1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 #include "amdgpu_res_cursor.h" 41 #include "kfd_svm.h" 42 43 /** 44 * DOC: GPUVM 45 * 46 * GPUVM is similar to the legacy gart on older asics, however 47 * rather than there being a single global gart table 48 * for the entire GPU, there are multiple VM page tables active 49 * at any given time. The VM page tables can contain a mix 50 * vram pages and system memory pages and system memory pages 51 * can be mapped as snooped (cached system pages) or unsnooped 52 * (uncached system pages). 53 * Each VM has an ID associated with it and there is a page table 54 * associated with each VMID. When execting a command buffer, 55 * the kernel tells the the ring what VMID to use for that command 56 * buffer. VMIDs are allocated dynamically as commands are submitted. 57 * The userspace drivers maintain their own address space and the kernel 58 * sets up their pages tables accordingly when they submit their 59 * command buffers and a VMID is assigned. 60 * Cayman/Trinity support up to 8 active VMs at any given time; 61 * SI supports 16. 62 */ 63 64 #define START(node) ((node)->start) 65 #define LAST(node) ((node)->last) 66 67 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 68 START, LAST, static, amdgpu_vm_it) 69 70 #undef START 71 #undef LAST 72 73 /** 74 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 75 */ 76 struct amdgpu_prt_cb { 77 78 /** 79 * @adev: amdgpu device 80 */ 81 struct amdgpu_device *adev; 82 83 /** 84 * @cb: callback 85 */ 86 struct dma_fence_cb cb; 87 }; 88 89 /* 90 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 91 * happens while holding this lock anywhere to prevent deadlocks when 92 * an MMU notifier runs in reclaim-FS context. 93 */ 94 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 95 { 96 mutex_lock(&vm->eviction_lock); 97 vm->saved_flags = memalloc_noreclaim_save(); 98 } 99 100 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 101 { 102 if (mutex_trylock(&vm->eviction_lock)) { 103 vm->saved_flags = memalloc_noreclaim_save(); 104 return 1; 105 } 106 return 0; 107 } 108 109 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 110 { 111 memalloc_noreclaim_restore(vm->saved_flags); 112 mutex_unlock(&vm->eviction_lock); 113 } 114 115 /** 116 * amdgpu_vm_level_shift - return the addr shift for each level 117 * 118 * @adev: amdgpu_device pointer 119 * @level: VMPT level 120 * 121 * Returns: 122 * The number of bits the pfn needs to be right shifted for a level. 123 */ 124 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 125 unsigned level) 126 { 127 switch (level) { 128 case AMDGPU_VM_PDB2: 129 case AMDGPU_VM_PDB1: 130 case AMDGPU_VM_PDB0: 131 return 9 * (AMDGPU_VM_PDB0 - level) + 132 adev->vm_manager.block_size; 133 case AMDGPU_VM_PTB: 134 return 0; 135 default: 136 return ~0; 137 } 138 } 139 140 /** 141 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 142 * 143 * @adev: amdgpu_device pointer 144 * @level: VMPT level 145 * 146 * Returns: 147 * The number of entries in a page directory or page table. 148 */ 149 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 150 unsigned level) 151 { 152 unsigned shift = amdgpu_vm_level_shift(adev, 153 adev->vm_manager.root_level); 154 155 if (level == adev->vm_manager.root_level) 156 /* For the root directory */ 157 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 158 >> shift; 159 else if (level != AMDGPU_VM_PTB) 160 /* Everything in between */ 161 return 512; 162 else 163 /* For the page tables on the leaves */ 164 return AMDGPU_VM_PTE_COUNT(adev); 165 } 166 167 /** 168 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 169 * 170 * @adev: amdgpu_device pointer 171 * 172 * Returns: 173 * The number of entries in the root page directory which needs the ATS setting. 174 */ 175 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 176 { 177 unsigned shift; 178 179 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 180 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 181 } 182 183 /** 184 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 185 * 186 * @adev: amdgpu_device pointer 187 * @level: VMPT level 188 * 189 * Returns: 190 * The mask to extract the entry number of a PD/PT from an address. 191 */ 192 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 193 unsigned int level) 194 { 195 if (level <= adev->vm_manager.root_level) 196 return 0xffffffff; 197 else if (level != AMDGPU_VM_PTB) 198 return 0x1ff; 199 else 200 return AMDGPU_VM_PTE_COUNT(adev) - 1; 201 } 202 203 /** 204 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 205 * 206 * @adev: amdgpu_device pointer 207 * @level: VMPT level 208 * 209 * Returns: 210 * The size of the BO for a page directory or page table in bytes. 211 */ 212 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 213 { 214 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 215 } 216 217 /** 218 * amdgpu_vm_bo_evicted - vm_bo is evicted 219 * 220 * @vm_bo: vm_bo which is evicted 221 * 222 * State for PDs/PTs and per VM BOs which are not at the location they should 223 * be. 224 */ 225 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 226 { 227 struct amdgpu_vm *vm = vm_bo->vm; 228 struct amdgpu_bo *bo = vm_bo->bo; 229 230 vm_bo->moved = true; 231 if (bo->tbo.type == ttm_bo_type_kernel) 232 list_move(&vm_bo->vm_status, &vm->evicted); 233 else 234 list_move_tail(&vm_bo->vm_status, &vm->evicted); 235 } 236 /** 237 * amdgpu_vm_bo_moved - vm_bo is moved 238 * 239 * @vm_bo: vm_bo which is moved 240 * 241 * State for per VM BOs which are moved, but that change is not yet reflected 242 * in the page tables. 243 */ 244 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 245 { 246 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 247 } 248 249 /** 250 * amdgpu_vm_bo_idle - vm_bo is idle 251 * 252 * @vm_bo: vm_bo which is now idle 253 * 254 * State for PDs/PTs and per VM BOs which have gone through the state machine 255 * and are now idle. 256 */ 257 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 258 { 259 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 260 vm_bo->moved = false; 261 } 262 263 /** 264 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 265 * 266 * @vm_bo: vm_bo which is now invalidated 267 * 268 * State for normal BOs which are invalidated and that change not yet reflected 269 * in the PTs. 270 */ 271 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 272 { 273 spin_lock(&vm_bo->vm->invalidated_lock); 274 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 275 spin_unlock(&vm_bo->vm->invalidated_lock); 276 } 277 278 /** 279 * amdgpu_vm_bo_relocated - vm_bo is reloacted 280 * 281 * @vm_bo: vm_bo which is relocated 282 * 283 * State for PDs/PTs which needs to update their parent PD. 284 * For the root PD, just move to idle state. 285 */ 286 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 if (vm_bo->bo->parent) 289 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 290 else 291 amdgpu_vm_bo_idle(vm_bo); 292 } 293 294 /** 295 * amdgpu_vm_bo_done - vm_bo is done 296 * 297 * @vm_bo: vm_bo which is now done 298 * 299 * State for normal BOs which are invalidated and that change has been updated 300 * in the PTs. 301 */ 302 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 303 { 304 spin_lock(&vm_bo->vm->invalidated_lock); 305 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 306 spin_unlock(&vm_bo->vm->invalidated_lock); 307 } 308 309 /** 310 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 311 * 312 * @base: base structure for tracking BO usage in a VM 313 * @vm: vm to which bo is to be added 314 * @bo: amdgpu buffer object 315 * 316 * Initialize a bo_va_base structure and add it to the appropriate lists 317 * 318 */ 319 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 320 struct amdgpu_vm *vm, 321 struct amdgpu_bo *bo) 322 { 323 base->vm = vm; 324 base->bo = bo; 325 base->next = NULL; 326 INIT_LIST_HEAD(&base->vm_status); 327 328 if (!bo) 329 return; 330 base->next = bo->vm_bo; 331 bo->vm_bo = base; 332 333 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 334 return; 335 336 vm->bulk_moveable = false; 337 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 338 amdgpu_vm_bo_relocated(base); 339 else 340 amdgpu_vm_bo_idle(base); 341 342 if (bo->preferred_domains & 343 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 344 return; 345 346 /* 347 * we checked all the prerequisites, but it looks like this per vm bo 348 * is currently evicted. add the bo to the evicted list to make sure it 349 * is validated on next vm use to avoid fault. 350 * */ 351 amdgpu_vm_bo_evicted(base); 352 } 353 354 /** 355 * amdgpu_vm_pt_parent - get the parent page directory 356 * 357 * @pt: child page table 358 * 359 * Helper to get the parent entry for the child page table. NULL if we are at 360 * the root page directory. 361 */ 362 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 363 { 364 struct amdgpu_bo *parent = pt->base.bo->parent; 365 366 if (!parent) 367 return NULL; 368 369 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 370 } 371 372 /* 373 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 374 */ 375 struct amdgpu_vm_pt_cursor { 376 uint64_t pfn; 377 struct amdgpu_vm_pt *parent; 378 struct amdgpu_vm_pt *entry; 379 unsigned level; 380 }; 381 382 /** 383 * amdgpu_vm_pt_start - start PD/PT walk 384 * 385 * @adev: amdgpu_device pointer 386 * @vm: amdgpu_vm structure 387 * @start: start address of the walk 388 * @cursor: state to initialize 389 * 390 * Initialize a amdgpu_vm_pt_cursor to start a walk. 391 */ 392 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 393 struct amdgpu_vm *vm, uint64_t start, 394 struct amdgpu_vm_pt_cursor *cursor) 395 { 396 cursor->pfn = start; 397 cursor->parent = NULL; 398 cursor->entry = &vm->root; 399 cursor->level = adev->vm_manager.root_level; 400 } 401 402 /** 403 * amdgpu_vm_pt_descendant - go to child node 404 * 405 * @adev: amdgpu_device pointer 406 * @cursor: current state 407 * 408 * Walk to the child node of the current node. 409 * Returns: 410 * True if the walk was possible, false otherwise. 411 */ 412 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 413 struct amdgpu_vm_pt_cursor *cursor) 414 { 415 unsigned mask, shift, idx; 416 417 if (!cursor->entry->entries) 418 return false; 419 420 BUG_ON(!cursor->entry->base.bo); 421 mask = amdgpu_vm_entries_mask(adev, cursor->level); 422 shift = amdgpu_vm_level_shift(adev, cursor->level); 423 424 ++cursor->level; 425 idx = (cursor->pfn >> shift) & mask; 426 cursor->parent = cursor->entry; 427 cursor->entry = &cursor->entry->entries[idx]; 428 return true; 429 } 430 431 /** 432 * amdgpu_vm_pt_sibling - go to sibling node 433 * 434 * @adev: amdgpu_device pointer 435 * @cursor: current state 436 * 437 * Walk to the sibling node of the current node. 438 * Returns: 439 * True if the walk was possible, false otherwise. 440 */ 441 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 442 struct amdgpu_vm_pt_cursor *cursor) 443 { 444 unsigned shift, num_entries; 445 446 /* Root doesn't have a sibling */ 447 if (!cursor->parent) 448 return false; 449 450 /* Go to our parents and see if we got a sibling */ 451 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 452 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 453 454 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 455 return false; 456 457 cursor->pfn += 1ULL << shift; 458 cursor->pfn &= ~((1ULL << shift) - 1); 459 ++cursor->entry; 460 return true; 461 } 462 463 /** 464 * amdgpu_vm_pt_ancestor - go to parent node 465 * 466 * @cursor: current state 467 * 468 * Walk to the parent node of the current node. 469 * Returns: 470 * True if the walk was possible, false otherwise. 471 */ 472 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 473 { 474 if (!cursor->parent) 475 return false; 476 477 --cursor->level; 478 cursor->entry = cursor->parent; 479 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 480 return true; 481 } 482 483 /** 484 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 485 * 486 * @adev: amdgpu_device pointer 487 * @cursor: current state 488 * 489 * Walk the PD/PT tree to the next node. 490 */ 491 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 492 struct amdgpu_vm_pt_cursor *cursor) 493 { 494 /* First try a newborn child */ 495 if (amdgpu_vm_pt_descendant(adev, cursor)) 496 return; 497 498 /* If that didn't worked try to find a sibling */ 499 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 500 /* No sibling, go to our parents and grandparents */ 501 if (!amdgpu_vm_pt_ancestor(cursor)) { 502 cursor->pfn = ~0ll; 503 return; 504 } 505 } 506 } 507 508 /** 509 * amdgpu_vm_pt_first_dfs - start a deep first search 510 * 511 * @adev: amdgpu_device structure 512 * @vm: amdgpu_vm structure 513 * @start: optional cursor to start with 514 * @cursor: state to initialize 515 * 516 * Starts a deep first traversal of the PD/PT tree. 517 */ 518 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 519 struct amdgpu_vm *vm, 520 struct amdgpu_vm_pt_cursor *start, 521 struct amdgpu_vm_pt_cursor *cursor) 522 { 523 if (start) 524 *cursor = *start; 525 else 526 amdgpu_vm_pt_start(adev, vm, 0, cursor); 527 while (amdgpu_vm_pt_descendant(adev, cursor)); 528 } 529 530 /** 531 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 532 * 533 * @start: starting point for the search 534 * @entry: current entry 535 * 536 * Returns: 537 * True when the search should continue, false otherwise. 538 */ 539 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 540 struct amdgpu_vm_pt *entry) 541 { 542 return entry && (!start || entry != start->entry); 543 } 544 545 /** 546 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 547 * 548 * @adev: amdgpu_device structure 549 * @cursor: current state 550 * 551 * Move the cursor to the next node in a deep first search. 552 */ 553 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 554 struct amdgpu_vm_pt_cursor *cursor) 555 { 556 if (!cursor->entry) 557 return; 558 559 if (!cursor->parent) 560 cursor->entry = NULL; 561 else if (amdgpu_vm_pt_sibling(adev, cursor)) 562 while (amdgpu_vm_pt_descendant(adev, cursor)); 563 else 564 amdgpu_vm_pt_ancestor(cursor); 565 } 566 567 /* 568 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 569 */ 570 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 571 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 573 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 574 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 575 576 /** 577 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 578 * 579 * @vm: vm providing the BOs 580 * @validated: head of validation list 581 * @entry: entry to add 582 * 583 * Add the page directory to the list of BOs to 584 * validate for command submission. 585 */ 586 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 587 struct list_head *validated, 588 struct amdgpu_bo_list_entry *entry) 589 { 590 entry->priority = 0; 591 entry->tv.bo = &vm->root.base.bo->tbo; 592 /* Two for VM updates, one for TTM and one for the CS job */ 593 entry->tv.num_shared = 4; 594 entry->user_pages = NULL; 595 list_add(&entry->tv.head, validated); 596 } 597 598 /** 599 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 600 * 601 * @bo: BO which was removed from the LRU 602 * 603 * Make sure the bulk_moveable flag is updated when a BO is removed from the 604 * LRU. 605 */ 606 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 607 { 608 struct amdgpu_bo *abo; 609 struct amdgpu_vm_bo_base *bo_base; 610 611 if (!amdgpu_bo_is_amdgpu_bo(bo)) 612 return; 613 614 if (bo->pin_count) 615 return; 616 617 abo = ttm_to_amdgpu_bo(bo); 618 if (!abo->parent) 619 return; 620 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 621 struct amdgpu_vm *vm = bo_base->vm; 622 623 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 624 vm->bulk_moveable = false; 625 } 626 627 } 628 /** 629 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 630 * 631 * @adev: amdgpu device pointer 632 * @vm: vm providing the BOs 633 * 634 * Move all BOs to the end of LRU and remember their positions to put them 635 * together. 636 */ 637 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 638 struct amdgpu_vm *vm) 639 { 640 struct amdgpu_vm_bo_base *bo_base; 641 642 if (vm->bulk_moveable) { 643 spin_lock(&adev->mman.bdev.lru_lock); 644 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 645 spin_unlock(&adev->mman.bdev.lru_lock); 646 return; 647 } 648 649 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 650 651 spin_lock(&adev->mman.bdev.lru_lock); 652 list_for_each_entry(bo_base, &vm->idle, vm_status) { 653 struct amdgpu_bo *bo = bo_base->bo; 654 655 if (!bo->parent) 656 continue; 657 658 ttm_bo_move_to_lru_tail(&bo->tbo, &bo->tbo.mem, 659 &vm->lru_bulk_move); 660 if (bo->shadow) 661 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 662 &bo->shadow->tbo.mem, 663 &vm->lru_bulk_move); 664 } 665 spin_unlock(&adev->mman.bdev.lru_lock); 666 667 vm->bulk_moveable = true; 668 } 669 670 /** 671 * amdgpu_vm_validate_pt_bos - validate the page table BOs 672 * 673 * @adev: amdgpu device pointer 674 * @vm: vm providing the BOs 675 * @validate: callback to do the validation 676 * @param: parameter for the validation callback 677 * 678 * Validate the page table BOs on command submission if neccessary. 679 * 680 * Returns: 681 * Validation result. 682 */ 683 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 684 int (*validate)(void *p, struct amdgpu_bo *bo), 685 void *param) 686 { 687 struct amdgpu_vm_bo_base *bo_base, *tmp; 688 int r; 689 690 vm->bulk_moveable &= list_empty(&vm->evicted); 691 692 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 693 struct amdgpu_bo *bo = bo_base->bo; 694 695 r = validate(param, bo); 696 if (r) 697 return r; 698 699 if (bo->tbo.type != ttm_bo_type_kernel) { 700 amdgpu_vm_bo_moved(bo_base); 701 } else { 702 vm->update_funcs->map_table(bo); 703 amdgpu_vm_bo_relocated(bo_base); 704 } 705 } 706 707 amdgpu_vm_eviction_lock(vm); 708 vm->evicting = false; 709 amdgpu_vm_eviction_unlock(vm); 710 711 return 0; 712 } 713 714 /** 715 * amdgpu_vm_ready - check VM is ready for updates 716 * 717 * @vm: VM to check 718 * 719 * Check if all VM PDs/PTs are ready for updates 720 * 721 * Returns: 722 * True if eviction list is empty. 723 */ 724 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 725 { 726 return list_empty(&vm->evicted); 727 } 728 729 /** 730 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 731 * 732 * @adev: amdgpu_device pointer 733 * @vm: VM to clear BO from 734 * @bo: BO to clear 735 * @immediate: use an immediate update 736 * 737 * Root PD needs to be reserved when calling this. 738 * 739 * Returns: 740 * 0 on success, errno otherwise. 741 */ 742 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 743 struct amdgpu_vm *vm, 744 struct amdgpu_bo *bo, 745 bool immediate) 746 { 747 struct ttm_operation_ctx ctx = { true, false }; 748 unsigned level = adev->vm_manager.root_level; 749 struct amdgpu_vm_update_params params; 750 struct amdgpu_bo *ancestor = bo; 751 unsigned entries, ats_entries; 752 uint64_t addr; 753 int r; 754 755 /* Figure out our place in the hierarchy */ 756 if (ancestor->parent) { 757 ++level; 758 while (ancestor->parent->parent) { 759 ++level; 760 ancestor = ancestor->parent; 761 } 762 } 763 764 entries = amdgpu_bo_size(bo) / 8; 765 if (!vm->pte_support_ats) { 766 ats_entries = 0; 767 768 } else if (!bo->parent) { 769 ats_entries = amdgpu_vm_num_ats_entries(adev); 770 ats_entries = min(ats_entries, entries); 771 entries -= ats_entries; 772 773 } else { 774 struct amdgpu_vm_pt *pt; 775 776 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 777 ats_entries = amdgpu_vm_num_ats_entries(adev); 778 if ((pt - vm->root.entries) >= ats_entries) { 779 ats_entries = 0; 780 } else { 781 ats_entries = entries; 782 entries = 0; 783 } 784 } 785 786 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 787 if (r) 788 return r; 789 790 if (bo->shadow) { 791 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 792 &ctx); 793 if (r) 794 return r; 795 } 796 797 r = vm->update_funcs->map_table(bo); 798 if (r) 799 return r; 800 801 memset(¶ms, 0, sizeof(params)); 802 params.adev = adev; 803 params.vm = vm; 804 params.immediate = immediate; 805 806 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 807 if (r) 808 return r; 809 810 addr = 0; 811 if (ats_entries) { 812 uint64_t value = 0, flags; 813 814 flags = AMDGPU_PTE_DEFAULT_ATC; 815 if (level != AMDGPU_VM_PTB) { 816 /* Handle leaf PDEs as PTEs */ 817 flags |= AMDGPU_PDE_PTE; 818 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 819 } 820 821 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 822 value, flags); 823 if (r) 824 return r; 825 826 addr += ats_entries * 8; 827 } 828 829 if (entries) { 830 uint64_t value = 0, flags = 0; 831 832 if (adev->asic_type >= CHIP_VEGA10) { 833 if (level != AMDGPU_VM_PTB) { 834 /* Handle leaf PDEs as PTEs */ 835 flags |= AMDGPU_PDE_PTE; 836 amdgpu_gmc_get_vm_pde(adev, level, 837 &value, &flags); 838 } else { 839 /* Workaround for fault priority problem on GMC9 */ 840 flags = AMDGPU_PTE_EXECUTABLE; 841 } 842 } 843 844 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 845 value, flags); 846 if (r) 847 return r; 848 } 849 850 return vm->update_funcs->commit(¶ms, NULL); 851 } 852 853 /** 854 * amdgpu_vm_pt_create - create bo for PD/PT 855 * 856 * @adev: amdgpu_device pointer 857 * @vm: requesting vm 858 * @level: the page table level 859 * @immediate: use a immediate update 860 * @bo: pointer to the buffer object pointer 861 */ 862 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 863 struct amdgpu_vm *vm, 864 int level, bool immediate, 865 struct amdgpu_bo **bo) 866 { 867 struct amdgpu_bo_param bp; 868 int r; 869 870 memset(&bp, 0, sizeof(bp)); 871 872 bp.size = amdgpu_vm_bo_size(adev, level); 873 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 874 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 875 bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain); 876 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 877 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 878 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 879 if (vm->use_cpu_for_update) 880 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 881 882 bp.type = ttm_bo_type_kernel; 883 bp.no_wait_gpu = immediate; 884 if (vm->root.base.bo) 885 bp.resv = vm->root.base.bo->tbo.base.resv; 886 887 r = amdgpu_bo_create(adev, &bp, bo); 888 if (r) 889 return r; 890 891 if (vm->is_compute_context && (adev->flags & AMD_IS_APU)) 892 return 0; 893 894 if (!bp.resv) 895 WARN_ON(dma_resv_lock((*bo)->tbo.base.resv, 896 NULL)); 897 r = amdgpu_bo_create_shadow(adev, bp.size, *bo); 898 899 if (!bp.resv) 900 dma_resv_unlock((*bo)->tbo.base.resv); 901 902 if (r) { 903 amdgpu_bo_unref(bo); 904 return r; 905 } 906 907 return 0; 908 } 909 910 /** 911 * amdgpu_vm_alloc_pts - Allocate a specific page table 912 * 913 * @adev: amdgpu_device pointer 914 * @vm: VM to allocate page tables for 915 * @cursor: Which page table to allocate 916 * @immediate: use an immediate update 917 * 918 * Make sure a specific page table or directory is allocated. 919 * 920 * Returns: 921 * 1 if page table needed to be allocated, 0 if page table was already 922 * allocated, negative errno if an error occurred. 923 */ 924 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 925 struct amdgpu_vm *vm, 926 struct amdgpu_vm_pt_cursor *cursor, 927 bool immediate) 928 { 929 struct amdgpu_vm_pt *entry = cursor->entry; 930 struct amdgpu_bo *pt; 931 int r; 932 933 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 934 unsigned num_entries; 935 936 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 937 entry->entries = kvmalloc_array(num_entries, 938 sizeof(*entry->entries), 939 GFP_KERNEL | __GFP_ZERO); 940 if (!entry->entries) 941 return -ENOMEM; 942 } 943 944 if (entry->base.bo) 945 return 0; 946 947 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 948 if (r) 949 return r; 950 951 /* Keep a reference to the root directory to avoid 952 * freeing them up in the wrong order. 953 */ 954 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 955 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 956 957 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 958 if (r) 959 goto error_free_pt; 960 961 return 0; 962 963 error_free_pt: 964 amdgpu_bo_unref(&pt->shadow); 965 amdgpu_bo_unref(&pt); 966 return r; 967 } 968 969 /** 970 * amdgpu_vm_free_table - fre one PD/PT 971 * 972 * @entry: PDE to free 973 */ 974 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 975 { 976 if (entry->base.bo) { 977 entry->base.bo->vm_bo = NULL; 978 list_del(&entry->base.vm_status); 979 amdgpu_bo_unref(&entry->base.bo->shadow); 980 amdgpu_bo_unref(&entry->base.bo); 981 } 982 kvfree(entry->entries); 983 entry->entries = NULL; 984 } 985 986 /** 987 * amdgpu_vm_free_pts - free PD/PT levels 988 * 989 * @adev: amdgpu device structure 990 * @vm: amdgpu vm structure 991 * @start: optional cursor where to start freeing PDs/PTs 992 * 993 * Free the page directory or page table level and all sub levels. 994 */ 995 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 996 struct amdgpu_vm *vm, 997 struct amdgpu_vm_pt_cursor *start) 998 { 999 struct amdgpu_vm_pt_cursor cursor; 1000 struct amdgpu_vm_pt *entry; 1001 1002 vm->bulk_moveable = false; 1003 1004 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1005 amdgpu_vm_free_table(entry); 1006 1007 if (start) 1008 amdgpu_vm_free_table(start->entry); 1009 } 1010 1011 /** 1012 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1013 * 1014 * @adev: amdgpu_device pointer 1015 */ 1016 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1017 { 1018 const struct amdgpu_ip_block *ip_block; 1019 bool has_compute_vm_bug; 1020 struct amdgpu_ring *ring; 1021 int i; 1022 1023 has_compute_vm_bug = false; 1024 1025 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1026 if (ip_block) { 1027 /* Compute has a VM bug for GFX version < 7. 1028 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1029 if (ip_block->version->major <= 7) 1030 has_compute_vm_bug = true; 1031 else if (ip_block->version->major == 8) 1032 if (adev->gfx.mec_fw_version < 673) 1033 has_compute_vm_bug = true; 1034 } 1035 1036 for (i = 0; i < adev->num_rings; i++) { 1037 ring = adev->rings[i]; 1038 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1039 /* only compute rings */ 1040 ring->has_compute_vm_bug = has_compute_vm_bug; 1041 else 1042 ring->has_compute_vm_bug = false; 1043 } 1044 } 1045 1046 /** 1047 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1048 * 1049 * @ring: ring on which the job will be submitted 1050 * @job: job to submit 1051 * 1052 * Returns: 1053 * True if sync is needed. 1054 */ 1055 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1056 struct amdgpu_job *job) 1057 { 1058 struct amdgpu_device *adev = ring->adev; 1059 unsigned vmhub = ring->funcs->vmhub; 1060 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1061 struct amdgpu_vmid *id; 1062 bool gds_switch_needed; 1063 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1064 1065 if (job->vmid == 0) 1066 return false; 1067 id = &id_mgr->ids[job->vmid]; 1068 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1069 id->gds_base != job->gds_base || 1070 id->gds_size != job->gds_size || 1071 id->gws_base != job->gws_base || 1072 id->gws_size != job->gws_size || 1073 id->oa_base != job->oa_base || 1074 id->oa_size != job->oa_size); 1075 1076 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1077 return true; 1078 1079 return vm_flush_needed || gds_switch_needed; 1080 } 1081 1082 /** 1083 * amdgpu_vm_flush - hardware flush the vm 1084 * 1085 * @ring: ring to use for flush 1086 * @job: related job 1087 * @need_pipe_sync: is pipe sync needed 1088 * 1089 * Emit a VM flush when it is necessary. 1090 * 1091 * Returns: 1092 * 0 on success, errno otherwise. 1093 */ 1094 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1095 bool need_pipe_sync) 1096 { 1097 struct amdgpu_device *adev = ring->adev; 1098 unsigned vmhub = ring->funcs->vmhub; 1099 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1100 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1101 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1102 id->gds_base != job->gds_base || 1103 id->gds_size != job->gds_size || 1104 id->gws_base != job->gws_base || 1105 id->gws_size != job->gws_size || 1106 id->oa_base != job->oa_base || 1107 id->oa_size != job->oa_size); 1108 bool vm_flush_needed = job->vm_needs_flush; 1109 struct dma_fence *fence = NULL; 1110 bool pasid_mapping_needed = false; 1111 unsigned patch_offset = 0; 1112 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1113 int r; 1114 1115 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1116 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1117 1118 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1119 gds_switch_needed = true; 1120 vm_flush_needed = true; 1121 pasid_mapping_needed = true; 1122 } 1123 1124 mutex_lock(&id_mgr->lock); 1125 if (id->pasid != job->pasid || !id->pasid_mapping || 1126 !dma_fence_is_signaled(id->pasid_mapping)) 1127 pasid_mapping_needed = true; 1128 mutex_unlock(&id_mgr->lock); 1129 1130 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1131 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1132 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1133 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1134 ring->funcs->emit_wreg; 1135 1136 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1137 return 0; 1138 1139 if (ring->funcs->init_cond_exec) 1140 patch_offset = amdgpu_ring_init_cond_exec(ring); 1141 1142 if (need_pipe_sync) 1143 amdgpu_ring_emit_pipeline_sync(ring); 1144 1145 if (vm_flush_needed) { 1146 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1147 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1148 } 1149 1150 if (pasid_mapping_needed) 1151 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1152 1153 if (vm_flush_needed || pasid_mapping_needed) { 1154 r = amdgpu_fence_emit(ring, &fence, 0); 1155 if (r) 1156 return r; 1157 } 1158 1159 if (vm_flush_needed) { 1160 mutex_lock(&id_mgr->lock); 1161 dma_fence_put(id->last_flush); 1162 id->last_flush = dma_fence_get(fence); 1163 id->current_gpu_reset_count = 1164 atomic_read(&adev->gpu_reset_counter); 1165 mutex_unlock(&id_mgr->lock); 1166 } 1167 1168 if (pasid_mapping_needed) { 1169 mutex_lock(&id_mgr->lock); 1170 id->pasid = job->pasid; 1171 dma_fence_put(id->pasid_mapping); 1172 id->pasid_mapping = dma_fence_get(fence); 1173 mutex_unlock(&id_mgr->lock); 1174 } 1175 dma_fence_put(fence); 1176 1177 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1178 id->gds_base = job->gds_base; 1179 id->gds_size = job->gds_size; 1180 id->gws_base = job->gws_base; 1181 id->gws_size = job->gws_size; 1182 id->oa_base = job->oa_base; 1183 id->oa_size = job->oa_size; 1184 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1185 job->gds_size, job->gws_base, 1186 job->gws_size, job->oa_base, 1187 job->oa_size); 1188 } 1189 1190 if (ring->funcs->patch_cond_exec) 1191 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1192 1193 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1194 if (ring->funcs->emit_switch_buffer) { 1195 amdgpu_ring_emit_switch_buffer(ring); 1196 amdgpu_ring_emit_switch_buffer(ring); 1197 } 1198 return 0; 1199 } 1200 1201 /** 1202 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1203 * 1204 * @vm: requested vm 1205 * @bo: requested buffer object 1206 * 1207 * Find @bo inside the requested vm. 1208 * Search inside the @bos vm list for the requested vm 1209 * Returns the found bo_va or NULL if none is found 1210 * 1211 * Object has to be reserved! 1212 * 1213 * Returns: 1214 * Found bo_va or NULL. 1215 */ 1216 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1217 struct amdgpu_bo *bo) 1218 { 1219 struct amdgpu_vm_bo_base *base; 1220 1221 for (base = bo->vm_bo; base; base = base->next) { 1222 if (base->vm != vm) 1223 continue; 1224 1225 return container_of(base, struct amdgpu_bo_va, base); 1226 } 1227 return NULL; 1228 } 1229 1230 /** 1231 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1232 * 1233 * @pages_addr: optional DMA address to use for lookup 1234 * @addr: the unmapped addr 1235 * 1236 * Look up the physical address of the page that the pte resolves 1237 * to. 1238 * 1239 * Returns: 1240 * The pointer for the page table entry. 1241 */ 1242 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1243 { 1244 uint64_t result; 1245 1246 /* page table offset */ 1247 result = pages_addr[addr >> PAGE_SHIFT]; 1248 1249 /* in case cpu page size != gpu page size*/ 1250 result |= addr & (~PAGE_MASK); 1251 1252 result &= 0xFFFFFFFFFFFFF000ULL; 1253 1254 return result; 1255 } 1256 1257 /** 1258 * amdgpu_vm_update_pde - update a single level in the hierarchy 1259 * 1260 * @params: parameters for the update 1261 * @vm: requested vm 1262 * @entry: entry to update 1263 * 1264 * Makes sure the requested entry in parent is up to date. 1265 */ 1266 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1267 struct amdgpu_vm *vm, 1268 struct amdgpu_vm_pt *entry) 1269 { 1270 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1271 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1272 uint64_t pde, pt, flags; 1273 unsigned level; 1274 1275 for (level = 0, pbo = bo->parent; pbo; ++level) 1276 pbo = pbo->parent; 1277 1278 level += params->adev->vm_manager.root_level; 1279 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1280 pde = (entry - parent->entries) * 8; 1281 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1282 } 1283 1284 /** 1285 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1286 * 1287 * @adev: amdgpu_device pointer 1288 * @vm: related vm 1289 * 1290 * Mark all PD level as invalid after an error. 1291 */ 1292 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1293 struct amdgpu_vm *vm) 1294 { 1295 struct amdgpu_vm_pt_cursor cursor; 1296 struct amdgpu_vm_pt *entry; 1297 1298 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1299 if (entry->base.bo && !entry->base.moved) 1300 amdgpu_vm_bo_relocated(&entry->base); 1301 } 1302 1303 /** 1304 * amdgpu_vm_update_pdes - make sure that all directories are valid 1305 * 1306 * @adev: amdgpu_device pointer 1307 * @vm: requested vm 1308 * @immediate: submit immediately to the paging queue 1309 * 1310 * Makes sure all directories are up to date. 1311 * 1312 * Returns: 1313 * 0 for success, error for failure. 1314 */ 1315 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1316 struct amdgpu_vm *vm, bool immediate) 1317 { 1318 struct amdgpu_vm_update_params params; 1319 int r; 1320 1321 if (list_empty(&vm->relocated)) 1322 return 0; 1323 1324 memset(¶ms, 0, sizeof(params)); 1325 params.adev = adev; 1326 params.vm = vm; 1327 params.immediate = immediate; 1328 1329 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1330 if (r) 1331 return r; 1332 1333 while (!list_empty(&vm->relocated)) { 1334 struct amdgpu_vm_pt *entry; 1335 1336 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1337 base.vm_status); 1338 amdgpu_vm_bo_idle(&entry->base); 1339 1340 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1341 if (r) 1342 goto error; 1343 } 1344 1345 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1346 if (r) 1347 goto error; 1348 return 0; 1349 1350 error: 1351 amdgpu_vm_invalidate_pds(adev, vm); 1352 return r; 1353 } 1354 1355 /* 1356 * amdgpu_vm_update_flags - figure out flags for PTE updates 1357 * 1358 * Make sure to set the right flags for the PTEs at the desired level. 1359 */ 1360 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1361 struct amdgpu_bo *bo, unsigned level, 1362 uint64_t pe, uint64_t addr, 1363 unsigned count, uint32_t incr, 1364 uint64_t flags) 1365 1366 { 1367 if (level != AMDGPU_VM_PTB) { 1368 flags |= AMDGPU_PDE_PTE; 1369 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1370 1371 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1372 !(flags & AMDGPU_PTE_VALID) && 1373 !(flags & AMDGPU_PTE_PRT)) { 1374 1375 /* Workaround for fault priority problem on GMC9 */ 1376 flags |= AMDGPU_PTE_EXECUTABLE; 1377 } 1378 1379 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1380 flags); 1381 } 1382 1383 /** 1384 * amdgpu_vm_fragment - get fragment for PTEs 1385 * 1386 * @params: see amdgpu_vm_update_params definition 1387 * @start: first PTE to handle 1388 * @end: last PTE to handle 1389 * @flags: hw mapping flags 1390 * @frag: resulting fragment size 1391 * @frag_end: end of this fragment 1392 * 1393 * Returns the first possible fragment for the start and end address. 1394 */ 1395 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1396 uint64_t start, uint64_t end, uint64_t flags, 1397 unsigned int *frag, uint64_t *frag_end) 1398 { 1399 /** 1400 * The MC L1 TLB supports variable sized pages, based on a fragment 1401 * field in the PTE. When this field is set to a non-zero value, page 1402 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1403 * flags are considered valid for all PTEs within the fragment range 1404 * and corresponding mappings are assumed to be physically contiguous. 1405 * 1406 * The L1 TLB can store a single PTE for the whole fragment, 1407 * significantly increasing the space available for translation 1408 * caching. This leads to large improvements in throughput when the 1409 * TLB is under pressure. 1410 * 1411 * The L2 TLB distributes small and large fragments into two 1412 * asymmetric partitions. The large fragment cache is significantly 1413 * larger. Thus, we try to use large fragments wherever possible. 1414 * Userspace can support this by aligning virtual base address and 1415 * allocation size to the fragment size. 1416 * 1417 * Starting with Vega10 the fragment size only controls the L1. The L2 1418 * is now directly feed with small/huge/giant pages from the walker. 1419 */ 1420 unsigned max_frag; 1421 1422 if (params->adev->asic_type < CHIP_VEGA10) 1423 max_frag = params->adev->vm_manager.fragment_size; 1424 else 1425 max_frag = 31; 1426 1427 /* system pages are non continuously */ 1428 if (params->pages_addr) { 1429 *frag = 0; 1430 *frag_end = end; 1431 return; 1432 } 1433 1434 /* This intentionally wraps around if no bit is set */ 1435 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1436 if (*frag >= max_frag) { 1437 *frag = max_frag; 1438 *frag_end = end & ~((1ULL << max_frag) - 1); 1439 } else { 1440 *frag_end = start + (1 << *frag); 1441 } 1442 } 1443 1444 /** 1445 * amdgpu_vm_update_ptes - make sure that page tables are valid 1446 * 1447 * @params: see amdgpu_vm_update_params definition 1448 * @start: start of GPU address range 1449 * @end: end of GPU address range 1450 * @dst: destination address to map to, the next dst inside the function 1451 * @flags: mapping flags 1452 * 1453 * Update the page tables in the range @start - @end. 1454 * 1455 * Returns: 1456 * 0 for success, -EINVAL for failure. 1457 */ 1458 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1459 uint64_t start, uint64_t end, 1460 uint64_t dst, uint64_t flags) 1461 { 1462 struct amdgpu_device *adev = params->adev; 1463 struct amdgpu_vm_pt_cursor cursor; 1464 uint64_t frag_start = start, frag_end; 1465 unsigned int frag; 1466 int r; 1467 1468 /* figure out the initial fragment */ 1469 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1470 1471 /* walk over the address space and update the PTs */ 1472 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1473 while (cursor.pfn < end) { 1474 unsigned shift, parent_shift, mask; 1475 uint64_t incr, entry_end, pe_start; 1476 struct amdgpu_bo *pt; 1477 1478 if (!params->unlocked) { 1479 /* make sure that the page tables covering the 1480 * address range are actually allocated 1481 */ 1482 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1483 &cursor, params->immediate); 1484 if (r) 1485 return r; 1486 } 1487 1488 shift = amdgpu_vm_level_shift(adev, cursor.level); 1489 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1490 if (params->unlocked) { 1491 /* Unlocked updates are only allowed on the leaves */ 1492 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1493 continue; 1494 } else if (adev->asic_type < CHIP_VEGA10 && 1495 (flags & AMDGPU_PTE_VALID)) { 1496 /* No huge page support before GMC v9 */ 1497 if (cursor.level != AMDGPU_VM_PTB) { 1498 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1499 return -ENOENT; 1500 continue; 1501 } 1502 } else if (frag < shift) { 1503 /* We can't use this level when the fragment size is 1504 * smaller than the address shift. Go to the next 1505 * child entry and try again. 1506 */ 1507 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1508 continue; 1509 } else if (frag >= parent_shift) { 1510 /* If the fragment size is even larger than the parent 1511 * shift we should go up one level and check it again. 1512 */ 1513 if (!amdgpu_vm_pt_ancestor(&cursor)) 1514 return -EINVAL; 1515 continue; 1516 } 1517 1518 pt = cursor.entry->base.bo; 1519 if (!pt) { 1520 /* We need all PDs and PTs for mapping something, */ 1521 if (flags & AMDGPU_PTE_VALID) 1522 return -ENOENT; 1523 1524 /* but unmapping something can happen at a higher 1525 * level. 1526 */ 1527 if (!amdgpu_vm_pt_ancestor(&cursor)) 1528 return -EINVAL; 1529 1530 pt = cursor.entry->base.bo; 1531 shift = parent_shift; 1532 frag_end = max(frag_end, ALIGN(frag_start + 1, 1533 1ULL << shift)); 1534 } 1535 1536 /* Looks good so far, calculate parameters for the update */ 1537 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1538 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1539 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1540 entry_end = ((uint64_t)mask + 1) << shift; 1541 entry_end += cursor.pfn & ~(entry_end - 1); 1542 entry_end = min(entry_end, end); 1543 1544 do { 1545 struct amdgpu_vm *vm = params->vm; 1546 uint64_t upd_end = min(entry_end, frag_end); 1547 unsigned nptes = (upd_end - frag_start) >> shift; 1548 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1549 1550 /* This can happen when we set higher level PDs to 1551 * silent to stop fault floods. 1552 */ 1553 nptes = max(nptes, 1u); 1554 1555 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1556 nptes, dst, incr, upd_flags, 1557 vm->task_info.pid, 1558 vm->immediate.fence_context); 1559 amdgpu_vm_update_flags(params, pt, cursor.level, 1560 pe_start, dst, nptes, incr, 1561 upd_flags); 1562 1563 pe_start += nptes * 8; 1564 dst += nptes * incr; 1565 1566 frag_start = upd_end; 1567 if (frag_start >= frag_end) { 1568 /* figure out the next fragment */ 1569 amdgpu_vm_fragment(params, frag_start, end, 1570 flags, &frag, &frag_end); 1571 if (frag < shift) 1572 break; 1573 } 1574 } while (frag_start < entry_end); 1575 1576 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1577 /* Free all child entries. 1578 * Update the tables with the flags and addresses and free up subsequent 1579 * tables in the case of huge pages or freed up areas. 1580 * This is the maximum you can free, because all other page tables are not 1581 * completely covered by the range and so potentially still in use. 1582 */ 1583 while (cursor.pfn < frag_start) { 1584 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1585 amdgpu_vm_pt_next(adev, &cursor); 1586 params->table_freed = true; 1587 } 1588 1589 } else if (frag >= shift) { 1590 /* or just move on to the next on the same level. */ 1591 amdgpu_vm_pt_next(adev, &cursor); 1592 } 1593 } 1594 1595 return 0; 1596 } 1597 1598 /** 1599 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1600 * 1601 * @adev: amdgpu_device pointer of the VM 1602 * @bo_adev: amdgpu_device pointer of the mapped BO 1603 * @vm: requested vm 1604 * @immediate: immediate submission in a page fault 1605 * @unlocked: unlocked invalidation during MM callback 1606 * @resv: fences we need to sync to 1607 * @start: start of mapped range 1608 * @last: last mapped entry 1609 * @flags: flags for the entries 1610 * @offset: offset into nodes and pages_addr 1611 * @res: ttm_resource to map 1612 * @pages_addr: DMA addresses to use for mapping 1613 * @fence: optional resulting fence 1614 * @table_freed: return true if page table is freed 1615 * 1616 * Fill in the page table entries between @start and @last. 1617 * 1618 * Returns: 1619 * 0 for success, -EINVAL for failure. 1620 */ 1621 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1622 struct amdgpu_device *bo_adev, 1623 struct amdgpu_vm *vm, bool immediate, 1624 bool unlocked, struct dma_resv *resv, 1625 uint64_t start, uint64_t last, 1626 uint64_t flags, uint64_t offset, 1627 struct ttm_resource *res, 1628 dma_addr_t *pages_addr, 1629 struct dma_fence **fence, 1630 bool *table_freed) 1631 { 1632 struct amdgpu_vm_update_params params; 1633 struct amdgpu_res_cursor cursor; 1634 enum amdgpu_sync_mode sync_mode; 1635 int r; 1636 1637 memset(¶ms, 0, sizeof(params)); 1638 params.adev = adev; 1639 params.vm = vm; 1640 params.immediate = immediate; 1641 params.pages_addr = pages_addr; 1642 params.unlocked = unlocked; 1643 1644 /* Implicitly sync to command submissions in the same VM before 1645 * unmapping. Sync to moving fences before mapping. 1646 */ 1647 if (!(flags & AMDGPU_PTE_VALID)) 1648 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1649 else 1650 sync_mode = AMDGPU_SYNC_EXPLICIT; 1651 1652 amdgpu_vm_eviction_lock(vm); 1653 if (vm->evicting) { 1654 r = -EBUSY; 1655 goto error_unlock; 1656 } 1657 1658 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1659 struct dma_fence *tmp = dma_fence_get_stub(); 1660 1661 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1662 swap(vm->last_unlocked, tmp); 1663 dma_fence_put(tmp); 1664 } 1665 1666 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1667 if (r) 1668 goto error_unlock; 1669 1670 amdgpu_res_first(res, offset, (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, 1671 &cursor); 1672 while (cursor.remaining) { 1673 uint64_t tmp, num_entries, addr; 1674 1675 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1676 if (pages_addr) { 1677 bool contiguous = true; 1678 1679 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1680 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1681 uint64_t count; 1682 1683 contiguous = pages_addr[pfn + 1] == 1684 pages_addr[pfn] + PAGE_SIZE; 1685 1686 tmp = num_entries / 1687 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1688 for (count = 2; count < tmp; ++count) { 1689 uint64_t idx = pfn + count; 1690 1691 if (contiguous != (pages_addr[idx] == 1692 pages_addr[idx - 1] + PAGE_SIZE)) 1693 break; 1694 } 1695 num_entries = count * 1696 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1697 } 1698 1699 if (!contiguous) { 1700 addr = cursor.start; 1701 params.pages_addr = pages_addr; 1702 } else { 1703 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1704 params.pages_addr = NULL; 1705 } 1706 1707 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1708 addr = bo_adev->vm_manager.vram_base_offset + 1709 cursor.start; 1710 } else { 1711 addr = 0; 1712 } 1713 1714 tmp = start + num_entries; 1715 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1716 if (r) 1717 goto error_unlock; 1718 1719 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1720 start = tmp; 1721 }; 1722 1723 r = vm->update_funcs->commit(¶ms, fence); 1724 1725 if (table_freed) 1726 *table_freed = params.table_freed; 1727 1728 error_unlock: 1729 amdgpu_vm_eviction_unlock(vm); 1730 return r; 1731 } 1732 1733 /** 1734 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1735 * 1736 * @adev: amdgpu_device pointer 1737 * @bo_va: requested BO and VM object 1738 * @clear: if true clear the entries 1739 * 1740 * Fill in the page table entries for @bo_va. 1741 * 1742 * Returns: 1743 * 0 for success, -EINVAL for failure. 1744 */ 1745 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1746 bool clear) 1747 { 1748 struct amdgpu_bo *bo = bo_va->base.bo; 1749 struct amdgpu_vm *vm = bo_va->base.vm; 1750 struct amdgpu_bo_va_mapping *mapping; 1751 dma_addr_t *pages_addr = NULL; 1752 struct ttm_resource *mem; 1753 struct dma_fence **last_update; 1754 struct dma_resv *resv; 1755 uint64_t flags; 1756 struct amdgpu_device *bo_adev = adev; 1757 int r; 1758 1759 if (clear || !bo) { 1760 mem = NULL; 1761 resv = vm->root.base.bo->tbo.base.resv; 1762 } else { 1763 struct drm_gem_object *obj = &bo->tbo.base; 1764 1765 resv = bo->tbo.base.resv; 1766 if (obj->import_attach && bo_va->is_xgmi) { 1767 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1768 struct drm_gem_object *gobj = dma_buf->priv; 1769 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1770 1771 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1772 bo = gem_to_amdgpu_bo(gobj); 1773 } 1774 mem = &bo->tbo.mem; 1775 if (mem->mem_type == TTM_PL_TT) 1776 pages_addr = bo->tbo.ttm->dma_address; 1777 } 1778 1779 if (bo) { 1780 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1781 1782 if (amdgpu_bo_encrypted(bo)) 1783 flags |= AMDGPU_PTE_TMZ; 1784 1785 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1786 } else { 1787 flags = 0x0; 1788 } 1789 1790 if (clear || (bo && bo->tbo.base.resv == 1791 vm->root.base.bo->tbo.base.resv)) 1792 last_update = &vm->last_update; 1793 else 1794 last_update = &bo_va->last_pt_update; 1795 1796 if (!clear && bo_va->base.moved) { 1797 bo_va->base.moved = false; 1798 list_splice_init(&bo_va->valids, &bo_va->invalids); 1799 1800 } else if (bo_va->cleared != clear) { 1801 list_splice_init(&bo_va->valids, &bo_va->invalids); 1802 } 1803 1804 list_for_each_entry(mapping, &bo_va->invalids, list) { 1805 uint64_t update_flags = flags; 1806 1807 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1808 * but in case of something, we filter the flags in first place 1809 */ 1810 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1811 update_flags &= ~AMDGPU_PTE_READABLE; 1812 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1813 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1814 1815 /* Apply ASIC specific mapping flags */ 1816 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1817 1818 trace_amdgpu_vm_bo_update(mapping); 1819 1820 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1821 resv, mapping->start, 1822 mapping->last, update_flags, 1823 mapping->offset, mem, 1824 pages_addr, last_update, NULL); 1825 if (r) 1826 return r; 1827 } 1828 1829 /* If the BO is not in its preferred location add it back to 1830 * the evicted list so that it gets validated again on the 1831 * next command submission. 1832 */ 1833 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1834 uint32_t mem_type = bo->tbo.mem.mem_type; 1835 1836 if (!(bo->preferred_domains & 1837 amdgpu_mem_type_to_domain(mem_type))) 1838 amdgpu_vm_bo_evicted(&bo_va->base); 1839 else 1840 amdgpu_vm_bo_idle(&bo_va->base); 1841 } else { 1842 amdgpu_vm_bo_done(&bo_va->base); 1843 } 1844 1845 list_splice_init(&bo_va->invalids, &bo_va->valids); 1846 bo_va->cleared = clear; 1847 1848 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1849 list_for_each_entry(mapping, &bo_va->valids, list) 1850 trace_amdgpu_vm_bo_mapping(mapping); 1851 } 1852 1853 return 0; 1854 } 1855 1856 /** 1857 * amdgpu_vm_update_prt_state - update the global PRT state 1858 * 1859 * @adev: amdgpu_device pointer 1860 */ 1861 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1862 { 1863 unsigned long flags; 1864 bool enable; 1865 1866 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1867 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1868 adev->gmc.gmc_funcs->set_prt(adev, enable); 1869 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1870 } 1871 1872 /** 1873 * amdgpu_vm_prt_get - add a PRT user 1874 * 1875 * @adev: amdgpu_device pointer 1876 */ 1877 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1878 { 1879 if (!adev->gmc.gmc_funcs->set_prt) 1880 return; 1881 1882 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1883 amdgpu_vm_update_prt_state(adev); 1884 } 1885 1886 /** 1887 * amdgpu_vm_prt_put - drop a PRT user 1888 * 1889 * @adev: amdgpu_device pointer 1890 */ 1891 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1892 { 1893 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1894 amdgpu_vm_update_prt_state(adev); 1895 } 1896 1897 /** 1898 * amdgpu_vm_prt_cb - callback for updating the PRT status 1899 * 1900 * @fence: fence for the callback 1901 * @_cb: the callback function 1902 */ 1903 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1904 { 1905 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1906 1907 amdgpu_vm_prt_put(cb->adev); 1908 kfree(cb); 1909 } 1910 1911 /** 1912 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1913 * 1914 * @adev: amdgpu_device pointer 1915 * @fence: fence for the callback 1916 */ 1917 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1918 struct dma_fence *fence) 1919 { 1920 struct amdgpu_prt_cb *cb; 1921 1922 if (!adev->gmc.gmc_funcs->set_prt) 1923 return; 1924 1925 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1926 if (!cb) { 1927 /* Last resort when we are OOM */ 1928 if (fence) 1929 dma_fence_wait(fence, false); 1930 1931 amdgpu_vm_prt_put(adev); 1932 } else { 1933 cb->adev = adev; 1934 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1935 amdgpu_vm_prt_cb)) 1936 amdgpu_vm_prt_cb(fence, &cb->cb); 1937 } 1938 } 1939 1940 /** 1941 * amdgpu_vm_free_mapping - free a mapping 1942 * 1943 * @adev: amdgpu_device pointer 1944 * @vm: requested vm 1945 * @mapping: mapping to be freed 1946 * @fence: fence of the unmap operation 1947 * 1948 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1949 */ 1950 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1951 struct amdgpu_vm *vm, 1952 struct amdgpu_bo_va_mapping *mapping, 1953 struct dma_fence *fence) 1954 { 1955 if (mapping->flags & AMDGPU_PTE_PRT) 1956 amdgpu_vm_add_prt_cb(adev, fence); 1957 kfree(mapping); 1958 } 1959 1960 /** 1961 * amdgpu_vm_prt_fini - finish all prt mappings 1962 * 1963 * @adev: amdgpu_device pointer 1964 * @vm: requested vm 1965 * 1966 * Register a cleanup callback to disable PRT support after VM dies. 1967 */ 1968 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1969 { 1970 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1971 struct dma_fence *excl, **shared; 1972 unsigned i, shared_count; 1973 int r; 1974 1975 r = dma_resv_get_fences_rcu(resv, &excl, 1976 &shared_count, &shared); 1977 if (r) { 1978 /* Not enough memory to grab the fence list, as last resort 1979 * block for all the fences to complete. 1980 */ 1981 dma_resv_wait_timeout_rcu(resv, true, false, 1982 MAX_SCHEDULE_TIMEOUT); 1983 return; 1984 } 1985 1986 /* Add a callback for each fence in the reservation object */ 1987 amdgpu_vm_prt_get(adev); 1988 amdgpu_vm_add_prt_cb(adev, excl); 1989 1990 for (i = 0; i < shared_count; ++i) { 1991 amdgpu_vm_prt_get(adev); 1992 amdgpu_vm_add_prt_cb(adev, shared[i]); 1993 } 1994 1995 kfree(shared); 1996 } 1997 1998 /** 1999 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2000 * 2001 * @adev: amdgpu_device pointer 2002 * @vm: requested vm 2003 * @fence: optional resulting fence (unchanged if no work needed to be done 2004 * or if an error occurred) 2005 * 2006 * Make sure all freed BOs are cleared in the PT. 2007 * PTs have to be reserved and mutex must be locked! 2008 * 2009 * Returns: 2010 * 0 for success. 2011 * 2012 */ 2013 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2014 struct amdgpu_vm *vm, 2015 struct dma_fence **fence) 2016 { 2017 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2018 struct amdgpu_bo_va_mapping *mapping; 2019 uint64_t init_pte_value = 0; 2020 struct dma_fence *f = NULL; 2021 int r; 2022 2023 while (!list_empty(&vm->freed)) { 2024 mapping = list_first_entry(&vm->freed, 2025 struct amdgpu_bo_va_mapping, list); 2026 list_del(&mapping->list); 2027 2028 if (vm->pte_support_ats && 2029 mapping->start < AMDGPU_GMC_HOLE_START) 2030 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2031 2032 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2033 resv, mapping->start, 2034 mapping->last, init_pte_value, 2035 0, NULL, NULL, &f, NULL); 2036 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2037 if (r) { 2038 dma_fence_put(f); 2039 return r; 2040 } 2041 } 2042 2043 if (fence && f) { 2044 dma_fence_put(*fence); 2045 *fence = f; 2046 } else { 2047 dma_fence_put(f); 2048 } 2049 2050 return 0; 2051 2052 } 2053 2054 /** 2055 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2056 * 2057 * @adev: amdgpu_device pointer 2058 * @vm: requested vm 2059 * 2060 * Make sure all BOs which are moved are updated in the PTs. 2061 * 2062 * Returns: 2063 * 0 for success. 2064 * 2065 * PTs have to be reserved! 2066 */ 2067 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2068 struct amdgpu_vm *vm) 2069 { 2070 struct amdgpu_bo_va *bo_va, *tmp; 2071 struct dma_resv *resv; 2072 bool clear; 2073 int r; 2074 2075 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2076 /* Per VM BOs never need to bo cleared in the page tables */ 2077 r = amdgpu_vm_bo_update(adev, bo_va, false); 2078 if (r) 2079 return r; 2080 } 2081 2082 spin_lock(&vm->invalidated_lock); 2083 while (!list_empty(&vm->invalidated)) { 2084 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2085 base.vm_status); 2086 resv = bo_va->base.bo->tbo.base.resv; 2087 spin_unlock(&vm->invalidated_lock); 2088 2089 /* Try to reserve the BO to avoid clearing its ptes */ 2090 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2091 clear = false; 2092 /* Somebody else is using the BO right now */ 2093 else 2094 clear = true; 2095 2096 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2097 if (r) 2098 return r; 2099 2100 if (!clear) 2101 dma_resv_unlock(resv); 2102 spin_lock(&vm->invalidated_lock); 2103 } 2104 spin_unlock(&vm->invalidated_lock); 2105 2106 return 0; 2107 } 2108 2109 /** 2110 * amdgpu_vm_bo_add - add a bo to a specific vm 2111 * 2112 * @adev: amdgpu_device pointer 2113 * @vm: requested vm 2114 * @bo: amdgpu buffer object 2115 * 2116 * Add @bo into the requested vm. 2117 * Add @bo to the list of bos associated with the vm 2118 * 2119 * Returns: 2120 * Newly added bo_va or NULL for failure 2121 * 2122 * Object has to be reserved! 2123 */ 2124 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2125 struct amdgpu_vm *vm, 2126 struct amdgpu_bo *bo) 2127 { 2128 struct amdgpu_bo_va *bo_va; 2129 2130 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2131 if (bo_va == NULL) { 2132 return NULL; 2133 } 2134 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2135 2136 bo_va->ref_count = 1; 2137 INIT_LIST_HEAD(&bo_va->valids); 2138 INIT_LIST_HEAD(&bo_va->invalids); 2139 2140 if (!bo) 2141 return bo_va; 2142 2143 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2144 bo_va->is_xgmi = true; 2145 /* Power up XGMI if it can be potentially used */ 2146 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2147 } 2148 2149 return bo_va; 2150 } 2151 2152 2153 /** 2154 * amdgpu_vm_bo_insert_map - insert a new mapping 2155 * 2156 * @adev: amdgpu_device pointer 2157 * @bo_va: bo_va to store the address 2158 * @mapping: the mapping to insert 2159 * 2160 * Insert a new mapping into all structures. 2161 */ 2162 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2163 struct amdgpu_bo_va *bo_va, 2164 struct amdgpu_bo_va_mapping *mapping) 2165 { 2166 struct amdgpu_vm *vm = bo_va->base.vm; 2167 struct amdgpu_bo *bo = bo_va->base.bo; 2168 2169 mapping->bo_va = bo_va; 2170 list_add(&mapping->list, &bo_va->invalids); 2171 amdgpu_vm_it_insert(mapping, &vm->va); 2172 2173 if (mapping->flags & AMDGPU_PTE_PRT) 2174 amdgpu_vm_prt_get(adev); 2175 2176 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2177 !bo_va->base.moved) { 2178 list_move(&bo_va->base.vm_status, &vm->moved); 2179 } 2180 trace_amdgpu_vm_bo_map(bo_va, mapping); 2181 } 2182 2183 /** 2184 * amdgpu_vm_bo_map - map bo inside a vm 2185 * 2186 * @adev: amdgpu_device pointer 2187 * @bo_va: bo_va to store the address 2188 * @saddr: where to map the BO 2189 * @offset: requested offset in the BO 2190 * @size: BO size in bytes 2191 * @flags: attributes of pages (read/write/valid/etc.) 2192 * 2193 * Add a mapping of the BO at the specefied addr into the VM. 2194 * 2195 * Returns: 2196 * 0 for success, error for failure. 2197 * 2198 * Object has to be reserved and unreserved outside! 2199 */ 2200 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2201 struct amdgpu_bo_va *bo_va, 2202 uint64_t saddr, uint64_t offset, 2203 uint64_t size, uint64_t flags) 2204 { 2205 struct amdgpu_bo_va_mapping *mapping, *tmp; 2206 struct amdgpu_bo *bo = bo_va->base.bo; 2207 struct amdgpu_vm *vm = bo_va->base.vm; 2208 uint64_t eaddr; 2209 2210 /* validate the parameters */ 2211 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2212 size == 0 || size & ~PAGE_MASK) 2213 return -EINVAL; 2214 2215 /* make sure object fit at this offset */ 2216 eaddr = saddr + size - 1; 2217 if (saddr >= eaddr || 2218 (bo && offset + size > amdgpu_bo_size(bo)) || 2219 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2220 return -EINVAL; 2221 2222 saddr /= AMDGPU_GPU_PAGE_SIZE; 2223 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2224 2225 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2226 if (tmp) { 2227 /* bo and tmp overlap, invalid addr */ 2228 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2229 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2230 tmp->start, tmp->last + 1); 2231 return -EINVAL; 2232 } 2233 2234 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2235 if (!mapping) 2236 return -ENOMEM; 2237 2238 mapping->start = saddr; 2239 mapping->last = eaddr; 2240 mapping->offset = offset; 2241 mapping->flags = flags; 2242 2243 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2244 2245 return 0; 2246 } 2247 2248 /** 2249 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2250 * 2251 * @adev: amdgpu_device pointer 2252 * @bo_va: bo_va to store the address 2253 * @saddr: where to map the BO 2254 * @offset: requested offset in the BO 2255 * @size: BO size in bytes 2256 * @flags: attributes of pages (read/write/valid/etc.) 2257 * 2258 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2259 * mappings as we do so. 2260 * 2261 * Returns: 2262 * 0 for success, error for failure. 2263 * 2264 * Object has to be reserved and unreserved outside! 2265 */ 2266 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2267 struct amdgpu_bo_va *bo_va, 2268 uint64_t saddr, uint64_t offset, 2269 uint64_t size, uint64_t flags) 2270 { 2271 struct amdgpu_bo_va_mapping *mapping; 2272 struct amdgpu_bo *bo = bo_va->base.bo; 2273 uint64_t eaddr; 2274 int r; 2275 2276 /* validate the parameters */ 2277 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2278 size == 0 || size & ~PAGE_MASK) 2279 return -EINVAL; 2280 2281 /* make sure object fit at this offset */ 2282 eaddr = saddr + size - 1; 2283 if (saddr >= eaddr || 2284 (bo && offset + size > amdgpu_bo_size(bo)) || 2285 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2286 return -EINVAL; 2287 2288 /* Allocate all the needed memory */ 2289 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2290 if (!mapping) 2291 return -ENOMEM; 2292 2293 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2294 if (r) { 2295 kfree(mapping); 2296 return r; 2297 } 2298 2299 saddr /= AMDGPU_GPU_PAGE_SIZE; 2300 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2301 2302 mapping->start = saddr; 2303 mapping->last = eaddr; 2304 mapping->offset = offset; 2305 mapping->flags = flags; 2306 2307 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2308 2309 return 0; 2310 } 2311 2312 /** 2313 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2314 * 2315 * @adev: amdgpu_device pointer 2316 * @bo_va: bo_va to remove the address from 2317 * @saddr: where to the BO is mapped 2318 * 2319 * Remove a mapping of the BO at the specefied addr from the VM. 2320 * 2321 * Returns: 2322 * 0 for success, error for failure. 2323 * 2324 * Object has to be reserved and unreserved outside! 2325 */ 2326 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2327 struct amdgpu_bo_va *bo_va, 2328 uint64_t saddr) 2329 { 2330 struct amdgpu_bo_va_mapping *mapping; 2331 struct amdgpu_vm *vm = bo_va->base.vm; 2332 bool valid = true; 2333 2334 saddr /= AMDGPU_GPU_PAGE_SIZE; 2335 2336 list_for_each_entry(mapping, &bo_va->valids, list) { 2337 if (mapping->start == saddr) 2338 break; 2339 } 2340 2341 if (&mapping->list == &bo_va->valids) { 2342 valid = false; 2343 2344 list_for_each_entry(mapping, &bo_va->invalids, list) { 2345 if (mapping->start == saddr) 2346 break; 2347 } 2348 2349 if (&mapping->list == &bo_va->invalids) 2350 return -ENOENT; 2351 } 2352 2353 list_del(&mapping->list); 2354 amdgpu_vm_it_remove(mapping, &vm->va); 2355 mapping->bo_va = NULL; 2356 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2357 2358 if (valid) 2359 list_add(&mapping->list, &vm->freed); 2360 else 2361 amdgpu_vm_free_mapping(adev, vm, mapping, 2362 bo_va->last_pt_update); 2363 2364 return 0; 2365 } 2366 2367 /** 2368 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2369 * 2370 * @adev: amdgpu_device pointer 2371 * @vm: VM structure to use 2372 * @saddr: start of the range 2373 * @size: size of the range 2374 * 2375 * Remove all mappings in a range, split them as appropriate. 2376 * 2377 * Returns: 2378 * 0 for success, error for failure. 2379 */ 2380 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2381 struct amdgpu_vm *vm, 2382 uint64_t saddr, uint64_t size) 2383 { 2384 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2385 LIST_HEAD(removed); 2386 uint64_t eaddr; 2387 2388 eaddr = saddr + size - 1; 2389 saddr /= AMDGPU_GPU_PAGE_SIZE; 2390 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2391 2392 /* Allocate all the needed memory */ 2393 before = kzalloc(sizeof(*before), GFP_KERNEL); 2394 if (!before) 2395 return -ENOMEM; 2396 INIT_LIST_HEAD(&before->list); 2397 2398 after = kzalloc(sizeof(*after), GFP_KERNEL); 2399 if (!after) { 2400 kfree(before); 2401 return -ENOMEM; 2402 } 2403 INIT_LIST_HEAD(&after->list); 2404 2405 /* Now gather all removed mappings */ 2406 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2407 while (tmp) { 2408 /* Remember mapping split at the start */ 2409 if (tmp->start < saddr) { 2410 before->start = tmp->start; 2411 before->last = saddr - 1; 2412 before->offset = tmp->offset; 2413 before->flags = tmp->flags; 2414 before->bo_va = tmp->bo_va; 2415 list_add(&before->list, &tmp->bo_va->invalids); 2416 } 2417 2418 /* Remember mapping split at the end */ 2419 if (tmp->last > eaddr) { 2420 after->start = eaddr + 1; 2421 after->last = tmp->last; 2422 after->offset = tmp->offset; 2423 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2424 after->flags = tmp->flags; 2425 after->bo_va = tmp->bo_va; 2426 list_add(&after->list, &tmp->bo_va->invalids); 2427 } 2428 2429 list_del(&tmp->list); 2430 list_add(&tmp->list, &removed); 2431 2432 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2433 } 2434 2435 /* And free them up */ 2436 list_for_each_entry_safe(tmp, next, &removed, list) { 2437 amdgpu_vm_it_remove(tmp, &vm->va); 2438 list_del(&tmp->list); 2439 2440 if (tmp->start < saddr) 2441 tmp->start = saddr; 2442 if (tmp->last > eaddr) 2443 tmp->last = eaddr; 2444 2445 tmp->bo_va = NULL; 2446 list_add(&tmp->list, &vm->freed); 2447 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2448 } 2449 2450 /* Insert partial mapping before the range */ 2451 if (!list_empty(&before->list)) { 2452 amdgpu_vm_it_insert(before, &vm->va); 2453 if (before->flags & AMDGPU_PTE_PRT) 2454 amdgpu_vm_prt_get(adev); 2455 } else { 2456 kfree(before); 2457 } 2458 2459 /* Insert partial mapping after the range */ 2460 if (!list_empty(&after->list)) { 2461 amdgpu_vm_it_insert(after, &vm->va); 2462 if (after->flags & AMDGPU_PTE_PRT) 2463 amdgpu_vm_prt_get(adev); 2464 } else { 2465 kfree(after); 2466 } 2467 2468 return 0; 2469 } 2470 2471 /** 2472 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2473 * 2474 * @vm: the requested VM 2475 * @addr: the address 2476 * 2477 * Find a mapping by it's address. 2478 * 2479 * Returns: 2480 * The amdgpu_bo_va_mapping matching for addr or NULL 2481 * 2482 */ 2483 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2484 uint64_t addr) 2485 { 2486 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2487 } 2488 2489 /** 2490 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2491 * 2492 * @vm: the requested vm 2493 * @ticket: CS ticket 2494 * 2495 * Trace all mappings of BOs reserved during a command submission. 2496 */ 2497 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2498 { 2499 struct amdgpu_bo_va_mapping *mapping; 2500 2501 if (!trace_amdgpu_vm_bo_cs_enabled()) 2502 return; 2503 2504 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2505 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2506 if (mapping->bo_va && mapping->bo_va->base.bo) { 2507 struct amdgpu_bo *bo; 2508 2509 bo = mapping->bo_va->base.bo; 2510 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2511 ticket) 2512 continue; 2513 } 2514 2515 trace_amdgpu_vm_bo_cs(mapping); 2516 } 2517 } 2518 2519 /** 2520 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2521 * 2522 * @adev: amdgpu_device pointer 2523 * @bo_va: requested bo_va 2524 * 2525 * Remove @bo_va->bo from the requested vm. 2526 * 2527 * Object have to be reserved! 2528 */ 2529 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2530 struct amdgpu_bo_va *bo_va) 2531 { 2532 struct amdgpu_bo_va_mapping *mapping, *next; 2533 struct amdgpu_bo *bo = bo_va->base.bo; 2534 struct amdgpu_vm *vm = bo_va->base.vm; 2535 struct amdgpu_vm_bo_base **base; 2536 2537 if (bo) { 2538 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2539 vm->bulk_moveable = false; 2540 2541 for (base = &bo_va->base.bo->vm_bo; *base; 2542 base = &(*base)->next) { 2543 if (*base != &bo_va->base) 2544 continue; 2545 2546 *base = bo_va->base.next; 2547 break; 2548 } 2549 } 2550 2551 spin_lock(&vm->invalidated_lock); 2552 list_del(&bo_va->base.vm_status); 2553 spin_unlock(&vm->invalidated_lock); 2554 2555 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2556 list_del(&mapping->list); 2557 amdgpu_vm_it_remove(mapping, &vm->va); 2558 mapping->bo_va = NULL; 2559 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2560 list_add(&mapping->list, &vm->freed); 2561 } 2562 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2563 list_del(&mapping->list); 2564 amdgpu_vm_it_remove(mapping, &vm->va); 2565 amdgpu_vm_free_mapping(adev, vm, mapping, 2566 bo_va->last_pt_update); 2567 } 2568 2569 dma_fence_put(bo_va->last_pt_update); 2570 2571 if (bo && bo_va->is_xgmi) 2572 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2573 2574 kfree(bo_va); 2575 } 2576 2577 /** 2578 * amdgpu_vm_evictable - check if we can evict a VM 2579 * 2580 * @bo: A page table of the VM. 2581 * 2582 * Check if it is possible to evict a VM. 2583 */ 2584 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2585 { 2586 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2587 2588 /* Page tables of a destroyed VM can go away immediately */ 2589 if (!bo_base || !bo_base->vm) 2590 return true; 2591 2592 /* Don't evict VM page tables while they are busy */ 2593 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2594 return false; 2595 2596 /* Try to block ongoing updates */ 2597 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2598 return false; 2599 2600 /* Don't evict VM page tables while they are updated */ 2601 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2602 amdgpu_vm_eviction_unlock(bo_base->vm); 2603 return false; 2604 } 2605 2606 bo_base->vm->evicting = true; 2607 amdgpu_vm_eviction_unlock(bo_base->vm); 2608 return true; 2609 } 2610 2611 /** 2612 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2613 * 2614 * @adev: amdgpu_device pointer 2615 * @bo: amdgpu buffer object 2616 * @evicted: is the BO evicted 2617 * 2618 * Mark @bo as invalid. 2619 */ 2620 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2621 struct amdgpu_bo *bo, bool evicted) 2622 { 2623 struct amdgpu_vm_bo_base *bo_base; 2624 2625 /* shadow bo doesn't have bo base, its validation needs its parent */ 2626 if (bo->parent && bo->parent->shadow == bo) 2627 bo = bo->parent; 2628 2629 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2630 struct amdgpu_vm *vm = bo_base->vm; 2631 2632 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2633 amdgpu_vm_bo_evicted(bo_base); 2634 continue; 2635 } 2636 2637 if (bo_base->moved) 2638 continue; 2639 bo_base->moved = true; 2640 2641 if (bo->tbo.type == ttm_bo_type_kernel) 2642 amdgpu_vm_bo_relocated(bo_base); 2643 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2644 amdgpu_vm_bo_moved(bo_base); 2645 else 2646 amdgpu_vm_bo_invalidated(bo_base); 2647 } 2648 } 2649 2650 /** 2651 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2652 * 2653 * @vm_size: VM size 2654 * 2655 * Returns: 2656 * VM page table as power of two 2657 */ 2658 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2659 { 2660 /* Total bits covered by PD + PTs */ 2661 unsigned bits = ilog2(vm_size) + 18; 2662 2663 /* Make sure the PD is 4K in size up to 8GB address space. 2664 Above that split equal between PD and PTs */ 2665 if (vm_size <= 8) 2666 return (bits - 9); 2667 else 2668 return ((bits + 3) / 2); 2669 } 2670 2671 /** 2672 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2673 * 2674 * @adev: amdgpu_device pointer 2675 * @min_vm_size: the minimum vm size in GB if it's set auto 2676 * @fragment_size_default: Default PTE fragment size 2677 * @max_level: max VMPT level 2678 * @max_bits: max address space size in bits 2679 * 2680 */ 2681 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2682 uint32_t fragment_size_default, unsigned max_level, 2683 unsigned max_bits) 2684 { 2685 unsigned int max_size = 1 << (max_bits - 30); 2686 unsigned int vm_size; 2687 uint64_t tmp; 2688 2689 /* adjust vm size first */ 2690 if (amdgpu_vm_size != -1) { 2691 vm_size = amdgpu_vm_size; 2692 if (vm_size > max_size) { 2693 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2694 amdgpu_vm_size, max_size); 2695 vm_size = max_size; 2696 } 2697 } else { 2698 struct sysinfo si; 2699 unsigned int phys_ram_gb; 2700 2701 /* Optimal VM size depends on the amount of physical 2702 * RAM available. Underlying requirements and 2703 * assumptions: 2704 * 2705 * - Need to map system memory and VRAM from all GPUs 2706 * - VRAM from other GPUs not known here 2707 * - Assume VRAM <= system memory 2708 * - On GFX8 and older, VM space can be segmented for 2709 * different MTYPEs 2710 * - Need to allow room for fragmentation, guard pages etc. 2711 * 2712 * This adds up to a rough guess of system memory x3. 2713 * Round up to power of two to maximize the available 2714 * VM size with the given page table size. 2715 */ 2716 si_meminfo(&si); 2717 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2718 (1 << 30) - 1) >> 30; 2719 vm_size = roundup_pow_of_two( 2720 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2721 } 2722 2723 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2724 2725 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2726 if (amdgpu_vm_block_size != -1) 2727 tmp >>= amdgpu_vm_block_size - 9; 2728 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2729 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2730 switch (adev->vm_manager.num_level) { 2731 case 3: 2732 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2733 break; 2734 case 2: 2735 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2736 break; 2737 case 1: 2738 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2739 break; 2740 default: 2741 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2742 } 2743 /* block size depends on vm size and hw setup*/ 2744 if (amdgpu_vm_block_size != -1) 2745 adev->vm_manager.block_size = 2746 min((unsigned)amdgpu_vm_block_size, max_bits 2747 - AMDGPU_GPU_PAGE_SHIFT 2748 - 9 * adev->vm_manager.num_level); 2749 else if (adev->vm_manager.num_level > 1) 2750 adev->vm_manager.block_size = 9; 2751 else 2752 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2753 2754 if (amdgpu_vm_fragment_size == -1) 2755 adev->vm_manager.fragment_size = fragment_size_default; 2756 else 2757 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2758 2759 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2760 vm_size, adev->vm_manager.num_level + 1, 2761 adev->vm_manager.block_size, 2762 adev->vm_manager.fragment_size); 2763 } 2764 2765 /** 2766 * amdgpu_vm_wait_idle - wait for the VM to become idle 2767 * 2768 * @vm: VM object to wait for 2769 * @timeout: timeout to wait for VM to become idle 2770 */ 2771 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2772 { 2773 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2774 true, true, timeout); 2775 if (timeout <= 0) 2776 return timeout; 2777 2778 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2779 } 2780 2781 /** 2782 * amdgpu_vm_init - initialize a vm instance 2783 * 2784 * @adev: amdgpu_device pointer 2785 * @vm: requested vm 2786 * @pasid: Process address space identifier 2787 * 2788 * Init @vm fields. 2789 * 2790 * Returns: 2791 * 0 for success, error for failure. 2792 */ 2793 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid) 2794 { 2795 struct amdgpu_bo *root; 2796 int r, i; 2797 2798 vm->va = RB_ROOT_CACHED; 2799 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2800 vm->reserved_vmid[i] = NULL; 2801 INIT_LIST_HEAD(&vm->evicted); 2802 INIT_LIST_HEAD(&vm->relocated); 2803 INIT_LIST_HEAD(&vm->moved); 2804 INIT_LIST_HEAD(&vm->idle); 2805 INIT_LIST_HEAD(&vm->invalidated); 2806 spin_lock_init(&vm->invalidated_lock); 2807 INIT_LIST_HEAD(&vm->freed); 2808 INIT_LIST_HEAD(&vm->done); 2809 2810 /* create scheduler entities for page table updates */ 2811 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2812 adev->vm_manager.vm_pte_scheds, 2813 adev->vm_manager.vm_pte_num_scheds, NULL); 2814 if (r) 2815 return r; 2816 2817 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2818 adev->vm_manager.vm_pte_scheds, 2819 adev->vm_manager.vm_pte_num_scheds, NULL); 2820 if (r) 2821 goto error_free_immediate; 2822 2823 vm->pte_support_ats = false; 2824 vm->is_compute_context = false; 2825 2826 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2827 AMDGPU_VM_USE_CPU_FOR_GFX); 2828 2829 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2830 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2831 WARN_ONCE((vm->use_cpu_for_update && 2832 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2833 "CPU update of VM recommended only for large BAR system\n"); 2834 2835 if (vm->use_cpu_for_update) 2836 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2837 else 2838 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2839 vm->last_update = NULL; 2840 vm->last_unlocked = dma_fence_get_stub(); 2841 2842 mutex_init(&vm->eviction_lock); 2843 vm->evicting = false; 2844 2845 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2846 false, &root); 2847 if (r) 2848 goto error_free_delayed; 2849 2850 r = amdgpu_bo_reserve(root, true); 2851 if (r) 2852 goto error_free_root; 2853 2854 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2855 if (r) 2856 goto error_unreserve; 2857 2858 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2859 2860 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2861 if (r) 2862 goto error_unreserve; 2863 2864 amdgpu_bo_unreserve(vm->root.base.bo); 2865 2866 if (pasid) { 2867 unsigned long flags; 2868 2869 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2870 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2871 GFP_ATOMIC); 2872 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2873 if (r < 0) 2874 goto error_free_root; 2875 2876 vm->pasid = pasid; 2877 } 2878 2879 INIT_KFIFO(vm->faults); 2880 2881 return 0; 2882 2883 error_unreserve: 2884 amdgpu_bo_unreserve(vm->root.base.bo); 2885 2886 error_free_root: 2887 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2888 amdgpu_bo_unref(&vm->root.base.bo); 2889 vm->root.base.bo = NULL; 2890 2891 error_free_delayed: 2892 dma_fence_put(vm->last_unlocked); 2893 drm_sched_entity_destroy(&vm->delayed); 2894 2895 error_free_immediate: 2896 drm_sched_entity_destroy(&vm->immediate); 2897 2898 return r; 2899 } 2900 2901 /** 2902 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2903 * 2904 * @adev: amdgpu_device pointer 2905 * @vm: the VM to check 2906 * 2907 * check all entries of the root PD, if any subsequent PDs are allocated, 2908 * it means there are page table creating and filling, and is no a clean 2909 * VM 2910 * 2911 * Returns: 2912 * 0 if this VM is clean 2913 */ 2914 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2915 struct amdgpu_vm *vm) 2916 { 2917 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2918 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2919 unsigned int i = 0; 2920 2921 if (!(vm->root.entries)) 2922 return 0; 2923 2924 for (i = 0; i < entries; i++) { 2925 if (vm->root.entries[i].base.bo) 2926 return -EINVAL; 2927 } 2928 2929 return 0; 2930 } 2931 2932 /** 2933 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2934 * 2935 * @adev: amdgpu_device pointer 2936 * @vm: requested vm 2937 * @pasid: pasid to use 2938 * 2939 * This only works on GFX VMs that don't have any BOs added and no 2940 * page tables allocated yet. 2941 * 2942 * Changes the following VM parameters: 2943 * - use_cpu_for_update 2944 * - pte_supports_ats 2945 * - pasid (old PASID is released, because compute manages its own PASIDs) 2946 * 2947 * Reinitializes the page directory to reflect the changed ATS 2948 * setting. 2949 * 2950 * Returns: 2951 * 0 for success, -errno for errors. 2952 */ 2953 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2954 u32 pasid) 2955 { 2956 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2957 int r; 2958 2959 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2960 if (r) 2961 return r; 2962 2963 /* Sanity checks */ 2964 r = amdgpu_vm_check_clean_reserved(adev, vm); 2965 if (r) 2966 goto unreserve_bo; 2967 2968 if (pasid) { 2969 unsigned long flags; 2970 2971 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2972 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2973 GFP_ATOMIC); 2974 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2975 2976 if (r == -ENOSPC) 2977 goto unreserve_bo; 2978 r = 0; 2979 } 2980 2981 /* Check if PD needs to be reinitialized and do it before 2982 * changing any other state, in case it fails. 2983 */ 2984 if (pte_support_ats != vm->pte_support_ats) { 2985 vm->pte_support_ats = pte_support_ats; 2986 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 2987 if (r) 2988 goto free_idr; 2989 } 2990 2991 /* Update VM state */ 2992 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2993 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2994 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2995 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2996 WARN_ONCE((vm->use_cpu_for_update && 2997 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2998 "CPU update of VM recommended only for large BAR system\n"); 2999 3000 if (vm->use_cpu_for_update) { 3001 /* Sync with last SDMA update/clear before switching to CPU */ 3002 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3003 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3004 if (r) 3005 goto free_idr; 3006 3007 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3008 } else { 3009 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3010 } 3011 dma_fence_put(vm->last_update); 3012 vm->last_update = NULL; 3013 vm->is_compute_context = true; 3014 3015 if (vm->pasid) { 3016 unsigned long flags; 3017 3018 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3019 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3020 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3021 3022 /* Free the original amdgpu allocated pasid 3023 * Will be replaced with kfd allocated pasid 3024 */ 3025 amdgpu_pasid_free(vm->pasid); 3026 vm->pasid = 0; 3027 } 3028 3029 /* Free the shadow bo for compute VM */ 3030 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3031 3032 if (pasid) 3033 vm->pasid = pasid; 3034 3035 goto unreserve_bo; 3036 3037 free_idr: 3038 if (pasid) { 3039 unsigned long flags; 3040 3041 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3042 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3043 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3044 } 3045 unreserve_bo: 3046 amdgpu_bo_unreserve(vm->root.base.bo); 3047 return r; 3048 } 3049 3050 /** 3051 * amdgpu_vm_release_compute - release a compute vm 3052 * @adev: amdgpu_device pointer 3053 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3054 * 3055 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3056 * pasid from vm. Compute should stop use of vm after this call. 3057 */ 3058 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3059 { 3060 if (vm->pasid) { 3061 unsigned long flags; 3062 3063 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3064 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3065 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3066 } 3067 vm->pasid = 0; 3068 vm->is_compute_context = false; 3069 } 3070 3071 /** 3072 * amdgpu_vm_fini - tear down a vm instance 3073 * 3074 * @adev: amdgpu_device pointer 3075 * @vm: requested vm 3076 * 3077 * Tear down @vm. 3078 * Unbind the VM and remove all bos from the vm bo list 3079 */ 3080 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3081 { 3082 struct amdgpu_bo_va_mapping *mapping, *tmp; 3083 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3084 struct amdgpu_bo *root; 3085 int i; 3086 3087 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3088 3089 root = amdgpu_bo_ref(vm->root.base.bo); 3090 amdgpu_bo_reserve(root, true); 3091 if (vm->pasid) { 3092 unsigned long flags; 3093 3094 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3095 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3096 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3097 vm->pasid = 0; 3098 } 3099 3100 dma_fence_wait(vm->last_unlocked, false); 3101 dma_fence_put(vm->last_unlocked); 3102 3103 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3104 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3105 amdgpu_vm_prt_fini(adev, vm); 3106 prt_fini_needed = false; 3107 } 3108 3109 list_del(&mapping->list); 3110 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3111 } 3112 3113 amdgpu_vm_free_pts(adev, vm, NULL); 3114 amdgpu_bo_unreserve(root); 3115 amdgpu_bo_unref(&root); 3116 WARN_ON(vm->root.base.bo); 3117 3118 drm_sched_entity_destroy(&vm->immediate); 3119 drm_sched_entity_destroy(&vm->delayed); 3120 3121 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3122 dev_err(adev->dev, "still active bo inside vm\n"); 3123 } 3124 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3125 &vm->va.rb_root, rb) { 3126 /* Don't remove the mapping here, we don't want to trigger a 3127 * rebalance and the tree is about to be destroyed anyway. 3128 */ 3129 list_del(&mapping->list); 3130 kfree(mapping); 3131 } 3132 3133 dma_fence_put(vm->last_update); 3134 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3135 amdgpu_vmid_free_reserved(adev, vm, i); 3136 } 3137 3138 /** 3139 * amdgpu_vm_manager_init - init the VM manager 3140 * 3141 * @adev: amdgpu_device pointer 3142 * 3143 * Initialize the VM manager structures 3144 */ 3145 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3146 { 3147 unsigned i; 3148 3149 /* Concurrent flushes are only possible starting with Vega10 and 3150 * are broken on Navi10 and Navi14. 3151 */ 3152 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3153 adev->asic_type == CHIP_NAVI10 || 3154 adev->asic_type == CHIP_NAVI14); 3155 amdgpu_vmid_mgr_init(adev); 3156 3157 adev->vm_manager.fence_context = 3158 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3159 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3160 adev->vm_manager.seqno[i] = 0; 3161 3162 spin_lock_init(&adev->vm_manager.prt_lock); 3163 atomic_set(&adev->vm_manager.num_prt_users, 0); 3164 3165 /* If not overridden by the user, by default, only in large BAR systems 3166 * Compute VM tables will be updated by CPU 3167 */ 3168 #ifdef CONFIG_X86_64 3169 if (amdgpu_vm_update_mode == -1) { 3170 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3171 adev->vm_manager.vm_update_mode = 3172 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3173 else 3174 adev->vm_manager.vm_update_mode = 0; 3175 } else 3176 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3177 #else 3178 adev->vm_manager.vm_update_mode = 0; 3179 #endif 3180 3181 idr_init(&adev->vm_manager.pasid_idr); 3182 spin_lock_init(&adev->vm_manager.pasid_lock); 3183 } 3184 3185 /** 3186 * amdgpu_vm_manager_fini - cleanup VM manager 3187 * 3188 * @adev: amdgpu_device pointer 3189 * 3190 * Cleanup the VM manager and free resources. 3191 */ 3192 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3193 { 3194 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3195 idr_destroy(&adev->vm_manager.pasid_idr); 3196 3197 amdgpu_vmid_mgr_fini(adev); 3198 } 3199 3200 /** 3201 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3202 * 3203 * @dev: drm device pointer 3204 * @data: drm_amdgpu_vm 3205 * @filp: drm file pointer 3206 * 3207 * Returns: 3208 * 0 for success, -errno for errors. 3209 */ 3210 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3211 { 3212 union drm_amdgpu_vm *args = data; 3213 struct amdgpu_device *adev = drm_to_adev(dev); 3214 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3215 long timeout = msecs_to_jiffies(2000); 3216 int r; 3217 3218 switch (args->in.op) { 3219 case AMDGPU_VM_OP_RESERVE_VMID: 3220 /* We only have requirement to reserve vmid from gfxhub */ 3221 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3222 AMDGPU_GFXHUB_0); 3223 if (r) 3224 return r; 3225 break; 3226 case AMDGPU_VM_OP_UNRESERVE_VMID: 3227 if (amdgpu_sriov_runtime(adev)) 3228 timeout = 8 * timeout; 3229 3230 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3231 * not referenced anymore. 3232 */ 3233 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3234 if (r) 3235 return r; 3236 3237 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3238 if (r < 0) 3239 return r; 3240 3241 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3242 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3243 break; 3244 default: 3245 return -EINVAL; 3246 } 3247 3248 return 0; 3249 } 3250 3251 /** 3252 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3253 * 3254 * @adev: drm device pointer 3255 * @pasid: PASID identifier for VM 3256 * @task_info: task_info to fill. 3257 */ 3258 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3259 struct amdgpu_task_info *task_info) 3260 { 3261 struct amdgpu_vm *vm; 3262 unsigned long flags; 3263 3264 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3265 3266 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3267 if (vm) 3268 *task_info = vm->task_info; 3269 3270 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3271 } 3272 3273 /** 3274 * amdgpu_vm_set_task_info - Sets VMs task info. 3275 * 3276 * @vm: vm for which to set the info 3277 */ 3278 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3279 { 3280 if (vm->task_info.pid) 3281 return; 3282 3283 vm->task_info.pid = current->pid; 3284 get_task_comm(vm->task_info.task_name, current); 3285 3286 if (current->group_leader->mm != current->mm) 3287 return; 3288 3289 vm->task_info.tgid = current->group_leader->pid; 3290 get_task_comm(vm->task_info.process_name, current->group_leader); 3291 } 3292 3293 /** 3294 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3295 * @adev: amdgpu device pointer 3296 * @pasid: PASID of the VM 3297 * @addr: Address of the fault 3298 * 3299 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3300 * shouldn't be reported any more. 3301 */ 3302 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3303 uint64_t addr) 3304 { 3305 bool is_compute_context = false; 3306 struct amdgpu_bo *root; 3307 uint64_t value, flags; 3308 struct amdgpu_vm *vm; 3309 int r; 3310 3311 spin_lock(&adev->vm_manager.pasid_lock); 3312 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3313 if (vm) { 3314 root = amdgpu_bo_ref(vm->root.base.bo); 3315 is_compute_context = vm->is_compute_context; 3316 } else { 3317 root = NULL; 3318 } 3319 spin_unlock(&adev->vm_manager.pasid_lock); 3320 3321 if (!root) 3322 return false; 3323 3324 addr /= AMDGPU_GPU_PAGE_SIZE; 3325 3326 if (is_compute_context && 3327 !svm_range_restore_pages(adev, pasid, addr)) { 3328 amdgpu_bo_unref(&root); 3329 return true; 3330 } 3331 3332 r = amdgpu_bo_reserve(root, true); 3333 if (r) 3334 goto error_unref; 3335 3336 /* Double check that the VM still exists */ 3337 spin_lock(&adev->vm_manager.pasid_lock); 3338 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3339 if (vm && vm->root.base.bo != root) 3340 vm = NULL; 3341 spin_unlock(&adev->vm_manager.pasid_lock); 3342 if (!vm) 3343 goto error_unlock; 3344 3345 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3346 AMDGPU_PTE_SYSTEM; 3347 3348 if (is_compute_context) { 3349 /* Intentionally setting invalid PTE flag 3350 * combination to force a no-retry-fault 3351 */ 3352 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3353 AMDGPU_PTE_TF; 3354 value = 0; 3355 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3356 /* Redirect the access to the dummy page */ 3357 value = adev->dummy_page_addr; 3358 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3359 AMDGPU_PTE_WRITEABLE; 3360 3361 } else { 3362 /* Let the hw retry silently on the PTE */ 3363 value = 0; 3364 } 3365 3366 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3367 if (r) { 3368 pr_debug("failed %d to reserve fence slot\n", r); 3369 goto error_unlock; 3370 } 3371 3372 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3373 addr, flags, value, NULL, NULL, NULL, 3374 NULL); 3375 if (r) 3376 goto error_unlock; 3377 3378 r = amdgpu_vm_update_pdes(adev, vm, true); 3379 3380 error_unlock: 3381 amdgpu_bo_unreserve(root); 3382 if (r < 0) 3383 DRM_ERROR("Can't handle page fault (%d)\n", r); 3384 3385 error_unref: 3386 amdgpu_bo_unref(&root); 3387 3388 return false; 3389 } 3390 3391 #if defined(CONFIG_DEBUG_FS) 3392 /** 3393 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3394 * 3395 * @vm: Requested VM for printing BO info 3396 * @m: debugfs file 3397 * 3398 * Print BO information in debugfs file for the VM 3399 */ 3400 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3401 { 3402 struct amdgpu_bo_va *bo_va, *tmp; 3403 u64 total_idle = 0; 3404 u64 total_evicted = 0; 3405 u64 total_relocated = 0; 3406 u64 total_moved = 0; 3407 u64 total_invalidated = 0; 3408 u64 total_done = 0; 3409 unsigned int total_idle_objs = 0; 3410 unsigned int total_evicted_objs = 0; 3411 unsigned int total_relocated_objs = 0; 3412 unsigned int total_moved_objs = 0; 3413 unsigned int total_invalidated_objs = 0; 3414 unsigned int total_done_objs = 0; 3415 unsigned int id = 0; 3416 3417 seq_puts(m, "\tIdle BOs:\n"); 3418 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3419 if (!bo_va->base.bo) 3420 continue; 3421 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3422 } 3423 total_idle_objs = id; 3424 id = 0; 3425 3426 seq_puts(m, "\tEvicted BOs:\n"); 3427 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3428 if (!bo_va->base.bo) 3429 continue; 3430 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3431 } 3432 total_evicted_objs = id; 3433 id = 0; 3434 3435 seq_puts(m, "\tRelocated BOs:\n"); 3436 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3437 if (!bo_va->base.bo) 3438 continue; 3439 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3440 } 3441 total_relocated_objs = id; 3442 id = 0; 3443 3444 seq_puts(m, "\tMoved BOs:\n"); 3445 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3446 if (!bo_va->base.bo) 3447 continue; 3448 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3449 } 3450 total_moved_objs = id; 3451 id = 0; 3452 3453 seq_puts(m, "\tInvalidated BOs:\n"); 3454 spin_lock(&vm->invalidated_lock); 3455 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3456 if (!bo_va->base.bo) 3457 continue; 3458 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3459 } 3460 total_invalidated_objs = id; 3461 id = 0; 3462 3463 seq_puts(m, "\tDone BOs:\n"); 3464 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3465 if (!bo_va->base.bo) 3466 continue; 3467 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3468 } 3469 spin_unlock(&vm->invalidated_lock); 3470 total_done_objs = id; 3471 3472 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3473 total_idle_objs); 3474 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3475 total_evicted_objs); 3476 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3477 total_relocated_objs); 3478 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3479 total_moved_objs); 3480 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3481 total_invalidated_objs); 3482 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3483 total_done_objs); 3484 } 3485 #endif 3486