1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32 
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40 
41 /**
42  * DOC: GPUVM
43  *
44  * GPUVM is similar to the legacy gart on older asics, however
45  * rather than there being a single global gart table
46  * for the entire GPU, there are multiple VM page tables active
47  * at any given time.  The VM page tables can contain a mix
48  * vram pages and system memory pages and system memory pages
49  * can be mapped as snooped (cached system pages) or unsnooped
50  * (uncached system pages).
51  * Each VM has an ID associated with it and there is a page table
52  * associated with each VMID.  When execting a command buffer,
53  * the kernel tells the the ring what VMID to use for that command
54  * buffer.  VMIDs are allocated dynamically as commands are submitted.
55  * The userspace drivers maintain their own address space and the kernel
56  * sets up their pages tables accordingly when they submit their
57  * command buffers and a VMID is assigned.
58  * Cayman/Trinity support up to 8 active VMs at any given time;
59  * SI supports 16.
60  */
61 
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64 
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66 		     START, LAST, static, amdgpu_vm_it)
67 
68 #undef START
69 #undef LAST
70 
71 /**
72  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73  */
74 struct amdgpu_prt_cb {
75 
76 	/**
77 	 * @adev: amdgpu device
78 	 */
79 	struct amdgpu_device *adev;
80 
81 	/**
82 	 * @cb: callback
83 	 */
84 	struct dma_fence_cb cb;
85 };
86 
87 /*
88  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89  * happens while holding this lock anywhere to prevent deadlocks when
90  * an MMU notifier runs in reclaim-FS context.
91  */
92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94 	mutex_lock(&vm->eviction_lock);
95 	vm->saved_flags = memalloc_nofs_save();
96 }
97 
98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100 	if (mutex_trylock(&vm->eviction_lock)) {
101 		vm->saved_flags = memalloc_nofs_save();
102 		return 1;
103 	}
104 	return 0;
105 }
106 
107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109 	memalloc_nofs_restore(vm->saved_flags);
110 	mutex_unlock(&vm->eviction_lock);
111 }
112 
113 /**
114  * amdgpu_vm_level_shift - return the addr shift for each level
115  *
116  * @adev: amdgpu_device pointer
117  * @level: VMPT level
118  *
119  * Returns:
120  * The number of bits the pfn needs to be right shifted for a level.
121  */
122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123 				      unsigned level)
124 {
125 	switch (level) {
126 	case AMDGPU_VM_PDB2:
127 	case AMDGPU_VM_PDB1:
128 	case AMDGPU_VM_PDB0:
129 		return 9 * (AMDGPU_VM_PDB0 - level) +
130 			adev->vm_manager.block_size;
131 	case AMDGPU_VM_PTB:
132 		return 0;
133 	default:
134 		return ~0;
135 	}
136 }
137 
138 /**
139  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140  *
141  * @adev: amdgpu_device pointer
142  * @level: VMPT level
143  *
144  * Returns:
145  * The number of entries in a page directory or page table.
146  */
147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148 				      unsigned level)
149 {
150 	unsigned shift = amdgpu_vm_level_shift(adev,
151 					       adev->vm_manager.root_level);
152 
153 	if (level == adev->vm_manager.root_level)
154 		/* For the root directory */
155 		return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156 			>> shift;
157 	else if (level != AMDGPU_VM_PTB)
158 		/* Everything in between */
159 		return 512;
160 	else
161 		/* For the page tables on the leaves */
162 		return AMDGPU_VM_PTE_COUNT(adev);
163 }
164 
165 /**
166  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167  *
168  * @adev: amdgpu_device pointer
169  *
170  * Returns:
171  * The number of entries in the root page directory which needs the ATS setting.
172  */
173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175 	unsigned shift;
176 
177 	shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178 	return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180 
181 /**
182  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183  *
184  * @adev: amdgpu_device pointer
185  * @level: VMPT level
186  *
187  * Returns:
188  * The mask to extract the entry number of a PD/PT from an address.
189  */
190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191 				       unsigned int level)
192 {
193 	if (level <= adev->vm_manager.root_level)
194 		return 0xffffffff;
195 	else if (level != AMDGPU_VM_PTB)
196 		return 0x1ff;
197 	else
198 		return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200 
201 /**
202  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203  *
204  * @adev: amdgpu_device pointer
205  * @level: VMPT level
206  *
207  * Returns:
208  * The size of the BO for a page directory or page table in bytes.
209  */
210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212 	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214 
215 /**
216  * amdgpu_vm_bo_evicted - vm_bo is evicted
217  *
218  * @vm_bo: vm_bo which is evicted
219  *
220  * State for PDs/PTs and per VM BOs which are not at the location they should
221  * be.
222  */
223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225 	struct amdgpu_vm *vm = vm_bo->vm;
226 	struct amdgpu_bo *bo = vm_bo->bo;
227 
228 	vm_bo->moved = true;
229 	if (bo->tbo.type == ttm_bo_type_kernel)
230 		list_move(&vm_bo->vm_status, &vm->evicted);
231 	else
232 		list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235  * amdgpu_vm_bo_moved - vm_bo is moved
236  *
237  * @vm_bo: vm_bo which is moved
238  *
239  * State for per VM BOs which are moved, but that change is not yet reflected
240  * in the page tables.
241  */
242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244 	list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246 
247 /**
248  * amdgpu_vm_bo_idle - vm_bo is idle
249  *
250  * @vm_bo: vm_bo which is now idle
251  *
252  * State for PDs/PTs and per VM BOs which have gone through the state machine
253  * and are now idle.
254  */
255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257 	list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258 	vm_bo->moved = false;
259 }
260 
261 /**
262  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263  *
264  * @vm_bo: vm_bo which is now invalidated
265  *
266  * State for normal BOs which are invalidated and that change not yet reflected
267  * in the PTs.
268  */
269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271 	spin_lock(&vm_bo->vm->invalidated_lock);
272 	list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273 	spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275 
276 /**
277  * amdgpu_vm_bo_relocated - vm_bo is reloacted
278  *
279  * @vm_bo: vm_bo which is relocated
280  *
281  * State for PDs/PTs which needs to update their parent PD.
282  * For the root PD, just move to idle state.
283  */
284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286 	if (vm_bo->bo->parent)
287 		list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288 	else
289 		amdgpu_vm_bo_idle(vm_bo);
290 }
291 
292 /**
293  * amdgpu_vm_bo_done - vm_bo is done
294  *
295  * @vm_bo: vm_bo which is now done
296  *
297  * State for normal BOs which are invalidated and that change has been updated
298  * in the PTs.
299  */
300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302 	spin_lock(&vm_bo->vm->invalidated_lock);
303 	list_del_init(&vm_bo->vm_status);
304 	spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306 
307 /**
308  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309  *
310  * @base: base structure for tracking BO usage in a VM
311  * @vm: vm to which bo is to be added
312  * @bo: amdgpu buffer object
313  *
314  * Initialize a bo_va_base structure and add it to the appropriate lists
315  *
316  */
317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318 				   struct amdgpu_vm *vm,
319 				   struct amdgpu_bo *bo)
320 {
321 	base->vm = vm;
322 	base->bo = bo;
323 	base->next = NULL;
324 	INIT_LIST_HEAD(&base->vm_status);
325 
326 	if (!bo)
327 		return;
328 	base->next = bo->vm_bo;
329 	bo->vm_bo = base;
330 
331 	if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332 		return;
333 
334 	vm->bulk_moveable = false;
335 	if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336 		amdgpu_vm_bo_relocated(base);
337 	else
338 		amdgpu_vm_bo_idle(base);
339 
340 	if (bo->preferred_domains &
341 	    amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342 		return;
343 
344 	/*
345 	 * we checked all the prerequisites, but it looks like this per vm bo
346 	 * is currently evicted. add the bo to the evicted list to make sure it
347 	 * is validated on next vm use to avoid fault.
348 	 * */
349 	amdgpu_vm_bo_evicted(base);
350 }
351 
352 /**
353  * amdgpu_vm_pt_parent - get the parent page directory
354  *
355  * @pt: child page table
356  *
357  * Helper to get the parent entry for the child page table. NULL if we are at
358  * the root page directory.
359  */
360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362 	struct amdgpu_bo *parent = pt->base.bo->parent;
363 
364 	if (!parent)
365 		return NULL;
366 
367 	return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369 
370 /*
371  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372  */
373 struct amdgpu_vm_pt_cursor {
374 	uint64_t pfn;
375 	struct amdgpu_vm_pt *parent;
376 	struct amdgpu_vm_pt *entry;
377 	unsigned level;
378 };
379 
380 /**
381  * amdgpu_vm_pt_start - start PD/PT walk
382  *
383  * @adev: amdgpu_device pointer
384  * @vm: amdgpu_vm structure
385  * @start: start address of the walk
386  * @cursor: state to initialize
387  *
388  * Initialize a amdgpu_vm_pt_cursor to start a walk.
389  */
390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391 			       struct amdgpu_vm *vm, uint64_t start,
392 			       struct amdgpu_vm_pt_cursor *cursor)
393 {
394 	cursor->pfn = start;
395 	cursor->parent = NULL;
396 	cursor->entry = &vm->root;
397 	cursor->level = adev->vm_manager.root_level;
398 }
399 
400 /**
401  * amdgpu_vm_pt_descendant - go to child node
402  *
403  * @adev: amdgpu_device pointer
404  * @cursor: current state
405  *
406  * Walk to the child node of the current node.
407  * Returns:
408  * True if the walk was possible, false otherwise.
409  */
410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411 				    struct amdgpu_vm_pt_cursor *cursor)
412 {
413 	unsigned mask, shift, idx;
414 
415 	if (!cursor->entry->entries)
416 		return false;
417 
418 	BUG_ON(!cursor->entry->base.bo);
419 	mask = amdgpu_vm_entries_mask(adev, cursor->level);
420 	shift = amdgpu_vm_level_shift(adev, cursor->level);
421 
422 	++cursor->level;
423 	idx = (cursor->pfn >> shift) & mask;
424 	cursor->parent = cursor->entry;
425 	cursor->entry = &cursor->entry->entries[idx];
426 	return true;
427 }
428 
429 /**
430  * amdgpu_vm_pt_sibling - go to sibling node
431  *
432  * @adev: amdgpu_device pointer
433  * @cursor: current state
434  *
435  * Walk to the sibling node of the current node.
436  * Returns:
437  * True if the walk was possible, false otherwise.
438  */
439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440 				 struct amdgpu_vm_pt_cursor *cursor)
441 {
442 	unsigned shift, num_entries;
443 
444 	/* Root doesn't have a sibling */
445 	if (!cursor->parent)
446 		return false;
447 
448 	/* Go to our parents and see if we got a sibling */
449 	shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450 	num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451 
452 	if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453 		return false;
454 
455 	cursor->pfn += 1ULL << shift;
456 	cursor->pfn &= ~((1ULL << shift) - 1);
457 	++cursor->entry;
458 	return true;
459 }
460 
461 /**
462  * amdgpu_vm_pt_ancestor - go to parent node
463  *
464  * @cursor: current state
465  *
466  * Walk to the parent node of the current node.
467  * Returns:
468  * True if the walk was possible, false otherwise.
469  */
470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472 	if (!cursor->parent)
473 		return false;
474 
475 	--cursor->level;
476 	cursor->entry = cursor->parent;
477 	cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478 	return true;
479 }
480 
481 /**
482  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483  *
484  * @adev: amdgpu_device pointer
485  * @cursor: current state
486  *
487  * Walk the PD/PT tree to the next node.
488  */
489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490 			      struct amdgpu_vm_pt_cursor *cursor)
491 {
492 	/* First try a newborn child */
493 	if (amdgpu_vm_pt_descendant(adev, cursor))
494 		return;
495 
496 	/* If that didn't worked try to find a sibling */
497 	while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498 		/* No sibling, go to our parents and grandparents */
499 		if (!amdgpu_vm_pt_ancestor(cursor)) {
500 			cursor->pfn = ~0ll;
501 			return;
502 		}
503 	}
504 }
505 
506 /**
507  * amdgpu_vm_pt_first_dfs - start a deep first search
508  *
509  * @adev: amdgpu_device structure
510  * @vm: amdgpu_vm structure
511  * @start: optional cursor to start with
512  * @cursor: state to initialize
513  *
514  * Starts a deep first traversal of the PD/PT tree.
515  */
516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517 				   struct amdgpu_vm *vm,
518 				   struct amdgpu_vm_pt_cursor *start,
519 				   struct amdgpu_vm_pt_cursor *cursor)
520 {
521 	if (start)
522 		*cursor = *start;
523 	else
524 		amdgpu_vm_pt_start(adev, vm, 0, cursor);
525 	while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527 
528 /**
529  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530  *
531  * @start: starting point for the search
532  * @entry: current entry
533  *
534  * Returns:
535  * True when the search should continue, false otherwise.
536  */
537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538 				      struct amdgpu_vm_pt *entry)
539 {
540 	return entry && (!start || entry != start->entry);
541 }
542 
543 /**
544  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545  *
546  * @adev: amdgpu_device structure
547  * @cursor: current state
548  *
549  * Move the cursor to the next node in a deep first search.
550  */
551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552 				  struct amdgpu_vm_pt_cursor *cursor)
553 {
554 	if (!cursor->entry)
555 		return;
556 
557 	if (!cursor->parent)
558 		cursor->entry = NULL;
559 	else if (amdgpu_vm_pt_sibling(adev, cursor))
560 		while (amdgpu_vm_pt_descendant(adev, cursor));
561 	else
562 		amdgpu_vm_pt_ancestor(cursor);
563 }
564 
565 /*
566  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567  */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)		\
569 	for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),		\
570 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571 	     amdgpu_vm_pt_continue_dfs((start), (entry));			\
572 	     (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573 
574 /**
575  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576  *
577  * @vm: vm providing the BOs
578  * @validated: head of validation list
579  * @entry: entry to add
580  *
581  * Add the page directory to the list of BOs to
582  * validate for command submission.
583  */
584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585 			 struct list_head *validated,
586 			 struct amdgpu_bo_list_entry *entry)
587 {
588 	entry->priority = 0;
589 	entry->tv.bo = &vm->root.base.bo->tbo;
590 	/* Two for VM updates, one for TTM and one for the CS job */
591 	entry->tv.num_shared = 4;
592 	entry->user_pages = NULL;
593 	list_add(&entry->tv.head, validated);
594 }
595 
596 /**
597  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598  *
599  * @bo: BO which was removed from the LRU
600  *
601  * Make sure the bulk_moveable flag is updated when a BO is removed from the
602  * LRU.
603  */
604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606 	struct amdgpu_bo *abo;
607 	struct amdgpu_vm_bo_base *bo_base;
608 
609 	if (!amdgpu_bo_is_amdgpu_bo(bo))
610 		return;
611 
612 	if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613 		return;
614 
615 	abo = ttm_to_amdgpu_bo(bo);
616 	if (!abo->parent)
617 		return;
618 	for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619 		struct amdgpu_vm *vm = bo_base->vm;
620 
621 		if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622 			vm->bulk_moveable = false;
623 	}
624 
625 }
626 /**
627  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628  *
629  * @adev: amdgpu device pointer
630  * @vm: vm providing the BOs
631  *
632  * Move all BOs to the end of LRU and remember their positions to put them
633  * together.
634  */
635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636 				struct amdgpu_vm *vm)
637 {
638 	struct amdgpu_vm_bo_base *bo_base;
639 
640 	if (vm->bulk_moveable) {
641 		spin_lock(&ttm_bo_glob.lru_lock);
642 		ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643 		spin_unlock(&ttm_bo_glob.lru_lock);
644 		return;
645 	}
646 
647 	memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648 
649 	spin_lock(&ttm_bo_glob.lru_lock);
650 	list_for_each_entry(bo_base, &vm->idle, vm_status) {
651 		struct amdgpu_bo *bo = bo_base->bo;
652 
653 		if (!bo->parent)
654 			continue;
655 
656 		ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657 		if (bo->shadow)
658 			ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659 						&vm->lru_bulk_move);
660 	}
661 	spin_unlock(&ttm_bo_glob.lru_lock);
662 
663 	vm->bulk_moveable = true;
664 }
665 
666 /**
667  * amdgpu_vm_validate_pt_bos - validate the page table BOs
668  *
669  * @adev: amdgpu device pointer
670  * @vm: vm providing the BOs
671  * @validate: callback to do the validation
672  * @param: parameter for the validation callback
673  *
674  * Validate the page table BOs on command submission if neccessary.
675  *
676  * Returns:
677  * Validation result.
678  */
679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680 			      int (*validate)(void *p, struct amdgpu_bo *bo),
681 			      void *param)
682 {
683 	struct amdgpu_vm_bo_base *bo_base, *tmp;
684 	int r;
685 
686 	vm->bulk_moveable &= list_empty(&vm->evicted);
687 
688 	list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689 		struct amdgpu_bo *bo = bo_base->bo;
690 
691 		r = validate(param, bo);
692 		if (r)
693 			return r;
694 
695 		if (bo->tbo.type != ttm_bo_type_kernel) {
696 			amdgpu_vm_bo_moved(bo_base);
697 		} else {
698 			vm->update_funcs->map_table(bo);
699 			amdgpu_vm_bo_relocated(bo_base);
700 		}
701 	}
702 
703 	amdgpu_vm_eviction_lock(vm);
704 	vm->evicting = false;
705 	amdgpu_vm_eviction_unlock(vm);
706 
707 	return 0;
708 }
709 
710 /**
711  * amdgpu_vm_ready - check VM is ready for updates
712  *
713  * @vm: VM to check
714  *
715  * Check if all VM PDs/PTs are ready for updates
716  *
717  * Returns:
718  * True if eviction list is empty.
719  */
720 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721 {
722 	return list_empty(&vm->evicted);
723 }
724 
725 /**
726  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
727  *
728  * @adev: amdgpu_device pointer
729  * @vm: VM to clear BO from
730  * @bo: BO to clear
731  * @immediate: use an immediate update
732  *
733  * Root PD needs to be reserved when calling this.
734  *
735  * Returns:
736  * 0 on success, errno otherwise.
737  */
738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
739 			      struct amdgpu_vm *vm,
740 			      struct amdgpu_bo *bo,
741 			      bool immediate)
742 {
743 	struct ttm_operation_ctx ctx = { true, false };
744 	unsigned level = adev->vm_manager.root_level;
745 	struct amdgpu_vm_update_params params;
746 	struct amdgpu_bo *ancestor = bo;
747 	unsigned entries, ats_entries;
748 	uint64_t addr;
749 	int r;
750 
751 	/* Figure out our place in the hierarchy */
752 	if (ancestor->parent) {
753 		++level;
754 		while (ancestor->parent->parent) {
755 			++level;
756 			ancestor = ancestor->parent;
757 		}
758 	}
759 
760 	entries = amdgpu_bo_size(bo) / 8;
761 	if (!vm->pte_support_ats) {
762 		ats_entries = 0;
763 
764 	} else if (!bo->parent) {
765 		ats_entries = amdgpu_vm_num_ats_entries(adev);
766 		ats_entries = min(ats_entries, entries);
767 		entries -= ats_entries;
768 
769 	} else {
770 		struct amdgpu_vm_pt *pt;
771 
772 		pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
773 		ats_entries = amdgpu_vm_num_ats_entries(adev);
774 		if ((pt - vm->root.entries) >= ats_entries) {
775 			ats_entries = 0;
776 		} else {
777 			ats_entries = entries;
778 			entries = 0;
779 		}
780 	}
781 
782 	r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
783 	if (r)
784 		return r;
785 
786 	if (bo->shadow) {
787 		r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
788 				    &ctx);
789 		if (r)
790 			return r;
791 	}
792 
793 	r = vm->update_funcs->map_table(bo);
794 	if (r)
795 		return r;
796 
797 	memset(&params, 0, sizeof(params));
798 	params.adev = adev;
799 	params.vm = vm;
800 	params.immediate = immediate;
801 
802 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
803 	if (r)
804 		return r;
805 
806 	addr = 0;
807 	if (ats_entries) {
808 		uint64_t value = 0, flags;
809 
810 		flags = AMDGPU_PTE_DEFAULT_ATC;
811 		if (level != AMDGPU_VM_PTB) {
812 			/* Handle leaf PDEs as PTEs */
813 			flags |= AMDGPU_PDE_PTE;
814 			amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
815 		}
816 
817 		r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
818 					     value, flags);
819 		if (r)
820 			return r;
821 
822 		addr += ats_entries * 8;
823 	}
824 
825 	if (entries) {
826 		uint64_t value = 0, flags = 0;
827 
828 		if (adev->asic_type >= CHIP_VEGA10) {
829 			if (level != AMDGPU_VM_PTB) {
830 				/* Handle leaf PDEs as PTEs */
831 				flags |= AMDGPU_PDE_PTE;
832 				amdgpu_gmc_get_vm_pde(adev, level,
833 						      &value, &flags);
834 			} else {
835 				/* Workaround for fault priority problem on GMC9 */
836 				flags = AMDGPU_PTE_EXECUTABLE;
837 			}
838 		}
839 
840 		r = vm->update_funcs->update(&params, bo, addr, 0, entries,
841 					     value, flags);
842 		if (r)
843 			return r;
844 	}
845 
846 	return vm->update_funcs->commit(&params, NULL);
847 }
848 
849 /**
850  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
851  *
852  * @adev: amdgpu_device pointer
853  * @vm: requesting vm
854  * @level: the page table level
855  * @immediate: use a immediate update
856  * @bp: resulting BO allocation parameters
857  */
858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
859 			       int level, bool immediate,
860 			       struct amdgpu_bo_param *bp)
861 {
862 	memset(bp, 0, sizeof(*bp));
863 
864 	bp->size = amdgpu_vm_bo_size(adev, level);
865 	bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
866 	bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
867 	bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
868 	bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
869 		AMDGPU_GEM_CREATE_CPU_GTT_USWC;
870 	if (vm->use_cpu_for_update)
871 		bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
872 	else if (!vm->root.base.bo || vm->root.base.bo->shadow)
873 		bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
874 	bp->type = ttm_bo_type_kernel;
875 	bp->no_wait_gpu = immediate;
876 	if (vm->root.base.bo)
877 		bp->resv = vm->root.base.bo->tbo.base.resv;
878 }
879 
880 /**
881  * amdgpu_vm_alloc_pts - Allocate a specific page table
882  *
883  * @adev: amdgpu_device pointer
884  * @vm: VM to allocate page tables for
885  * @cursor: Which page table to allocate
886  * @immediate: use an immediate update
887  *
888  * Make sure a specific page table or directory is allocated.
889  *
890  * Returns:
891  * 1 if page table needed to be allocated, 0 if page table was already
892  * allocated, negative errno if an error occurred.
893  */
894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
895 			       struct amdgpu_vm *vm,
896 			       struct amdgpu_vm_pt_cursor *cursor,
897 			       bool immediate)
898 {
899 	struct amdgpu_vm_pt *entry = cursor->entry;
900 	struct amdgpu_bo_param bp;
901 	struct amdgpu_bo *pt;
902 	int r;
903 
904 	if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
905 		unsigned num_entries;
906 
907 		num_entries = amdgpu_vm_num_entries(adev, cursor->level);
908 		entry->entries = kvmalloc_array(num_entries,
909 						sizeof(*entry->entries),
910 						GFP_KERNEL | __GFP_ZERO);
911 		if (!entry->entries)
912 			return -ENOMEM;
913 	}
914 
915 	if (entry->base.bo)
916 		return 0;
917 
918 	amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
919 
920 	r = amdgpu_bo_create(adev, &bp, &pt);
921 	if (r)
922 		return r;
923 
924 	/* Keep a reference to the root directory to avoid
925 	 * freeing them up in the wrong order.
926 	 */
927 	pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
928 	amdgpu_vm_bo_base_init(&entry->base, vm, pt);
929 
930 	r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
931 	if (r)
932 		goto error_free_pt;
933 
934 	return 0;
935 
936 error_free_pt:
937 	amdgpu_bo_unref(&pt->shadow);
938 	amdgpu_bo_unref(&pt);
939 	return r;
940 }
941 
942 /**
943  * amdgpu_vm_free_table - fre one PD/PT
944  *
945  * @entry: PDE to free
946  */
947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
948 {
949 	if (entry->base.bo) {
950 		entry->base.bo->vm_bo = NULL;
951 		list_del(&entry->base.vm_status);
952 		amdgpu_bo_unref(&entry->base.bo->shadow);
953 		amdgpu_bo_unref(&entry->base.bo);
954 	}
955 	kvfree(entry->entries);
956 	entry->entries = NULL;
957 }
958 
959 /**
960  * amdgpu_vm_free_pts - free PD/PT levels
961  *
962  * @adev: amdgpu device structure
963  * @vm: amdgpu vm structure
964  * @start: optional cursor where to start freeing PDs/PTs
965  *
966  * Free the page directory or page table level and all sub levels.
967  */
968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
969 			       struct amdgpu_vm *vm,
970 			       struct amdgpu_vm_pt_cursor *start)
971 {
972 	struct amdgpu_vm_pt_cursor cursor;
973 	struct amdgpu_vm_pt *entry;
974 
975 	vm->bulk_moveable = false;
976 
977 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
978 		amdgpu_vm_free_table(entry);
979 
980 	if (start)
981 		amdgpu_vm_free_table(start->entry);
982 }
983 
984 /**
985  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
986  *
987  * @adev: amdgpu_device pointer
988  */
989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
990 {
991 	const struct amdgpu_ip_block *ip_block;
992 	bool has_compute_vm_bug;
993 	struct amdgpu_ring *ring;
994 	int i;
995 
996 	has_compute_vm_bug = false;
997 
998 	ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
999 	if (ip_block) {
1000 		/* Compute has a VM bug for GFX version < 7.
1001 		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1002 		if (ip_block->version->major <= 7)
1003 			has_compute_vm_bug = true;
1004 		else if (ip_block->version->major == 8)
1005 			if (adev->gfx.mec_fw_version < 673)
1006 				has_compute_vm_bug = true;
1007 	}
1008 
1009 	for (i = 0; i < adev->num_rings; i++) {
1010 		ring = adev->rings[i];
1011 		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1012 			/* only compute rings */
1013 			ring->has_compute_vm_bug = has_compute_vm_bug;
1014 		else
1015 			ring->has_compute_vm_bug = false;
1016 	}
1017 }
1018 
1019 /**
1020  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1021  *
1022  * @ring: ring on which the job will be submitted
1023  * @job: job to submit
1024  *
1025  * Returns:
1026  * True if sync is needed.
1027  */
1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1029 				  struct amdgpu_job *job)
1030 {
1031 	struct amdgpu_device *adev = ring->adev;
1032 	unsigned vmhub = ring->funcs->vmhub;
1033 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1034 	struct amdgpu_vmid *id;
1035 	bool gds_switch_needed;
1036 	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1037 
1038 	if (job->vmid == 0)
1039 		return false;
1040 	id = &id_mgr->ids[job->vmid];
1041 	gds_switch_needed = ring->funcs->emit_gds_switch && (
1042 		id->gds_base != job->gds_base ||
1043 		id->gds_size != job->gds_size ||
1044 		id->gws_base != job->gws_base ||
1045 		id->gws_size != job->gws_size ||
1046 		id->oa_base != job->oa_base ||
1047 		id->oa_size != job->oa_size);
1048 
1049 	if (amdgpu_vmid_had_gpu_reset(adev, id))
1050 		return true;
1051 
1052 	return vm_flush_needed || gds_switch_needed;
1053 }
1054 
1055 /**
1056  * amdgpu_vm_flush - hardware flush the vm
1057  *
1058  * @ring: ring to use for flush
1059  * @job:  related job
1060  * @need_pipe_sync: is pipe sync needed
1061  *
1062  * Emit a VM flush when it is necessary.
1063  *
1064  * Returns:
1065  * 0 on success, errno otherwise.
1066  */
1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1068 		    bool need_pipe_sync)
1069 {
1070 	struct amdgpu_device *adev = ring->adev;
1071 	unsigned vmhub = ring->funcs->vmhub;
1072 	struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1073 	struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1074 	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1075 		id->gds_base != job->gds_base ||
1076 		id->gds_size != job->gds_size ||
1077 		id->gws_base != job->gws_base ||
1078 		id->gws_size != job->gws_size ||
1079 		id->oa_base != job->oa_base ||
1080 		id->oa_size != job->oa_size);
1081 	bool vm_flush_needed = job->vm_needs_flush;
1082 	struct dma_fence *fence = NULL;
1083 	bool pasid_mapping_needed = false;
1084 	unsigned patch_offset = 0;
1085 	bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1086 	int r;
1087 
1088 	if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1089 		adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1090 
1091 	if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1092 		gds_switch_needed = true;
1093 		vm_flush_needed = true;
1094 		pasid_mapping_needed = true;
1095 	}
1096 
1097 	mutex_lock(&id_mgr->lock);
1098 	if (id->pasid != job->pasid || !id->pasid_mapping ||
1099 	    !dma_fence_is_signaled(id->pasid_mapping))
1100 		pasid_mapping_needed = true;
1101 	mutex_unlock(&id_mgr->lock);
1102 
1103 	gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1104 	vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1105 			job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1106 	pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1107 		ring->funcs->emit_wreg;
1108 
1109 	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1110 		return 0;
1111 
1112 	if (ring->funcs->init_cond_exec)
1113 		patch_offset = amdgpu_ring_init_cond_exec(ring);
1114 
1115 	if (need_pipe_sync)
1116 		amdgpu_ring_emit_pipeline_sync(ring);
1117 
1118 	if (vm_flush_needed) {
1119 		trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1120 		amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1121 	}
1122 
1123 	if (pasid_mapping_needed)
1124 		amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1125 
1126 	if (vm_flush_needed || pasid_mapping_needed) {
1127 		r = amdgpu_fence_emit(ring, &fence, 0);
1128 		if (r)
1129 			return r;
1130 	}
1131 
1132 	if (vm_flush_needed) {
1133 		mutex_lock(&id_mgr->lock);
1134 		dma_fence_put(id->last_flush);
1135 		id->last_flush = dma_fence_get(fence);
1136 		id->current_gpu_reset_count =
1137 			atomic_read(&adev->gpu_reset_counter);
1138 		mutex_unlock(&id_mgr->lock);
1139 	}
1140 
1141 	if (pasid_mapping_needed) {
1142 		mutex_lock(&id_mgr->lock);
1143 		id->pasid = job->pasid;
1144 		dma_fence_put(id->pasid_mapping);
1145 		id->pasid_mapping = dma_fence_get(fence);
1146 		mutex_unlock(&id_mgr->lock);
1147 	}
1148 	dma_fence_put(fence);
1149 
1150 	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1151 		id->gds_base = job->gds_base;
1152 		id->gds_size = job->gds_size;
1153 		id->gws_base = job->gws_base;
1154 		id->gws_size = job->gws_size;
1155 		id->oa_base = job->oa_base;
1156 		id->oa_size = job->oa_size;
1157 		amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1158 					    job->gds_size, job->gws_base,
1159 					    job->gws_size, job->oa_base,
1160 					    job->oa_size);
1161 	}
1162 
1163 	if (ring->funcs->patch_cond_exec)
1164 		amdgpu_ring_patch_cond_exec(ring, patch_offset);
1165 
1166 	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1167 	if (ring->funcs->emit_switch_buffer) {
1168 		amdgpu_ring_emit_switch_buffer(ring);
1169 		amdgpu_ring_emit_switch_buffer(ring);
1170 	}
1171 	return 0;
1172 }
1173 
1174 /**
1175  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1176  *
1177  * @vm: requested vm
1178  * @bo: requested buffer object
1179  *
1180  * Find @bo inside the requested vm.
1181  * Search inside the @bos vm list for the requested vm
1182  * Returns the found bo_va or NULL if none is found
1183  *
1184  * Object has to be reserved!
1185  *
1186  * Returns:
1187  * Found bo_va or NULL.
1188  */
1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1190 				       struct amdgpu_bo *bo)
1191 {
1192 	struct amdgpu_vm_bo_base *base;
1193 
1194 	for (base = bo->vm_bo; base; base = base->next) {
1195 		if (base->vm != vm)
1196 			continue;
1197 
1198 		return container_of(base, struct amdgpu_bo_va, base);
1199 	}
1200 	return NULL;
1201 }
1202 
1203 /**
1204  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1205  *
1206  * @pages_addr: optional DMA address to use for lookup
1207  * @addr: the unmapped addr
1208  *
1209  * Look up the physical address of the page that the pte resolves
1210  * to.
1211  *
1212  * Returns:
1213  * The pointer for the page table entry.
1214  */
1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1216 {
1217 	uint64_t result;
1218 
1219 	/* page table offset */
1220 	result = pages_addr[addr >> PAGE_SHIFT];
1221 
1222 	/* in case cpu page size != gpu page size*/
1223 	result |= addr & (~PAGE_MASK);
1224 
1225 	result &= 0xFFFFFFFFFFFFF000ULL;
1226 
1227 	return result;
1228 }
1229 
1230 /**
1231  * amdgpu_vm_update_pde - update a single level in the hierarchy
1232  *
1233  * @params: parameters for the update
1234  * @vm: requested vm
1235  * @entry: entry to update
1236  *
1237  * Makes sure the requested entry in parent is up to date.
1238  */
1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1240 				struct amdgpu_vm *vm,
1241 				struct amdgpu_vm_pt *entry)
1242 {
1243 	struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1244 	struct amdgpu_bo *bo = parent->base.bo, *pbo;
1245 	uint64_t pde, pt, flags;
1246 	unsigned level;
1247 
1248 	for (level = 0, pbo = bo->parent; pbo; ++level)
1249 		pbo = pbo->parent;
1250 
1251 	level += params->adev->vm_manager.root_level;
1252 	amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1253 	pde = (entry - parent->entries) * 8;
1254 	return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1255 }
1256 
1257 /**
1258  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1259  *
1260  * @adev: amdgpu_device pointer
1261  * @vm: related vm
1262  *
1263  * Mark all PD level as invalid after an error.
1264  */
1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1266 				     struct amdgpu_vm *vm)
1267 {
1268 	struct amdgpu_vm_pt_cursor cursor;
1269 	struct amdgpu_vm_pt *entry;
1270 
1271 	for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1272 		if (entry->base.bo && !entry->base.moved)
1273 			amdgpu_vm_bo_relocated(&entry->base);
1274 }
1275 
1276 /**
1277  * amdgpu_vm_update_pdes - make sure that all directories are valid
1278  *
1279  * @adev: amdgpu_device pointer
1280  * @vm: requested vm
1281  * @immediate: submit immediately to the paging queue
1282  *
1283  * Makes sure all directories are up to date.
1284  *
1285  * Returns:
1286  * 0 for success, error for failure.
1287  */
1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1289 			  struct amdgpu_vm *vm, bool immediate)
1290 {
1291 	struct amdgpu_vm_update_params params;
1292 	int r;
1293 
1294 	if (list_empty(&vm->relocated))
1295 		return 0;
1296 
1297 	memset(&params, 0, sizeof(params));
1298 	params.adev = adev;
1299 	params.vm = vm;
1300 	params.immediate = immediate;
1301 
1302 	r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1303 	if (r)
1304 		return r;
1305 
1306 	while (!list_empty(&vm->relocated)) {
1307 		struct amdgpu_vm_pt *entry;
1308 
1309 		entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1310 					 base.vm_status);
1311 		amdgpu_vm_bo_idle(&entry->base);
1312 
1313 		r = amdgpu_vm_update_pde(&params, vm, entry);
1314 		if (r)
1315 			goto error;
1316 	}
1317 
1318 	r = vm->update_funcs->commit(&params, &vm->last_update);
1319 	if (r)
1320 		goto error;
1321 	return 0;
1322 
1323 error:
1324 	amdgpu_vm_invalidate_pds(adev, vm);
1325 	return r;
1326 }
1327 
1328 /*
1329  * amdgpu_vm_update_flags - figure out flags for PTE updates
1330  *
1331  * Make sure to set the right flags for the PTEs at the desired level.
1332  */
1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1334 				   struct amdgpu_bo *bo, unsigned level,
1335 				   uint64_t pe, uint64_t addr,
1336 				   unsigned count, uint32_t incr,
1337 				   uint64_t flags)
1338 
1339 {
1340 	if (level != AMDGPU_VM_PTB) {
1341 		flags |= AMDGPU_PDE_PTE;
1342 		amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1343 
1344 	} else if (params->adev->asic_type >= CHIP_VEGA10 &&
1345 		   !(flags & AMDGPU_PTE_VALID) &&
1346 		   !(flags & AMDGPU_PTE_PRT)) {
1347 
1348 		/* Workaround for fault priority problem on GMC9 */
1349 		flags |= AMDGPU_PTE_EXECUTABLE;
1350 	}
1351 
1352 	params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1353 					 flags);
1354 }
1355 
1356 /**
1357  * amdgpu_vm_fragment - get fragment for PTEs
1358  *
1359  * @params: see amdgpu_vm_update_params definition
1360  * @start: first PTE to handle
1361  * @end: last PTE to handle
1362  * @flags: hw mapping flags
1363  * @frag: resulting fragment size
1364  * @frag_end: end of this fragment
1365  *
1366  * Returns the first possible fragment for the start and end address.
1367  */
1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1369 			       uint64_t start, uint64_t end, uint64_t flags,
1370 			       unsigned int *frag, uint64_t *frag_end)
1371 {
1372 	/**
1373 	 * The MC L1 TLB supports variable sized pages, based on a fragment
1374 	 * field in the PTE. When this field is set to a non-zero value, page
1375 	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1376 	 * flags are considered valid for all PTEs within the fragment range
1377 	 * and corresponding mappings are assumed to be physically contiguous.
1378 	 *
1379 	 * The L1 TLB can store a single PTE for the whole fragment,
1380 	 * significantly increasing the space available for translation
1381 	 * caching. This leads to large improvements in throughput when the
1382 	 * TLB is under pressure.
1383 	 *
1384 	 * The L2 TLB distributes small and large fragments into two
1385 	 * asymmetric partitions. The large fragment cache is significantly
1386 	 * larger. Thus, we try to use large fragments wherever possible.
1387 	 * Userspace can support this by aligning virtual base address and
1388 	 * allocation size to the fragment size.
1389 	 *
1390 	 * Starting with Vega10 the fragment size only controls the L1. The L2
1391 	 * is now directly feed with small/huge/giant pages from the walker.
1392 	 */
1393 	unsigned max_frag;
1394 
1395 	if (params->adev->asic_type < CHIP_VEGA10)
1396 		max_frag = params->adev->vm_manager.fragment_size;
1397 	else
1398 		max_frag = 31;
1399 
1400 	/* system pages are non continuously */
1401 	if (params->pages_addr) {
1402 		*frag = 0;
1403 		*frag_end = end;
1404 		return;
1405 	}
1406 
1407 	/* This intentionally wraps around if no bit is set */
1408 	*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1409 	if (*frag >= max_frag) {
1410 		*frag = max_frag;
1411 		*frag_end = end & ~((1ULL << max_frag) - 1);
1412 	} else {
1413 		*frag_end = start + (1 << *frag);
1414 	}
1415 }
1416 
1417 /**
1418  * amdgpu_vm_update_ptes - make sure that page tables are valid
1419  *
1420  * @params: see amdgpu_vm_update_params definition
1421  * @start: start of GPU address range
1422  * @end: end of GPU address range
1423  * @dst: destination address to map to, the next dst inside the function
1424  * @flags: mapping flags
1425  *
1426  * Update the page tables in the range @start - @end.
1427  *
1428  * Returns:
1429  * 0 for success, -EINVAL for failure.
1430  */
1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1432 				 uint64_t start, uint64_t end,
1433 				 uint64_t dst, uint64_t flags)
1434 {
1435 	struct amdgpu_device *adev = params->adev;
1436 	struct amdgpu_vm_pt_cursor cursor;
1437 	uint64_t frag_start = start, frag_end;
1438 	unsigned int frag;
1439 	int r;
1440 
1441 	/* figure out the initial fragment */
1442 	amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1443 
1444 	/* walk over the address space and update the PTs */
1445 	amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1446 	while (cursor.pfn < end) {
1447 		unsigned shift, parent_shift, mask;
1448 		uint64_t incr, entry_end, pe_start;
1449 		struct amdgpu_bo *pt;
1450 
1451 		if (!params->unlocked) {
1452 			/* make sure that the page tables covering the
1453 			 * address range are actually allocated
1454 			 */
1455 			r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1456 						&cursor, params->immediate);
1457 			if (r)
1458 				return r;
1459 		}
1460 
1461 		shift = amdgpu_vm_level_shift(adev, cursor.level);
1462 		parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1463 		if (params->unlocked) {
1464 			/* Unlocked updates are only allowed on the leaves */
1465 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1466 				continue;
1467 		} else if (adev->asic_type < CHIP_VEGA10 &&
1468 			   (flags & AMDGPU_PTE_VALID)) {
1469 			/* No huge page support before GMC v9 */
1470 			if (cursor.level != AMDGPU_VM_PTB) {
1471 				if (!amdgpu_vm_pt_descendant(adev, &cursor))
1472 					return -ENOENT;
1473 				continue;
1474 			}
1475 		} else if (frag < shift) {
1476 			/* We can't use this level when the fragment size is
1477 			 * smaller than the address shift. Go to the next
1478 			 * child entry and try again.
1479 			 */
1480 			if (amdgpu_vm_pt_descendant(adev, &cursor))
1481 				continue;
1482 		} else if (frag >= parent_shift) {
1483 			/* If the fragment size is even larger than the parent
1484 			 * shift we should go up one level and check it again.
1485 			 */
1486 			if (!amdgpu_vm_pt_ancestor(&cursor))
1487 				return -EINVAL;
1488 			continue;
1489 		}
1490 
1491 		pt = cursor.entry->base.bo;
1492 		if (!pt) {
1493 			/* We need all PDs and PTs for mapping something, */
1494 			if (flags & AMDGPU_PTE_VALID)
1495 				return -ENOENT;
1496 
1497 			/* but unmapping something can happen at a higher
1498 			 * level.
1499 			 */
1500 			if (!amdgpu_vm_pt_ancestor(&cursor))
1501 				return -EINVAL;
1502 
1503 			pt = cursor.entry->base.bo;
1504 			shift = parent_shift;
1505 			frag_end = max(frag_end, ALIGN(frag_start + 1,
1506 				   1ULL << shift));
1507 		}
1508 
1509 		/* Looks good so far, calculate parameters for the update */
1510 		incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1511 		mask = amdgpu_vm_entries_mask(adev, cursor.level);
1512 		pe_start = ((cursor.pfn >> shift) & mask) * 8;
1513 		entry_end = ((uint64_t)mask + 1) << shift;
1514 		entry_end += cursor.pfn & ~(entry_end - 1);
1515 		entry_end = min(entry_end, end);
1516 
1517 		do {
1518 			struct amdgpu_vm *vm = params->vm;
1519 			uint64_t upd_end = min(entry_end, frag_end);
1520 			unsigned nptes = (upd_end - frag_start) >> shift;
1521 			uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1522 
1523 			/* This can happen when we set higher level PDs to
1524 			 * silent to stop fault floods.
1525 			 */
1526 			nptes = max(nptes, 1u);
1527 
1528 			trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1529 						    nptes, dst, incr, upd_flags,
1530 						    vm->task_info.pid,
1531 						    vm->immediate.fence_context);
1532 			amdgpu_vm_update_flags(params, pt, cursor.level,
1533 					       pe_start, dst, nptes, incr,
1534 					       upd_flags);
1535 
1536 			pe_start += nptes * 8;
1537 			dst += nptes * incr;
1538 
1539 			frag_start = upd_end;
1540 			if (frag_start >= frag_end) {
1541 				/* figure out the next fragment */
1542 				amdgpu_vm_fragment(params, frag_start, end,
1543 						   flags, &frag, &frag_end);
1544 				if (frag < shift)
1545 					break;
1546 			}
1547 		} while (frag_start < entry_end);
1548 
1549 		if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1550 			/* Free all child entries.
1551 			 * Update the tables with the flags and addresses and free up subsequent
1552 			 * tables in the case of huge pages or freed up areas.
1553 			 * This is the maximum you can free, because all other page tables are not
1554 			 * completely covered by the range and so potentially still in use.
1555 			 */
1556 			while (cursor.pfn < frag_start) {
1557 				amdgpu_vm_free_pts(adev, params->vm, &cursor);
1558 				amdgpu_vm_pt_next(adev, &cursor);
1559 			}
1560 
1561 		} else if (frag >= shift) {
1562 			/* or just move on to the next on the same level. */
1563 			amdgpu_vm_pt_next(adev, &cursor);
1564 		}
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 /**
1571  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1572  *
1573  * @adev: amdgpu_device pointer
1574  * @vm: requested vm
1575  * @immediate: immediate submission in a page fault
1576  * @unlocked: unlocked invalidation during MM callback
1577  * @resv: fences we need to sync to
1578  * @start: start of mapped range
1579  * @last: last mapped entry
1580  * @flags: flags for the entries
1581  * @addr: addr to set the area to
1582  * @pages_addr: DMA addresses to use for mapping
1583  * @fence: optional resulting fence
1584  *
1585  * Fill in the page table entries between @start and @last.
1586  *
1587  * Returns:
1588  * 0 for success, -EINVAL for failure.
1589  */
1590 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1591 				       struct amdgpu_vm *vm, bool immediate,
1592 				       bool unlocked, struct dma_resv *resv,
1593 				       uint64_t start, uint64_t last,
1594 				       uint64_t flags, uint64_t addr,
1595 				       dma_addr_t *pages_addr,
1596 				       struct dma_fence **fence)
1597 {
1598 	struct amdgpu_vm_update_params params;
1599 	enum amdgpu_sync_mode sync_mode;
1600 	int r;
1601 
1602 	memset(&params, 0, sizeof(params));
1603 	params.adev = adev;
1604 	params.vm = vm;
1605 	params.immediate = immediate;
1606 	params.pages_addr = pages_addr;
1607 	params.unlocked = unlocked;
1608 
1609 	/* Implicitly sync to command submissions in the same VM before
1610 	 * unmapping. Sync to moving fences before mapping.
1611 	 */
1612 	if (!(flags & AMDGPU_PTE_VALID))
1613 		sync_mode = AMDGPU_SYNC_EQ_OWNER;
1614 	else
1615 		sync_mode = AMDGPU_SYNC_EXPLICIT;
1616 
1617 	amdgpu_vm_eviction_lock(vm);
1618 	if (vm->evicting) {
1619 		r = -EBUSY;
1620 		goto error_unlock;
1621 	}
1622 
1623 	if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1624 		struct dma_fence *tmp = dma_fence_get_stub();
1625 
1626 		amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1627 		swap(vm->last_unlocked, tmp);
1628 		dma_fence_put(tmp);
1629 	}
1630 
1631 	r = vm->update_funcs->prepare(&params, resv, sync_mode);
1632 	if (r)
1633 		goto error_unlock;
1634 
1635 	r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1636 	if (r)
1637 		goto error_unlock;
1638 
1639 	r = vm->update_funcs->commit(&params, fence);
1640 
1641 error_unlock:
1642 	amdgpu_vm_eviction_unlock(vm);
1643 	return r;
1644 }
1645 
1646 /**
1647  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1648  *
1649  * @adev: amdgpu_device pointer
1650  * @resv: fences we need to sync to
1651  * @pages_addr: DMA addresses to use for mapping
1652  * @vm: requested vm
1653  * @mapping: mapped range and flags to use for the update
1654  * @flags: HW flags for the mapping
1655  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1656  * @nodes: array of drm_mm_nodes with the MC addresses
1657  * @fence: optional resulting fence
1658  *
1659  * Split the mapping into smaller chunks so that each update fits
1660  * into a SDMA IB.
1661  *
1662  * Returns:
1663  * 0 for success, -EINVAL for failure.
1664  */
1665 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1666 				      struct dma_resv *resv,
1667 				      dma_addr_t *pages_addr,
1668 				      struct amdgpu_vm *vm,
1669 				      struct amdgpu_bo_va_mapping *mapping,
1670 				      uint64_t flags,
1671 				      struct amdgpu_device *bo_adev,
1672 				      struct drm_mm_node *nodes,
1673 				      struct dma_fence **fence)
1674 {
1675 	unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1676 	uint64_t pfn, start = mapping->start;
1677 	int r;
1678 
1679 	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1680 	 * but in case of something, we filter the flags in first place
1681 	 */
1682 	if (!(mapping->flags & AMDGPU_PTE_READABLE))
1683 		flags &= ~AMDGPU_PTE_READABLE;
1684 	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1685 		flags &= ~AMDGPU_PTE_WRITEABLE;
1686 
1687 	/* Apply ASIC specific mapping flags */
1688 	amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1689 
1690 	trace_amdgpu_vm_bo_update(mapping);
1691 
1692 	pfn = mapping->offset >> PAGE_SHIFT;
1693 	if (nodes) {
1694 		while (pfn >= nodes->size) {
1695 			pfn -= nodes->size;
1696 			++nodes;
1697 		}
1698 	}
1699 
1700 	do {
1701 		dma_addr_t *dma_addr = NULL;
1702 		uint64_t max_entries;
1703 		uint64_t addr, last;
1704 
1705 		max_entries = mapping->last - start + 1;
1706 		if (nodes) {
1707 			addr = nodes->start << PAGE_SHIFT;
1708 			max_entries = min((nodes->size - pfn) *
1709 				AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1710 		} else {
1711 			addr = 0;
1712 		}
1713 
1714 		if (pages_addr) {
1715 			uint64_t count;
1716 
1717 			for (count = 1;
1718 			     count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1719 			     ++count) {
1720 				uint64_t idx = pfn + count;
1721 
1722 				if (pages_addr[idx] !=
1723 				    (pages_addr[idx - 1] + PAGE_SIZE))
1724 					break;
1725 			}
1726 
1727 			if (count < min_linear_pages) {
1728 				addr = pfn << PAGE_SHIFT;
1729 				dma_addr = pages_addr;
1730 			} else {
1731 				addr = pages_addr[pfn];
1732 				max_entries = count *
1733 					AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1734 			}
1735 
1736 		} else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1737 			addr += bo_adev->vm_manager.vram_base_offset;
1738 			addr += pfn << PAGE_SHIFT;
1739 		}
1740 
1741 		last = start + max_entries - 1;
1742 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1743 						start, last, flags, addr,
1744 						dma_addr, fence);
1745 		if (r)
1746 			return r;
1747 
1748 		pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1749 		if (nodes && nodes->size == pfn) {
1750 			pfn = 0;
1751 			++nodes;
1752 		}
1753 		start = last + 1;
1754 
1755 	} while (unlikely(start != mapping->last + 1));
1756 
1757 	return 0;
1758 }
1759 
1760 /**
1761  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1762  *
1763  * @adev: amdgpu_device pointer
1764  * @bo_va: requested BO and VM object
1765  * @clear: if true clear the entries
1766  *
1767  * Fill in the page table entries for @bo_va.
1768  *
1769  * Returns:
1770  * 0 for success, -EINVAL for failure.
1771  */
1772 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1773 			bool clear)
1774 {
1775 	struct amdgpu_bo *bo = bo_va->base.bo;
1776 	struct amdgpu_vm *vm = bo_va->base.vm;
1777 	struct amdgpu_bo_va_mapping *mapping;
1778 	dma_addr_t *pages_addr = NULL;
1779 	struct ttm_resource *mem;
1780 	struct drm_mm_node *nodes;
1781 	struct dma_fence **last_update;
1782 	struct dma_resv *resv;
1783 	uint64_t flags;
1784 	struct amdgpu_device *bo_adev = adev;
1785 	int r;
1786 
1787 	if (clear || !bo) {
1788 		mem = NULL;
1789 		nodes = NULL;
1790 		resv = vm->root.base.bo->tbo.base.resv;
1791 	} else {
1792 		struct drm_gem_object *obj = &bo->tbo.base;
1793 		struct ttm_dma_tt *ttm;
1794 
1795 		resv = bo->tbo.base.resv;
1796 		if (obj->import_attach && bo_va->is_xgmi) {
1797 			struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1798 			struct drm_gem_object *gobj = dma_buf->priv;
1799 			struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1800 
1801 			if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1802 				bo = gem_to_amdgpu_bo(gobj);
1803 		}
1804 		mem = &bo->tbo.mem;
1805 		nodes = mem->mm_node;
1806 		if (mem->mem_type == TTM_PL_TT) {
1807 			ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1808 			pages_addr = ttm->dma_address;
1809 		}
1810 	}
1811 
1812 	if (bo) {
1813 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1814 
1815 		if (amdgpu_bo_encrypted(bo))
1816 			flags |= AMDGPU_PTE_TMZ;
1817 
1818 		bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1819 	} else {
1820 		flags = 0x0;
1821 	}
1822 
1823 	if (clear || (bo && bo->tbo.base.resv ==
1824 		      vm->root.base.bo->tbo.base.resv))
1825 		last_update = &vm->last_update;
1826 	else
1827 		last_update = &bo_va->last_pt_update;
1828 
1829 	if (!clear && bo_va->base.moved) {
1830 		bo_va->base.moved = false;
1831 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1832 
1833 	} else if (bo_va->cleared != clear) {
1834 		list_splice_init(&bo_va->valids, &bo_va->invalids);
1835 	}
1836 
1837 	list_for_each_entry(mapping, &bo_va->invalids, list) {
1838 		r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1839 					       mapping, flags, bo_adev, nodes,
1840 					       last_update);
1841 		if (r)
1842 			return r;
1843 	}
1844 
1845 	/* If the BO is not in its preferred location add it back to
1846 	 * the evicted list so that it gets validated again on the
1847 	 * next command submission.
1848 	 */
1849 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1850 		uint32_t mem_type = bo->tbo.mem.mem_type;
1851 
1852 		if (!(bo->preferred_domains &
1853 		      amdgpu_mem_type_to_domain(mem_type)))
1854 			amdgpu_vm_bo_evicted(&bo_va->base);
1855 		else
1856 			amdgpu_vm_bo_idle(&bo_va->base);
1857 	} else {
1858 		amdgpu_vm_bo_done(&bo_va->base);
1859 	}
1860 
1861 	list_splice_init(&bo_va->invalids, &bo_va->valids);
1862 	bo_va->cleared = clear;
1863 
1864 	if (trace_amdgpu_vm_bo_mapping_enabled()) {
1865 		list_for_each_entry(mapping, &bo_va->valids, list)
1866 			trace_amdgpu_vm_bo_mapping(mapping);
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  * amdgpu_vm_update_prt_state - update the global PRT state
1874  *
1875  * @adev: amdgpu_device pointer
1876  */
1877 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1878 {
1879 	unsigned long flags;
1880 	bool enable;
1881 
1882 	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1883 	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1884 	adev->gmc.gmc_funcs->set_prt(adev, enable);
1885 	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1886 }
1887 
1888 /**
1889  * amdgpu_vm_prt_get - add a PRT user
1890  *
1891  * @adev: amdgpu_device pointer
1892  */
1893 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1894 {
1895 	if (!adev->gmc.gmc_funcs->set_prt)
1896 		return;
1897 
1898 	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1899 		amdgpu_vm_update_prt_state(adev);
1900 }
1901 
1902 /**
1903  * amdgpu_vm_prt_put - drop a PRT user
1904  *
1905  * @adev: amdgpu_device pointer
1906  */
1907 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1908 {
1909 	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1910 		amdgpu_vm_update_prt_state(adev);
1911 }
1912 
1913 /**
1914  * amdgpu_vm_prt_cb - callback for updating the PRT status
1915  *
1916  * @fence: fence for the callback
1917  * @_cb: the callback function
1918  */
1919 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1920 {
1921 	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1922 
1923 	amdgpu_vm_prt_put(cb->adev);
1924 	kfree(cb);
1925 }
1926 
1927 /**
1928  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1929  *
1930  * @adev: amdgpu_device pointer
1931  * @fence: fence for the callback
1932  */
1933 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1934 				 struct dma_fence *fence)
1935 {
1936 	struct amdgpu_prt_cb *cb;
1937 
1938 	if (!adev->gmc.gmc_funcs->set_prt)
1939 		return;
1940 
1941 	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1942 	if (!cb) {
1943 		/* Last resort when we are OOM */
1944 		if (fence)
1945 			dma_fence_wait(fence, false);
1946 
1947 		amdgpu_vm_prt_put(adev);
1948 	} else {
1949 		cb->adev = adev;
1950 		if (!fence || dma_fence_add_callback(fence, &cb->cb,
1951 						     amdgpu_vm_prt_cb))
1952 			amdgpu_vm_prt_cb(fence, &cb->cb);
1953 	}
1954 }
1955 
1956 /**
1957  * amdgpu_vm_free_mapping - free a mapping
1958  *
1959  * @adev: amdgpu_device pointer
1960  * @vm: requested vm
1961  * @mapping: mapping to be freed
1962  * @fence: fence of the unmap operation
1963  *
1964  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1965  */
1966 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1967 				   struct amdgpu_vm *vm,
1968 				   struct amdgpu_bo_va_mapping *mapping,
1969 				   struct dma_fence *fence)
1970 {
1971 	if (mapping->flags & AMDGPU_PTE_PRT)
1972 		amdgpu_vm_add_prt_cb(adev, fence);
1973 	kfree(mapping);
1974 }
1975 
1976 /**
1977  * amdgpu_vm_prt_fini - finish all prt mappings
1978  *
1979  * @adev: amdgpu_device pointer
1980  * @vm: requested vm
1981  *
1982  * Register a cleanup callback to disable PRT support after VM dies.
1983  */
1984 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1985 {
1986 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1987 	struct dma_fence *excl, **shared;
1988 	unsigned i, shared_count;
1989 	int r;
1990 
1991 	r = dma_resv_get_fences_rcu(resv, &excl,
1992 					      &shared_count, &shared);
1993 	if (r) {
1994 		/* Not enough memory to grab the fence list, as last resort
1995 		 * block for all the fences to complete.
1996 		 */
1997 		dma_resv_wait_timeout_rcu(resv, true, false,
1998 						    MAX_SCHEDULE_TIMEOUT);
1999 		return;
2000 	}
2001 
2002 	/* Add a callback for each fence in the reservation object */
2003 	amdgpu_vm_prt_get(adev);
2004 	amdgpu_vm_add_prt_cb(adev, excl);
2005 
2006 	for (i = 0; i < shared_count; ++i) {
2007 		amdgpu_vm_prt_get(adev);
2008 		amdgpu_vm_add_prt_cb(adev, shared[i]);
2009 	}
2010 
2011 	kfree(shared);
2012 }
2013 
2014 /**
2015  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2016  *
2017  * @adev: amdgpu_device pointer
2018  * @vm: requested vm
2019  * @fence: optional resulting fence (unchanged if no work needed to be done
2020  * or if an error occurred)
2021  *
2022  * Make sure all freed BOs are cleared in the PT.
2023  * PTs have to be reserved and mutex must be locked!
2024  *
2025  * Returns:
2026  * 0 for success.
2027  *
2028  */
2029 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2030 			  struct amdgpu_vm *vm,
2031 			  struct dma_fence **fence)
2032 {
2033 	struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2034 	struct amdgpu_bo_va_mapping *mapping;
2035 	uint64_t init_pte_value = 0;
2036 	struct dma_fence *f = NULL;
2037 	int r;
2038 
2039 	while (!list_empty(&vm->freed)) {
2040 		mapping = list_first_entry(&vm->freed,
2041 			struct amdgpu_bo_va_mapping, list);
2042 		list_del(&mapping->list);
2043 
2044 		if (vm->pte_support_ats &&
2045 		    mapping->start < AMDGPU_GMC_HOLE_START)
2046 			init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2047 
2048 		r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2049 						mapping->start, mapping->last,
2050 						init_pte_value, 0, NULL, &f);
2051 		amdgpu_vm_free_mapping(adev, vm, mapping, f);
2052 		if (r) {
2053 			dma_fence_put(f);
2054 			return r;
2055 		}
2056 	}
2057 
2058 	if (fence && f) {
2059 		dma_fence_put(*fence);
2060 		*fence = f;
2061 	} else {
2062 		dma_fence_put(f);
2063 	}
2064 
2065 	return 0;
2066 
2067 }
2068 
2069 /**
2070  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2071  *
2072  * @adev: amdgpu_device pointer
2073  * @vm: requested vm
2074  *
2075  * Make sure all BOs which are moved are updated in the PTs.
2076  *
2077  * Returns:
2078  * 0 for success.
2079  *
2080  * PTs have to be reserved!
2081  */
2082 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2083 			   struct amdgpu_vm *vm)
2084 {
2085 	struct amdgpu_bo_va *bo_va, *tmp;
2086 	struct dma_resv *resv;
2087 	bool clear;
2088 	int r;
2089 
2090 	list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2091 		/* Per VM BOs never need to bo cleared in the page tables */
2092 		r = amdgpu_vm_bo_update(adev, bo_va, false);
2093 		if (r)
2094 			return r;
2095 	}
2096 
2097 	spin_lock(&vm->invalidated_lock);
2098 	while (!list_empty(&vm->invalidated)) {
2099 		bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2100 					 base.vm_status);
2101 		resv = bo_va->base.bo->tbo.base.resv;
2102 		spin_unlock(&vm->invalidated_lock);
2103 
2104 		/* Try to reserve the BO to avoid clearing its ptes */
2105 		if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2106 			clear = false;
2107 		/* Somebody else is using the BO right now */
2108 		else
2109 			clear = true;
2110 
2111 		r = amdgpu_vm_bo_update(adev, bo_va, clear);
2112 		if (r)
2113 			return r;
2114 
2115 		if (!clear)
2116 			dma_resv_unlock(resv);
2117 		spin_lock(&vm->invalidated_lock);
2118 	}
2119 	spin_unlock(&vm->invalidated_lock);
2120 
2121 	return 0;
2122 }
2123 
2124 /**
2125  * amdgpu_vm_bo_add - add a bo to a specific vm
2126  *
2127  * @adev: amdgpu_device pointer
2128  * @vm: requested vm
2129  * @bo: amdgpu buffer object
2130  *
2131  * Add @bo into the requested vm.
2132  * Add @bo to the list of bos associated with the vm
2133  *
2134  * Returns:
2135  * Newly added bo_va or NULL for failure
2136  *
2137  * Object has to be reserved!
2138  */
2139 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2140 				      struct amdgpu_vm *vm,
2141 				      struct amdgpu_bo *bo)
2142 {
2143 	struct amdgpu_bo_va *bo_va;
2144 
2145 	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2146 	if (bo_va == NULL) {
2147 		return NULL;
2148 	}
2149 	amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2150 
2151 	bo_va->ref_count = 1;
2152 	INIT_LIST_HEAD(&bo_va->valids);
2153 	INIT_LIST_HEAD(&bo_va->invalids);
2154 
2155 	if (!bo)
2156 		return bo_va;
2157 
2158 	if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2159 		bo_va->is_xgmi = true;
2160 		/* Power up XGMI if it can be potentially used */
2161 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2162 	}
2163 
2164 	return bo_va;
2165 }
2166 
2167 
2168 /**
2169  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2170  *
2171  * @adev: amdgpu_device pointer
2172  * @bo_va: bo_va to store the address
2173  * @mapping: the mapping to insert
2174  *
2175  * Insert a new mapping into all structures.
2176  */
2177 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2178 				    struct amdgpu_bo_va *bo_va,
2179 				    struct amdgpu_bo_va_mapping *mapping)
2180 {
2181 	struct amdgpu_vm *vm = bo_va->base.vm;
2182 	struct amdgpu_bo *bo = bo_va->base.bo;
2183 
2184 	mapping->bo_va = bo_va;
2185 	list_add(&mapping->list, &bo_va->invalids);
2186 	amdgpu_vm_it_insert(mapping, &vm->va);
2187 
2188 	if (mapping->flags & AMDGPU_PTE_PRT)
2189 		amdgpu_vm_prt_get(adev);
2190 
2191 	if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2192 	    !bo_va->base.moved) {
2193 		list_move(&bo_va->base.vm_status, &vm->moved);
2194 	}
2195 	trace_amdgpu_vm_bo_map(bo_va, mapping);
2196 }
2197 
2198 /**
2199  * amdgpu_vm_bo_map - map bo inside a vm
2200  *
2201  * @adev: amdgpu_device pointer
2202  * @bo_va: bo_va to store the address
2203  * @saddr: where to map the BO
2204  * @offset: requested offset in the BO
2205  * @size: BO size in bytes
2206  * @flags: attributes of pages (read/write/valid/etc.)
2207  *
2208  * Add a mapping of the BO at the specefied addr into the VM.
2209  *
2210  * Returns:
2211  * 0 for success, error for failure.
2212  *
2213  * Object has to be reserved and unreserved outside!
2214  */
2215 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2216 		     struct amdgpu_bo_va *bo_va,
2217 		     uint64_t saddr, uint64_t offset,
2218 		     uint64_t size, uint64_t flags)
2219 {
2220 	struct amdgpu_bo_va_mapping *mapping, *tmp;
2221 	struct amdgpu_bo *bo = bo_va->base.bo;
2222 	struct amdgpu_vm *vm = bo_va->base.vm;
2223 	uint64_t eaddr;
2224 
2225 	/* validate the parameters */
2226 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2227 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2228 		return -EINVAL;
2229 
2230 	/* make sure object fit at this offset */
2231 	eaddr = saddr + size - 1;
2232 	if (saddr >= eaddr ||
2233 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2234 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2235 		return -EINVAL;
2236 
2237 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2238 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2239 
2240 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2241 	if (tmp) {
2242 		/* bo and tmp overlap, invalid addr */
2243 		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2244 			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2245 			tmp->start, tmp->last + 1);
2246 		return -EINVAL;
2247 	}
2248 
2249 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2250 	if (!mapping)
2251 		return -ENOMEM;
2252 
2253 	mapping->start = saddr;
2254 	mapping->last = eaddr;
2255 	mapping->offset = offset;
2256 	mapping->flags = flags;
2257 
2258 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2259 
2260 	return 0;
2261 }
2262 
2263 /**
2264  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2265  *
2266  * @adev: amdgpu_device pointer
2267  * @bo_va: bo_va to store the address
2268  * @saddr: where to map the BO
2269  * @offset: requested offset in the BO
2270  * @size: BO size in bytes
2271  * @flags: attributes of pages (read/write/valid/etc.)
2272  *
2273  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2274  * mappings as we do so.
2275  *
2276  * Returns:
2277  * 0 for success, error for failure.
2278  *
2279  * Object has to be reserved and unreserved outside!
2280  */
2281 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2282 			     struct amdgpu_bo_va *bo_va,
2283 			     uint64_t saddr, uint64_t offset,
2284 			     uint64_t size, uint64_t flags)
2285 {
2286 	struct amdgpu_bo_va_mapping *mapping;
2287 	struct amdgpu_bo *bo = bo_va->base.bo;
2288 	uint64_t eaddr;
2289 	int r;
2290 
2291 	/* validate the parameters */
2292 	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2293 	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2294 		return -EINVAL;
2295 
2296 	/* make sure object fit at this offset */
2297 	eaddr = saddr + size - 1;
2298 	if (saddr >= eaddr ||
2299 	    (bo && offset + size > amdgpu_bo_size(bo)) ||
2300 	    (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2301 		return -EINVAL;
2302 
2303 	/* Allocate all the needed memory */
2304 	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2305 	if (!mapping)
2306 		return -ENOMEM;
2307 
2308 	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2309 	if (r) {
2310 		kfree(mapping);
2311 		return r;
2312 	}
2313 
2314 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2315 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2316 
2317 	mapping->start = saddr;
2318 	mapping->last = eaddr;
2319 	mapping->offset = offset;
2320 	mapping->flags = flags;
2321 
2322 	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2329  *
2330  * @adev: amdgpu_device pointer
2331  * @bo_va: bo_va to remove the address from
2332  * @saddr: where to the BO is mapped
2333  *
2334  * Remove a mapping of the BO at the specefied addr from the VM.
2335  *
2336  * Returns:
2337  * 0 for success, error for failure.
2338  *
2339  * Object has to be reserved and unreserved outside!
2340  */
2341 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2342 		       struct amdgpu_bo_va *bo_va,
2343 		       uint64_t saddr)
2344 {
2345 	struct amdgpu_bo_va_mapping *mapping;
2346 	struct amdgpu_vm *vm = bo_va->base.vm;
2347 	bool valid = true;
2348 
2349 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2350 
2351 	list_for_each_entry(mapping, &bo_va->valids, list) {
2352 		if (mapping->start == saddr)
2353 			break;
2354 	}
2355 
2356 	if (&mapping->list == &bo_va->valids) {
2357 		valid = false;
2358 
2359 		list_for_each_entry(mapping, &bo_va->invalids, list) {
2360 			if (mapping->start == saddr)
2361 				break;
2362 		}
2363 
2364 		if (&mapping->list == &bo_va->invalids)
2365 			return -ENOENT;
2366 	}
2367 
2368 	list_del(&mapping->list);
2369 	amdgpu_vm_it_remove(mapping, &vm->va);
2370 	mapping->bo_va = NULL;
2371 	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2372 
2373 	if (valid)
2374 		list_add(&mapping->list, &vm->freed);
2375 	else
2376 		amdgpu_vm_free_mapping(adev, vm, mapping,
2377 				       bo_va->last_pt_update);
2378 
2379 	return 0;
2380 }
2381 
2382 /**
2383  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2384  *
2385  * @adev: amdgpu_device pointer
2386  * @vm: VM structure to use
2387  * @saddr: start of the range
2388  * @size: size of the range
2389  *
2390  * Remove all mappings in a range, split them as appropriate.
2391  *
2392  * Returns:
2393  * 0 for success, error for failure.
2394  */
2395 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2396 				struct amdgpu_vm *vm,
2397 				uint64_t saddr, uint64_t size)
2398 {
2399 	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2400 	LIST_HEAD(removed);
2401 	uint64_t eaddr;
2402 
2403 	eaddr = saddr + size - 1;
2404 	saddr /= AMDGPU_GPU_PAGE_SIZE;
2405 	eaddr /= AMDGPU_GPU_PAGE_SIZE;
2406 
2407 	/* Allocate all the needed memory */
2408 	before = kzalloc(sizeof(*before), GFP_KERNEL);
2409 	if (!before)
2410 		return -ENOMEM;
2411 	INIT_LIST_HEAD(&before->list);
2412 
2413 	after = kzalloc(sizeof(*after), GFP_KERNEL);
2414 	if (!after) {
2415 		kfree(before);
2416 		return -ENOMEM;
2417 	}
2418 	INIT_LIST_HEAD(&after->list);
2419 
2420 	/* Now gather all removed mappings */
2421 	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2422 	while (tmp) {
2423 		/* Remember mapping split at the start */
2424 		if (tmp->start < saddr) {
2425 			before->start = tmp->start;
2426 			before->last = saddr - 1;
2427 			before->offset = tmp->offset;
2428 			before->flags = tmp->flags;
2429 			before->bo_va = tmp->bo_va;
2430 			list_add(&before->list, &tmp->bo_va->invalids);
2431 		}
2432 
2433 		/* Remember mapping split at the end */
2434 		if (tmp->last > eaddr) {
2435 			after->start = eaddr + 1;
2436 			after->last = tmp->last;
2437 			after->offset = tmp->offset;
2438 			after->offset += after->start - tmp->start;
2439 			after->flags = tmp->flags;
2440 			after->bo_va = tmp->bo_va;
2441 			list_add(&after->list, &tmp->bo_va->invalids);
2442 		}
2443 
2444 		list_del(&tmp->list);
2445 		list_add(&tmp->list, &removed);
2446 
2447 		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2448 	}
2449 
2450 	/* And free them up */
2451 	list_for_each_entry_safe(tmp, next, &removed, list) {
2452 		amdgpu_vm_it_remove(tmp, &vm->va);
2453 		list_del(&tmp->list);
2454 
2455 		if (tmp->start < saddr)
2456 		    tmp->start = saddr;
2457 		if (tmp->last > eaddr)
2458 		    tmp->last = eaddr;
2459 
2460 		tmp->bo_va = NULL;
2461 		list_add(&tmp->list, &vm->freed);
2462 		trace_amdgpu_vm_bo_unmap(NULL, tmp);
2463 	}
2464 
2465 	/* Insert partial mapping before the range */
2466 	if (!list_empty(&before->list)) {
2467 		amdgpu_vm_it_insert(before, &vm->va);
2468 		if (before->flags & AMDGPU_PTE_PRT)
2469 			amdgpu_vm_prt_get(adev);
2470 	} else {
2471 		kfree(before);
2472 	}
2473 
2474 	/* Insert partial mapping after the range */
2475 	if (!list_empty(&after->list)) {
2476 		amdgpu_vm_it_insert(after, &vm->va);
2477 		if (after->flags & AMDGPU_PTE_PRT)
2478 			amdgpu_vm_prt_get(adev);
2479 	} else {
2480 		kfree(after);
2481 	}
2482 
2483 	return 0;
2484 }
2485 
2486 /**
2487  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2488  *
2489  * @vm: the requested VM
2490  * @addr: the address
2491  *
2492  * Find a mapping by it's address.
2493  *
2494  * Returns:
2495  * The amdgpu_bo_va_mapping matching for addr or NULL
2496  *
2497  */
2498 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2499 							 uint64_t addr)
2500 {
2501 	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2502 }
2503 
2504 /**
2505  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2506  *
2507  * @vm: the requested vm
2508  * @ticket: CS ticket
2509  *
2510  * Trace all mappings of BOs reserved during a command submission.
2511  */
2512 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2513 {
2514 	struct amdgpu_bo_va_mapping *mapping;
2515 
2516 	if (!trace_amdgpu_vm_bo_cs_enabled())
2517 		return;
2518 
2519 	for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2520 	     mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2521 		if (mapping->bo_va && mapping->bo_va->base.bo) {
2522 			struct amdgpu_bo *bo;
2523 
2524 			bo = mapping->bo_va->base.bo;
2525 			if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2526 			    ticket)
2527 				continue;
2528 		}
2529 
2530 		trace_amdgpu_vm_bo_cs(mapping);
2531 	}
2532 }
2533 
2534 /**
2535  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2536  *
2537  * @adev: amdgpu_device pointer
2538  * @bo_va: requested bo_va
2539  *
2540  * Remove @bo_va->bo from the requested vm.
2541  *
2542  * Object have to be reserved!
2543  */
2544 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2545 		      struct amdgpu_bo_va *bo_va)
2546 {
2547 	struct amdgpu_bo_va_mapping *mapping, *next;
2548 	struct amdgpu_bo *bo = bo_va->base.bo;
2549 	struct amdgpu_vm *vm = bo_va->base.vm;
2550 	struct amdgpu_vm_bo_base **base;
2551 
2552 	if (bo) {
2553 		if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2554 			vm->bulk_moveable = false;
2555 
2556 		for (base = &bo_va->base.bo->vm_bo; *base;
2557 		     base = &(*base)->next) {
2558 			if (*base != &bo_va->base)
2559 				continue;
2560 
2561 			*base = bo_va->base.next;
2562 			break;
2563 		}
2564 	}
2565 
2566 	spin_lock(&vm->invalidated_lock);
2567 	list_del(&bo_va->base.vm_status);
2568 	spin_unlock(&vm->invalidated_lock);
2569 
2570 	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2571 		list_del(&mapping->list);
2572 		amdgpu_vm_it_remove(mapping, &vm->va);
2573 		mapping->bo_va = NULL;
2574 		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2575 		list_add(&mapping->list, &vm->freed);
2576 	}
2577 	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2578 		list_del(&mapping->list);
2579 		amdgpu_vm_it_remove(mapping, &vm->va);
2580 		amdgpu_vm_free_mapping(adev, vm, mapping,
2581 				       bo_va->last_pt_update);
2582 	}
2583 
2584 	dma_fence_put(bo_va->last_pt_update);
2585 
2586 	if (bo && bo_va->is_xgmi)
2587 		amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2588 
2589 	kfree(bo_va);
2590 }
2591 
2592 /**
2593  * amdgpu_vm_evictable - check if we can evict a VM
2594  *
2595  * @bo: A page table of the VM.
2596  *
2597  * Check if it is possible to evict a VM.
2598  */
2599 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2600 {
2601 	struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2602 
2603 	/* Page tables of a destroyed VM can go away immediately */
2604 	if (!bo_base || !bo_base->vm)
2605 		return true;
2606 
2607 	/* Don't evict VM page tables while they are busy */
2608 	if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2609 		return false;
2610 
2611 	/* Try to block ongoing updates */
2612 	if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2613 		return false;
2614 
2615 	/* Don't evict VM page tables while they are updated */
2616 	if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2617 		amdgpu_vm_eviction_unlock(bo_base->vm);
2618 		return false;
2619 	}
2620 
2621 	bo_base->vm->evicting = true;
2622 	amdgpu_vm_eviction_unlock(bo_base->vm);
2623 	return true;
2624 }
2625 
2626 /**
2627  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2628  *
2629  * @adev: amdgpu_device pointer
2630  * @bo: amdgpu buffer object
2631  * @evicted: is the BO evicted
2632  *
2633  * Mark @bo as invalid.
2634  */
2635 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2636 			     struct amdgpu_bo *bo, bool evicted)
2637 {
2638 	struct amdgpu_vm_bo_base *bo_base;
2639 
2640 	/* shadow bo doesn't have bo base, its validation needs its parent */
2641 	if (bo->parent && bo->parent->shadow == bo)
2642 		bo = bo->parent;
2643 
2644 	for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2645 		struct amdgpu_vm *vm = bo_base->vm;
2646 
2647 		if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2648 			amdgpu_vm_bo_evicted(bo_base);
2649 			continue;
2650 		}
2651 
2652 		if (bo_base->moved)
2653 			continue;
2654 		bo_base->moved = true;
2655 
2656 		if (bo->tbo.type == ttm_bo_type_kernel)
2657 			amdgpu_vm_bo_relocated(bo_base);
2658 		else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2659 			amdgpu_vm_bo_moved(bo_base);
2660 		else
2661 			amdgpu_vm_bo_invalidated(bo_base);
2662 	}
2663 }
2664 
2665 /**
2666  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2667  *
2668  * @vm_size: VM size
2669  *
2670  * Returns:
2671  * VM page table as power of two
2672  */
2673 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2674 {
2675 	/* Total bits covered by PD + PTs */
2676 	unsigned bits = ilog2(vm_size) + 18;
2677 
2678 	/* Make sure the PD is 4K in size up to 8GB address space.
2679 	   Above that split equal between PD and PTs */
2680 	if (vm_size <= 8)
2681 		return (bits - 9);
2682 	else
2683 		return ((bits + 3) / 2);
2684 }
2685 
2686 /**
2687  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2688  *
2689  * @adev: amdgpu_device pointer
2690  * @min_vm_size: the minimum vm size in GB if it's set auto
2691  * @fragment_size_default: Default PTE fragment size
2692  * @max_level: max VMPT level
2693  * @max_bits: max address space size in bits
2694  *
2695  */
2696 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2697 			   uint32_t fragment_size_default, unsigned max_level,
2698 			   unsigned max_bits)
2699 {
2700 	unsigned int max_size = 1 << (max_bits - 30);
2701 	unsigned int vm_size;
2702 	uint64_t tmp;
2703 
2704 	/* adjust vm size first */
2705 	if (amdgpu_vm_size != -1) {
2706 		vm_size = amdgpu_vm_size;
2707 		if (vm_size > max_size) {
2708 			dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2709 				 amdgpu_vm_size, max_size);
2710 			vm_size = max_size;
2711 		}
2712 	} else {
2713 		struct sysinfo si;
2714 		unsigned int phys_ram_gb;
2715 
2716 		/* Optimal VM size depends on the amount of physical
2717 		 * RAM available. Underlying requirements and
2718 		 * assumptions:
2719 		 *
2720 		 *  - Need to map system memory and VRAM from all GPUs
2721 		 *     - VRAM from other GPUs not known here
2722 		 *     - Assume VRAM <= system memory
2723 		 *  - On GFX8 and older, VM space can be segmented for
2724 		 *    different MTYPEs
2725 		 *  - Need to allow room for fragmentation, guard pages etc.
2726 		 *
2727 		 * This adds up to a rough guess of system memory x3.
2728 		 * Round up to power of two to maximize the available
2729 		 * VM size with the given page table size.
2730 		 */
2731 		si_meminfo(&si);
2732 		phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2733 			       (1 << 30) - 1) >> 30;
2734 		vm_size = roundup_pow_of_two(
2735 			min(max(phys_ram_gb * 3, min_vm_size), max_size));
2736 	}
2737 
2738 	adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2739 
2740 	tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2741 	if (amdgpu_vm_block_size != -1)
2742 		tmp >>= amdgpu_vm_block_size - 9;
2743 	tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2744 	adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2745 	switch (adev->vm_manager.num_level) {
2746 	case 3:
2747 		adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2748 		break;
2749 	case 2:
2750 		adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2751 		break;
2752 	case 1:
2753 		adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2754 		break;
2755 	default:
2756 		dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2757 	}
2758 	/* block size depends on vm size and hw setup*/
2759 	if (amdgpu_vm_block_size != -1)
2760 		adev->vm_manager.block_size =
2761 			min((unsigned)amdgpu_vm_block_size, max_bits
2762 			    - AMDGPU_GPU_PAGE_SHIFT
2763 			    - 9 * adev->vm_manager.num_level);
2764 	else if (adev->vm_manager.num_level > 1)
2765 		adev->vm_manager.block_size = 9;
2766 	else
2767 		adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2768 
2769 	if (amdgpu_vm_fragment_size == -1)
2770 		adev->vm_manager.fragment_size = fragment_size_default;
2771 	else
2772 		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2773 
2774 	DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2775 		 vm_size, adev->vm_manager.num_level + 1,
2776 		 adev->vm_manager.block_size,
2777 		 adev->vm_manager.fragment_size);
2778 }
2779 
2780 /**
2781  * amdgpu_vm_wait_idle - wait for the VM to become idle
2782  *
2783  * @vm: VM object to wait for
2784  * @timeout: timeout to wait for VM to become idle
2785  */
2786 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2787 {
2788 	timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2789 					    true, true, timeout);
2790 	if (timeout <= 0)
2791 		return timeout;
2792 
2793 	return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2794 }
2795 
2796 /**
2797  * amdgpu_vm_init - initialize a vm instance
2798  *
2799  * @adev: amdgpu_device pointer
2800  * @vm: requested vm
2801  * @vm_context: Indicates if it GFX or Compute context
2802  * @pasid: Process address space identifier
2803  *
2804  * Init @vm fields.
2805  *
2806  * Returns:
2807  * 0 for success, error for failure.
2808  */
2809 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2810 		   int vm_context, u32 pasid)
2811 {
2812 	struct amdgpu_bo_param bp;
2813 	struct amdgpu_bo *root;
2814 	int r, i;
2815 
2816 	vm->va = RB_ROOT_CACHED;
2817 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2818 		vm->reserved_vmid[i] = NULL;
2819 	INIT_LIST_HEAD(&vm->evicted);
2820 	INIT_LIST_HEAD(&vm->relocated);
2821 	INIT_LIST_HEAD(&vm->moved);
2822 	INIT_LIST_HEAD(&vm->idle);
2823 	INIT_LIST_HEAD(&vm->invalidated);
2824 	spin_lock_init(&vm->invalidated_lock);
2825 	INIT_LIST_HEAD(&vm->freed);
2826 
2827 
2828 	/* create scheduler entities for page table updates */
2829 	r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2830 				  adev->vm_manager.vm_pte_scheds,
2831 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2832 	if (r)
2833 		return r;
2834 
2835 	r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2836 				  adev->vm_manager.vm_pte_scheds,
2837 				  adev->vm_manager.vm_pte_num_scheds, NULL);
2838 	if (r)
2839 		goto error_free_immediate;
2840 
2841 	vm->pte_support_ats = false;
2842 	vm->is_compute_context = false;
2843 
2844 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2845 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2846 						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2847 
2848 		if (adev->asic_type == CHIP_RAVEN)
2849 			vm->pte_support_ats = true;
2850 	} else {
2851 		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2852 						AMDGPU_VM_USE_CPU_FOR_GFX);
2853 	}
2854 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
2855 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
2856 	WARN_ONCE((vm->use_cpu_for_update &&
2857 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2858 		  "CPU update of VM recommended only for large BAR system\n");
2859 
2860 	if (vm->use_cpu_for_update)
2861 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
2862 	else
2863 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
2864 	vm->last_update = NULL;
2865 	vm->last_unlocked = dma_fence_get_stub();
2866 
2867 	mutex_init(&vm->eviction_lock);
2868 	vm->evicting = false;
2869 
2870 	amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2871 	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2872 		bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2873 	r = amdgpu_bo_create(adev, &bp, &root);
2874 	if (r)
2875 		goto error_free_delayed;
2876 
2877 	r = amdgpu_bo_reserve(root, true);
2878 	if (r)
2879 		goto error_free_root;
2880 
2881 	r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2882 	if (r)
2883 		goto error_unreserve;
2884 
2885 	amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2886 
2887 	r = amdgpu_vm_clear_bo(adev, vm, root, false);
2888 	if (r)
2889 		goto error_unreserve;
2890 
2891 	amdgpu_bo_unreserve(vm->root.base.bo);
2892 
2893 	if (pasid) {
2894 		unsigned long flags;
2895 
2896 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2897 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2898 			      GFP_ATOMIC);
2899 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2900 		if (r < 0)
2901 			goto error_free_root;
2902 
2903 		vm->pasid = pasid;
2904 	}
2905 
2906 	INIT_KFIFO(vm->faults);
2907 
2908 	return 0;
2909 
2910 error_unreserve:
2911 	amdgpu_bo_unreserve(vm->root.base.bo);
2912 
2913 error_free_root:
2914 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
2915 	amdgpu_bo_unref(&vm->root.base.bo);
2916 	vm->root.base.bo = NULL;
2917 
2918 error_free_delayed:
2919 	dma_fence_put(vm->last_unlocked);
2920 	drm_sched_entity_destroy(&vm->delayed);
2921 
2922 error_free_immediate:
2923 	drm_sched_entity_destroy(&vm->immediate);
2924 
2925 	return r;
2926 }
2927 
2928 /**
2929  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2930  *
2931  * @adev: amdgpu_device pointer
2932  * @vm: the VM to check
2933  *
2934  * check all entries of the root PD, if any subsequent PDs are allocated,
2935  * it means there are page table creating and filling, and is no a clean
2936  * VM
2937  *
2938  * Returns:
2939  *	0 if this VM is clean
2940  */
2941 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2942 	struct amdgpu_vm *vm)
2943 {
2944 	enum amdgpu_vm_level root = adev->vm_manager.root_level;
2945 	unsigned int entries = amdgpu_vm_num_entries(adev, root);
2946 	unsigned int i = 0;
2947 
2948 	if (!(vm->root.entries))
2949 		return 0;
2950 
2951 	for (i = 0; i < entries; i++) {
2952 		if (vm->root.entries[i].base.bo)
2953 			return -EINVAL;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 /**
2960  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2961  *
2962  * @adev: amdgpu_device pointer
2963  * @vm: requested vm
2964  * @pasid: pasid to use
2965  *
2966  * This only works on GFX VMs that don't have any BOs added and no
2967  * page tables allocated yet.
2968  *
2969  * Changes the following VM parameters:
2970  * - use_cpu_for_update
2971  * - pte_supports_ats
2972  * - pasid (old PASID is released, because compute manages its own PASIDs)
2973  *
2974  * Reinitializes the page directory to reflect the changed ATS
2975  * setting.
2976  *
2977  * Returns:
2978  * 0 for success, -errno for errors.
2979  */
2980 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2981 			   u32 pasid)
2982 {
2983 	bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2984 	int r;
2985 
2986 	r = amdgpu_bo_reserve(vm->root.base.bo, true);
2987 	if (r)
2988 		return r;
2989 
2990 	/* Sanity checks */
2991 	r = amdgpu_vm_check_clean_reserved(adev, vm);
2992 	if (r)
2993 		goto unreserve_bo;
2994 
2995 	if (pasid) {
2996 		unsigned long flags;
2997 
2998 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2999 		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3000 			      GFP_ATOMIC);
3001 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3002 
3003 		if (r == -ENOSPC)
3004 			goto unreserve_bo;
3005 		r = 0;
3006 	}
3007 
3008 	/* Check if PD needs to be reinitialized and do it before
3009 	 * changing any other state, in case it fails.
3010 	 */
3011 	if (pte_support_ats != vm->pte_support_ats) {
3012 		vm->pte_support_ats = pte_support_ats;
3013 		r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3014 		if (r)
3015 			goto free_idr;
3016 	}
3017 
3018 	/* Update VM state */
3019 	vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3020 				    AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3021 	DRM_DEBUG_DRIVER("VM update mode is %s\n",
3022 			 vm->use_cpu_for_update ? "CPU" : "SDMA");
3023 	WARN_ONCE((vm->use_cpu_for_update &&
3024 		   !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3025 		  "CPU update of VM recommended only for large BAR system\n");
3026 
3027 	if (vm->use_cpu_for_update) {
3028 		/* Sync with last SDMA update/clear before switching to CPU */
3029 		r = amdgpu_bo_sync_wait(vm->root.base.bo,
3030 					AMDGPU_FENCE_OWNER_UNDEFINED, true);
3031 		if (r)
3032 			goto free_idr;
3033 
3034 		vm->update_funcs = &amdgpu_vm_cpu_funcs;
3035 	} else {
3036 		vm->update_funcs = &amdgpu_vm_sdma_funcs;
3037 	}
3038 	dma_fence_put(vm->last_update);
3039 	vm->last_update = NULL;
3040 	vm->is_compute_context = true;
3041 
3042 	if (vm->pasid) {
3043 		unsigned long flags;
3044 
3045 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3046 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3047 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3048 
3049 		/* Free the original amdgpu allocated pasid
3050 		 * Will be replaced with kfd allocated pasid
3051 		 */
3052 		amdgpu_pasid_free(vm->pasid);
3053 		vm->pasid = 0;
3054 	}
3055 
3056 	/* Free the shadow bo for compute VM */
3057 	amdgpu_bo_unref(&vm->root.base.bo->shadow);
3058 
3059 	if (pasid)
3060 		vm->pasid = pasid;
3061 
3062 	goto unreserve_bo;
3063 
3064 free_idr:
3065 	if (pasid) {
3066 		unsigned long flags;
3067 
3068 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069 		idr_remove(&adev->vm_manager.pasid_idr, pasid);
3070 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071 	}
3072 unreserve_bo:
3073 	amdgpu_bo_unreserve(vm->root.base.bo);
3074 	return r;
3075 }
3076 
3077 /**
3078  * amdgpu_vm_release_compute - release a compute vm
3079  * @adev: amdgpu_device pointer
3080  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3081  *
3082  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3083  * pasid from vm. Compute should stop use of vm after this call.
3084  */
3085 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086 {
3087 	if (vm->pasid) {
3088 		unsigned long flags;
3089 
3090 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3091 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3092 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3093 	}
3094 	vm->pasid = 0;
3095 	vm->is_compute_context = false;
3096 }
3097 
3098 /**
3099  * amdgpu_vm_fini - tear down a vm instance
3100  *
3101  * @adev: amdgpu_device pointer
3102  * @vm: requested vm
3103  *
3104  * Tear down @vm.
3105  * Unbind the VM and remove all bos from the vm bo list
3106  */
3107 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3108 {
3109 	struct amdgpu_bo_va_mapping *mapping, *tmp;
3110 	bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3111 	struct amdgpu_bo *root;
3112 	int i;
3113 
3114 	amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3115 
3116 	root = amdgpu_bo_ref(vm->root.base.bo);
3117 	amdgpu_bo_reserve(root, true);
3118 	if (vm->pasid) {
3119 		unsigned long flags;
3120 
3121 		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122 		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3123 		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3124 		vm->pasid = 0;
3125 	}
3126 
3127 	dma_fence_wait(vm->last_unlocked, false);
3128 	dma_fence_put(vm->last_unlocked);
3129 
3130 	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3131 		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3132 			amdgpu_vm_prt_fini(adev, vm);
3133 			prt_fini_needed = false;
3134 		}
3135 
3136 		list_del(&mapping->list);
3137 		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3138 	}
3139 
3140 	amdgpu_vm_free_pts(adev, vm, NULL);
3141 	amdgpu_bo_unreserve(root);
3142 	amdgpu_bo_unref(&root);
3143 	WARN_ON(vm->root.base.bo);
3144 
3145 	drm_sched_entity_destroy(&vm->immediate);
3146 	drm_sched_entity_destroy(&vm->delayed);
3147 
3148 	if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3149 		dev_err(adev->dev, "still active bo inside vm\n");
3150 	}
3151 	rbtree_postorder_for_each_entry_safe(mapping, tmp,
3152 					     &vm->va.rb_root, rb) {
3153 		/* Don't remove the mapping here, we don't want to trigger a
3154 		 * rebalance and the tree is about to be destroyed anyway.
3155 		 */
3156 		list_del(&mapping->list);
3157 		kfree(mapping);
3158 	}
3159 
3160 	dma_fence_put(vm->last_update);
3161 	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3162 		amdgpu_vmid_free_reserved(adev, vm, i);
3163 }
3164 
3165 /**
3166  * amdgpu_vm_manager_init - init the VM manager
3167  *
3168  * @adev: amdgpu_device pointer
3169  *
3170  * Initialize the VM manager structures
3171  */
3172 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3173 {
3174 	unsigned i;
3175 
3176 	amdgpu_vmid_mgr_init(adev);
3177 
3178 	adev->vm_manager.fence_context =
3179 		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3180 	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3181 		adev->vm_manager.seqno[i] = 0;
3182 
3183 	spin_lock_init(&adev->vm_manager.prt_lock);
3184 	atomic_set(&adev->vm_manager.num_prt_users, 0);
3185 
3186 	/* If not overridden by the user, by default, only in large BAR systems
3187 	 * Compute VM tables will be updated by CPU
3188 	 */
3189 #ifdef CONFIG_X86_64
3190 	if (amdgpu_vm_update_mode == -1) {
3191 		if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3192 			adev->vm_manager.vm_update_mode =
3193 				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3194 		else
3195 			adev->vm_manager.vm_update_mode = 0;
3196 	} else
3197 		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3198 #else
3199 	adev->vm_manager.vm_update_mode = 0;
3200 #endif
3201 
3202 	idr_init(&adev->vm_manager.pasid_idr);
3203 	spin_lock_init(&adev->vm_manager.pasid_lock);
3204 }
3205 
3206 /**
3207  * amdgpu_vm_manager_fini - cleanup VM manager
3208  *
3209  * @adev: amdgpu_device pointer
3210  *
3211  * Cleanup the VM manager and free resources.
3212  */
3213 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3214 {
3215 	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3216 	idr_destroy(&adev->vm_manager.pasid_idr);
3217 
3218 	amdgpu_vmid_mgr_fini(adev);
3219 }
3220 
3221 /**
3222  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3223  *
3224  * @dev: drm device pointer
3225  * @data: drm_amdgpu_vm
3226  * @filp: drm file pointer
3227  *
3228  * Returns:
3229  * 0 for success, -errno for errors.
3230  */
3231 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3232 {
3233 	union drm_amdgpu_vm *args = data;
3234 	struct amdgpu_device *adev = drm_to_adev(dev);
3235 	struct amdgpu_fpriv *fpriv = filp->driver_priv;
3236 	long timeout = msecs_to_jiffies(2000);
3237 	int r;
3238 
3239 	switch (args->in.op) {
3240 	case AMDGPU_VM_OP_RESERVE_VMID:
3241 		/* We only have requirement to reserve vmid from gfxhub */
3242 		r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3243 					       AMDGPU_GFXHUB_0);
3244 		if (r)
3245 			return r;
3246 		break;
3247 	case AMDGPU_VM_OP_UNRESERVE_VMID:
3248 		if (amdgpu_sriov_runtime(adev))
3249 			timeout = 8 * timeout;
3250 
3251 		/* Wait vm idle to make sure the vmid set in SPM_VMID is
3252 		 * not referenced anymore.
3253 		 */
3254 		r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3255 		if (r)
3256 			return r;
3257 
3258 		r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3259 		if (r < 0)
3260 			return r;
3261 
3262 		amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3263 		amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3264 		break;
3265 	default:
3266 		return -EINVAL;
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 /**
3273  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3274  *
3275  * @adev: drm device pointer
3276  * @pasid: PASID identifier for VM
3277  * @task_info: task_info to fill.
3278  */
3279 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3280 			 struct amdgpu_task_info *task_info)
3281 {
3282 	struct amdgpu_vm *vm;
3283 	unsigned long flags;
3284 
3285 	spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3286 
3287 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3288 	if (vm)
3289 		*task_info = vm->task_info;
3290 
3291 	spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3292 }
3293 
3294 /**
3295  * amdgpu_vm_set_task_info - Sets VMs task info.
3296  *
3297  * @vm: vm for which to set the info
3298  */
3299 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3300 {
3301 	if (vm->task_info.pid)
3302 		return;
3303 
3304 	vm->task_info.pid = current->pid;
3305 	get_task_comm(vm->task_info.task_name, current);
3306 
3307 	if (current->group_leader->mm != current->mm)
3308 		return;
3309 
3310 	vm->task_info.tgid = current->group_leader->pid;
3311 	get_task_comm(vm->task_info.process_name, current->group_leader);
3312 }
3313 
3314 /**
3315  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3316  * @adev: amdgpu device pointer
3317  * @pasid: PASID of the VM
3318  * @addr: Address of the fault
3319  *
3320  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3321  * shouldn't be reported any more.
3322  */
3323 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3324 			    uint64_t addr)
3325 {
3326 	struct amdgpu_bo *root;
3327 	uint64_t value, flags;
3328 	struct amdgpu_vm *vm;
3329 	long r;
3330 
3331 	spin_lock(&adev->vm_manager.pasid_lock);
3332 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3333 	if (vm)
3334 		root = amdgpu_bo_ref(vm->root.base.bo);
3335 	else
3336 		root = NULL;
3337 	spin_unlock(&adev->vm_manager.pasid_lock);
3338 
3339 	if (!root)
3340 		return false;
3341 
3342 	r = amdgpu_bo_reserve(root, true);
3343 	if (r)
3344 		goto error_unref;
3345 
3346 	/* Double check that the VM still exists */
3347 	spin_lock(&adev->vm_manager.pasid_lock);
3348 	vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3349 	if (vm && vm->root.base.bo != root)
3350 		vm = NULL;
3351 	spin_unlock(&adev->vm_manager.pasid_lock);
3352 	if (!vm)
3353 		goto error_unlock;
3354 
3355 	addr /= AMDGPU_GPU_PAGE_SIZE;
3356 	flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3357 		AMDGPU_PTE_SYSTEM;
3358 
3359 	if (vm->is_compute_context) {
3360 		/* Intentionally setting invalid PTE flag
3361 		 * combination to force a no-retry-fault
3362 		 */
3363 		flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3364 			AMDGPU_PTE_TF;
3365 		value = 0;
3366 
3367 	} else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3368 		/* Redirect the access to the dummy page */
3369 		value = adev->dummy_page_addr;
3370 		flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3371 			AMDGPU_PTE_WRITEABLE;
3372 
3373 	} else {
3374 		/* Let the hw retry silently on the PTE */
3375 		value = 0;
3376 	}
3377 
3378 	r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3379 					addr + 1, flags, value, NULL, NULL);
3380 	if (r)
3381 		goto error_unlock;
3382 
3383 	r = amdgpu_vm_update_pdes(adev, vm, true);
3384 
3385 error_unlock:
3386 	amdgpu_bo_unreserve(root);
3387 	if (r < 0)
3388 		DRM_ERROR("Can't handle page fault (%ld)\n", r);
3389 
3390 error_unref:
3391 	amdgpu_bo_unref(&root);
3392 
3393 	return false;
3394 }
3395