences);
252 
253 	job->vm_needs_flush = true;
254 	/* Check if we can use a VMID already assigned to this VM */
255 	i = ring->idx;
256 	do {
257 		struct fence *flushed;
258 
259 		id = vm->ids[i++];
260 		if (i == AMDGPU_MAX_RINGS)
261 			i = 0;
262 
263 		/* Check all the prerequisites to using this VMID */
264 		if (!id)
265 			continue;
266 		if (amdgpu_vm_is_gpu_reset(adev, id))
267 			continue;
268 
269 		if (atomic64_read(&id->owner) != vm->client_id)
270 			continue;
271 
272 		if (job->vm_pd_addr != id->pd_gpu_addr)
273 			continue;
274 
275 		if (!id->last_flush)
276 			continue;
277 
278 		if (id->last_flush->context != fence_context &&
279 		    !fence_is_signaled(id->last_flush))
280 			continue;
281 
282 		flushed  = id->flushed_updates;
283 		if (updates &&
284 		    (!flushed || fence_is_later(updates, flushed)))
285 			continue;
286 
287 		/* Good we can use this VMID. Remember this submission as
288 		 * user of the VMID.
289 		 */
290 		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
291 		if (r)
292 			goto error;
293 
294 		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
295 		list_move_tail(&id->list, &adev->vm_manager.ids_lru);
296 		vm->ids[ring->idx] = id;
297 
298 		job->vm_id = id - adev->vm_manager.ids;
299 		job->vm_needs_flush = false;
300 		trace_amdgpu_vm_grab_id(vm, ring->idx, job);
301 
302 		mutex_unlock(&adev->vm_manager.lock);
303 		return 0;
304 
305 	} while (i != ring->idx);
306 
307 	/* Still no ID to use? Then use the idle one found earlier */
308 	id = idle;
309 
310 	/* Remember this submission as user of the VMID */
311 	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
312 	if (r)
313 		goto error;
314 
315 	fence_put(id->first);
316 	id->first = fence_get(fence);
317 
318 	fence_put(id->last_flush);
319 	id->last_flush = NULL;
320 
321 	fence_put(id->flushed_updates);
322 	id->flushed_updates = fence_get(updates);
323 
324 	id->pd_gpu_addr = job->vm_pd_addr;
325 	id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
326 	list_move_tail(&id->list, &adev->vm_manager.ids_lru);
327 	atomic64_set(&id->owner, vm->client_id);
328 	vm->ids[ring->idx] = id;
329 
330 	job->vm_id = id - adev->vm_manager.ids;
331 	trace_amdgpu_vm_grab_id(vm, ring->idx, job);
332 
333 error:
334 	mutex_unlock(&adev->vm_manager.lock);
335 	return r;
336 }
337 
338 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
339 {
340 	struct amdgpu_device *adev = ring->adev;
341 	const struct amdgpu_ip_block_version *ip_block;
342 
343 	if (ring->type != AMDGPU_RING_TYPE_COMPUTE)
344 		/* only compute rings */
345 		return false;
346 
347 	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
348 	if (!ip_block)
349 		return false;
350 
351 	if (ip_block->major <= 7) {
352 		/* gfx7 has no workaround */
353 		return true;
354 	} else if (ip_block->major == 8) {
355 		if (adev->gfx.mec_fw_version >= 673)
356 			/* gfx8 is fixed in MEC firmware 673 */
357 			return false;
358 		else
359 			return true;
360 	}
361 	return false;
362 }
363 
364 /**
365  * amdgpu_vm_flush - hardware flush the vm
366  *
367  * @ring: ring to use for flush
368  * @vm_id: vmid number to use
369  * @pd_addr: address of the page directory
370  *
371  * Emit a VM flush when it is necessary.
372  */
373 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
374 {
375 	struct amdgpu_device *adev = ring->adev;
376 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
377 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
378 		id->gds_base != job->gds_base ||
379 		id->gds_size != job->gds_size ||
380 		id->gws_base != job->gws_base ||
381 		id->gws_size != job->gws_size ||
382 		id->oa_base != job->oa_base ||
383 		id->oa_size != job->oa_size);
384 	int r;
385 
386 	if (ring->funcs->emit_pipeline_sync && (
387 	    job->vm_needs_flush || gds_switch_needed ||
388 	    amdgpu_vm_ring_has_compute_vm_bug(ring)))
389 		amdgpu_ring_emit_pipeline_sync(ring);
390 
391 	if (ring->funcs->emit_vm_flush && (job->vm_needs_flush ||
392 	    amdgpu_vm_is_gpu_reset(adev, id))) {
393 		struct fence *fence;
394 
395 		trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id);
396 		amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
397 
398 		r = amdgpu_fence_emit(ring, &fence);
399 		if (r)
400 			return r;
401 
402 		mutex_lock(&adev->vm_manager.lock);
403 		fence_put(id->last_flush);
404 		id->last_flush = fence;
405 		mutex_unlock(&adev->vm_manager.lock);
406 	}
407 
408 	if (gds_switch_needed) {
409 		id->gds_base = job->gds_base;
410 		id->gds_size = job->gds_size;
411 		id->gws_base = job->gws_base;
412 		id->gws_size = job->gws_size;
413 		id->oa_base = job->oa_base;
414 		id->oa_size = job->oa_size;
415 		amdgpu_ring_emit_gds_switch(ring, job->vm_id,
416 					    job->gds_base, job->gds_size,
417 					    job->gws_base, job->gws_size,
418 					    job->oa_base, job->oa_size);
419 	}
420 
421 	return 0;
422 }
423 
424 /**
425  * amdgpu_vm_reset_id - reset VMID to zero
426  *
427  * @adev: amdgpu device structure
428  * @vm_id: vmid number to use
429  *
430  * Reset saved GDW, GWS and OA to force switch on next flush.
431  */
432 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
433 {
434 	struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
435 
436 	id->gds_base = 0;
437 	id->gds_size = 0;
438 	id->gws_base = 0;
439 	id->gws_size = 0;
440 	id->oa_base = 0;
441 	id->oa_size = 0;
442 }
443 
444 /**
445  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
446  *
447  * @vm: requested vm
448  * @bo: requested buffer object
449  *
450  * Find @bo inside the requested vm.
451  * Search inside the @bos vm list for the requested vm
452  * Returns the found bo_va or NULL if none is found
453  *
454  * Object has to be reserved!
455  */
456 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
457 				       struct amdgpu_bo *bo)
458 {
459 	struct amdgpu_bo_va *bo_va;
460 
461 	list_for_each_entry(bo_va, &bo->va, bo_list) {
462 		if (bo_va->vm == vm) {
463 			return bo_va;
464 		}
465 	}
466 	return NULL;
467 }
468 
469 /**
470  * amdgpu_vm_update_pages - helper to call the right asic function
471  *
472  * @adev: amdgpu_device pointer
473  * @vm_update_params: see amdgpu_vm_update_params definition
474  * @pe: addr of the page entry
475  * @addr: dst addr to write into pe
476  * @count: number of page entries to update
477  * @incr: increase next addr by incr bytes
478  * @flags: hw access flags
479  *
480  * Traces the parameters and calls the right asic functions
481  * to setup the page table using the DMA.
482  */
483 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
484 				   struct amdgpu_vm_update_params
485 					*vm_update_params,
486 				   uint64_t pe, uint64_t addr,
487 				   unsigned count, uint32_t incr,
488 				   uint32_t flags)
489 {
490 	trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
491 
492 	if (vm_update_params->src) {
493 		amdgpu_vm_copy_pte(adev, vm_update_params->ib,
494 			pe, (vm_update_params->src + (addr >> 12) * 8), count);
495 
496 	} else if (vm_update_params->pages_addr) {
497 		amdgpu_vm_write_pte(adev, vm_update_params->ib,
498 			vm_update_params->pages_addr,
499 			pe, addr, count, incr, flags);
500 
501 	} else if (count < 3) {
502 		amdgpu_vm_write_pte(adev, vm_update_params->ib, NULL, pe, addr,
503 				    count, incr, flags);
504 
505 	} else {
506 		amdgpu_vm_set_pte_pde(adev, vm_update_params->ib, pe, addr,
507 				      count, incr, flags);
508 	}
509 }
510 
511 /**
512  * amdgpu_vm_clear_bo - initially clear the page dir/table
513  *
514  * @adev: amdgpu_device pointer
515  * @bo: bo to clear
516  *
517  * need to reserve bo first before calling it.
518  */
519 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
520 			      struct amdgpu_vm *vm,
521 			      struct amdgpu_bo *bo)
522 {
523 	struct amdgpu_ring *ring;
524 	struct fence *fence = NULL;
525 	struct amdgpu_job *job;
526 	struct amdgpu_vm_update_params vm_update_params;
527 	unsigned entries;
528 	uint64_t addr;
529 	int r;
530 
531 	memset(&vm_update_params, 0, sizeof(vm_update_params));
532 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
533 
534 	r = reservation_object_reserve_shared(bo->tbo.resv);
535 	if (r)
536 		return r;
537 
538 	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
539 	if (r)
540 		goto error;
541 
542 	addr = amdgpu_bo_gpu_offset(bo);
543 	entries = amdgpu_bo_size(bo) / 8;
544 
545 	r = amdgpu_job_alloc_with_ib(adev, 64, &job);
546 	if (r)
547 		goto error;
548 
549 	vm_update_params.ib = &job->ibs[0];
550 	amdgpu_vm_update_pages(adev, &vm_update_params, addr, 0, entries,
551 			       0, 0);
552 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
553 
554 	WARN_ON(job->ibs[0].length_dw > 64);
555 	r = amdgpu_job_submit(job, ring, &vm->entity,
556 			      AMDGPU_FENCE_OWNER_VM, &fence);
557 	if (r)
558 		goto error_free;
559 
560 	amdgpu_bo_fence(bo, fence, true);
561 	fence_put(fence);
562 	return 0;
563 
564 error_free:
565 	amdgpu_job_free(job);
566 
567 error:
568 	return r;
569 }
570 
571 /**
572  * amdgpu_vm_map_gart - Resolve gart mapping of addr
573  *
574  * @pages_addr: optional DMA address to use for lookup
575  * @addr: the unmapped addr
576  *
577  * Look up the physical address of the page that the pte resolves
578  * to and return the pointer for the page table entry.
579  */
580 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
581 {
582 	uint64_t result;
583 
584 	if (pages_addr) {
585 		/* page table offset */
586 		result = pages_addr[addr >> PAGE_SHIFT];
587 
588 		/* in case cpu page size != gpu page size*/
589 		result |= addr & (~PAGE_MASK);
590 
591 	} else {
592 		/* No mapping required */
593 		result = addr;
594 	}
595 
596 	result &= 0xFFFFFFFFFFFFF000ULL;
597 
598 	return result;
599 }
600 
601 /**
602  * amdgpu_vm_update_pdes - make sure that page directory is valid
603  *
604  * @adev: amdgpu_device pointer
605  * @vm: requested vm
606  * @start: start of GPU address range
607  * @end: end of GPU address range
608  *
609  * Allocates new page tables if necessary
610  * and updates the page directory.
611  * Returns 0 for success, error for failure.
612  */
613 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
614 				    struct amdgpu_vm *vm)
615 {
616 	struct amdgpu_ring *ring;
617 	struct amdgpu_bo *pd = vm->page_directory;
618 	uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
619 	uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
620 	uint64_t last_pde = ~0, last_pt = ~0;
621 	unsigned count = 0, pt_idx, ndw;
622 	struct amdgpu_job *job;
623 	struct amdgpu_vm_update_params vm_update_params;
624 	struct fence *fence = NULL;
625 
626 	int r;
627 
628 	memset(&vm_update_params, 0, sizeof(vm_update_params));
629 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
630 
631 	/* padding, etc. */
632 	ndw = 64;
633 
634 	/* assume the worst case */
635 	ndw += vm->max_pde_used * 6;
636 
637 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
638 	if (r)
639 		return r;
640 
641 	vm_update_params.ib = &job->ibs[0];
642 
643 	/* walk over the address space and update the page directory */
644 	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
645 		struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
646 		uint64_t pde, pt;
647 
648 		if (bo == NULL)
649 			continue;
650 
651 		pt = amdgpu_bo_gpu_offset(bo);
652 		if (vm->page_tables[pt_idx].addr == pt)
653 			continue;
654 		vm->page_tables[pt_idx].addr = pt;
655 
656 		pde = pd_addr + pt_idx * 8;
657 		if (((last_pde + 8 * count) != pde) ||
658 		    ((last_pt + incr * count) != pt)) {
659 
660 			if (count) {
661 				amdgpu_vm_update_pages(adev, &vm_update_params,
662 						       last_pde, last_pt,
663 						       count, incr,
664 						       AMDGPU_PTE_VALID);
665 			}
666 
667 			count = 1;
668 			last_pde = pde;
669 			last_pt = pt;
670 		} else {
671 			++count;
672 		}
673 	}
674 
675 	if (count)
676 		amdgpu_vm_update_pages(adev, &vm_update_params,
677 					last_pde, last_pt,
678 					count, incr, AMDGPU_PTE_VALID);
679 
680 	if (vm_update_params.ib->length_dw != 0) {
681 		amdgpu_ring_pad_ib(ring, vm_update_params.ib);
682 		amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
683 				 AMDGPU_FENCE_OWNER_VM);
684 		WARN_ON(vm_update_params.ib->length_dw > ndw);
685 		r = amdgpu_job_submit(job, ring, &vm->entity,
686 				      AMDGPU_FENCE_OWNER_VM, &fence);
687 		if (r)
688 			goto error_free;
689 
690 		amdgpu_bo_fence(pd, fence, true);
691 		fence_put(vm->page_directory_fence);
692 		vm->page_directory_fence = fence_get(fence);
693 		fence_put(fence);
694 
695 	} else {
696 		amdgpu_job_free(job);
697 	}
698 
699 	return 0;
700 
701 error_free:
702 	amdgpu_job_free(job);
703 	return r;
704 }
705 
706 /**
707  * amdgpu_vm_frag_ptes - add fragment information to PTEs
708  *
709  * @adev: amdgpu_device pointer
710  * @vm_update_params: see amdgpu_vm_update_params definition
711  * @pe_start: first PTE to handle
712  * @pe_end: last PTE to handle
713  * @addr: addr those PTEs should point to
714  * @flags: hw mapping flags
715  */
716 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
717 				struct amdgpu_vm_update_params
718 					*vm_update_params,
719 				uint64_t pe_start, uint64_t pe_end,
720 				uint64_t addr, uint32_t flags)
721 {
722 	/**
723 	 * The MC L1 TLB supports variable sized pages, based on a fragment
724 	 * field in the PTE. When this field is set to a non-zero value, page
725 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
726 	 * flags are considered valid for all PTEs within the fragment range
727 	 * and corresponding mappings are assumed to be physically contiguous.
728 	 *
729 	 * The L1 TLB can store a single PTE for the whole fragment,
730 	 * significantly increasing the space available for translation
731 	 * caching. This leads to large improvements in throughput when the
732 	 * TLB is under pressure.
733 	 *
734 	 * The L2 TLB distributes small and large fragments into two
735 	 * asymmetric partitions. The large fragment cache is significantly
736 	 * larger. Thus, we try to use large fragments wherever possible.
737 	 * Userspace can support this by aligning virtual base address and
738 	 * allocation size to the fragment size.
739 	 */
740 
741 	/* SI and newer are optimized for 64KB */
742 	uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
743 	uint64_t frag_align = 0x80;
744 
745 	uint64_t frag_start = ALIGN(pe_start, frag_align);
746 	uint64_t frag_end = pe_end & ~(frag_align - 1);
747 
748 	unsigned count;
749 
750 	/* Abort early if there isn't anything to do */
751 	if (pe_start == pe_end)
752 		return;
753 
754 	/* system pages are non continuously */
755 	if (vm_update_params->src || vm_update_params->pages_addr ||
756 		!(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) {
757 
758 		count = (pe_end - pe_start) / 8;
759 		amdgpu_vm_update_pages(adev, vm_update_params, pe_start,
760 				       addr, count, AMDGPU_GPU_PAGE_SIZE,
761 				       flags);
762 		return;
763 	}
764 
765 	/* handle the 4K area at the beginning */
766 	if (pe_start != frag_start) {
767 		count = (frag_start - pe_start) / 8;
768 		amdgpu_vm_update_pages(adev, vm_update_params, pe_start, addr,
769 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
770 		addr += AMDGPU_GPU_PAGE_SIZE * count;
771 	}
772 
773 	/* handle the area in the middle */
774 	count = (frag_end - frag_start) / 8;
775 	amdgpu_vm_update_pages(adev, vm_update_params, frag_start, addr, count,
776 			       AMDGPU_GPU_PAGE_SIZE, flags | frag_flags);
777 
778 	/* handle the 4K area at the end */
779 	if (frag_end != pe_end) {
780 		addr += AMDGPU_GPU_PAGE_SIZE * count;
781 		count = (pe_end - frag_end) / 8;
782 		amdgpu_vm_update_pages(adev, vm_update_params, frag_end, addr,
783 				       count, AMDGPU_GPU_PAGE_SIZE, flags);
784 	}
785 }
786 
787 /**
788  * amdgpu_vm_update_ptes - make sure that page tables are valid
789  *
790  * @adev: amdgpu_device pointer
791  * @vm_update_params: see amdgpu_vm_update_params definition
792  * @vm: requested vm
793  * @start: start of GPU address range
794  * @end: end of GPU address range
795  * @dst: destination address to map to, the next dst inside the function
796  * @flags: mapping flags
797  *
798  * Update the page tables in the range @start - @end.
799  */
800 static void amdgpu_vm_update_ptes(struct amdgpu_device *adev,
801 				  struct amdgpu_vm_update_params
802 					*vm_update_params,
803 				  struct amdgpu_vm *vm,
804 				  uint64_t start, uint64_t end,
805 				  uint64_t dst, uint32_t flags)
806 {
807 	const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
808 
809 	uint64_t cur_pe_start, cur_pe_end, cur_dst;
810 	uint64_t addr; /* next GPU address to be updated */
811 	uint64_t pt_idx;
812 	struct amdgpu_bo *pt;
813 	unsigned nptes; /* next number of ptes to be updated */
814 	uint64_t next_pe_start;
815 
816 	/* initialize the variables */
817 	addr = start;
818 	pt_idx = addr >> amdgpu_vm_block_size;
819 	pt = vm->page_tables[pt_idx].entry.robj;
820 
821 	if ((addr & ~mask) == (end & ~mask))
822 		nptes = end - addr;
823 	else
824 		nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
825 
826 	cur_pe_start = amdgpu_bo_gpu_offset(pt);
827 	cur_pe_start += (addr & mask) * 8;
828 	cur_pe_end = cur_pe_start + 8 * nptes;
829 	cur_dst = dst;
830 
831 	/* for next ptb*/
832 	addr += nptes;
833 	dst += nptes * AMDGPU_GPU_PAGE_SIZE;
834 
835 	/* walk over the address space and update the page tables */
836 	while (addr < end) {
837 		pt_idx = addr >> amdgpu_vm_block_size;
838 		pt = vm->page_tables[pt_idx].entry.robj;
839 
840 		if ((addr & ~mask) == (end & ~mask))
841 			nptes = end - addr;
842 		else
843 			nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
844 
845 		next_pe_start = amdgpu_bo_gpu_offset(pt);
846 		next_pe_start += (addr & mask) * 8;
847 
848 		if (cur_pe_end == next_pe_start) {
849 			/* The next ptb is consecutive to current ptb.
850 			 * Don't call amdgpu_vm_frag_ptes now.
851 			 * Will update two ptbs together in future.
852 			*/
853 			cur_pe_end += 8 * nptes;
854 		} else {
855 			amdgpu_vm_frag_ptes(adev, vm_update_params,
856 					    cur_pe_start, cur_pe_end,
857 					    cur_dst, flags);
858 
859 			cur_pe_start = next_pe_start;
860 			cur_pe_end = next_pe_start + 8 * nptes;
861 			cur_dst = dst;
862 		}
863 
864 		/* for next ptb*/
865 		addr += nptes;
866 		dst += nptes * AMDGPU_GPU_PAGE_SIZE;
867 	}
868 
869 	amdgpu_vm_frag_ptes(adev, vm_update_params, cur_pe_start,
870 			    cur_pe_end, cur_dst, flags);
871 }
872 
873 /**
874  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
875  *
876  * @adev: amdgpu_device pointer
877  * @exclusive: fence we need to sync to
878  * @src: address where to copy page table entries from
879  * @pages_addr: DMA addresses to use for mapping
880  * @vm: requested vm
881  * @start: start of mapped range
882  * @last: last mapped entry
883  * @flags: flags for the entries
884  * @addr: addr to set the area to
885  * @fence: optional resulting fence
886  *
887  * Fill in the page table entries between @start and @last.
888  * Returns 0 for success, -EINVAL for failure.
889  */
890 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
891 				       struct fence *exclusive,
892 				       uint64_t src,
893 				       dma_addr_t *pages_addr,
894 				       struct amdgpu_vm *vm,
895 				       uint64_t start, uint64_t last,
896 				       uint32_t flags, uint64_t addr,
897 				       struct fence **fence)
898 {
899 	struct amdgpu_ring *ring;
900 	void *owner = AMDGPU_FENCE_OWNER_VM;
901 	unsigned nptes, ncmds, ndw;
902 	struct amdgpu_job *job;
903 	struct amdgpu_vm_update_params vm_update_params;
904 	struct fence *f = NULL;
905 	int r;
906 
907 	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
908 	memset(&vm_update_params, 0, sizeof(vm_update_params));
909 	vm_update_params.src = src;
910 	vm_update_params.pages_addr = pages_addr;
911 
912 	/* sync to everything on unmapping */
913 	if (!(flags & AMDGPU_PTE_VALID))
914 		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
915 
916 	nptes = last - start + 1;
917 
918 	/*
919 	 * reserve space for one command every (1 << BLOCK_SIZE)
920 	 *  entries or 2k dwords (whatever is smaller)
921 	 */
922 	ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
923 
924 	/* padding, etc. */
925 	ndw = 64;
926 
927 	if (vm_update_params.src) {
928 		/* only copy commands needed */
929 		ndw += ncmds * 7;
930 
931 	} else if (vm_update_params.pages_addr) {
932 		/* header for write data commands */
933 		ndw += ncmds * 4;
934 
935 		/* body of write data command */
936 		ndw += nptes * 2;
937 
938 	} else {
939 		/* set page commands needed */
940 		ndw += ncmds * 10;
941 
942 		/* two extra commands for begin/end of fragment */
943 		ndw += 2 * 10;
944 	}
945 
946 	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
947 	if (r)
948 		return r;
949 
950 	vm_update_params.ib = &job->ibs[0];
951 
952 	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
953 	if (r)
954 		goto error_free;
955 
956 	r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
957 			     owner);
958 	if (r)
959 		goto error_free;
960 
961 	r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
962 	if (r)
963 		goto error_free;
964 
965 	amdgpu_vm_update_ptes(adev, &vm_update_params, vm, start,
966 			      last + 1, addr, flags);
967 
968 	amdgpu_ring_pad_ib(ring, vm_update_params.ib);
969 	WARN_ON(vm_update_params.ib->length_dw > ndw);
970 	r = amdgpu_job_submit(job, ring, &vm->entity,
971 			      AMDGPU_FENCE_OWNER_VM, &f);
972 	if (r)
973 		goto error_free;
974 
975 	amdgpu_bo_fence(vm->page_directory, f, true);
976 	if (fence) {
977 		fence_put(*fence);
978 		*fence = fence_get(f);
979 	}
980 	fence_put(f);
981 	return 0;
982 
983 error_free:
984 	amdgpu_job_free(job);
985 	return r;
986 }
987 
988 /**
989  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
990  *
991  * @adev: amdgpu_device pointer
992  * @exclusive: fence we need to sync to
993  * @gtt_flags: flags as they are used for GTT
994  * @pages_addr: DMA addresses to use for mapping
995  * @vm: requested vm
996  * @mapping: mapped range and flags to use for the update
997  * @addr: addr to set the area to
998  * @flags: HW flags for the mapping
999  * @fence: optional resulting fence
1000  *
1001  * Split the mapping into smaller chunks so that each update fits
1002  * into a SDMA IB.
1003  * Returns 0 for success, -EINVAL for failure.
1004  */
1005 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1006 				      struct fence *exclusive,
1007 				      uint32_t gtt_flags,
1008 				      dma_addr_t *pages_addr,
1009 				      struct amdgpu_vm *vm,
1010 				      struct amdgpu_bo_va_mapping *mapping,
1011 				      uint32_t flags, uint64_t addr,
1012 				      struct fence **fence)
1013 {
1014 	const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
1015 
1016 	uint64_t src = 0, start = mapping->it.start;
1017 	int r;
1018 
1019 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1020 	 * but in case of something, we filter the flags in first place
1021 	 */
1022 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1023 		flags &= ~AMDGPU_PTE_READABLE;
1024 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1025 		flags &= ~AMDGPU_PTE_WRITEABLE;
1026 
1027 	trace_amdgpu_vm_bo_update(mapping);
1028 
1029 	if (pages_addr) {
1030 		if (flags == gtt_flags)
1031 			src = adev->gart.table_addr + (addr >> 12) * 8;
1032 		addr = 0;
1033 	}
1034 	addr += mapping->offset;
1035 
1036 	if (!pages_addr || src)
1037 		return amdgpu_vm_bo_update_mapping(adev, exclusive,
1038 						   src, pages_addr, vm,
1039 						   start, mapping->it.last,
1040 						   flags, addr, fence);
1041 
1042 	while (start != mapping->it.last + 1) {
1043 		uint64_t last;
1044 
1045 		last = min((uint64_t)mapping->it.last, start + max_size - 1);
1046 		r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1047 						src, pages_addr, vm,
1048 						start, last, flags, addr,
1049 						fence);
1050 		if (r)
1051 			return r;
1052 
1053 		start = last + 1;
1054 		addr += max_size * AMDGPU_GPU_PAGE_SIZE;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1062  *
1063  * @adev: amdgpu_device pointer
1064  * @bo_va: requested BO and VM object
1065  * @mem: ttm mem
1066  *
1067  * Fill in the page table entries for @bo_va.
1068  * Returns 0 for success, -EINVAL for failure.
1069  *
1070  * Object have to be reserved and mutex must be locked!
1071  */
1072 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1073 			struct amdgpu_bo_va *bo_va,
1074 			struct ttm_mem_reg *mem)
1075 {
1076 	struct amdgpu_vm *vm = bo_va->vm;
1077 	struct amdgpu_bo_va_mapping *mapping;
1078 	dma_addr_t *pages_addr = NULL;
1079 	uint32_t gtt_flags, flags;
1080 	struct fence *exclusive;
1081 	uint64_t addr;
1082 	int r;
1083 
1084 	if (mem) {
1085 		struct ttm_dma_tt *ttm;
1086 
1087 		addr = (u64)mem->start << PAGE_SHIFT;
1088 		switch (mem->mem_type) {
1089 		case TTM_PL_TT:
1090 			ttm = container_of(bo_va->bo->tbo.ttm, struct
1091 					   ttm_dma_tt, ttm);
1092 			pages_addr = ttm->dma_address;
1093 			break;
1094 
1095 		case TTM_PL_VRAM:
1096 			addr += adev->vm_manager.vram_base_offset;
1097 			break;
1098 
1099 		default:
1100 			break;
1101 		}
1102 
1103 		exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1104 	} else {
1105 		addr = 0;
1106 		exclusive = NULL;
1107 	}
1108 
1109 	flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1110 	gtt_flags = (adev == bo_va->bo->adev) ? flags : 0;
1111 
1112 	spin_lock(&vm->status_lock);
1113 	if (!list_empty(&bo_va->vm_status))
1114 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1115 	spin_unlock(&vm->status_lock);
1116 
1117 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1118 		r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1119 					       gtt_flags, pages_addr, vm,
1120 					       mapping, flags, addr,
1121 					       &bo_va->last_pt_update);
1122 		if (r)
1123 			return r;
1124 	}
1125 
1126 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1127 		list_for_each_entry(mapping, &bo_va->valids, list)
1128 			trace_amdgpu_vm_bo_mapping(mapping);
1129 
1130 		list_for_each_entry(mapping, &bo_va->invalids, list)
1131 			trace_amdgpu_vm_bo_mapping(mapping);
1132 	}
1133 
1134 	spin_lock(&vm->status_lock);
1135 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1136 	list_del_init(&bo_va->vm_status);
1137 	if (!mem)
1138 		list_add(&bo_va->vm_status, &vm->cleared);
1139 	spin_unlock(&vm->status_lock);
1140 
1141 	return 0;
1142 }
1143 
1144 /**
1145  * amdgpu_vm_clear_freed - clear freed BOs in the PT
1146  *
1147  * @adev: amdgpu_device pointer
1148  * @vm: requested vm
1149  *
1150  * Make sure all freed BOs are cleared in the PT.
1151  * Returns 0 for success.
1152  *
1153  * PTs have to be reserved and mutex must be locked!
1154  */
1155 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1156 			  struct amdgpu_vm *vm)
1157 {
1158 	struct amdgpu_bo_va_mapping *mapping;
1159 	int r;
1160 
1161 	while (!list_empty(&vm->freed)) {
1162 		mapping = list_first_entry(&vm->freed,
1163 			struct amdgpu_bo_va_mapping, list);
1164 		list_del(&mapping->list);
1165 
1166 		r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1167 					       0, 0, NULL);
1168 		kfree(mapping);
1169 		if (r)
1170 			return r;
1171 
1172 	}
1173 	return 0;
1174 
1175 }
1176 
1177 /**
1178  * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1179  *
1180  * @adev: amdgpu_device pointer
1181  * @vm: requested vm
1182  *
1183  * Make sure all invalidated BOs are cleared in the PT.
1184  * Returns 0 for success.
1185  *
1186  * PTs have to be reserved and mutex must be locked!
1187  */
1188 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1189 			     struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1190 {
1191 	struct amdgpu_bo_va *bo_va = NULL;
1192 	int r = 0;
1193 
1194 	spin_lock(&vm->status_lock);
1195 	while (!list_empty(&vm->invalidated)) {
1196 		bo_va = list_first_entry(&vm->invalidated,
1197 			struct amdgpu_bo_va, vm_status);
1198 		spin_unlock(&vm->status_lock);
1199 
1200 		r = amdgpu_vm_bo_update(adev, bo_va, NULL);
1201 		if (r)
1202 			return r;
1203 
1204 		spin_lock(&vm->status_lock);
1205 	}
1206 	spin_unlock(&vm->status_lock);
1207 
1208 	if (bo_va)
1209 		r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1210 
1211 	return r;
1212 }
1213 
1214 /**
1215  * amdgpu_vm_bo_add - add a bo to a specific vm
1216  *
1217  * @adev: amdgpu_device pointer
1218  * @vm: requested vm
1219  * @bo: amdgpu buffer object
1220  *
1221  * Add @bo into the requested vm.
1222  * Add @bo to the list of bos associated with the vm
1223  * Returns newly added bo_va or NULL for failure
1224  *
1225  * Object has to be reserved!
1226  */
1227 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1228 				      struct amdgpu_vm *vm,
1229 				      struct amdgpu_bo *bo)
1230 {
1231 	struct amdgpu_bo_va *bo_va;
1232 
1233 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1234 	if (bo_va == NULL) {
1235 		return NULL;
1236 	}
1237 	bo_va->vm = vm;
1238 	bo_va->bo = bo;
1239 	bo_va->ref_count = 1;
1240 	INIT_LIST_HEAD(&bo_va->bo_list);
1241 	INIT_LIST_HEAD(&bo_va->valids);
1242 	INIT_LIST_HEAD(&bo_va->invalids);
1243 	INIT_LIST_HEAD(&bo_va->vm_status);
1244 
1245 	list_add_tail(&bo_va->bo_list, &bo->va);
1246 
1247 	return bo_va;
1248 }
1249 
1250 /**
1251  * amdgpu_vm_bo_map - map bo inside a vm
1252  *
1253  * @adev: amdgpu_device pointer
1254  * @bo_va: bo_va to store the address
1255  * @saddr: where to map the BO
1256  * @offset: requested offset in the BO
1257  * @flags: attributes of pages (read/write/valid/etc.)
1258  *
1259  * Add a mapping of the BO at the specefied addr into the VM.
1260  * Returns 0 for success, error for failure.
1261  *
1262  * Object has to be reserved and unreserved outside!
1263  */
1264 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1265 		     struct amdgpu_bo_va *bo_va,
1266 		     uint64_t saddr, uint64_t offset,
1267 		     uint64_t size, uint32_t flags)
1268 {
1269 	struct amdgpu_bo_va_mapping *mapping;
1270 	struct amdgpu_vm *vm = bo_va->vm;
1271 	struct interval_tree_node *it;
1272 	unsigned last_pfn, pt_idx;
1273 	uint64_t eaddr;
1274 	int r;
1275 
1276 	/* validate the parameters */
1277 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1278 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1279 		return -EINVAL;
1280 
1281 	/* make sure object fit at this offset */
1282 	eaddr = saddr + size - 1;
1283 	if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1284 		return -EINVAL;
1285 
1286 	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1287 	if (last_pfn >= adev->vm_manager.max_pfn) {
1288 		dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1289 			last_pfn, adev->vm_manager.max_pfn);
1290 		return -EINVAL;
1291 	}
1292 
1293 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1294 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
1295 
1296 	it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1297 	if (it) {
1298 		struct amdgpu_bo_va_mapping *tmp;
1299 		tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1300 		/* bo and tmp overlap, invalid addr */
1301 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1302 			"0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1303 			tmp->it.start, tmp->it.last + 1);
1304 		r = -EINVAL;
1305 		goto error;
1306 	}
1307 
1308 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1309 	if (!mapping) {
1310 		r = -ENOMEM;
1311 		goto error;
1312 	}
1313 
1314 	INIT_LIST_HEAD(&mapping->list);
1315 	mapping->it.start = saddr;
1316 	mapping->it.last = eaddr;
1317 	mapping->offset = offset;
1318 	mapping->flags = flags;
1319 
1320 	list_add(&mapping->list, &bo_va->invalids);
1321 	interval_tree_insert(&mapping->it, &vm->va);
1322 
1323 	/* Make sure the page tables are allocated */
1324 	saddr >>= amdgpu_vm_block_size;
1325 	eaddr >>= amdgpu_vm_block_size;
1326 
1327 	BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1328 
1329 	if (eaddr > vm->max_pde_used)
1330 		vm->max_pde_used = eaddr;
1331 
1332 	/* walk over the address space and allocate the page tables */
1333 	for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1334 		struct reservation_object *resv = vm->page_directory->tbo.resv;
1335 		struct amdgpu_bo_list_entry *entry;
1336 		struct amdgpu_bo *pt;
1337 
1338 		entry = &vm->page_tables[pt_idx].entry;
1339 		if (entry->robj)
1340 			continue;
1341 
1342 		r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1343 				     AMDGPU_GPU_PAGE_SIZE, true,
1344 				     AMDGPU_GEM_DOMAIN_VRAM,
1345 				     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1346 				     NULL, resv, &pt);
1347 		if (r)
1348 			goto error_free;
1349 
1350 		/* Keep a reference to the page table to avoid freeing
1351 		 * them up in the wrong order.
1352 		 */
1353 		pt->parent = amdgpu_bo_ref(vm->page_directory);
1354 
1355 		r = amdgpu_vm_clear_bo(adev, vm, pt);
1356 		if (r) {
1357 			amdgpu_bo_unref(&pt);
1358 			goto error_free;
1359 		}
1360 
1361 		entry->robj = pt;
1362 		entry->priority = 0;
1363 		entry->tv.bo = &entry->robj->tbo;
1364 		entry->tv.shared = true;
1365 		entry->user_pages = NULL;
1366 		vm->page_tables[pt_idx].addr = 0;
1367 	}
1368 
1369 	return 0;
1370 
1371 error_free:
1372 	list_del(&mapping->list);
1373 	interval_tree_remove(&mapping->it, &vm->va);
1374 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1375 	kfree(mapping);
1376 
1377 error:
1378 	return r;
1379 }
1380 
1381 /**
1382  * amdgpu_vm_bo_unmap - remove bo mapping from vm
1383  *
1384  * @adev: amdgpu_device pointer
1385  * @bo_va: bo_va to remove the address from
1386  * @saddr: where to the BO is mapped
1387  *
1388  * Remove a mapping of the BO at the specefied addr from the VM.
1389  * Returns 0 for success, error for failure.
1390  *
1391  * Object has to be reserved and unreserved outside!
1392  */
1393 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1394 		       struct amdgpu_bo_va *bo_va,
1395 		       uint64_t saddr)
1396 {
1397 	struct amdgpu_bo_va_mapping *mapping;
1398 	struct amdgpu_vm *vm = bo_va->vm;
1399 	bool valid = true;
1400 
1401 	saddr /= AMDGPU_GPU_PAGE_SIZE;
1402 
1403 	list_for_each_entry(mapping, &bo_va->valids, list) {
1404 		if (mapping->it.start == saddr)
1405 			break;
1406 	}
1407 
1408 	if (&mapping->list == &bo_va->valids) {
1409 		valid = false;
1410 
1411 		list_for_each_entry(mapping, &bo_va->invalids, list) {
1412 			if (mapping->it.start == saddr)
1413 				break;
1414 		}
1415 
1416 		if (&mapping->list == &bo_va->invalids)
1417 			return -ENOENT;
1418 	}
1419 
1420 	list_del(&mapping->list);
1421 	interval_tree_remove(&mapping->it, &vm->va);
1422 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1423 
1424 	if (valid)
1425 		list_add(&mapping->list, &vm->freed);
1426 	else
1427 		kfree(mapping);
1428 
1429 	return 0;
1430 }
1431 
1432 /**
1433  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1434  *
1435  * @adev: amdgpu_device pointer
1436  * @bo_va: requested bo_va
1437  *
1438  * Remove @bo_va->bo from the requested vm.
1439  *
1440  * Object have to be reserved!
1441  */
1442 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1443 		      struct amdgpu_bo_va *bo_va)
1444 {
1445 	struct amdgpu_bo_va_mapping *mapping, *next;
1446 	struct amdgpu_vm *vm = bo_va->vm;
1447 
1448 	list_del(&bo_va->bo_list);
1449 
1450 	spin_lock(&vm->status_lock);
1451 	list_del(&bo_va->vm_status);
1452 	spin_unlock(&vm->status_lock);
1453 
1454 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1455 		list_del(&mapping->list);
1456 		interval_tree_remove(&mapping->it, &vm->va);
1457 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1458 		list_add(&mapping->list, &vm->freed);
1459 	}
1460 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1461 		list_del(&mapping->list);
1462 		interval_tree_remove(&mapping->it, &vm->va);
1463 		kfree(mapping);
1464 	}
1465 
1466 	fence_put(bo_va->last_pt_update);
1467 	kfree(bo_va);
1468 }
1469 
1470 /**
1471  * amdgpu_vm_bo_invalidate - mark the bo as invalid
1472  *
1473  * @adev: amdgpu_device pointer
1474  * @vm: requested vm
1475  * @bo: amdgpu buffer object
1476  *
1477  * Mark @bo as invalid.
1478  */
1479 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1480 			     struct amdgpu_bo *bo)
1481 {
1482 	struct amdgpu_bo_va *bo_va;
1483 
1484 	list_for_each_entry(bo_va, &bo->va, bo_list) {
1485 		spin_lock(&bo_va->vm->status_lock);
1486 		if (list_empty(&bo_va->vm_status))
1487 			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1488 		spin_unlock(&bo_va->vm->status_lock);
1489 	}
1490 }
1491 
1492 /**
1493  * amdgpu_vm_init - initialize a vm instance
1494  *
1495  * @adev: amdgpu_device pointer
1496  * @vm: requested vm
1497  *
1498  * Init @vm fields.
1499  */
1500 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1501 {
1502 	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1503 		AMDGPU_VM_PTE_COUNT * 8);
1504 	unsigned pd_size, pd_entries;
1505 	unsigned ring_instance;
1506 	struct amdgpu_ring *ring;
1507 	struct amd_sched_rq *rq;
1508 	int i, r;
1509 
1510 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1511 		vm->ids[i] = NULL;
1512 	vm->va = RB_ROOT;
1513 	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1514 	spin_lock_init(&vm->status_lock);
1515 	INIT_LIST_HEAD(&vm->invalidated);
1516 	INIT_LIST_HEAD(&vm->cleared);
1517 	INIT_LIST_HEAD(&vm->freed);
1518 
1519 	pd_size = amdgpu_vm_directory_size(adev);
1520 	pd_entries = amdgpu_vm_num_pdes(adev);
1521 
1522 	/* allocate page table array */
1523 	vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1524 	if (vm->page_tables == NULL) {
1525 		DRM_ERROR("Cannot allocate memory for page table array\n");
1526 		return -ENOMEM;
1527 	}
1528 
1529 	/* create scheduler entity for page table updates */
1530 
1531 	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1532 	ring_instance %= adev->vm_manager.vm_pte_num_rings;
1533 	ring = adev->vm_manager.vm_pte_rings[ring_instance];
1534 	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1535 	r = amd_sched_entity_init(&ring->sched, &vm->entity,
1536 				  rq, amdgpu_sched_jobs);
1537 	if (r)
1538 		goto err;
1539 
1540 	vm->page_directory_fence = NULL;
1541 
1542 	r = amdgpu_bo_create(adev, pd_size, align, true,
1543 			     AMDGPU_GEM_DOMAIN_VRAM,
1544 			     AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1545 			     NULL, NULL, &vm->page_directory);
1546 	if (r)
1547 		goto error_free_sched_entity;
1548 
1549 	r = amdgpu_bo_reserve(vm->page_directory, false);
1550 	if (r)
1551 		goto error_free_page_directory;
1552 
1553 	r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1554 	amdgpu_bo_unreserve(vm->page_directory);
1555 	if (r)
1556 		goto error_free_page_directory;
1557 	vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
1558 
1559 	return 0;
1560 
1561 error_free_page_directory:
1562 	amdgpu_bo_unref(&vm->page_directory);
1563 	vm->page_directory = NULL;
1564 
1565 error_free_sched_entity:
1566 	amd_sched_entity_fini(&ring->sched, &vm->entity);
1567 
1568 err:
1569 	drm_free_large(vm->page_tables);
1570 
1571 	return r;
1572 }
1573 
1574 /**
1575  * amdgpu_vm_fini - tear down a vm instance
1576  *
1577  * @adev: amdgpu_device pointer
1578  * @vm: requested vm
1579  *
1580  * Tear down @vm.
1581  * Unbind the VM and remove all bos from the vm bo list
1582  */
1583 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1584 {
1585 	struct amdgpu_bo_va_mapping *mapping, *tmp;
1586 	int i;
1587 
1588 	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1589 
1590 	if (!RB_EMPTY_ROOT(&vm->va)) {
1591 		dev_err(adev->dev, "still active bo inside vm\n");
1592 	}
1593 	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1594 		list_del(&mapping->list);
1595 		interval_tree_remove(&mapping->it, &vm->va);
1596 		kfree(mapping);
1597 	}
1598 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1599 		list_del(&mapping->list);
1600 		kfree(mapping);
1601 	}
1602 
1603 	for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1604 		amdgpu_bo_unref(&vm->page_tables[i].entry.robj);
1605 	drm_free_large(vm->page_tables);
1606 
1607 	amdgpu_bo_unref(&vm->page_directory);
1608 	fence_put(vm->page_directory_fence);
1609 }
1610 
1611 /**
1612  * amdgpu_vm_manager_init - init the VM manager
1613  *
1614  * @adev: amdgpu_device pointer
1615  *
1616  * Initialize the VM manager structures
1617  */
1618 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1619 {
1620 	unsigned i;
1621 
1622 	INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1623 
1624 	/* skip over VMID 0, since it is the system VM */
1625 	for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1626 		amdgpu_vm_reset_id(adev, i);
1627 		amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1628 		list_add_tail(&adev->vm_manager.ids[i].list,
1629 			      &adev->vm_manager.ids_lru);
1630 	}
1631 
1632 	adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS);
1633 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1634 		adev->vm_manager.seqno[i] = 0;
1635 
1636 	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1637 	atomic64_set(&adev->vm_manager.client_counter, 0);
1638 }
1639 
1640 /**
1641  * amdgpu_vm_manager_fini - cleanup VM manager
1642  *
1643  * @adev: amdgpu_device pointer
1644  *
1645  * Cleanup the VM manager and free resources.
1646  */
1647 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1648 {
1649 	unsigned i;
1650 
1651 	for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1652 		struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1653 
1654 		fence_put(adev->vm_manager.ids[i].first);
1655 		amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1656 		fence_put(id->flushed_updates);
1657 	}
1658 }
1659