1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include "amdgpu.h" 35 #include "amdgpu_trace.h" 36 #include "amdgpu_amdkfd.h" 37 #include "amdgpu_gmc.h" 38 #include "amdgpu_xgmi.h" 39 #include "amdgpu_dma_buf.h" 40 41 /** 42 * DOC: GPUVM 43 * 44 * GPUVM is similar to the legacy gart on older asics, however 45 * rather than there being a single global gart table 46 * for the entire GPU, there are multiple VM page tables active 47 * at any given time. The VM page tables can contain a mix 48 * vram pages and system memory pages and system memory pages 49 * can be mapped as snooped (cached system pages) or unsnooped 50 * (uncached system pages). 51 * Each VM has an ID associated with it and there is a page table 52 * associated with each VMID. When execting a command buffer, 53 * the kernel tells the the ring what VMID to use for that command 54 * buffer. VMIDs are allocated dynamically as commands are submitted. 55 * The userspace drivers maintain their own address space and the kernel 56 * sets up their pages tables accordingly when they submit their 57 * command buffers and a VMID is assigned. 58 * Cayman/Trinity support up to 8 active VMs at any given time; 59 * SI supports 16. 60 */ 61 62 #define START(node) ((node)->start) 63 #define LAST(node) ((node)->last) 64 65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 66 START, LAST, static, amdgpu_vm_it) 67 68 #undef START 69 #undef LAST 70 71 /** 72 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 73 */ 74 struct amdgpu_prt_cb { 75 76 /** 77 * @adev: amdgpu device 78 */ 79 struct amdgpu_device *adev; 80 81 /** 82 * @cb: callback 83 */ 84 struct dma_fence_cb cb; 85 }; 86 87 /* 88 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 89 * happens while holding this lock anywhere to prevent deadlocks when 90 * an MMU notifier runs in reclaim-FS context. 91 */ 92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 93 { 94 mutex_lock(&vm->eviction_lock); 95 vm->saved_flags = memalloc_nofs_save(); 96 } 97 98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 99 { 100 if (mutex_trylock(&vm->eviction_lock)) { 101 vm->saved_flags = memalloc_nofs_save(); 102 return 1; 103 } 104 return 0; 105 } 106 107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 108 { 109 memalloc_nofs_restore(vm->saved_flags); 110 mutex_unlock(&vm->eviction_lock); 111 } 112 113 /** 114 * amdgpu_vm_level_shift - return the addr shift for each level 115 * 116 * @adev: amdgpu_device pointer 117 * @level: VMPT level 118 * 119 * Returns: 120 * The number of bits the pfn needs to be right shifted for a level. 121 */ 122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 123 unsigned level) 124 { 125 switch (level) { 126 case AMDGPU_VM_PDB2: 127 case AMDGPU_VM_PDB1: 128 case AMDGPU_VM_PDB0: 129 return 9 * (AMDGPU_VM_PDB0 - level) + 130 adev->vm_manager.block_size; 131 case AMDGPU_VM_PTB: 132 return 0; 133 default: 134 return ~0; 135 } 136 } 137 138 /** 139 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 140 * 141 * @adev: amdgpu_device pointer 142 * @level: VMPT level 143 * 144 * Returns: 145 * The number of entries in a page directory or page table. 146 */ 147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 148 unsigned level) 149 { 150 unsigned shift = amdgpu_vm_level_shift(adev, 151 adev->vm_manager.root_level); 152 153 if (level == adev->vm_manager.root_level) 154 /* For the root directory */ 155 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 156 >> shift; 157 else if (level != AMDGPU_VM_PTB) 158 /* Everything in between */ 159 return 512; 160 else 161 /* For the page tables on the leaves */ 162 return AMDGPU_VM_PTE_COUNT(adev); 163 } 164 165 /** 166 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 167 * 168 * @adev: amdgpu_device pointer 169 * 170 * Returns: 171 * The number of entries in the root page directory which needs the ATS setting. 172 */ 173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 174 { 175 unsigned shift; 176 177 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 178 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 179 } 180 181 /** 182 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 183 * 184 * @adev: amdgpu_device pointer 185 * @level: VMPT level 186 * 187 * Returns: 188 * The mask to extract the entry number of a PD/PT from an address. 189 */ 190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 191 unsigned int level) 192 { 193 if (level <= adev->vm_manager.root_level) 194 return 0xffffffff; 195 else if (level != AMDGPU_VM_PTB) 196 return 0x1ff; 197 else 198 return AMDGPU_VM_PTE_COUNT(adev) - 1; 199 } 200 201 /** 202 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 203 * 204 * @adev: amdgpu_device pointer 205 * @level: VMPT level 206 * 207 * Returns: 208 * The size of the BO for a page directory or page table in bytes. 209 */ 210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 211 { 212 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 213 } 214 215 /** 216 * amdgpu_vm_bo_evicted - vm_bo is evicted 217 * 218 * @vm_bo: vm_bo which is evicted 219 * 220 * State for PDs/PTs and per VM BOs which are not at the location they should 221 * be. 222 */ 223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 224 { 225 struct amdgpu_vm *vm = vm_bo->vm; 226 struct amdgpu_bo *bo = vm_bo->bo; 227 228 vm_bo->moved = true; 229 if (bo->tbo.type == ttm_bo_type_kernel) 230 list_move(&vm_bo->vm_status, &vm->evicted); 231 else 232 list_move_tail(&vm_bo->vm_status, &vm->evicted); 233 } 234 /** 235 * amdgpu_vm_bo_moved - vm_bo is moved 236 * 237 * @vm_bo: vm_bo which is moved 238 * 239 * State for per VM BOs which are moved, but that change is not yet reflected 240 * in the page tables. 241 */ 242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 243 { 244 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 245 } 246 247 /** 248 * amdgpu_vm_bo_idle - vm_bo is idle 249 * 250 * @vm_bo: vm_bo which is now idle 251 * 252 * State for PDs/PTs and per VM BOs which have gone through the state machine 253 * and are now idle. 254 */ 255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 256 { 257 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 258 vm_bo->moved = false; 259 } 260 261 /** 262 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 263 * 264 * @vm_bo: vm_bo which is now invalidated 265 * 266 * State for normal BOs which are invalidated and that change not yet reflected 267 * in the PTs. 268 */ 269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 270 { 271 spin_lock(&vm_bo->vm->invalidated_lock); 272 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 273 spin_unlock(&vm_bo->vm->invalidated_lock); 274 } 275 276 /** 277 * amdgpu_vm_bo_relocated - vm_bo is reloacted 278 * 279 * @vm_bo: vm_bo which is relocated 280 * 281 * State for PDs/PTs which needs to update their parent PD. 282 * For the root PD, just move to idle state. 283 */ 284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 285 { 286 if (vm_bo->bo->parent) 287 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 288 else 289 amdgpu_vm_bo_idle(vm_bo); 290 } 291 292 /** 293 * amdgpu_vm_bo_done - vm_bo is done 294 * 295 * @vm_bo: vm_bo which is now done 296 * 297 * State for normal BOs which are invalidated and that change has been updated 298 * in the PTs. 299 */ 300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 301 { 302 spin_lock(&vm_bo->vm->invalidated_lock); 303 list_del_init(&vm_bo->vm_status); 304 spin_unlock(&vm_bo->vm->invalidated_lock); 305 } 306 307 /** 308 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 309 * 310 * @base: base structure for tracking BO usage in a VM 311 * @vm: vm to which bo is to be added 312 * @bo: amdgpu buffer object 313 * 314 * Initialize a bo_va_base structure and add it to the appropriate lists 315 * 316 */ 317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 318 struct amdgpu_vm *vm, 319 struct amdgpu_bo *bo) 320 { 321 base->vm = vm; 322 base->bo = bo; 323 base->next = NULL; 324 INIT_LIST_HEAD(&base->vm_status); 325 326 if (!bo) 327 return; 328 base->next = bo->vm_bo; 329 bo->vm_bo = base; 330 331 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv) 332 return; 333 334 vm->bulk_moveable = false; 335 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 336 amdgpu_vm_bo_relocated(base); 337 else 338 amdgpu_vm_bo_idle(base); 339 340 if (bo->preferred_domains & 341 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 342 return; 343 344 /* 345 * we checked all the prerequisites, but it looks like this per vm bo 346 * is currently evicted. add the bo to the evicted list to make sure it 347 * is validated on next vm use to avoid fault. 348 * */ 349 amdgpu_vm_bo_evicted(base); 350 } 351 352 /** 353 * amdgpu_vm_pt_parent - get the parent page directory 354 * 355 * @pt: child page table 356 * 357 * Helper to get the parent entry for the child page table. NULL if we are at 358 * the root page directory. 359 */ 360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 361 { 362 struct amdgpu_bo *parent = pt->base.bo->parent; 363 364 if (!parent) 365 return NULL; 366 367 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 368 } 369 370 /* 371 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 372 */ 373 struct amdgpu_vm_pt_cursor { 374 uint64_t pfn; 375 struct amdgpu_vm_pt *parent; 376 struct amdgpu_vm_pt *entry; 377 unsigned level; 378 }; 379 380 /** 381 * amdgpu_vm_pt_start - start PD/PT walk 382 * 383 * @adev: amdgpu_device pointer 384 * @vm: amdgpu_vm structure 385 * @start: start address of the walk 386 * @cursor: state to initialize 387 * 388 * Initialize a amdgpu_vm_pt_cursor to start a walk. 389 */ 390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 391 struct amdgpu_vm *vm, uint64_t start, 392 struct amdgpu_vm_pt_cursor *cursor) 393 { 394 cursor->pfn = start; 395 cursor->parent = NULL; 396 cursor->entry = &vm->root; 397 cursor->level = adev->vm_manager.root_level; 398 } 399 400 /** 401 * amdgpu_vm_pt_descendant - go to child node 402 * 403 * @adev: amdgpu_device pointer 404 * @cursor: current state 405 * 406 * Walk to the child node of the current node. 407 * Returns: 408 * True if the walk was possible, false otherwise. 409 */ 410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 411 struct amdgpu_vm_pt_cursor *cursor) 412 { 413 unsigned mask, shift, idx; 414 415 if (!cursor->entry->entries) 416 return false; 417 418 BUG_ON(!cursor->entry->base.bo); 419 mask = amdgpu_vm_entries_mask(adev, cursor->level); 420 shift = amdgpu_vm_level_shift(adev, cursor->level); 421 422 ++cursor->level; 423 idx = (cursor->pfn >> shift) & mask; 424 cursor->parent = cursor->entry; 425 cursor->entry = &cursor->entry->entries[idx]; 426 return true; 427 } 428 429 /** 430 * amdgpu_vm_pt_sibling - go to sibling node 431 * 432 * @adev: amdgpu_device pointer 433 * @cursor: current state 434 * 435 * Walk to the sibling node of the current node. 436 * Returns: 437 * True if the walk was possible, false otherwise. 438 */ 439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 440 struct amdgpu_vm_pt_cursor *cursor) 441 { 442 unsigned shift, num_entries; 443 444 /* Root doesn't have a sibling */ 445 if (!cursor->parent) 446 return false; 447 448 /* Go to our parents and see if we got a sibling */ 449 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 450 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 451 452 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 453 return false; 454 455 cursor->pfn += 1ULL << shift; 456 cursor->pfn &= ~((1ULL << shift) - 1); 457 ++cursor->entry; 458 return true; 459 } 460 461 /** 462 * amdgpu_vm_pt_ancestor - go to parent node 463 * 464 * @cursor: current state 465 * 466 * Walk to the parent node of the current node. 467 * Returns: 468 * True if the walk was possible, false otherwise. 469 */ 470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 471 { 472 if (!cursor->parent) 473 return false; 474 475 --cursor->level; 476 cursor->entry = cursor->parent; 477 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 478 return true; 479 } 480 481 /** 482 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 483 * 484 * @adev: amdgpu_device pointer 485 * @cursor: current state 486 * 487 * Walk the PD/PT tree to the next node. 488 */ 489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 490 struct amdgpu_vm_pt_cursor *cursor) 491 { 492 /* First try a newborn child */ 493 if (amdgpu_vm_pt_descendant(adev, cursor)) 494 return; 495 496 /* If that didn't worked try to find a sibling */ 497 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 498 /* No sibling, go to our parents and grandparents */ 499 if (!amdgpu_vm_pt_ancestor(cursor)) { 500 cursor->pfn = ~0ll; 501 return; 502 } 503 } 504 } 505 506 /** 507 * amdgpu_vm_pt_first_dfs - start a deep first search 508 * 509 * @adev: amdgpu_device structure 510 * @vm: amdgpu_vm structure 511 * @start: optional cursor to start with 512 * @cursor: state to initialize 513 * 514 * Starts a deep first traversal of the PD/PT tree. 515 */ 516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 517 struct amdgpu_vm *vm, 518 struct amdgpu_vm_pt_cursor *start, 519 struct amdgpu_vm_pt_cursor *cursor) 520 { 521 if (start) 522 *cursor = *start; 523 else 524 amdgpu_vm_pt_start(adev, vm, 0, cursor); 525 while (amdgpu_vm_pt_descendant(adev, cursor)); 526 } 527 528 /** 529 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 530 * 531 * @start: starting point for the search 532 * @entry: current entry 533 * 534 * Returns: 535 * True when the search should continue, false otherwise. 536 */ 537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 538 struct amdgpu_vm_pt *entry) 539 { 540 return entry && (!start || entry != start->entry); 541 } 542 543 /** 544 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 545 * 546 * @adev: amdgpu_device structure 547 * @cursor: current state 548 * 549 * Move the cursor to the next node in a deep first search. 550 */ 551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 552 struct amdgpu_vm_pt_cursor *cursor) 553 { 554 if (!cursor->entry) 555 return; 556 557 if (!cursor->parent) 558 cursor->entry = NULL; 559 else if (amdgpu_vm_pt_sibling(adev, cursor)) 560 while (amdgpu_vm_pt_descendant(adev, cursor)); 561 else 562 amdgpu_vm_pt_ancestor(cursor); 563 } 564 565 /* 566 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 567 */ 568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 569 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 570 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 571 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 572 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 573 574 /** 575 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 576 * 577 * @vm: vm providing the BOs 578 * @validated: head of validation list 579 * @entry: entry to add 580 * 581 * Add the page directory to the list of BOs to 582 * validate for command submission. 583 */ 584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 585 struct list_head *validated, 586 struct amdgpu_bo_list_entry *entry) 587 { 588 entry->priority = 0; 589 entry->tv.bo = &vm->root.base.bo->tbo; 590 /* Two for VM updates, one for TTM and one for the CS job */ 591 entry->tv.num_shared = 4; 592 entry->user_pages = NULL; 593 list_add(&entry->tv.head, validated); 594 } 595 596 /** 597 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 598 * 599 * @bo: BO which was removed from the LRU 600 * 601 * Make sure the bulk_moveable flag is updated when a BO is removed from the 602 * LRU. 603 */ 604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 605 { 606 struct amdgpu_bo *abo; 607 struct amdgpu_vm_bo_base *bo_base; 608 609 if (!amdgpu_bo_is_amdgpu_bo(bo)) 610 return; 611 612 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) 613 return; 614 615 abo = ttm_to_amdgpu_bo(bo); 616 if (!abo->parent) 617 return; 618 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 619 struct amdgpu_vm *vm = bo_base->vm; 620 621 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 622 vm->bulk_moveable = false; 623 } 624 625 } 626 /** 627 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 628 * 629 * @adev: amdgpu device pointer 630 * @vm: vm providing the BOs 631 * 632 * Move all BOs to the end of LRU and remember their positions to put them 633 * together. 634 */ 635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 636 struct amdgpu_vm *vm) 637 { 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&ttm_bo_glob.lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&ttm_bo_glob.lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&ttm_bo_glob.lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&ttm_bo_glob.lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 return r; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 vm->update_funcs->map_table(bo); 699 amdgpu_vm_bo_relocated(bo_base); 700 } 701 } 702 703 amdgpu_vm_eviction_lock(vm); 704 vm->evicting = false; 705 amdgpu_vm_eviction_unlock(vm); 706 707 return 0; 708 } 709 710 /** 711 * amdgpu_vm_ready - check VM is ready for updates 712 * 713 * @vm: VM to check 714 * 715 * Check if all VM PDs/PTs are ready for updates 716 * 717 * Returns: 718 * True if eviction list is empty. 719 */ 720 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 721 { 722 return list_empty(&vm->evicted); 723 } 724 725 /** 726 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 727 * 728 * @adev: amdgpu_device pointer 729 * @vm: VM to clear BO from 730 * @bo: BO to clear 731 * @immediate: use an immediate update 732 * 733 * Root PD needs to be reserved when calling this. 734 * 735 * Returns: 736 * 0 on success, errno otherwise. 737 */ 738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 739 struct amdgpu_vm *vm, 740 struct amdgpu_bo *bo, 741 bool immediate) 742 { 743 struct ttm_operation_ctx ctx = { true, false }; 744 unsigned level = adev->vm_manager.root_level; 745 struct amdgpu_vm_update_params params; 746 struct amdgpu_bo *ancestor = bo; 747 unsigned entries, ats_entries; 748 uint64_t addr; 749 int r; 750 751 /* Figure out our place in the hierarchy */ 752 if (ancestor->parent) { 753 ++level; 754 while (ancestor->parent->parent) { 755 ++level; 756 ancestor = ancestor->parent; 757 } 758 } 759 760 entries = amdgpu_bo_size(bo) / 8; 761 if (!vm->pte_support_ats) { 762 ats_entries = 0; 763 764 } else if (!bo->parent) { 765 ats_entries = amdgpu_vm_num_ats_entries(adev); 766 ats_entries = min(ats_entries, entries); 767 entries -= ats_entries; 768 769 } else { 770 struct amdgpu_vm_pt *pt; 771 772 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base); 773 ats_entries = amdgpu_vm_num_ats_entries(adev); 774 if ((pt - vm->root.entries) >= ats_entries) { 775 ats_entries = 0; 776 } else { 777 ats_entries = entries; 778 entries = 0; 779 } 780 } 781 782 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 783 if (r) 784 return r; 785 786 if (bo->shadow) { 787 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement, 788 &ctx); 789 if (r) 790 return r; 791 } 792 793 r = vm->update_funcs->map_table(bo); 794 if (r) 795 return r; 796 797 memset(¶ms, 0, sizeof(params)); 798 params.adev = adev; 799 params.vm = vm; 800 params.immediate = immediate; 801 802 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 803 if (r) 804 return r; 805 806 addr = 0; 807 if (ats_entries) { 808 uint64_t value = 0, flags; 809 810 flags = AMDGPU_PTE_DEFAULT_ATC; 811 if (level != AMDGPU_VM_PTB) { 812 /* Handle leaf PDEs as PTEs */ 813 flags |= AMDGPU_PDE_PTE; 814 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 815 } 816 817 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries, 818 value, flags); 819 if (r) 820 return r; 821 822 addr += ats_entries * 8; 823 } 824 825 if (entries) { 826 uint64_t value = 0, flags = 0; 827 828 if (adev->asic_type >= CHIP_VEGA10) { 829 if (level != AMDGPU_VM_PTB) { 830 /* Handle leaf PDEs as PTEs */ 831 flags |= AMDGPU_PDE_PTE; 832 amdgpu_gmc_get_vm_pde(adev, level, 833 &value, &flags); 834 } else { 835 /* Workaround for fault priority problem on GMC9 */ 836 flags = AMDGPU_PTE_EXECUTABLE; 837 } 838 } 839 840 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries, 841 value, flags); 842 if (r) 843 return r; 844 } 845 846 return vm->update_funcs->commit(¶ms, NULL); 847 } 848 849 /** 850 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 851 * 852 * @adev: amdgpu_device pointer 853 * @vm: requesting vm 854 * @level: the page table level 855 * @immediate: use a immediate update 856 * @bp: resulting BO allocation parameters 857 */ 858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 859 int level, bool immediate, 860 struct amdgpu_bo_param *bp) 861 { 862 memset(bp, 0, sizeof(*bp)); 863 864 bp->size = amdgpu_vm_bo_size(adev, level); 865 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 866 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 867 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 868 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 869 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 870 if (vm->use_cpu_for_update) 871 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 872 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 873 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 874 bp->type = ttm_bo_type_kernel; 875 bp->no_wait_gpu = immediate; 876 if (vm->root.base.bo) 877 bp->resv = vm->root.base.bo->tbo.base.resv; 878 } 879 880 /** 881 * amdgpu_vm_alloc_pts - Allocate a specific page table 882 * 883 * @adev: amdgpu_device pointer 884 * @vm: VM to allocate page tables for 885 * @cursor: Which page table to allocate 886 * @immediate: use an immediate update 887 * 888 * Make sure a specific page table or directory is allocated. 889 * 890 * Returns: 891 * 1 if page table needed to be allocated, 0 if page table was already 892 * allocated, negative errno if an error occurred. 893 */ 894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 895 struct amdgpu_vm *vm, 896 struct amdgpu_vm_pt_cursor *cursor, 897 bool immediate) 898 { 899 struct amdgpu_vm_pt *entry = cursor->entry; 900 struct amdgpu_bo_param bp; 901 struct amdgpu_bo *pt; 902 int r; 903 904 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) { 905 unsigned num_entries; 906 907 num_entries = amdgpu_vm_num_entries(adev, cursor->level); 908 entry->entries = kvmalloc_array(num_entries, 909 sizeof(*entry->entries), 910 GFP_KERNEL | __GFP_ZERO); 911 if (!entry->entries) 912 return -ENOMEM; 913 } 914 915 if (entry->base.bo) 916 return 0; 917 918 amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp); 919 920 r = amdgpu_bo_create(adev, &bp, &pt); 921 if (r) 922 return r; 923 924 /* Keep a reference to the root directory to avoid 925 * freeing them up in the wrong order. 926 */ 927 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo); 928 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 929 930 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 931 if (r) 932 goto error_free_pt; 933 934 return 0; 935 936 error_free_pt: 937 amdgpu_bo_unref(&pt->shadow); 938 amdgpu_bo_unref(&pt); 939 return r; 940 } 941 942 /** 943 * amdgpu_vm_free_table - fre one PD/PT 944 * 945 * @entry: PDE to free 946 */ 947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry) 948 { 949 if (entry->base.bo) { 950 entry->base.bo->vm_bo = NULL; 951 list_del(&entry->base.vm_status); 952 amdgpu_bo_unref(&entry->base.bo->shadow); 953 amdgpu_bo_unref(&entry->base.bo); 954 } 955 kvfree(entry->entries); 956 entry->entries = NULL; 957 } 958 959 /** 960 * amdgpu_vm_free_pts - free PD/PT levels 961 * 962 * @adev: amdgpu device structure 963 * @vm: amdgpu vm structure 964 * @start: optional cursor where to start freeing PDs/PTs 965 * 966 * Free the page directory or page table level and all sub levels. 967 */ 968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 969 struct amdgpu_vm *vm, 970 struct amdgpu_vm_pt_cursor *start) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 vm->bulk_moveable = false; 976 977 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 978 amdgpu_vm_free_table(entry); 979 980 if (start) 981 amdgpu_vm_free_table(start->entry); 982 } 983 984 /** 985 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 986 * 987 * @adev: amdgpu_device pointer 988 */ 989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 990 { 991 const struct amdgpu_ip_block *ip_block; 992 bool has_compute_vm_bug; 993 struct amdgpu_ring *ring; 994 int i; 995 996 has_compute_vm_bug = false; 997 998 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 999 if (ip_block) { 1000 /* Compute has a VM bug for GFX version < 7. 1001 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1002 if (ip_block->version->major <= 7) 1003 has_compute_vm_bug = true; 1004 else if (ip_block->version->major == 8) 1005 if (adev->gfx.mec_fw_version < 673) 1006 has_compute_vm_bug = true; 1007 } 1008 1009 for (i = 0; i < adev->num_rings; i++) { 1010 ring = adev->rings[i]; 1011 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1012 /* only compute rings */ 1013 ring->has_compute_vm_bug = has_compute_vm_bug; 1014 else 1015 ring->has_compute_vm_bug = false; 1016 } 1017 } 1018 1019 /** 1020 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1021 * 1022 * @ring: ring on which the job will be submitted 1023 * @job: job to submit 1024 * 1025 * Returns: 1026 * True if sync is needed. 1027 */ 1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1029 struct amdgpu_job *job) 1030 { 1031 struct amdgpu_device *adev = ring->adev; 1032 unsigned vmhub = ring->funcs->vmhub; 1033 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1034 struct amdgpu_vmid *id; 1035 bool gds_switch_needed; 1036 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1037 1038 if (job->vmid == 0) 1039 return false; 1040 id = &id_mgr->ids[job->vmid]; 1041 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1042 id->gds_base != job->gds_base || 1043 id->gds_size != job->gds_size || 1044 id->gws_base != job->gws_base || 1045 id->gws_size != job->gws_size || 1046 id->oa_base != job->oa_base || 1047 id->oa_size != job->oa_size); 1048 1049 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1050 return true; 1051 1052 return vm_flush_needed || gds_switch_needed; 1053 } 1054 1055 /** 1056 * amdgpu_vm_flush - hardware flush the vm 1057 * 1058 * @ring: ring to use for flush 1059 * @job: related job 1060 * @need_pipe_sync: is pipe sync needed 1061 * 1062 * Emit a VM flush when it is necessary. 1063 * 1064 * Returns: 1065 * 0 on success, errno otherwise. 1066 */ 1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1068 bool need_pipe_sync) 1069 { 1070 struct amdgpu_device *adev = ring->adev; 1071 unsigned vmhub = ring->funcs->vmhub; 1072 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1073 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1074 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1075 id->gds_base != job->gds_base || 1076 id->gds_size != job->gds_size || 1077 id->gws_base != job->gws_base || 1078 id->gws_size != job->gws_size || 1079 id->oa_base != job->oa_base || 1080 id->oa_size != job->oa_size); 1081 bool vm_flush_needed = job->vm_needs_flush; 1082 struct dma_fence *fence = NULL; 1083 bool pasid_mapping_needed = false; 1084 unsigned patch_offset = 0; 1085 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1086 int r; 1087 1088 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1089 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1090 1091 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1092 gds_switch_needed = true; 1093 vm_flush_needed = true; 1094 pasid_mapping_needed = true; 1095 } 1096 1097 mutex_lock(&id_mgr->lock); 1098 if (id->pasid != job->pasid || !id->pasid_mapping || 1099 !dma_fence_is_signaled(id->pasid_mapping)) 1100 pasid_mapping_needed = true; 1101 mutex_unlock(&id_mgr->lock); 1102 1103 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1104 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1105 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1106 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1107 ring->funcs->emit_wreg; 1108 1109 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1110 return 0; 1111 1112 if (ring->funcs->init_cond_exec) 1113 patch_offset = amdgpu_ring_init_cond_exec(ring); 1114 1115 if (need_pipe_sync) 1116 amdgpu_ring_emit_pipeline_sync(ring); 1117 1118 if (vm_flush_needed) { 1119 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1120 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1121 } 1122 1123 if (pasid_mapping_needed) 1124 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1125 1126 if (vm_flush_needed || pasid_mapping_needed) { 1127 r = amdgpu_fence_emit(ring, &fence, 0); 1128 if (r) 1129 return r; 1130 } 1131 1132 if (vm_flush_needed) { 1133 mutex_lock(&id_mgr->lock); 1134 dma_fence_put(id->last_flush); 1135 id->last_flush = dma_fence_get(fence); 1136 id->current_gpu_reset_count = 1137 atomic_read(&adev->gpu_reset_counter); 1138 mutex_unlock(&id_mgr->lock); 1139 } 1140 1141 if (pasid_mapping_needed) { 1142 mutex_lock(&id_mgr->lock); 1143 id->pasid = job->pasid; 1144 dma_fence_put(id->pasid_mapping); 1145 id->pasid_mapping = dma_fence_get(fence); 1146 mutex_unlock(&id_mgr->lock); 1147 } 1148 dma_fence_put(fence); 1149 1150 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1151 id->gds_base = job->gds_base; 1152 id->gds_size = job->gds_size; 1153 id->gws_base = job->gws_base; 1154 id->gws_size = job->gws_size; 1155 id->oa_base = job->oa_base; 1156 id->oa_size = job->oa_size; 1157 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1158 job->gds_size, job->gws_base, 1159 job->gws_size, job->oa_base, 1160 job->oa_size); 1161 } 1162 1163 if (ring->funcs->patch_cond_exec) 1164 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1165 1166 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1167 if (ring->funcs->emit_switch_buffer) { 1168 amdgpu_ring_emit_switch_buffer(ring); 1169 amdgpu_ring_emit_switch_buffer(ring); 1170 } 1171 return 0; 1172 } 1173 1174 /** 1175 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1176 * 1177 * @vm: requested vm 1178 * @bo: requested buffer object 1179 * 1180 * Find @bo inside the requested vm. 1181 * Search inside the @bos vm list for the requested vm 1182 * Returns the found bo_va or NULL if none is found 1183 * 1184 * Object has to be reserved! 1185 * 1186 * Returns: 1187 * Found bo_va or NULL. 1188 */ 1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1190 struct amdgpu_bo *bo) 1191 { 1192 struct amdgpu_vm_bo_base *base; 1193 1194 for (base = bo->vm_bo; base; base = base->next) { 1195 if (base->vm != vm) 1196 continue; 1197 1198 return container_of(base, struct amdgpu_bo_va, base); 1199 } 1200 return NULL; 1201 } 1202 1203 /** 1204 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1205 * 1206 * @pages_addr: optional DMA address to use for lookup 1207 * @addr: the unmapped addr 1208 * 1209 * Look up the physical address of the page that the pte resolves 1210 * to. 1211 * 1212 * Returns: 1213 * The pointer for the page table entry. 1214 */ 1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1216 { 1217 uint64_t result; 1218 1219 /* page table offset */ 1220 result = pages_addr[addr >> PAGE_SHIFT]; 1221 1222 /* in case cpu page size != gpu page size*/ 1223 result |= addr & (~PAGE_MASK); 1224 1225 result &= 0xFFFFFFFFFFFFF000ULL; 1226 1227 return result; 1228 } 1229 1230 /** 1231 * amdgpu_vm_update_pde - update a single level in the hierarchy 1232 * 1233 * @params: parameters for the update 1234 * @vm: requested vm 1235 * @entry: entry to update 1236 * 1237 * Makes sure the requested entry in parent is up to date. 1238 */ 1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1240 struct amdgpu_vm *vm, 1241 struct amdgpu_vm_pt *entry) 1242 { 1243 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry); 1244 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1245 uint64_t pde, pt, flags; 1246 unsigned level; 1247 1248 for (level = 0, pbo = bo->parent; pbo; ++level) 1249 pbo = pbo->parent; 1250 1251 level += params->adev->vm_manager.root_level; 1252 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1253 pde = (entry - parent->entries) * 8; 1254 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags); 1255 } 1256 1257 /** 1258 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1259 * 1260 * @adev: amdgpu_device pointer 1261 * @vm: related vm 1262 * 1263 * Mark all PD level as invalid after an error. 1264 */ 1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1266 struct amdgpu_vm *vm) 1267 { 1268 struct amdgpu_vm_pt_cursor cursor; 1269 struct amdgpu_vm_pt *entry; 1270 1271 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1272 if (entry->base.bo && !entry->base.moved) 1273 amdgpu_vm_bo_relocated(&entry->base); 1274 } 1275 1276 /** 1277 * amdgpu_vm_update_pdes - make sure that all directories are valid 1278 * 1279 * @adev: amdgpu_device pointer 1280 * @vm: requested vm 1281 * @immediate: submit immediately to the paging queue 1282 * 1283 * Makes sure all directories are up to date. 1284 * 1285 * Returns: 1286 * 0 for success, error for failure. 1287 */ 1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1289 struct amdgpu_vm *vm, bool immediate) 1290 { 1291 struct amdgpu_vm_update_params params; 1292 int r; 1293 1294 if (list_empty(&vm->relocated)) 1295 return 0; 1296 1297 memset(¶ms, 0, sizeof(params)); 1298 params.adev = adev; 1299 params.vm = vm; 1300 params.immediate = immediate; 1301 1302 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1303 if (r) 1304 return r; 1305 1306 while (!list_empty(&vm->relocated)) { 1307 struct amdgpu_vm_pt *entry; 1308 1309 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1310 base.vm_status); 1311 amdgpu_vm_bo_idle(&entry->base); 1312 1313 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1314 if (r) 1315 goto error; 1316 } 1317 1318 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1319 if (r) 1320 goto error; 1321 return 0; 1322 1323 error: 1324 amdgpu_vm_invalidate_pds(adev, vm); 1325 return r; 1326 } 1327 1328 /* 1329 * amdgpu_vm_update_flags - figure out flags for PTE updates 1330 * 1331 * Make sure to set the right flags for the PTEs at the desired level. 1332 */ 1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1334 struct amdgpu_bo *bo, unsigned level, 1335 uint64_t pe, uint64_t addr, 1336 unsigned count, uint32_t incr, 1337 uint64_t flags) 1338 1339 { 1340 if (level != AMDGPU_VM_PTB) { 1341 flags |= AMDGPU_PDE_PTE; 1342 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1343 1344 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1345 !(flags & AMDGPU_PTE_VALID) && 1346 !(flags & AMDGPU_PTE_PRT)) { 1347 1348 /* Workaround for fault priority problem on GMC9 */ 1349 flags |= AMDGPU_PTE_EXECUTABLE; 1350 } 1351 1352 params->vm->update_funcs->update(params, bo, pe, addr, count, incr, 1353 flags); 1354 } 1355 1356 /** 1357 * amdgpu_vm_fragment - get fragment for PTEs 1358 * 1359 * @params: see amdgpu_vm_update_params definition 1360 * @start: first PTE to handle 1361 * @end: last PTE to handle 1362 * @flags: hw mapping flags 1363 * @frag: resulting fragment size 1364 * @frag_end: end of this fragment 1365 * 1366 * Returns the first possible fragment for the start and end address. 1367 */ 1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1369 uint64_t start, uint64_t end, uint64_t flags, 1370 unsigned int *frag, uint64_t *frag_end) 1371 { 1372 /** 1373 * The MC L1 TLB supports variable sized pages, based on a fragment 1374 * field in the PTE. When this field is set to a non-zero value, page 1375 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1376 * flags are considered valid for all PTEs within the fragment range 1377 * and corresponding mappings are assumed to be physically contiguous. 1378 * 1379 * The L1 TLB can store a single PTE for the whole fragment, 1380 * significantly increasing the space available for translation 1381 * caching. This leads to large improvements in throughput when the 1382 * TLB is under pressure. 1383 * 1384 * The L2 TLB distributes small and large fragments into two 1385 * asymmetric partitions. The large fragment cache is significantly 1386 * larger. Thus, we try to use large fragments wherever possible. 1387 * Userspace can support this by aligning virtual base address and 1388 * allocation size to the fragment size. 1389 * 1390 * Starting with Vega10 the fragment size only controls the L1. The L2 1391 * is now directly feed with small/huge/giant pages from the walker. 1392 */ 1393 unsigned max_frag; 1394 1395 if (params->adev->asic_type < CHIP_VEGA10) 1396 max_frag = params->adev->vm_manager.fragment_size; 1397 else 1398 max_frag = 31; 1399 1400 /* system pages are non continuously */ 1401 if (params->pages_addr) { 1402 *frag = 0; 1403 *frag_end = end; 1404 return; 1405 } 1406 1407 /* This intentionally wraps around if no bit is set */ 1408 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1409 if (*frag >= max_frag) { 1410 *frag = max_frag; 1411 *frag_end = end & ~((1ULL << max_frag) - 1); 1412 } else { 1413 *frag_end = start + (1 << *frag); 1414 } 1415 } 1416 1417 /** 1418 * amdgpu_vm_update_ptes - make sure that page tables are valid 1419 * 1420 * @params: see amdgpu_vm_update_params definition 1421 * @start: start of GPU address range 1422 * @end: end of GPU address range 1423 * @dst: destination address to map to, the next dst inside the function 1424 * @flags: mapping flags 1425 * 1426 * Update the page tables in the range @start - @end. 1427 * 1428 * Returns: 1429 * 0 for success, -EINVAL for failure. 1430 */ 1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1432 uint64_t start, uint64_t end, 1433 uint64_t dst, uint64_t flags) 1434 { 1435 struct amdgpu_device *adev = params->adev; 1436 struct amdgpu_vm_pt_cursor cursor; 1437 uint64_t frag_start = start, frag_end; 1438 unsigned int frag; 1439 int r; 1440 1441 /* figure out the initial fragment */ 1442 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1443 1444 /* walk over the address space and update the PTs */ 1445 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1446 while (cursor.pfn < end) { 1447 unsigned shift, parent_shift, mask; 1448 uint64_t incr, entry_end, pe_start; 1449 struct amdgpu_bo *pt; 1450 1451 if (!params->unlocked) { 1452 /* make sure that the page tables covering the 1453 * address range are actually allocated 1454 */ 1455 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1456 &cursor, params->immediate); 1457 if (r) 1458 return r; 1459 } 1460 1461 shift = amdgpu_vm_level_shift(adev, cursor.level); 1462 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1463 if (params->unlocked) { 1464 /* Unlocked updates are only allowed on the leaves */ 1465 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1466 continue; 1467 } else if (adev->asic_type < CHIP_VEGA10 && 1468 (flags & AMDGPU_PTE_VALID)) { 1469 /* No huge page support before GMC v9 */ 1470 if (cursor.level != AMDGPU_VM_PTB) { 1471 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1472 return -ENOENT; 1473 continue; 1474 } 1475 } else if (frag < shift) { 1476 /* We can't use this level when the fragment size is 1477 * smaller than the address shift. Go to the next 1478 * child entry and try again. 1479 */ 1480 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1481 continue; 1482 } else if (frag >= parent_shift) { 1483 /* If the fragment size is even larger than the parent 1484 * shift we should go up one level and check it again. 1485 */ 1486 if (!amdgpu_vm_pt_ancestor(&cursor)) 1487 return -EINVAL; 1488 continue; 1489 } 1490 1491 pt = cursor.entry->base.bo; 1492 if (!pt) { 1493 /* We need all PDs and PTs for mapping something, */ 1494 if (flags & AMDGPU_PTE_VALID) 1495 return -ENOENT; 1496 1497 /* but unmapping something can happen at a higher 1498 * level. 1499 */ 1500 if (!amdgpu_vm_pt_ancestor(&cursor)) 1501 return -EINVAL; 1502 1503 pt = cursor.entry->base.bo; 1504 shift = parent_shift; 1505 frag_end = max(frag_end, ALIGN(frag_start + 1, 1506 1ULL << shift)); 1507 } 1508 1509 /* Looks good so far, calculate parameters for the update */ 1510 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1511 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1512 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1513 entry_end = ((uint64_t)mask + 1) << shift; 1514 entry_end += cursor.pfn & ~(entry_end - 1); 1515 entry_end = min(entry_end, end); 1516 1517 do { 1518 struct amdgpu_vm *vm = params->vm; 1519 uint64_t upd_end = min(entry_end, frag_end); 1520 unsigned nptes = (upd_end - frag_start) >> shift; 1521 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1522 1523 /* This can happen when we set higher level PDs to 1524 * silent to stop fault floods. 1525 */ 1526 nptes = max(nptes, 1u); 1527 1528 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1529 nptes, dst, incr, upd_flags, 1530 vm->task_info.pid, 1531 vm->immediate.fence_context); 1532 amdgpu_vm_update_flags(params, pt, cursor.level, 1533 pe_start, dst, nptes, incr, 1534 upd_flags); 1535 1536 pe_start += nptes * 8; 1537 dst += nptes * incr; 1538 1539 frag_start = upd_end; 1540 if (frag_start >= frag_end) { 1541 /* figure out the next fragment */ 1542 amdgpu_vm_fragment(params, frag_start, end, 1543 flags, &frag, &frag_end); 1544 if (frag < shift) 1545 break; 1546 } 1547 } while (frag_start < entry_end); 1548 1549 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1550 /* Free all child entries. 1551 * Update the tables with the flags and addresses and free up subsequent 1552 * tables in the case of huge pages or freed up areas. 1553 * This is the maximum you can free, because all other page tables are not 1554 * completely covered by the range and so potentially still in use. 1555 */ 1556 while (cursor.pfn < frag_start) { 1557 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1558 amdgpu_vm_pt_next(adev, &cursor); 1559 } 1560 1561 } else if (frag >= shift) { 1562 /* or just move on to the next on the same level. */ 1563 amdgpu_vm_pt_next(adev, &cursor); 1564 } 1565 } 1566 1567 return 0; 1568 } 1569 1570 /** 1571 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1572 * 1573 * @adev: amdgpu_device pointer 1574 * @vm: requested vm 1575 * @immediate: immediate submission in a page fault 1576 * @unlocked: unlocked invalidation during MM callback 1577 * @resv: fences we need to sync to 1578 * @start: start of mapped range 1579 * @last: last mapped entry 1580 * @flags: flags for the entries 1581 * @addr: addr to set the area to 1582 * @pages_addr: DMA addresses to use for mapping 1583 * @fence: optional resulting fence 1584 * 1585 * Fill in the page table entries between @start and @last. 1586 * 1587 * Returns: 1588 * 0 for success, -EINVAL for failure. 1589 */ 1590 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1591 struct amdgpu_vm *vm, bool immediate, 1592 bool unlocked, struct dma_resv *resv, 1593 uint64_t start, uint64_t last, 1594 uint64_t flags, uint64_t addr, 1595 dma_addr_t *pages_addr, 1596 struct dma_fence **fence) 1597 { 1598 struct amdgpu_vm_update_params params; 1599 enum amdgpu_sync_mode sync_mode; 1600 int r; 1601 1602 memset(¶ms, 0, sizeof(params)); 1603 params.adev = adev; 1604 params.vm = vm; 1605 params.immediate = immediate; 1606 params.pages_addr = pages_addr; 1607 params.unlocked = unlocked; 1608 1609 /* Implicitly sync to command submissions in the same VM before 1610 * unmapping. Sync to moving fences before mapping. 1611 */ 1612 if (!(flags & AMDGPU_PTE_VALID)) 1613 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1614 else 1615 sync_mode = AMDGPU_SYNC_EXPLICIT; 1616 1617 amdgpu_vm_eviction_lock(vm); 1618 if (vm->evicting) { 1619 r = -EBUSY; 1620 goto error_unlock; 1621 } 1622 1623 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1624 struct dma_fence *tmp = dma_fence_get_stub(); 1625 1626 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true); 1627 swap(vm->last_unlocked, tmp); 1628 dma_fence_put(tmp); 1629 } 1630 1631 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1632 if (r) 1633 goto error_unlock; 1634 1635 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1636 if (r) 1637 goto error_unlock; 1638 1639 r = vm->update_funcs->commit(¶ms, fence); 1640 1641 error_unlock: 1642 amdgpu_vm_eviction_unlock(vm); 1643 return r; 1644 } 1645 1646 /** 1647 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1648 * 1649 * @adev: amdgpu_device pointer 1650 * @resv: fences we need to sync to 1651 * @pages_addr: DMA addresses to use for mapping 1652 * @vm: requested vm 1653 * @mapping: mapped range and flags to use for the update 1654 * @flags: HW flags for the mapping 1655 * @bo_adev: amdgpu_device pointer that bo actually been allocated 1656 * @nodes: array of drm_mm_nodes with the MC addresses 1657 * @fence: optional resulting fence 1658 * 1659 * Split the mapping into smaller chunks so that each update fits 1660 * into a SDMA IB. 1661 * 1662 * Returns: 1663 * 0 for success, -EINVAL for failure. 1664 */ 1665 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1666 struct dma_resv *resv, 1667 dma_addr_t *pages_addr, 1668 struct amdgpu_vm *vm, 1669 struct amdgpu_bo_va_mapping *mapping, 1670 uint64_t flags, 1671 struct amdgpu_device *bo_adev, 1672 struct drm_mm_node *nodes, 1673 struct dma_fence **fence) 1674 { 1675 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1676 uint64_t pfn, start = mapping->start; 1677 int r; 1678 1679 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1680 * but in case of something, we filter the flags in first place 1681 */ 1682 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1683 flags &= ~AMDGPU_PTE_READABLE; 1684 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1685 flags &= ~AMDGPU_PTE_WRITEABLE; 1686 1687 /* Apply ASIC specific mapping flags */ 1688 amdgpu_gmc_get_vm_pte(adev, mapping, &flags); 1689 1690 trace_amdgpu_vm_bo_update(mapping); 1691 1692 pfn = mapping->offset >> PAGE_SHIFT; 1693 if (nodes) { 1694 while (pfn >= nodes->size) { 1695 pfn -= nodes->size; 1696 ++nodes; 1697 } 1698 } 1699 1700 do { 1701 dma_addr_t *dma_addr = NULL; 1702 uint64_t max_entries; 1703 uint64_t addr, last; 1704 1705 max_entries = mapping->last - start + 1; 1706 if (nodes) { 1707 addr = nodes->start << PAGE_SHIFT; 1708 max_entries = min((nodes->size - pfn) * 1709 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries); 1710 } else { 1711 addr = 0; 1712 } 1713 1714 if (pages_addr) { 1715 uint64_t count; 1716 1717 for (count = 1; 1718 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1719 ++count) { 1720 uint64_t idx = pfn + count; 1721 1722 if (pages_addr[idx] != 1723 (pages_addr[idx - 1] + PAGE_SIZE)) 1724 break; 1725 } 1726 1727 if (count < min_linear_pages) { 1728 addr = pfn << PAGE_SHIFT; 1729 dma_addr = pages_addr; 1730 } else { 1731 addr = pages_addr[pfn]; 1732 max_entries = count * 1733 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1734 } 1735 1736 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1737 addr += bo_adev->vm_manager.vram_base_offset; 1738 addr += pfn << PAGE_SHIFT; 1739 } 1740 1741 last = start + max_entries - 1; 1742 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 1743 start, last, flags, addr, 1744 dma_addr, fence); 1745 if (r) 1746 return r; 1747 1748 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1749 if (nodes && nodes->size == pfn) { 1750 pfn = 0; 1751 ++nodes; 1752 } 1753 start = last + 1; 1754 1755 } while (unlikely(start != mapping->last + 1)); 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1762 * 1763 * @adev: amdgpu_device pointer 1764 * @bo_va: requested BO and VM object 1765 * @clear: if true clear the entries 1766 * 1767 * Fill in the page table entries for @bo_va. 1768 * 1769 * Returns: 1770 * 0 for success, -EINVAL for failure. 1771 */ 1772 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1773 bool clear) 1774 { 1775 struct amdgpu_bo *bo = bo_va->base.bo; 1776 struct amdgpu_vm *vm = bo_va->base.vm; 1777 struct amdgpu_bo_va_mapping *mapping; 1778 dma_addr_t *pages_addr = NULL; 1779 struct ttm_resource *mem; 1780 struct drm_mm_node *nodes; 1781 struct dma_fence **last_update; 1782 struct dma_resv *resv; 1783 uint64_t flags; 1784 struct amdgpu_device *bo_adev = adev; 1785 int r; 1786 1787 if (clear || !bo) { 1788 mem = NULL; 1789 nodes = NULL; 1790 resv = vm->root.base.bo->tbo.base.resv; 1791 } else { 1792 struct drm_gem_object *obj = &bo->tbo.base; 1793 struct ttm_dma_tt *ttm; 1794 1795 resv = bo->tbo.base.resv; 1796 if (obj->import_attach && bo_va->is_xgmi) { 1797 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1798 struct drm_gem_object *gobj = dma_buf->priv; 1799 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1800 1801 if (abo->tbo.mem.mem_type == TTM_PL_VRAM) 1802 bo = gem_to_amdgpu_bo(gobj); 1803 } 1804 mem = &bo->tbo.mem; 1805 nodes = mem->mm_node; 1806 if (mem->mem_type == TTM_PL_TT) { 1807 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 1808 pages_addr = ttm->dma_address; 1809 } 1810 } 1811 1812 if (bo) { 1813 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1814 1815 if (amdgpu_bo_encrypted(bo)) 1816 flags |= AMDGPU_PTE_TMZ; 1817 1818 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1819 } else { 1820 flags = 0x0; 1821 } 1822 1823 if (clear || (bo && bo->tbo.base.resv == 1824 vm->root.base.bo->tbo.base.resv)) 1825 last_update = &vm->last_update; 1826 else 1827 last_update = &bo_va->last_pt_update; 1828 1829 if (!clear && bo_va->base.moved) { 1830 bo_va->base.moved = false; 1831 list_splice_init(&bo_va->valids, &bo_va->invalids); 1832 1833 } else if (bo_va->cleared != clear) { 1834 list_splice_init(&bo_va->valids, &bo_va->invalids); 1835 } 1836 1837 list_for_each_entry(mapping, &bo_va->invalids, list) { 1838 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm, 1839 mapping, flags, bo_adev, nodes, 1840 last_update); 1841 if (r) 1842 return r; 1843 } 1844 1845 /* If the BO is not in its preferred location add it back to 1846 * the evicted list so that it gets validated again on the 1847 * next command submission. 1848 */ 1849 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 1850 uint32_t mem_type = bo->tbo.mem.mem_type; 1851 1852 if (!(bo->preferred_domains & 1853 amdgpu_mem_type_to_domain(mem_type))) 1854 amdgpu_vm_bo_evicted(&bo_va->base); 1855 else 1856 amdgpu_vm_bo_idle(&bo_va->base); 1857 } else { 1858 amdgpu_vm_bo_done(&bo_va->base); 1859 } 1860 1861 list_splice_init(&bo_va->invalids, &bo_va->valids); 1862 bo_va->cleared = clear; 1863 1864 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1865 list_for_each_entry(mapping, &bo_va->valids, list) 1866 trace_amdgpu_vm_bo_mapping(mapping); 1867 } 1868 1869 return 0; 1870 } 1871 1872 /** 1873 * amdgpu_vm_update_prt_state - update the global PRT state 1874 * 1875 * @adev: amdgpu_device pointer 1876 */ 1877 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1878 { 1879 unsigned long flags; 1880 bool enable; 1881 1882 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1883 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1884 adev->gmc.gmc_funcs->set_prt(adev, enable); 1885 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1886 } 1887 1888 /** 1889 * amdgpu_vm_prt_get - add a PRT user 1890 * 1891 * @adev: amdgpu_device pointer 1892 */ 1893 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1894 { 1895 if (!adev->gmc.gmc_funcs->set_prt) 1896 return; 1897 1898 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1899 amdgpu_vm_update_prt_state(adev); 1900 } 1901 1902 /** 1903 * amdgpu_vm_prt_put - drop a PRT user 1904 * 1905 * @adev: amdgpu_device pointer 1906 */ 1907 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1908 { 1909 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1910 amdgpu_vm_update_prt_state(adev); 1911 } 1912 1913 /** 1914 * amdgpu_vm_prt_cb - callback for updating the PRT status 1915 * 1916 * @fence: fence for the callback 1917 * @_cb: the callback function 1918 */ 1919 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1920 { 1921 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1922 1923 amdgpu_vm_prt_put(cb->adev); 1924 kfree(cb); 1925 } 1926 1927 /** 1928 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1929 * 1930 * @adev: amdgpu_device pointer 1931 * @fence: fence for the callback 1932 */ 1933 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1934 struct dma_fence *fence) 1935 { 1936 struct amdgpu_prt_cb *cb; 1937 1938 if (!adev->gmc.gmc_funcs->set_prt) 1939 return; 1940 1941 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 1942 if (!cb) { 1943 /* Last resort when we are OOM */ 1944 if (fence) 1945 dma_fence_wait(fence, false); 1946 1947 amdgpu_vm_prt_put(adev); 1948 } else { 1949 cb->adev = adev; 1950 if (!fence || dma_fence_add_callback(fence, &cb->cb, 1951 amdgpu_vm_prt_cb)) 1952 amdgpu_vm_prt_cb(fence, &cb->cb); 1953 } 1954 } 1955 1956 /** 1957 * amdgpu_vm_free_mapping - free a mapping 1958 * 1959 * @adev: amdgpu_device pointer 1960 * @vm: requested vm 1961 * @mapping: mapping to be freed 1962 * @fence: fence of the unmap operation 1963 * 1964 * Free a mapping and make sure we decrease the PRT usage count if applicable. 1965 */ 1966 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 1967 struct amdgpu_vm *vm, 1968 struct amdgpu_bo_va_mapping *mapping, 1969 struct dma_fence *fence) 1970 { 1971 if (mapping->flags & AMDGPU_PTE_PRT) 1972 amdgpu_vm_add_prt_cb(adev, fence); 1973 kfree(mapping); 1974 } 1975 1976 /** 1977 * amdgpu_vm_prt_fini - finish all prt mappings 1978 * 1979 * @adev: amdgpu_device pointer 1980 * @vm: requested vm 1981 * 1982 * Register a cleanup callback to disable PRT support after VM dies. 1983 */ 1984 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 1985 { 1986 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 1987 struct dma_fence *excl, **shared; 1988 unsigned i, shared_count; 1989 int r; 1990 1991 r = dma_resv_get_fences_rcu(resv, &excl, 1992 &shared_count, &shared); 1993 if (r) { 1994 /* Not enough memory to grab the fence list, as last resort 1995 * block for all the fences to complete. 1996 */ 1997 dma_resv_wait_timeout_rcu(resv, true, false, 1998 MAX_SCHEDULE_TIMEOUT); 1999 return; 2000 } 2001 2002 /* Add a callback for each fence in the reservation object */ 2003 amdgpu_vm_prt_get(adev); 2004 amdgpu_vm_add_prt_cb(adev, excl); 2005 2006 for (i = 0; i < shared_count; ++i) { 2007 amdgpu_vm_prt_get(adev); 2008 amdgpu_vm_add_prt_cb(adev, shared[i]); 2009 } 2010 2011 kfree(shared); 2012 } 2013 2014 /** 2015 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2016 * 2017 * @adev: amdgpu_device pointer 2018 * @vm: requested vm 2019 * @fence: optional resulting fence (unchanged if no work needed to be done 2020 * or if an error occurred) 2021 * 2022 * Make sure all freed BOs are cleared in the PT. 2023 * PTs have to be reserved and mutex must be locked! 2024 * 2025 * Returns: 2026 * 0 for success. 2027 * 2028 */ 2029 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2030 struct amdgpu_vm *vm, 2031 struct dma_fence **fence) 2032 { 2033 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv; 2034 struct amdgpu_bo_va_mapping *mapping; 2035 uint64_t init_pte_value = 0; 2036 struct dma_fence *f = NULL; 2037 int r; 2038 2039 while (!list_empty(&vm->freed)) { 2040 mapping = list_first_entry(&vm->freed, 2041 struct amdgpu_bo_va_mapping, list); 2042 list_del(&mapping->list); 2043 2044 if (vm->pte_support_ats && 2045 mapping->start < AMDGPU_GMC_HOLE_START) 2046 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2047 2048 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv, 2049 mapping->start, mapping->last, 2050 init_pte_value, 0, NULL, &f); 2051 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2052 if (r) { 2053 dma_fence_put(f); 2054 return r; 2055 } 2056 } 2057 2058 if (fence && f) { 2059 dma_fence_put(*fence); 2060 *fence = f; 2061 } else { 2062 dma_fence_put(f); 2063 } 2064 2065 return 0; 2066 2067 } 2068 2069 /** 2070 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2071 * 2072 * @adev: amdgpu_device pointer 2073 * @vm: requested vm 2074 * 2075 * Make sure all BOs which are moved are updated in the PTs. 2076 * 2077 * Returns: 2078 * 0 for success. 2079 * 2080 * PTs have to be reserved! 2081 */ 2082 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2083 struct amdgpu_vm *vm) 2084 { 2085 struct amdgpu_bo_va *bo_va, *tmp; 2086 struct dma_resv *resv; 2087 bool clear; 2088 int r; 2089 2090 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2091 /* Per VM BOs never need to bo cleared in the page tables */ 2092 r = amdgpu_vm_bo_update(adev, bo_va, false); 2093 if (r) 2094 return r; 2095 } 2096 2097 spin_lock(&vm->invalidated_lock); 2098 while (!list_empty(&vm->invalidated)) { 2099 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2100 base.vm_status); 2101 resv = bo_va->base.bo->tbo.base.resv; 2102 spin_unlock(&vm->invalidated_lock); 2103 2104 /* Try to reserve the BO to avoid clearing its ptes */ 2105 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2106 clear = false; 2107 /* Somebody else is using the BO right now */ 2108 else 2109 clear = true; 2110 2111 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2112 if (r) 2113 return r; 2114 2115 if (!clear) 2116 dma_resv_unlock(resv); 2117 spin_lock(&vm->invalidated_lock); 2118 } 2119 spin_unlock(&vm->invalidated_lock); 2120 2121 return 0; 2122 } 2123 2124 /** 2125 * amdgpu_vm_bo_add - add a bo to a specific vm 2126 * 2127 * @adev: amdgpu_device pointer 2128 * @vm: requested vm 2129 * @bo: amdgpu buffer object 2130 * 2131 * Add @bo into the requested vm. 2132 * Add @bo to the list of bos associated with the vm 2133 * 2134 * Returns: 2135 * Newly added bo_va or NULL for failure 2136 * 2137 * Object has to be reserved! 2138 */ 2139 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2140 struct amdgpu_vm *vm, 2141 struct amdgpu_bo *bo) 2142 { 2143 struct amdgpu_bo_va *bo_va; 2144 2145 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2146 if (bo_va == NULL) { 2147 return NULL; 2148 } 2149 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2150 2151 bo_va->ref_count = 1; 2152 INIT_LIST_HEAD(&bo_va->valids); 2153 INIT_LIST_HEAD(&bo_va->invalids); 2154 2155 if (!bo) 2156 return bo_va; 2157 2158 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2159 bo_va->is_xgmi = true; 2160 /* Power up XGMI if it can be potentially used */ 2161 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2162 } 2163 2164 return bo_va; 2165 } 2166 2167 2168 /** 2169 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2170 * 2171 * @adev: amdgpu_device pointer 2172 * @bo_va: bo_va to store the address 2173 * @mapping: the mapping to insert 2174 * 2175 * Insert a new mapping into all structures. 2176 */ 2177 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2178 struct amdgpu_bo_va *bo_va, 2179 struct amdgpu_bo_va_mapping *mapping) 2180 { 2181 struct amdgpu_vm *vm = bo_va->base.vm; 2182 struct amdgpu_bo *bo = bo_va->base.bo; 2183 2184 mapping->bo_va = bo_va; 2185 list_add(&mapping->list, &bo_va->invalids); 2186 amdgpu_vm_it_insert(mapping, &vm->va); 2187 2188 if (mapping->flags & AMDGPU_PTE_PRT) 2189 amdgpu_vm_prt_get(adev); 2190 2191 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv && 2192 !bo_va->base.moved) { 2193 list_move(&bo_va->base.vm_status, &vm->moved); 2194 } 2195 trace_amdgpu_vm_bo_map(bo_va, mapping); 2196 } 2197 2198 /** 2199 * amdgpu_vm_bo_map - map bo inside a vm 2200 * 2201 * @adev: amdgpu_device pointer 2202 * @bo_va: bo_va to store the address 2203 * @saddr: where to map the BO 2204 * @offset: requested offset in the BO 2205 * @size: BO size in bytes 2206 * @flags: attributes of pages (read/write/valid/etc.) 2207 * 2208 * Add a mapping of the BO at the specefied addr into the VM. 2209 * 2210 * Returns: 2211 * 0 for success, error for failure. 2212 * 2213 * Object has to be reserved and unreserved outside! 2214 */ 2215 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2216 struct amdgpu_bo_va *bo_va, 2217 uint64_t saddr, uint64_t offset, 2218 uint64_t size, uint64_t flags) 2219 { 2220 struct amdgpu_bo_va_mapping *mapping, *tmp; 2221 struct amdgpu_bo *bo = bo_va->base.bo; 2222 struct amdgpu_vm *vm = bo_va->base.vm; 2223 uint64_t eaddr; 2224 2225 /* validate the parameters */ 2226 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2227 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2228 return -EINVAL; 2229 2230 /* make sure object fit at this offset */ 2231 eaddr = saddr + size - 1; 2232 if (saddr >= eaddr || 2233 (bo && offset + size > amdgpu_bo_size(bo)) || 2234 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2235 return -EINVAL; 2236 2237 saddr /= AMDGPU_GPU_PAGE_SIZE; 2238 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2239 2240 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2241 if (tmp) { 2242 /* bo and tmp overlap, invalid addr */ 2243 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2244 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2245 tmp->start, tmp->last + 1); 2246 return -EINVAL; 2247 } 2248 2249 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2250 if (!mapping) 2251 return -ENOMEM; 2252 2253 mapping->start = saddr; 2254 mapping->last = eaddr; 2255 mapping->offset = offset; 2256 mapping->flags = flags; 2257 2258 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2259 2260 return 0; 2261 } 2262 2263 /** 2264 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2265 * 2266 * @adev: amdgpu_device pointer 2267 * @bo_va: bo_va to store the address 2268 * @saddr: where to map the BO 2269 * @offset: requested offset in the BO 2270 * @size: BO size in bytes 2271 * @flags: attributes of pages (read/write/valid/etc.) 2272 * 2273 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2274 * mappings as we do so. 2275 * 2276 * Returns: 2277 * 0 for success, error for failure. 2278 * 2279 * Object has to be reserved and unreserved outside! 2280 */ 2281 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2282 struct amdgpu_bo_va *bo_va, 2283 uint64_t saddr, uint64_t offset, 2284 uint64_t size, uint64_t flags) 2285 { 2286 struct amdgpu_bo_va_mapping *mapping; 2287 struct amdgpu_bo *bo = bo_va->base.bo; 2288 uint64_t eaddr; 2289 int r; 2290 2291 /* validate the parameters */ 2292 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2293 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2294 return -EINVAL; 2295 2296 /* make sure object fit at this offset */ 2297 eaddr = saddr + size - 1; 2298 if (saddr >= eaddr || 2299 (bo && offset + size > amdgpu_bo_size(bo)) || 2300 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2301 return -EINVAL; 2302 2303 /* Allocate all the needed memory */ 2304 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2305 if (!mapping) 2306 return -ENOMEM; 2307 2308 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2309 if (r) { 2310 kfree(mapping); 2311 return r; 2312 } 2313 2314 saddr /= AMDGPU_GPU_PAGE_SIZE; 2315 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2316 2317 mapping->start = saddr; 2318 mapping->last = eaddr; 2319 mapping->offset = offset; 2320 mapping->flags = flags; 2321 2322 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2323 2324 return 0; 2325 } 2326 2327 /** 2328 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2329 * 2330 * @adev: amdgpu_device pointer 2331 * @bo_va: bo_va to remove the address from 2332 * @saddr: where to the BO is mapped 2333 * 2334 * Remove a mapping of the BO at the specefied addr from the VM. 2335 * 2336 * Returns: 2337 * 0 for success, error for failure. 2338 * 2339 * Object has to be reserved and unreserved outside! 2340 */ 2341 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2342 struct amdgpu_bo_va *bo_va, 2343 uint64_t saddr) 2344 { 2345 struct amdgpu_bo_va_mapping *mapping; 2346 struct amdgpu_vm *vm = bo_va->base.vm; 2347 bool valid = true; 2348 2349 saddr /= AMDGPU_GPU_PAGE_SIZE; 2350 2351 list_for_each_entry(mapping, &bo_va->valids, list) { 2352 if (mapping->start == saddr) 2353 break; 2354 } 2355 2356 if (&mapping->list == &bo_va->valids) { 2357 valid = false; 2358 2359 list_for_each_entry(mapping, &bo_va->invalids, list) { 2360 if (mapping->start == saddr) 2361 break; 2362 } 2363 2364 if (&mapping->list == &bo_va->invalids) 2365 return -ENOENT; 2366 } 2367 2368 list_del(&mapping->list); 2369 amdgpu_vm_it_remove(mapping, &vm->va); 2370 mapping->bo_va = NULL; 2371 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2372 2373 if (valid) 2374 list_add(&mapping->list, &vm->freed); 2375 else 2376 amdgpu_vm_free_mapping(adev, vm, mapping, 2377 bo_va->last_pt_update); 2378 2379 return 0; 2380 } 2381 2382 /** 2383 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2384 * 2385 * @adev: amdgpu_device pointer 2386 * @vm: VM structure to use 2387 * @saddr: start of the range 2388 * @size: size of the range 2389 * 2390 * Remove all mappings in a range, split them as appropriate. 2391 * 2392 * Returns: 2393 * 0 for success, error for failure. 2394 */ 2395 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2396 struct amdgpu_vm *vm, 2397 uint64_t saddr, uint64_t size) 2398 { 2399 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2400 LIST_HEAD(removed); 2401 uint64_t eaddr; 2402 2403 eaddr = saddr + size - 1; 2404 saddr /= AMDGPU_GPU_PAGE_SIZE; 2405 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2406 2407 /* Allocate all the needed memory */ 2408 before = kzalloc(sizeof(*before), GFP_KERNEL); 2409 if (!before) 2410 return -ENOMEM; 2411 INIT_LIST_HEAD(&before->list); 2412 2413 after = kzalloc(sizeof(*after), GFP_KERNEL); 2414 if (!after) { 2415 kfree(before); 2416 return -ENOMEM; 2417 } 2418 INIT_LIST_HEAD(&after->list); 2419 2420 /* Now gather all removed mappings */ 2421 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2422 while (tmp) { 2423 /* Remember mapping split at the start */ 2424 if (tmp->start < saddr) { 2425 before->start = tmp->start; 2426 before->last = saddr - 1; 2427 before->offset = tmp->offset; 2428 before->flags = tmp->flags; 2429 before->bo_va = tmp->bo_va; 2430 list_add(&before->list, &tmp->bo_va->invalids); 2431 } 2432 2433 /* Remember mapping split at the end */ 2434 if (tmp->last > eaddr) { 2435 after->start = eaddr + 1; 2436 after->last = tmp->last; 2437 after->offset = tmp->offset; 2438 after->offset += after->start - tmp->start; 2439 after->flags = tmp->flags; 2440 after->bo_va = tmp->bo_va; 2441 list_add(&after->list, &tmp->bo_va->invalids); 2442 } 2443 2444 list_del(&tmp->list); 2445 list_add(&tmp->list, &removed); 2446 2447 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2448 } 2449 2450 /* And free them up */ 2451 list_for_each_entry_safe(tmp, next, &removed, list) { 2452 amdgpu_vm_it_remove(tmp, &vm->va); 2453 list_del(&tmp->list); 2454 2455 if (tmp->start < saddr) 2456 tmp->start = saddr; 2457 if (tmp->last > eaddr) 2458 tmp->last = eaddr; 2459 2460 tmp->bo_va = NULL; 2461 list_add(&tmp->list, &vm->freed); 2462 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2463 } 2464 2465 /* Insert partial mapping before the range */ 2466 if (!list_empty(&before->list)) { 2467 amdgpu_vm_it_insert(before, &vm->va); 2468 if (before->flags & AMDGPU_PTE_PRT) 2469 amdgpu_vm_prt_get(adev); 2470 } else { 2471 kfree(before); 2472 } 2473 2474 /* Insert partial mapping after the range */ 2475 if (!list_empty(&after->list)) { 2476 amdgpu_vm_it_insert(after, &vm->va); 2477 if (after->flags & AMDGPU_PTE_PRT) 2478 amdgpu_vm_prt_get(adev); 2479 } else { 2480 kfree(after); 2481 } 2482 2483 return 0; 2484 } 2485 2486 /** 2487 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2488 * 2489 * @vm: the requested VM 2490 * @addr: the address 2491 * 2492 * Find a mapping by it's address. 2493 * 2494 * Returns: 2495 * The amdgpu_bo_va_mapping matching for addr or NULL 2496 * 2497 */ 2498 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2499 uint64_t addr) 2500 { 2501 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2502 } 2503 2504 /** 2505 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2506 * 2507 * @vm: the requested vm 2508 * @ticket: CS ticket 2509 * 2510 * Trace all mappings of BOs reserved during a command submission. 2511 */ 2512 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2513 { 2514 struct amdgpu_bo_va_mapping *mapping; 2515 2516 if (!trace_amdgpu_vm_bo_cs_enabled()) 2517 return; 2518 2519 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2520 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2521 if (mapping->bo_va && mapping->bo_va->base.bo) { 2522 struct amdgpu_bo *bo; 2523 2524 bo = mapping->bo_va->base.bo; 2525 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2526 ticket) 2527 continue; 2528 } 2529 2530 trace_amdgpu_vm_bo_cs(mapping); 2531 } 2532 } 2533 2534 /** 2535 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2536 * 2537 * @adev: amdgpu_device pointer 2538 * @bo_va: requested bo_va 2539 * 2540 * Remove @bo_va->bo from the requested vm. 2541 * 2542 * Object have to be reserved! 2543 */ 2544 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2545 struct amdgpu_bo_va *bo_va) 2546 { 2547 struct amdgpu_bo_va_mapping *mapping, *next; 2548 struct amdgpu_bo *bo = bo_va->base.bo; 2549 struct amdgpu_vm *vm = bo_va->base.vm; 2550 struct amdgpu_vm_bo_base **base; 2551 2552 if (bo) { 2553 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2554 vm->bulk_moveable = false; 2555 2556 for (base = &bo_va->base.bo->vm_bo; *base; 2557 base = &(*base)->next) { 2558 if (*base != &bo_va->base) 2559 continue; 2560 2561 *base = bo_va->base.next; 2562 break; 2563 } 2564 } 2565 2566 spin_lock(&vm->invalidated_lock); 2567 list_del(&bo_va->base.vm_status); 2568 spin_unlock(&vm->invalidated_lock); 2569 2570 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2571 list_del(&mapping->list); 2572 amdgpu_vm_it_remove(mapping, &vm->va); 2573 mapping->bo_va = NULL; 2574 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2575 list_add(&mapping->list, &vm->freed); 2576 } 2577 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2578 list_del(&mapping->list); 2579 amdgpu_vm_it_remove(mapping, &vm->va); 2580 amdgpu_vm_free_mapping(adev, vm, mapping, 2581 bo_va->last_pt_update); 2582 } 2583 2584 dma_fence_put(bo_va->last_pt_update); 2585 2586 if (bo && bo_va->is_xgmi) 2587 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2588 2589 kfree(bo_va); 2590 } 2591 2592 /** 2593 * amdgpu_vm_evictable - check if we can evict a VM 2594 * 2595 * @bo: A page table of the VM. 2596 * 2597 * Check if it is possible to evict a VM. 2598 */ 2599 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2600 { 2601 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2602 2603 /* Page tables of a destroyed VM can go away immediately */ 2604 if (!bo_base || !bo_base->vm) 2605 return true; 2606 2607 /* Don't evict VM page tables while they are busy */ 2608 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true)) 2609 return false; 2610 2611 /* Try to block ongoing updates */ 2612 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2613 return false; 2614 2615 /* Don't evict VM page tables while they are updated */ 2616 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2617 amdgpu_vm_eviction_unlock(bo_base->vm); 2618 return false; 2619 } 2620 2621 bo_base->vm->evicting = true; 2622 amdgpu_vm_eviction_unlock(bo_base->vm); 2623 return true; 2624 } 2625 2626 /** 2627 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2628 * 2629 * @adev: amdgpu_device pointer 2630 * @bo: amdgpu buffer object 2631 * @evicted: is the BO evicted 2632 * 2633 * Mark @bo as invalid. 2634 */ 2635 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2636 struct amdgpu_bo *bo, bool evicted) 2637 { 2638 struct amdgpu_vm_bo_base *bo_base; 2639 2640 /* shadow bo doesn't have bo base, its validation needs its parent */ 2641 if (bo->parent && bo->parent->shadow == bo) 2642 bo = bo->parent; 2643 2644 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2645 struct amdgpu_vm *vm = bo_base->vm; 2646 2647 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) { 2648 amdgpu_vm_bo_evicted(bo_base); 2649 continue; 2650 } 2651 2652 if (bo_base->moved) 2653 continue; 2654 bo_base->moved = true; 2655 2656 if (bo->tbo.type == ttm_bo_type_kernel) 2657 amdgpu_vm_bo_relocated(bo_base); 2658 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) 2659 amdgpu_vm_bo_moved(bo_base); 2660 else 2661 amdgpu_vm_bo_invalidated(bo_base); 2662 } 2663 } 2664 2665 /** 2666 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2667 * 2668 * @vm_size: VM size 2669 * 2670 * Returns: 2671 * VM page table as power of two 2672 */ 2673 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2674 { 2675 /* Total bits covered by PD + PTs */ 2676 unsigned bits = ilog2(vm_size) + 18; 2677 2678 /* Make sure the PD is 4K in size up to 8GB address space. 2679 Above that split equal between PD and PTs */ 2680 if (vm_size <= 8) 2681 return (bits - 9); 2682 else 2683 return ((bits + 3) / 2); 2684 } 2685 2686 /** 2687 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2688 * 2689 * @adev: amdgpu_device pointer 2690 * @min_vm_size: the minimum vm size in GB if it's set auto 2691 * @fragment_size_default: Default PTE fragment size 2692 * @max_level: max VMPT level 2693 * @max_bits: max address space size in bits 2694 * 2695 */ 2696 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2697 uint32_t fragment_size_default, unsigned max_level, 2698 unsigned max_bits) 2699 { 2700 unsigned int max_size = 1 << (max_bits - 30); 2701 unsigned int vm_size; 2702 uint64_t tmp; 2703 2704 /* adjust vm size first */ 2705 if (amdgpu_vm_size != -1) { 2706 vm_size = amdgpu_vm_size; 2707 if (vm_size > max_size) { 2708 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2709 amdgpu_vm_size, max_size); 2710 vm_size = max_size; 2711 } 2712 } else { 2713 struct sysinfo si; 2714 unsigned int phys_ram_gb; 2715 2716 /* Optimal VM size depends on the amount of physical 2717 * RAM available. Underlying requirements and 2718 * assumptions: 2719 * 2720 * - Need to map system memory and VRAM from all GPUs 2721 * - VRAM from other GPUs not known here 2722 * - Assume VRAM <= system memory 2723 * - On GFX8 and older, VM space can be segmented for 2724 * different MTYPEs 2725 * - Need to allow room for fragmentation, guard pages etc. 2726 * 2727 * This adds up to a rough guess of system memory x3. 2728 * Round up to power of two to maximize the available 2729 * VM size with the given page table size. 2730 */ 2731 si_meminfo(&si); 2732 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2733 (1 << 30) - 1) >> 30; 2734 vm_size = roundup_pow_of_two( 2735 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2736 } 2737 2738 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2739 2740 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2741 if (amdgpu_vm_block_size != -1) 2742 tmp >>= amdgpu_vm_block_size - 9; 2743 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2744 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2745 switch (adev->vm_manager.num_level) { 2746 case 3: 2747 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2748 break; 2749 case 2: 2750 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2751 break; 2752 case 1: 2753 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2754 break; 2755 default: 2756 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2757 } 2758 /* block size depends on vm size and hw setup*/ 2759 if (amdgpu_vm_block_size != -1) 2760 adev->vm_manager.block_size = 2761 min((unsigned)amdgpu_vm_block_size, max_bits 2762 - AMDGPU_GPU_PAGE_SHIFT 2763 - 9 * adev->vm_manager.num_level); 2764 else if (adev->vm_manager.num_level > 1) 2765 adev->vm_manager.block_size = 9; 2766 else 2767 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2768 2769 if (amdgpu_vm_fragment_size == -1) 2770 adev->vm_manager.fragment_size = fragment_size_default; 2771 else 2772 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2773 2774 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2775 vm_size, adev->vm_manager.num_level + 1, 2776 adev->vm_manager.block_size, 2777 adev->vm_manager.fragment_size); 2778 } 2779 2780 /** 2781 * amdgpu_vm_wait_idle - wait for the VM to become idle 2782 * 2783 * @vm: VM object to wait for 2784 * @timeout: timeout to wait for VM to become idle 2785 */ 2786 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2787 { 2788 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv, 2789 true, true, timeout); 2790 if (timeout <= 0) 2791 return timeout; 2792 2793 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2794 } 2795 2796 /** 2797 * amdgpu_vm_init - initialize a vm instance 2798 * 2799 * @adev: amdgpu_device pointer 2800 * @vm: requested vm 2801 * @vm_context: Indicates if it GFX or Compute context 2802 * @pasid: Process address space identifier 2803 * 2804 * Init @vm fields. 2805 * 2806 * Returns: 2807 * 0 for success, error for failure. 2808 */ 2809 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2810 int vm_context, u32 pasid) 2811 { 2812 struct amdgpu_bo_param bp; 2813 struct amdgpu_bo *root; 2814 int r, i; 2815 2816 vm->va = RB_ROOT_CACHED; 2817 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2818 vm->reserved_vmid[i] = NULL; 2819 INIT_LIST_HEAD(&vm->evicted); 2820 INIT_LIST_HEAD(&vm->relocated); 2821 INIT_LIST_HEAD(&vm->moved); 2822 INIT_LIST_HEAD(&vm->idle); 2823 INIT_LIST_HEAD(&vm->invalidated); 2824 spin_lock_init(&vm->invalidated_lock); 2825 INIT_LIST_HEAD(&vm->freed); 2826 2827 2828 /* create scheduler entities for page table updates */ 2829 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2830 adev->vm_manager.vm_pte_scheds, 2831 adev->vm_manager.vm_pte_num_scheds, NULL); 2832 if (r) 2833 return r; 2834 2835 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2836 adev->vm_manager.vm_pte_scheds, 2837 adev->vm_manager.vm_pte_num_scheds, NULL); 2838 if (r) 2839 goto error_free_immediate; 2840 2841 vm->pte_support_ats = false; 2842 vm->is_compute_context = false; 2843 2844 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 2845 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2846 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 2847 2848 if (adev->asic_type == CHIP_RAVEN) 2849 vm->pte_support_ats = true; 2850 } else { 2851 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2852 AMDGPU_VM_USE_CPU_FOR_GFX); 2853 } 2854 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2855 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2856 WARN_ONCE((vm->use_cpu_for_update && 2857 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2858 "CPU update of VM recommended only for large BAR system\n"); 2859 2860 if (vm->use_cpu_for_update) 2861 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2862 else 2863 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2864 vm->last_update = NULL; 2865 vm->last_unlocked = dma_fence_get_stub(); 2866 2867 mutex_init(&vm->eviction_lock); 2868 vm->evicting = false; 2869 2870 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp); 2871 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 2872 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 2873 r = amdgpu_bo_create(adev, &bp, &root); 2874 if (r) 2875 goto error_free_delayed; 2876 2877 r = amdgpu_bo_reserve(root, true); 2878 if (r) 2879 goto error_free_root; 2880 2881 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 2882 if (r) 2883 goto error_unreserve; 2884 2885 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 2886 2887 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2888 if (r) 2889 goto error_unreserve; 2890 2891 amdgpu_bo_unreserve(vm->root.base.bo); 2892 2893 if (pasid) { 2894 unsigned long flags; 2895 2896 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2897 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2898 GFP_ATOMIC); 2899 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2900 if (r < 0) 2901 goto error_free_root; 2902 2903 vm->pasid = pasid; 2904 } 2905 2906 INIT_KFIFO(vm->faults); 2907 2908 return 0; 2909 2910 error_unreserve: 2911 amdgpu_bo_unreserve(vm->root.base.bo); 2912 2913 error_free_root: 2914 amdgpu_bo_unref(&vm->root.base.bo->shadow); 2915 amdgpu_bo_unref(&vm->root.base.bo); 2916 vm->root.base.bo = NULL; 2917 2918 error_free_delayed: 2919 dma_fence_put(vm->last_unlocked); 2920 drm_sched_entity_destroy(&vm->delayed); 2921 2922 error_free_immediate: 2923 drm_sched_entity_destroy(&vm->immediate); 2924 2925 return r; 2926 } 2927 2928 /** 2929 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2930 * 2931 * @adev: amdgpu_device pointer 2932 * @vm: the VM to check 2933 * 2934 * check all entries of the root PD, if any subsequent PDs are allocated, 2935 * it means there are page table creating and filling, and is no a clean 2936 * VM 2937 * 2938 * Returns: 2939 * 0 if this VM is clean 2940 */ 2941 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2942 struct amdgpu_vm *vm) 2943 { 2944 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2945 unsigned int entries = amdgpu_vm_num_entries(adev, root); 2946 unsigned int i = 0; 2947 2948 if (!(vm->root.entries)) 2949 return 0; 2950 2951 for (i = 0; i < entries; i++) { 2952 if (vm->root.entries[i].base.bo) 2953 return -EINVAL; 2954 } 2955 2956 return 0; 2957 } 2958 2959 /** 2960 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 2961 * 2962 * @adev: amdgpu_device pointer 2963 * @vm: requested vm 2964 * @pasid: pasid to use 2965 * 2966 * This only works on GFX VMs that don't have any BOs added and no 2967 * page tables allocated yet. 2968 * 2969 * Changes the following VM parameters: 2970 * - use_cpu_for_update 2971 * - pte_supports_ats 2972 * - pasid (old PASID is released, because compute manages its own PASIDs) 2973 * 2974 * Reinitializes the page directory to reflect the changed ATS 2975 * setting. 2976 * 2977 * Returns: 2978 * 0 for success, -errno for errors. 2979 */ 2980 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2981 u32 pasid) 2982 { 2983 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 2984 int r; 2985 2986 r = amdgpu_bo_reserve(vm->root.base.bo, true); 2987 if (r) 2988 return r; 2989 2990 /* Sanity checks */ 2991 r = amdgpu_vm_check_clean_reserved(adev, vm); 2992 if (r) 2993 goto unreserve_bo; 2994 2995 if (pasid) { 2996 unsigned long flags; 2997 2998 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2999 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3000 GFP_ATOMIC); 3001 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3002 3003 if (r == -ENOSPC) 3004 goto unreserve_bo; 3005 r = 0; 3006 } 3007 3008 /* Check if PD needs to be reinitialized and do it before 3009 * changing any other state, in case it fails. 3010 */ 3011 if (pte_support_ats != vm->pte_support_ats) { 3012 vm->pte_support_ats = pte_support_ats; 3013 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false); 3014 if (r) 3015 goto free_idr; 3016 } 3017 3018 /* Update VM state */ 3019 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3020 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3021 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3022 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3023 WARN_ONCE((vm->use_cpu_for_update && 3024 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3025 "CPU update of VM recommended only for large BAR system\n"); 3026 3027 if (vm->use_cpu_for_update) { 3028 /* Sync with last SDMA update/clear before switching to CPU */ 3029 r = amdgpu_bo_sync_wait(vm->root.base.bo, 3030 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3031 if (r) 3032 goto free_idr; 3033 3034 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3035 } else { 3036 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3037 } 3038 dma_fence_put(vm->last_update); 3039 vm->last_update = NULL; 3040 vm->is_compute_context = true; 3041 3042 if (vm->pasid) { 3043 unsigned long flags; 3044 3045 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3046 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3047 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3048 3049 /* Free the original amdgpu allocated pasid 3050 * Will be replaced with kfd allocated pasid 3051 */ 3052 amdgpu_pasid_free(vm->pasid); 3053 vm->pasid = 0; 3054 } 3055 3056 /* Free the shadow bo for compute VM */ 3057 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3058 3059 if (pasid) 3060 vm->pasid = pasid; 3061 3062 goto unreserve_bo; 3063 3064 free_idr: 3065 if (pasid) { 3066 unsigned long flags; 3067 3068 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3069 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3070 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3071 } 3072 unreserve_bo: 3073 amdgpu_bo_unreserve(vm->root.base.bo); 3074 return r; 3075 } 3076 3077 /** 3078 * amdgpu_vm_release_compute - release a compute vm 3079 * @adev: amdgpu_device pointer 3080 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3081 * 3082 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3083 * pasid from vm. Compute should stop use of vm after this call. 3084 */ 3085 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3086 { 3087 if (vm->pasid) { 3088 unsigned long flags; 3089 3090 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3091 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3092 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3093 } 3094 vm->pasid = 0; 3095 vm->is_compute_context = false; 3096 } 3097 3098 /** 3099 * amdgpu_vm_fini - tear down a vm instance 3100 * 3101 * @adev: amdgpu_device pointer 3102 * @vm: requested vm 3103 * 3104 * Tear down @vm. 3105 * Unbind the VM and remove all bos from the vm bo list 3106 */ 3107 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3108 { 3109 struct amdgpu_bo_va_mapping *mapping, *tmp; 3110 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3111 struct amdgpu_bo *root; 3112 int i; 3113 3114 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3115 3116 root = amdgpu_bo_ref(vm->root.base.bo); 3117 amdgpu_bo_reserve(root, true); 3118 if (vm->pasid) { 3119 unsigned long flags; 3120 3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3122 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3123 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3124 vm->pasid = 0; 3125 } 3126 3127 dma_fence_wait(vm->last_unlocked, false); 3128 dma_fence_put(vm->last_unlocked); 3129 3130 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3131 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3132 amdgpu_vm_prt_fini(adev, vm); 3133 prt_fini_needed = false; 3134 } 3135 3136 list_del(&mapping->list); 3137 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3138 } 3139 3140 amdgpu_vm_free_pts(adev, vm, NULL); 3141 amdgpu_bo_unreserve(root); 3142 amdgpu_bo_unref(&root); 3143 WARN_ON(vm->root.base.bo); 3144 3145 drm_sched_entity_destroy(&vm->immediate); 3146 drm_sched_entity_destroy(&vm->delayed); 3147 3148 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3149 dev_err(adev->dev, "still active bo inside vm\n"); 3150 } 3151 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3152 &vm->va.rb_root, rb) { 3153 /* Don't remove the mapping here, we don't want to trigger a 3154 * rebalance and the tree is about to be destroyed anyway. 3155 */ 3156 list_del(&mapping->list); 3157 kfree(mapping); 3158 } 3159 3160 dma_fence_put(vm->last_update); 3161 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3162 amdgpu_vmid_free_reserved(adev, vm, i); 3163 } 3164 3165 /** 3166 * amdgpu_vm_manager_init - init the VM manager 3167 * 3168 * @adev: amdgpu_device pointer 3169 * 3170 * Initialize the VM manager structures 3171 */ 3172 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3173 { 3174 unsigned i; 3175 3176 amdgpu_vmid_mgr_init(adev); 3177 3178 adev->vm_manager.fence_context = 3179 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3180 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3181 adev->vm_manager.seqno[i] = 0; 3182 3183 spin_lock_init(&adev->vm_manager.prt_lock); 3184 atomic_set(&adev->vm_manager.num_prt_users, 0); 3185 3186 /* If not overridden by the user, by default, only in large BAR systems 3187 * Compute VM tables will be updated by CPU 3188 */ 3189 #ifdef CONFIG_X86_64 3190 if (amdgpu_vm_update_mode == -1) { 3191 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3192 adev->vm_manager.vm_update_mode = 3193 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3194 else 3195 adev->vm_manager.vm_update_mode = 0; 3196 } else 3197 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3198 #else 3199 adev->vm_manager.vm_update_mode = 0; 3200 #endif 3201 3202 idr_init(&adev->vm_manager.pasid_idr); 3203 spin_lock_init(&adev->vm_manager.pasid_lock); 3204 } 3205 3206 /** 3207 * amdgpu_vm_manager_fini - cleanup VM manager 3208 * 3209 * @adev: amdgpu_device pointer 3210 * 3211 * Cleanup the VM manager and free resources. 3212 */ 3213 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3214 { 3215 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3216 idr_destroy(&adev->vm_manager.pasid_idr); 3217 3218 amdgpu_vmid_mgr_fini(adev); 3219 } 3220 3221 /** 3222 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3223 * 3224 * @dev: drm device pointer 3225 * @data: drm_amdgpu_vm 3226 * @filp: drm file pointer 3227 * 3228 * Returns: 3229 * 0 for success, -errno for errors. 3230 */ 3231 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3232 { 3233 union drm_amdgpu_vm *args = data; 3234 struct amdgpu_device *adev = drm_to_adev(dev); 3235 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3236 long timeout = msecs_to_jiffies(2000); 3237 int r; 3238 3239 switch (args->in.op) { 3240 case AMDGPU_VM_OP_RESERVE_VMID: 3241 /* We only have requirement to reserve vmid from gfxhub */ 3242 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3243 AMDGPU_GFXHUB_0); 3244 if (r) 3245 return r; 3246 break; 3247 case AMDGPU_VM_OP_UNRESERVE_VMID: 3248 if (amdgpu_sriov_runtime(adev)) 3249 timeout = 8 * timeout; 3250 3251 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3252 * not referenced anymore. 3253 */ 3254 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true); 3255 if (r) 3256 return r; 3257 3258 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3259 if (r < 0) 3260 return r; 3261 3262 amdgpu_bo_unreserve(fpriv->vm.root.base.bo); 3263 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3264 break; 3265 default: 3266 return -EINVAL; 3267 } 3268 3269 return 0; 3270 } 3271 3272 /** 3273 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3274 * 3275 * @adev: drm device pointer 3276 * @pasid: PASID identifier for VM 3277 * @task_info: task_info to fill. 3278 */ 3279 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3280 struct amdgpu_task_info *task_info) 3281 { 3282 struct amdgpu_vm *vm; 3283 unsigned long flags; 3284 3285 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3286 3287 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3288 if (vm) 3289 *task_info = vm->task_info; 3290 3291 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3292 } 3293 3294 /** 3295 * amdgpu_vm_set_task_info - Sets VMs task info. 3296 * 3297 * @vm: vm for which to set the info 3298 */ 3299 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3300 { 3301 if (vm->task_info.pid) 3302 return; 3303 3304 vm->task_info.pid = current->pid; 3305 get_task_comm(vm->task_info.task_name, current); 3306 3307 if (current->group_leader->mm != current->mm) 3308 return; 3309 3310 vm->task_info.tgid = current->group_leader->pid; 3311 get_task_comm(vm->task_info.process_name, current->group_leader); 3312 } 3313 3314 /** 3315 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3316 * @adev: amdgpu device pointer 3317 * @pasid: PASID of the VM 3318 * @addr: Address of the fault 3319 * 3320 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3321 * shouldn't be reported any more. 3322 */ 3323 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3324 uint64_t addr) 3325 { 3326 struct amdgpu_bo *root; 3327 uint64_t value, flags; 3328 struct amdgpu_vm *vm; 3329 long r; 3330 3331 spin_lock(&adev->vm_manager.pasid_lock); 3332 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3333 if (vm) 3334 root = amdgpu_bo_ref(vm->root.base.bo); 3335 else 3336 root = NULL; 3337 spin_unlock(&adev->vm_manager.pasid_lock); 3338 3339 if (!root) 3340 return false; 3341 3342 r = amdgpu_bo_reserve(root, true); 3343 if (r) 3344 goto error_unref; 3345 3346 /* Double check that the VM still exists */ 3347 spin_lock(&adev->vm_manager.pasid_lock); 3348 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3349 if (vm && vm->root.base.bo != root) 3350 vm = NULL; 3351 spin_unlock(&adev->vm_manager.pasid_lock); 3352 if (!vm) 3353 goto error_unlock; 3354 3355 addr /= AMDGPU_GPU_PAGE_SIZE; 3356 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3357 AMDGPU_PTE_SYSTEM; 3358 3359 if (vm->is_compute_context) { 3360 /* Intentionally setting invalid PTE flag 3361 * combination to force a no-retry-fault 3362 */ 3363 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3364 AMDGPU_PTE_TF; 3365 value = 0; 3366 3367 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3368 /* Redirect the access to the dummy page */ 3369 value = adev->dummy_page_addr; 3370 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3371 AMDGPU_PTE_WRITEABLE; 3372 3373 } else { 3374 /* Let the hw retry silently on the PTE */ 3375 value = 0; 3376 } 3377 3378 r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr, 3379 addr + 1, flags, value, NULL, NULL); 3380 if (r) 3381 goto error_unlock; 3382 3383 r = amdgpu_vm_update_pdes(adev, vm, true); 3384 3385 error_unlock: 3386 amdgpu_bo_unreserve(root); 3387 if (r < 0) 3388 DRM_ERROR("Can't handle page fault (%ld)\n", r); 3389 3390 error_unref: 3391 amdgpu_bo_unref(&root); 3392 3393 return false; 3394 } 3395