1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 }; 111 112 /** 113 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 114 */ 115 struct amdgpu_prt_cb { 116 117 /** 118 * @adev: amdgpu device 119 */ 120 struct amdgpu_device *adev; 121 122 /** 123 * @cb: callback 124 */ 125 struct dma_fence_cb cb; 126 }; 127 128 /** 129 * amdgpu_vm_level_shift - return the addr shift for each level 130 * 131 * @adev: amdgpu_device pointer 132 * @level: VMPT level 133 * 134 * Returns: 135 * The number of bits the pfn needs to be right shifted for a level. 136 */ 137 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 138 unsigned level) 139 { 140 unsigned shift = 0xff; 141 142 switch (level) { 143 case AMDGPU_VM_PDB2: 144 case AMDGPU_VM_PDB1: 145 case AMDGPU_VM_PDB0: 146 shift = 9 * (AMDGPU_VM_PDB0 - level) + 147 adev->vm_manager.block_size; 148 break; 149 case AMDGPU_VM_PTB: 150 shift = 0; 151 break; 152 default: 153 dev_err(adev->dev, "the level%d isn't supported.\n", level); 154 } 155 156 return shift; 157 } 158 159 /** 160 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 161 * 162 * @adev: amdgpu_device pointer 163 * @level: VMPT level 164 * 165 * Returns: 166 * The number of entries in a page directory or page table. 167 */ 168 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 169 unsigned level) 170 { 171 unsigned shift = amdgpu_vm_level_shift(adev, 172 adev->vm_manager.root_level); 173 174 if (level == adev->vm_manager.root_level) 175 /* For the root directory */ 176 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 177 else if (level != AMDGPU_VM_PTB) 178 /* Everything in between */ 179 return 512; 180 else 181 /* For the page tables on the leaves */ 182 return AMDGPU_VM_PTE_COUNT(adev); 183 } 184 185 /** 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 187 * 188 * @adev: amdgpu_device pointer 189 * @level: VMPT level 190 * 191 * Returns: 192 * The mask to extract the entry number of a PD/PT from an address. 193 */ 194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 195 unsigned int level) 196 { 197 if (level <= adev->vm_manager.root_level) 198 return 0xffffffff; 199 else if (level != AMDGPU_VM_PTB) 200 return 0x1ff; 201 else 202 return AMDGPU_VM_PTE_COUNT(adev) - 1; 203 } 204 205 /** 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The size of the BO for a page directory or page table in bytes. 213 */ 214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 215 { 216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 217 } 218 219 /** 220 * amdgpu_vm_bo_evicted - vm_bo is evicted 221 * 222 * @vm_bo: vm_bo which is evicted 223 * 224 * State for PDs/PTs and per VM BOs which are not at the location they should 225 * be. 226 */ 227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 228 { 229 struct amdgpu_vm *vm = vm_bo->vm; 230 struct amdgpu_bo *bo = vm_bo->bo; 231 232 vm_bo->moved = true; 233 if (bo->tbo.type == ttm_bo_type_kernel) 234 list_move(&vm_bo->vm_status, &vm->evicted); 235 else 236 list_move_tail(&vm_bo->vm_status, &vm->evicted); 237 } 238 239 /** 240 * amdgpu_vm_bo_relocated - vm_bo is reloacted 241 * 242 * @vm_bo: vm_bo which is relocated 243 * 244 * State for PDs/PTs which needs to update their parent PD. 245 */ 246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 249 } 250 251 /** 252 * amdgpu_vm_bo_moved - vm_bo is moved 253 * 254 * @vm_bo: vm_bo which is moved 255 * 256 * State for per VM BOs which are moved, but that change is not yet reflected 257 * in the page tables. 258 */ 259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 262 } 263 264 /** 265 * amdgpu_vm_bo_idle - vm_bo is idle 266 * 267 * @vm_bo: vm_bo which is now idle 268 * 269 * State for PDs/PTs and per VM BOs which have gone through the state machine 270 * and are now idle. 271 */ 272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 273 { 274 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 275 vm_bo->moved = false; 276 } 277 278 /** 279 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 280 * 281 * @vm_bo: vm_bo which is now invalidated 282 * 283 * State for normal BOs which are invalidated and that change not yet reflected 284 * in the PTs. 285 */ 286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 287 { 288 spin_lock(&vm_bo->vm->invalidated_lock); 289 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 290 spin_unlock(&vm_bo->vm->invalidated_lock); 291 } 292 293 /** 294 * amdgpu_vm_bo_done - vm_bo is done 295 * 296 * @vm_bo: vm_bo which is now done 297 * 298 * State for normal BOs which are invalidated and that change has been updated 299 * in the PTs. 300 */ 301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 302 { 303 spin_lock(&vm_bo->vm->invalidated_lock); 304 list_del_init(&vm_bo->vm_status); 305 spin_unlock(&vm_bo->vm->invalidated_lock); 306 } 307 308 /** 309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 310 * 311 * @base: base structure for tracking BO usage in a VM 312 * @vm: vm to which bo is to be added 313 * @bo: amdgpu buffer object 314 * 315 * Initialize a bo_va_base structure and add it to the appropriate lists 316 * 317 */ 318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 319 struct amdgpu_vm *vm, 320 struct amdgpu_bo *bo) 321 { 322 base->vm = vm; 323 base->bo = bo; 324 base->next = NULL; 325 INIT_LIST_HEAD(&base->vm_status); 326 327 if (!bo) 328 return; 329 base->next = bo->vm_bo; 330 bo->vm_bo = base; 331 332 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 333 return; 334 335 vm->bulk_moveable = false; 336 if (bo->tbo.type == ttm_bo_type_kernel) 337 amdgpu_vm_bo_relocated(base); 338 else 339 amdgpu_vm_bo_idle(base); 340 341 if (bo->preferred_domains & 342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 343 return; 344 345 /* 346 * we checked all the prerequisites, but it looks like this per vm bo 347 * is currently evicted. add the bo to the evicted list to make sure it 348 * is validated on next vm use to avoid fault. 349 * */ 350 amdgpu_vm_bo_evicted(base); 351 } 352 353 /** 354 * amdgpu_vm_pt_parent - get the parent page directory 355 * 356 * @pt: child page table 357 * 358 * Helper to get the parent entry for the child page table. NULL if we are at 359 * the root page directory. 360 */ 361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 362 { 363 struct amdgpu_bo *parent = pt->base.bo->parent; 364 365 if (!parent) 366 return NULL; 367 368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 369 } 370 371 /** 372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 373 */ 374 struct amdgpu_vm_pt_cursor { 375 uint64_t pfn; 376 struct amdgpu_vm_pt *parent; 377 struct amdgpu_vm_pt *entry; 378 unsigned level; 379 }; 380 381 /** 382 * amdgpu_vm_pt_start - start PD/PT walk 383 * 384 * @adev: amdgpu_device pointer 385 * @vm: amdgpu_vm structure 386 * @start: start address of the walk 387 * @cursor: state to initialize 388 * 389 * Initialize a amdgpu_vm_pt_cursor to start a walk. 390 */ 391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 392 struct amdgpu_vm *vm, uint64_t start, 393 struct amdgpu_vm_pt_cursor *cursor) 394 { 395 cursor->pfn = start; 396 cursor->parent = NULL; 397 cursor->entry = &vm->root; 398 cursor->level = adev->vm_manager.root_level; 399 } 400 401 /** 402 * amdgpu_vm_pt_descendant - go to child node 403 * 404 * @adev: amdgpu_device pointer 405 * @cursor: current state 406 * 407 * Walk to the child node of the current node. 408 * Returns: 409 * True if the walk was possible, false otherwise. 410 */ 411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 412 struct amdgpu_vm_pt_cursor *cursor) 413 { 414 unsigned mask, shift, idx; 415 416 if (!cursor->entry->entries) 417 return false; 418 419 BUG_ON(!cursor->entry->base.bo); 420 mask = amdgpu_vm_entries_mask(adev, cursor->level); 421 shift = amdgpu_vm_level_shift(adev, cursor->level); 422 423 ++cursor->level; 424 idx = (cursor->pfn >> shift) & mask; 425 cursor->parent = cursor->entry; 426 cursor->entry = &cursor->entry->entries[idx]; 427 return true; 428 } 429 430 /** 431 * amdgpu_vm_pt_sibling - go to sibling node 432 * 433 * @adev: amdgpu_device pointer 434 * @cursor: current state 435 * 436 * Walk to the sibling node of the current node. 437 * Returns: 438 * True if the walk was possible, false otherwise. 439 */ 440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 441 struct amdgpu_vm_pt_cursor *cursor) 442 { 443 unsigned shift, num_entries; 444 445 /* Root doesn't have a sibling */ 446 if (!cursor->parent) 447 return false; 448 449 /* Go to our parents and see if we got a sibling */ 450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 452 453 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 454 return false; 455 456 cursor->pfn += 1ULL << shift; 457 cursor->pfn &= ~((1ULL << shift) - 1); 458 ++cursor->entry; 459 return true; 460 } 461 462 /** 463 * amdgpu_vm_pt_ancestor - go to parent node 464 * 465 * @cursor: current state 466 * 467 * Walk to the parent node of the current node. 468 * Returns: 469 * True if the walk was possible, false otherwise. 470 */ 471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 472 { 473 if (!cursor->parent) 474 return false; 475 476 --cursor->level; 477 cursor->entry = cursor->parent; 478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 479 return true; 480 } 481 482 /** 483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 484 * 485 * @adev: amdgpu_device pointer 486 * @cursor: current state 487 * 488 * Walk the PD/PT tree to the next node. 489 */ 490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 491 struct amdgpu_vm_pt_cursor *cursor) 492 { 493 /* First try a newborn child */ 494 if (amdgpu_vm_pt_descendant(adev, cursor)) 495 return; 496 497 /* If that didn't worked try to find a sibling */ 498 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 499 /* No sibling, go to our parents and grandparents */ 500 if (!amdgpu_vm_pt_ancestor(cursor)) { 501 cursor->pfn = ~0ll; 502 return; 503 } 504 } 505 } 506 507 /** 508 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 509 * 510 * @adev: amdgpu_device pointer 511 * @vm: amdgpu_vm structure 512 * @start: start addr of the walk 513 * @cursor: state to initialize 514 * 515 * Start a walk and go directly to the leaf node. 516 */ 517 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 518 struct amdgpu_vm *vm, uint64_t start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 amdgpu_vm_pt_start(adev, vm, start, cursor); 522 while (amdgpu_vm_pt_descendant(adev, cursor)); 523 } 524 525 /** 526 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 527 * 528 * @adev: amdgpu_device pointer 529 * @cursor: current state 530 * 531 * Walk the PD/PT tree to the next leaf node. 532 */ 533 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 534 struct amdgpu_vm_pt_cursor *cursor) 535 { 536 amdgpu_vm_pt_next(adev, cursor); 537 if (cursor->pfn != ~0ll) 538 while (amdgpu_vm_pt_descendant(adev, cursor)); 539 } 540 541 /** 542 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 543 */ 544 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 545 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 546 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 547 548 /** 549 * amdgpu_vm_pt_first_dfs - start a deep first search 550 * 551 * @adev: amdgpu_device structure 552 * @vm: amdgpu_vm structure 553 * @cursor: state to initialize 554 * 555 * Starts a deep first traversal of the PD/PT tree. 556 */ 557 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 558 struct amdgpu_vm *vm, 559 struct amdgpu_vm_pt_cursor *cursor) 560 { 561 amdgpu_vm_pt_start(adev, vm, 0, cursor); 562 while (amdgpu_vm_pt_descendant(adev, cursor)); 563 } 564 565 /** 566 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 567 * 568 * @adev: amdgpu_device structure 569 * @cursor: current state 570 * 571 * Move the cursor to the next node in a deep first search. 572 */ 573 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 574 struct amdgpu_vm_pt_cursor *cursor) 575 { 576 if (!cursor->entry) 577 return; 578 579 if (!cursor->parent) 580 cursor->entry = NULL; 581 else if (amdgpu_vm_pt_sibling(adev, cursor)) 582 while (amdgpu_vm_pt_descendant(adev, cursor)); 583 else 584 amdgpu_vm_pt_ancestor(cursor); 585 } 586 587 /** 588 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 589 */ 590 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 591 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 592 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 593 (entry); (entry) = (cursor).entry, \ 594 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 595 596 /** 597 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 598 * 599 * @vm: vm providing the BOs 600 * @validated: head of validation list 601 * @entry: entry to add 602 * 603 * Add the page directory to the list of BOs to 604 * validate for command submission. 605 */ 606 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 607 struct list_head *validated, 608 struct amdgpu_bo_list_entry *entry) 609 { 610 entry->priority = 0; 611 entry->tv.bo = &vm->root.base.bo->tbo; 612 /* One for the VM updates, one for TTM and one for the CS job */ 613 entry->tv.num_shared = 3; 614 entry->user_pages = NULL; 615 list_add(&entry->tv.head, validated); 616 } 617 618 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 619 { 620 struct amdgpu_bo *abo; 621 struct amdgpu_vm_bo_base *bo_base; 622 623 if (!amdgpu_bo_is_amdgpu_bo(bo)) 624 return; 625 626 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 627 return; 628 629 abo = ttm_to_amdgpu_bo(bo); 630 if (!abo->parent) 631 return; 632 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 633 struct amdgpu_vm *vm = bo_base->vm; 634 635 if (abo->tbo.resv == vm->root.base.bo->tbo.resv) 636 vm->bulk_moveable = false; 637 } 638 639 } 640 /** 641 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 642 * 643 * @adev: amdgpu device pointer 644 * @vm: vm providing the BOs 645 * 646 * Move all BOs to the end of LRU and remember their positions to put them 647 * together. 648 */ 649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 650 struct amdgpu_vm *vm) 651 { 652 struct ttm_bo_global *glob = adev->mman.bdev.glob; 653 struct amdgpu_vm_bo_base *bo_base; 654 655 #if 0 656 if (vm->bulk_moveable) { 657 spin_lock(&glob->lru_lock); 658 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 659 spin_unlock(&glob->lru_lock); 660 return; 661 } 662 #endif 663 664 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 665 666 spin_lock(&glob->lru_lock); 667 list_for_each_entry(bo_base, &vm->idle, vm_status) { 668 struct amdgpu_bo *bo = bo_base->bo; 669 670 if (!bo->parent) 671 continue; 672 673 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 674 if (bo->shadow) 675 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 676 &vm->lru_bulk_move); 677 } 678 spin_unlock(&glob->lru_lock); 679 680 vm->bulk_moveable = true; 681 } 682 683 /** 684 * amdgpu_vm_validate_pt_bos - validate the page table BOs 685 * 686 * @adev: amdgpu device pointer 687 * @vm: vm providing the BOs 688 * @validate: callback to do the validation 689 * @param: parameter for the validation callback 690 * 691 * Validate the page table BOs on command submission if neccessary. 692 * 693 * Returns: 694 * Validation result. 695 */ 696 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 697 int (*validate)(void *p, struct amdgpu_bo *bo), 698 void *param) 699 { 700 struct amdgpu_vm_bo_base *bo_base, *tmp; 701 int r = 0; 702 703 vm->bulk_moveable &= list_empty(&vm->evicted); 704 705 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 706 struct amdgpu_bo *bo = bo_base->bo; 707 708 r = validate(param, bo); 709 if (r) 710 break; 711 712 if (bo->tbo.type != ttm_bo_type_kernel) { 713 amdgpu_vm_bo_moved(bo_base); 714 } else { 715 if (vm->use_cpu_for_update) 716 r = amdgpu_bo_kmap(bo, NULL); 717 else 718 r = amdgpu_ttm_alloc_gart(&bo->tbo); 719 if (r) 720 break; 721 if (bo->shadow) { 722 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 723 if (r) 724 break; 725 } 726 amdgpu_vm_bo_relocated(bo_base); 727 } 728 } 729 730 return r; 731 } 732 733 /** 734 * amdgpu_vm_ready - check VM is ready for updates 735 * 736 * @vm: VM to check 737 * 738 * Check if all VM PDs/PTs are ready for updates 739 * 740 * Returns: 741 * True if eviction list is empty. 742 */ 743 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 744 { 745 return list_empty(&vm->evicted); 746 } 747 748 /** 749 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 750 * 751 * @adev: amdgpu_device pointer 752 * @vm: VM to clear BO from 753 * @bo: BO to clear 754 * @level: level this BO is at 755 * @pte_support_ats: indicate ATS support from PTE 756 * 757 * Root PD needs to be reserved when calling this. 758 * 759 * Returns: 760 * 0 on success, errno otherwise. 761 */ 762 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 763 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 764 unsigned level, bool pte_support_ats) 765 { 766 struct ttm_operation_ctx ctx = { true, false }; 767 struct dma_fence *fence = NULL; 768 unsigned entries, ats_entries; 769 struct amdgpu_ring *ring; 770 struct amdgpu_job *job; 771 uint64_t addr; 772 int r; 773 774 entries = amdgpu_bo_size(bo) / 8; 775 776 if (pte_support_ats) { 777 if (level == adev->vm_manager.root_level) { 778 ats_entries = amdgpu_vm_level_shift(adev, level); 779 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 780 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 781 ats_entries = min(ats_entries, entries); 782 entries -= ats_entries; 783 } else { 784 ats_entries = entries; 785 entries = 0; 786 } 787 } else { 788 ats_entries = 0; 789 } 790 791 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 792 793 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 794 if (r) 795 goto error; 796 797 r = amdgpu_ttm_alloc_gart(&bo->tbo); 798 if (r) 799 return r; 800 801 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 802 if (r) 803 goto error; 804 805 addr = amdgpu_bo_gpu_offset(bo); 806 if (ats_entries) { 807 uint64_t ats_value; 808 809 ats_value = AMDGPU_PTE_DEFAULT_ATC; 810 if (level != AMDGPU_VM_PTB) 811 ats_value |= AMDGPU_PDE_PTE; 812 813 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 814 ats_entries, 0, ats_value); 815 addr += ats_entries * 8; 816 } 817 818 if (entries) { 819 uint64_t value = 0; 820 821 /* Workaround for fault priority problem on GMC9 */ 822 if (level == AMDGPU_VM_PTB && adev->asic_type >= CHIP_VEGA10) 823 value = AMDGPU_PTE_EXECUTABLE; 824 825 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 826 entries, 0, value); 827 } 828 829 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 830 831 WARN_ON(job->ibs[0].length_dw > 64); 832 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 833 AMDGPU_FENCE_OWNER_KFD, false); 834 if (r) 835 goto error_free; 836 837 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 838 &fence); 839 if (r) 840 goto error_free; 841 842 amdgpu_bo_fence(bo, fence, true); 843 dma_fence_put(fence); 844 845 if (bo->shadow) 846 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 847 level, pte_support_ats); 848 849 return 0; 850 851 error_free: 852 amdgpu_job_free(job); 853 854 error: 855 return r; 856 } 857 858 /** 859 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 860 * 861 * @adev: amdgpu_device pointer 862 * @vm: requesting vm 863 * @bp: resulting BO allocation parameters 864 */ 865 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 866 int level, struct amdgpu_bo_param *bp) 867 { 868 memset(bp, 0, sizeof(*bp)); 869 870 bp->size = amdgpu_vm_bo_size(adev, level); 871 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 872 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 873 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 874 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 875 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 876 if (vm->use_cpu_for_update) 877 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 878 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 879 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 880 bp->type = ttm_bo_type_kernel; 881 if (vm->root.base.bo) 882 bp->resv = vm->root.base.bo->tbo.resv; 883 } 884 885 /** 886 * amdgpu_vm_alloc_pts - Allocate page tables. 887 * 888 * @adev: amdgpu_device pointer 889 * @vm: VM to allocate page tables for 890 * @saddr: Start address which needs to be allocated 891 * @size: Size from start address we need. 892 * 893 * Make sure the page directories and page tables are allocated 894 * 895 * Returns: 896 * 0 on success, errno otherwise. 897 */ 898 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 899 struct amdgpu_vm *vm, 900 uint64_t saddr, uint64_t size) 901 { 902 struct amdgpu_vm_pt_cursor cursor; 903 struct amdgpu_bo *pt; 904 bool ats = false; 905 uint64_t eaddr; 906 int r; 907 908 /* validate the parameters */ 909 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 910 return -EINVAL; 911 912 eaddr = saddr + size - 1; 913 914 if (vm->pte_support_ats) 915 ats = saddr < AMDGPU_GMC_HOLE_START; 916 917 saddr /= AMDGPU_GPU_PAGE_SIZE; 918 eaddr /= AMDGPU_GPU_PAGE_SIZE; 919 920 if (eaddr >= adev->vm_manager.max_pfn) { 921 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 922 eaddr, adev->vm_manager.max_pfn); 923 return -EINVAL; 924 } 925 926 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 927 struct amdgpu_vm_pt *entry = cursor.entry; 928 struct amdgpu_bo_param bp; 929 930 if (cursor.level < AMDGPU_VM_PTB) { 931 unsigned num_entries; 932 933 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 934 entry->entries = kvmalloc_array(num_entries, 935 sizeof(*entry->entries), 936 GFP_KERNEL | 937 __GFP_ZERO); 938 if (!entry->entries) 939 return -ENOMEM; 940 } 941 942 943 if (entry->base.bo) 944 continue; 945 946 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 947 948 r = amdgpu_bo_create(adev, &bp, &pt); 949 if (r) 950 return r; 951 952 if (vm->use_cpu_for_update) { 953 r = amdgpu_bo_kmap(pt, NULL); 954 if (r) 955 goto error_free_pt; 956 } 957 958 /* Keep a reference to the root directory to avoid 959 * freeing them up in the wrong order. 960 */ 961 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 962 963 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 964 965 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 966 if (r) 967 goto error_free_pt; 968 } 969 970 return 0; 971 972 error_free_pt: 973 amdgpu_bo_unref(&pt->shadow); 974 amdgpu_bo_unref(&pt); 975 return r; 976 } 977 978 /** 979 * amdgpu_vm_free_pts - free PD/PT levels 980 * 981 * @adev: amdgpu device structure 982 * @vm: amdgpu vm structure 983 * 984 * Free the page directory or page table level and all sub levels. 985 */ 986 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 987 struct amdgpu_vm *vm) 988 { 989 struct amdgpu_vm_pt_cursor cursor; 990 struct amdgpu_vm_pt *entry; 991 992 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 993 994 if (entry->base.bo) { 995 entry->base.bo->vm_bo = NULL; 996 list_del(&entry->base.vm_status); 997 amdgpu_bo_unref(&entry->base.bo->shadow); 998 amdgpu_bo_unref(&entry->base.bo); 999 } 1000 kvfree(entry->entries); 1001 } 1002 1003 BUG_ON(vm->root.base.bo); 1004 } 1005 1006 /** 1007 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1008 * 1009 * @adev: amdgpu_device pointer 1010 */ 1011 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1012 { 1013 const struct amdgpu_ip_block *ip_block; 1014 bool has_compute_vm_bug; 1015 struct amdgpu_ring *ring; 1016 int i; 1017 1018 has_compute_vm_bug = false; 1019 1020 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1021 if (ip_block) { 1022 /* Compute has a VM bug for GFX version < 7. 1023 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1024 if (ip_block->version->major <= 7) 1025 has_compute_vm_bug = true; 1026 else if (ip_block->version->major == 8) 1027 if (adev->gfx.mec_fw_version < 673) 1028 has_compute_vm_bug = true; 1029 } 1030 1031 for (i = 0; i < adev->num_rings; i++) { 1032 ring = adev->rings[i]; 1033 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1034 /* only compute rings */ 1035 ring->has_compute_vm_bug = has_compute_vm_bug; 1036 else 1037 ring->has_compute_vm_bug = false; 1038 } 1039 } 1040 1041 /** 1042 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1043 * 1044 * @ring: ring on which the job will be submitted 1045 * @job: job to submit 1046 * 1047 * Returns: 1048 * True if sync is needed. 1049 */ 1050 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1051 struct amdgpu_job *job) 1052 { 1053 struct amdgpu_device *adev = ring->adev; 1054 unsigned vmhub = ring->funcs->vmhub; 1055 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1056 struct amdgpu_vmid *id; 1057 bool gds_switch_needed; 1058 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1059 1060 if (job->vmid == 0) 1061 return false; 1062 id = &id_mgr->ids[job->vmid]; 1063 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1064 id->gds_base != job->gds_base || 1065 id->gds_size != job->gds_size || 1066 id->gws_base != job->gws_base || 1067 id->gws_size != job->gws_size || 1068 id->oa_base != job->oa_base || 1069 id->oa_size != job->oa_size); 1070 1071 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1072 return true; 1073 1074 return vm_flush_needed || gds_switch_needed; 1075 } 1076 1077 /** 1078 * amdgpu_vm_flush - hardware flush the vm 1079 * 1080 * @ring: ring to use for flush 1081 * @job: related job 1082 * @need_pipe_sync: is pipe sync needed 1083 * 1084 * Emit a VM flush when it is necessary. 1085 * 1086 * Returns: 1087 * 0 on success, errno otherwise. 1088 */ 1089 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1090 { 1091 struct amdgpu_device *adev = ring->adev; 1092 unsigned vmhub = ring->funcs->vmhub; 1093 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1094 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1095 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1096 id->gds_base != job->gds_base || 1097 id->gds_size != job->gds_size || 1098 id->gws_base != job->gws_base || 1099 id->gws_size != job->gws_size || 1100 id->oa_base != job->oa_base || 1101 id->oa_size != job->oa_size); 1102 bool vm_flush_needed = job->vm_needs_flush; 1103 bool pasid_mapping_needed = id->pasid != job->pasid || 1104 !id->pasid_mapping || 1105 !dma_fence_is_signaled(id->pasid_mapping); 1106 struct dma_fence *fence = NULL; 1107 unsigned patch_offset = 0; 1108 int r; 1109 1110 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1111 gds_switch_needed = true; 1112 vm_flush_needed = true; 1113 pasid_mapping_needed = true; 1114 } 1115 1116 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1117 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1118 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1119 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1120 ring->funcs->emit_wreg; 1121 1122 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1123 return 0; 1124 1125 if (ring->funcs->init_cond_exec) 1126 patch_offset = amdgpu_ring_init_cond_exec(ring); 1127 1128 if (need_pipe_sync) 1129 amdgpu_ring_emit_pipeline_sync(ring); 1130 1131 if (vm_flush_needed) { 1132 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1133 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1134 } 1135 1136 if (pasid_mapping_needed) 1137 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1138 1139 if (vm_flush_needed || pasid_mapping_needed) { 1140 r = amdgpu_fence_emit(ring, &fence, 0); 1141 if (r) 1142 return r; 1143 } 1144 1145 if (vm_flush_needed) { 1146 mutex_lock(&id_mgr->lock); 1147 dma_fence_put(id->last_flush); 1148 id->last_flush = dma_fence_get(fence); 1149 id->current_gpu_reset_count = 1150 atomic_read(&adev->gpu_reset_counter); 1151 mutex_unlock(&id_mgr->lock); 1152 } 1153 1154 if (pasid_mapping_needed) { 1155 id->pasid = job->pasid; 1156 dma_fence_put(id->pasid_mapping); 1157 id->pasid_mapping = dma_fence_get(fence); 1158 } 1159 dma_fence_put(fence); 1160 1161 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1162 id->gds_base = job->gds_base; 1163 id->gds_size = job->gds_size; 1164 id->gws_base = job->gws_base; 1165 id->gws_size = job->gws_size; 1166 id->oa_base = job->oa_base; 1167 id->oa_size = job->oa_size; 1168 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1169 job->gds_size, job->gws_base, 1170 job->gws_size, job->oa_base, 1171 job->oa_size); 1172 } 1173 1174 if (ring->funcs->patch_cond_exec) 1175 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1176 1177 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1178 if (ring->funcs->emit_switch_buffer) { 1179 amdgpu_ring_emit_switch_buffer(ring); 1180 amdgpu_ring_emit_switch_buffer(ring); 1181 } 1182 return 0; 1183 } 1184 1185 /** 1186 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1187 * 1188 * @vm: requested vm 1189 * @bo: requested buffer object 1190 * 1191 * Find @bo inside the requested vm. 1192 * Search inside the @bos vm list for the requested vm 1193 * Returns the found bo_va or NULL if none is found 1194 * 1195 * Object has to be reserved! 1196 * 1197 * Returns: 1198 * Found bo_va or NULL. 1199 */ 1200 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1201 struct amdgpu_bo *bo) 1202 { 1203 struct amdgpu_vm_bo_base *base; 1204 1205 for (base = bo->vm_bo; base; base = base->next) { 1206 if (base->vm != vm) 1207 continue; 1208 1209 return container_of(base, struct amdgpu_bo_va, base); 1210 } 1211 return NULL; 1212 } 1213 1214 /** 1215 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1216 * 1217 * @params: see amdgpu_pte_update_params definition 1218 * @bo: PD/PT to update 1219 * @pe: addr of the page entry 1220 * @addr: dst addr to write into pe 1221 * @count: number of page entries to update 1222 * @incr: increase next addr by incr bytes 1223 * @flags: hw access flags 1224 * 1225 * Traces the parameters and calls the right asic functions 1226 * to setup the page table using the DMA. 1227 */ 1228 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1229 struct amdgpu_bo *bo, 1230 uint64_t pe, uint64_t addr, 1231 unsigned count, uint32_t incr, 1232 uint64_t flags) 1233 { 1234 pe += amdgpu_bo_gpu_offset(bo); 1235 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1236 1237 if (count < 3) { 1238 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1239 addr | flags, count, incr); 1240 1241 } else { 1242 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1243 count, incr, flags); 1244 } 1245 } 1246 1247 /** 1248 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1249 * 1250 * @params: see amdgpu_pte_update_params definition 1251 * @bo: PD/PT to update 1252 * @pe: addr of the page entry 1253 * @addr: dst addr to write into pe 1254 * @count: number of page entries to update 1255 * @incr: increase next addr by incr bytes 1256 * @flags: hw access flags 1257 * 1258 * Traces the parameters and calls the DMA function to copy the PTEs. 1259 */ 1260 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1261 struct amdgpu_bo *bo, 1262 uint64_t pe, uint64_t addr, 1263 unsigned count, uint32_t incr, 1264 uint64_t flags) 1265 { 1266 uint64_t src = (params->src + (addr >> 12) * 8); 1267 1268 pe += amdgpu_bo_gpu_offset(bo); 1269 trace_amdgpu_vm_copy_ptes(pe, src, count); 1270 1271 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1272 } 1273 1274 /** 1275 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1276 * 1277 * @pages_addr: optional DMA address to use for lookup 1278 * @addr: the unmapped addr 1279 * 1280 * Look up the physical address of the page that the pte resolves 1281 * to. 1282 * 1283 * Returns: 1284 * The pointer for the page table entry. 1285 */ 1286 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1287 { 1288 uint64_t result; 1289 1290 /* page table offset */ 1291 result = pages_addr[addr >> PAGE_SHIFT]; 1292 1293 /* in case cpu page size != gpu page size*/ 1294 result |= addr & (~PAGE_MASK); 1295 1296 result &= 0xFFFFFFFFFFFFF000ULL; 1297 1298 return result; 1299 } 1300 1301 /** 1302 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1303 * 1304 * @params: see amdgpu_pte_update_params definition 1305 * @bo: PD/PT to update 1306 * @pe: kmap addr of the page entry 1307 * @addr: dst addr to write into pe 1308 * @count: number of page entries to update 1309 * @incr: increase next addr by incr bytes 1310 * @flags: hw access flags 1311 * 1312 * Write count number of PT/PD entries directly. 1313 */ 1314 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1315 struct amdgpu_bo *bo, 1316 uint64_t pe, uint64_t addr, 1317 unsigned count, uint32_t incr, 1318 uint64_t flags) 1319 { 1320 unsigned int i; 1321 uint64_t value; 1322 1323 pe += (unsigned long)amdgpu_bo_kptr(bo); 1324 1325 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1326 1327 for (i = 0; i < count; i++) { 1328 value = params->pages_addr ? 1329 amdgpu_vm_map_gart(params->pages_addr, addr) : 1330 addr; 1331 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1332 i, value, flags); 1333 addr += incr; 1334 } 1335 } 1336 1337 /** 1338 * amdgpu_vm_update_func - helper to call update function 1339 * 1340 * Calls the update function for both the given BO as well as its shadow. 1341 */ 1342 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1343 struct amdgpu_bo *bo, 1344 uint64_t pe, uint64_t addr, 1345 unsigned count, uint32_t incr, 1346 uint64_t flags) 1347 { 1348 if (bo->shadow) 1349 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1350 params->func(params, bo, pe, addr, count, incr, flags); 1351 } 1352 1353 /* 1354 * amdgpu_vm_update_pde - update a single level in the hierarchy 1355 * 1356 * @param: parameters for the update 1357 * @vm: requested vm 1358 * @parent: parent directory 1359 * @entry: entry to update 1360 * 1361 * Makes sure the requested entry in parent is up to date. 1362 */ 1363 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1364 struct amdgpu_vm *vm, 1365 struct amdgpu_vm_pt *parent, 1366 struct amdgpu_vm_pt *entry) 1367 { 1368 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1369 uint64_t pde, pt, flags; 1370 unsigned level; 1371 1372 /* Don't update huge pages here */ 1373 if (entry->huge) 1374 return; 1375 1376 for (level = 0, pbo = bo->parent; pbo; ++level) 1377 pbo = pbo->parent; 1378 1379 level += params->adev->vm_manager.root_level; 1380 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1381 pde = (entry - parent->entries) * 8; 1382 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1383 } 1384 1385 /* 1386 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1387 * 1388 * @adev: amdgpu_device pointer 1389 * @vm: related vm 1390 * 1391 * Mark all PD level as invalid after an error. 1392 */ 1393 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1394 struct amdgpu_vm *vm) 1395 { 1396 struct amdgpu_vm_pt_cursor cursor; 1397 struct amdgpu_vm_pt *entry; 1398 1399 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1400 if (entry->base.bo && !entry->base.moved) 1401 amdgpu_vm_bo_relocated(&entry->base); 1402 } 1403 1404 /* 1405 * amdgpu_vm_update_directories - make sure that all directories are valid 1406 * 1407 * @adev: amdgpu_device pointer 1408 * @vm: requested vm 1409 * 1410 * Makes sure all directories are up to date. 1411 * 1412 * Returns: 1413 * 0 for success, error for failure. 1414 */ 1415 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1416 struct amdgpu_vm *vm) 1417 { 1418 struct amdgpu_pte_update_params params; 1419 struct amdgpu_job *job; 1420 unsigned ndw = 0; 1421 int r = 0; 1422 1423 if (list_empty(&vm->relocated)) 1424 return 0; 1425 1426 restart: 1427 memset(¶ms, 0, sizeof(params)); 1428 params.adev = adev; 1429 1430 if (vm->use_cpu_for_update) { 1431 r = amdgpu_bo_sync_wait(vm->root.base.bo, 1432 AMDGPU_FENCE_OWNER_VM, true); 1433 if (unlikely(r)) 1434 return r; 1435 1436 params.func = amdgpu_vm_cpu_set_ptes; 1437 } else { 1438 ndw = 512 * 8; 1439 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1440 if (r) 1441 return r; 1442 1443 params.ib = &job->ibs[0]; 1444 params.func = amdgpu_vm_do_set_ptes; 1445 } 1446 1447 while (!list_empty(&vm->relocated)) { 1448 struct amdgpu_vm_pt *pt, *entry; 1449 1450 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1451 base.vm_status); 1452 amdgpu_vm_bo_idle(&entry->base); 1453 1454 pt = amdgpu_vm_pt_parent(entry); 1455 if (!pt) 1456 continue; 1457 1458 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1459 1460 if (!vm->use_cpu_for_update && 1461 (ndw - params.ib->length_dw) < 32) 1462 break; 1463 } 1464 1465 if (vm->use_cpu_for_update) { 1466 /* Flush HDP */ 1467 mb(); 1468 amdgpu_asic_flush_hdp(adev, NULL); 1469 } else if (params.ib->length_dw == 0) { 1470 amdgpu_job_free(job); 1471 } else { 1472 struct amdgpu_bo *root = vm->root.base.bo; 1473 struct amdgpu_ring *ring; 1474 struct dma_fence *fence; 1475 1476 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1477 sched); 1478 1479 amdgpu_ring_pad_ib(ring, params.ib); 1480 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1481 AMDGPU_FENCE_OWNER_VM, false); 1482 WARN_ON(params.ib->length_dw > ndw); 1483 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1484 &fence); 1485 if (r) 1486 goto error; 1487 1488 amdgpu_bo_fence(root, fence, true); 1489 dma_fence_put(vm->last_update); 1490 vm->last_update = fence; 1491 } 1492 1493 if (!list_empty(&vm->relocated)) 1494 goto restart; 1495 1496 return 0; 1497 1498 error: 1499 amdgpu_vm_invalidate_pds(adev, vm); 1500 amdgpu_job_free(job); 1501 return r; 1502 } 1503 1504 /** 1505 * amdgpu_vm_update_flags - figure out flags for PTE updates 1506 * 1507 * Make sure to set the right flags for the PTEs at the desired level. 1508 */ 1509 static void amdgpu_vm_update_flags(struct amdgpu_pte_update_params *params, 1510 struct amdgpu_bo *bo, unsigned level, 1511 uint64_t pe, uint64_t addr, 1512 unsigned count, uint32_t incr, 1513 uint64_t flags) 1514 1515 { 1516 if (level != AMDGPU_VM_PTB) { 1517 flags |= AMDGPU_PDE_PTE; 1518 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1519 1520 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1521 !(flags & AMDGPU_PTE_VALID) && 1522 !(flags & AMDGPU_PTE_PRT)) { 1523 1524 /* Workaround for fault priority problem on GMC9 */ 1525 flags |= AMDGPU_PTE_EXECUTABLE; 1526 } 1527 1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1529 } 1530 1531 /** 1532 * amdgpu_vm_fragment - get fragment for PTEs 1533 * 1534 * @params: see amdgpu_pte_update_params definition 1535 * @start: first PTE to handle 1536 * @end: last PTE to handle 1537 * @flags: hw mapping flags 1538 * @frag: resulting fragment size 1539 * @frag_end: end of this fragment 1540 * 1541 * Returns the first possible fragment for the start and end address. 1542 */ 1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1544 uint64_t start, uint64_t end, uint64_t flags, 1545 unsigned int *frag, uint64_t *frag_end) 1546 { 1547 /** 1548 * The MC L1 TLB supports variable sized pages, based on a fragment 1549 * field in the PTE. When this field is set to a non-zero value, page 1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1551 * flags are considered valid for all PTEs within the fragment range 1552 * and corresponding mappings are assumed to be physically contiguous. 1553 * 1554 * The L1 TLB can store a single PTE for the whole fragment, 1555 * significantly increasing the space available for translation 1556 * caching. This leads to large improvements in throughput when the 1557 * TLB is under pressure. 1558 * 1559 * The L2 TLB distributes small and large fragments into two 1560 * asymmetric partitions. The large fragment cache is significantly 1561 * larger. Thus, we try to use large fragments wherever possible. 1562 * Userspace can support this by aligning virtual base address and 1563 * allocation size to the fragment size. 1564 * 1565 * Starting with Vega10 the fragment size only controls the L1. The L2 1566 * is now directly feed with small/huge/giant pages from the walker. 1567 */ 1568 unsigned max_frag; 1569 1570 if (params->adev->asic_type < CHIP_VEGA10) 1571 max_frag = params->adev->vm_manager.fragment_size; 1572 else 1573 max_frag = 31; 1574 1575 /* system pages are non continuously */ 1576 if (params->src) { 1577 *frag = 0; 1578 *frag_end = end; 1579 return; 1580 } 1581 1582 /* This intentionally wraps around if no bit is set */ 1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1584 if (*frag >= max_frag) { 1585 *frag = max_frag; 1586 *frag_end = end & ~((1ULL << max_frag) - 1); 1587 } else { 1588 *frag_end = start + (1 << *frag); 1589 } 1590 } 1591 1592 /** 1593 * amdgpu_vm_update_ptes - make sure that page tables are valid 1594 * 1595 * @params: see amdgpu_pte_update_params definition 1596 * @start: start of GPU address range 1597 * @end: end of GPU address range 1598 * @dst: destination address to map to, the next dst inside the function 1599 * @flags: mapping flags 1600 * 1601 * Update the page tables in the range @start - @end. 1602 * 1603 * Returns: 1604 * 0 for success, -EINVAL for failure. 1605 */ 1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1607 uint64_t start, uint64_t end, 1608 uint64_t dst, uint64_t flags) 1609 { 1610 struct amdgpu_device *adev = params->adev; 1611 struct amdgpu_vm_pt_cursor cursor; 1612 uint64_t frag_start = start, frag_end; 1613 unsigned int frag; 1614 1615 /* figure out the initial fragment */ 1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1617 1618 /* walk over the address space and update the PTs */ 1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1620 while (cursor.pfn < end) { 1621 struct amdgpu_bo *pt = cursor.entry->base.bo; 1622 unsigned shift, parent_shift, mask; 1623 uint64_t incr, entry_end, pe_start; 1624 1625 if (!pt) 1626 return -ENOENT; 1627 1628 /* The root level can't be a huge page */ 1629 if (cursor.level == adev->vm_manager.root_level) { 1630 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1631 return -ENOENT; 1632 continue; 1633 } 1634 1635 /* If it isn't already handled it can't be a huge page */ 1636 if (cursor.entry->huge) { 1637 /* Add the entry to the relocated list to update it. */ 1638 cursor.entry->huge = false; 1639 amdgpu_vm_bo_relocated(&cursor.entry->base); 1640 } 1641 1642 shift = amdgpu_vm_level_shift(adev, cursor.level); 1643 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1644 if (adev->asic_type < CHIP_VEGA10) { 1645 /* No huge page support before GMC v9 */ 1646 if (cursor.level != AMDGPU_VM_PTB) { 1647 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1648 return -ENOENT; 1649 continue; 1650 } 1651 } else if (frag < shift) { 1652 /* We can't use this level when the fragment size is 1653 * smaller than the address shift. Go to the next 1654 * child entry and try again. 1655 */ 1656 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1657 return -ENOENT; 1658 continue; 1659 } else if (frag >= parent_shift && 1660 cursor.level - 1 != adev->vm_manager.root_level) { 1661 /* If the fragment size is even larger than the parent 1662 * shift we should go up one level and check it again 1663 * unless one level up is the root level. 1664 */ 1665 if (!amdgpu_vm_pt_ancestor(&cursor)) 1666 return -ENOENT; 1667 continue; 1668 } 1669 1670 /* Looks good so far, calculate parameters for the update */ 1671 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1672 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1673 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1674 entry_end = (uint64_t)(mask + 1) << shift; 1675 entry_end += cursor.pfn & ~(entry_end - 1); 1676 entry_end = min(entry_end, end); 1677 1678 do { 1679 uint64_t upd_end = min(entry_end, frag_end); 1680 unsigned nptes = (upd_end - frag_start) >> shift; 1681 1682 amdgpu_vm_update_flags(params, pt, cursor.level, 1683 pe_start, dst, nptes, incr, 1684 flags | AMDGPU_PTE_FRAG(frag)); 1685 1686 pe_start += nptes * 8; 1687 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1688 1689 frag_start = upd_end; 1690 if (frag_start >= frag_end) { 1691 /* figure out the next fragment */ 1692 amdgpu_vm_fragment(params, frag_start, end, 1693 flags, &frag, &frag_end); 1694 if (frag < shift) 1695 break; 1696 } 1697 } while (frag_start < entry_end); 1698 1699 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1700 /* Mark all child entries as huge */ 1701 while (cursor.pfn < frag_start) { 1702 cursor.entry->huge = true; 1703 amdgpu_vm_pt_next(adev, &cursor); 1704 } 1705 1706 } else if (frag >= shift) { 1707 /* or just move on to the next on the same level. */ 1708 amdgpu_vm_pt_next(adev, &cursor); 1709 } 1710 } 1711 1712 return 0; 1713 } 1714 1715 /** 1716 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1717 * 1718 * @adev: amdgpu_device pointer 1719 * @exclusive: fence we need to sync to 1720 * @pages_addr: DMA addresses to use for mapping 1721 * @vm: requested vm 1722 * @start: start of mapped range 1723 * @last: last mapped entry 1724 * @flags: flags for the entries 1725 * @addr: addr to set the area to 1726 * @fence: optional resulting fence 1727 * 1728 * Fill in the page table entries between @start and @last. 1729 * 1730 * Returns: 1731 * 0 for success, -EINVAL for failure. 1732 */ 1733 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1734 struct dma_fence *exclusive, 1735 dma_addr_t *pages_addr, 1736 struct amdgpu_vm *vm, 1737 uint64_t start, uint64_t last, 1738 uint64_t flags, uint64_t addr, 1739 struct dma_fence **fence) 1740 { 1741 struct amdgpu_ring *ring; 1742 void *owner = AMDGPU_FENCE_OWNER_VM; 1743 unsigned nptes, ncmds, ndw; 1744 struct amdgpu_job *job; 1745 struct amdgpu_pte_update_params params; 1746 struct dma_fence *f = NULL; 1747 int r; 1748 1749 memset(¶ms, 0, sizeof(params)); 1750 params.adev = adev; 1751 params.vm = vm; 1752 1753 /* sync to everything except eviction fences on unmapping */ 1754 if (!(flags & AMDGPU_PTE_VALID)) 1755 owner = AMDGPU_FENCE_OWNER_KFD; 1756 1757 if (vm->use_cpu_for_update) { 1758 /* params.src is used as flag to indicate system Memory */ 1759 if (pages_addr) 1760 params.src = ~0; 1761 1762 /* Wait for PT BOs to be idle. PTs share the same resv. object 1763 * as the root PD BO 1764 */ 1765 r = amdgpu_bo_sync_wait(vm->root.base.bo, owner, true); 1766 if (unlikely(r)) 1767 return r; 1768 1769 /* Wait for any BO move to be completed */ 1770 if (exclusive) { 1771 r = dma_fence_wait(exclusive, true); 1772 if (unlikely(r)) 1773 return r; 1774 } 1775 1776 params.func = amdgpu_vm_cpu_set_ptes; 1777 params.pages_addr = pages_addr; 1778 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1779 addr, flags); 1780 } 1781 1782 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1783 1784 nptes = last - start + 1; 1785 1786 /* 1787 * reserve space for two commands every (1 << BLOCK_SIZE) 1788 * entries or 2k dwords (whatever is smaller) 1789 */ 1790 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1791 1792 /* The second command is for the shadow pagetables. */ 1793 if (vm->root.base.bo->shadow) 1794 ncmds *= 2; 1795 1796 /* padding, etc. */ 1797 ndw = 64; 1798 1799 if (pages_addr) { 1800 /* copy commands needed */ 1801 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1802 1803 /* and also PTEs */ 1804 ndw += nptes * 2; 1805 1806 params.func = amdgpu_vm_do_copy_ptes; 1807 1808 } else { 1809 /* set page commands needed */ 1810 ndw += ncmds * 10; 1811 1812 /* extra commands for begin/end fragments */ 1813 ncmds = 2 * adev->vm_manager.fragment_size; 1814 if (vm->root.base.bo->shadow) 1815 ncmds *= 2; 1816 1817 ndw += 10 * ncmds; 1818 1819 params.func = amdgpu_vm_do_set_ptes; 1820 } 1821 1822 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1823 if (r) 1824 return r; 1825 1826 params.ib = &job->ibs[0]; 1827 1828 if (pages_addr) { 1829 uint64_t *pte; 1830 unsigned i; 1831 1832 /* Put the PTEs at the end of the IB. */ 1833 i = ndw - nptes * 2; 1834 pte= (uint64_t *)&(job->ibs->ptr[i]); 1835 params.src = job->ibs->gpu_addr + i * 4; 1836 1837 for (i = 0; i < nptes; ++i) { 1838 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1839 AMDGPU_GPU_PAGE_SIZE); 1840 pte[i] |= flags; 1841 } 1842 addr = 0; 1843 } 1844 1845 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1846 if (r) 1847 goto error_free; 1848 1849 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1850 owner, false); 1851 if (r) 1852 goto error_free; 1853 1854 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1855 if (r) 1856 goto error_free; 1857 1858 amdgpu_ring_pad_ib(ring, params.ib); 1859 WARN_ON(params.ib->length_dw > ndw); 1860 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1861 if (r) 1862 goto error_free; 1863 1864 amdgpu_bo_fence(vm->root.base.bo, f, true); 1865 dma_fence_put(*fence); 1866 *fence = f; 1867 return 0; 1868 1869 error_free: 1870 amdgpu_job_free(job); 1871 return r; 1872 } 1873 1874 /** 1875 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1876 * 1877 * @adev: amdgpu_device pointer 1878 * @exclusive: fence we need to sync to 1879 * @pages_addr: DMA addresses to use for mapping 1880 * @vm: requested vm 1881 * @mapping: mapped range and flags to use for the update 1882 * @flags: HW flags for the mapping 1883 * @nodes: array of drm_mm_nodes with the MC addresses 1884 * @fence: optional resulting fence 1885 * 1886 * Split the mapping into smaller chunks so that each update fits 1887 * into a SDMA IB. 1888 * 1889 * Returns: 1890 * 0 for success, -EINVAL for failure. 1891 */ 1892 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1893 struct dma_fence *exclusive, 1894 dma_addr_t *pages_addr, 1895 struct amdgpu_vm *vm, 1896 struct amdgpu_bo_va_mapping *mapping, 1897 uint64_t flags, 1898 struct drm_mm_node *nodes, 1899 struct dma_fence **fence) 1900 { 1901 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1902 uint64_t pfn, start = mapping->start; 1903 int r; 1904 1905 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1906 * but in case of something, we filter the flags in first place 1907 */ 1908 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1909 flags &= ~AMDGPU_PTE_READABLE; 1910 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1911 flags &= ~AMDGPU_PTE_WRITEABLE; 1912 1913 flags &= ~AMDGPU_PTE_EXECUTABLE; 1914 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1915 1916 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1917 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1918 1919 if ((mapping->flags & AMDGPU_PTE_PRT) && 1920 (adev->asic_type >= CHIP_VEGA10)) { 1921 flags |= AMDGPU_PTE_PRT; 1922 flags &= ~AMDGPU_PTE_VALID; 1923 } 1924 1925 trace_amdgpu_vm_bo_update(mapping); 1926 1927 pfn = mapping->offset >> PAGE_SHIFT; 1928 if (nodes) { 1929 while (pfn >= nodes->size) { 1930 pfn -= nodes->size; 1931 ++nodes; 1932 } 1933 } 1934 1935 do { 1936 dma_addr_t *dma_addr = NULL; 1937 uint64_t max_entries; 1938 uint64_t addr, last; 1939 1940 if (nodes) { 1941 addr = nodes->start << PAGE_SHIFT; 1942 max_entries = (nodes->size - pfn) * 1943 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1944 } else { 1945 addr = 0; 1946 max_entries = S64_MAX; 1947 } 1948 1949 if (pages_addr) { 1950 uint64_t count; 1951 1952 max_entries = min(max_entries, 16ull * 1024ull); 1953 for (count = 1; 1954 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1955 ++count) { 1956 uint64_t idx = pfn + count; 1957 1958 if (pages_addr[idx] != 1959 (pages_addr[idx - 1] + PAGE_SIZE)) 1960 break; 1961 } 1962 1963 if (count < min_linear_pages) { 1964 addr = pfn << PAGE_SHIFT; 1965 dma_addr = pages_addr; 1966 } else { 1967 addr = pages_addr[pfn]; 1968 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1969 } 1970 1971 } else if (flags & AMDGPU_PTE_VALID) { 1972 addr += adev->vm_manager.vram_base_offset; 1973 addr += pfn << PAGE_SHIFT; 1974 } 1975 1976 last = min((uint64_t)mapping->last, start + max_entries - 1); 1977 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1978 start, last, flags, addr, 1979 fence); 1980 if (r) 1981 return r; 1982 1983 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1984 if (nodes && nodes->size == pfn) { 1985 pfn = 0; 1986 ++nodes; 1987 } 1988 start = last + 1; 1989 1990 } while (unlikely(start != mapping->last + 1)); 1991 1992 return 0; 1993 } 1994 1995 /** 1996 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1997 * 1998 * @adev: amdgpu_device pointer 1999 * @bo_va: requested BO and VM object 2000 * @clear: if true clear the entries 2001 * 2002 * Fill in the page table entries for @bo_va. 2003 * 2004 * Returns: 2005 * 0 for success, -EINVAL for failure. 2006 */ 2007 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2008 struct amdgpu_bo_va *bo_va, 2009 bool clear) 2010 { 2011 struct amdgpu_bo *bo = bo_va->base.bo; 2012 struct amdgpu_vm *vm = bo_va->base.vm; 2013 struct amdgpu_bo_va_mapping *mapping; 2014 dma_addr_t *pages_addr = NULL; 2015 struct ttm_mem_reg *mem; 2016 struct drm_mm_node *nodes; 2017 struct dma_fence *exclusive, **last_update; 2018 uint64_t flags; 2019 int r; 2020 2021 if (clear || !bo) { 2022 mem = NULL; 2023 nodes = NULL; 2024 exclusive = NULL; 2025 } else { 2026 struct ttm_dma_tt *ttm; 2027 2028 mem = &bo->tbo.mem; 2029 nodes = mem->mm_node; 2030 if (mem->mem_type == TTM_PL_TT) { 2031 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2032 pages_addr = ttm->dma_address; 2033 } 2034 exclusive = reservation_object_get_excl(bo->tbo.resv); 2035 } 2036 2037 if (bo) 2038 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2039 else 2040 flags = 0x0; 2041 2042 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2043 last_update = &vm->last_update; 2044 else 2045 last_update = &bo_va->last_pt_update; 2046 2047 if (!clear && bo_va->base.moved) { 2048 bo_va->base.moved = false; 2049 list_splice_init(&bo_va->valids, &bo_va->invalids); 2050 2051 } else if (bo_va->cleared != clear) { 2052 list_splice_init(&bo_va->valids, &bo_va->invalids); 2053 } 2054 2055 list_for_each_entry(mapping, &bo_va->invalids, list) { 2056 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2057 mapping, flags, nodes, 2058 last_update); 2059 if (r) 2060 return r; 2061 } 2062 2063 if (vm->use_cpu_for_update) { 2064 /* Flush HDP */ 2065 mb(); 2066 amdgpu_asic_flush_hdp(adev, NULL); 2067 } 2068 2069 /* If the BO is not in its preferred location add it back to 2070 * the evicted list so that it gets validated again on the 2071 * next command submission. 2072 */ 2073 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2074 uint32_t mem_type = bo->tbo.mem.mem_type; 2075 2076 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2077 amdgpu_vm_bo_evicted(&bo_va->base); 2078 else 2079 amdgpu_vm_bo_idle(&bo_va->base); 2080 } else { 2081 amdgpu_vm_bo_done(&bo_va->base); 2082 } 2083 2084 list_splice_init(&bo_va->invalids, &bo_va->valids); 2085 bo_va->cleared = clear; 2086 2087 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2088 list_for_each_entry(mapping, &bo_va->valids, list) 2089 trace_amdgpu_vm_bo_mapping(mapping); 2090 } 2091 2092 return 0; 2093 } 2094 2095 /** 2096 * amdgpu_vm_update_prt_state - update the global PRT state 2097 * 2098 * @adev: amdgpu_device pointer 2099 */ 2100 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2101 { 2102 unsigned long flags; 2103 bool enable; 2104 2105 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2106 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2107 adev->gmc.gmc_funcs->set_prt(adev, enable); 2108 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2109 } 2110 2111 /** 2112 * amdgpu_vm_prt_get - add a PRT user 2113 * 2114 * @adev: amdgpu_device pointer 2115 */ 2116 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2117 { 2118 if (!adev->gmc.gmc_funcs->set_prt) 2119 return; 2120 2121 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2122 amdgpu_vm_update_prt_state(adev); 2123 } 2124 2125 /** 2126 * amdgpu_vm_prt_put - drop a PRT user 2127 * 2128 * @adev: amdgpu_device pointer 2129 */ 2130 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2131 { 2132 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2133 amdgpu_vm_update_prt_state(adev); 2134 } 2135 2136 /** 2137 * amdgpu_vm_prt_cb - callback for updating the PRT status 2138 * 2139 * @fence: fence for the callback 2140 * @_cb: the callback function 2141 */ 2142 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2143 { 2144 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2145 2146 amdgpu_vm_prt_put(cb->adev); 2147 kfree(cb); 2148 } 2149 2150 /** 2151 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2152 * 2153 * @adev: amdgpu_device pointer 2154 * @fence: fence for the callback 2155 */ 2156 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2157 struct dma_fence *fence) 2158 { 2159 struct amdgpu_prt_cb *cb; 2160 2161 if (!adev->gmc.gmc_funcs->set_prt) 2162 return; 2163 2164 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2165 if (!cb) { 2166 /* Last resort when we are OOM */ 2167 if (fence) 2168 dma_fence_wait(fence, false); 2169 2170 amdgpu_vm_prt_put(adev); 2171 } else { 2172 cb->adev = adev; 2173 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2174 amdgpu_vm_prt_cb)) 2175 amdgpu_vm_prt_cb(fence, &cb->cb); 2176 } 2177 } 2178 2179 /** 2180 * amdgpu_vm_free_mapping - free a mapping 2181 * 2182 * @adev: amdgpu_device pointer 2183 * @vm: requested vm 2184 * @mapping: mapping to be freed 2185 * @fence: fence of the unmap operation 2186 * 2187 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2188 */ 2189 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2190 struct amdgpu_vm *vm, 2191 struct amdgpu_bo_va_mapping *mapping, 2192 struct dma_fence *fence) 2193 { 2194 if (mapping->flags & AMDGPU_PTE_PRT) 2195 amdgpu_vm_add_prt_cb(adev, fence); 2196 kfree(mapping); 2197 } 2198 2199 /** 2200 * amdgpu_vm_prt_fini - finish all prt mappings 2201 * 2202 * @adev: amdgpu_device pointer 2203 * @vm: requested vm 2204 * 2205 * Register a cleanup callback to disable PRT support after VM dies. 2206 */ 2207 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2208 { 2209 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2210 struct dma_fence *excl, **shared; 2211 unsigned i, shared_count; 2212 int r; 2213 2214 r = reservation_object_get_fences_rcu(resv, &excl, 2215 &shared_count, &shared); 2216 if (r) { 2217 /* Not enough memory to grab the fence list, as last resort 2218 * block for all the fences to complete. 2219 */ 2220 reservation_object_wait_timeout_rcu(resv, true, false, 2221 MAX_SCHEDULE_TIMEOUT); 2222 return; 2223 } 2224 2225 /* Add a callback for each fence in the reservation object */ 2226 amdgpu_vm_prt_get(adev); 2227 amdgpu_vm_add_prt_cb(adev, excl); 2228 2229 for (i = 0; i < shared_count; ++i) { 2230 amdgpu_vm_prt_get(adev); 2231 amdgpu_vm_add_prt_cb(adev, shared[i]); 2232 } 2233 2234 kfree(shared); 2235 } 2236 2237 /** 2238 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2239 * 2240 * @adev: amdgpu_device pointer 2241 * @vm: requested vm 2242 * @fence: optional resulting fence (unchanged if no work needed to be done 2243 * or if an error occurred) 2244 * 2245 * Make sure all freed BOs are cleared in the PT. 2246 * PTs have to be reserved and mutex must be locked! 2247 * 2248 * Returns: 2249 * 0 for success. 2250 * 2251 */ 2252 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2253 struct amdgpu_vm *vm, 2254 struct dma_fence **fence) 2255 { 2256 struct amdgpu_bo_va_mapping *mapping; 2257 uint64_t init_pte_value = 0; 2258 struct dma_fence *f = NULL; 2259 int r; 2260 2261 while (!list_empty(&vm->freed)) { 2262 mapping = list_first_entry(&vm->freed, 2263 struct amdgpu_bo_va_mapping, list); 2264 list_del(&mapping->list); 2265 2266 if (vm->pte_support_ats && 2267 mapping->start < AMDGPU_GMC_HOLE_START) 2268 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2269 2270 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2271 mapping->start, mapping->last, 2272 init_pte_value, 0, &f); 2273 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2274 if (r) { 2275 dma_fence_put(f); 2276 return r; 2277 } 2278 } 2279 2280 if (fence && f) { 2281 dma_fence_put(*fence); 2282 *fence = f; 2283 } else { 2284 dma_fence_put(f); 2285 } 2286 2287 return 0; 2288 2289 } 2290 2291 /** 2292 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2293 * 2294 * @adev: amdgpu_device pointer 2295 * @vm: requested vm 2296 * 2297 * Make sure all BOs which are moved are updated in the PTs. 2298 * 2299 * Returns: 2300 * 0 for success. 2301 * 2302 * PTs have to be reserved! 2303 */ 2304 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2305 struct amdgpu_vm *vm) 2306 { 2307 struct amdgpu_bo_va *bo_va, *tmp; 2308 struct reservation_object *resv; 2309 bool clear; 2310 int r; 2311 2312 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2313 /* Per VM BOs never need to bo cleared in the page tables */ 2314 r = amdgpu_vm_bo_update(adev, bo_va, false); 2315 if (r) 2316 return r; 2317 } 2318 2319 spin_lock(&vm->invalidated_lock); 2320 while (!list_empty(&vm->invalidated)) { 2321 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2322 base.vm_status); 2323 resv = bo_va->base.bo->tbo.resv; 2324 spin_unlock(&vm->invalidated_lock); 2325 2326 /* Try to reserve the BO to avoid clearing its ptes */ 2327 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2328 clear = false; 2329 /* Somebody else is using the BO right now */ 2330 else 2331 clear = true; 2332 2333 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2334 if (r) 2335 return r; 2336 2337 if (!clear) 2338 reservation_object_unlock(resv); 2339 spin_lock(&vm->invalidated_lock); 2340 } 2341 spin_unlock(&vm->invalidated_lock); 2342 2343 return 0; 2344 } 2345 2346 /** 2347 * amdgpu_vm_bo_add - add a bo to a specific vm 2348 * 2349 * @adev: amdgpu_device pointer 2350 * @vm: requested vm 2351 * @bo: amdgpu buffer object 2352 * 2353 * Add @bo into the requested vm. 2354 * Add @bo to the list of bos associated with the vm 2355 * 2356 * Returns: 2357 * Newly added bo_va or NULL for failure 2358 * 2359 * Object has to be reserved! 2360 */ 2361 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2362 struct amdgpu_vm *vm, 2363 struct amdgpu_bo *bo) 2364 { 2365 struct amdgpu_bo_va *bo_va; 2366 2367 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2368 if (bo_va == NULL) { 2369 return NULL; 2370 } 2371 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2372 2373 bo_va->ref_count = 1; 2374 INIT_LIST_HEAD(&bo_va->valids); 2375 INIT_LIST_HEAD(&bo_va->invalids); 2376 2377 return bo_va; 2378 } 2379 2380 2381 /** 2382 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2383 * 2384 * @adev: amdgpu_device pointer 2385 * @bo_va: bo_va to store the address 2386 * @mapping: the mapping to insert 2387 * 2388 * Insert a new mapping into all structures. 2389 */ 2390 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2391 struct amdgpu_bo_va *bo_va, 2392 struct amdgpu_bo_va_mapping *mapping) 2393 { 2394 struct amdgpu_vm *vm = bo_va->base.vm; 2395 struct amdgpu_bo *bo = bo_va->base.bo; 2396 2397 mapping->bo_va = bo_va; 2398 list_add(&mapping->list, &bo_va->invalids); 2399 amdgpu_vm_it_insert(mapping, &vm->va); 2400 2401 if (mapping->flags & AMDGPU_PTE_PRT) 2402 amdgpu_vm_prt_get(adev); 2403 2404 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2405 !bo_va->base.moved) { 2406 list_move(&bo_va->base.vm_status, &vm->moved); 2407 } 2408 trace_amdgpu_vm_bo_map(bo_va, mapping); 2409 } 2410 2411 /** 2412 * amdgpu_vm_bo_map - map bo inside a vm 2413 * 2414 * @adev: amdgpu_device pointer 2415 * @bo_va: bo_va to store the address 2416 * @saddr: where to map the BO 2417 * @offset: requested offset in the BO 2418 * @size: BO size in bytes 2419 * @flags: attributes of pages (read/write/valid/etc.) 2420 * 2421 * Add a mapping of the BO at the specefied addr into the VM. 2422 * 2423 * Returns: 2424 * 0 for success, error for failure. 2425 * 2426 * Object has to be reserved and unreserved outside! 2427 */ 2428 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2429 struct amdgpu_bo_va *bo_va, 2430 uint64_t saddr, uint64_t offset, 2431 uint64_t size, uint64_t flags) 2432 { 2433 struct amdgpu_bo_va_mapping *mapping, *tmp; 2434 struct amdgpu_bo *bo = bo_va->base.bo; 2435 struct amdgpu_vm *vm = bo_va->base.vm; 2436 uint64_t eaddr; 2437 2438 /* validate the parameters */ 2439 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2440 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2441 return -EINVAL; 2442 2443 /* make sure object fit at this offset */ 2444 eaddr = saddr + size - 1; 2445 if (saddr >= eaddr || 2446 (bo && offset + size > amdgpu_bo_size(bo))) 2447 return -EINVAL; 2448 2449 saddr /= AMDGPU_GPU_PAGE_SIZE; 2450 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2451 2452 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2453 if (tmp) { 2454 /* bo and tmp overlap, invalid addr */ 2455 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2456 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2457 tmp->start, tmp->last + 1); 2458 return -EINVAL; 2459 } 2460 2461 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2462 if (!mapping) 2463 return -ENOMEM; 2464 2465 mapping->start = saddr; 2466 mapping->last = eaddr; 2467 mapping->offset = offset; 2468 mapping->flags = flags; 2469 2470 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2471 2472 return 0; 2473 } 2474 2475 /** 2476 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2477 * 2478 * @adev: amdgpu_device pointer 2479 * @bo_va: bo_va to store the address 2480 * @saddr: where to map the BO 2481 * @offset: requested offset in the BO 2482 * @size: BO size in bytes 2483 * @flags: attributes of pages (read/write/valid/etc.) 2484 * 2485 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2486 * mappings as we do so. 2487 * 2488 * Returns: 2489 * 0 for success, error for failure. 2490 * 2491 * Object has to be reserved and unreserved outside! 2492 */ 2493 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2494 struct amdgpu_bo_va *bo_va, 2495 uint64_t saddr, uint64_t offset, 2496 uint64_t size, uint64_t flags) 2497 { 2498 struct amdgpu_bo_va_mapping *mapping; 2499 struct amdgpu_bo *bo = bo_va->base.bo; 2500 uint64_t eaddr; 2501 int r; 2502 2503 /* validate the parameters */ 2504 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2505 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2506 return -EINVAL; 2507 2508 /* make sure object fit at this offset */ 2509 eaddr = saddr + size - 1; 2510 if (saddr >= eaddr || 2511 (bo && offset + size > amdgpu_bo_size(bo))) 2512 return -EINVAL; 2513 2514 /* Allocate all the needed memory */ 2515 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2516 if (!mapping) 2517 return -ENOMEM; 2518 2519 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2520 if (r) { 2521 kfree(mapping); 2522 return r; 2523 } 2524 2525 saddr /= AMDGPU_GPU_PAGE_SIZE; 2526 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2527 2528 mapping->start = saddr; 2529 mapping->last = eaddr; 2530 mapping->offset = offset; 2531 mapping->flags = flags; 2532 2533 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2534 2535 return 0; 2536 } 2537 2538 /** 2539 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2540 * 2541 * @adev: amdgpu_device pointer 2542 * @bo_va: bo_va to remove the address from 2543 * @saddr: where to the BO is mapped 2544 * 2545 * Remove a mapping of the BO at the specefied addr from the VM. 2546 * 2547 * Returns: 2548 * 0 for success, error for failure. 2549 * 2550 * Object has to be reserved and unreserved outside! 2551 */ 2552 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2553 struct amdgpu_bo_va *bo_va, 2554 uint64_t saddr) 2555 { 2556 struct amdgpu_bo_va_mapping *mapping; 2557 struct amdgpu_vm *vm = bo_va->base.vm; 2558 bool valid = true; 2559 2560 saddr /= AMDGPU_GPU_PAGE_SIZE; 2561 2562 list_for_each_entry(mapping, &bo_va->valids, list) { 2563 if (mapping->start == saddr) 2564 break; 2565 } 2566 2567 if (&mapping->list == &bo_va->valids) { 2568 valid = false; 2569 2570 list_for_each_entry(mapping, &bo_va->invalids, list) { 2571 if (mapping->start == saddr) 2572 break; 2573 } 2574 2575 if (&mapping->list == &bo_va->invalids) 2576 return -ENOENT; 2577 } 2578 2579 list_del(&mapping->list); 2580 amdgpu_vm_it_remove(mapping, &vm->va); 2581 mapping->bo_va = NULL; 2582 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2583 2584 if (valid) 2585 list_add(&mapping->list, &vm->freed); 2586 else 2587 amdgpu_vm_free_mapping(adev, vm, mapping, 2588 bo_va->last_pt_update); 2589 2590 return 0; 2591 } 2592 2593 /** 2594 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2595 * 2596 * @adev: amdgpu_device pointer 2597 * @vm: VM structure to use 2598 * @saddr: start of the range 2599 * @size: size of the range 2600 * 2601 * Remove all mappings in a range, split them as appropriate. 2602 * 2603 * Returns: 2604 * 0 for success, error for failure. 2605 */ 2606 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2607 struct amdgpu_vm *vm, 2608 uint64_t saddr, uint64_t size) 2609 { 2610 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2611 LIST_HEAD(removed); 2612 uint64_t eaddr; 2613 2614 eaddr = saddr + size - 1; 2615 saddr /= AMDGPU_GPU_PAGE_SIZE; 2616 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2617 2618 /* Allocate all the needed memory */ 2619 before = kzalloc(sizeof(*before), GFP_KERNEL); 2620 if (!before) 2621 return -ENOMEM; 2622 INIT_LIST_HEAD(&before->list); 2623 2624 after = kzalloc(sizeof(*after), GFP_KERNEL); 2625 if (!after) { 2626 kfree(before); 2627 return -ENOMEM; 2628 } 2629 INIT_LIST_HEAD(&after->list); 2630 2631 /* Now gather all removed mappings */ 2632 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2633 while (tmp) { 2634 /* Remember mapping split at the start */ 2635 if (tmp->start < saddr) { 2636 before->start = tmp->start; 2637 before->last = saddr - 1; 2638 before->offset = tmp->offset; 2639 before->flags = tmp->flags; 2640 before->bo_va = tmp->bo_va; 2641 list_add(&before->list, &tmp->bo_va->invalids); 2642 } 2643 2644 /* Remember mapping split at the end */ 2645 if (tmp->last > eaddr) { 2646 after->start = eaddr + 1; 2647 after->last = tmp->last; 2648 after->offset = tmp->offset; 2649 after->offset += after->start - tmp->start; 2650 after->flags = tmp->flags; 2651 after->bo_va = tmp->bo_va; 2652 list_add(&after->list, &tmp->bo_va->invalids); 2653 } 2654 2655 list_del(&tmp->list); 2656 list_add(&tmp->list, &removed); 2657 2658 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2659 } 2660 2661 /* And free them up */ 2662 list_for_each_entry_safe(tmp, next, &removed, list) { 2663 amdgpu_vm_it_remove(tmp, &vm->va); 2664 list_del(&tmp->list); 2665 2666 if (tmp->start < saddr) 2667 tmp->start = saddr; 2668 if (tmp->last > eaddr) 2669 tmp->last = eaddr; 2670 2671 tmp->bo_va = NULL; 2672 list_add(&tmp->list, &vm->freed); 2673 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2674 } 2675 2676 /* Insert partial mapping before the range */ 2677 if (!list_empty(&before->list)) { 2678 amdgpu_vm_it_insert(before, &vm->va); 2679 if (before->flags & AMDGPU_PTE_PRT) 2680 amdgpu_vm_prt_get(adev); 2681 } else { 2682 kfree(before); 2683 } 2684 2685 /* Insert partial mapping after the range */ 2686 if (!list_empty(&after->list)) { 2687 amdgpu_vm_it_insert(after, &vm->va); 2688 if (after->flags & AMDGPU_PTE_PRT) 2689 amdgpu_vm_prt_get(adev); 2690 } else { 2691 kfree(after); 2692 } 2693 2694 return 0; 2695 } 2696 2697 /** 2698 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2699 * 2700 * @vm: the requested VM 2701 * @addr: the address 2702 * 2703 * Find a mapping by it's address. 2704 * 2705 * Returns: 2706 * The amdgpu_bo_va_mapping matching for addr or NULL 2707 * 2708 */ 2709 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2710 uint64_t addr) 2711 { 2712 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2713 } 2714 2715 /** 2716 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2717 * 2718 * @vm: the requested vm 2719 * @ticket: CS ticket 2720 * 2721 * Trace all mappings of BOs reserved during a command submission. 2722 */ 2723 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2724 { 2725 struct amdgpu_bo_va_mapping *mapping; 2726 2727 if (!trace_amdgpu_vm_bo_cs_enabled()) 2728 return; 2729 2730 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2731 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2732 if (mapping->bo_va && mapping->bo_va->base.bo) { 2733 struct amdgpu_bo *bo; 2734 2735 bo = mapping->bo_va->base.bo; 2736 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2737 continue; 2738 } 2739 2740 trace_amdgpu_vm_bo_cs(mapping); 2741 } 2742 } 2743 2744 /** 2745 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2746 * 2747 * @adev: amdgpu_device pointer 2748 * @bo_va: requested bo_va 2749 * 2750 * Remove @bo_va->bo from the requested vm. 2751 * 2752 * Object have to be reserved! 2753 */ 2754 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2755 struct amdgpu_bo_va *bo_va) 2756 { 2757 struct amdgpu_bo_va_mapping *mapping, *next; 2758 struct amdgpu_bo *bo = bo_va->base.bo; 2759 struct amdgpu_vm *vm = bo_va->base.vm; 2760 struct amdgpu_vm_bo_base **base; 2761 2762 if (bo) { 2763 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2764 vm->bulk_moveable = false; 2765 2766 for (base = &bo_va->base.bo->vm_bo; *base; 2767 base = &(*base)->next) { 2768 if (*base != &bo_va->base) 2769 continue; 2770 2771 *base = bo_va->base.next; 2772 break; 2773 } 2774 } 2775 2776 spin_lock(&vm->invalidated_lock); 2777 list_del(&bo_va->base.vm_status); 2778 spin_unlock(&vm->invalidated_lock); 2779 2780 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2781 list_del(&mapping->list); 2782 amdgpu_vm_it_remove(mapping, &vm->va); 2783 mapping->bo_va = NULL; 2784 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2785 list_add(&mapping->list, &vm->freed); 2786 } 2787 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2788 list_del(&mapping->list); 2789 amdgpu_vm_it_remove(mapping, &vm->va); 2790 amdgpu_vm_free_mapping(adev, vm, mapping, 2791 bo_va->last_pt_update); 2792 } 2793 2794 dma_fence_put(bo_va->last_pt_update); 2795 kfree(bo_va); 2796 } 2797 2798 /** 2799 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2800 * 2801 * @adev: amdgpu_device pointer 2802 * @bo: amdgpu buffer object 2803 * @evicted: is the BO evicted 2804 * 2805 * Mark @bo as invalid. 2806 */ 2807 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2808 struct amdgpu_bo *bo, bool evicted) 2809 { 2810 struct amdgpu_vm_bo_base *bo_base; 2811 2812 /* shadow bo doesn't have bo base, its validation needs its parent */ 2813 if (bo->parent && bo->parent->shadow == bo) 2814 bo = bo->parent; 2815 2816 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2817 struct amdgpu_vm *vm = bo_base->vm; 2818 2819 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2820 amdgpu_vm_bo_evicted(bo_base); 2821 continue; 2822 } 2823 2824 if (bo_base->moved) 2825 continue; 2826 bo_base->moved = true; 2827 2828 if (bo->tbo.type == ttm_bo_type_kernel) 2829 amdgpu_vm_bo_relocated(bo_base); 2830 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2831 amdgpu_vm_bo_moved(bo_base); 2832 else 2833 amdgpu_vm_bo_invalidated(bo_base); 2834 } 2835 } 2836 2837 /** 2838 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2839 * 2840 * @vm_size: VM size 2841 * 2842 * Returns: 2843 * VM page table as power of two 2844 */ 2845 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2846 { 2847 /* Total bits covered by PD + PTs */ 2848 unsigned bits = ilog2(vm_size) + 18; 2849 2850 /* Make sure the PD is 4K in size up to 8GB address space. 2851 Above that split equal between PD and PTs */ 2852 if (vm_size <= 8) 2853 return (bits - 9); 2854 else 2855 return ((bits + 3) / 2); 2856 } 2857 2858 /** 2859 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2860 * 2861 * @adev: amdgpu_device pointer 2862 * @min_vm_size: the minimum vm size in GB if it's set auto 2863 * @fragment_size_default: Default PTE fragment size 2864 * @max_level: max VMPT level 2865 * @max_bits: max address space size in bits 2866 * 2867 */ 2868 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2869 uint32_t fragment_size_default, unsigned max_level, 2870 unsigned max_bits) 2871 { 2872 unsigned int max_size = 1 << (max_bits - 30); 2873 unsigned int vm_size; 2874 uint64_t tmp; 2875 2876 /* adjust vm size first */ 2877 if (amdgpu_vm_size != -1) { 2878 vm_size = amdgpu_vm_size; 2879 if (vm_size > max_size) { 2880 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2881 amdgpu_vm_size, max_size); 2882 vm_size = max_size; 2883 } 2884 } else { 2885 struct sysinfo si; 2886 unsigned int phys_ram_gb; 2887 2888 /* Optimal VM size depends on the amount of physical 2889 * RAM available. Underlying requirements and 2890 * assumptions: 2891 * 2892 * - Need to map system memory and VRAM from all GPUs 2893 * - VRAM from other GPUs not known here 2894 * - Assume VRAM <= system memory 2895 * - On GFX8 and older, VM space can be segmented for 2896 * different MTYPEs 2897 * - Need to allow room for fragmentation, guard pages etc. 2898 * 2899 * This adds up to a rough guess of system memory x3. 2900 * Round up to power of two to maximize the available 2901 * VM size with the given page table size. 2902 */ 2903 si_meminfo(&si); 2904 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2905 (1 << 30) - 1) >> 30; 2906 vm_size = roundup_pow_of_two( 2907 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2908 } 2909 2910 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2911 2912 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2913 if (amdgpu_vm_block_size != -1) 2914 tmp >>= amdgpu_vm_block_size - 9; 2915 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2916 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2917 switch (adev->vm_manager.num_level) { 2918 case 3: 2919 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2920 break; 2921 case 2: 2922 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2923 break; 2924 case 1: 2925 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2926 break; 2927 default: 2928 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2929 } 2930 /* block size depends on vm size and hw setup*/ 2931 if (amdgpu_vm_block_size != -1) 2932 adev->vm_manager.block_size = 2933 min((unsigned)amdgpu_vm_block_size, max_bits 2934 - AMDGPU_GPU_PAGE_SHIFT 2935 - 9 * adev->vm_manager.num_level); 2936 else if (adev->vm_manager.num_level > 1) 2937 adev->vm_manager.block_size = 9; 2938 else 2939 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2940 2941 if (amdgpu_vm_fragment_size == -1) 2942 adev->vm_manager.fragment_size = fragment_size_default; 2943 else 2944 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2945 2946 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2947 vm_size, adev->vm_manager.num_level + 1, 2948 adev->vm_manager.block_size, 2949 adev->vm_manager.fragment_size); 2950 } 2951 2952 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2953 { 2954 struct amdgpu_retryfault_hashtable *fault_hash; 2955 2956 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2957 if (!fault_hash) 2958 return fault_hash; 2959 2960 INIT_CHASH_TABLE(fault_hash->hash, 2961 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2962 spin_lock_init(&fault_hash->lock); 2963 fault_hash->count = 0; 2964 2965 return fault_hash; 2966 } 2967 2968 /** 2969 * amdgpu_vm_init - initialize a vm instance 2970 * 2971 * @adev: amdgpu_device pointer 2972 * @vm: requested vm 2973 * @vm_context: Indicates if it GFX or Compute context 2974 * @pasid: Process address space identifier 2975 * 2976 * Init @vm fields. 2977 * 2978 * Returns: 2979 * 0 for success, error for failure. 2980 */ 2981 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2982 int vm_context, unsigned int pasid) 2983 { 2984 struct amdgpu_bo_param bp; 2985 struct amdgpu_bo *root; 2986 int r, i; 2987 2988 vm->va = RB_ROOT_CACHED; 2989 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2990 vm->reserved_vmid[i] = NULL; 2991 INIT_LIST_HEAD(&vm->evicted); 2992 INIT_LIST_HEAD(&vm->relocated); 2993 INIT_LIST_HEAD(&vm->moved); 2994 INIT_LIST_HEAD(&vm->idle); 2995 INIT_LIST_HEAD(&vm->invalidated); 2996 spin_lock_init(&vm->invalidated_lock); 2997 INIT_LIST_HEAD(&vm->freed); 2998 2999 /* create scheduler entity for page table updates */ 3000 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 3001 adev->vm_manager.vm_pte_num_rqs, NULL); 3002 if (r) 3003 return r; 3004 3005 vm->pte_support_ats = false; 3006 3007 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3008 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3009 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3010 3011 if (adev->asic_type == CHIP_RAVEN) 3012 vm->pte_support_ats = true; 3013 } else { 3014 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3015 AMDGPU_VM_USE_CPU_FOR_GFX); 3016 } 3017 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3018 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3019 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3020 "CPU update of VM recommended only for large BAR system\n"); 3021 vm->last_update = NULL; 3022 3023 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3024 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3025 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3026 r = amdgpu_bo_create(adev, &bp, &root); 3027 if (r) 3028 goto error_free_sched_entity; 3029 3030 r = amdgpu_bo_reserve(root, true); 3031 if (r) 3032 goto error_free_root; 3033 3034 r = reservation_object_reserve_shared(root->tbo.resv, 1); 3035 if (r) 3036 goto error_unreserve; 3037 3038 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3039 3040 r = amdgpu_vm_clear_bo(adev, vm, root, 3041 adev->vm_manager.root_level, 3042 vm->pte_support_ats); 3043 if (r) 3044 goto error_unreserve; 3045 3046 amdgpu_bo_unreserve(vm->root.base.bo); 3047 3048 if (pasid) { 3049 unsigned long flags; 3050 3051 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3052 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3053 GFP_ATOMIC); 3054 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3055 if (r < 0) 3056 goto error_free_root; 3057 3058 vm->pasid = pasid; 3059 } 3060 3061 vm->fault_hash = init_fault_hash(); 3062 if (!vm->fault_hash) { 3063 r = -ENOMEM; 3064 goto error_free_root; 3065 } 3066 3067 INIT_KFIFO(vm->faults); 3068 3069 return 0; 3070 3071 error_unreserve: 3072 amdgpu_bo_unreserve(vm->root.base.bo); 3073 3074 error_free_root: 3075 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3076 amdgpu_bo_unref(&vm->root.base.bo); 3077 vm->root.base.bo = NULL; 3078 3079 error_free_sched_entity: 3080 drm_sched_entity_destroy(&vm->entity); 3081 3082 return r; 3083 } 3084 3085 /** 3086 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3087 * 3088 * @adev: amdgpu_device pointer 3089 * @vm: requested vm 3090 * 3091 * This only works on GFX VMs that don't have any BOs added and no 3092 * page tables allocated yet. 3093 * 3094 * Changes the following VM parameters: 3095 * - use_cpu_for_update 3096 * - pte_supports_ats 3097 * - pasid (old PASID is released, because compute manages its own PASIDs) 3098 * 3099 * Reinitializes the page directory to reflect the changed ATS 3100 * setting. 3101 * 3102 * Returns: 3103 * 0 for success, -errno for errors. 3104 */ 3105 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3106 { 3107 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3108 int r; 3109 3110 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3111 if (r) 3112 return r; 3113 3114 /* Sanity checks */ 3115 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3116 r = -EINVAL; 3117 goto unreserve_bo; 3118 } 3119 3120 if (pasid) { 3121 unsigned long flags; 3122 3123 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3124 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3125 GFP_ATOMIC); 3126 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3127 3128 if (r == -ENOSPC) 3129 goto unreserve_bo; 3130 r = 0; 3131 } 3132 3133 /* Check if PD needs to be reinitialized and do it before 3134 * changing any other state, in case it fails. 3135 */ 3136 if (pte_support_ats != vm->pte_support_ats) { 3137 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3138 adev->vm_manager.root_level, 3139 pte_support_ats); 3140 if (r) 3141 goto free_idr; 3142 } 3143 3144 /* Update VM state */ 3145 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3146 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3147 vm->pte_support_ats = pte_support_ats; 3148 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3149 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3150 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3151 "CPU update of VM recommended only for large BAR system\n"); 3152 3153 if (vm->pasid) { 3154 unsigned long flags; 3155 3156 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3157 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3158 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3159 3160 /* Free the original amdgpu allocated pasid 3161 * Will be replaced with kfd allocated pasid 3162 */ 3163 amdgpu_pasid_free(vm->pasid); 3164 vm->pasid = 0; 3165 } 3166 3167 /* Free the shadow bo for compute VM */ 3168 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3169 3170 if (pasid) 3171 vm->pasid = pasid; 3172 3173 goto unreserve_bo; 3174 3175 free_idr: 3176 if (pasid) { 3177 unsigned long flags; 3178 3179 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3180 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3181 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3182 } 3183 unreserve_bo: 3184 amdgpu_bo_unreserve(vm->root.base.bo); 3185 return r; 3186 } 3187 3188 /** 3189 * amdgpu_vm_release_compute - release a compute vm 3190 * @adev: amdgpu_device pointer 3191 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3192 * 3193 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3194 * pasid from vm. Compute should stop use of vm after this call. 3195 */ 3196 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3197 { 3198 if (vm->pasid) { 3199 unsigned long flags; 3200 3201 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3202 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3203 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3204 } 3205 vm->pasid = 0; 3206 } 3207 3208 /** 3209 * amdgpu_vm_fini - tear down a vm instance 3210 * 3211 * @adev: amdgpu_device pointer 3212 * @vm: requested vm 3213 * 3214 * Tear down @vm. 3215 * Unbind the VM and remove all bos from the vm bo list 3216 */ 3217 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3218 { 3219 struct amdgpu_bo_va_mapping *mapping, *tmp; 3220 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3221 struct amdgpu_bo *root; 3222 u64 fault; 3223 int i, r; 3224 3225 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3226 3227 /* Clear pending page faults from IH when the VM is destroyed */ 3228 while (kfifo_get(&vm->faults, &fault)) 3229 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3230 3231 if (vm->pasid) { 3232 unsigned long flags; 3233 3234 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3235 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3236 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3237 } 3238 3239 kfree(vm->fault_hash); 3240 vm->fault_hash = NULL; 3241 3242 drm_sched_entity_destroy(&vm->entity); 3243 3244 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3245 dev_err(adev->dev, "still active bo inside vm\n"); 3246 } 3247 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3248 &vm->va.rb_root, rb) { 3249 /* Don't remove the mapping here, we don't want to trigger a 3250 * rebalance and the tree is about to be destroyed anyway. 3251 */ 3252 list_del(&mapping->list); 3253 kfree(mapping); 3254 } 3255 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3256 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3257 amdgpu_vm_prt_fini(adev, vm); 3258 prt_fini_needed = false; 3259 } 3260 3261 list_del(&mapping->list); 3262 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3263 } 3264 3265 root = amdgpu_bo_ref(vm->root.base.bo); 3266 r = amdgpu_bo_reserve(root, true); 3267 if (r) { 3268 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3269 } else { 3270 amdgpu_vm_free_pts(adev, vm); 3271 amdgpu_bo_unreserve(root); 3272 } 3273 amdgpu_bo_unref(&root); 3274 dma_fence_put(vm->last_update); 3275 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3276 amdgpu_vmid_free_reserved(adev, vm, i); 3277 } 3278 3279 /** 3280 * amdgpu_vm_manager_init - init the VM manager 3281 * 3282 * @adev: amdgpu_device pointer 3283 * 3284 * Initialize the VM manager structures 3285 */ 3286 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3287 { 3288 unsigned i; 3289 3290 amdgpu_vmid_mgr_init(adev); 3291 3292 adev->vm_manager.fence_context = 3293 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3294 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3295 adev->vm_manager.seqno[i] = 0; 3296 3297 spin_lock_init(&adev->vm_manager.prt_lock); 3298 atomic_set(&adev->vm_manager.num_prt_users, 0); 3299 3300 /* If not overridden by the user, by default, only in large BAR systems 3301 * Compute VM tables will be updated by CPU 3302 */ 3303 #ifdef CONFIG_X86_64 3304 if (amdgpu_vm_update_mode == -1) { 3305 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3306 adev->vm_manager.vm_update_mode = 3307 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3308 else 3309 adev->vm_manager.vm_update_mode = 0; 3310 } else 3311 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3312 #else 3313 adev->vm_manager.vm_update_mode = 0; 3314 #endif 3315 3316 idr_init(&adev->vm_manager.pasid_idr); 3317 spin_lock_init(&adev->vm_manager.pasid_lock); 3318 } 3319 3320 /** 3321 * amdgpu_vm_manager_fini - cleanup VM manager 3322 * 3323 * @adev: amdgpu_device pointer 3324 * 3325 * Cleanup the VM manager and free resources. 3326 */ 3327 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3328 { 3329 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3330 idr_destroy(&adev->vm_manager.pasid_idr); 3331 3332 amdgpu_vmid_mgr_fini(adev); 3333 } 3334 3335 /** 3336 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3337 * 3338 * @dev: drm device pointer 3339 * @data: drm_amdgpu_vm 3340 * @filp: drm file pointer 3341 * 3342 * Returns: 3343 * 0 for success, -errno for errors. 3344 */ 3345 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3346 { 3347 union drm_amdgpu_vm *args = data; 3348 struct amdgpu_device *adev = dev->dev_private; 3349 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3350 int r; 3351 3352 switch (args->in.op) { 3353 case AMDGPU_VM_OP_RESERVE_VMID: 3354 /* current, we only have requirement to reserve vmid from gfxhub */ 3355 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3356 if (r) 3357 return r; 3358 break; 3359 case AMDGPU_VM_OP_UNRESERVE_VMID: 3360 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3361 break; 3362 default: 3363 return -EINVAL; 3364 } 3365 3366 return 0; 3367 } 3368 3369 /** 3370 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3371 * 3372 * @adev: drm device pointer 3373 * @pasid: PASID identifier for VM 3374 * @task_info: task_info to fill. 3375 */ 3376 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3377 struct amdgpu_task_info *task_info) 3378 { 3379 struct amdgpu_vm *vm; 3380 unsigned long flags; 3381 3382 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3383 3384 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3385 if (vm) 3386 *task_info = vm->task_info; 3387 3388 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3389 } 3390 3391 /** 3392 * amdgpu_vm_set_task_info - Sets VMs task info. 3393 * 3394 * @vm: vm for which to set the info 3395 */ 3396 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3397 { 3398 if (!vm->task_info.pid) { 3399 vm->task_info.pid = current->pid; 3400 get_task_comm(vm->task_info.task_name, current); 3401 3402 if (current->group_leader->mm == current->mm) { 3403 vm->task_info.tgid = current->group_leader->pid; 3404 get_task_comm(vm->task_info.process_name, current->group_leader); 3405 } 3406 } 3407 } 3408 3409 /** 3410 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3411 * 3412 * @fault_hash: fault hash table 3413 * @key: 64-bit encoding of PASID and address 3414 * 3415 * This should be called when a retry page fault interrupt is 3416 * received. If this is a new page fault, it will be added to a hash 3417 * table. The return value indicates whether this is a new fault, or 3418 * a fault that was already known and is already being handled. 3419 * 3420 * If there are too many pending page faults, this will fail. Retry 3421 * interrupts should be ignored in this case until there is enough 3422 * free space. 3423 * 3424 * Returns 0 if the fault was added, 1 if the fault was already known, 3425 * -ENOSPC if there are too many pending faults. 3426 */ 3427 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3428 { 3429 unsigned long flags; 3430 int r = -ENOSPC; 3431 3432 if (WARN_ON_ONCE(!fault_hash)) 3433 /* Should be allocated in amdgpu_vm_init 3434 */ 3435 return r; 3436 3437 spin_lock_irqsave(&fault_hash->lock, flags); 3438 3439 /* Only let the hash table fill up to 50% for best performance */ 3440 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3441 goto unlock_out; 3442 3443 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3444 if (!r) 3445 fault_hash->count++; 3446 3447 /* chash_table_copy_in should never fail unless we're losing count */ 3448 WARN_ON_ONCE(r < 0); 3449 3450 unlock_out: 3451 spin_unlock_irqrestore(&fault_hash->lock, flags); 3452 return r; 3453 } 3454 3455 /** 3456 * amdgpu_vm_clear_fault - Remove a page fault record 3457 * 3458 * @fault_hash: fault hash table 3459 * @key: 64-bit encoding of PASID and address 3460 * 3461 * This should be called when a page fault has been handled. Any 3462 * future interrupt with this key will be processed as a new 3463 * page fault. 3464 */ 3465 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3466 { 3467 unsigned long flags; 3468 int r; 3469 3470 if (!fault_hash) 3471 return; 3472 3473 spin_lock_irqsave(&fault_hash->lock, flags); 3474 3475 r = chash_table_remove(&fault_hash->hash, key, NULL); 3476 if (!WARN_ON_ONCE(r < 0)) { 3477 fault_hash->count--; 3478 WARN_ON_ONCE(fault_hash->count < 0); 3479 } 3480 3481 spin_unlock_irqrestore(&fault_hash->lock, flags); 3482 } 3483