1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 #include "amdgpu_res_cursor.h"
41 #include "kfd_svm.h"
42 
43 /**
44  * DOC: GPUVM
45  *
46  * GPUVM is similar to the legacy gart on older asics, however
47  * rather than there being a single global gart table
48  * for the entire GPU, there are multiple VM page tables active
49  * at any given time.  The VM page tables can contain a mix
50  * vram pages and system memory pages and system memory pages
51  * can be mapped as snooped (cached system pages) or unsnooped
52  * (uncached system pages).
53  * Each VM has an ID associated with it and there is a page table
54  * associated with each VMID.  When execting a command buffer,
55  * the kernel tells the the ring what VMID to use for that command
56  * buffer.  VMIDs are allocated dynamically as commands are submitted.
57  * The userspace drivers maintain their own address space and the kernel
58  * sets up their pages tables accordingly when they submit their
59  * command buffers and a VMID is assigned.
60  * Cayman/Trinity support up to 8 active VMs at any given time;
61  * SI supports 16.
62  */
63 
64 #define START(node) ((node)->start)
65 #define LAST(node) ((node)->last)
66 
67 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
68 		     START, LAST, static, amdgpu_vm_it)
69 
70 #undef START
71 #undef LAST
72 
73 /**
74  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
75  */
76 struct amdgpu_prt_cb {
77 
78 	/**
79 	 * @adev: amdgpu device
80 	 */
81 	struct amdgpu_device *adev;
82 
83 	/**
84 	 * @cb: callback
85 	 */
86 	struct dma_fence_cb cb;
87 };
88 
89 /*
90  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
91  * happens while holding this lock anywhere to prevent deadlocks when
92  * an MMU notifier runs in reclaim-FS context.
93  */
94 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
95 {
96 	mutex_lock(&vm->eviction_lock);
97 	vm->saved_flags = memalloc_noreclaim_save();
98 }
99 
100 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
101 {
102 	if (mutex_trylock(&vm->eviction_lock)) {
103 		vm->saved_flags = memalloc_noreclaim_save();
104 		return 1;
105 	}
106 	return 0;
107 }
108 
109 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
110 {
111 	memalloc_noreclaim_restore(vm->saved_flags);
112 	mutex_unlock(&vm->eviction_lock);
113 }
114 
115 /**
116  * amdgpu_vm_level_shift - return the addr shift for each level
117  *
118  * @adev: amdgpu_device pointer
119  * @level: VMPT level
120  *
121  * Returns:
122  * The number of bits the pfn needs to be right shifted for a level.
123  */
124 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
125 				      unsigned level)
126 {
127 	switch (level) {
128 	case AMDGPU_VM_PDB2:
129 	case AMDGPU_VM_PDB1:
130 	case AMDGPU_VM_PDB0:
131 		return 9 * (AMDGPU_VM_PDB0 - level) +
132 			adev->vm_manager.block_size;
133 	case AMDGPU_VM_PTB:
134 		return 0;
135 	default:
136 		return ~0;
137 	}
138 }
139 
140 /**
141  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
142  *
143  * @adev: amdgpu_device pointer
144  * @level: VMPT level
145  *
146  * Returns:
147  * The number of entries in a page directory or page table.
148  */
149 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
150 				      unsigned level)
151 {
152 	unsigned shift = amdgpu_vm_level_shift(adev,
153 					       adev->vm_manager.root_level);
154 
155 	if (level == adev->vm_manager.root_level)
156 		/* For the root directory */
157 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
158 			>> shift;
159 	else if (level != AMDGPU_VM_PTB)
160 		/* Everything in between */
161 		return 512;
162 	else
163 		/* For the page tables on the leaves */
164 		return AMDGPU_VM_PTE_COUNT(adev);
165 }
166 
167 /**
168  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
169  *
170  * @adev: amdgpu_device pointer
171  *
172  * Returns:
173  * The number of entries in the root page directory which needs the ATS setting.
174  */
175 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
176 {
177 	unsigned shift;
178 
179 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
180 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
181 }
182 
183 /**
184  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
185  *
186  * @adev: amdgpu_device pointer
187  * @level: VMPT level
188  *
189  * Returns:
190  * The mask to extract the entry number of a PD/PT from an address.
191  */
192 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
193 				       unsigned int level)
194 {
195 	if (level <= adev->vm_manager.root_level)
196 		return 0xffffffff;
197 	else if (level != AMDGPU_VM_PTB)
198 		return 0x1ff;
199 	else
200 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
201 }
202 
203 /**
204  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
205  *
206  * @adev: amdgpu_device pointer
207  * @level: VMPT level
208  *
209  * Returns:
210  * The size of the BO for a page directory or page table in bytes.
211  */
212 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
213 {
214 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
215 }
216 
217 /**
218  * amdgpu_vm_bo_evicted - vm_bo is evicted
219  *
220  * @vm_bo: vm_bo which is evicted
221  *
222  * State for PDs/PTs and per VM BOs which are not at the location they should
223  * be.
224  */
225 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
226 {
227 	struct amdgpu_vm *vm = vm_bo->vm;
228 	struct amdgpu_bo *bo = vm_bo->bo;
229 
230 	vm_bo->moved = true;
231 	if (bo->tbo.type == ttm_bo_type_kernel)
232 		list_move(&vm_bo->vm_status, &vm->evicted);
233 	else
234 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
235 }
236 /**
237  * amdgpu_vm_bo_moved - vm_bo is moved
238  *
239  * @vm_bo: vm_bo which is moved
240  *
241  * State for per VM BOs which are moved, but that change is not yet reflected
242  * in the page tables.
243  */
244 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
245 {
246 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
247 }
248 
249 /**
250  * amdgpu_vm_bo_idle - vm_bo is idle
251  *
252  * @vm_bo: vm_bo which is now idle
253  *
254  * State for PDs/PTs and per VM BOs which have gone through the state machine
255  * and are now idle.
256  */
257 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
258 {
259 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
260 	vm_bo->moved = false;
261 }
262 
263 /**
264  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
265  *
266  * @vm_bo: vm_bo which is now invalidated
267  *
268  * State for normal BOs which are invalidated and that change not yet reflected
269  * in the PTs.
270  */
271 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
272 {
273 	spin_lock(&vm_bo->vm->invalidated_lock);
274 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
275 	spin_unlock(&vm_bo->vm->invalidated_lock);
276 }
277 
278 /**
279  * amdgpu_vm_bo_relocated - vm_bo is reloacted
280  *
281  * @vm_bo: vm_bo which is relocated
282  *
283  * State for PDs/PTs which needs to update their parent PD.
284  * For the root PD, just move to idle state.
285  */
286 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 	if (vm_bo->bo->parent)
289 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
290 	else
291 		amdgpu_vm_bo_idle(vm_bo);
292 }
293 
294 /**
295  * amdgpu_vm_bo_done - vm_bo is done
296  *
297  * @vm_bo: vm_bo which is now done
298  *
299  * State for normal BOs which are invalidated and that change has been updated
300  * in the PTs.
301  */
302 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
303 {
304 	spin_lock(&vm_bo->vm->invalidated_lock);
305 	list_move(&vm_bo->vm_status, &vm_bo->vm->done);
306 	spin_unlock(&vm_bo->vm->invalidated_lock);
307 }
308 
309 /**
310  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
311  *
312  * @base: base structure for tracking BO usage in a VM
313  * @vm: vm to which bo is to be added
314  * @bo: amdgpu buffer object
315  *
316  * Initialize a bo_va_base structure and add it to the appropriate lists
317  *
318  */
319 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
320 				   struct amdgpu_vm *vm,
321 				   struct amdgpu_bo *bo)
322 {
323 	base->vm = vm;
324 	base->bo = bo;
325 	base->next = NULL;
326 	INIT_LIST_HEAD(&base->vm_status);
327 
328 	if (!bo)
329 		return;
330 	base->next = bo->vm_bo;
331 	bo->vm_bo = base;
332 
333 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
334 		return;
335 
336 	vm->bulk_moveable = false;
337 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
338 		amdgpu_vm_bo_relocated(base);
339 	else
340 		amdgpu_vm_bo_idle(base);
341 
342 	if (bo->preferred_domains &
343 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
344 		return;
345 
346 	/*
347 	 * we checked all the prerequisites, but it looks like this per vm bo
348 	 * is currently evicted. add the bo to the evicted list to make sure it
349 	 * is validated on next vm use to avoid fault.
350 	 * */
351 	amdgpu_vm_bo_evicted(base);
352 }
353 
354 /**
355  * amdgpu_vm_pt_parent - get the parent page directory
356  *
357  * @pt: child page table
358  *
359  * Helper to get the parent entry for the child page table. NULL if we are at
360  * the root page directory.
361  */
362 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
363 {
364 	struct amdgpu_bo *parent = pt->base.bo->parent;
365 
366 	if (!parent)
367 		return NULL;
368 
369 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
370 }
371 
372 /*
373  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
374  */
375 struct amdgpu_vm_pt_cursor {
376 	uint64_t pfn;
377 	struct amdgpu_vm_pt *parent;
378 	struct amdgpu_vm_pt *entry;
379 	unsigned level;
380 };
381 
382 /**
383  * amdgpu_vm_pt_start - start PD/PT walk
384  *
385  * @adev: amdgpu_device pointer
386  * @vm: amdgpu_vm structure
387  * @start: start address of the walk
388  * @cursor: state to initialize
389  *
390  * Initialize a amdgpu_vm_pt_cursor to start a walk.
391  */
392 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
393 			       struct amdgpu_vm *vm, uint64_t start,
394 			       struct amdgpu_vm_pt_cursor *cursor)
395 {
396 	cursor->pfn = start;
397 	cursor->parent = NULL;
398 	cursor->entry = &vm->root;
399 	cursor->level = adev->vm_manager.root_level;
400 }
401 
402 /**
403  * amdgpu_vm_pt_descendant - go to child node
404  *
405  * @adev: amdgpu_device pointer
406  * @cursor: current state
407  *
408  * Walk to the child node of the current node.
409  * Returns:
410  * True if the walk was possible, false otherwise.
411  */
412 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
413 				    struct amdgpu_vm_pt_cursor *cursor)
414 {
415 	unsigned mask, shift, idx;
416 
417 	if (!cursor->entry->entries)
418 		return false;
419 
420 	BUG_ON(!cursor->entry->base.bo);
421 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
422 	shift = amdgpu_vm_level_shift(adev, cursor->level);
423 
424 	++cursor->level;
425 	idx = (cursor->pfn >> shift) & mask;
426 	cursor->parent = cursor->entry;
427 	cursor->entry = &cursor->entry->entries[idx];
428 	return true;
429 }
430 
431 /**
432  * amdgpu_vm_pt_sibling - go to sibling node
433  *
434  * @adev: amdgpu_device pointer
435  * @cursor: current state
436  *
437  * Walk to the sibling node of the current node.
438  * Returns:
439  * True if the walk was possible, false otherwise.
440  */
441 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
442 				 struct amdgpu_vm_pt_cursor *cursor)
443 {
444 	unsigned shift, num_entries;
445 
446 	/* Root doesn't have a sibling */
447 	if (!cursor->parent)
448 		return false;
449 
450 	/* Go to our parents and see if we got a sibling */
451 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
452 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
453 
454 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
455 		return false;
456 
457 	cursor->pfn += 1ULL << shift;
458 	cursor->pfn &= ~((1ULL << shift) - 1);
459 	++cursor->entry;
460 	return true;
461 }
462 
463 /**
464  * amdgpu_vm_pt_ancestor - go to parent node
465  *
466  * @cursor: current state
467  *
468  * Walk to the parent node of the current node.
469  * Returns:
470  * True if the walk was possible, false otherwise.
471  */
472 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
473 {
474 	if (!cursor->parent)
475 		return false;
476 
477 	--cursor->level;
478 	cursor->entry = cursor->parent;
479 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
480 	return true;
481 }
482 
483 /**
484  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
485  *
486  * @adev: amdgpu_device pointer
487  * @cursor: current state
488  *
489  * Walk the PD/PT tree to the next node.
490  */
491 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
492 			      struct amdgpu_vm_pt_cursor *cursor)
493 {
494 	/* First try a newborn child */
495 	if (amdgpu_vm_pt_descendant(adev, cursor))
496 		return;
497 
498 	/* If that didn't worked try to find a sibling */
499 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
500 		/* No sibling, go to our parents and grandparents */
501 		if (!amdgpu_vm_pt_ancestor(cursor)) {
502 			cursor->pfn = ~0ll;
503 			return;
504 		}
505 	}
506 }
507 
508 /**
509  * amdgpu_vm_pt_first_dfs - start a deep first search
510  *
511  * @adev: amdgpu_device structure
512  * @vm: amdgpu_vm structure
513  * @start: optional cursor to start with
514  * @cursor: state to initialize
515  *
516  * Starts a deep first traversal of the PD/PT tree.
517  */
518 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
519 				   struct amdgpu_vm *vm,
520 				   struct amdgpu_vm_pt_cursor *start,
521 				   struct amdgpu_vm_pt_cursor *cursor)
522 {
523 	if (start)
524 		*cursor = *start;
525 	else
526 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
527 	while (amdgpu_vm_pt_descendant(adev, cursor));
528 }
529 
530 /**
531  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
532  *
533  * @start: starting point for the search
534  * @entry: current entry
535  *
536  * Returns:
537  * True when the search should continue, false otherwise.
538  */
539 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
540 				      struct amdgpu_vm_pt *entry)
541 {
542 	return entry && (!start || entry != start->entry);
543 }
544 
545 /**
546  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
547  *
548  * @adev: amdgpu_device structure
549  * @cursor: current state
550  *
551  * Move the cursor to the next node in a deep first search.
552  */
553 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
554 				  struct amdgpu_vm_pt_cursor *cursor)
555 {
556 	if (!cursor->entry)
557 		return;
558 
559 	if (!cursor->parent)
560 		cursor->entry = NULL;
561 	else if (amdgpu_vm_pt_sibling(adev, cursor))
562 		while (amdgpu_vm_pt_descendant(adev, cursor));
563 	else
564 		amdgpu_vm_pt_ancestor(cursor);
565 }
566 
567 /*
568  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
569  */
570 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
571 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
572 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
573 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
574 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
575 
576 /**
577  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
578  *
579  * @vm: vm providing the BOs
580  * @validated: head of validation list
581  * @entry: entry to add
582  *
583  * Add the page directory to the list of BOs to
584  * validate for command submission.
585  */
586 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
587 			 struct list_head *validated,
588 			 struct amdgpu_bo_list_entry *entry)
589 {
590 	entry->priority = 0;
591 	entry->tv.bo = &vm->root.base.bo->tbo;
592 	/* Two for VM updates, one for TTM and one for the CS job */
593 	entry->tv.num_shared = 4;
594 	entry->user_pages = NULL;
595 	list_add(&entry->tv.head, validated);
596 }
597 
598 /**
599  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
600  *
601  * @bo: BO which was removed from the LRU
602  *
603  * Make sure the bulk_moveable flag is updated when a BO is removed from the
604  * LRU.
605  */
606 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
607 {
608 	struct amdgpu_bo *abo;
609 	struct amdgpu_vm_bo_base *bo_base;
610 
611 	if (!amdgpu_bo_is_amdgpu_bo(bo))
612 		return;
613 
614 	if (bo->pin_count)
615 		return;
616 
617 	abo = ttm_to_amdgpu_bo(bo);
618 	if (!abo->parent)
619 		return;
620 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
621 		struct amdgpu_vm *vm = bo_base->vm;
622 
623 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
624 			vm->bulk_moveable = false;
625 	}
626 
627 }
628 /**
629  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
630  *
631  * @adev: amdgpu device pointer
632  * @vm: vm providing the BOs
633  *
634  * Move all BOs to the end of LRU and remember their positions to put them
635  * together.
636  */
637 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
638 				struct amdgpu_vm *vm)
639 {
640 	struct amdgpu_vm_bo_base *bo_base;
641 
642 	if (vm->bulk_moveable) {
643 		spin_lock(&adev->mman.bdev.lru_lock);
644 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
645 		spin_unlock(&adev->mman.bdev.lru_lock);
646 		return;
647 	}
648 
649 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
650 
651 	spin_lock(&adev->mman.bdev.lru_lock);
652 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
653 		struct amdgpu_bo *bo = bo_base->bo;
654 
655 		if (!bo->parent)
656 			continue;
657 
658 		ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem,
659 					&vm->lru_bulk_move);
660 		if (bo->shadow)
661 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
662 						&bo->shadow->tbo.mem,
663 						&vm->lru_bulk_move);
664 	}
665 	spin_unlock(&adev->mman.bdev.lru_lock);
666 
667 	vm->bulk_moveable = true;
668 }
669 
670 /**
671  * amdgpu_vm_validate_pt_bos - validate the page table BOs
672  *
673  * @adev: amdgpu device pointer
674  * @vm: vm providing the BOs
675  * @validate: callback to do the validation
676  * @param: parameter for the validation callback
677  *
678  * Validate the page table BOs on command submission if neccessary.
679  *
680  * Returns:
681  * Validation result.
682  */
683 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
684 			      int (*validate)(void *p, struct amdgpu_bo *bo),
685 			      void *param)
686 {
687 	struct amdgpu_vm_bo_base *bo_base, *tmp;
688 	int r;
689 
690 	vm->bulk_moveable &= list_empty(&vm->evicted);
691 
692 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
693 		struct amdgpu_bo *bo = bo_base->bo;
694 
695 		r = validate(param, bo);
696 		if (r)
697 			return r;
698 
699 		if (bo->tbo.type != ttm_bo_type_kernel) {
700 			amdgpu_vm_bo_moved(bo_base);
701 		} else {
702 			vm->update_funcs->map_table(bo);
703 			amdgpu_vm_bo_relocated(bo_base);
704 		}
705 	}
706 
707 	amdgpu_vm_eviction_lock(vm);
708 	vm->evicting = false;
709 	amdgpu_vm_eviction_unlock(vm);
710 
711 	return 0;
712 }
713 
714 /**
715  * amdgpu_vm_ready - check VM is ready for updates
716  *
717  * @vm: VM to check
718  *
719  * Check if all VM PDs/PTs are ready for updates
720  *
721  * Returns:
722  * True if eviction list is empty.
723  */
724 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
725 {
726 	return list_empty(&vm->evicted);
727 }
728 
729 /**
730  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
731  *
732  * @adev: amdgpu_device pointer
733  * @vm: VM to clear BO from
734  * @bo: BO to clear
735  * @immediate: use an immediate update
736  *
737  * Root PD needs to be reserved when calling this.
738  *
739  * Returns:
740  * 0 on success, errno otherwise.
741  */
742 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
743 			      struct amdgpu_vm *vm,
744 			      struct amdgpu_bo *bo,
745 			      bool immediate)
746 {
747 	struct ttm_operation_ctx ctx = { true, false };
748 	unsigned level = adev->vm_manager.root_level;
749 	struct amdgpu_vm_update_params params;
750 	struct amdgpu_bo *ancestor = bo;
751 	unsigned entries, ats_entries;
752 	uint64_t addr;
753 	int r;
754 
755 	/* Figure out our place in the hierarchy */
756 	if (ancestor->parent) {
757 		++level;
758 		while (ancestor->parent->parent) {
759 			++level;
760 			ancestor = ancestor->parent;
761 		}
762 	}
763 
764 	entries = amdgpu_bo_size(bo) / 8;
765 	if (!vm->pte_support_ats) {
766 		ats_entries = 0;
767 
768 	} else if (!bo->parent) {
769 		ats_entries = amdgpu_vm_num_ats_entries(adev);
770 		ats_entries = min(ats_entries, entries);
771 		entries -= ats_entries;
772 
773 	} else {
774 		struct amdgpu_vm_pt *pt;
775 
776 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
777 		ats_entries = amdgpu_vm_num_ats_entries(adev);
778 		if ((pt - vm->root.entries) >= ats_entries) {
779 			ats_entries = 0;
780 		} else {
781 			ats_entries = entries;
782 			entries = 0;
783 		}
784 	}
785 
786 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
787 	if (r)
788 		return r;
789 
790 	if (bo->shadow) {
791 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
792 				    &ctx);
793 		if (r)
794 			return r;
795 	}
796 
797 	r = vm->update_funcs->map_table(bo);
798 	if (r)
799 		return r;
800 
801 	memset(&params, 0, sizeof(params));
802 	params.adev = adev;
803 	params.vm = vm;
804 	params.immediate = immediate;
805 
806 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
807 	if (r)
808 		return r;
809 
810 	addr = 0;
811 	if (ats_entries) {
812 		uint64_t value = 0, flags;
813 
814 		flags = AMDGPU_PTE_DEFAULT_ATC;
815 		if (level != AMDGPU_VM_PTB) {
816 			/* Handle leaf PDEs as PTEs */
817 			flags |= AMDGPU_PDE_PTE;
818 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
819 		}
820 
821 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
822 					     value, flags);
823 		if (r)
824 			return r;
825 
826 		addr += ats_entries * 8;
827 	}
828 
829 	if (entries) {
830 		uint64_t value = 0, flags = 0;
831 
832 		if (adev->asic_type >= CHIP_VEGA10) {
833 			if (level != AMDGPU_VM_PTB) {
834 				/* Handle leaf PDEs as PTEs */
835 				flags |= AMDGPU_PDE_PTE;
836 				amdgpu_gmc_get_vm_pde(adev, level,
837 						      &value, &flags);
838 			} else {
839 				/* Workaround for fault priority problem on GMC9 */
840 				flags = AMDGPU_PTE_EXECUTABLE;
841 			}
842 		}
843 
844 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
845 					     value, flags);
846 		if (r)
847 			return r;
848 	}
849 
850 	return vm->update_funcs->commit(&params, NULL);
851 }
852 
853 /**
854  * amdgpu_vm_pt_create - create bo for PD/PT
855  *
856  * @adev: amdgpu_device pointer
857  * @vm: requesting vm
858  * @level: the page table level
859  * @immediate: use a immediate update
860  * @bo: pointer to the buffer object pointer
861  */
862 static int amdgpu_vm_pt_create(struct amdgpu_device *adev,
863 			       struct amdgpu_vm *vm,
864 			       int level, bool immediate,
865 			       struct amdgpu_bo **bo)
866 {
867 	struct amdgpu_bo_param bp;
868 	int r;
869 
870 	memset(&bp, 0, sizeof(bp));
871 
872 	bp.size = amdgpu_vm_bo_size(adev, level);
873 	bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
874 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
875 	bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain);
876 	bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
877 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
878 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
879 	if (vm->use_cpu_for_update)
880 		bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
881 
882 	bp.type = ttm_bo_type_kernel;
883 	bp.no_wait_gpu = immediate;
884 	if (vm->root.base.bo)
885 		bp.resv = vm->root.base.bo->tbo.base.resv;
886 
887 	r = amdgpu_bo_create(adev, &bp, bo);
888 	if (r)
889 		return r;
890 
891 	if (vm->is_compute_context && (adev->flags & AMD_IS_APU))
892 		return 0;
893 
894 	if (!bp.resv)
895 		WARN_ON(dma_resv_lock((*bo)->tbo.base.resv,
896 				      NULL));
897 	r = amdgpu_bo_create_shadow(adev, bp.size, *bo);
898 
899 	if (!bp.resv)
900 		dma_resv_unlock((*bo)->tbo.base.resv);
901 
902 	if (r) {
903 		amdgpu_bo_unref(bo);
904 		return r;
905 	}
906 
907 	return 0;
908 }
909 
910 /**
911  * amdgpu_vm_alloc_pts - Allocate a specific page table
912  *
913  * @adev: amdgpu_device pointer
914  * @vm: VM to allocate page tables for
915  * @cursor: Which page table to allocate
916  * @immediate: use an immediate update
917  *
918  * Make sure a specific page table or directory is allocated.
919  *
920  * Returns:
921  * 1 if page table needed to be allocated, 0 if page table was already
922  * allocated, negative errno if an error occurred.
923  */
924 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
925 			       struct amdgpu_vm *vm,
926 			       struct amdgpu_vm_pt_cursor *cursor,
927 			       bool immediate)
928 {
929 	struct amdgpu_vm_pt *entry = cursor->entry;
930 	struct amdgpu_bo *pt;
931 	int r;
932 
933 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
934 		unsigned num_entries;
935 
936 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
937 		entry->entries = kvmalloc_array(num_entries,
938 						sizeof(*entry->entries),
939 						GFP_KERNEL | __GFP_ZERO);
940 		if (!entry->entries)
941 			return -ENOMEM;
942 	}
943 
944 	if (entry->base.bo)
945 		return 0;
946 
947 	r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt);
948 	if (r)
949 		return r;
950 
951 	/* Keep a reference to the root directory to avoid
952 	 * freeing them up in the wrong order.
953 	 */
954 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
955 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
956 
957 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
958 	if (r)
959 		goto error_free_pt;
960 
961 	return 0;
962 
963 error_free_pt:
964 	amdgpu_bo_unref(&pt->shadow);
965 	amdgpu_bo_unref(&pt);
966 	return r;
967 }
968 
969 /**
970  * amdgpu_vm_free_table - fre one PD/PT
971  *
972  * @entry: PDE to free
973  */
974 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
975 {
976 	if (entry->base.bo) {
977 		entry->base.bo->vm_bo = NULL;
978 		list_del(&entry->base.vm_status);
979 		amdgpu_bo_unref(&entry->base.bo->shadow);
980 		amdgpu_bo_unref(&entry->base.bo);
981 	}
982 	kvfree(entry->entries);
983 	entry->entries = NULL;
984 }
985 
986 /**
987  * amdgpu_vm_free_pts - free PD/PT levels
988  *
989  * @adev: amdgpu device structure
990  * @vm: amdgpu vm structure
991  * @start: optional cursor where to start freeing PDs/PTs
992  *
993  * Free the page directory or page table level and all sub levels.
994  */
995 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
996 			       struct amdgpu_vm *vm,
997 			       struct amdgpu_vm_pt_cursor *start)
998 {
999 	struct amdgpu_vm_pt_cursor cursor;
1000 	struct amdgpu_vm_pt *entry;
1001 
1002 	vm->bulk_moveable = false;
1003 
1004 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
1005 		amdgpu_vm_free_table(entry);
1006 
1007 	if (start)
1008 		amdgpu_vm_free_table(start->entry);
1009 }
1010 
1011 /**
1012  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1013  *
1014  * @adev: amdgpu_device pointer
1015  */
1016 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1017 {
1018 	const struct amdgpu_ip_block *ip_block;
1019 	bool has_compute_vm_bug;
1020 	struct amdgpu_ring *ring;
1021 	int i;
1022 
1023 	has_compute_vm_bug = false;
1024 
1025 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1026 	if (ip_block) {
1027 		/* Compute has a VM bug for GFX version < 7.
1028 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1029 		if (ip_block->version->major <= 7)
1030 			has_compute_vm_bug = true;
1031 		else if (ip_block->version->major == 8)
1032 			if (adev->gfx.mec_fw_version < 673)
1033 				has_compute_vm_bug = true;
1034 	}
1035 
1036 	for (i = 0; i < adev->num_rings; i++) {
1037 		ring = adev->rings[i];
1038 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1039 			/* only compute rings */
1040 			ring->has_compute_vm_bug = has_compute_vm_bug;
1041 		else
1042 			ring->has_compute_vm_bug = false;
1043 	}
1044 }
1045 
1046 /**
1047  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1048  *
1049  * @ring: ring on which the job will be submitted
1050  * @job: job to submit
1051  *
1052  * Returns:
1053  * True if sync is needed.
1054  */
1055 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1056 				  struct amdgpu_job *job)
1057 {
1058 	struct amdgpu_device *adev = ring->adev;
1059 	unsigned vmhub = ring->funcs->vmhub;
1060 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1061 	struct amdgpu_vmid *id;
1062 	bool gds_switch_needed;
1063 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1064 
1065 	if (job->vmid == 0)
1066 		return false;
1067 	id = &id_mgr->ids[job->vmid];
1068 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1069 		id->gds_base != job->gds_base ||
1070 		id->gds_size != job->gds_size ||
1071 		id->gws_base != job->gws_base ||
1072 		id->gws_size != job->gws_size ||
1073 		id->oa_base != job->oa_base ||
1074 		id->oa_size != job->oa_size);
1075 
1076 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1077 		return true;
1078 
1079 	return vm_flush_needed || gds_switch_needed;
1080 }
1081 
1082 /**
1083  * amdgpu_vm_flush - hardware flush the vm
1084  *
1085  * @ring: ring to use for flush
1086  * @job:  related job
1087  * @need_pipe_sync: is pipe sync needed
1088  *
1089  * Emit a VM flush when it is necessary.
1090  *
1091  * Returns:
1092  * 0 on success, errno otherwise.
1093  */
1094 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1095 		    bool need_pipe_sync)
1096 {
1097 	struct amdgpu_device *adev = ring->adev;
1098 	unsigned vmhub = ring->funcs->vmhub;
1099 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1100 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1101 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1102 		id->gds_base != job->gds_base ||
1103 		id->gds_size != job->gds_size ||
1104 		id->gws_base != job->gws_base ||
1105 		id->gws_size != job->gws_size ||
1106 		id->oa_base != job->oa_base ||
1107 		id->oa_size != job->oa_size);
1108 	bool vm_flush_needed = job->vm_needs_flush;
1109 	struct dma_fence *fence = NULL;
1110 	bool pasid_mapping_needed = false;
1111 	unsigned patch_offset = 0;
1112 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1113 	int r;
1114 
1115 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1116 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1117 
1118 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1119 		gds_switch_needed = true;
1120 		vm_flush_needed = true;
1121 		pasid_mapping_needed = true;
1122 	}
1123 
1124 	mutex_lock(&id_mgr->lock);
1125 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1126 	    !dma_fence_is_signaled(id->pasid_mapping))
1127 		pasid_mapping_needed = true;
1128 	mutex_unlock(&id_mgr->lock);
1129 
1130 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1131 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1132 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1133 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1134 		ring->funcs->emit_wreg;
1135 
1136 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1137 		return 0;
1138 
1139 	if (ring->funcs->init_cond_exec)
1140 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1141 
1142 	if (need_pipe_sync)
1143 		amdgpu_ring_emit_pipeline_sync(ring);
1144 
1145 	if (vm_flush_needed) {
1146 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1147 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1148 	}
1149 
1150 	if (pasid_mapping_needed)
1151 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1152 
1153 	if (vm_flush_needed || pasid_mapping_needed) {
1154 		r = amdgpu_fence_emit(ring, &fence, 0);
1155 		if (r)
1156 			return r;
1157 	}
1158 
1159 	if (vm_flush_needed) {
1160 		mutex_lock(&id_mgr->lock);
1161 		dma_fence_put(id->last_flush);
1162 		id->last_flush = dma_fence_get(fence);
1163 		id->current_gpu_reset_count =
1164 			atomic_read(&adev->gpu_reset_counter);
1165 		mutex_unlock(&id_mgr->lock);
1166 	}
1167 
1168 	if (pasid_mapping_needed) {
1169 		mutex_lock(&id_mgr->lock);
1170 		id->pasid = job->pasid;
1171 		dma_fence_put(id->pasid_mapping);
1172 		id->pasid_mapping = dma_fence_get(fence);
1173 		mutex_unlock(&id_mgr->lock);
1174 	}
1175 	dma_fence_put(fence);
1176 
1177 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1178 		id->gds_base = job->gds_base;
1179 		id->gds_size = job->gds_size;
1180 		id->gws_base = job->gws_base;
1181 		id->gws_size = job->gws_size;
1182 		id->oa_base = job->oa_base;
1183 		id->oa_size = job->oa_size;
1184 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1185 					    job->gds_size, job->gws_base,
1186 					    job->gws_size, job->oa_base,
1187 					    job->oa_size);
1188 	}
1189 
1190 	if (ring->funcs->patch_cond_exec)
1191 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1192 
1193 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1194 	if (ring->funcs->emit_switch_buffer) {
1195 		amdgpu_ring_emit_switch_buffer(ring);
1196 		amdgpu_ring_emit_switch_buffer(ring);
1197 	}
1198 	return 0;
1199 }
1200 
1201 /**
1202  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1203  *
1204  * @vm: requested vm
1205  * @bo: requested buffer object
1206  *
1207  * Find @bo inside the requested vm.
1208  * Search inside the @bos vm list for the requested vm
1209  * Returns the found bo_va or NULL if none is found
1210  *
1211  * Object has to be reserved!
1212  *
1213  * Returns:
1214  * Found bo_va or NULL.
1215  */
1216 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1217 				       struct amdgpu_bo *bo)
1218 {
1219 	struct amdgpu_vm_bo_base *base;
1220 
1221 	for (base = bo->vm_bo; base; base = base->next) {
1222 		if (base->vm != vm)
1223 			continue;
1224 
1225 		return container_of(base, struct amdgpu_bo_va, base);
1226 	}
1227 	return NULL;
1228 }
1229 
1230 /**
1231  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1232  *
1233  * @pages_addr: optional DMA address to use for lookup
1234  * @addr: the unmapped addr
1235  *
1236  * Look up the physical address of the page that the pte resolves
1237  * to.
1238  *
1239  * Returns:
1240  * The pointer for the page table entry.
1241  */
1242 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1243 {
1244 	uint64_t result;
1245 
1246 	/* page table offset */
1247 	result = pages_addr[addr >> PAGE_SHIFT];
1248 
1249 	/* in case cpu page size != gpu page size*/
1250 	result |= addr & (~PAGE_MASK);
1251 
1252 	result &= 0xFFFFFFFFFFFFF000ULL;
1253 
1254 	return result;
1255 }
1256 
1257 /**
1258  * amdgpu_vm_update_pde - update a single level in the hierarchy
1259  *
1260  * @params: parameters for the update
1261  * @vm: requested vm
1262  * @entry: entry to update
1263  *
1264  * Makes sure the requested entry in parent is up to date.
1265  */
1266 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1267 				struct amdgpu_vm *vm,
1268 				struct amdgpu_vm_pt *entry)
1269 {
1270 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1271 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1272 	uint64_t pde, pt, flags;
1273 	unsigned level;
1274 
1275 	for (level = 0, pbo = bo->parent; pbo; ++level)
1276 		pbo = pbo->parent;
1277 
1278 	level += params->adev->vm_manager.root_level;
1279 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1280 	pde = (entry - parent->entries) * 8;
1281 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1282 }
1283 
1284 /**
1285  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1286  *
1287  * @adev: amdgpu_device pointer
1288  * @vm: related vm
1289  *
1290  * Mark all PD level as invalid after an error.
1291  */
1292 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1293 				     struct amdgpu_vm *vm)
1294 {
1295 	struct amdgpu_vm_pt_cursor cursor;
1296 	struct amdgpu_vm_pt *entry;
1297 
1298 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1299 		if (entry->base.bo && !entry->base.moved)
1300 			amdgpu_vm_bo_relocated(&entry->base);
1301 }
1302 
1303 /**
1304  * amdgpu_vm_update_pdes - make sure that all directories are valid
1305  *
1306  * @adev: amdgpu_device pointer
1307  * @vm: requested vm
1308  * @immediate: submit immediately to the paging queue
1309  *
1310  * Makes sure all directories are up to date.
1311  *
1312  * Returns:
1313  * 0 for success, error for failure.
1314  */
1315 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1316 			  struct amdgpu_vm *vm, bool immediate)
1317 {
1318 	struct amdgpu_vm_update_params params;
1319 	int r;
1320 
1321 	if (list_empty(&vm->relocated))
1322 		return 0;
1323 
1324 	memset(&params, 0, sizeof(params));
1325 	params.adev = adev;
1326 	params.vm = vm;
1327 	params.immediate = immediate;
1328 
1329 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1330 	if (r)
1331 		return r;
1332 
1333 	while (!list_empty(&vm->relocated)) {
1334 		struct amdgpu_vm_pt *entry;
1335 
1336 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1337 					 base.vm_status);
1338 		amdgpu_vm_bo_idle(&entry->base);
1339 
1340 		r = amdgpu_vm_update_pde(&params, vm, entry);
1341 		if (r)
1342 			goto error;
1343 	}
1344 
1345 	r = vm->update_funcs->commit(&params, &vm->last_update);
1346 	if (r)
1347 		goto error;
1348 	return 0;
1349 
1350 error:
1351 	amdgpu_vm_invalidate_pds(adev, vm);
1352 	return r;
1353 }
1354 
1355 /*
1356  * amdgpu_vm_update_flags - figure out flags for PTE updates
1357  *
1358  * Make sure to set the right flags for the PTEs at the desired level.
1359  */
1360 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1361 				   struct amdgpu_bo *bo, unsigned level,
1362 				   uint64_t pe, uint64_t addr,
1363 				   unsigned count, uint32_t incr,
1364 				   uint64_t flags)
1365 
1366 {
1367 	if (level != AMDGPU_VM_PTB) {
1368 		flags |= AMDGPU_PDE_PTE;
1369 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1370 
1371 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1372 		   !(flags & AMDGPU_PTE_VALID) &&
1373 		   !(flags & AMDGPU_PTE_PRT)) {
1374 
1375 		/* Workaround for fault priority problem on GMC9 */
1376 		flags |= AMDGPU_PTE_EXECUTABLE;
1377 	}
1378 
1379 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1380 					 flags);
1381 }
1382 
1383 /**
1384  * amdgpu_vm_fragment - get fragment for PTEs
1385  *
1386  * @params: see amdgpu_vm_update_params definition
1387  * @start: first PTE to handle
1388  * @end: last PTE to handle
1389  * @flags: hw mapping flags
1390  * @frag: resulting fragment size
1391  * @frag_end: end of this fragment
1392  *
1393  * Returns the first possible fragment for the start and end address.
1394  */
1395 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1396 			       uint64_t start, uint64_t end, uint64_t flags,
1397 			       unsigned int *frag, uint64_t *frag_end)
1398 {
1399 	/**
1400 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1401 	 * field in the PTE. When this field is set to a non-zero value, page
1402 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1403 	 * flags are considered valid for all PTEs within the fragment range
1404 	 * and corresponding mappings are assumed to be physically contiguous.
1405 	 *
1406 	 * The L1 TLB can store a single PTE for the whole fragment,
1407 	 * significantly increasing the space available for translation
1408 	 * caching. This leads to large improvements in throughput when the
1409 	 * TLB is under pressure.
1410 	 *
1411 	 * The L2 TLB distributes small and large fragments into two
1412 	 * asymmetric partitions. The large fragment cache is significantly
1413 	 * larger. Thus, we try to use large fragments wherever possible.
1414 	 * Userspace can support this by aligning virtual base address and
1415 	 * allocation size to the fragment size.
1416 	 *
1417 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1418 	 * is now directly feed with small/huge/giant pages from the walker.
1419 	 */
1420 	unsigned max_frag;
1421 
1422 	if (params->adev->asic_type < CHIP_VEGA10)
1423 		max_frag = params->adev->vm_manager.fragment_size;
1424 	else
1425 		max_frag = 31;
1426 
1427 	/* system pages are non continuously */
1428 	if (params->pages_addr) {
1429 		*frag = 0;
1430 		*frag_end = end;
1431 		return;
1432 	}
1433 
1434 	/* This intentionally wraps around if no bit is set */
1435 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1436 	if (*frag >= max_frag) {
1437 		*frag = max_frag;
1438 		*frag_end = end & ~((1ULL << max_frag) - 1);
1439 	} else {
1440 		*frag_end = start + (1 << *frag);
1441 	}
1442 }
1443 
1444 /**
1445  * amdgpu_vm_update_ptes - make sure that page tables are valid
1446  *
1447  * @params: see amdgpu_vm_update_params definition
1448  * @start: start of GPU address range
1449  * @end: end of GPU address range
1450  * @dst: destination address to map to, the next dst inside the function
1451  * @flags: mapping flags
1452  *
1453  * Update the page tables in the range @start - @end.
1454  *
1455  * Returns:
1456  * 0 for success, -EINVAL for failure.
1457  */
1458 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1459 				 uint64_t start, uint64_t end,
1460 				 uint64_t dst, uint64_t flags)
1461 {
1462 	struct amdgpu_device *adev = params->adev;
1463 	struct amdgpu_vm_pt_cursor cursor;
1464 	uint64_t frag_start = start, frag_end;
1465 	unsigned int frag;
1466 	int r;
1467 
1468 	/* figure out the initial fragment */
1469 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1470 
1471 	/* walk over the address space and update the PTs */
1472 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1473 	while (cursor.pfn < end) {
1474 		unsigned shift, parent_shift, mask;
1475 		uint64_t incr, entry_end, pe_start;
1476 		struct amdgpu_bo *pt;
1477 
1478 		if (!params->unlocked) {
1479 			/* make sure that the page tables covering the
1480 			 * address range are actually allocated
1481 			 */
1482 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1483 						&cursor, params->immediate);
1484 			if (r)
1485 				return r;
1486 		}
1487 
1488 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1489 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1490 		if (params->unlocked) {
1491 			/* Unlocked updates are only allowed on the leaves */
1492 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1493 				continue;
1494 		} else if (adev->asic_type < CHIP_VEGA10 &&
1495 			   (flags & AMDGPU_PTE_VALID)) {
1496 			/* No huge page support before GMC v9 */
1497 			if (cursor.level != AMDGPU_VM_PTB) {
1498 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1499 					return -ENOENT;
1500 				continue;
1501 			}
1502 		} else if (frag < shift) {
1503 			/* We can't use this level when the fragment size is
1504 			 * smaller than the address shift. Go to the next
1505 			 * child entry and try again.
1506 			 */
1507 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1508 				continue;
1509 		} else if (frag >= parent_shift) {
1510 			/* If the fragment size is even larger than the parent
1511 			 * shift we should go up one level and check it again.
1512 			 */
1513 			if (!amdgpu_vm_pt_ancestor(&cursor))
1514 				return -EINVAL;
1515 			continue;
1516 		}
1517 
1518 		pt = cursor.entry->base.bo;
1519 		if (!pt) {
1520 			/* We need all PDs and PTs for mapping something, */
1521 			if (flags & AMDGPU_PTE_VALID)
1522 				return -ENOENT;
1523 
1524 			/* but unmapping something can happen at a higher
1525 			 * level.
1526 			 */
1527 			if (!amdgpu_vm_pt_ancestor(&cursor))
1528 				return -EINVAL;
1529 
1530 			pt = cursor.entry->base.bo;
1531 			shift = parent_shift;
1532 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1533 				   1ULL << shift));
1534 		}
1535 
1536 		/* Looks good so far, calculate parameters for the update */
1537 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1538 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1539 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1540 		entry_end = ((uint64_t)mask + 1) << shift;
1541 		entry_end += cursor.pfn & ~(entry_end - 1);
1542 		entry_end = min(entry_end, end);
1543 
1544 		do {
1545 			struct amdgpu_vm *vm = params->vm;
1546 			uint64_t upd_end = min(entry_end, frag_end);
1547 			unsigned nptes = (upd_end - frag_start) >> shift;
1548 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1549 
1550 			/* This can happen when we set higher level PDs to
1551 			 * silent to stop fault floods.
1552 			 */
1553 			nptes = max(nptes, 1u);
1554 
1555 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1556 						    nptes, dst, incr, upd_flags,
1557 						    vm->task_info.pid,
1558 						    vm->immediate.fence_context);
1559 			amdgpu_vm_update_flags(params, pt, cursor.level,
1560 					       pe_start, dst, nptes, incr,
1561 					       upd_flags);
1562 
1563 			pe_start += nptes * 8;
1564 			dst += nptes * incr;
1565 
1566 			frag_start = upd_end;
1567 			if (frag_start >= frag_end) {
1568 				/* figure out the next fragment */
1569 				amdgpu_vm_fragment(params, frag_start, end,
1570 						   flags, &frag, &frag_end);
1571 				if (frag < shift)
1572 					break;
1573 			}
1574 		} while (frag_start < entry_end);
1575 
1576 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1577 			/* Free all child entries.
1578 			 * Update the tables with the flags and addresses and free up subsequent
1579 			 * tables in the case of huge pages or freed up areas.
1580 			 * This is the maximum you can free, because all other page tables are not
1581 			 * completely covered by the range and so potentially still in use.
1582 			 */
1583 			while (cursor.pfn < frag_start) {
1584 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1585 				amdgpu_vm_pt_next(adev, &cursor);
1586 				params->table_freed = true;
1587 			}
1588 
1589 		} else if (frag >= shift) {
1590 			/* or just move on to the next on the same level. */
1591 			amdgpu_vm_pt_next(adev, &cursor);
1592 		}
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1600  *
1601  * @adev: amdgpu_device pointer of the VM
1602  * @bo_adev: amdgpu_device pointer of the mapped BO
1603  * @vm: requested vm
1604  * @immediate: immediate submission in a page fault
1605  * @unlocked: unlocked invalidation during MM callback
1606  * @resv: fences we need to sync to
1607  * @start: start of mapped range
1608  * @last: last mapped entry
1609  * @flags: flags for the entries
1610  * @offset: offset into nodes and pages_addr
1611  * @res: ttm_resource to map
1612  * @pages_addr: DMA addresses to use for mapping
1613  * @fence: optional resulting fence
1614  * @table_freed: return true if page table is freed
1615  *
1616  * Fill in the page table entries between @start and @last.
1617  *
1618  * Returns:
1619  * 0 for success, -EINVAL for failure.
1620  */
1621 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1622 				struct amdgpu_device *bo_adev,
1623 				struct amdgpu_vm *vm, bool immediate,
1624 				bool unlocked, struct dma_resv *resv,
1625 				uint64_t start, uint64_t last,
1626 				uint64_t flags, uint64_t offset,
1627 				struct ttm_resource *res,
1628 				dma_addr_t *pages_addr,
1629 				struct dma_fence **fence,
1630 				bool *table_freed)
1631 {
1632 	struct amdgpu_vm_update_params params;
1633 	struct amdgpu_res_cursor cursor;
1634 	enum amdgpu_sync_mode sync_mode;
1635 	int r;
1636 
1637 	memset(&params, 0, sizeof(params));
1638 	params.adev = adev;
1639 	params.vm = vm;
1640 	params.immediate = immediate;
1641 	params.pages_addr = pages_addr;
1642 	params.unlocked = unlocked;
1643 
1644 	/* Implicitly sync to command submissions in the same VM before
1645 	 * unmapping. Sync to moving fences before mapping.
1646 	 */
1647 	if (!(flags & AMDGPU_PTE_VALID))
1648 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1649 	else
1650 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1651 
1652 	amdgpu_vm_eviction_lock(vm);
1653 	if (vm->evicting) {
1654 		r = -EBUSY;
1655 		goto error_unlock;
1656 	}
1657 
1658 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1659 		struct dma_fence *tmp = dma_fence_get_stub();
1660 
1661 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1662 		swap(vm->last_unlocked, tmp);
1663 		dma_fence_put(tmp);
1664 	}
1665 
1666 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1667 	if (r)
1668 		goto error_unlock;
1669 
1670 	amdgpu_res_first(res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE,
1671 			 &cursor);
1672 	while (cursor.remaining) {
1673 		uint64_t tmp, num_entries, addr;
1674 
1675 		num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT;
1676 		if (pages_addr) {
1677 			bool contiguous = true;
1678 
1679 			if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) {
1680 				uint64_t pfn = cursor.start >> PAGE_SHIFT;
1681 				uint64_t count;
1682 
1683 				contiguous = pages_addr[pfn + 1] ==
1684 					pages_addr[pfn] + PAGE_SIZE;
1685 
1686 				tmp = num_entries /
1687 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1688 				for (count = 2; count < tmp; ++count) {
1689 					uint64_t idx = pfn + count;
1690 
1691 					if (contiguous != (pages_addr[idx] ==
1692 					    pages_addr[idx - 1] + PAGE_SIZE))
1693 						break;
1694 				}
1695 				num_entries = count *
1696 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1697 			}
1698 
1699 			if (!contiguous) {
1700 				addr = cursor.start;
1701 				params.pages_addr = pages_addr;
1702 			} else {
1703 				addr = pages_addr[cursor.start >> PAGE_SHIFT];
1704 				params.pages_addr = NULL;
1705 			}
1706 
1707 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1708 			addr = bo_adev->vm_manager.vram_base_offset +
1709 				cursor.start;
1710 		} else {
1711 			addr = 0;
1712 		}
1713 
1714 		tmp = start + num_entries;
1715 		r = amdgpu_vm_update_ptes(&params, start, tmp, addr, flags);
1716 		if (r)
1717 			goto error_unlock;
1718 
1719 		amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE);
1720 		start = tmp;
1721 	};
1722 
1723 	r = vm->update_funcs->commit(&params, fence);
1724 
1725 	if (table_freed)
1726 		*table_freed = params.table_freed;
1727 
1728 error_unlock:
1729 	amdgpu_vm_eviction_unlock(vm);
1730 	return r;
1731 }
1732 
1733 /**
1734  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1735  *
1736  * @adev: amdgpu_device pointer
1737  * @bo_va: requested BO and VM object
1738  * @clear: if true clear the entries
1739  *
1740  * Fill in the page table entries for @bo_va.
1741  *
1742  * Returns:
1743  * 0 for success, -EINVAL for failure.
1744  */
1745 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1746 			bool clear)
1747 {
1748 	struct amdgpu_bo *bo = bo_va->base.bo;
1749 	struct amdgpu_vm *vm = bo_va->base.vm;
1750 	struct amdgpu_bo_va_mapping *mapping;
1751 	dma_addr_t *pages_addr = NULL;
1752 	struct ttm_resource *mem;
1753 	struct dma_fence **last_update;
1754 	struct dma_resv *resv;
1755 	uint64_t flags;
1756 	struct amdgpu_device *bo_adev = adev;
1757 	int r;
1758 
1759 	if (clear || !bo) {
1760 		mem = NULL;
1761 		resv = vm->root.base.bo->tbo.base.resv;
1762 	} else {
1763 		struct drm_gem_object *obj = &bo->tbo.base;
1764 
1765 		resv = bo->tbo.base.resv;
1766 		if (obj->import_attach && bo_va->is_xgmi) {
1767 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1768 			struct drm_gem_object *gobj = dma_buf->priv;
1769 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1770 
1771 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1772 				bo = gem_to_amdgpu_bo(gobj);
1773 		}
1774 		mem = &bo->tbo.mem;
1775 		if (mem->mem_type == TTM_PL_TT)
1776 			pages_addr = bo->tbo.ttm->dma_address;
1777 	}
1778 
1779 	if (bo) {
1780 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1781 
1782 		if (amdgpu_bo_encrypted(bo))
1783 			flags |= AMDGPU_PTE_TMZ;
1784 
1785 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1786 	} else {
1787 		flags = 0x0;
1788 	}
1789 
1790 	if (clear || (bo && bo->tbo.base.resv ==
1791 		      vm->root.base.bo->tbo.base.resv))
1792 		last_update = &vm->last_update;
1793 	else
1794 		last_update = &bo_va->last_pt_update;
1795 
1796 	if (!clear && bo_va->base.moved) {
1797 		bo_va->base.moved = false;
1798 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1799 
1800 	} else if (bo_va->cleared != clear) {
1801 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1802 	}
1803 
1804 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1805 		uint64_t update_flags = flags;
1806 
1807 		/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1808 		 * but in case of something, we filter the flags in first place
1809 		 */
1810 		if (!(mapping->flags & AMDGPU_PTE_READABLE))
1811 			update_flags &= ~AMDGPU_PTE_READABLE;
1812 		if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1813 			update_flags &= ~AMDGPU_PTE_WRITEABLE;
1814 
1815 		/* Apply ASIC specific mapping flags */
1816 		amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags);
1817 
1818 		trace_amdgpu_vm_bo_update(mapping);
1819 
1820 		r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false,
1821 						resv, mapping->start,
1822 						mapping->last, update_flags,
1823 						mapping->offset, mem,
1824 						pages_addr, last_update, NULL);
1825 		if (r)
1826 			return r;
1827 	}
1828 
1829 	/* If the BO is not in its preferred location add it back to
1830 	 * the evicted list so that it gets validated again on the
1831 	 * next command submission.
1832 	 */
1833 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1834 		uint32_t mem_type = bo->tbo.mem.mem_type;
1835 
1836 		if (!(bo->preferred_domains &
1837 		      amdgpu_mem_type_to_domain(mem_type)))
1838 			amdgpu_vm_bo_evicted(&bo_va->base);
1839 		else
1840 			amdgpu_vm_bo_idle(&bo_va->base);
1841 	} else {
1842 		amdgpu_vm_bo_done(&bo_va->base);
1843 	}
1844 
1845 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1846 	bo_va->cleared = clear;
1847 
1848 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1849 		list_for_each_entry(mapping, &bo_va->valids, list)
1850 			trace_amdgpu_vm_bo_mapping(mapping);
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 /**
1857  * amdgpu_vm_update_prt_state - update the global PRT state
1858  *
1859  * @adev: amdgpu_device pointer
1860  */
1861 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1862 {
1863 	unsigned long flags;
1864 	bool enable;
1865 
1866 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1867 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1868 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1869 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1870 }
1871 
1872 /**
1873  * amdgpu_vm_prt_get - add a PRT user
1874  *
1875  * @adev: amdgpu_device pointer
1876  */
1877 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1878 {
1879 	if (!adev->gmc.gmc_funcs->set_prt)
1880 		return;
1881 
1882 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1883 		amdgpu_vm_update_prt_state(adev);
1884 }
1885 
1886 /**
1887  * amdgpu_vm_prt_put - drop a PRT user
1888  *
1889  * @adev: amdgpu_device pointer
1890  */
1891 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1892 {
1893 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1894 		amdgpu_vm_update_prt_state(adev);
1895 }
1896 
1897 /**
1898  * amdgpu_vm_prt_cb - callback for updating the PRT status
1899  *
1900  * @fence: fence for the callback
1901  * @_cb: the callback function
1902  */
1903 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1904 {
1905 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1906 
1907 	amdgpu_vm_prt_put(cb->adev);
1908 	kfree(cb);
1909 }
1910 
1911 /**
1912  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1913  *
1914  * @adev: amdgpu_device pointer
1915  * @fence: fence for the callback
1916  */
1917 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1918 				 struct dma_fence *fence)
1919 {
1920 	struct amdgpu_prt_cb *cb;
1921 
1922 	if (!adev->gmc.gmc_funcs->set_prt)
1923 		return;
1924 
1925 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1926 	if (!cb) {
1927 		/* Last resort when we are OOM */
1928 		if (fence)
1929 			dma_fence_wait(fence, false);
1930 
1931 		amdgpu_vm_prt_put(adev);
1932 	} else {
1933 		cb->adev = adev;
1934 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1935 						     amdgpu_vm_prt_cb))
1936 			amdgpu_vm_prt_cb(fence, &cb->cb);
1937 	}
1938 }
1939 
1940 /**
1941  * amdgpu_vm_free_mapping - free a mapping
1942  *
1943  * @adev: amdgpu_device pointer
1944  * @vm: requested vm
1945  * @mapping: mapping to be freed
1946  * @fence: fence of the unmap operation
1947  *
1948  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1949  */
1950 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1951 				   struct amdgpu_vm *vm,
1952 				   struct amdgpu_bo_va_mapping *mapping,
1953 				   struct dma_fence *fence)
1954 {
1955 	if (mapping->flags & AMDGPU_PTE_PRT)
1956 		amdgpu_vm_add_prt_cb(adev, fence);
1957 	kfree(mapping);
1958 }
1959 
1960 /**
1961  * amdgpu_vm_prt_fini - finish all prt mappings
1962  *
1963  * @adev: amdgpu_device pointer
1964  * @vm: requested vm
1965  *
1966  * Register a cleanup callback to disable PRT support after VM dies.
1967  */
1968 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1969 {
1970 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1971 	struct dma_fence *excl, **shared;
1972 	unsigned i, shared_count;
1973 	int r;
1974 
1975 	r = dma_resv_get_fences_rcu(resv, &excl,
1976 					      &shared_count, &shared);
1977 	if (r) {
1978 		/* Not enough memory to grab the fence list, as last resort
1979 		 * block for all the fences to complete.
1980 		 */
1981 		dma_resv_wait_timeout_rcu(resv, true, false,
1982 						    MAX_SCHEDULE_TIMEOUT);
1983 		return;
1984 	}
1985 
1986 	/* Add a callback for each fence in the reservation object */
1987 	amdgpu_vm_prt_get(adev);
1988 	amdgpu_vm_add_prt_cb(adev, excl);
1989 
1990 	for (i = 0; i < shared_count; ++i) {
1991 		amdgpu_vm_prt_get(adev);
1992 		amdgpu_vm_add_prt_cb(adev, shared[i]);
1993 	}
1994 
1995 	kfree(shared);
1996 }
1997 
1998 /**
1999  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2000  *
2001  * @adev: amdgpu_device pointer
2002  * @vm: requested vm
2003  * @fence: optional resulting fence (unchanged if no work needed to be done
2004  * or if an error occurred)
2005  *
2006  * Make sure all freed BOs are cleared in the PT.
2007  * PTs have to be reserved and mutex must be locked!
2008  *
2009  * Returns:
2010  * 0 for success.
2011  *
2012  */
2013 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2014 			  struct amdgpu_vm *vm,
2015 			  struct dma_fence **fence)
2016 {
2017 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2018 	struct amdgpu_bo_va_mapping *mapping;
2019 	uint64_t init_pte_value = 0;
2020 	struct dma_fence *f = NULL;
2021 	int r;
2022 
2023 	while (!list_empty(&vm->freed)) {
2024 		mapping = list_first_entry(&vm->freed,
2025 			struct amdgpu_bo_va_mapping, list);
2026 		list_del(&mapping->list);
2027 
2028 		if (vm->pte_support_ats &&
2029 		    mapping->start < AMDGPU_GMC_HOLE_START)
2030 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2031 
2032 		r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false,
2033 						resv, mapping->start,
2034 						mapping->last, init_pte_value,
2035 						0, NULL, NULL, &f, NULL);
2036 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2037 		if (r) {
2038 			dma_fence_put(f);
2039 			return r;
2040 		}
2041 	}
2042 
2043 	if (fence && f) {
2044 		dma_fence_put(*fence);
2045 		*fence = f;
2046 	} else {
2047 		dma_fence_put(f);
2048 	}
2049 
2050 	return 0;
2051 
2052 }
2053 
2054 /**
2055  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2056  *
2057  * @adev: amdgpu_device pointer
2058  * @vm: requested vm
2059  *
2060  * Make sure all BOs which are moved are updated in the PTs.
2061  *
2062  * Returns:
2063  * 0 for success.
2064  *
2065  * PTs have to be reserved!
2066  */
2067 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2068 			   struct amdgpu_vm *vm)
2069 {
2070 	struct amdgpu_bo_va *bo_va, *tmp;
2071 	struct dma_resv *resv;
2072 	bool clear;
2073 	int r;
2074 
2075 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2076 		/* Per VM BOs never need to bo cleared in the page tables */
2077 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2078 		if (r)
2079 			return r;
2080 	}
2081 
2082 	spin_lock(&vm->invalidated_lock);
2083 	while (!list_empty(&vm->invalidated)) {
2084 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2085 					 base.vm_status);
2086 		resv = bo_va->base.bo->tbo.base.resv;
2087 		spin_unlock(&vm->invalidated_lock);
2088 
2089 		/* Try to reserve the BO to avoid clearing its ptes */
2090 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2091 			clear = false;
2092 		/* Somebody else is using the BO right now */
2093 		else
2094 			clear = true;
2095 
2096 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2097 		if (r)
2098 			return r;
2099 
2100 		if (!clear)
2101 			dma_resv_unlock(resv);
2102 		spin_lock(&vm->invalidated_lock);
2103 	}
2104 	spin_unlock(&vm->invalidated_lock);
2105 
2106 	return 0;
2107 }
2108 
2109 /**
2110  * amdgpu_vm_bo_add - add a bo to a specific vm
2111  *
2112  * @adev: amdgpu_device pointer
2113  * @vm: requested vm
2114  * @bo: amdgpu buffer object
2115  *
2116  * Add @bo into the requested vm.
2117  * Add @bo to the list of bos associated with the vm
2118  *
2119  * Returns:
2120  * Newly added bo_va or NULL for failure
2121  *
2122  * Object has to be reserved!
2123  */
2124 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2125 				      struct amdgpu_vm *vm,
2126 				      struct amdgpu_bo *bo)
2127 {
2128 	struct amdgpu_bo_va *bo_va;
2129 
2130 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2131 	if (bo_va == NULL) {
2132 		return NULL;
2133 	}
2134 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2135 
2136 	bo_va->ref_count = 1;
2137 	INIT_LIST_HEAD(&bo_va->valids);
2138 	INIT_LIST_HEAD(&bo_va->invalids);
2139 
2140 	if (!bo)
2141 		return bo_va;
2142 
2143 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2144 		bo_va->is_xgmi = true;
2145 		/* Power up XGMI if it can be potentially used */
2146 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2147 	}
2148 
2149 	return bo_va;
2150 }
2151 
2152 
2153 /**
2154  * amdgpu_vm_bo_insert_map - insert a new mapping
2155  *
2156  * @adev: amdgpu_device pointer
2157  * @bo_va: bo_va to store the address
2158  * @mapping: the mapping to insert
2159  *
2160  * Insert a new mapping into all structures.
2161  */
2162 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2163 				    struct amdgpu_bo_va *bo_va,
2164 				    struct amdgpu_bo_va_mapping *mapping)
2165 {
2166 	struct amdgpu_vm *vm = bo_va->base.vm;
2167 	struct amdgpu_bo *bo = bo_va->base.bo;
2168 
2169 	mapping->bo_va = bo_va;
2170 	list_add(&mapping->list, &bo_va->invalids);
2171 	amdgpu_vm_it_insert(mapping, &vm->va);
2172 
2173 	if (mapping->flags & AMDGPU_PTE_PRT)
2174 		amdgpu_vm_prt_get(adev);
2175 
2176 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2177 	    !bo_va->base.moved) {
2178 		list_move(&bo_va->base.vm_status, &vm->moved);
2179 	}
2180 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2181 }
2182 
2183 /**
2184  * amdgpu_vm_bo_map - map bo inside a vm
2185  *
2186  * @adev: amdgpu_device pointer
2187  * @bo_va: bo_va to store the address
2188  * @saddr: where to map the BO
2189  * @offset: requested offset in the BO
2190  * @size: BO size in bytes
2191  * @flags: attributes of pages (read/write/valid/etc.)
2192  *
2193  * Add a mapping of the BO at the specefied addr into the VM.
2194  *
2195  * Returns:
2196  * 0 for success, error for failure.
2197  *
2198  * Object has to be reserved and unreserved outside!
2199  */
2200 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2201 		     struct amdgpu_bo_va *bo_va,
2202 		     uint64_t saddr, uint64_t offset,
2203 		     uint64_t size, uint64_t flags)
2204 {
2205 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2206 	struct amdgpu_bo *bo = bo_va->base.bo;
2207 	struct amdgpu_vm *vm = bo_va->base.vm;
2208 	uint64_t eaddr;
2209 
2210 	/* validate the parameters */
2211 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2212 	    size == 0 || size & ~PAGE_MASK)
2213 		return -EINVAL;
2214 
2215 	/* make sure object fit at this offset */
2216 	eaddr = saddr + size - 1;
2217 	if (saddr >= eaddr ||
2218 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2219 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2220 		return -EINVAL;
2221 
2222 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2223 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2224 
2225 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2226 	if (tmp) {
2227 		/* bo and tmp overlap, invalid addr */
2228 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2229 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2230 			tmp->start, tmp->last + 1);
2231 		return -EINVAL;
2232 	}
2233 
2234 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2235 	if (!mapping)
2236 		return -ENOMEM;
2237 
2238 	mapping->start = saddr;
2239 	mapping->last = eaddr;
2240 	mapping->offset = offset;
2241 	mapping->flags = flags;
2242 
2243 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2244 
2245 	return 0;
2246 }
2247 
2248 /**
2249  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2250  *
2251  * @adev: amdgpu_device pointer
2252  * @bo_va: bo_va to store the address
2253  * @saddr: where to map the BO
2254  * @offset: requested offset in the BO
2255  * @size: BO size in bytes
2256  * @flags: attributes of pages (read/write/valid/etc.)
2257  *
2258  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2259  * mappings as we do so.
2260  *
2261  * Returns:
2262  * 0 for success, error for failure.
2263  *
2264  * Object has to be reserved and unreserved outside!
2265  */
2266 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2267 			     struct amdgpu_bo_va *bo_va,
2268 			     uint64_t saddr, uint64_t offset,
2269 			     uint64_t size, uint64_t flags)
2270 {
2271 	struct amdgpu_bo_va_mapping *mapping;
2272 	struct amdgpu_bo *bo = bo_va->base.bo;
2273 	uint64_t eaddr;
2274 	int r;
2275 
2276 	/* validate the parameters */
2277 	if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK ||
2278 	    size == 0 || size & ~PAGE_MASK)
2279 		return -EINVAL;
2280 
2281 	/* make sure object fit at this offset */
2282 	eaddr = saddr + size - 1;
2283 	if (saddr >= eaddr ||
2284 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2285 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2286 		return -EINVAL;
2287 
2288 	/* Allocate all the needed memory */
2289 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2290 	if (!mapping)
2291 		return -ENOMEM;
2292 
2293 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2294 	if (r) {
2295 		kfree(mapping);
2296 		return r;
2297 	}
2298 
2299 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2300 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2301 
2302 	mapping->start = saddr;
2303 	mapping->last = eaddr;
2304 	mapping->offset = offset;
2305 	mapping->flags = flags;
2306 
2307 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2308 
2309 	return 0;
2310 }
2311 
2312 /**
2313  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2314  *
2315  * @adev: amdgpu_device pointer
2316  * @bo_va: bo_va to remove the address from
2317  * @saddr: where to the BO is mapped
2318  *
2319  * Remove a mapping of the BO at the specefied addr from the VM.
2320  *
2321  * Returns:
2322  * 0 for success, error for failure.
2323  *
2324  * Object has to be reserved and unreserved outside!
2325  */
2326 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2327 		       struct amdgpu_bo_va *bo_va,
2328 		       uint64_t saddr)
2329 {
2330 	struct amdgpu_bo_va_mapping *mapping;
2331 	struct amdgpu_vm *vm = bo_va->base.vm;
2332 	bool valid = true;
2333 
2334 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2335 
2336 	list_for_each_entry(mapping, &bo_va->valids, list) {
2337 		if (mapping->start == saddr)
2338 			break;
2339 	}
2340 
2341 	if (&mapping->list == &bo_va->valids) {
2342 		valid = false;
2343 
2344 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2345 			if (mapping->start == saddr)
2346 				break;
2347 		}
2348 
2349 		if (&mapping->list == &bo_va->invalids)
2350 			return -ENOENT;
2351 	}
2352 
2353 	list_del(&mapping->list);
2354 	amdgpu_vm_it_remove(mapping, &vm->va);
2355 	mapping->bo_va = NULL;
2356 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2357 
2358 	if (valid)
2359 		list_add(&mapping->list, &vm->freed);
2360 	else
2361 		amdgpu_vm_free_mapping(adev, vm, mapping,
2362 				       bo_va->last_pt_update);
2363 
2364 	return 0;
2365 }
2366 
2367 /**
2368  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2369  *
2370  * @adev: amdgpu_device pointer
2371  * @vm: VM structure to use
2372  * @saddr: start of the range
2373  * @size: size of the range
2374  *
2375  * Remove all mappings in a range, split them as appropriate.
2376  *
2377  * Returns:
2378  * 0 for success, error for failure.
2379  */
2380 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2381 				struct amdgpu_vm *vm,
2382 				uint64_t saddr, uint64_t size)
2383 {
2384 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2385 	LIST_HEAD(removed);
2386 	uint64_t eaddr;
2387 
2388 	eaddr = saddr + size - 1;
2389 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2390 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2391 
2392 	/* Allocate all the needed memory */
2393 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2394 	if (!before)
2395 		return -ENOMEM;
2396 	INIT_LIST_HEAD(&before->list);
2397 
2398 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2399 	if (!after) {
2400 		kfree(before);
2401 		return -ENOMEM;
2402 	}
2403 	INIT_LIST_HEAD(&after->list);
2404 
2405 	/* Now gather all removed mappings */
2406 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2407 	while (tmp) {
2408 		/* Remember mapping split at the start */
2409 		if (tmp->start < saddr) {
2410 			before->start = tmp->start;
2411 			before->last = saddr - 1;
2412 			before->offset = tmp->offset;
2413 			before->flags = tmp->flags;
2414 			before->bo_va = tmp->bo_va;
2415 			list_add(&before->list, &tmp->bo_va->invalids);
2416 		}
2417 
2418 		/* Remember mapping split at the end */
2419 		if (tmp->last > eaddr) {
2420 			after->start = eaddr + 1;
2421 			after->last = tmp->last;
2422 			after->offset = tmp->offset;
2423 			after->offset += (after->start - tmp->start) << PAGE_SHIFT;
2424 			after->flags = tmp->flags;
2425 			after->bo_va = tmp->bo_va;
2426 			list_add(&after->list, &tmp->bo_va->invalids);
2427 		}
2428 
2429 		list_del(&tmp->list);
2430 		list_add(&tmp->list, &removed);
2431 
2432 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2433 	}
2434 
2435 	/* And free them up */
2436 	list_for_each_entry_safe(tmp, next, &removed, list) {
2437 		amdgpu_vm_it_remove(tmp, &vm->va);
2438 		list_del(&tmp->list);
2439 
2440 		if (tmp->start < saddr)
2441 		    tmp->start = saddr;
2442 		if (tmp->last > eaddr)
2443 		    tmp->last = eaddr;
2444 
2445 		tmp->bo_va = NULL;
2446 		list_add(&tmp->list, &vm->freed);
2447 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2448 	}
2449 
2450 	/* Insert partial mapping before the range */
2451 	if (!list_empty(&before->list)) {
2452 		amdgpu_vm_it_insert(before, &vm->va);
2453 		if (before->flags & AMDGPU_PTE_PRT)
2454 			amdgpu_vm_prt_get(adev);
2455 	} else {
2456 		kfree(before);
2457 	}
2458 
2459 	/* Insert partial mapping after the range */
2460 	if (!list_empty(&after->list)) {
2461 		amdgpu_vm_it_insert(after, &vm->va);
2462 		if (after->flags & AMDGPU_PTE_PRT)
2463 			amdgpu_vm_prt_get(adev);
2464 	} else {
2465 		kfree(after);
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 /**
2472  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2473  *
2474  * @vm: the requested VM
2475  * @addr: the address
2476  *
2477  * Find a mapping by it's address.
2478  *
2479  * Returns:
2480  * The amdgpu_bo_va_mapping matching for addr or NULL
2481  *
2482  */
2483 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2484 							 uint64_t addr)
2485 {
2486 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2487 }
2488 
2489 /**
2490  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2491  *
2492  * @vm: the requested vm
2493  * @ticket: CS ticket
2494  *
2495  * Trace all mappings of BOs reserved during a command submission.
2496  */
2497 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2498 {
2499 	struct amdgpu_bo_va_mapping *mapping;
2500 
2501 	if (!trace_amdgpu_vm_bo_cs_enabled())
2502 		return;
2503 
2504 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2505 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2506 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2507 			struct amdgpu_bo *bo;
2508 
2509 			bo = mapping->bo_va->base.bo;
2510 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2511 			    ticket)
2512 				continue;
2513 		}
2514 
2515 		trace_amdgpu_vm_bo_cs(mapping);
2516 	}
2517 }
2518 
2519 /**
2520  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2521  *
2522  * @adev: amdgpu_device pointer
2523  * @bo_va: requested bo_va
2524  *
2525  * Remove @bo_va->bo from the requested vm.
2526  *
2527  * Object have to be reserved!
2528  */
2529 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2530 		      struct amdgpu_bo_va *bo_va)
2531 {
2532 	struct amdgpu_bo_va_mapping *mapping, *next;
2533 	struct amdgpu_bo *bo = bo_va->base.bo;
2534 	struct amdgpu_vm *vm = bo_va->base.vm;
2535 	struct amdgpu_vm_bo_base **base;
2536 
2537 	if (bo) {
2538 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2539 			vm->bulk_moveable = false;
2540 
2541 		for (base = &bo_va->base.bo->vm_bo; *base;
2542 		     base = &(*base)->next) {
2543 			if (*base != &bo_va->base)
2544 				continue;
2545 
2546 			*base = bo_va->base.next;
2547 			break;
2548 		}
2549 	}
2550 
2551 	spin_lock(&vm->invalidated_lock);
2552 	list_del(&bo_va->base.vm_status);
2553 	spin_unlock(&vm->invalidated_lock);
2554 
2555 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2556 		list_del(&mapping->list);
2557 		amdgpu_vm_it_remove(mapping, &vm->va);
2558 		mapping->bo_va = NULL;
2559 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2560 		list_add(&mapping->list, &vm->freed);
2561 	}
2562 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2563 		list_del(&mapping->list);
2564 		amdgpu_vm_it_remove(mapping, &vm->va);
2565 		amdgpu_vm_free_mapping(adev, vm, mapping,
2566 				       bo_va->last_pt_update);
2567 	}
2568 
2569 	dma_fence_put(bo_va->last_pt_update);
2570 
2571 	if (bo && bo_va->is_xgmi)
2572 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2573 
2574 	kfree(bo_va);
2575 }
2576 
2577 /**
2578  * amdgpu_vm_evictable - check if we can evict a VM
2579  *
2580  * @bo: A page table of the VM.
2581  *
2582  * Check if it is possible to evict a VM.
2583  */
2584 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2585 {
2586 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2587 
2588 	/* Page tables of a destroyed VM can go away immediately */
2589 	if (!bo_base || !bo_base->vm)
2590 		return true;
2591 
2592 	/* Don't evict VM page tables while they are busy */
2593 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2594 		return false;
2595 
2596 	/* Try to block ongoing updates */
2597 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2598 		return false;
2599 
2600 	/* Don't evict VM page tables while they are updated */
2601 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2602 		amdgpu_vm_eviction_unlock(bo_base->vm);
2603 		return false;
2604 	}
2605 
2606 	bo_base->vm->evicting = true;
2607 	amdgpu_vm_eviction_unlock(bo_base->vm);
2608 	return true;
2609 }
2610 
2611 /**
2612  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2613  *
2614  * @adev: amdgpu_device pointer
2615  * @bo: amdgpu buffer object
2616  * @evicted: is the BO evicted
2617  *
2618  * Mark @bo as invalid.
2619  */
2620 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2621 			     struct amdgpu_bo *bo, bool evicted)
2622 {
2623 	struct amdgpu_vm_bo_base *bo_base;
2624 
2625 	/* shadow bo doesn't have bo base, its validation needs its parent */
2626 	if (bo->parent && bo->parent->shadow == bo)
2627 		bo = bo->parent;
2628 
2629 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2630 		struct amdgpu_vm *vm = bo_base->vm;
2631 
2632 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2633 			amdgpu_vm_bo_evicted(bo_base);
2634 			continue;
2635 		}
2636 
2637 		if (bo_base->moved)
2638 			continue;
2639 		bo_base->moved = true;
2640 
2641 		if (bo->tbo.type == ttm_bo_type_kernel)
2642 			amdgpu_vm_bo_relocated(bo_base);
2643 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2644 			amdgpu_vm_bo_moved(bo_base);
2645 		else
2646 			amdgpu_vm_bo_invalidated(bo_base);
2647 	}
2648 }
2649 
2650 /**
2651  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2652  *
2653  * @vm_size: VM size
2654  *
2655  * Returns:
2656  * VM page table as power of two
2657  */
2658 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2659 {
2660 	/* Total bits covered by PD + PTs */
2661 	unsigned bits = ilog2(vm_size) + 18;
2662 
2663 	/* Make sure the PD is 4K in size up to 8GB address space.
2664 	   Above that split equal between PD and PTs */
2665 	if (vm_size <= 8)
2666 		return (bits - 9);
2667 	else
2668 		return ((bits + 3) / 2);
2669 }
2670 
2671 /**
2672  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2673  *
2674  * @adev: amdgpu_device pointer
2675  * @min_vm_size: the minimum vm size in GB if it's set auto
2676  * @fragment_size_default: Default PTE fragment size
2677  * @max_level: max VMPT level
2678  * @max_bits: max address space size in bits
2679  *
2680  */
2681 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2682 			   uint32_t fragment_size_default, unsigned max_level,
2683 			   unsigned max_bits)
2684 {
2685 	unsigned int max_size = 1 << (max_bits - 30);
2686 	unsigned int vm_size;
2687 	uint64_t tmp;
2688 
2689 	/* adjust vm size first */
2690 	if (amdgpu_vm_size != -1) {
2691 		vm_size = amdgpu_vm_size;
2692 		if (vm_size > max_size) {
2693 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2694 				 amdgpu_vm_size, max_size);
2695 			vm_size = max_size;
2696 		}
2697 	} else {
2698 		struct sysinfo si;
2699 		unsigned int phys_ram_gb;
2700 
2701 		/* Optimal VM size depends on the amount of physical
2702 		 * RAM available. Underlying requirements and
2703 		 * assumptions:
2704 		 *
2705 		 *  - Need to map system memory and VRAM from all GPUs
2706 		 *     - VRAM from other GPUs not known here
2707 		 *     - Assume VRAM <= system memory
2708 		 *  - On GFX8 and older, VM space can be segmented for
2709 		 *    different MTYPEs
2710 		 *  - Need to allow room for fragmentation, guard pages etc.
2711 		 *
2712 		 * This adds up to a rough guess of system memory x3.
2713 		 * Round up to power of two to maximize the available
2714 		 * VM size with the given page table size.
2715 		 */
2716 		si_meminfo(&si);
2717 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2718 			       (1 << 30) - 1) >> 30;
2719 		vm_size = roundup_pow_of_two(
2720 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2721 	}
2722 
2723 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2724 
2725 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2726 	if (amdgpu_vm_block_size != -1)
2727 		tmp >>= amdgpu_vm_block_size - 9;
2728 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2729 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2730 	switch (adev->vm_manager.num_level) {
2731 	case 3:
2732 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2733 		break;
2734 	case 2:
2735 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2736 		break;
2737 	case 1:
2738 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2739 		break;
2740 	default:
2741 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2742 	}
2743 	/* block size depends on vm size and hw setup*/
2744 	if (amdgpu_vm_block_size != -1)
2745 		adev->vm_manager.block_size =
2746 			min((unsigned)amdgpu_vm_block_size, max_bits
2747 			    - AMDGPU_GPU_PAGE_SHIFT
2748 			    - 9 * adev->vm_manager.num_level);
2749 	else if (adev->vm_manager.num_level > 1)
2750 		adev->vm_manager.block_size = 9;
2751 	else
2752 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2753 
2754 	if (amdgpu_vm_fragment_size == -1)
2755 		adev->vm_manager.fragment_size = fragment_size_default;
2756 	else
2757 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2758 
2759 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2760 		 vm_size, adev->vm_manager.num_level + 1,
2761 		 adev->vm_manager.block_size,
2762 		 adev->vm_manager.fragment_size);
2763 }
2764 
2765 /**
2766  * amdgpu_vm_wait_idle - wait for the VM to become idle
2767  *
2768  * @vm: VM object to wait for
2769  * @timeout: timeout to wait for VM to become idle
2770  */
2771 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2772 {
2773 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2774 					    true, true, timeout);
2775 	if (timeout <= 0)
2776 		return timeout;
2777 
2778 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2779 }
2780 
2781 /**
2782  * amdgpu_vm_init - initialize a vm instance
2783  *
2784  * @adev: amdgpu_device pointer
2785  * @vm: requested vm
2786  * @pasid: Process address space identifier
2787  *
2788  * Init @vm fields.
2789  *
2790  * Returns:
2791  * 0 for success, error for failure.
2792  */
2793 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid)
2794 {
2795 	struct amdgpu_bo *root;
2796 	int r, i;
2797 
2798 	vm->va = RB_ROOT_CACHED;
2799 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2800 		vm->reserved_vmid[i] = NULL;
2801 	INIT_LIST_HEAD(&vm->evicted);
2802 	INIT_LIST_HEAD(&vm->relocated);
2803 	INIT_LIST_HEAD(&vm->moved);
2804 	INIT_LIST_HEAD(&vm->idle);
2805 	INIT_LIST_HEAD(&vm->invalidated);
2806 	spin_lock_init(&vm->invalidated_lock);
2807 	INIT_LIST_HEAD(&vm->freed);
2808 	INIT_LIST_HEAD(&vm->done);
2809 
2810 	/* create scheduler entities for page table updates */
2811 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2812 				  adev->vm_manager.vm_pte_scheds,
2813 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2814 	if (r)
2815 		return r;
2816 
2817 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2818 				  adev->vm_manager.vm_pte_scheds,
2819 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2820 	if (r)
2821 		goto error_free_immediate;
2822 
2823 	vm->pte_support_ats = false;
2824 	vm->is_compute_context = false;
2825 
2826 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2827 				    AMDGPU_VM_USE_CPU_FOR_GFX);
2828 
2829 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2830 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2831 	WARN_ONCE((vm->use_cpu_for_update &&
2832 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2833 		  "CPU update of VM recommended only for large BAR system\n");
2834 
2835 	if (vm->use_cpu_for_update)
2836 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2837 	else
2838 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2839 	vm->last_update = NULL;
2840 	vm->last_unlocked = dma_fence_get_stub();
2841 
2842 	mutex_init(&vm->eviction_lock);
2843 	vm->evicting = false;
2844 
2845 	r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level,
2846 				false, &root);
2847 	if (r)
2848 		goto error_free_delayed;
2849 
2850 	r = amdgpu_bo_reserve(root, true);
2851 	if (r)
2852 		goto error_free_root;
2853 
2854 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2855 	if (r)
2856 		goto error_unreserve;
2857 
2858 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2859 
2860 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2861 	if (r)
2862 		goto error_unreserve;
2863 
2864 	amdgpu_bo_unreserve(vm->root.base.bo);
2865 
2866 	if (pasid) {
2867 		unsigned long flags;
2868 
2869 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2870 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2871 			      GFP_ATOMIC);
2872 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2873 		if (r < 0)
2874 			goto error_free_root;
2875 
2876 		vm->pasid = pasid;
2877 	}
2878 
2879 	INIT_KFIFO(vm->faults);
2880 
2881 	return 0;
2882 
2883 error_unreserve:
2884 	amdgpu_bo_unreserve(vm->root.base.bo);
2885 
2886 error_free_root:
2887 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2888 	amdgpu_bo_unref(&vm->root.base.bo);
2889 	vm->root.base.bo = NULL;
2890 
2891 error_free_delayed:
2892 	dma_fence_put(vm->last_unlocked);
2893 	drm_sched_entity_destroy(&vm->delayed);
2894 
2895 error_free_immediate:
2896 	drm_sched_entity_destroy(&vm->immediate);
2897 
2898 	return r;
2899 }
2900 
2901 /**
2902  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2903  *
2904  * @adev: amdgpu_device pointer
2905  * @vm: the VM to check
2906  *
2907  * check all entries of the root PD, if any subsequent PDs are allocated,
2908  * it means there are page table creating and filling, and is no a clean
2909  * VM
2910  *
2911  * Returns:
2912  *	0 if this VM is clean
2913  */
2914 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2915 	struct amdgpu_vm *vm)
2916 {
2917 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2918 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2919 	unsigned int i = 0;
2920 
2921 	if (!(vm->root.entries))
2922 		return 0;
2923 
2924 	for (i = 0; i < entries; i++) {
2925 		if (vm->root.entries[i].base.bo)
2926 			return -EINVAL;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /**
2933  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2934  *
2935  * @adev: amdgpu_device pointer
2936  * @vm: requested vm
2937  * @pasid: pasid to use
2938  *
2939  * This only works on GFX VMs that don't have any BOs added and no
2940  * page tables allocated yet.
2941  *
2942  * Changes the following VM parameters:
2943  * - use_cpu_for_update
2944  * - pte_supports_ats
2945  * - pasid (old PASID is released, because compute manages its own PASIDs)
2946  *
2947  * Reinitializes the page directory to reflect the changed ATS
2948  * setting.
2949  *
2950  * Returns:
2951  * 0 for success, -errno for errors.
2952  */
2953 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2954 			   u32 pasid)
2955 {
2956 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2957 	int r;
2958 
2959 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2960 	if (r)
2961 		return r;
2962 
2963 	/* Sanity checks */
2964 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2965 	if (r)
2966 		goto unreserve_bo;
2967 
2968 	if (pasid) {
2969 		unsigned long flags;
2970 
2971 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2972 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2973 			      GFP_ATOMIC);
2974 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2975 
2976 		if (r == -ENOSPC)
2977 			goto unreserve_bo;
2978 		r = 0;
2979 	}
2980 
2981 	/* Check if PD needs to be reinitialized and do it before
2982 	 * changing any other state, in case it fails.
2983 	 */
2984 	if (pte_support_ats != vm->pte_support_ats) {
2985 		vm->pte_support_ats = pte_support_ats;
2986 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2987 		if (r)
2988 			goto free_idr;
2989 	}
2990 
2991 	/* Update VM state */
2992 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2993 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2994 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2995 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2996 	WARN_ONCE((vm->use_cpu_for_update &&
2997 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2998 		  "CPU update of VM recommended only for large BAR system\n");
2999 
3000 	if (vm->use_cpu_for_update) {
3001 		/* Sync with last SDMA update/clear before switching to CPU */
3002 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3003 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3004 		if (r)
3005 			goto free_idr;
3006 
3007 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3008 	} else {
3009 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3010 	}
3011 	dma_fence_put(vm->last_update);
3012 	vm->last_update = NULL;
3013 	vm->is_compute_context = true;
3014 
3015 	if (vm->pasid) {
3016 		unsigned long flags;
3017 
3018 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3019 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3020 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3021 
3022 		/* Free the original amdgpu allocated pasid
3023 		 * Will be replaced with kfd allocated pasid
3024 		 */
3025 		amdgpu_pasid_free(vm->pasid);
3026 		vm->pasid = 0;
3027 	}
3028 
3029 	/* Free the shadow bo for compute VM */
3030 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3031 
3032 	if (pasid)
3033 		vm->pasid = pasid;
3034 
3035 	goto unreserve_bo;
3036 
3037 free_idr:
3038 	if (pasid) {
3039 		unsigned long flags;
3040 
3041 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3042 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3043 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3044 	}
3045 unreserve_bo:
3046 	amdgpu_bo_unreserve(vm->root.base.bo);
3047 	return r;
3048 }
3049 
3050 /**
3051  * amdgpu_vm_release_compute - release a compute vm
3052  * @adev: amdgpu_device pointer
3053  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3054  *
3055  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3056  * pasid from vm. Compute should stop use of vm after this call.
3057  */
3058 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3059 {
3060 	if (vm->pasid) {
3061 		unsigned long flags;
3062 
3063 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3064 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3065 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3066 	}
3067 	vm->pasid = 0;
3068 	vm->is_compute_context = false;
3069 }
3070 
3071 /**
3072  * amdgpu_vm_fini - tear down a vm instance
3073  *
3074  * @adev: amdgpu_device pointer
3075  * @vm: requested vm
3076  *
3077  * Tear down @vm.
3078  * Unbind the VM and remove all bos from the vm bo list
3079  */
3080 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3081 {
3082 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3083 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3084 	struct amdgpu_bo *root;
3085 	int i;
3086 
3087 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3088 
3089 	root = amdgpu_bo_ref(vm->root.base.bo);
3090 	amdgpu_bo_reserve(root, true);
3091 	if (vm->pasid) {
3092 		unsigned long flags;
3093 
3094 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3095 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3096 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3097 		vm->pasid = 0;
3098 	}
3099 
3100 	dma_fence_wait(vm->last_unlocked, false);
3101 	dma_fence_put(vm->last_unlocked);
3102 
3103 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3104 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3105 			amdgpu_vm_prt_fini(adev, vm);
3106 			prt_fini_needed = false;
3107 		}
3108 
3109 		list_del(&mapping->list);
3110 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3111 	}
3112 
3113 	amdgpu_vm_free_pts(adev, vm, NULL);
3114 	amdgpu_bo_unreserve(root);
3115 	amdgpu_bo_unref(&root);
3116 	WARN_ON(vm->root.base.bo);
3117 
3118 	drm_sched_entity_destroy(&vm->immediate);
3119 	drm_sched_entity_destroy(&vm->delayed);
3120 
3121 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3122 		dev_err(adev->dev, "still active bo inside vm\n");
3123 	}
3124 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3125 					     &vm->va.rb_root, rb) {
3126 		/* Don't remove the mapping here, we don't want to trigger a
3127 		 * rebalance and the tree is about to be destroyed anyway.
3128 		 */
3129 		list_del(&mapping->list);
3130 		kfree(mapping);
3131 	}
3132 
3133 	dma_fence_put(vm->last_update);
3134 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3135 		amdgpu_vmid_free_reserved(adev, vm, i);
3136 }
3137 
3138 /**
3139  * amdgpu_vm_manager_init - init the VM manager
3140  *
3141  * @adev: amdgpu_device pointer
3142  *
3143  * Initialize the VM manager structures
3144  */
3145 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3146 {
3147 	unsigned i;
3148 
3149 	/* Concurrent flushes are only possible starting with Vega10 and
3150 	 * are broken on Navi10 and Navi14.
3151 	 */
3152 	adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 ||
3153 					      adev->asic_type == CHIP_NAVI10 ||
3154 					      adev->asic_type == CHIP_NAVI14);
3155 	amdgpu_vmid_mgr_init(adev);
3156 
3157 	adev->vm_manager.fence_context =
3158 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3159 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3160 		adev->vm_manager.seqno[i] = 0;
3161 
3162 	spin_lock_init(&adev->vm_manager.prt_lock);
3163 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3164 
3165 	/* If not overridden by the user, by default, only in large BAR systems
3166 	 * Compute VM tables will be updated by CPU
3167 	 */
3168 #ifdef CONFIG_X86_64
3169 	if (amdgpu_vm_update_mode == -1) {
3170 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3171 			adev->vm_manager.vm_update_mode =
3172 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3173 		else
3174 			adev->vm_manager.vm_update_mode = 0;
3175 	} else
3176 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3177 #else
3178 	adev->vm_manager.vm_update_mode = 0;
3179 #endif
3180 
3181 	idr_init(&adev->vm_manager.pasid_idr);
3182 	spin_lock_init(&adev->vm_manager.pasid_lock);
3183 }
3184 
3185 /**
3186  * amdgpu_vm_manager_fini - cleanup VM manager
3187  *
3188  * @adev: amdgpu_device pointer
3189  *
3190  * Cleanup the VM manager and free resources.
3191  */
3192 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3193 {
3194 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3195 	idr_destroy(&adev->vm_manager.pasid_idr);
3196 
3197 	amdgpu_vmid_mgr_fini(adev);
3198 }
3199 
3200 /**
3201  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3202  *
3203  * @dev: drm device pointer
3204  * @data: drm_amdgpu_vm
3205  * @filp: drm file pointer
3206  *
3207  * Returns:
3208  * 0 for success, -errno for errors.
3209  */
3210 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3211 {
3212 	union drm_amdgpu_vm *args = data;
3213 	struct amdgpu_device *adev = drm_to_adev(dev);
3214 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3215 	long timeout = msecs_to_jiffies(2000);
3216 	int r;
3217 
3218 	switch (args->in.op) {
3219 	case AMDGPU_VM_OP_RESERVE_VMID:
3220 		/* We only have requirement to reserve vmid from gfxhub */
3221 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3222 					       AMDGPU_GFXHUB_0);
3223 		if (r)
3224 			return r;
3225 		break;
3226 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3227 		if (amdgpu_sriov_runtime(adev))
3228 			timeout = 8 * timeout;
3229 
3230 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3231 		 * not referenced anymore.
3232 		 */
3233 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3234 		if (r)
3235 			return r;
3236 
3237 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3238 		if (r < 0)
3239 			return r;
3240 
3241 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3242 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3243 		break;
3244 	default:
3245 		return -EINVAL;
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3253  *
3254  * @adev: drm device pointer
3255  * @pasid: PASID identifier for VM
3256  * @task_info: task_info to fill.
3257  */
3258 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3259 			 struct amdgpu_task_info *task_info)
3260 {
3261 	struct amdgpu_vm *vm;
3262 	unsigned long flags;
3263 
3264 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3265 
3266 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3267 	if (vm)
3268 		*task_info = vm->task_info;
3269 
3270 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3271 }
3272 
3273 /**
3274  * amdgpu_vm_set_task_info - Sets VMs task info.
3275  *
3276  * @vm: vm for which to set the info
3277  */
3278 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3279 {
3280 	if (vm->task_info.pid)
3281 		return;
3282 
3283 	vm->task_info.pid = current->pid;
3284 	get_task_comm(vm->task_info.task_name, current);
3285 
3286 	if (current->group_leader->mm != current->mm)
3287 		return;
3288 
3289 	vm->task_info.tgid = current->group_leader->pid;
3290 	get_task_comm(vm->task_info.process_name, current->group_leader);
3291 }
3292 
3293 /**
3294  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3295  * @adev: amdgpu device pointer
3296  * @pasid: PASID of the VM
3297  * @addr: Address of the fault
3298  *
3299  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3300  * shouldn't be reported any more.
3301  */
3302 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3303 			    uint64_t addr)
3304 {
3305 	bool is_compute_context = false;
3306 	struct amdgpu_bo *root;
3307 	uint64_t value, flags;
3308 	struct amdgpu_vm *vm;
3309 	int r;
3310 
3311 	spin_lock(&adev->vm_manager.pasid_lock);
3312 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3313 	if (vm) {
3314 		root = amdgpu_bo_ref(vm->root.base.bo);
3315 		is_compute_context = vm->is_compute_context;
3316 	} else {
3317 		root = NULL;
3318 	}
3319 	spin_unlock(&adev->vm_manager.pasid_lock);
3320 
3321 	if (!root)
3322 		return false;
3323 
3324 	addr /= AMDGPU_GPU_PAGE_SIZE;
3325 
3326 	if (is_compute_context &&
3327 	    !svm_range_restore_pages(adev, pasid, addr)) {
3328 		amdgpu_bo_unref(&root);
3329 		return true;
3330 	}
3331 
3332 	r = amdgpu_bo_reserve(root, true);
3333 	if (r)
3334 		goto error_unref;
3335 
3336 	/* Double check that the VM still exists */
3337 	spin_lock(&adev->vm_manager.pasid_lock);
3338 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3339 	if (vm && vm->root.base.bo != root)
3340 		vm = NULL;
3341 	spin_unlock(&adev->vm_manager.pasid_lock);
3342 	if (!vm)
3343 		goto error_unlock;
3344 
3345 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3346 		AMDGPU_PTE_SYSTEM;
3347 
3348 	if (is_compute_context) {
3349 		/* Intentionally setting invalid PTE flag
3350 		 * combination to force a no-retry-fault
3351 		 */
3352 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3353 			AMDGPU_PTE_TF;
3354 		value = 0;
3355 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3356 		/* Redirect the access to the dummy page */
3357 		value = adev->dummy_page_addr;
3358 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3359 			AMDGPU_PTE_WRITEABLE;
3360 
3361 	} else {
3362 		/* Let the hw retry silently on the PTE */
3363 		value = 0;
3364 	}
3365 
3366 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
3367 	if (r) {
3368 		pr_debug("failed %d to reserve fence slot\n", r);
3369 		goto error_unlock;
3370 	}
3371 
3372 	r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr,
3373 					addr, flags, value, NULL, NULL, NULL,
3374 					NULL);
3375 	if (r)
3376 		goto error_unlock;
3377 
3378 	r = amdgpu_vm_update_pdes(adev, vm, true);
3379 
3380 error_unlock:
3381 	amdgpu_bo_unreserve(root);
3382 	if (r < 0)
3383 		DRM_ERROR("Can't handle page fault (%d)\n", r);
3384 
3385 error_unref:
3386 	amdgpu_bo_unref(&root);
3387 
3388 	return false;
3389 }
3390 
3391 #if defined(CONFIG_DEBUG_FS)
3392 /**
3393  * amdgpu_debugfs_vm_bo_info  - print BO info for the VM
3394  *
3395  * @vm: Requested VM for printing BO info
3396  * @m: debugfs file
3397  *
3398  * Print BO information in debugfs file for the VM
3399  */
3400 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m)
3401 {
3402 	struct amdgpu_bo_va *bo_va, *tmp;
3403 	u64 total_idle = 0;
3404 	u64 total_evicted = 0;
3405 	u64 total_relocated = 0;
3406 	u64 total_moved = 0;
3407 	u64 total_invalidated = 0;
3408 	u64 total_done = 0;
3409 	unsigned int total_idle_objs = 0;
3410 	unsigned int total_evicted_objs = 0;
3411 	unsigned int total_relocated_objs = 0;
3412 	unsigned int total_moved_objs = 0;
3413 	unsigned int total_invalidated_objs = 0;
3414 	unsigned int total_done_objs = 0;
3415 	unsigned int id = 0;
3416 
3417 	seq_puts(m, "\tIdle BOs:\n");
3418 	list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) {
3419 		if (!bo_va->base.bo)
3420 			continue;
3421 		total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3422 	}
3423 	total_idle_objs = id;
3424 	id = 0;
3425 
3426 	seq_puts(m, "\tEvicted BOs:\n");
3427 	list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) {
3428 		if (!bo_va->base.bo)
3429 			continue;
3430 		total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3431 	}
3432 	total_evicted_objs = id;
3433 	id = 0;
3434 
3435 	seq_puts(m, "\tRelocated BOs:\n");
3436 	list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) {
3437 		if (!bo_va->base.bo)
3438 			continue;
3439 		total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3440 	}
3441 	total_relocated_objs = id;
3442 	id = 0;
3443 
3444 	seq_puts(m, "\tMoved BOs:\n");
3445 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
3446 		if (!bo_va->base.bo)
3447 			continue;
3448 		total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3449 	}
3450 	total_moved_objs = id;
3451 	id = 0;
3452 
3453 	seq_puts(m, "\tInvalidated BOs:\n");
3454 	spin_lock(&vm->invalidated_lock);
3455 	list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) {
3456 		if (!bo_va->base.bo)
3457 			continue;
3458 		total_invalidated += amdgpu_bo_print_info(id++,	bo_va->base.bo, m);
3459 	}
3460 	total_invalidated_objs = id;
3461 	id = 0;
3462 
3463 	seq_puts(m, "\tDone BOs:\n");
3464 	list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) {
3465 		if (!bo_va->base.bo)
3466 			continue;
3467 		total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m);
3468 	}
3469 	spin_unlock(&vm->invalidated_lock);
3470 	total_done_objs = id;
3471 
3472 	seq_printf(m, "\tTotal idle size:        %12lld\tobjs:\t%d\n", total_idle,
3473 		   total_idle_objs);
3474 	seq_printf(m, "\tTotal evicted size:     %12lld\tobjs:\t%d\n", total_evicted,
3475 		   total_evicted_objs);
3476 	seq_printf(m, "\tTotal relocated size:   %12lld\tobjs:\t%d\n", total_relocated,
3477 		   total_relocated_objs);
3478 	seq_printf(m, "\tTotal moved size:       %12lld\tobjs:\t%d\n", total_moved,
3479 		   total_moved_objs);
3480 	seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated,
3481 		   total_invalidated_objs);
3482 	seq_printf(m, "\tTotal done size:        %12lld\tobjs:\t%d\n", total_done,
3483 		   total_done_objs);
3484 }
3485 #endif
3486