1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 36 /* 37 * GPUVM 38 * GPUVM is similar to the legacy gart on older asics, however 39 * rather than there being a single global gart table 40 * for the entire GPU, there are multiple VM page tables active 41 * at any given time. The VM page tables can contain a mix 42 * vram pages and system memory pages and system memory pages 43 * can be mapped as snooped (cached system pages) or unsnooped 44 * (uncached system pages). 45 * Each VM has an ID associated with it and there is a page table 46 * associated with each VMID. When execting a command buffer, 47 * the kernel tells the the ring what VMID to use for that command 48 * buffer. VMIDs are allocated dynamically as commands are submitted. 49 * The userspace drivers maintain their own address space and the kernel 50 * sets up their pages tables accordingly when they submit their 51 * command buffers and a VMID is assigned. 52 * Cayman/Trinity support up to 8 active VMs at any given time; 53 * SI supports 16. 54 */ 55 56 #define START(node) ((node)->start) 57 #define LAST(node) ((node)->last) 58 59 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 60 START, LAST, static, amdgpu_vm_it) 61 62 #undef START 63 #undef LAST 64 65 /* Local structure. Encapsulate some VM table update parameters to reduce 66 * the number of function parameters 67 */ 68 struct amdgpu_pte_update_params { 69 /* amdgpu device we do this update for */ 70 struct amdgpu_device *adev; 71 /* optional amdgpu_vm we do this update for */ 72 struct amdgpu_vm *vm; 73 /* address where to copy page table entries from */ 74 uint64_t src; 75 /* indirect buffer to fill with commands */ 76 struct amdgpu_ib *ib; 77 /* Function which actually does the update */ 78 void (*func)(struct amdgpu_pte_update_params *params, 79 struct amdgpu_bo *bo, uint64_t pe, 80 uint64_t addr, unsigned count, uint32_t incr, 81 uint64_t flags); 82 /* The next two are used during VM update by CPU 83 * DMA addresses to use for mapping 84 * Kernel pointer of PD/PT BO that needs to be updated 85 */ 86 dma_addr_t *pages_addr; 87 void *kptr; 88 }; 89 90 /* Helper to disable partial resident texture feature from a fence callback */ 91 struct amdgpu_prt_cb { 92 struct amdgpu_device *adev; 93 struct dma_fence_cb cb; 94 }; 95 96 /** 97 * amdgpu_vm_level_shift - return the addr shift for each level 98 * 99 * @adev: amdgpu_device pointer 100 * 101 * Returns the number of bits the pfn needs to be right shifted for a level. 102 */ 103 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 104 unsigned level) 105 { 106 unsigned shift = 0xff; 107 108 switch (level) { 109 case AMDGPU_VM_PDB2: 110 case AMDGPU_VM_PDB1: 111 case AMDGPU_VM_PDB0: 112 shift = 9 * (AMDGPU_VM_PDB0 - level) + 113 adev->vm_manager.block_size; 114 break; 115 case AMDGPU_VM_PTB: 116 shift = 0; 117 break; 118 default: 119 dev_err(adev->dev, "the level%d isn't supported.\n", level); 120 } 121 122 return shift; 123 } 124 125 /** 126 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 127 * 128 * @adev: amdgpu_device pointer 129 * 130 * Calculate the number of entries in a page directory or page table. 131 */ 132 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 133 unsigned level) 134 { 135 unsigned shift = amdgpu_vm_level_shift(adev, 136 adev->vm_manager.root_level); 137 138 if (level == adev->vm_manager.root_level) 139 /* For the root directory */ 140 return round_up(adev->vm_manager.max_pfn, 1 << shift) >> shift; 141 else if (level != AMDGPU_VM_PTB) 142 /* Everything in between */ 143 return 512; 144 else 145 /* For the page tables on the leaves */ 146 return AMDGPU_VM_PTE_COUNT(adev); 147 } 148 149 /** 150 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 151 * 152 * @adev: amdgpu_device pointer 153 * 154 * Calculate the size of the BO for a page directory or page table in bytes. 155 */ 156 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 157 { 158 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 159 } 160 161 /** 162 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 163 * 164 * @vm: vm providing the BOs 165 * @validated: head of validation list 166 * @entry: entry to add 167 * 168 * Add the page directory to the list of BOs to 169 * validate for command submission. 170 */ 171 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 172 struct list_head *validated, 173 struct amdgpu_bo_list_entry *entry) 174 { 175 entry->robj = vm->root.base.bo; 176 entry->priority = 0; 177 entry->tv.bo = &entry->robj->tbo; 178 entry->tv.shared = true; 179 entry->user_pages = NULL; 180 list_add(&entry->tv.head, validated); 181 } 182 183 /** 184 * amdgpu_vm_validate_pt_bos - validate the page table BOs 185 * 186 * @adev: amdgpu device pointer 187 * @vm: vm providing the BOs 188 * @validate: callback to do the validation 189 * @param: parameter for the validation callback 190 * 191 * Validate the page table BOs on command submission if neccessary. 192 */ 193 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 194 int (*validate)(void *p, struct amdgpu_bo *bo), 195 void *param) 196 { 197 struct ttm_bo_global *glob = adev->mman.bdev.glob; 198 int r; 199 200 spin_lock(&vm->status_lock); 201 while (!list_empty(&vm->evicted)) { 202 struct amdgpu_vm_bo_base *bo_base; 203 struct amdgpu_bo *bo; 204 205 bo_base = list_first_entry(&vm->evicted, 206 struct amdgpu_vm_bo_base, 207 vm_status); 208 spin_unlock(&vm->status_lock); 209 210 bo = bo_base->bo; 211 BUG_ON(!bo); 212 if (bo->parent) { 213 r = validate(param, bo); 214 if (r) 215 return r; 216 217 spin_lock(&glob->lru_lock); 218 ttm_bo_move_to_lru_tail(&bo->tbo); 219 if (bo->shadow) 220 ttm_bo_move_to_lru_tail(&bo->shadow->tbo); 221 spin_unlock(&glob->lru_lock); 222 } 223 224 if (bo->tbo.type == ttm_bo_type_kernel && 225 vm->use_cpu_for_update) { 226 r = amdgpu_bo_kmap(bo, NULL); 227 if (r) 228 return r; 229 } 230 231 spin_lock(&vm->status_lock); 232 if (bo->tbo.type != ttm_bo_type_kernel) 233 list_move(&bo_base->vm_status, &vm->moved); 234 else 235 list_move(&bo_base->vm_status, &vm->relocated); 236 } 237 spin_unlock(&vm->status_lock); 238 239 return 0; 240 } 241 242 /** 243 * amdgpu_vm_ready - check VM is ready for updates 244 * 245 * @vm: VM to check 246 * 247 * Check if all VM PDs/PTs are ready for updates 248 */ 249 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 250 { 251 bool ready; 252 253 spin_lock(&vm->status_lock); 254 ready = list_empty(&vm->evicted); 255 spin_unlock(&vm->status_lock); 256 257 return ready; 258 } 259 260 /** 261 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 262 * 263 * @adev: amdgpu_device pointer 264 * @bo: BO to clear 265 * @level: level this BO is at 266 * 267 * Root PD needs to be reserved when calling this. 268 */ 269 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 270 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 271 unsigned level, bool pte_support_ats) 272 { 273 struct ttm_operation_ctx ctx = { true, false }; 274 struct dma_fence *fence = NULL; 275 unsigned entries, ats_entries; 276 struct amdgpu_ring *ring; 277 struct amdgpu_job *job; 278 uint64_t addr; 279 int r; 280 281 addr = amdgpu_bo_gpu_offset(bo); 282 entries = amdgpu_bo_size(bo) / 8; 283 284 if (pte_support_ats) { 285 if (level == adev->vm_manager.root_level) { 286 ats_entries = amdgpu_vm_level_shift(adev, level); 287 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 288 ats_entries = AMDGPU_VA_HOLE_START >> ats_entries; 289 ats_entries = min(ats_entries, entries); 290 entries -= ats_entries; 291 } else { 292 ats_entries = entries; 293 entries = 0; 294 } 295 } else { 296 ats_entries = 0; 297 } 298 299 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 300 301 r = reservation_object_reserve_shared(bo->tbo.resv); 302 if (r) 303 return r; 304 305 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 306 if (r) 307 goto error; 308 309 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 310 if (r) 311 goto error; 312 313 if (ats_entries) { 314 uint64_t ats_value; 315 316 ats_value = AMDGPU_PTE_DEFAULT_ATC; 317 if (level != AMDGPU_VM_PTB) 318 ats_value |= AMDGPU_PDE_PTE; 319 320 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 321 ats_entries, 0, ats_value); 322 addr += ats_entries * 8; 323 } 324 325 if (entries) 326 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 327 entries, 0, 0); 328 329 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 330 331 WARN_ON(job->ibs[0].length_dw > 64); 332 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 333 AMDGPU_FENCE_OWNER_UNDEFINED, false); 334 if (r) 335 goto error_free; 336 337 r = amdgpu_job_submit(job, ring, &vm->entity, 338 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 339 if (r) 340 goto error_free; 341 342 amdgpu_bo_fence(bo, fence, true); 343 dma_fence_put(fence); 344 345 if (bo->shadow) 346 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 347 level, pte_support_ats); 348 349 return 0; 350 351 error_free: 352 amdgpu_job_free(job); 353 354 error: 355 return r; 356 } 357 358 /** 359 * amdgpu_vm_alloc_levels - allocate the PD/PT levels 360 * 361 * @adev: amdgpu_device pointer 362 * @vm: requested vm 363 * @saddr: start of the address range 364 * @eaddr: end of the address range 365 * 366 * Make sure the page directories and page tables are allocated 367 */ 368 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, 369 struct amdgpu_vm *vm, 370 struct amdgpu_vm_pt *parent, 371 uint64_t saddr, uint64_t eaddr, 372 unsigned level, bool ats) 373 { 374 unsigned shift = amdgpu_vm_level_shift(adev, level); 375 unsigned pt_idx, from, to; 376 u64 flags; 377 int r; 378 379 if (!parent->entries) { 380 unsigned num_entries = amdgpu_vm_num_entries(adev, level); 381 382 parent->entries = kvmalloc_array(num_entries, 383 sizeof(struct amdgpu_vm_pt), 384 GFP_KERNEL | __GFP_ZERO); 385 if (!parent->entries) 386 return -ENOMEM; 387 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); 388 } 389 390 from = saddr >> shift; 391 to = eaddr >> shift; 392 if (from >= amdgpu_vm_num_entries(adev, level) || 393 to >= amdgpu_vm_num_entries(adev, level)) 394 return -EINVAL; 395 396 ++level; 397 saddr = saddr & ((1 << shift) - 1); 398 eaddr = eaddr & ((1 << shift) - 1); 399 400 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 401 if (vm->use_cpu_for_update) 402 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 403 else 404 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 405 AMDGPU_GEM_CREATE_SHADOW); 406 407 /* walk over the address space and allocate the page tables */ 408 for (pt_idx = from; pt_idx <= to; ++pt_idx) { 409 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 410 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 411 struct amdgpu_bo *pt; 412 413 if (!entry->base.bo) { 414 r = amdgpu_bo_create(adev, 415 amdgpu_vm_bo_size(adev, level), 416 AMDGPU_GPU_PAGE_SIZE, 417 AMDGPU_GEM_DOMAIN_VRAM, flags, 418 ttm_bo_type_kernel, resv, &pt); 419 if (r) 420 return r; 421 422 r = amdgpu_vm_clear_bo(adev, vm, pt, level, ats); 423 if (r) { 424 amdgpu_bo_unref(&pt->shadow); 425 amdgpu_bo_unref(&pt); 426 return r; 427 } 428 429 if (vm->use_cpu_for_update) { 430 r = amdgpu_bo_kmap(pt, NULL); 431 if (r) { 432 amdgpu_bo_unref(&pt->shadow); 433 amdgpu_bo_unref(&pt); 434 return r; 435 } 436 } 437 438 /* Keep a reference to the root directory to avoid 439 * freeing them up in the wrong order. 440 */ 441 pt->parent = amdgpu_bo_ref(parent->base.bo); 442 443 entry->base.vm = vm; 444 entry->base.bo = pt; 445 list_add_tail(&entry->base.bo_list, &pt->va); 446 spin_lock(&vm->status_lock); 447 list_add(&entry->base.vm_status, &vm->relocated); 448 spin_unlock(&vm->status_lock); 449 } 450 451 if (level < AMDGPU_VM_PTB) { 452 uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; 453 uint64_t sub_eaddr = (pt_idx == to) ? eaddr : 454 ((1 << shift) - 1); 455 r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, 456 sub_eaddr, level, ats); 457 if (r) 458 return r; 459 } 460 } 461 462 return 0; 463 } 464 465 /** 466 * amdgpu_vm_alloc_pts - Allocate page tables. 467 * 468 * @adev: amdgpu_device pointer 469 * @vm: VM to allocate page tables for 470 * @saddr: Start address which needs to be allocated 471 * @size: Size from start address we need. 472 * 473 * Make sure the page tables are allocated. 474 */ 475 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 476 struct amdgpu_vm *vm, 477 uint64_t saddr, uint64_t size) 478 { 479 uint64_t eaddr; 480 bool ats = false; 481 482 /* validate the parameters */ 483 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 484 return -EINVAL; 485 486 eaddr = saddr + size - 1; 487 488 if (vm->pte_support_ats) 489 ats = saddr < AMDGPU_VA_HOLE_START; 490 491 saddr /= AMDGPU_GPU_PAGE_SIZE; 492 eaddr /= AMDGPU_GPU_PAGE_SIZE; 493 494 if (eaddr >= adev->vm_manager.max_pfn) { 495 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 496 eaddr, adev->vm_manager.max_pfn); 497 return -EINVAL; 498 } 499 500 return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 501 adev->vm_manager.root_level, ats); 502 } 503 504 /** 505 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 506 * 507 * @adev: amdgpu_device pointer 508 */ 509 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 510 { 511 const struct amdgpu_ip_block *ip_block; 512 bool has_compute_vm_bug; 513 struct amdgpu_ring *ring; 514 int i; 515 516 has_compute_vm_bug = false; 517 518 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 519 if (ip_block) { 520 /* Compute has a VM bug for GFX version < 7. 521 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 522 if (ip_block->version->major <= 7) 523 has_compute_vm_bug = true; 524 else if (ip_block->version->major == 8) 525 if (adev->gfx.mec_fw_version < 673) 526 has_compute_vm_bug = true; 527 } 528 529 for (i = 0; i < adev->num_rings; i++) { 530 ring = adev->rings[i]; 531 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 532 /* only compute rings */ 533 ring->has_compute_vm_bug = has_compute_vm_bug; 534 else 535 ring->has_compute_vm_bug = false; 536 } 537 } 538 539 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 540 struct amdgpu_job *job) 541 { 542 struct amdgpu_device *adev = ring->adev; 543 unsigned vmhub = ring->funcs->vmhub; 544 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 545 struct amdgpu_vmid *id; 546 bool gds_switch_needed; 547 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 548 549 if (job->vmid == 0) 550 return false; 551 id = &id_mgr->ids[job->vmid]; 552 gds_switch_needed = ring->funcs->emit_gds_switch && ( 553 id->gds_base != job->gds_base || 554 id->gds_size != job->gds_size || 555 id->gws_base != job->gws_base || 556 id->gws_size != job->gws_size || 557 id->oa_base != job->oa_base || 558 id->oa_size != job->oa_size); 559 560 if (amdgpu_vmid_had_gpu_reset(adev, id)) 561 return true; 562 563 return vm_flush_needed || gds_switch_needed; 564 } 565 566 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) 567 { 568 return (adev->gmc.real_vram_size == adev->gmc.visible_vram_size); 569 } 570 571 /** 572 * amdgpu_vm_flush - hardware flush the vm 573 * 574 * @ring: ring to use for flush 575 * @vmid: vmid number to use 576 * @pd_addr: address of the page directory 577 * 578 * Emit a VM flush when it is necessary. 579 */ 580 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 581 { 582 struct amdgpu_device *adev = ring->adev; 583 unsigned vmhub = ring->funcs->vmhub; 584 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 585 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 586 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 587 id->gds_base != job->gds_base || 588 id->gds_size != job->gds_size || 589 id->gws_base != job->gws_base || 590 id->gws_size != job->gws_size || 591 id->oa_base != job->oa_base || 592 id->oa_size != job->oa_size); 593 bool vm_flush_needed = job->vm_needs_flush; 594 bool pasid_mapping_needed = id->pasid != job->pasid || 595 !id->pasid_mapping || 596 !dma_fence_is_signaled(id->pasid_mapping); 597 struct dma_fence *fence = NULL; 598 unsigned patch_offset = 0; 599 int r; 600 601 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 602 gds_switch_needed = true; 603 vm_flush_needed = true; 604 pasid_mapping_needed = true; 605 } 606 607 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 608 vm_flush_needed &= !!ring->funcs->emit_vm_flush; 609 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 610 ring->funcs->emit_wreg; 611 612 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 613 return 0; 614 615 if (ring->funcs->init_cond_exec) 616 patch_offset = amdgpu_ring_init_cond_exec(ring); 617 618 if (need_pipe_sync) 619 amdgpu_ring_emit_pipeline_sync(ring); 620 621 if (vm_flush_needed) { 622 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 623 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 624 } 625 626 if (pasid_mapping_needed) 627 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 628 629 if (vm_flush_needed || pasid_mapping_needed) { 630 r = amdgpu_fence_emit(ring, &fence); 631 if (r) 632 return r; 633 } 634 635 if (vm_flush_needed) { 636 mutex_lock(&id_mgr->lock); 637 dma_fence_put(id->last_flush); 638 id->last_flush = dma_fence_get(fence); 639 id->current_gpu_reset_count = 640 atomic_read(&adev->gpu_reset_counter); 641 mutex_unlock(&id_mgr->lock); 642 } 643 644 if (pasid_mapping_needed) { 645 id->pasid = job->pasid; 646 dma_fence_put(id->pasid_mapping); 647 id->pasid_mapping = dma_fence_get(fence); 648 } 649 dma_fence_put(fence); 650 651 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 652 id->gds_base = job->gds_base; 653 id->gds_size = job->gds_size; 654 id->gws_base = job->gws_base; 655 id->gws_size = job->gws_size; 656 id->oa_base = job->oa_base; 657 id->oa_size = job->oa_size; 658 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 659 job->gds_size, job->gws_base, 660 job->gws_size, job->oa_base, 661 job->oa_size); 662 } 663 664 if (ring->funcs->patch_cond_exec) 665 amdgpu_ring_patch_cond_exec(ring, patch_offset); 666 667 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 668 if (ring->funcs->emit_switch_buffer) { 669 amdgpu_ring_emit_switch_buffer(ring); 670 amdgpu_ring_emit_switch_buffer(ring); 671 } 672 return 0; 673 } 674 675 /** 676 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 677 * 678 * @vm: requested vm 679 * @bo: requested buffer object 680 * 681 * Find @bo inside the requested vm. 682 * Search inside the @bos vm list for the requested vm 683 * Returns the found bo_va or NULL if none is found 684 * 685 * Object has to be reserved! 686 */ 687 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 688 struct amdgpu_bo *bo) 689 { 690 struct amdgpu_bo_va *bo_va; 691 692 list_for_each_entry(bo_va, &bo->va, base.bo_list) { 693 if (bo_va->base.vm == vm) { 694 return bo_va; 695 } 696 } 697 return NULL; 698 } 699 700 /** 701 * amdgpu_vm_do_set_ptes - helper to call the right asic function 702 * 703 * @params: see amdgpu_pte_update_params definition 704 * @bo: PD/PT to update 705 * @pe: addr of the page entry 706 * @addr: dst addr to write into pe 707 * @count: number of page entries to update 708 * @incr: increase next addr by incr bytes 709 * @flags: hw access flags 710 * 711 * Traces the parameters and calls the right asic functions 712 * to setup the page table using the DMA. 713 */ 714 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 715 struct amdgpu_bo *bo, 716 uint64_t pe, uint64_t addr, 717 unsigned count, uint32_t incr, 718 uint64_t flags) 719 { 720 pe += amdgpu_bo_gpu_offset(bo); 721 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 722 723 if (count < 3) { 724 amdgpu_vm_write_pte(params->adev, params->ib, pe, 725 addr | flags, count, incr); 726 727 } else { 728 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 729 count, incr, flags); 730 } 731 } 732 733 /** 734 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 735 * 736 * @params: see amdgpu_pte_update_params definition 737 * @bo: PD/PT to update 738 * @pe: addr of the page entry 739 * @addr: dst addr to write into pe 740 * @count: number of page entries to update 741 * @incr: increase next addr by incr bytes 742 * @flags: hw access flags 743 * 744 * Traces the parameters and calls the DMA function to copy the PTEs. 745 */ 746 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 747 struct amdgpu_bo *bo, 748 uint64_t pe, uint64_t addr, 749 unsigned count, uint32_t incr, 750 uint64_t flags) 751 { 752 uint64_t src = (params->src + (addr >> 12) * 8); 753 754 pe += amdgpu_bo_gpu_offset(bo); 755 trace_amdgpu_vm_copy_ptes(pe, src, count); 756 757 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 758 } 759 760 /** 761 * amdgpu_vm_map_gart - Resolve gart mapping of addr 762 * 763 * @pages_addr: optional DMA address to use for lookup 764 * @addr: the unmapped addr 765 * 766 * Look up the physical address of the page that the pte resolves 767 * to and return the pointer for the page table entry. 768 */ 769 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 770 { 771 uint64_t result; 772 773 /* page table offset */ 774 result = pages_addr[addr >> PAGE_SHIFT]; 775 776 /* in case cpu page size != gpu page size*/ 777 result |= addr & (~PAGE_MASK); 778 779 result &= 0xFFFFFFFFFFFFF000ULL; 780 781 return result; 782 } 783 784 /** 785 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 786 * 787 * @params: see amdgpu_pte_update_params definition 788 * @bo: PD/PT to update 789 * @pe: kmap addr of the page entry 790 * @addr: dst addr to write into pe 791 * @count: number of page entries to update 792 * @incr: increase next addr by incr bytes 793 * @flags: hw access flags 794 * 795 * Write count number of PT/PD entries directly. 796 */ 797 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 798 struct amdgpu_bo *bo, 799 uint64_t pe, uint64_t addr, 800 unsigned count, uint32_t incr, 801 uint64_t flags) 802 { 803 unsigned int i; 804 uint64_t value; 805 806 pe += (unsigned long)amdgpu_bo_kptr(bo); 807 808 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 809 810 for (i = 0; i < count; i++) { 811 value = params->pages_addr ? 812 amdgpu_vm_map_gart(params->pages_addr, addr) : 813 addr; 814 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 815 i, value, flags); 816 addr += incr; 817 } 818 } 819 820 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 821 void *owner) 822 { 823 struct amdgpu_sync sync; 824 int r; 825 826 amdgpu_sync_create(&sync); 827 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 828 r = amdgpu_sync_wait(&sync, true); 829 amdgpu_sync_free(&sync); 830 831 return r; 832 } 833 834 /* 835 * amdgpu_vm_update_pde - update a single level in the hierarchy 836 * 837 * @param: parameters for the update 838 * @vm: requested vm 839 * @parent: parent directory 840 * @entry: entry to update 841 * 842 * Makes sure the requested entry in parent is up to date. 843 */ 844 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 845 struct amdgpu_vm *vm, 846 struct amdgpu_vm_pt *parent, 847 struct amdgpu_vm_pt *entry) 848 { 849 struct amdgpu_bo *bo = parent->base.bo, *pbo; 850 uint64_t pde, pt, flags; 851 unsigned level; 852 853 /* Don't update huge pages here */ 854 if (entry->huge) 855 return; 856 857 for (level = 0, pbo = bo->parent; pbo; ++level) 858 pbo = pbo->parent; 859 860 level += params->adev->vm_manager.root_level; 861 pt = amdgpu_bo_gpu_offset(entry->base.bo); 862 flags = AMDGPU_PTE_VALID; 863 amdgpu_gmc_get_vm_pde(params->adev, level, &pt, &flags); 864 pde = (entry - parent->entries) * 8; 865 if (bo->shadow) 866 params->func(params, bo->shadow, pde, pt, 1, 0, flags); 867 params->func(params, bo, pde, pt, 1, 0, flags); 868 } 869 870 /* 871 * amdgpu_vm_invalidate_level - mark all PD levels as invalid 872 * 873 * @parent: parent PD 874 * 875 * Mark all PD level as invalid after an error. 876 */ 877 static void amdgpu_vm_invalidate_level(struct amdgpu_device *adev, 878 struct amdgpu_vm *vm, 879 struct amdgpu_vm_pt *parent, 880 unsigned level) 881 { 882 unsigned pt_idx, num_entries; 883 884 /* 885 * Recurse into the subdirectories. This recursion is harmless because 886 * we only have a maximum of 5 layers. 887 */ 888 num_entries = amdgpu_vm_num_entries(adev, level); 889 for (pt_idx = 0; pt_idx < num_entries; ++pt_idx) { 890 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; 891 892 if (!entry->base.bo) 893 continue; 894 895 spin_lock(&vm->status_lock); 896 if (list_empty(&entry->base.vm_status)) 897 list_add(&entry->base.vm_status, &vm->relocated); 898 spin_unlock(&vm->status_lock); 899 amdgpu_vm_invalidate_level(adev, vm, entry, level + 1); 900 } 901 } 902 903 /* 904 * amdgpu_vm_update_directories - make sure that all directories are valid 905 * 906 * @adev: amdgpu_device pointer 907 * @vm: requested vm 908 * 909 * Makes sure all directories are up to date. 910 * Returns 0 for success, error for failure. 911 */ 912 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 913 struct amdgpu_vm *vm) 914 { 915 struct amdgpu_pte_update_params params; 916 struct amdgpu_job *job; 917 unsigned ndw = 0; 918 int r = 0; 919 920 if (list_empty(&vm->relocated)) 921 return 0; 922 923 restart: 924 memset(¶ms, 0, sizeof(params)); 925 params.adev = adev; 926 927 if (vm->use_cpu_for_update) { 928 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 929 if (unlikely(r)) 930 return r; 931 932 params.func = amdgpu_vm_cpu_set_ptes; 933 } else { 934 ndw = 512 * 8; 935 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 936 if (r) 937 return r; 938 939 params.ib = &job->ibs[0]; 940 params.func = amdgpu_vm_do_set_ptes; 941 } 942 943 spin_lock(&vm->status_lock); 944 while (!list_empty(&vm->relocated)) { 945 struct amdgpu_vm_bo_base *bo_base, *parent; 946 struct amdgpu_vm_pt *pt, *entry; 947 struct amdgpu_bo *bo; 948 949 bo_base = list_first_entry(&vm->relocated, 950 struct amdgpu_vm_bo_base, 951 vm_status); 952 list_del_init(&bo_base->vm_status); 953 spin_unlock(&vm->status_lock); 954 955 bo = bo_base->bo->parent; 956 if (!bo) { 957 spin_lock(&vm->status_lock); 958 continue; 959 } 960 961 parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, 962 bo_list); 963 pt = container_of(parent, struct amdgpu_vm_pt, base); 964 entry = container_of(bo_base, struct amdgpu_vm_pt, base); 965 966 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 967 968 spin_lock(&vm->status_lock); 969 if (!vm->use_cpu_for_update && 970 (ndw - params.ib->length_dw) < 32) 971 break; 972 } 973 spin_unlock(&vm->status_lock); 974 975 if (vm->use_cpu_for_update) { 976 /* Flush HDP */ 977 mb(); 978 amdgpu_asic_flush_hdp(adev, NULL); 979 } else if (params.ib->length_dw == 0) { 980 amdgpu_job_free(job); 981 } else { 982 struct amdgpu_bo *root = vm->root.base.bo; 983 struct amdgpu_ring *ring; 984 struct dma_fence *fence; 985 986 ring = container_of(vm->entity.sched, struct amdgpu_ring, 987 sched); 988 989 amdgpu_ring_pad_ib(ring, params.ib); 990 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 991 AMDGPU_FENCE_OWNER_VM, false); 992 WARN_ON(params.ib->length_dw > ndw); 993 r = amdgpu_job_submit(job, ring, &vm->entity, 994 AMDGPU_FENCE_OWNER_VM, &fence); 995 if (r) 996 goto error; 997 998 amdgpu_bo_fence(root, fence, true); 999 dma_fence_put(vm->last_update); 1000 vm->last_update = fence; 1001 } 1002 1003 if (!list_empty(&vm->relocated)) 1004 goto restart; 1005 1006 return 0; 1007 1008 error: 1009 amdgpu_vm_invalidate_level(adev, vm, &vm->root, 1010 adev->vm_manager.root_level); 1011 amdgpu_job_free(job); 1012 return r; 1013 } 1014 1015 /** 1016 * amdgpu_vm_find_entry - find the entry for an address 1017 * 1018 * @p: see amdgpu_pte_update_params definition 1019 * @addr: virtual address in question 1020 * @entry: resulting entry or NULL 1021 * @parent: parent entry 1022 * 1023 * Find the vm_pt entry and it's parent for the given address. 1024 */ 1025 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, 1026 struct amdgpu_vm_pt **entry, 1027 struct amdgpu_vm_pt **parent) 1028 { 1029 unsigned level = p->adev->vm_manager.root_level; 1030 1031 *parent = NULL; 1032 *entry = &p->vm->root; 1033 while ((*entry)->entries) { 1034 unsigned shift = amdgpu_vm_level_shift(p->adev, level++); 1035 1036 *parent = *entry; 1037 *entry = &(*entry)->entries[addr >> shift]; 1038 addr &= (1ULL << shift) - 1; 1039 } 1040 1041 if (level != AMDGPU_VM_PTB) 1042 *entry = NULL; 1043 } 1044 1045 /** 1046 * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages 1047 * 1048 * @p: see amdgpu_pte_update_params definition 1049 * @entry: vm_pt entry to check 1050 * @parent: parent entry 1051 * @nptes: number of PTEs updated with this operation 1052 * @dst: destination address where the PTEs should point to 1053 * @flags: access flags fro the PTEs 1054 * 1055 * Check if we can update the PD with a huge page. 1056 */ 1057 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, 1058 struct amdgpu_vm_pt *entry, 1059 struct amdgpu_vm_pt *parent, 1060 unsigned nptes, uint64_t dst, 1061 uint64_t flags) 1062 { 1063 uint64_t pde; 1064 1065 /* In the case of a mixed PT the PDE must point to it*/ 1066 if (p->adev->asic_type >= CHIP_VEGA10 && !p->src && 1067 nptes == AMDGPU_VM_PTE_COUNT(p->adev)) { 1068 /* Set the huge page flag to stop scanning at this PDE */ 1069 flags |= AMDGPU_PDE_PTE; 1070 } 1071 1072 if (!(flags & AMDGPU_PDE_PTE)) { 1073 if (entry->huge) { 1074 /* Add the entry to the relocated list to update it. */ 1075 entry->huge = false; 1076 spin_lock(&p->vm->status_lock); 1077 list_move(&entry->base.vm_status, &p->vm->relocated); 1078 spin_unlock(&p->vm->status_lock); 1079 } 1080 return; 1081 } 1082 1083 entry->huge = true; 1084 amdgpu_gmc_get_vm_pde(p->adev, AMDGPU_VM_PDB0, &dst, &flags); 1085 1086 pde = (entry - parent->entries) * 8; 1087 if (parent->base.bo->shadow) 1088 p->func(p, parent->base.bo->shadow, pde, dst, 1, 0, flags); 1089 p->func(p, parent->base.bo, pde, dst, 1, 0, flags); 1090 } 1091 1092 /** 1093 * amdgpu_vm_update_ptes - make sure that page tables are valid 1094 * 1095 * @params: see amdgpu_pte_update_params definition 1096 * @vm: requested vm 1097 * @start: start of GPU address range 1098 * @end: end of GPU address range 1099 * @dst: destination address to map to, the next dst inside the function 1100 * @flags: mapping flags 1101 * 1102 * Update the page tables in the range @start - @end. 1103 * Returns 0 for success, -EINVAL for failure. 1104 */ 1105 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1106 uint64_t start, uint64_t end, 1107 uint64_t dst, uint64_t flags) 1108 { 1109 struct amdgpu_device *adev = params->adev; 1110 const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; 1111 1112 uint64_t addr, pe_start; 1113 struct amdgpu_bo *pt; 1114 unsigned nptes; 1115 1116 /* walk over the address space and update the page tables */ 1117 for (addr = start; addr < end; addr += nptes, 1118 dst += nptes * AMDGPU_GPU_PAGE_SIZE) { 1119 struct amdgpu_vm_pt *entry, *parent; 1120 1121 amdgpu_vm_get_entry(params, addr, &entry, &parent); 1122 if (!entry) 1123 return -ENOENT; 1124 1125 if ((addr & ~mask) == (end & ~mask)) 1126 nptes = end - addr; 1127 else 1128 nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); 1129 1130 amdgpu_vm_handle_huge_pages(params, entry, parent, 1131 nptes, dst, flags); 1132 /* We don't need to update PTEs for huge pages */ 1133 if (entry->huge) 1134 continue; 1135 1136 pt = entry->base.bo; 1137 pe_start = (addr & mask) * 8; 1138 if (pt->shadow) 1139 params->func(params, pt->shadow, pe_start, dst, nptes, 1140 AMDGPU_GPU_PAGE_SIZE, flags); 1141 params->func(params, pt, pe_start, dst, nptes, 1142 AMDGPU_GPU_PAGE_SIZE, flags); 1143 } 1144 1145 return 0; 1146 } 1147 1148 /* 1149 * amdgpu_vm_frag_ptes - add fragment information to PTEs 1150 * 1151 * @params: see amdgpu_pte_update_params definition 1152 * @vm: requested vm 1153 * @start: first PTE to handle 1154 * @end: last PTE to handle 1155 * @dst: addr those PTEs should point to 1156 * @flags: hw mapping flags 1157 * Returns 0 for success, -EINVAL for failure. 1158 */ 1159 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, 1160 uint64_t start, uint64_t end, 1161 uint64_t dst, uint64_t flags) 1162 { 1163 /** 1164 * The MC L1 TLB supports variable sized pages, based on a fragment 1165 * field in the PTE. When this field is set to a non-zero value, page 1166 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1167 * flags are considered valid for all PTEs within the fragment range 1168 * and corresponding mappings are assumed to be physically contiguous. 1169 * 1170 * The L1 TLB can store a single PTE for the whole fragment, 1171 * significantly increasing the space available for translation 1172 * caching. This leads to large improvements in throughput when the 1173 * TLB is under pressure. 1174 * 1175 * The L2 TLB distributes small and large fragments into two 1176 * asymmetric partitions. The large fragment cache is significantly 1177 * larger. Thus, we try to use large fragments wherever possible. 1178 * Userspace can support this by aligning virtual base address and 1179 * allocation size to the fragment size. 1180 */ 1181 unsigned max_frag = params->adev->vm_manager.fragment_size; 1182 int r; 1183 1184 /* system pages are non continuously */ 1185 if (params->src || !(flags & AMDGPU_PTE_VALID)) 1186 return amdgpu_vm_update_ptes(params, start, end, dst, flags); 1187 1188 while (start != end) { 1189 uint64_t frag_flags, frag_end; 1190 unsigned frag; 1191 1192 /* This intentionally wraps around if no bit is set */ 1193 frag = min((unsigned)ffs(start) - 1, 1194 (unsigned)fls64(end - start) - 1); 1195 if (frag >= max_frag) { 1196 frag_flags = AMDGPU_PTE_FRAG(max_frag); 1197 frag_end = end & ~((1ULL << max_frag) - 1); 1198 } else { 1199 frag_flags = AMDGPU_PTE_FRAG(frag); 1200 frag_end = start + (1 << frag); 1201 } 1202 1203 r = amdgpu_vm_update_ptes(params, start, frag_end, dst, 1204 flags | frag_flags); 1205 if (r) 1206 return r; 1207 1208 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; 1209 start = frag_end; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1217 * 1218 * @adev: amdgpu_device pointer 1219 * @exclusive: fence we need to sync to 1220 * @pages_addr: DMA addresses to use for mapping 1221 * @vm: requested vm 1222 * @start: start of mapped range 1223 * @last: last mapped entry 1224 * @flags: flags for the entries 1225 * @addr: addr to set the area to 1226 * @fence: optional resulting fence 1227 * 1228 * Fill in the page table entries between @start and @last. 1229 * Returns 0 for success, -EINVAL for failure. 1230 */ 1231 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1232 struct dma_fence *exclusive, 1233 dma_addr_t *pages_addr, 1234 struct amdgpu_vm *vm, 1235 uint64_t start, uint64_t last, 1236 uint64_t flags, uint64_t addr, 1237 struct dma_fence **fence) 1238 { 1239 struct amdgpu_ring *ring; 1240 void *owner = AMDGPU_FENCE_OWNER_VM; 1241 unsigned nptes, ncmds, ndw; 1242 struct amdgpu_job *job; 1243 struct amdgpu_pte_update_params params; 1244 struct dma_fence *f = NULL; 1245 int r; 1246 1247 memset(¶ms, 0, sizeof(params)); 1248 params.adev = adev; 1249 params.vm = vm; 1250 1251 /* sync to everything on unmapping */ 1252 if (!(flags & AMDGPU_PTE_VALID)) 1253 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1254 1255 if (vm->use_cpu_for_update) { 1256 /* params.src is used as flag to indicate system Memory */ 1257 if (pages_addr) 1258 params.src = ~0; 1259 1260 /* Wait for PT BOs to be free. PTs share the same resv. object 1261 * as the root PD BO 1262 */ 1263 r = amdgpu_vm_wait_pd(adev, vm, owner); 1264 if (unlikely(r)) 1265 return r; 1266 1267 params.func = amdgpu_vm_cpu_set_ptes; 1268 params.pages_addr = pages_addr; 1269 return amdgpu_vm_frag_ptes(¶ms, start, last + 1, 1270 addr, flags); 1271 } 1272 1273 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); 1274 1275 nptes = last - start + 1; 1276 1277 /* 1278 * reserve space for two commands every (1 << BLOCK_SIZE) 1279 * entries or 2k dwords (whatever is smaller) 1280 * 1281 * The second command is for the shadow pagetables. 1282 */ 1283 if (vm->root.base.bo->shadow) 1284 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1285 else 1286 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1287 1288 /* padding, etc. */ 1289 ndw = 64; 1290 1291 if (pages_addr) { 1292 /* copy commands needed */ 1293 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1294 1295 /* and also PTEs */ 1296 ndw += nptes * 2; 1297 1298 params.func = amdgpu_vm_do_copy_ptes; 1299 1300 } else { 1301 /* set page commands needed */ 1302 ndw += ncmds * 10; 1303 1304 /* extra commands for begin/end fragments */ 1305 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1306 1307 params.func = amdgpu_vm_do_set_ptes; 1308 } 1309 1310 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1311 if (r) 1312 return r; 1313 1314 params.ib = &job->ibs[0]; 1315 1316 if (pages_addr) { 1317 uint64_t *pte; 1318 unsigned i; 1319 1320 /* Put the PTEs at the end of the IB. */ 1321 i = ndw - nptes * 2; 1322 pte= (uint64_t *)&(job->ibs->ptr[i]); 1323 params.src = job->ibs->gpu_addr + i * 4; 1324 1325 for (i = 0; i < nptes; ++i) { 1326 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1327 AMDGPU_GPU_PAGE_SIZE); 1328 pte[i] |= flags; 1329 } 1330 addr = 0; 1331 } 1332 1333 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1334 if (r) 1335 goto error_free; 1336 1337 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1338 owner, false); 1339 if (r) 1340 goto error_free; 1341 1342 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1343 if (r) 1344 goto error_free; 1345 1346 r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); 1347 if (r) 1348 goto error_free; 1349 1350 amdgpu_ring_pad_ib(ring, params.ib); 1351 WARN_ON(params.ib->length_dw > ndw); 1352 r = amdgpu_job_submit(job, ring, &vm->entity, 1353 AMDGPU_FENCE_OWNER_VM, &f); 1354 if (r) 1355 goto error_free; 1356 1357 amdgpu_bo_fence(vm->root.base.bo, f, true); 1358 dma_fence_put(*fence); 1359 *fence = f; 1360 return 0; 1361 1362 error_free: 1363 amdgpu_job_free(job); 1364 return r; 1365 } 1366 1367 /** 1368 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1369 * 1370 * @adev: amdgpu_device pointer 1371 * @exclusive: fence we need to sync to 1372 * @pages_addr: DMA addresses to use for mapping 1373 * @vm: requested vm 1374 * @mapping: mapped range and flags to use for the update 1375 * @flags: HW flags for the mapping 1376 * @nodes: array of drm_mm_nodes with the MC addresses 1377 * @fence: optional resulting fence 1378 * 1379 * Split the mapping into smaller chunks so that each update fits 1380 * into a SDMA IB. 1381 * Returns 0 for success, -EINVAL for failure. 1382 */ 1383 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1384 struct dma_fence *exclusive, 1385 dma_addr_t *pages_addr, 1386 struct amdgpu_vm *vm, 1387 struct amdgpu_bo_va_mapping *mapping, 1388 uint64_t flags, 1389 struct drm_mm_node *nodes, 1390 struct dma_fence **fence) 1391 { 1392 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1393 uint64_t pfn, start = mapping->start; 1394 int r; 1395 1396 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1397 * but in case of something, we filter the flags in first place 1398 */ 1399 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1400 flags &= ~AMDGPU_PTE_READABLE; 1401 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1402 flags &= ~AMDGPU_PTE_WRITEABLE; 1403 1404 flags &= ~AMDGPU_PTE_EXECUTABLE; 1405 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1406 1407 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1408 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1409 1410 if ((mapping->flags & AMDGPU_PTE_PRT) && 1411 (adev->asic_type >= CHIP_VEGA10)) { 1412 flags |= AMDGPU_PTE_PRT; 1413 flags &= ~AMDGPU_PTE_VALID; 1414 } 1415 1416 trace_amdgpu_vm_bo_update(mapping); 1417 1418 pfn = mapping->offset >> PAGE_SHIFT; 1419 if (nodes) { 1420 while (pfn >= nodes->size) { 1421 pfn -= nodes->size; 1422 ++nodes; 1423 } 1424 } 1425 1426 do { 1427 dma_addr_t *dma_addr = NULL; 1428 uint64_t max_entries; 1429 uint64_t addr, last; 1430 1431 if (nodes) { 1432 addr = nodes->start << PAGE_SHIFT; 1433 max_entries = (nodes->size - pfn) * 1434 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); 1435 } else { 1436 addr = 0; 1437 max_entries = S64_MAX; 1438 } 1439 1440 if (pages_addr) { 1441 uint64_t count; 1442 1443 max_entries = min(max_entries, 16ull * 1024ull); 1444 for (count = 1; count < max_entries; ++count) { 1445 uint64_t idx = pfn + count; 1446 1447 if (pages_addr[idx] != 1448 (pages_addr[idx - 1] + PAGE_SIZE)) 1449 break; 1450 } 1451 1452 if (count < min_linear_pages) { 1453 addr = pfn << PAGE_SHIFT; 1454 dma_addr = pages_addr; 1455 } else { 1456 addr = pages_addr[pfn]; 1457 max_entries = count; 1458 } 1459 1460 } else if (flags & AMDGPU_PTE_VALID) { 1461 addr += adev->vm_manager.vram_base_offset; 1462 addr += pfn << PAGE_SHIFT; 1463 } 1464 1465 last = min((uint64_t)mapping->last, start + max_entries - 1); 1466 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1467 start, last, flags, addr, 1468 fence); 1469 if (r) 1470 return r; 1471 1472 pfn += last - start + 1; 1473 if (nodes && nodes->size == pfn) { 1474 pfn = 0; 1475 ++nodes; 1476 } 1477 start = last + 1; 1478 1479 } while (unlikely(start != mapping->last + 1)); 1480 1481 return 0; 1482 } 1483 1484 /** 1485 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1486 * 1487 * @adev: amdgpu_device pointer 1488 * @bo_va: requested BO and VM object 1489 * @clear: if true clear the entries 1490 * 1491 * Fill in the page table entries for @bo_va. 1492 * Returns 0 for success, -EINVAL for failure. 1493 */ 1494 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 1495 struct amdgpu_bo_va *bo_va, 1496 bool clear) 1497 { 1498 struct amdgpu_bo *bo = bo_va->base.bo; 1499 struct amdgpu_vm *vm = bo_va->base.vm; 1500 struct amdgpu_bo_va_mapping *mapping; 1501 dma_addr_t *pages_addr = NULL; 1502 struct ttm_mem_reg *mem; 1503 struct drm_mm_node *nodes; 1504 struct dma_fence *exclusive, **last_update; 1505 uint64_t flags; 1506 int r; 1507 1508 if (clear || !bo_va->base.bo) { 1509 mem = NULL; 1510 nodes = NULL; 1511 exclusive = NULL; 1512 } else { 1513 struct ttm_dma_tt *ttm; 1514 1515 mem = &bo_va->base.bo->tbo.mem; 1516 nodes = mem->mm_node; 1517 if (mem->mem_type == TTM_PL_TT) { 1518 ttm = container_of(bo_va->base.bo->tbo.ttm, 1519 struct ttm_dma_tt, ttm); 1520 pages_addr = ttm->dma_address; 1521 } 1522 exclusive = reservation_object_get_excl(bo->tbo.resv); 1523 } 1524 1525 if (bo) 1526 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1527 else 1528 flags = 0x0; 1529 1530 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 1531 last_update = &vm->last_update; 1532 else 1533 last_update = &bo_va->last_pt_update; 1534 1535 if (!clear && bo_va->base.moved) { 1536 bo_va->base.moved = false; 1537 list_splice_init(&bo_va->valids, &bo_va->invalids); 1538 1539 } else if (bo_va->cleared != clear) { 1540 list_splice_init(&bo_va->valids, &bo_va->invalids); 1541 } 1542 1543 list_for_each_entry(mapping, &bo_va->invalids, list) { 1544 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 1545 mapping, flags, nodes, 1546 last_update); 1547 if (r) 1548 return r; 1549 } 1550 1551 if (vm->use_cpu_for_update) { 1552 /* Flush HDP */ 1553 mb(); 1554 amdgpu_asic_flush_hdp(adev, NULL); 1555 } 1556 1557 spin_lock(&vm->status_lock); 1558 list_del_init(&bo_va->base.vm_status); 1559 spin_unlock(&vm->status_lock); 1560 1561 list_splice_init(&bo_va->invalids, &bo_va->valids); 1562 bo_va->cleared = clear; 1563 1564 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1565 list_for_each_entry(mapping, &bo_va->valids, list) 1566 trace_amdgpu_vm_bo_mapping(mapping); 1567 } 1568 1569 return 0; 1570 } 1571 1572 /** 1573 * amdgpu_vm_update_prt_state - update the global PRT state 1574 */ 1575 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1576 { 1577 unsigned long flags; 1578 bool enable; 1579 1580 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1581 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1582 adev->gmc.gmc_funcs->set_prt(adev, enable); 1583 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1584 } 1585 1586 /** 1587 * amdgpu_vm_prt_get - add a PRT user 1588 */ 1589 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1590 { 1591 if (!adev->gmc.gmc_funcs->set_prt) 1592 return; 1593 1594 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1595 amdgpu_vm_update_prt_state(adev); 1596 } 1597 1598 /** 1599 * amdgpu_vm_prt_put - drop a PRT user 1600 */ 1601 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1602 { 1603 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1604 amdgpu_vm_update_prt_state(adev); 1605 } 1606 1607 /** 1608 * amdgpu_vm_prt_cb - callback for updating the PRT status 1609 */ 1610 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1611 { 1612 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1613 1614 amdgpu_vm_prt_put(cb->adev); 1615 kfree(cb); 1616 } 1617 1618 /** 1619 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1620 */ 1621 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1622 struct dma_fence *fence) 1623 { 1624 struct amdgpu_prt_cb *cb; 1625 1626 if (!adev->gmc.gmc_funcs->set_prt) 1627 return; 1628 1629 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1630 if (!cb) { 1631 /* Last resort when we are OOM */ 1632 if (fence) 1633 dma_fence_wait(fence, false); 1634 1635 amdgpu_vm_prt_put(adev); 1636 } else { 1637 cb->adev = adev; 1638 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1639 amdgpu_vm_prt_cb)) 1640 amdgpu_vm_prt_cb(fence, &cb->cb); 1641 } 1642 } 1643 1644 /** 1645 * amdgpu_vm_free_mapping - free a mapping 1646 * 1647 * @adev: amdgpu_device pointer 1648 * @vm: requested vm 1649 * @mapping: mapping to be freed 1650 * @fence: fence of the unmap operation 1651 * 1652 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1653 */ 1654 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1655 struct amdgpu_vm *vm, 1656 struct amdgpu_bo_va_mapping *mapping, 1657 struct dma_fence *fence) 1658 { 1659 if (mapping->flags & AMDGPU_PTE_PRT) 1660 amdgpu_vm_add_prt_cb(adev, fence); 1661 kfree(mapping); 1662 } 1663 1664 /** 1665 * amdgpu_vm_prt_fini - finish all prt mappings 1666 * 1667 * @adev: amdgpu_device pointer 1668 * @vm: requested vm 1669 * 1670 * Register a cleanup callback to disable PRT support after VM dies. 1671 */ 1672 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1673 { 1674 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 1675 struct dma_fence *excl, **shared; 1676 unsigned i, shared_count; 1677 int r; 1678 1679 r = reservation_object_get_fences_rcu(resv, &excl, 1680 &shared_count, &shared); 1681 if (r) { 1682 /* Not enough memory to grab the fence list, as last resort 1683 * block for all the fences to complete. 1684 */ 1685 reservation_object_wait_timeout_rcu(resv, true, false, 1686 MAX_SCHEDULE_TIMEOUT); 1687 return; 1688 } 1689 1690 /* Add a callback for each fence in the reservation object */ 1691 amdgpu_vm_prt_get(adev); 1692 amdgpu_vm_add_prt_cb(adev, excl); 1693 1694 for (i = 0; i < shared_count; ++i) { 1695 amdgpu_vm_prt_get(adev); 1696 amdgpu_vm_add_prt_cb(adev, shared[i]); 1697 } 1698 1699 kfree(shared); 1700 } 1701 1702 /** 1703 * amdgpu_vm_clear_freed - clear freed BOs in the PT 1704 * 1705 * @adev: amdgpu_device pointer 1706 * @vm: requested vm 1707 * @fence: optional resulting fence (unchanged if no work needed to be done 1708 * or if an error occurred) 1709 * 1710 * Make sure all freed BOs are cleared in the PT. 1711 * Returns 0 for success. 1712 * 1713 * PTs have to be reserved and mutex must be locked! 1714 */ 1715 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 1716 struct amdgpu_vm *vm, 1717 struct dma_fence **fence) 1718 { 1719 struct amdgpu_bo_va_mapping *mapping; 1720 uint64_t init_pte_value = 0; 1721 struct dma_fence *f = NULL; 1722 int r; 1723 1724 while (!list_empty(&vm->freed)) { 1725 mapping = list_first_entry(&vm->freed, 1726 struct amdgpu_bo_va_mapping, list); 1727 list_del(&mapping->list); 1728 1729 if (vm->pte_support_ats && mapping->start < AMDGPU_VA_HOLE_START) 1730 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 1731 1732 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 1733 mapping->start, mapping->last, 1734 init_pte_value, 0, &f); 1735 amdgpu_vm_free_mapping(adev, vm, mapping, f); 1736 if (r) { 1737 dma_fence_put(f); 1738 return r; 1739 } 1740 } 1741 1742 if (fence && f) { 1743 dma_fence_put(*fence); 1744 *fence = f; 1745 } else { 1746 dma_fence_put(f); 1747 } 1748 1749 return 0; 1750 1751 } 1752 1753 /** 1754 * amdgpu_vm_handle_moved - handle moved BOs in the PT 1755 * 1756 * @adev: amdgpu_device pointer 1757 * @vm: requested vm 1758 * @sync: sync object to add fences to 1759 * 1760 * Make sure all BOs which are moved are updated in the PTs. 1761 * Returns 0 for success. 1762 * 1763 * PTs have to be reserved! 1764 */ 1765 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 1766 struct amdgpu_vm *vm) 1767 { 1768 bool clear; 1769 int r = 0; 1770 1771 spin_lock(&vm->status_lock); 1772 while (!list_empty(&vm->moved)) { 1773 struct amdgpu_bo_va *bo_va; 1774 struct reservation_object *resv; 1775 1776 bo_va = list_first_entry(&vm->moved, 1777 struct amdgpu_bo_va, base.vm_status); 1778 spin_unlock(&vm->status_lock); 1779 1780 resv = bo_va->base.bo->tbo.resv; 1781 1782 /* Per VM BOs never need to bo cleared in the page tables */ 1783 if (resv == vm->root.base.bo->tbo.resv) 1784 clear = false; 1785 /* Try to reserve the BO to avoid clearing its ptes */ 1786 else if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 1787 clear = false; 1788 /* Somebody else is using the BO right now */ 1789 else 1790 clear = true; 1791 1792 r = amdgpu_vm_bo_update(adev, bo_va, clear); 1793 if (r) 1794 return r; 1795 1796 if (!clear && resv != vm->root.base.bo->tbo.resv) 1797 reservation_object_unlock(resv); 1798 1799 spin_lock(&vm->status_lock); 1800 } 1801 spin_unlock(&vm->status_lock); 1802 1803 return r; 1804 } 1805 1806 /** 1807 * amdgpu_vm_bo_add - add a bo to a specific vm 1808 * 1809 * @adev: amdgpu_device pointer 1810 * @vm: requested vm 1811 * @bo: amdgpu buffer object 1812 * 1813 * Add @bo into the requested vm. 1814 * Add @bo to the list of bos associated with the vm 1815 * Returns newly added bo_va or NULL for failure 1816 * 1817 * Object has to be reserved! 1818 */ 1819 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 1820 struct amdgpu_vm *vm, 1821 struct amdgpu_bo *bo) 1822 { 1823 struct amdgpu_bo_va *bo_va; 1824 1825 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 1826 if (bo_va == NULL) { 1827 return NULL; 1828 } 1829 bo_va->base.vm = vm; 1830 bo_va->base.bo = bo; 1831 INIT_LIST_HEAD(&bo_va->base.bo_list); 1832 INIT_LIST_HEAD(&bo_va->base.vm_status); 1833 1834 bo_va->ref_count = 1; 1835 INIT_LIST_HEAD(&bo_va->valids); 1836 INIT_LIST_HEAD(&bo_va->invalids); 1837 1838 if (!bo) 1839 return bo_va; 1840 1841 list_add_tail(&bo_va->base.bo_list, &bo->va); 1842 1843 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 1844 return bo_va; 1845 1846 if (bo->preferred_domains & 1847 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 1848 return bo_va; 1849 1850 /* 1851 * We checked all the prerequisites, but it looks like this per VM BO 1852 * is currently evicted. add the BO to the evicted list to make sure it 1853 * is validated on next VM use to avoid fault. 1854 * */ 1855 spin_lock(&vm->status_lock); 1856 list_move_tail(&bo_va->base.vm_status, &vm->evicted); 1857 spin_unlock(&vm->status_lock); 1858 1859 return bo_va; 1860 } 1861 1862 1863 /** 1864 * amdgpu_vm_bo_insert_mapping - insert a new mapping 1865 * 1866 * @adev: amdgpu_device pointer 1867 * @bo_va: bo_va to store the address 1868 * @mapping: the mapping to insert 1869 * 1870 * Insert a new mapping into all structures. 1871 */ 1872 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 1873 struct amdgpu_bo_va *bo_va, 1874 struct amdgpu_bo_va_mapping *mapping) 1875 { 1876 struct amdgpu_vm *vm = bo_va->base.vm; 1877 struct amdgpu_bo *bo = bo_va->base.bo; 1878 1879 mapping->bo_va = bo_va; 1880 list_add(&mapping->list, &bo_va->invalids); 1881 amdgpu_vm_it_insert(mapping, &vm->va); 1882 1883 if (mapping->flags & AMDGPU_PTE_PRT) 1884 amdgpu_vm_prt_get(adev); 1885 1886 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 1887 spin_lock(&vm->status_lock); 1888 if (list_empty(&bo_va->base.vm_status)) 1889 list_add(&bo_va->base.vm_status, &vm->moved); 1890 spin_unlock(&vm->status_lock); 1891 } 1892 trace_amdgpu_vm_bo_map(bo_va, mapping); 1893 } 1894 1895 /** 1896 * amdgpu_vm_bo_map - map bo inside a vm 1897 * 1898 * @adev: amdgpu_device pointer 1899 * @bo_va: bo_va to store the address 1900 * @saddr: where to map the BO 1901 * @offset: requested offset in the BO 1902 * @flags: attributes of pages (read/write/valid/etc.) 1903 * 1904 * Add a mapping of the BO at the specefied addr into the VM. 1905 * Returns 0 for success, error for failure. 1906 * 1907 * Object has to be reserved and unreserved outside! 1908 */ 1909 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 1910 struct amdgpu_bo_va *bo_va, 1911 uint64_t saddr, uint64_t offset, 1912 uint64_t size, uint64_t flags) 1913 { 1914 struct amdgpu_bo_va_mapping *mapping, *tmp; 1915 struct amdgpu_bo *bo = bo_va->base.bo; 1916 struct amdgpu_vm *vm = bo_va->base.vm; 1917 uint64_t eaddr; 1918 1919 /* validate the parameters */ 1920 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1921 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1922 return -EINVAL; 1923 1924 /* make sure object fit at this offset */ 1925 eaddr = saddr + size - 1; 1926 if (saddr >= eaddr || 1927 (bo && offset + size > amdgpu_bo_size(bo))) 1928 return -EINVAL; 1929 1930 saddr /= AMDGPU_GPU_PAGE_SIZE; 1931 eaddr /= AMDGPU_GPU_PAGE_SIZE; 1932 1933 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 1934 if (tmp) { 1935 /* bo and tmp overlap, invalid addr */ 1936 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 1937 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 1938 tmp->start, tmp->last + 1); 1939 return -EINVAL; 1940 } 1941 1942 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1943 if (!mapping) 1944 return -ENOMEM; 1945 1946 mapping->start = saddr; 1947 mapping->last = eaddr; 1948 mapping->offset = offset; 1949 mapping->flags = flags; 1950 1951 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 1952 1953 return 0; 1954 } 1955 1956 /** 1957 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 1958 * 1959 * @adev: amdgpu_device pointer 1960 * @bo_va: bo_va to store the address 1961 * @saddr: where to map the BO 1962 * @offset: requested offset in the BO 1963 * @flags: attributes of pages (read/write/valid/etc.) 1964 * 1965 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 1966 * mappings as we do so. 1967 * Returns 0 for success, error for failure. 1968 * 1969 * Object has to be reserved and unreserved outside! 1970 */ 1971 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 1972 struct amdgpu_bo_va *bo_va, 1973 uint64_t saddr, uint64_t offset, 1974 uint64_t size, uint64_t flags) 1975 { 1976 struct amdgpu_bo_va_mapping *mapping; 1977 struct amdgpu_bo *bo = bo_va->base.bo; 1978 uint64_t eaddr; 1979 int r; 1980 1981 /* validate the parameters */ 1982 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 1983 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 1984 return -EINVAL; 1985 1986 /* make sure object fit at this offset */ 1987 eaddr = saddr + size - 1; 1988 if (saddr >= eaddr || 1989 (bo && offset + size > amdgpu_bo_size(bo))) 1990 return -EINVAL; 1991 1992 /* Allocate all the needed memory */ 1993 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 1994 if (!mapping) 1995 return -ENOMEM; 1996 1997 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 1998 if (r) { 1999 kfree(mapping); 2000 return r; 2001 } 2002 2003 saddr /= AMDGPU_GPU_PAGE_SIZE; 2004 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2005 2006 mapping->start = saddr; 2007 mapping->last = eaddr; 2008 mapping->offset = offset; 2009 mapping->flags = flags; 2010 2011 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2012 2013 return 0; 2014 } 2015 2016 /** 2017 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2018 * 2019 * @adev: amdgpu_device pointer 2020 * @bo_va: bo_va to remove the address from 2021 * @saddr: where to the BO is mapped 2022 * 2023 * Remove a mapping of the BO at the specefied addr from the VM. 2024 * Returns 0 for success, error for failure. 2025 * 2026 * Object has to be reserved and unreserved outside! 2027 */ 2028 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2029 struct amdgpu_bo_va *bo_va, 2030 uint64_t saddr) 2031 { 2032 struct amdgpu_bo_va_mapping *mapping; 2033 struct amdgpu_vm *vm = bo_va->base.vm; 2034 bool valid = true; 2035 2036 saddr /= AMDGPU_GPU_PAGE_SIZE; 2037 2038 list_for_each_entry(mapping, &bo_va->valids, list) { 2039 if (mapping->start == saddr) 2040 break; 2041 } 2042 2043 if (&mapping->list == &bo_va->valids) { 2044 valid = false; 2045 2046 list_for_each_entry(mapping, &bo_va->invalids, list) { 2047 if (mapping->start == saddr) 2048 break; 2049 } 2050 2051 if (&mapping->list == &bo_va->invalids) 2052 return -ENOENT; 2053 } 2054 2055 list_del(&mapping->list); 2056 amdgpu_vm_it_remove(mapping, &vm->va); 2057 mapping->bo_va = NULL; 2058 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2059 2060 if (valid) 2061 list_add(&mapping->list, &vm->freed); 2062 else 2063 amdgpu_vm_free_mapping(adev, vm, mapping, 2064 bo_va->last_pt_update); 2065 2066 return 0; 2067 } 2068 2069 /** 2070 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2071 * 2072 * @adev: amdgpu_device pointer 2073 * @vm: VM structure to use 2074 * @saddr: start of the range 2075 * @size: size of the range 2076 * 2077 * Remove all mappings in a range, split them as appropriate. 2078 * Returns 0 for success, error for failure. 2079 */ 2080 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2081 struct amdgpu_vm *vm, 2082 uint64_t saddr, uint64_t size) 2083 { 2084 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2085 LIST_HEAD(removed); 2086 uint64_t eaddr; 2087 2088 eaddr = saddr + size - 1; 2089 saddr /= AMDGPU_GPU_PAGE_SIZE; 2090 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2091 2092 /* Allocate all the needed memory */ 2093 before = kzalloc(sizeof(*before), GFP_KERNEL); 2094 if (!before) 2095 return -ENOMEM; 2096 INIT_LIST_HEAD(&before->list); 2097 2098 after = kzalloc(sizeof(*after), GFP_KERNEL); 2099 if (!after) { 2100 kfree(before); 2101 return -ENOMEM; 2102 } 2103 INIT_LIST_HEAD(&after->list); 2104 2105 /* Now gather all removed mappings */ 2106 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2107 while (tmp) { 2108 /* Remember mapping split at the start */ 2109 if (tmp->start < saddr) { 2110 before->start = tmp->start; 2111 before->last = saddr - 1; 2112 before->offset = tmp->offset; 2113 before->flags = tmp->flags; 2114 list_add(&before->list, &tmp->list); 2115 } 2116 2117 /* Remember mapping split at the end */ 2118 if (tmp->last > eaddr) { 2119 after->start = eaddr + 1; 2120 after->last = tmp->last; 2121 after->offset = tmp->offset; 2122 after->offset += after->start - tmp->start; 2123 after->flags = tmp->flags; 2124 list_add(&after->list, &tmp->list); 2125 } 2126 2127 list_del(&tmp->list); 2128 list_add(&tmp->list, &removed); 2129 2130 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2131 } 2132 2133 /* And free them up */ 2134 list_for_each_entry_safe(tmp, next, &removed, list) { 2135 amdgpu_vm_it_remove(tmp, &vm->va); 2136 list_del(&tmp->list); 2137 2138 if (tmp->start < saddr) 2139 tmp->start = saddr; 2140 if (tmp->last > eaddr) 2141 tmp->last = eaddr; 2142 2143 tmp->bo_va = NULL; 2144 list_add(&tmp->list, &vm->freed); 2145 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2146 } 2147 2148 /* Insert partial mapping before the range */ 2149 if (!list_empty(&before->list)) { 2150 amdgpu_vm_it_insert(before, &vm->va); 2151 if (before->flags & AMDGPU_PTE_PRT) 2152 amdgpu_vm_prt_get(adev); 2153 } else { 2154 kfree(before); 2155 } 2156 2157 /* Insert partial mapping after the range */ 2158 if (!list_empty(&after->list)) { 2159 amdgpu_vm_it_insert(after, &vm->va); 2160 if (after->flags & AMDGPU_PTE_PRT) 2161 amdgpu_vm_prt_get(adev); 2162 } else { 2163 kfree(after); 2164 } 2165 2166 return 0; 2167 } 2168 2169 /** 2170 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2171 * 2172 * @vm: the requested VM 2173 * 2174 * Find a mapping by it's address. 2175 */ 2176 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2177 uint64_t addr) 2178 { 2179 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2180 } 2181 2182 /** 2183 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2184 * 2185 * @adev: amdgpu_device pointer 2186 * @bo_va: requested bo_va 2187 * 2188 * Remove @bo_va->bo from the requested vm. 2189 * 2190 * Object have to be reserved! 2191 */ 2192 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2193 struct amdgpu_bo_va *bo_va) 2194 { 2195 struct amdgpu_bo_va_mapping *mapping, *next; 2196 struct amdgpu_vm *vm = bo_va->base.vm; 2197 2198 list_del(&bo_va->base.bo_list); 2199 2200 spin_lock(&vm->status_lock); 2201 list_del(&bo_va->base.vm_status); 2202 spin_unlock(&vm->status_lock); 2203 2204 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2205 list_del(&mapping->list); 2206 amdgpu_vm_it_remove(mapping, &vm->va); 2207 mapping->bo_va = NULL; 2208 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2209 list_add(&mapping->list, &vm->freed); 2210 } 2211 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2212 list_del(&mapping->list); 2213 amdgpu_vm_it_remove(mapping, &vm->va); 2214 amdgpu_vm_free_mapping(adev, vm, mapping, 2215 bo_va->last_pt_update); 2216 } 2217 2218 dma_fence_put(bo_va->last_pt_update); 2219 kfree(bo_va); 2220 } 2221 2222 /** 2223 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2224 * 2225 * @adev: amdgpu_device pointer 2226 * @vm: requested vm 2227 * @bo: amdgpu buffer object 2228 * 2229 * Mark @bo as invalid. 2230 */ 2231 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2232 struct amdgpu_bo *bo, bool evicted) 2233 { 2234 struct amdgpu_vm_bo_base *bo_base; 2235 2236 list_for_each_entry(bo_base, &bo->va, bo_list) { 2237 struct amdgpu_vm *vm = bo_base->vm; 2238 2239 bo_base->moved = true; 2240 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2241 spin_lock(&bo_base->vm->status_lock); 2242 if (bo->tbo.type == ttm_bo_type_kernel) 2243 list_move(&bo_base->vm_status, &vm->evicted); 2244 else 2245 list_move_tail(&bo_base->vm_status, 2246 &vm->evicted); 2247 spin_unlock(&bo_base->vm->status_lock); 2248 continue; 2249 } 2250 2251 if (bo->tbo.type == ttm_bo_type_kernel) { 2252 spin_lock(&bo_base->vm->status_lock); 2253 if (list_empty(&bo_base->vm_status)) 2254 list_add(&bo_base->vm_status, &vm->relocated); 2255 spin_unlock(&bo_base->vm->status_lock); 2256 continue; 2257 } 2258 2259 spin_lock(&bo_base->vm->status_lock); 2260 if (list_empty(&bo_base->vm_status)) 2261 list_add(&bo_base->vm_status, &vm->moved); 2262 spin_unlock(&bo_base->vm->status_lock); 2263 } 2264 } 2265 2266 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2267 { 2268 /* Total bits covered by PD + PTs */ 2269 unsigned bits = ilog2(vm_size) + 18; 2270 2271 /* Make sure the PD is 4K in size up to 8GB address space. 2272 Above that split equal between PD and PTs */ 2273 if (vm_size <= 8) 2274 return (bits - 9); 2275 else 2276 return ((bits + 3) / 2); 2277 } 2278 2279 /** 2280 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2281 * 2282 * @adev: amdgpu_device pointer 2283 * @vm_size: the default vm size if it's set auto 2284 */ 2285 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t vm_size, 2286 uint32_t fragment_size_default, unsigned max_level, 2287 unsigned max_bits) 2288 { 2289 uint64_t tmp; 2290 2291 /* adjust vm size first */ 2292 if (amdgpu_vm_size != -1) { 2293 unsigned max_size = 1 << (max_bits - 30); 2294 2295 vm_size = amdgpu_vm_size; 2296 if (vm_size > max_size) { 2297 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2298 amdgpu_vm_size, max_size); 2299 vm_size = max_size; 2300 } 2301 } 2302 2303 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2304 2305 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2306 if (amdgpu_vm_block_size != -1) 2307 tmp >>= amdgpu_vm_block_size - 9; 2308 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2309 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2310 switch (adev->vm_manager.num_level) { 2311 case 3: 2312 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2313 break; 2314 case 2: 2315 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2316 break; 2317 case 1: 2318 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2319 break; 2320 default: 2321 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2322 } 2323 /* block size depends on vm size and hw setup*/ 2324 if (amdgpu_vm_block_size != -1) 2325 adev->vm_manager.block_size = 2326 min((unsigned)amdgpu_vm_block_size, max_bits 2327 - AMDGPU_GPU_PAGE_SHIFT 2328 - 9 * adev->vm_manager.num_level); 2329 else if (adev->vm_manager.num_level > 1) 2330 adev->vm_manager.block_size = 9; 2331 else 2332 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2333 2334 if (amdgpu_vm_fragment_size == -1) 2335 adev->vm_manager.fragment_size = fragment_size_default; 2336 else 2337 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2338 2339 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2340 vm_size, adev->vm_manager.num_level + 1, 2341 adev->vm_manager.block_size, 2342 adev->vm_manager.fragment_size); 2343 } 2344 2345 /** 2346 * amdgpu_vm_init - initialize a vm instance 2347 * 2348 * @adev: amdgpu_device pointer 2349 * @vm: requested vm 2350 * @vm_context: Indicates if it GFX or Compute context 2351 * 2352 * Init @vm fields. 2353 */ 2354 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2355 int vm_context, unsigned int pasid) 2356 { 2357 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, 2358 AMDGPU_VM_PTE_COUNT(adev) * 8); 2359 unsigned ring_instance; 2360 struct amdgpu_ring *ring; 2361 struct drm_sched_rq *rq; 2362 unsigned long size; 2363 uint64_t flags; 2364 int r, i; 2365 2366 vm->va = RB_ROOT_CACHED; 2367 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2368 vm->reserved_vmid[i] = NULL; 2369 spin_lock_init(&vm->status_lock); 2370 INIT_LIST_HEAD(&vm->evicted); 2371 INIT_LIST_HEAD(&vm->relocated); 2372 INIT_LIST_HEAD(&vm->moved); 2373 INIT_LIST_HEAD(&vm->freed); 2374 2375 /* create scheduler entity for page table updates */ 2376 2377 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); 2378 ring_instance %= adev->vm_manager.vm_pte_num_rings; 2379 ring = adev->vm_manager.vm_pte_rings[ring_instance]; 2380 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 2381 r = drm_sched_entity_init(&ring->sched, &vm->entity, 2382 rq, amdgpu_sched_jobs, NULL); 2383 if (r) 2384 return r; 2385 2386 vm->pte_support_ats = false; 2387 2388 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2389 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2390 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2391 2392 if (adev->asic_type == CHIP_RAVEN) 2393 vm->pte_support_ats = true; 2394 } else { 2395 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2396 AMDGPU_VM_USE_CPU_FOR_GFX); 2397 } 2398 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2399 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2400 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), 2401 "CPU update of VM recommended only for large BAR system\n"); 2402 vm->last_update = NULL; 2403 2404 flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 2405 if (vm->use_cpu_for_update) 2406 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 2407 else 2408 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | 2409 AMDGPU_GEM_CREATE_SHADOW); 2410 2411 size = amdgpu_vm_bo_size(adev, adev->vm_manager.root_level); 2412 r = amdgpu_bo_create(adev, size, align, AMDGPU_GEM_DOMAIN_VRAM, flags, 2413 ttm_bo_type_kernel, NULL, &vm->root.base.bo); 2414 if (r) 2415 goto error_free_sched_entity; 2416 2417 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2418 if (r) 2419 goto error_free_root; 2420 2421 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 2422 adev->vm_manager.root_level, 2423 vm->pte_support_ats); 2424 if (r) 2425 goto error_unreserve; 2426 2427 vm->root.base.vm = vm; 2428 list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va); 2429 list_add_tail(&vm->root.base.vm_status, &vm->evicted); 2430 amdgpu_bo_unreserve(vm->root.base.bo); 2431 2432 if (pasid) { 2433 unsigned long flags; 2434 2435 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2436 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2437 GFP_ATOMIC); 2438 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2439 if (r < 0) 2440 goto error_free_root; 2441 2442 vm->pasid = pasid; 2443 } 2444 2445 INIT_KFIFO(vm->faults); 2446 vm->fault_credit = 16; 2447 2448 return 0; 2449 2450 error_unreserve: 2451 amdgpu_bo_unreserve(vm->root.base.bo); 2452 2453 error_free_root: 2454 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2455 amdgpu_bo_unref(&vm->root.base.bo); 2456 vm->root.base.bo = NULL; 2457 2458 error_free_sched_entity: 2459 drm_sched_entity_fini(&ring->sched, &vm->entity); 2460 2461 return r; 2462 } 2463 2464 /** 2465 * amdgpu_vm_free_levels - free PD/PT levels 2466 * 2467 * @adev: amdgpu device structure 2468 * @parent: PD/PT starting level to free 2469 * @level: level of parent structure 2470 * 2471 * Free the page directory or page table level and all sub levels. 2472 */ 2473 static void amdgpu_vm_free_levels(struct amdgpu_device *adev, 2474 struct amdgpu_vm_pt *parent, 2475 unsigned level) 2476 { 2477 unsigned i, num_entries = amdgpu_vm_num_entries(adev, level); 2478 2479 if (parent->base.bo) { 2480 list_del(&parent->base.bo_list); 2481 list_del(&parent->base.vm_status); 2482 amdgpu_bo_unref(&parent->base.bo->shadow); 2483 amdgpu_bo_unref(&parent->base.bo); 2484 } 2485 2486 if (parent->entries) 2487 for (i = 0; i < num_entries; i++) 2488 amdgpu_vm_free_levels(adev, &parent->entries[i], 2489 level + 1); 2490 2491 kvfree(parent->entries); 2492 } 2493 2494 /** 2495 * amdgpu_vm_fini - tear down a vm instance 2496 * 2497 * @adev: amdgpu_device pointer 2498 * @vm: requested vm 2499 * 2500 * Tear down @vm. 2501 * Unbind the VM and remove all bos from the vm bo list 2502 */ 2503 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2504 { 2505 struct amdgpu_bo_va_mapping *mapping, *tmp; 2506 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 2507 struct amdgpu_bo *root; 2508 u64 fault; 2509 int i, r; 2510 2511 /* Clear pending page faults from IH when the VM is destroyed */ 2512 while (kfifo_get(&vm->faults, &fault)) 2513 amdgpu_ih_clear_fault(adev, fault); 2514 2515 if (vm->pasid) { 2516 unsigned long flags; 2517 2518 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2519 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 2520 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2521 } 2522 2523 drm_sched_entity_fini(vm->entity.sched, &vm->entity); 2524 2525 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 2526 dev_err(adev->dev, "still active bo inside vm\n"); 2527 } 2528 rbtree_postorder_for_each_entry_safe(mapping, tmp, 2529 &vm->va.rb_root, rb) { 2530 list_del(&mapping->list); 2531 amdgpu_vm_it_remove(mapping, &vm->va); 2532 kfree(mapping); 2533 } 2534 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 2535 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 2536 amdgpu_vm_prt_fini(adev, vm); 2537 prt_fini_needed = false; 2538 } 2539 2540 list_del(&mapping->list); 2541 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 2542 } 2543 2544 root = amdgpu_bo_ref(vm->root.base.bo); 2545 r = amdgpu_bo_reserve(root, true); 2546 if (r) { 2547 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 2548 } else { 2549 amdgpu_vm_free_levels(adev, &vm->root, 2550 adev->vm_manager.root_level); 2551 amdgpu_bo_unreserve(root); 2552 } 2553 amdgpu_bo_unref(&root); 2554 dma_fence_put(vm->last_update); 2555 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2556 amdgpu_vmid_free_reserved(adev, vm, i); 2557 } 2558 2559 /** 2560 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 2561 * 2562 * @adev: amdgpu_device pointer 2563 * @pasid: PASID do identify the VM 2564 * 2565 * This function is expected to be called in interrupt context. Returns 2566 * true if there was fault credit, false otherwise 2567 */ 2568 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 2569 unsigned int pasid) 2570 { 2571 struct amdgpu_vm *vm; 2572 2573 spin_lock(&adev->vm_manager.pasid_lock); 2574 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 2575 if (!vm) { 2576 /* VM not found, can't track fault credit */ 2577 spin_unlock(&adev->vm_manager.pasid_lock); 2578 return true; 2579 } 2580 2581 /* No lock needed. only accessed by IRQ handler */ 2582 if (!vm->fault_credit) { 2583 /* Too many faults in this VM */ 2584 spin_unlock(&adev->vm_manager.pasid_lock); 2585 return false; 2586 } 2587 2588 vm->fault_credit--; 2589 spin_unlock(&adev->vm_manager.pasid_lock); 2590 return true; 2591 } 2592 2593 /** 2594 * amdgpu_vm_manager_init - init the VM manager 2595 * 2596 * @adev: amdgpu_device pointer 2597 * 2598 * Initialize the VM manager structures 2599 */ 2600 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 2601 { 2602 unsigned i; 2603 2604 amdgpu_vmid_mgr_init(adev); 2605 2606 adev->vm_manager.fence_context = 2607 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 2608 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 2609 adev->vm_manager.seqno[i] = 0; 2610 2611 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); 2612 spin_lock_init(&adev->vm_manager.prt_lock); 2613 atomic_set(&adev->vm_manager.num_prt_users, 0); 2614 2615 /* If not overridden by the user, by default, only in large BAR systems 2616 * Compute VM tables will be updated by CPU 2617 */ 2618 #ifdef CONFIG_X86_64 2619 if (amdgpu_vm_update_mode == -1) { 2620 if (amdgpu_vm_is_large_bar(adev)) 2621 adev->vm_manager.vm_update_mode = 2622 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 2623 else 2624 adev->vm_manager.vm_update_mode = 0; 2625 } else 2626 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 2627 #else 2628 adev->vm_manager.vm_update_mode = 0; 2629 #endif 2630 2631 idr_init(&adev->vm_manager.pasid_idr); 2632 spin_lock_init(&adev->vm_manager.pasid_lock); 2633 } 2634 2635 /** 2636 * amdgpu_vm_manager_fini - cleanup VM manager 2637 * 2638 * @adev: amdgpu_device pointer 2639 * 2640 * Cleanup the VM manager and free resources. 2641 */ 2642 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 2643 { 2644 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 2645 idr_destroy(&adev->vm_manager.pasid_idr); 2646 2647 amdgpu_vmid_mgr_fini(adev); 2648 } 2649 2650 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 2651 { 2652 union drm_amdgpu_vm *args = data; 2653 struct amdgpu_device *adev = dev->dev_private; 2654 struct amdgpu_fpriv *fpriv = filp->driver_priv; 2655 int r; 2656 2657 switch (args->in.op) { 2658 case AMDGPU_VM_OP_RESERVE_VMID: 2659 /* current, we only have requirement to reserve vmid from gfxhub */ 2660 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2661 if (r) 2662 return r; 2663 break; 2664 case AMDGPU_VM_OP_UNRESERVE_VMID: 2665 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 2666 break; 2667 default: 2668 return -EINVAL; 2669 } 2670 2671 return 0; 2672 } 2673