1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 29 #include <linux/dma-fence-array.h> 30 #include <linux/interval_tree_generic.h> 31 #include <linux/idr.h> 32 #include <linux/dma-buf.h> 33 34 #include <drm/amdgpu_drm.h> 35 #include <drm/drm_drv.h> 36 #include "amdgpu.h" 37 #include "amdgpu_trace.h" 38 #include "amdgpu_amdkfd.h" 39 #include "amdgpu_gmc.h" 40 #include "amdgpu_xgmi.h" 41 #include "amdgpu_dma_buf.h" 42 #include "amdgpu_res_cursor.h" 43 #include "kfd_svm.h" 44 45 /** 46 * DOC: GPUVM 47 * 48 * GPUVM is similar to the legacy gart on older asics, however 49 * rather than there being a single global gart table 50 * for the entire GPU, there are multiple VM page tables active 51 * at any given time. The VM page tables can contain a mix 52 * vram pages and system memory pages and system memory pages 53 * can be mapped as snooped (cached system pages) or unsnooped 54 * (uncached system pages). 55 * Each VM has an ID associated with it and there is a page table 56 * associated with each VMID. When execting a command buffer, 57 * the kernel tells the the ring what VMID to use for that command 58 * buffer. VMIDs are allocated dynamically as commands are submitted. 59 * The userspace drivers maintain their own address space and the kernel 60 * sets up their pages tables accordingly when they submit their 61 * command buffers and a VMID is assigned. 62 * Cayman/Trinity support up to 8 active VMs at any given time; 63 * SI supports 16. 64 */ 65 66 #define START(node) ((node)->start) 67 #define LAST(node) ((node)->last) 68 69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 70 START, LAST, static, amdgpu_vm_it) 71 72 #undef START 73 #undef LAST 74 75 /** 76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 77 */ 78 struct amdgpu_prt_cb { 79 80 /** 81 * @adev: amdgpu device 82 */ 83 struct amdgpu_device *adev; 84 85 /** 86 * @cb: callback 87 */ 88 struct dma_fence_cb cb; 89 }; 90 91 /* 92 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS 93 * happens while holding this lock anywhere to prevent deadlocks when 94 * an MMU notifier runs in reclaim-FS context. 95 */ 96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm) 97 { 98 mutex_lock(&vm->eviction_lock); 99 vm->saved_flags = memalloc_noreclaim_save(); 100 } 101 102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm) 103 { 104 if (mutex_trylock(&vm->eviction_lock)) { 105 vm->saved_flags = memalloc_noreclaim_save(); 106 return 1; 107 } 108 return 0; 109 } 110 111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm) 112 { 113 memalloc_noreclaim_restore(vm->saved_flags); 114 mutex_unlock(&vm->eviction_lock); 115 } 116 117 /** 118 * amdgpu_vm_level_shift - return the addr shift for each level 119 * 120 * @adev: amdgpu_device pointer 121 * @level: VMPT level 122 * 123 * Returns: 124 * The number of bits the pfn needs to be right shifted for a level. 125 */ 126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 127 unsigned level) 128 { 129 switch (level) { 130 case AMDGPU_VM_PDB2: 131 case AMDGPU_VM_PDB1: 132 case AMDGPU_VM_PDB0: 133 return 9 * (AMDGPU_VM_PDB0 - level) + 134 adev->vm_manager.block_size; 135 case AMDGPU_VM_PTB: 136 return 0; 137 default: 138 return ~0; 139 } 140 } 141 142 /** 143 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 144 * 145 * @adev: amdgpu_device pointer 146 * @level: VMPT level 147 * 148 * Returns: 149 * The number of entries in a page directory or page table. 150 */ 151 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 152 unsigned level) 153 { 154 unsigned shift = amdgpu_vm_level_shift(adev, 155 adev->vm_manager.root_level); 156 157 if (level == adev->vm_manager.root_level) 158 /* For the root directory */ 159 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) 160 >> shift; 161 else if (level != AMDGPU_VM_PTB) 162 /* Everything in between */ 163 return 512; 164 else 165 /* For the page tables on the leaves */ 166 return AMDGPU_VM_PTE_COUNT(adev); 167 } 168 169 /** 170 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD 171 * 172 * @adev: amdgpu_device pointer 173 * 174 * Returns: 175 * The number of entries in the root page directory which needs the ATS setting. 176 */ 177 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev) 178 { 179 unsigned shift; 180 181 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level); 182 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT); 183 } 184 185 /** 186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 187 * 188 * @adev: amdgpu_device pointer 189 * @level: VMPT level 190 * 191 * Returns: 192 * The mask to extract the entry number of a PD/PT from an address. 193 */ 194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 195 unsigned int level) 196 { 197 if (level <= adev->vm_manager.root_level) 198 return 0xffffffff; 199 else if (level != AMDGPU_VM_PTB) 200 return 0x1ff; 201 else 202 return AMDGPU_VM_PTE_COUNT(adev) - 1; 203 } 204 205 /** 206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 207 * 208 * @adev: amdgpu_device pointer 209 * @level: VMPT level 210 * 211 * Returns: 212 * The size of the BO for a page directory or page table in bytes. 213 */ 214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 215 { 216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 217 } 218 219 /** 220 * amdgpu_vm_bo_evicted - vm_bo is evicted 221 * 222 * @vm_bo: vm_bo which is evicted 223 * 224 * State for PDs/PTs and per VM BOs which are not at the location they should 225 * be. 226 */ 227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 228 { 229 struct amdgpu_vm *vm = vm_bo->vm; 230 struct amdgpu_bo *bo = vm_bo->bo; 231 232 vm_bo->moved = true; 233 if (bo->tbo.type == ttm_bo_type_kernel) 234 list_move(&vm_bo->vm_status, &vm->evicted); 235 else 236 list_move_tail(&vm_bo->vm_status, &vm->evicted); 237 } 238 /** 239 * amdgpu_vm_bo_moved - vm_bo is moved 240 * 241 * @vm_bo: vm_bo which is moved 242 * 243 * State for per VM BOs which are moved, but that change is not yet reflected 244 * in the page tables. 245 */ 246 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 247 { 248 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 249 } 250 251 /** 252 * amdgpu_vm_bo_idle - vm_bo is idle 253 * 254 * @vm_bo: vm_bo which is now idle 255 * 256 * State for PDs/PTs and per VM BOs which have gone through the state machine 257 * and are now idle. 258 */ 259 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 260 { 261 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 262 vm_bo->moved = false; 263 } 264 265 /** 266 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 267 * 268 * @vm_bo: vm_bo which is now invalidated 269 * 270 * State for normal BOs which are invalidated and that change not yet reflected 271 * in the PTs. 272 */ 273 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 274 { 275 spin_lock(&vm_bo->vm->invalidated_lock); 276 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 277 spin_unlock(&vm_bo->vm->invalidated_lock); 278 } 279 280 /** 281 * amdgpu_vm_bo_relocated - vm_bo is reloacted 282 * 283 * @vm_bo: vm_bo which is relocated 284 * 285 * State for PDs/PTs which needs to update their parent PD. 286 * For the root PD, just move to idle state. 287 */ 288 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 289 { 290 if (vm_bo->bo->parent) 291 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 292 else 293 amdgpu_vm_bo_idle(vm_bo); 294 } 295 296 /** 297 * amdgpu_vm_bo_done - vm_bo is done 298 * 299 * @vm_bo: vm_bo which is now done 300 * 301 * State for normal BOs which are invalidated and that change has been updated 302 * in the PTs. 303 */ 304 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 305 { 306 spin_lock(&vm_bo->vm->invalidated_lock); 307 list_move(&vm_bo->vm_status, &vm_bo->vm->done); 308 spin_unlock(&vm_bo->vm->invalidated_lock); 309 } 310 311 /** 312 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 313 * 314 * @base: base structure for tracking BO usage in a VM 315 * @vm: vm to which bo is to be added 316 * @bo: amdgpu buffer object 317 * 318 * Initialize a bo_va_base structure and add it to the appropriate lists 319 * 320 */ 321 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 322 struct amdgpu_vm *vm, 323 struct amdgpu_bo *bo) 324 { 325 base->vm = vm; 326 base->bo = bo; 327 base->next = NULL; 328 INIT_LIST_HEAD(&base->vm_status); 329 330 if (!bo) 331 return; 332 base->next = bo->vm_bo; 333 bo->vm_bo = base; 334 335 if (bo->tbo.base.resv != vm->root.bo->tbo.base.resv) 336 return; 337 338 vm->bulk_moveable = false; 339 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent) 340 amdgpu_vm_bo_relocated(base); 341 else 342 amdgpu_vm_bo_idle(base); 343 344 if (bo->preferred_domains & 345 amdgpu_mem_type_to_domain(bo->tbo.resource->mem_type)) 346 return; 347 348 /* 349 * we checked all the prerequisites, but it looks like this per vm bo 350 * is currently evicted. add the bo to the evicted list to make sure it 351 * is validated on next vm use to avoid fault. 352 * */ 353 amdgpu_vm_bo_evicted(base); 354 } 355 356 /** 357 * amdgpu_vm_pt_parent - get the parent page directory 358 * 359 * @pt: child page table 360 * 361 * Helper to get the parent entry for the child page table. NULL if we are at 362 * the root page directory. 363 */ 364 static struct amdgpu_vm_bo_base *amdgpu_vm_pt_parent(struct amdgpu_vm_bo_base *pt) 365 { 366 struct amdgpu_bo *parent = pt->bo->parent; 367 368 if (!parent) 369 return NULL; 370 371 return parent->vm_bo; 372 } 373 374 /* 375 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 376 */ 377 struct amdgpu_vm_pt_cursor { 378 uint64_t pfn; 379 struct amdgpu_vm_bo_base *parent; 380 struct amdgpu_vm_bo_base *entry; 381 unsigned level; 382 }; 383 384 /** 385 * amdgpu_vm_pt_start - start PD/PT walk 386 * 387 * @adev: amdgpu_device pointer 388 * @vm: amdgpu_vm structure 389 * @start: start address of the walk 390 * @cursor: state to initialize 391 * 392 * Initialize a amdgpu_vm_pt_cursor to start a walk. 393 */ 394 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 395 struct amdgpu_vm *vm, uint64_t start, 396 struct amdgpu_vm_pt_cursor *cursor) 397 { 398 cursor->pfn = start; 399 cursor->parent = NULL; 400 cursor->entry = &vm->root; 401 cursor->level = adev->vm_manager.root_level; 402 } 403 404 /** 405 * amdgpu_vm_pt_descendant - go to child node 406 * 407 * @adev: amdgpu_device pointer 408 * @cursor: current state 409 * 410 * Walk to the child node of the current node. 411 * Returns: 412 * True if the walk was possible, false otherwise. 413 */ 414 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 415 struct amdgpu_vm_pt_cursor *cursor) 416 { 417 unsigned mask, shift, idx; 418 419 if ((cursor->level == AMDGPU_VM_PTB) || !cursor->entry || 420 !cursor->entry->bo) 421 return false; 422 423 mask = amdgpu_vm_entries_mask(adev, cursor->level); 424 shift = amdgpu_vm_level_shift(adev, cursor->level); 425 426 ++cursor->level; 427 idx = (cursor->pfn >> shift) & mask; 428 cursor->parent = cursor->entry; 429 cursor->entry = &to_amdgpu_bo_vm(cursor->entry->bo)->entries[idx]; 430 return true; 431 } 432 433 /** 434 * amdgpu_vm_pt_sibling - go to sibling node 435 * 436 * @adev: amdgpu_device pointer 437 * @cursor: current state 438 * 439 * Walk to the sibling node of the current node. 440 * Returns: 441 * True if the walk was possible, false otherwise. 442 */ 443 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 444 struct amdgpu_vm_pt_cursor *cursor) 445 { 446 unsigned shift, num_entries; 447 448 /* Root doesn't have a sibling */ 449 if (!cursor->parent) 450 return false; 451 452 /* Go to our parents and see if we got a sibling */ 453 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 454 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 455 456 if (cursor->entry == &to_amdgpu_bo_vm(cursor->parent->bo)->entries[num_entries - 1]) 457 return false; 458 459 cursor->pfn += 1ULL << shift; 460 cursor->pfn &= ~((1ULL << shift) - 1); 461 ++cursor->entry; 462 return true; 463 } 464 465 /** 466 * amdgpu_vm_pt_ancestor - go to parent node 467 * 468 * @cursor: current state 469 * 470 * Walk to the parent node of the current node. 471 * Returns: 472 * True if the walk was possible, false otherwise. 473 */ 474 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 475 { 476 if (!cursor->parent) 477 return false; 478 479 --cursor->level; 480 cursor->entry = cursor->parent; 481 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 482 return true; 483 } 484 485 /** 486 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 487 * 488 * @adev: amdgpu_device pointer 489 * @cursor: current state 490 * 491 * Walk the PD/PT tree to the next node. 492 */ 493 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 494 struct amdgpu_vm_pt_cursor *cursor) 495 { 496 /* First try a newborn child */ 497 if (amdgpu_vm_pt_descendant(adev, cursor)) 498 return; 499 500 /* If that didn't worked try to find a sibling */ 501 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 502 /* No sibling, go to our parents and grandparents */ 503 if (!amdgpu_vm_pt_ancestor(cursor)) { 504 cursor->pfn = ~0ll; 505 return; 506 } 507 } 508 } 509 510 /** 511 * amdgpu_vm_pt_first_dfs - start a deep first search 512 * 513 * @adev: amdgpu_device structure 514 * @vm: amdgpu_vm structure 515 * @start: optional cursor to start with 516 * @cursor: state to initialize 517 * 518 * Starts a deep first traversal of the PD/PT tree. 519 */ 520 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 521 struct amdgpu_vm *vm, 522 struct amdgpu_vm_pt_cursor *start, 523 struct amdgpu_vm_pt_cursor *cursor) 524 { 525 if (start) 526 *cursor = *start; 527 else 528 amdgpu_vm_pt_start(adev, vm, 0, cursor); 529 while (amdgpu_vm_pt_descendant(adev, cursor)); 530 } 531 532 /** 533 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue 534 * 535 * @start: starting point for the search 536 * @entry: current entry 537 * 538 * Returns: 539 * True when the search should continue, false otherwise. 540 */ 541 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start, 542 struct amdgpu_vm_bo_base *entry) 543 { 544 return entry && (!start || entry != start->entry); 545 } 546 547 /** 548 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 549 * 550 * @adev: amdgpu_device structure 551 * @cursor: current state 552 * 553 * Move the cursor to the next node in a deep first search. 554 */ 555 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 556 struct amdgpu_vm_pt_cursor *cursor) 557 { 558 if (!cursor->entry) 559 return; 560 561 if (!cursor->parent) 562 cursor->entry = NULL; 563 else if (amdgpu_vm_pt_sibling(adev, cursor)) 564 while (amdgpu_vm_pt_descendant(adev, cursor)); 565 else 566 amdgpu_vm_pt_ancestor(cursor); 567 } 568 569 /* 570 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 571 */ 572 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \ 573 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \ 574 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 575 amdgpu_vm_pt_continue_dfs((start), (entry)); \ 576 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor))) 577 578 /** 579 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 580 * 581 * @vm: vm providing the BOs 582 * @validated: head of validation list 583 * @entry: entry to add 584 * 585 * Add the page directory to the list of BOs to 586 * validate for command submission. 587 */ 588 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 589 struct list_head *validated, 590 struct amdgpu_bo_list_entry *entry) 591 { 592 entry->priority = 0; 593 entry->tv.bo = &vm->root.bo->tbo; 594 /* Two for VM updates, one for TTM and one for the CS job */ 595 entry->tv.num_shared = 4; 596 entry->user_pages = NULL; 597 list_add(&entry->tv.head, validated); 598 } 599 600 /** 601 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag 602 * 603 * @bo: BO which was removed from the LRU 604 * 605 * Make sure the bulk_moveable flag is updated when a BO is removed from the 606 * LRU. 607 */ 608 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo) 609 { 610 struct amdgpu_bo *abo; 611 struct amdgpu_vm_bo_base *bo_base; 612 613 if (!amdgpu_bo_is_amdgpu_bo(bo)) 614 return; 615 616 if (bo->pin_count) 617 return; 618 619 abo = ttm_to_amdgpu_bo(bo); 620 if (!abo->parent) 621 return; 622 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) { 623 struct amdgpu_vm *vm = bo_base->vm; 624 625 if (abo->tbo.base.resv == vm->root.bo->tbo.base.resv) 626 vm->bulk_moveable = false; 627 } 628 629 } 630 /** 631 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 632 * 633 * @adev: amdgpu device pointer 634 * @vm: vm providing the BOs 635 * 636 * Move all BOs to the end of LRU and remember their positions to put them 637 * together. 638 */ 639 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 640 struct amdgpu_vm *vm) 641 { 642 struct amdgpu_vm_bo_base *bo_base; 643 644 if (vm->bulk_moveable) { 645 spin_lock(&adev->mman.bdev.lru_lock); 646 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 647 spin_unlock(&adev->mman.bdev.lru_lock); 648 return; 649 } 650 651 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 652 653 spin_lock(&adev->mman.bdev.lru_lock); 654 list_for_each_entry(bo_base, &vm->idle, vm_status) { 655 struct amdgpu_bo *bo = bo_base->bo; 656 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 657 658 if (!bo->parent) 659 continue; 660 661 ttm_bo_move_to_lru_tail(&bo->tbo, bo->tbo.resource, 662 &vm->lru_bulk_move); 663 if (shadow) 664 ttm_bo_move_to_lru_tail(&shadow->tbo, 665 shadow->tbo.resource, 666 &vm->lru_bulk_move); 667 } 668 spin_unlock(&adev->mman.bdev.lru_lock); 669 670 vm->bulk_moveable = true; 671 } 672 673 /** 674 * amdgpu_vm_validate_pt_bos - validate the page table BOs 675 * 676 * @adev: amdgpu device pointer 677 * @vm: vm providing the BOs 678 * @validate: callback to do the validation 679 * @param: parameter for the validation callback 680 * 681 * Validate the page table BOs on command submission if neccessary. 682 * 683 * Returns: 684 * Validation result. 685 */ 686 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 687 int (*validate)(void *p, struct amdgpu_bo *bo), 688 void *param) 689 { 690 struct amdgpu_vm_bo_base *bo_base, *tmp; 691 int r; 692 693 vm->bulk_moveable &= list_empty(&vm->evicted); 694 695 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 696 struct amdgpu_bo *bo = bo_base->bo; 697 struct amdgpu_bo *shadow = amdgpu_bo_shadowed(bo); 698 699 r = validate(param, bo); 700 if (r) 701 return r; 702 if (shadow) { 703 r = validate(param, shadow); 704 if (r) 705 return r; 706 } 707 708 if (bo->tbo.type != ttm_bo_type_kernel) { 709 amdgpu_vm_bo_moved(bo_base); 710 } else { 711 vm->update_funcs->map_table(to_amdgpu_bo_vm(bo)); 712 amdgpu_vm_bo_relocated(bo_base); 713 } 714 } 715 716 amdgpu_vm_eviction_lock(vm); 717 vm->evicting = false; 718 amdgpu_vm_eviction_unlock(vm); 719 720 return 0; 721 } 722 723 /** 724 * amdgpu_vm_ready - check VM is ready for updates 725 * 726 * @vm: VM to check 727 * 728 * Check if all VM PDs/PTs are ready for updates 729 * 730 * Returns: 731 * True if eviction list is empty. 732 */ 733 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 734 { 735 return list_empty(&vm->evicted); 736 } 737 738 /** 739 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 740 * 741 * @adev: amdgpu_device pointer 742 * @vm: VM to clear BO from 743 * @vmbo: BO to clear 744 * @immediate: use an immediate update 745 * 746 * Root PD needs to be reserved when calling this. 747 * 748 * Returns: 749 * 0 on success, errno otherwise. 750 */ 751 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 752 struct amdgpu_vm *vm, 753 struct amdgpu_bo_vm *vmbo, 754 bool immediate) 755 { 756 struct ttm_operation_ctx ctx = { true, false }; 757 unsigned level = adev->vm_manager.root_level; 758 struct amdgpu_vm_update_params params; 759 struct amdgpu_bo *ancestor = &vmbo->bo; 760 struct amdgpu_bo *bo = &vmbo->bo; 761 unsigned entries, ats_entries; 762 uint64_t addr; 763 int r; 764 765 /* Figure out our place in the hierarchy */ 766 if (ancestor->parent) { 767 ++level; 768 while (ancestor->parent->parent) { 769 ++level; 770 ancestor = ancestor->parent; 771 } 772 } 773 774 entries = amdgpu_bo_size(bo) / 8; 775 if (!vm->pte_support_ats) { 776 ats_entries = 0; 777 778 } else if (!bo->parent) { 779 ats_entries = amdgpu_vm_num_ats_entries(adev); 780 ats_entries = min(ats_entries, entries); 781 entries -= ats_entries; 782 783 } else { 784 struct amdgpu_vm_bo_base *pt; 785 786 pt = ancestor->vm_bo; 787 ats_entries = amdgpu_vm_num_ats_entries(adev); 788 if ((pt - to_amdgpu_bo_vm(vm->root.bo)->entries) >= ats_entries) { 789 ats_entries = 0; 790 } else { 791 ats_entries = entries; 792 entries = 0; 793 } 794 } 795 796 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 797 if (r) 798 return r; 799 800 if (vmbo->shadow) { 801 struct amdgpu_bo *shadow = vmbo->shadow; 802 803 r = ttm_bo_validate(&shadow->tbo, &shadow->placement, &ctx); 804 if (r) 805 return r; 806 } 807 808 r = vm->update_funcs->map_table(vmbo); 809 if (r) 810 return r; 811 812 memset(¶ms, 0, sizeof(params)); 813 params.adev = adev; 814 params.vm = vm; 815 params.immediate = immediate; 816 817 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 818 if (r) 819 return r; 820 821 addr = 0; 822 if (ats_entries) { 823 uint64_t value = 0, flags; 824 825 flags = AMDGPU_PTE_DEFAULT_ATC; 826 if (level != AMDGPU_VM_PTB) { 827 /* Handle leaf PDEs as PTEs */ 828 flags |= AMDGPU_PDE_PTE; 829 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags); 830 } 831 832 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, ats_entries, 833 value, flags); 834 if (r) 835 return r; 836 837 addr += ats_entries * 8; 838 } 839 840 if (entries) { 841 uint64_t value = 0, flags = 0; 842 843 if (adev->asic_type >= CHIP_VEGA10) { 844 if (level != AMDGPU_VM_PTB) { 845 /* Handle leaf PDEs as PTEs */ 846 flags |= AMDGPU_PDE_PTE; 847 amdgpu_gmc_get_vm_pde(adev, level, 848 &value, &flags); 849 } else { 850 /* Workaround for fault priority problem on GMC9 */ 851 flags = AMDGPU_PTE_EXECUTABLE; 852 } 853 } 854 855 r = vm->update_funcs->update(¶ms, vmbo, addr, 0, entries, 856 value, flags); 857 if (r) 858 return r; 859 } 860 861 return vm->update_funcs->commit(¶ms, NULL); 862 } 863 864 /** 865 * amdgpu_vm_pt_create - create bo for PD/PT 866 * 867 * @adev: amdgpu_device pointer 868 * @vm: requesting vm 869 * @level: the page table level 870 * @immediate: use a immediate update 871 * @vmbo: pointer to the buffer object pointer 872 */ 873 static int amdgpu_vm_pt_create(struct amdgpu_device *adev, 874 struct amdgpu_vm *vm, 875 int level, bool immediate, 876 struct amdgpu_bo_vm **vmbo) 877 { 878 struct amdgpu_bo_param bp; 879 struct amdgpu_bo *bo; 880 struct dma_resv *resv; 881 unsigned int num_entries; 882 int r; 883 884 memset(&bp, 0, sizeof(bp)); 885 886 bp.size = amdgpu_vm_bo_size(adev, level); 887 bp.byte_align = AMDGPU_GPU_PAGE_SIZE; 888 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 889 bp.domain = amdgpu_bo_get_preferred_pin_domain(adev, bp.domain); 890 bp.flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 891 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 892 893 if (level < AMDGPU_VM_PTB) 894 num_entries = amdgpu_vm_num_entries(adev, level); 895 else 896 num_entries = 0; 897 898 bp.bo_ptr_size = struct_size((*vmbo), entries, num_entries); 899 900 if (vm->use_cpu_for_update) 901 bp.flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 902 903 bp.type = ttm_bo_type_kernel; 904 bp.no_wait_gpu = immediate; 905 if (vm->root.bo) 906 bp.resv = vm->root.bo->tbo.base.resv; 907 908 r = amdgpu_bo_create_vm(adev, &bp, vmbo); 909 if (r) 910 return r; 911 912 bo = &(*vmbo)->bo; 913 if (vm->is_compute_context || (adev->flags & AMD_IS_APU)) { 914 (*vmbo)->shadow = NULL; 915 return 0; 916 } 917 918 if (!bp.resv) 919 WARN_ON(dma_resv_lock(bo->tbo.base.resv, 920 NULL)); 921 resv = bp.resv; 922 memset(&bp, 0, sizeof(bp)); 923 bp.size = amdgpu_vm_bo_size(adev, level); 924 bp.domain = AMDGPU_GEM_DOMAIN_GTT; 925 bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; 926 bp.type = ttm_bo_type_kernel; 927 bp.resv = bo->tbo.base.resv; 928 bp.bo_ptr_size = sizeof(struct amdgpu_bo); 929 930 r = amdgpu_bo_create(adev, &bp, &(*vmbo)->shadow); 931 932 if (!resv) 933 dma_resv_unlock(bo->tbo.base.resv); 934 935 if (r) { 936 amdgpu_bo_unref(&bo); 937 return r; 938 } 939 940 (*vmbo)->shadow->parent = amdgpu_bo_ref(bo); 941 amdgpu_bo_add_to_shadow_list(*vmbo); 942 943 return 0; 944 } 945 946 /** 947 * amdgpu_vm_alloc_pts - Allocate a specific page table 948 * 949 * @adev: amdgpu_device pointer 950 * @vm: VM to allocate page tables for 951 * @cursor: Which page table to allocate 952 * @immediate: use an immediate update 953 * 954 * Make sure a specific page table or directory is allocated. 955 * 956 * Returns: 957 * 1 if page table needed to be allocated, 0 if page table was already 958 * allocated, negative errno if an error occurred. 959 */ 960 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 961 struct amdgpu_vm *vm, 962 struct amdgpu_vm_pt_cursor *cursor, 963 bool immediate) 964 { 965 struct amdgpu_vm_bo_base *entry = cursor->entry; 966 struct amdgpu_bo *pt_bo; 967 struct amdgpu_bo_vm *pt; 968 int r; 969 970 if (entry->bo) 971 return 0; 972 973 r = amdgpu_vm_pt_create(adev, vm, cursor->level, immediate, &pt); 974 if (r) 975 return r; 976 977 /* Keep a reference to the root directory to avoid 978 * freeing them up in the wrong order. 979 */ 980 pt_bo = &pt->bo; 981 pt_bo->parent = amdgpu_bo_ref(cursor->parent->bo); 982 amdgpu_vm_bo_base_init(entry, vm, pt_bo); 983 r = amdgpu_vm_clear_bo(adev, vm, pt, immediate); 984 if (r) 985 goto error_free_pt; 986 987 return 0; 988 989 error_free_pt: 990 amdgpu_bo_unref(&pt->shadow); 991 amdgpu_bo_unref(&pt_bo); 992 return r; 993 } 994 995 /** 996 * amdgpu_vm_free_table - fre one PD/PT 997 * 998 * @entry: PDE to free 999 */ 1000 static void amdgpu_vm_free_table(struct amdgpu_vm_bo_base *entry) 1001 { 1002 struct amdgpu_bo *shadow; 1003 1004 if (!entry->bo) 1005 return; 1006 shadow = amdgpu_bo_shadowed(entry->bo); 1007 entry->bo->vm_bo = NULL; 1008 list_del(&entry->vm_status); 1009 amdgpu_bo_unref(&shadow); 1010 amdgpu_bo_unref(&entry->bo); 1011 } 1012 1013 /** 1014 * amdgpu_vm_free_pts - free PD/PT levels 1015 * 1016 * @adev: amdgpu device structure 1017 * @vm: amdgpu vm structure 1018 * @start: optional cursor where to start freeing PDs/PTs 1019 * 1020 * Free the page directory or page table level and all sub levels. 1021 */ 1022 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 1023 struct amdgpu_vm *vm, 1024 struct amdgpu_vm_pt_cursor *start) 1025 { 1026 struct amdgpu_vm_pt_cursor cursor; 1027 struct amdgpu_vm_bo_base *entry; 1028 1029 vm->bulk_moveable = false; 1030 1031 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) 1032 amdgpu_vm_free_table(entry); 1033 1034 if (start) 1035 amdgpu_vm_free_table(start->entry); 1036 } 1037 1038 /** 1039 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 1040 * 1041 * @adev: amdgpu_device pointer 1042 */ 1043 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 1044 { 1045 const struct amdgpu_ip_block *ip_block; 1046 bool has_compute_vm_bug; 1047 struct amdgpu_ring *ring; 1048 int i; 1049 1050 has_compute_vm_bug = false; 1051 1052 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1053 if (ip_block) { 1054 /* Compute has a VM bug for GFX version < 7. 1055 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1056 if (ip_block->version->major <= 7) 1057 has_compute_vm_bug = true; 1058 else if (ip_block->version->major == 8) 1059 if (adev->gfx.mec_fw_version < 673) 1060 has_compute_vm_bug = true; 1061 } 1062 1063 for (i = 0; i < adev->num_rings; i++) { 1064 ring = adev->rings[i]; 1065 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1066 /* only compute rings */ 1067 ring->has_compute_vm_bug = has_compute_vm_bug; 1068 else 1069 ring->has_compute_vm_bug = false; 1070 } 1071 } 1072 1073 /** 1074 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1075 * 1076 * @ring: ring on which the job will be submitted 1077 * @job: job to submit 1078 * 1079 * Returns: 1080 * True if sync is needed. 1081 */ 1082 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1083 struct amdgpu_job *job) 1084 { 1085 struct amdgpu_device *adev = ring->adev; 1086 unsigned vmhub = ring->funcs->vmhub; 1087 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1088 struct amdgpu_vmid *id; 1089 bool gds_switch_needed; 1090 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1091 1092 if (job->vmid == 0) 1093 return false; 1094 id = &id_mgr->ids[job->vmid]; 1095 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1096 id->gds_base != job->gds_base || 1097 id->gds_size != job->gds_size || 1098 id->gws_base != job->gws_base || 1099 id->gws_size != job->gws_size || 1100 id->oa_base != job->oa_base || 1101 id->oa_size != job->oa_size); 1102 1103 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1104 return true; 1105 1106 return vm_flush_needed || gds_switch_needed; 1107 } 1108 1109 /** 1110 * amdgpu_vm_flush - hardware flush the vm 1111 * 1112 * @ring: ring to use for flush 1113 * @job: related job 1114 * @need_pipe_sync: is pipe sync needed 1115 * 1116 * Emit a VM flush when it is necessary. 1117 * 1118 * Returns: 1119 * 0 on success, errno otherwise. 1120 */ 1121 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, 1122 bool need_pipe_sync) 1123 { 1124 struct amdgpu_device *adev = ring->adev; 1125 unsigned vmhub = ring->funcs->vmhub; 1126 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1127 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1128 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1129 id->gds_base != job->gds_base || 1130 id->gds_size != job->gds_size || 1131 id->gws_base != job->gws_base || 1132 id->gws_size != job->gws_size || 1133 id->oa_base != job->oa_base || 1134 id->oa_size != job->oa_size); 1135 bool vm_flush_needed = job->vm_needs_flush; 1136 struct dma_fence *fence = NULL; 1137 bool pasid_mapping_needed = false; 1138 unsigned patch_offset = 0; 1139 bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL)); 1140 int r; 1141 1142 if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid) 1143 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid); 1144 1145 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1146 gds_switch_needed = true; 1147 vm_flush_needed = true; 1148 pasid_mapping_needed = true; 1149 } 1150 1151 mutex_lock(&id_mgr->lock); 1152 if (id->pasid != job->pasid || !id->pasid_mapping || 1153 !dma_fence_is_signaled(id->pasid_mapping)) 1154 pasid_mapping_needed = true; 1155 mutex_unlock(&id_mgr->lock); 1156 1157 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1158 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1159 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1160 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1161 ring->funcs->emit_wreg; 1162 1163 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1164 return 0; 1165 1166 if (ring->funcs->init_cond_exec) 1167 patch_offset = amdgpu_ring_init_cond_exec(ring); 1168 1169 if (need_pipe_sync) 1170 amdgpu_ring_emit_pipeline_sync(ring); 1171 1172 if (vm_flush_needed) { 1173 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1174 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1175 } 1176 1177 if (pasid_mapping_needed) 1178 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1179 1180 if (vm_flush_needed || pasid_mapping_needed) { 1181 r = amdgpu_fence_emit(ring, &fence, 0); 1182 if (r) 1183 return r; 1184 } 1185 1186 if (vm_flush_needed) { 1187 mutex_lock(&id_mgr->lock); 1188 dma_fence_put(id->last_flush); 1189 id->last_flush = dma_fence_get(fence); 1190 id->current_gpu_reset_count = 1191 atomic_read(&adev->gpu_reset_counter); 1192 mutex_unlock(&id_mgr->lock); 1193 } 1194 1195 if (pasid_mapping_needed) { 1196 mutex_lock(&id_mgr->lock); 1197 id->pasid = job->pasid; 1198 dma_fence_put(id->pasid_mapping); 1199 id->pasid_mapping = dma_fence_get(fence); 1200 mutex_unlock(&id_mgr->lock); 1201 } 1202 dma_fence_put(fence); 1203 1204 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1205 id->gds_base = job->gds_base; 1206 id->gds_size = job->gds_size; 1207 id->gws_base = job->gws_base; 1208 id->gws_size = job->gws_size; 1209 id->oa_base = job->oa_base; 1210 id->oa_size = job->oa_size; 1211 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1212 job->gds_size, job->gws_base, 1213 job->gws_size, job->oa_base, 1214 job->oa_size); 1215 } 1216 1217 if (ring->funcs->patch_cond_exec) 1218 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1219 1220 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1221 if (ring->funcs->emit_switch_buffer) { 1222 amdgpu_ring_emit_switch_buffer(ring); 1223 amdgpu_ring_emit_switch_buffer(ring); 1224 } 1225 return 0; 1226 } 1227 1228 /** 1229 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1230 * 1231 * @vm: requested vm 1232 * @bo: requested buffer object 1233 * 1234 * Find @bo inside the requested vm. 1235 * Search inside the @bos vm list for the requested vm 1236 * Returns the found bo_va or NULL if none is found 1237 * 1238 * Object has to be reserved! 1239 * 1240 * Returns: 1241 * Found bo_va or NULL. 1242 */ 1243 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1244 struct amdgpu_bo *bo) 1245 { 1246 struct amdgpu_vm_bo_base *base; 1247 1248 for (base = bo->vm_bo; base; base = base->next) { 1249 if (base->vm != vm) 1250 continue; 1251 1252 return container_of(base, struct amdgpu_bo_va, base); 1253 } 1254 return NULL; 1255 } 1256 1257 /** 1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1259 * 1260 * @pages_addr: optional DMA address to use for lookup 1261 * @addr: the unmapped addr 1262 * 1263 * Look up the physical address of the page that the pte resolves 1264 * to. 1265 * 1266 * Returns: 1267 * The pointer for the page table entry. 1268 */ 1269 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1270 { 1271 uint64_t result; 1272 1273 /* page table offset */ 1274 result = pages_addr[addr >> PAGE_SHIFT]; 1275 1276 /* in case cpu page size != gpu page size*/ 1277 result |= addr & (~PAGE_MASK); 1278 1279 result &= 0xFFFFFFFFFFFFF000ULL; 1280 1281 return result; 1282 } 1283 1284 /** 1285 * amdgpu_vm_update_pde - update a single level in the hierarchy 1286 * 1287 * @params: parameters for the update 1288 * @vm: requested vm 1289 * @entry: entry to update 1290 * 1291 * Makes sure the requested entry in parent is up to date. 1292 */ 1293 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params, 1294 struct amdgpu_vm *vm, 1295 struct amdgpu_vm_bo_base *entry) 1296 { 1297 struct amdgpu_vm_bo_base *parent = amdgpu_vm_pt_parent(entry); 1298 struct amdgpu_bo *bo = parent->bo, *pbo; 1299 uint64_t pde, pt, flags; 1300 unsigned level; 1301 1302 for (level = 0, pbo = bo->parent; pbo; ++level) 1303 pbo = pbo->parent; 1304 1305 level += params->adev->vm_manager.root_level; 1306 amdgpu_gmc_get_pde_for_bo(entry->bo, level, &pt, &flags); 1307 pde = (entry - to_amdgpu_bo_vm(parent->bo)->entries) * 8; 1308 return vm->update_funcs->update(params, to_amdgpu_bo_vm(bo), pde, pt, 1309 1, 0, flags); 1310 } 1311 1312 /** 1313 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1314 * 1315 * @adev: amdgpu_device pointer 1316 * @vm: related vm 1317 * 1318 * Mark all PD level as invalid after an error. 1319 */ 1320 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1321 struct amdgpu_vm *vm) 1322 { 1323 struct amdgpu_vm_pt_cursor cursor; 1324 struct amdgpu_vm_bo_base *entry; 1325 1326 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry) 1327 if (entry->bo && !entry->moved) 1328 amdgpu_vm_bo_relocated(entry); 1329 } 1330 1331 /** 1332 * amdgpu_vm_update_pdes - make sure that all directories are valid 1333 * 1334 * @adev: amdgpu_device pointer 1335 * @vm: requested vm 1336 * @immediate: submit immediately to the paging queue 1337 * 1338 * Makes sure all directories are up to date. 1339 * 1340 * Returns: 1341 * 0 for success, error for failure. 1342 */ 1343 int amdgpu_vm_update_pdes(struct amdgpu_device *adev, 1344 struct amdgpu_vm *vm, bool immediate) 1345 { 1346 struct amdgpu_vm_update_params params; 1347 int r; 1348 1349 if (list_empty(&vm->relocated)) 1350 return 0; 1351 1352 memset(¶ms, 0, sizeof(params)); 1353 params.adev = adev; 1354 params.vm = vm; 1355 params.immediate = immediate; 1356 1357 r = vm->update_funcs->prepare(¶ms, NULL, AMDGPU_SYNC_EXPLICIT); 1358 if (r) 1359 return r; 1360 1361 while (!list_empty(&vm->relocated)) { 1362 struct amdgpu_vm_bo_base *entry; 1363 1364 entry = list_first_entry(&vm->relocated, 1365 struct amdgpu_vm_bo_base, 1366 vm_status); 1367 amdgpu_vm_bo_idle(entry); 1368 1369 r = amdgpu_vm_update_pde(¶ms, vm, entry); 1370 if (r) 1371 goto error; 1372 } 1373 1374 r = vm->update_funcs->commit(¶ms, &vm->last_update); 1375 if (r) 1376 goto error; 1377 return 0; 1378 1379 error: 1380 amdgpu_vm_invalidate_pds(adev, vm); 1381 return r; 1382 } 1383 1384 /* 1385 * amdgpu_vm_update_flags - figure out flags for PTE updates 1386 * 1387 * Make sure to set the right flags for the PTEs at the desired level. 1388 */ 1389 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params, 1390 struct amdgpu_bo_vm *pt, unsigned int level, 1391 uint64_t pe, uint64_t addr, 1392 unsigned int count, uint32_t incr, 1393 uint64_t flags) 1394 1395 { 1396 if (level != AMDGPU_VM_PTB) { 1397 flags |= AMDGPU_PDE_PTE; 1398 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1399 1400 } else if (params->adev->asic_type >= CHIP_VEGA10 && 1401 !(flags & AMDGPU_PTE_VALID) && 1402 !(flags & AMDGPU_PTE_PRT)) { 1403 1404 /* Workaround for fault priority problem on GMC9 */ 1405 flags |= AMDGPU_PTE_EXECUTABLE; 1406 } 1407 1408 params->vm->update_funcs->update(params, pt, pe, addr, count, incr, 1409 flags); 1410 } 1411 1412 /** 1413 * amdgpu_vm_fragment - get fragment for PTEs 1414 * 1415 * @params: see amdgpu_vm_update_params definition 1416 * @start: first PTE to handle 1417 * @end: last PTE to handle 1418 * @flags: hw mapping flags 1419 * @frag: resulting fragment size 1420 * @frag_end: end of this fragment 1421 * 1422 * Returns the first possible fragment for the start and end address. 1423 */ 1424 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params, 1425 uint64_t start, uint64_t end, uint64_t flags, 1426 unsigned int *frag, uint64_t *frag_end) 1427 { 1428 /** 1429 * The MC L1 TLB supports variable sized pages, based on a fragment 1430 * field in the PTE. When this field is set to a non-zero value, page 1431 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1432 * flags are considered valid for all PTEs within the fragment range 1433 * and corresponding mappings are assumed to be physically contiguous. 1434 * 1435 * The L1 TLB can store a single PTE for the whole fragment, 1436 * significantly increasing the space available for translation 1437 * caching. This leads to large improvements in throughput when the 1438 * TLB is under pressure. 1439 * 1440 * The L2 TLB distributes small and large fragments into two 1441 * asymmetric partitions. The large fragment cache is significantly 1442 * larger. Thus, we try to use large fragments wherever possible. 1443 * Userspace can support this by aligning virtual base address and 1444 * allocation size to the fragment size. 1445 * 1446 * Starting with Vega10 the fragment size only controls the L1. The L2 1447 * is now directly feed with small/huge/giant pages from the walker. 1448 */ 1449 unsigned max_frag; 1450 1451 if (params->adev->asic_type < CHIP_VEGA10) 1452 max_frag = params->adev->vm_manager.fragment_size; 1453 else 1454 max_frag = 31; 1455 1456 /* system pages are non continuously */ 1457 if (params->pages_addr) { 1458 *frag = 0; 1459 *frag_end = end; 1460 return; 1461 } 1462 1463 /* This intentionally wraps around if no bit is set */ 1464 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1465 if (*frag >= max_frag) { 1466 *frag = max_frag; 1467 *frag_end = end & ~((1ULL << max_frag) - 1); 1468 } else { 1469 *frag_end = start + (1 << *frag); 1470 } 1471 } 1472 1473 /** 1474 * amdgpu_vm_update_ptes - make sure that page tables are valid 1475 * 1476 * @params: see amdgpu_vm_update_params definition 1477 * @start: start of GPU address range 1478 * @end: end of GPU address range 1479 * @dst: destination address to map to, the next dst inside the function 1480 * @flags: mapping flags 1481 * 1482 * Update the page tables in the range @start - @end. 1483 * 1484 * Returns: 1485 * 0 for success, -EINVAL for failure. 1486 */ 1487 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params, 1488 uint64_t start, uint64_t end, 1489 uint64_t dst, uint64_t flags) 1490 { 1491 struct amdgpu_device *adev = params->adev; 1492 struct amdgpu_vm_pt_cursor cursor; 1493 uint64_t frag_start = start, frag_end; 1494 unsigned int frag; 1495 int r; 1496 1497 /* figure out the initial fragment */ 1498 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1499 1500 /* walk over the address space and update the PTs */ 1501 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1502 while (cursor.pfn < end) { 1503 unsigned shift, parent_shift, mask; 1504 uint64_t incr, entry_end, pe_start; 1505 struct amdgpu_bo *pt; 1506 1507 if (!params->unlocked) { 1508 /* make sure that the page tables covering the 1509 * address range are actually allocated 1510 */ 1511 r = amdgpu_vm_alloc_pts(params->adev, params->vm, 1512 &cursor, params->immediate); 1513 if (r) 1514 return r; 1515 } 1516 1517 shift = amdgpu_vm_level_shift(adev, cursor.level); 1518 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1519 if (params->unlocked) { 1520 /* Unlocked updates are only allowed on the leaves */ 1521 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1522 continue; 1523 } else if (adev->asic_type < CHIP_VEGA10 && 1524 (flags & AMDGPU_PTE_VALID)) { 1525 /* No huge page support before GMC v9 */ 1526 if (cursor.level != AMDGPU_VM_PTB) { 1527 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1528 return -ENOENT; 1529 continue; 1530 } 1531 } else if (frag < shift) { 1532 /* We can't use this level when the fragment size is 1533 * smaller than the address shift. Go to the next 1534 * child entry and try again. 1535 */ 1536 if (amdgpu_vm_pt_descendant(adev, &cursor)) 1537 continue; 1538 } else if (frag >= parent_shift) { 1539 /* If the fragment size is even larger than the parent 1540 * shift we should go up one level and check it again. 1541 */ 1542 if (!amdgpu_vm_pt_ancestor(&cursor)) 1543 return -EINVAL; 1544 continue; 1545 } 1546 1547 pt = cursor.entry->bo; 1548 if (!pt) { 1549 /* We need all PDs and PTs for mapping something, */ 1550 if (flags & AMDGPU_PTE_VALID) 1551 return -ENOENT; 1552 1553 /* but unmapping something can happen at a higher 1554 * level. 1555 */ 1556 if (!amdgpu_vm_pt_ancestor(&cursor)) 1557 return -EINVAL; 1558 1559 pt = cursor.entry->bo; 1560 shift = parent_shift; 1561 frag_end = max(frag_end, ALIGN(frag_start + 1, 1562 1ULL << shift)); 1563 } 1564 1565 /* Looks good so far, calculate parameters for the update */ 1566 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1567 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1568 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1569 entry_end = ((uint64_t)mask + 1) << shift; 1570 entry_end += cursor.pfn & ~(entry_end - 1); 1571 entry_end = min(entry_end, end); 1572 1573 do { 1574 struct amdgpu_vm *vm = params->vm; 1575 uint64_t upd_end = min(entry_end, frag_end); 1576 unsigned nptes = (upd_end - frag_start) >> shift; 1577 uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag); 1578 1579 /* This can happen when we set higher level PDs to 1580 * silent to stop fault floods. 1581 */ 1582 nptes = max(nptes, 1u); 1583 1584 trace_amdgpu_vm_update_ptes(params, frag_start, upd_end, 1585 nptes, dst, incr, upd_flags, 1586 vm->task_info.pid, 1587 vm->immediate.fence_context); 1588 amdgpu_vm_update_flags(params, to_amdgpu_bo_vm(pt), 1589 cursor.level, pe_start, dst, 1590 nptes, incr, upd_flags); 1591 1592 pe_start += nptes * 8; 1593 dst += nptes * incr; 1594 1595 frag_start = upd_end; 1596 if (frag_start >= frag_end) { 1597 /* figure out the next fragment */ 1598 amdgpu_vm_fragment(params, frag_start, end, 1599 flags, &frag, &frag_end); 1600 if (frag < shift) 1601 break; 1602 } 1603 } while (frag_start < entry_end); 1604 1605 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1606 /* Free all child entries. 1607 * Update the tables with the flags and addresses and free up subsequent 1608 * tables in the case of huge pages or freed up areas. 1609 * This is the maximum you can free, because all other page tables are not 1610 * completely covered by the range and so potentially still in use. 1611 */ 1612 while (cursor.pfn < frag_start) { 1613 /* Make sure previous mapping is freed */ 1614 if (cursor.entry->bo) { 1615 params->table_freed = true; 1616 amdgpu_vm_free_pts(adev, params->vm, &cursor); 1617 } 1618 amdgpu_vm_pt_next(adev, &cursor); 1619 } 1620 1621 } else if (frag >= shift) { 1622 /* or just move on to the next on the same level. */ 1623 amdgpu_vm_pt_next(adev, &cursor); 1624 } 1625 } 1626 1627 return 0; 1628 } 1629 1630 /** 1631 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1632 * 1633 * @adev: amdgpu_device pointer of the VM 1634 * @bo_adev: amdgpu_device pointer of the mapped BO 1635 * @vm: requested vm 1636 * @immediate: immediate submission in a page fault 1637 * @unlocked: unlocked invalidation during MM callback 1638 * @resv: fences we need to sync to 1639 * @start: start of mapped range 1640 * @last: last mapped entry 1641 * @flags: flags for the entries 1642 * @offset: offset into nodes and pages_addr 1643 * @res: ttm_resource to map 1644 * @pages_addr: DMA addresses to use for mapping 1645 * @fence: optional resulting fence 1646 * @table_freed: return true if page table is freed 1647 * 1648 * Fill in the page table entries between @start and @last. 1649 * 1650 * Returns: 1651 * 0 for success, -EINVAL for failure. 1652 */ 1653 int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1654 struct amdgpu_device *bo_adev, 1655 struct amdgpu_vm *vm, bool immediate, 1656 bool unlocked, struct dma_resv *resv, 1657 uint64_t start, uint64_t last, 1658 uint64_t flags, uint64_t offset, 1659 struct ttm_resource *res, 1660 dma_addr_t *pages_addr, 1661 struct dma_fence **fence, 1662 bool *table_freed) 1663 { 1664 struct amdgpu_vm_update_params params; 1665 struct amdgpu_res_cursor cursor; 1666 enum amdgpu_sync_mode sync_mode; 1667 int r, idx; 1668 1669 if (!drm_dev_enter(&adev->ddev, &idx)) 1670 return -ENODEV; 1671 1672 memset(¶ms, 0, sizeof(params)); 1673 params.adev = adev; 1674 params.vm = vm; 1675 params.immediate = immediate; 1676 params.pages_addr = pages_addr; 1677 params.unlocked = unlocked; 1678 1679 /* Implicitly sync to command submissions in the same VM before 1680 * unmapping. Sync to moving fences before mapping. 1681 */ 1682 if (!(flags & AMDGPU_PTE_VALID)) 1683 sync_mode = AMDGPU_SYNC_EQ_OWNER; 1684 else 1685 sync_mode = AMDGPU_SYNC_EXPLICIT; 1686 1687 amdgpu_vm_eviction_lock(vm); 1688 if (vm->evicting) { 1689 r = -EBUSY; 1690 goto error_unlock; 1691 } 1692 1693 if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) { 1694 struct dma_fence *tmp = dma_fence_get_stub(); 1695 1696 amdgpu_bo_fence(vm->root.bo, vm->last_unlocked, true); 1697 swap(vm->last_unlocked, tmp); 1698 dma_fence_put(tmp); 1699 } 1700 1701 r = vm->update_funcs->prepare(¶ms, resv, sync_mode); 1702 if (r) 1703 goto error_unlock; 1704 1705 amdgpu_res_first(pages_addr ? NULL : res, offset, 1706 (last - start + 1) * AMDGPU_GPU_PAGE_SIZE, &cursor); 1707 while (cursor.remaining) { 1708 uint64_t tmp, num_entries, addr; 1709 1710 num_entries = cursor.size >> AMDGPU_GPU_PAGE_SHIFT; 1711 if (pages_addr) { 1712 bool contiguous = true; 1713 1714 if (num_entries > AMDGPU_GPU_PAGES_IN_CPU_PAGE) { 1715 uint64_t pfn = cursor.start >> PAGE_SHIFT; 1716 uint64_t count; 1717 1718 contiguous = pages_addr[pfn + 1] == 1719 pages_addr[pfn] + PAGE_SIZE; 1720 1721 tmp = num_entries / 1722 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1723 for (count = 2; count < tmp; ++count) { 1724 uint64_t idx = pfn + count; 1725 1726 if (contiguous != (pages_addr[idx] == 1727 pages_addr[idx - 1] + PAGE_SIZE)) 1728 break; 1729 } 1730 num_entries = count * 1731 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1732 } 1733 1734 if (!contiguous) { 1735 addr = cursor.start; 1736 params.pages_addr = pages_addr; 1737 } else { 1738 addr = pages_addr[cursor.start >> PAGE_SHIFT]; 1739 params.pages_addr = NULL; 1740 } 1741 1742 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) { 1743 addr = bo_adev->vm_manager.vram_base_offset + 1744 cursor.start; 1745 } else { 1746 addr = 0; 1747 } 1748 1749 tmp = start + num_entries; 1750 r = amdgpu_vm_update_ptes(¶ms, start, tmp, addr, flags); 1751 if (r) 1752 goto error_unlock; 1753 1754 amdgpu_res_next(&cursor, num_entries * AMDGPU_GPU_PAGE_SIZE); 1755 start = tmp; 1756 } 1757 1758 r = vm->update_funcs->commit(¶ms, fence); 1759 1760 if (table_freed) 1761 *table_freed = params.table_freed; 1762 1763 error_unlock: 1764 amdgpu_vm_eviction_unlock(vm); 1765 drm_dev_exit(idx); 1766 return r; 1767 } 1768 1769 void amdgpu_vm_get_memory(struct amdgpu_vm *vm, uint64_t *vram_mem, 1770 uint64_t *gtt_mem, uint64_t *cpu_mem) 1771 { 1772 struct amdgpu_bo_va *bo_va, *tmp; 1773 1774 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 1775 if (!bo_va->base.bo) 1776 continue; 1777 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1778 gtt_mem, cpu_mem); 1779 } 1780 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 1781 if (!bo_va->base.bo) 1782 continue; 1783 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1784 gtt_mem, cpu_mem); 1785 } 1786 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 1787 if (!bo_va->base.bo) 1788 continue; 1789 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1790 gtt_mem, cpu_mem); 1791 } 1792 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 1793 if (!bo_va->base.bo) 1794 continue; 1795 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1796 gtt_mem, cpu_mem); 1797 } 1798 spin_lock(&vm->invalidated_lock); 1799 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 1800 if (!bo_va->base.bo) 1801 continue; 1802 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1803 gtt_mem, cpu_mem); 1804 } 1805 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 1806 if (!bo_va->base.bo) 1807 continue; 1808 amdgpu_bo_get_memory(bo_va->base.bo, vram_mem, 1809 gtt_mem, cpu_mem); 1810 } 1811 spin_unlock(&vm->invalidated_lock); 1812 } 1813 /** 1814 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1815 * 1816 * @adev: amdgpu_device pointer 1817 * @bo_va: requested BO and VM object 1818 * @clear: if true clear the entries 1819 * 1820 * Fill in the page table entries for @bo_va. 1821 * 1822 * Returns: 1823 * 0 for success, -EINVAL for failure. 1824 */ 1825 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, 1826 bool clear) 1827 { 1828 struct amdgpu_bo *bo = bo_va->base.bo; 1829 struct amdgpu_vm *vm = bo_va->base.vm; 1830 struct amdgpu_bo_va_mapping *mapping; 1831 dma_addr_t *pages_addr = NULL; 1832 struct ttm_resource *mem; 1833 struct dma_fence **last_update; 1834 struct dma_resv *resv; 1835 uint64_t flags; 1836 struct amdgpu_device *bo_adev = adev; 1837 int r; 1838 1839 if (clear || !bo) { 1840 mem = NULL; 1841 resv = vm->root.bo->tbo.base.resv; 1842 } else { 1843 struct drm_gem_object *obj = &bo->tbo.base; 1844 1845 resv = bo->tbo.base.resv; 1846 if (obj->import_attach && bo_va->is_xgmi) { 1847 struct dma_buf *dma_buf = obj->import_attach->dmabuf; 1848 struct drm_gem_object *gobj = dma_buf->priv; 1849 struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj); 1850 1851 if (abo->tbo.resource->mem_type == TTM_PL_VRAM) 1852 bo = gem_to_amdgpu_bo(gobj); 1853 } 1854 mem = bo->tbo.resource; 1855 if (mem->mem_type == TTM_PL_TT || 1856 mem->mem_type == AMDGPU_PL_PREEMPT) 1857 pages_addr = bo->tbo.ttm->dma_address; 1858 } 1859 1860 if (bo) { 1861 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 1862 1863 if (amdgpu_bo_encrypted(bo)) 1864 flags |= AMDGPU_PTE_TMZ; 1865 1866 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev); 1867 } else { 1868 flags = 0x0; 1869 } 1870 1871 if (clear || (bo && bo->tbo.base.resv == 1872 vm->root.bo->tbo.base.resv)) 1873 last_update = &vm->last_update; 1874 else 1875 last_update = &bo_va->last_pt_update; 1876 1877 if (!clear && bo_va->base.moved) { 1878 bo_va->base.moved = false; 1879 list_splice_init(&bo_va->valids, &bo_va->invalids); 1880 1881 } else if (bo_va->cleared != clear) { 1882 list_splice_init(&bo_va->valids, &bo_va->invalids); 1883 } 1884 1885 list_for_each_entry(mapping, &bo_va->invalids, list) { 1886 uint64_t update_flags = flags; 1887 1888 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1889 * but in case of something, we filter the flags in first place 1890 */ 1891 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1892 update_flags &= ~AMDGPU_PTE_READABLE; 1893 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1894 update_flags &= ~AMDGPU_PTE_WRITEABLE; 1895 1896 /* Apply ASIC specific mapping flags */ 1897 amdgpu_gmc_get_vm_pte(adev, mapping, &update_flags); 1898 1899 trace_amdgpu_vm_bo_update(mapping); 1900 1901 r = amdgpu_vm_bo_update_mapping(adev, bo_adev, vm, false, false, 1902 resv, mapping->start, 1903 mapping->last, update_flags, 1904 mapping->offset, mem, 1905 pages_addr, last_update, NULL); 1906 if (r) 1907 return r; 1908 } 1909 1910 /* If the BO is not in its preferred location add it back to 1911 * the evicted list so that it gets validated again on the 1912 * next command submission. 1913 */ 1914 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 1915 uint32_t mem_type = bo->tbo.resource->mem_type; 1916 1917 if (!(bo->preferred_domains & 1918 amdgpu_mem_type_to_domain(mem_type))) 1919 amdgpu_vm_bo_evicted(&bo_va->base); 1920 else 1921 amdgpu_vm_bo_idle(&bo_va->base); 1922 } else { 1923 amdgpu_vm_bo_done(&bo_va->base); 1924 } 1925 1926 list_splice_init(&bo_va->invalids, &bo_va->valids); 1927 bo_va->cleared = clear; 1928 1929 if (trace_amdgpu_vm_bo_mapping_enabled()) { 1930 list_for_each_entry(mapping, &bo_va->valids, list) 1931 trace_amdgpu_vm_bo_mapping(mapping); 1932 } 1933 1934 return 0; 1935 } 1936 1937 /** 1938 * amdgpu_vm_update_prt_state - update the global PRT state 1939 * 1940 * @adev: amdgpu_device pointer 1941 */ 1942 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 1943 { 1944 unsigned long flags; 1945 bool enable; 1946 1947 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 1948 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 1949 adev->gmc.gmc_funcs->set_prt(adev, enable); 1950 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 1951 } 1952 1953 /** 1954 * amdgpu_vm_prt_get - add a PRT user 1955 * 1956 * @adev: amdgpu_device pointer 1957 */ 1958 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 1959 { 1960 if (!adev->gmc.gmc_funcs->set_prt) 1961 return; 1962 1963 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 1964 amdgpu_vm_update_prt_state(adev); 1965 } 1966 1967 /** 1968 * amdgpu_vm_prt_put - drop a PRT user 1969 * 1970 * @adev: amdgpu_device pointer 1971 */ 1972 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 1973 { 1974 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 1975 amdgpu_vm_update_prt_state(adev); 1976 } 1977 1978 /** 1979 * amdgpu_vm_prt_cb - callback for updating the PRT status 1980 * 1981 * @fence: fence for the callback 1982 * @_cb: the callback function 1983 */ 1984 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 1985 { 1986 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 1987 1988 amdgpu_vm_prt_put(cb->adev); 1989 kfree(cb); 1990 } 1991 1992 /** 1993 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 1994 * 1995 * @adev: amdgpu_device pointer 1996 * @fence: fence for the callback 1997 */ 1998 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 1999 struct dma_fence *fence) 2000 { 2001 struct amdgpu_prt_cb *cb; 2002 2003 if (!adev->gmc.gmc_funcs->set_prt) 2004 return; 2005 2006 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2007 if (!cb) { 2008 /* Last resort when we are OOM */ 2009 if (fence) 2010 dma_fence_wait(fence, false); 2011 2012 amdgpu_vm_prt_put(adev); 2013 } else { 2014 cb->adev = adev; 2015 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2016 amdgpu_vm_prt_cb)) 2017 amdgpu_vm_prt_cb(fence, &cb->cb); 2018 } 2019 } 2020 2021 /** 2022 * amdgpu_vm_free_mapping - free a mapping 2023 * 2024 * @adev: amdgpu_device pointer 2025 * @vm: requested vm 2026 * @mapping: mapping to be freed 2027 * @fence: fence of the unmap operation 2028 * 2029 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2030 */ 2031 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2032 struct amdgpu_vm *vm, 2033 struct amdgpu_bo_va_mapping *mapping, 2034 struct dma_fence *fence) 2035 { 2036 if (mapping->flags & AMDGPU_PTE_PRT) 2037 amdgpu_vm_add_prt_cb(adev, fence); 2038 kfree(mapping); 2039 } 2040 2041 /** 2042 * amdgpu_vm_prt_fini - finish all prt mappings 2043 * 2044 * @adev: amdgpu_device pointer 2045 * @vm: requested vm 2046 * 2047 * Register a cleanup callback to disable PRT support after VM dies. 2048 */ 2049 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2050 { 2051 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2052 struct dma_fence *excl, **shared; 2053 unsigned i, shared_count; 2054 int r; 2055 2056 r = dma_resv_get_fences(resv, &excl, &shared_count, &shared); 2057 if (r) { 2058 /* Not enough memory to grab the fence list, as last resort 2059 * block for all the fences to complete. 2060 */ 2061 dma_resv_wait_timeout(resv, true, false, 2062 MAX_SCHEDULE_TIMEOUT); 2063 return; 2064 } 2065 2066 /* Add a callback for each fence in the reservation object */ 2067 amdgpu_vm_prt_get(adev); 2068 amdgpu_vm_add_prt_cb(adev, excl); 2069 2070 for (i = 0; i < shared_count; ++i) { 2071 amdgpu_vm_prt_get(adev); 2072 amdgpu_vm_add_prt_cb(adev, shared[i]); 2073 } 2074 2075 kfree(shared); 2076 } 2077 2078 /** 2079 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2080 * 2081 * @adev: amdgpu_device pointer 2082 * @vm: requested vm 2083 * @fence: optional resulting fence (unchanged if no work needed to be done 2084 * or if an error occurred) 2085 * 2086 * Make sure all freed BOs are cleared in the PT. 2087 * PTs have to be reserved and mutex must be locked! 2088 * 2089 * Returns: 2090 * 0 for success. 2091 * 2092 */ 2093 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2094 struct amdgpu_vm *vm, 2095 struct dma_fence **fence) 2096 { 2097 struct dma_resv *resv = vm->root.bo->tbo.base.resv; 2098 struct amdgpu_bo_va_mapping *mapping; 2099 uint64_t init_pte_value = 0; 2100 struct dma_fence *f = NULL; 2101 int r; 2102 2103 while (!list_empty(&vm->freed)) { 2104 mapping = list_first_entry(&vm->freed, 2105 struct amdgpu_bo_va_mapping, list); 2106 list_del(&mapping->list); 2107 2108 if (vm->pte_support_ats && 2109 mapping->start < AMDGPU_GMC_HOLE_START) 2110 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2111 2112 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, false, false, 2113 resv, mapping->start, 2114 mapping->last, init_pte_value, 2115 0, NULL, NULL, &f, NULL); 2116 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2117 if (r) { 2118 dma_fence_put(f); 2119 return r; 2120 } 2121 } 2122 2123 if (fence && f) { 2124 dma_fence_put(*fence); 2125 *fence = f; 2126 } else { 2127 dma_fence_put(f); 2128 } 2129 2130 return 0; 2131 2132 } 2133 2134 /** 2135 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2136 * 2137 * @adev: amdgpu_device pointer 2138 * @vm: requested vm 2139 * 2140 * Make sure all BOs which are moved are updated in the PTs. 2141 * 2142 * Returns: 2143 * 0 for success. 2144 * 2145 * PTs have to be reserved! 2146 */ 2147 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2148 struct amdgpu_vm *vm) 2149 { 2150 struct amdgpu_bo_va *bo_va, *tmp; 2151 struct dma_resv *resv; 2152 bool clear; 2153 int r; 2154 2155 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2156 /* Per VM BOs never need to bo cleared in the page tables */ 2157 r = amdgpu_vm_bo_update(adev, bo_va, false); 2158 if (r) 2159 return r; 2160 } 2161 2162 spin_lock(&vm->invalidated_lock); 2163 while (!list_empty(&vm->invalidated)) { 2164 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2165 base.vm_status); 2166 resv = bo_va->base.bo->tbo.base.resv; 2167 spin_unlock(&vm->invalidated_lock); 2168 2169 /* Try to reserve the BO to avoid clearing its ptes */ 2170 if (!amdgpu_vm_debug && dma_resv_trylock(resv)) 2171 clear = false; 2172 /* Somebody else is using the BO right now */ 2173 else 2174 clear = true; 2175 2176 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2177 if (r) 2178 return r; 2179 2180 if (!clear) 2181 dma_resv_unlock(resv); 2182 spin_lock(&vm->invalidated_lock); 2183 } 2184 spin_unlock(&vm->invalidated_lock); 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * amdgpu_vm_bo_add - add a bo to a specific vm 2191 * 2192 * @adev: amdgpu_device pointer 2193 * @vm: requested vm 2194 * @bo: amdgpu buffer object 2195 * 2196 * Add @bo into the requested vm. 2197 * Add @bo to the list of bos associated with the vm 2198 * 2199 * Returns: 2200 * Newly added bo_va or NULL for failure 2201 * 2202 * Object has to be reserved! 2203 */ 2204 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2205 struct amdgpu_vm *vm, 2206 struct amdgpu_bo *bo) 2207 { 2208 struct amdgpu_bo_va *bo_va; 2209 2210 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2211 if (bo_va == NULL) { 2212 return NULL; 2213 } 2214 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2215 2216 bo_va->ref_count = 1; 2217 INIT_LIST_HEAD(&bo_va->valids); 2218 INIT_LIST_HEAD(&bo_va->invalids); 2219 2220 if (!bo) 2221 return bo_va; 2222 2223 if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) { 2224 bo_va->is_xgmi = true; 2225 /* Power up XGMI if it can be potentially used */ 2226 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20); 2227 } 2228 2229 return bo_va; 2230 } 2231 2232 2233 /** 2234 * amdgpu_vm_bo_insert_map - insert a new mapping 2235 * 2236 * @adev: amdgpu_device pointer 2237 * @bo_va: bo_va to store the address 2238 * @mapping: the mapping to insert 2239 * 2240 * Insert a new mapping into all structures. 2241 */ 2242 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2243 struct amdgpu_bo_va *bo_va, 2244 struct amdgpu_bo_va_mapping *mapping) 2245 { 2246 struct amdgpu_vm *vm = bo_va->base.vm; 2247 struct amdgpu_bo *bo = bo_va->base.bo; 2248 2249 mapping->bo_va = bo_va; 2250 list_add(&mapping->list, &bo_va->invalids); 2251 amdgpu_vm_it_insert(mapping, &vm->va); 2252 2253 if (mapping->flags & AMDGPU_PTE_PRT) 2254 amdgpu_vm_prt_get(adev); 2255 2256 if (bo && bo->tbo.base.resv == vm->root.bo->tbo.base.resv && 2257 !bo_va->base.moved) { 2258 list_move(&bo_va->base.vm_status, &vm->moved); 2259 } 2260 trace_amdgpu_vm_bo_map(bo_va, mapping); 2261 } 2262 2263 /** 2264 * amdgpu_vm_bo_map - map bo inside a vm 2265 * 2266 * @adev: amdgpu_device pointer 2267 * @bo_va: bo_va to store the address 2268 * @saddr: where to map the BO 2269 * @offset: requested offset in the BO 2270 * @size: BO size in bytes 2271 * @flags: attributes of pages (read/write/valid/etc.) 2272 * 2273 * Add a mapping of the BO at the specefied addr into the VM. 2274 * 2275 * Returns: 2276 * 0 for success, error for failure. 2277 * 2278 * Object has to be reserved and unreserved outside! 2279 */ 2280 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2281 struct amdgpu_bo_va *bo_va, 2282 uint64_t saddr, uint64_t offset, 2283 uint64_t size, uint64_t flags) 2284 { 2285 struct amdgpu_bo_va_mapping *mapping, *tmp; 2286 struct amdgpu_bo *bo = bo_va->base.bo; 2287 struct amdgpu_vm *vm = bo_va->base.vm; 2288 uint64_t eaddr; 2289 2290 /* validate the parameters */ 2291 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2292 size == 0 || size & ~PAGE_MASK) 2293 return -EINVAL; 2294 2295 /* make sure object fit at this offset */ 2296 eaddr = saddr + size - 1; 2297 if (saddr >= eaddr || 2298 (bo && offset + size > amdgpu_bo_size(bo)) || 2299 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2300 return -EINVAL; 2301 2302 saddr /= AMDGPU_GPU_PAGE_SIZE; 2303 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2304 2305 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2306 if (tmp) { 2307 /* bo and tmp overlap, invalid addr */ 2308 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2309 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2310 tmp->start, tmp->last + 1); 2311 return -EINVAL; 2312 } 2313 2314 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2315 if (!mapping) 2316 return -ENOMEM; 2317 2318 mapping->start = saddr; 2319 mapping->last = eaddr; 2320 mapping->offset = offset; 2321 mapping->flags = flags; 2322 2323 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2324 2325 return 0; 2326 } 2327 2328 /** 2329 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2330 * 2331 * @adev: amdgpu_device pointer 2332 * @bo_va: bo_va to store the address 2333 * @saddr: where to map the BO 2334 * @offset: requested offset in the BO 2335 * @size: BO size in bytes 2336 * @flags: attributes of pages (read/write/valid/etc.) 2337 * 2338 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2339 * mappings as we do so. 2340 * 2341 * Returns: 2342 * 0 for success, error for failure. 2343 * 2344 * Object has to be reserved and unreserved outside! 2345 */ 2346 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2347 struct amdgpu_bo_va *bo_va, 2348 uint64_t saddr, uint64_t offset, 2349 uint64_t size, uint64_t flags) 2350 { 2351 struct amdgpu_bo_va_mapping *mapping; 2352 struct amdgpu_bo *bo = bo_va->base.bo; 2353 uint64_t eaddr; 2354 int r; 2355 2356 /* validate the parameters */ 2357 if (saddr & ~PAGE_MASK || offset & ~PAGE_MASK || 2358 size == 0 || size & ~PAGE_MASK) 2359 return -EINVAL; 2360 2361 /* make sure object fit at this offset */ 2362 eaddr = saddr + size - 1; 2363 if (saddr >= eaddr || 2364 (bo && offset + size > amdgpu_bo_size(bo)) || 2365 (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT)) 2366 return -EINVAL; 2367 2368 /* Allocate all the needed memory */ 2369 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2370 if (!mapping) 2371 return -ENOMEM; 2372 2373 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2374 if (r) { 2375 kfree(mapping); 2376 return r; 2377 } 2378 2379 saddr /= AMDGPU_GPU_PAGE_SIZE; 2380 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2381 2382 mapping->start = saddr; 2383 mapping->last = eaddr; 2384 mapping->offset = offset; 2385 mapping->flags = flags; 2386 2387 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2388 2389 return 0; 2390 } 2391 2392 /** 2393 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2394 * 2395 * @adev: amdgpu_device pointer 2396 * @bo_va: bo_va to remove the address from 2397 * @saddr: where to the BO is mapped 2398 * 2399 * Remove a mapping of the BO at the specefied addr from the VM. 2400 * 2401 * Returns: 2402 * 0 for success, error for failure. 2403 * 2404 * Object has to be reserved and unreserved outside! 2405 */ 2406 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2407 struct amdgpu_bo_va *bo_va, 2408 uint64_t saddr) 2409 { 2410 struct amdgpu_bo_va_mapping *mapping; 2411 struct amdgpu_vm *vm = bo_va->base.vm; 2412 bool valid = true; 2413 2414 saddr /= AMDGPU_GPU_PAGE_SIZE; 2415 2416 list_for_each_entry(mapping, &bo_va->valids, list) { 2417 if (mapping->start == saddr) 2418 break; 2419 } 2420 2421 if (&mapping->list == &bo_va->valids) { 2422 valid = false; 2423 2424 list_for_each_entry(mapping, &bo_va->invalids, list) { 2425 if (mapping->start == saddr) 2426 break; 2427 } 2428 2429 if (&mapping->list == &bo_va->invalids) 2430 return -ENOENT; 2431 } 2432 2433 list_del(&mapping->list); 2434 amdgpu_vm_it_remove(mapping, &vm->va); 2435 mapping->bo_va = NULL; 2436 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2437 2438 if (valid) 2439 list_add(&mapping->list, &vm->freed); 2440 else 2441 amdgpu_vm_free_mapping(adev, vm, mapping, 2442 bo_va->last_pt_update); 2443 2444 return 0; 2445 } 2446 2447 /** 2448 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2449 * 2450 * @adev: amdgpu_device pointer 2451 * @vm: VM structure to use 2452 * @saddr: start of the range 2453 * @size: size of the range 2454 * 2455 * Remove all mappings in a range, split them as appropriate. 2456 * 2457 * Returns: 2458 * 0 for success, error for failure. 2459 */ 2460 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2461 struct amdgpu_vm *vm, 2462 uint64_t saddr, uint64_t size) 2463 { 2464 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2465 LIST_HEAD(removed); 2466 uint64_t eaddr; 2467 2468 eaddr = saddr + size - 1; 2469 saddr /= AMDGPU_GPU_PAGE_SIZE; 2470 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2471 2472 /* Allocate all the needed memory */ 2473 before = kzalloc(sizeof(*before), GFP_KERNEL); 2474 if (!before) 2475 return -ENOMEM; 2476 INIT_LIST_HEAD(&before->list); 2477 2478 after = kzalloc(sizeof(*after), GFP_KERNEL); 2479 if (!after) { 2480 kfree(before); 2481 return -ENOMEM; 2482 } 2483 INIT_LIST_HEAD(&after->list); 2484 2485 /* Now gather all removed mappings */ 2486 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2487 while (tmp) { 2488 /* Remember mapping split at the start */ 2489 if (tmp->start < saddr) { 2490 before->start = tmp->start; 2491 before->last = saddr - 1; 2492 before->offset = tmp->offset; 2493 before->flags = tmp->flags; 2494 before->bo_va = tmp->bo_va; 2495 list_add(&before->list, &tmp->bo_va->invalids); 2496 } 2497 2498 /* Remember mapping split at the end */ 2499 if (tmp->last > eaddr) { 2500 after->start = eaddr + 1; 2501 after->last = tmp->last; 2502 after->offset = tmp->offset; 2503 after->offset += (after->start - tmp->start) << PAGE_SHIFT; 2504 after->flags = tmp->flags; 2505 after->bo_va = tmp->bo_va; 2506 list_add(&after->list, &tmp->bo_va->invalids); 2507 } 2508 2509 list_del(&tmp->list); 2510 list_add(&tmp->list, &removed); 2511 2512 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2513 } 2514 2515 /* And free them up */ 2516 list_for_each_entry_safe(tmp, next, &removed, list) { 2517 amdgpu_vm_it_remove(tmp, &vm->va); 2518 list_del(&tmp->list); 2519 2520 if (tmp->start < saddr) 2521 tmp->start = saddr; 2522 if (tmp->last > eaddr) 2523 tmp->last = eaddr; 2524 2525 tmp->bo_va = NULL; 2526 list_add(&tmp->list, &vm->freed); 2527 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2528 } 2529 2530 /* Insert partial mapping before the range */ 2531 if (!list_empty(&before->list)) { 2532 amdgpu_vm_it_insert(before, &vm->va); 2533 if (before->flags & AMDGPU_PTE_PRT) 2534 amdgpu_vm_prt_get(adev); 2535 } else { 2536 kfree(before); 2537 } 2538 2539 /* Insert partial mapping after the range */ 2540 if (!list_empty(&after->list)) { 2541 amdgpu_vm_it_insert(after, &vm->va); 2542 if (after->flags & AMDGPU_PTE_PRT) 2543 amdgpu_vm_prt_get(adev); 2544 } else { 2545 kfree(after); 2546 } 2547 2548 return 0; 2549 } 2550 2551 /** 2552 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2553 * 2554 * @vm: the requested VM 2555 * @addr: the address 2556 * 2557 * Find a mapping by it's address. 2558 * 2559 * Returns: 2560 * The amdgpu_bo_va_mapping matching for addr or NULL 2561 * 2562 */ 2563 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2564 uint64_t addr) 2565 { 2566 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2567 } 2568 2569 /** 2570 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2571 * 2572 * @vm: the requested vm 2573 * @ticket: CS ticket 2574 * 2575 * Trace all mappings of BOs reserved during a command submission. 2576 */ 2577 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2578 { 2579 struct amdgpu_bo_va_mapping *mapping; 2580 2581 if (!trace_amdgpu_vm_bo_cs_enabled()) 2582 return; 2583 2584 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2585 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2586 if (mapping->bo_va && mapping->bo_va->base.bo) { 2587 struct amdgpu_bo *bo; 2588 2589 bo = mapping->bo_va->base.bo; 2590 if (dma_resv_locking_ctx(bo->tbo.base.resv) != 2591 ticket) 2592 continue; 2593 } 2594 2595 trace_amdgpu_vm_bo_cs(mapping); 2596 } 2597 } 2598 2599 /** 2600 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2601 * 2602 * @adev: amdgpu_device pointer 2603 * @bo_va: requested bo_va 2604 * 2605 * Remove @bo_va->bo from the requested vm. 2606 * 2607 * Object have to be reserved! 2608 */ 2609 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2610 struct amdgpu_bo_va *bo_va) 2611 { 2612 struct amdgpu_bo_va_mapping *mapping, *next; 2613 struct amdgpu_bo *bo = bo_va->base.bo; 2614 struct amdgpu_vm *vm = bo_va->base.vm; 2615 struct amdgpu_vm_bo_base **base; 2616 2617 if (bo) { 2618 if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2619 vm->bulk_moveable = false; 2620 2621 for (base = &bo_va->base.bo->vm_bo; *base; 2622 base = &(*base)->next) { 2623 if (*base != &bo_va->base) 2624 continue; 2625 2626 *base = bo_va->base.next; 2627 break; 2628 } 2629 } 2630 2631 spin_lock(&vm->invalidated_lock); 2632 list_del(&bo_va->base.vm_status); 2633 spin_unlock(&vm->invalidated_lock); 2634 2635 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2636 list_del(&mapping->list); 2637 amdgpu_vm_it_remove(mapping, &vm->va); 2638 mapping->bo_va = NULL; 2639 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2640 list_add(&mapping->list, &vm->freed); 2641 } 2642 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2643 list_del(&mapping->list); 2644 amdgpu_vm_it_remove(mapping, &vm->va); 2645 amdgpu_vm_free_mapping(adev, vm, mapping, 2646 bo_va->last_pt_update); 2647 } 2648 2649 dma_fence_put(bo_va->last_pt_update); 2650 2651 if (bo && bo_va->is_xgmi) 2652 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN); 2653 2654 kfree(bo_va); 2655 } 2656 2657 /** 2658 * amdgpu_vm_evictable - check if we can evict a VM 2659 * 2660 * @bo: A page table of the VM. 2661 * 2662 * Check if it is possible to evict a VM. 2663 */ 2664 bool amdgpu_vm_evictable(struct amdgpu_bo *bo) 2665 { 2666 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo; 2667 2668 /* Page tables of a destroyed VM can go away immediately */ 2669 if (!bo_base || !bo_base->vm) 2670 return true; 2671 2672 /* Don't evict VM page tables while they are busy */ 2673 if (!dma_resv_test_signaled(bo->tbo.base.resv, true)) 2674 return false; 2675 2676 /* Try to block ongoing updates */ 2677 if (!amdgpu_vm_eviction_trylock(bo_base->vm)) 2678 return false; 2679 2680 /* Don't evict VM page tables while they are updated */ 2681 if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) { 2682 amdgpu_vm_eviction_unlock(bo_base->vm); 2683 return false; 2684 } 2685 2686 bo_base->vm->evicting = true; 2687 amdgpu_vm_eviction_unlock(bo_base->vm); 2688 return true; 2689 } 2690 2691 /** 2692 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2693 * 2694 * @adev: amdgpu_device pointer 2695 * @bo: amdgpu buffer object 2696 * @evicted: is the BO evicted 2697 * 2698 * Mark @bo as invalid. 2699 */ 2700 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2701 struct amdgpu_bo *bo, bool evicted) 2702 { 2703 struct amdgpu_vm_bo_base *bo_base; 2704 2705 /* shadow bo doesn't have bo base, its validation needs its parent */ 2706 if (bo->parent && (amdgpu_bo_shadowed(bo->parent) == bo)) 2707 bo = bo->parent; 2708 2709 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2710 struct amdgpu_vm *vm = bo_base->vm; 2711 2712 if (evicted && bo->tbo.base.resv == vm->root.bo->tbo.base.resv) { 2713 amdgpu_vm_bo_evicted(bo_base); 2714 continue; 2715 } 2716 2717 if (bo_base->moved) 2718 continue; 2719 bo_base->moved = true; 2720 2721 if (bo->tbo.type == ttm_bo_type_kernel) 2722 amdgpu_vm_bo_relocated(bo_base); 2723 else if (bo->tbo.base.resv == vm->root.bo->tbo.base.resv) 2724 amdgpu_vm_bo_moved(bo_base); 2725 else 2726 amdgpu_vm_bo_invalidated(bo_base); 2727 } 2728 } 2729 2730 /** 2731 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2732 * 2733 * @vm_size: VM size 2734 * 2735 * Returns: 2736 * VM page table as power of two 2737 */ 2738 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2739 { 2740 /* Total bits covered by PD + PTs */ 2741 unsigned bits = ilog2(vm_size) + 18; 2742 2743 /* Make sure the PD is 4K in size up to 8GB address space. 2744 Above that split equal between PD and PTs */ 2745 if (vm_size <= 8) 2746 return (bits - 9); 2747 else 2748 return ((bits + 3) / 2); 2749 } 2750 2751 /** 2752 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2753 * 2754 * @adev: amdgpu_device pointer 2755 * @min_vm_size: the minimum vm size in GB if it's set auto 2756 * @fragment_size_default: Default PTE fragment size 2757 * @max_level: max VMPT level 2758 * @max_bits: max address space size in bits 2759 * 2760 */ 2761 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2762 uint32_t fragment_size_default, unsigned max_level, 2763 unsigned max_bits) 2764 { 2765 unsigned int max_size = 1 << (max_bits - 30); 2766 unsigned int vm_size; 2767 uint64_t tmp; 2768 2769 /* adjust vm size first */ 2770 if (amdgpu_vm_size != -1) { 2771 vm_size = amdgpu_vm_size; 2772 if (vm_size > max_size) { 2773 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2774 amdgpu_vm_size, max_size); 2775 vm_size = max_size; 2776 } 2777 } else { 2778 struct sysinfo si; 2779 unsigned int phys_ram_gb; 2780 2781 /* Optimal VM size depends on the amount of physical 2782 * RAM available. Underlying requirements and 2783 * assumptions: 2784 * 2785 * - Need to map system memory and VRAM from all GPUs 2786 * - VRAM from other GPUs not known here 2787 * - Assume VRAM <= system memory 2788 * - On GFX8 and older, VM space can be segmented for 2789 * different MTYPEs 2790 * - Need to allow room for fragmentation, guard pages etc. 2791 * 2792 * This adds up to a rough guess of system memory x3. 2793 * Round up to power of two to maximize the available 2794 * VM size with the given page table size. 2795 */ 2796 si_meminfo(&si); 2797 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2798 (1 << 30) - 1) >> 30; 2799 vm_size = roundup_pow_of_two( 2800 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2801 } 2802 2803 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2804 2805 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2806 if (amdgpu_vm_block_size != -1) 2807 tmp >>= amdgpu_vm_block_size - 9; 2808 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2809 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2810 switch (adev->vm_manager.num_level) { 2811 case 3: 2812 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2813 break; 2814 case 2: 2815 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2816 break; 2817 case 1: 2818 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2819 break; 2820 default: 2821 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2822 } 2823 /* block size depends on vm size and hw setup*/ 2824 if (amdgpu_vm_block_size != -1) 2825 adev->vm_manager.block_size = 2826 min((unsigned)amdgpu_vm_block_size, max_bits 2827 - AMDGPU_GPU_PAGE_SHIFT 2828 - 9 * adev->vm_manager.num_level); 2829 else if (adev->vm_manager.num_level > 1) 2830 adev->vm_manager.block_size = 9; 2831 else 2832 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2833 2834 if (amdgpu_vm_fragment_size == -1) 2835 adev->vm_manager.fragment_size = fragment_size_default; 2836 else 2837 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2838 2839 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2840 vm_size, adev->vm_manager.num_level + 1, 2841 adev->vm_manager.block_size, 2842 adev->vm_manager.fragment_size); 2843 } 2844 2845 /** 2846 * amdgpu_vm_wait_idle - wait for the VM to become idle 2847 * 2848 * @vm: VM object to wait for 2849 * @timeout: timeout to wait for VM to become idle 2850 */ 2851 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout) 2852 { 2853 timeout = dma_resv_wait_timeout(vm->root.bo->tbo.base.resv, true, 2854 true, timeout); 2855 if (timeout <= 0) 2856 return timeout; 2857 2858 return dma_fence_wait_timeout(vm->last_unlocked, true, timeout); 2859 } 2860 2861 /** 2862 * amdgpu_vm_init - initialize a vm instance 2863 * 2864 * @adev: amdgpu_device pointer 2865 * @vm: requested vm 2866 * @pasid: Process address space identifier 2867 * 2868 * Init @vm fields. 2869 * 2870 * Returns: 2871 * 0 for success, error for failure. 2872 */ 2873 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, u32 pasid) 2874 { 2875 struct amdgpu_bo *root_bo; 2876 struct amdgpu_bo_vm *root; 2877 int r, i; 2878 2879 vm->va = RB_ROOT_CACHED; 2880 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2881 vm->reserved_vmid[i] = NULL; 2882 INIT_LIST_HEAD(&vm->evicted); 2883 INIT_LIST_HEAD(&vm->relocated); 2884 INIT_LIST_HEAD(&vm->moved); 2885 INIT_LIST_HEAD(&vm->idle); 2886 INIT_LIST_HEAD(&vm->invalidated); 2887 spin_lock_init(&vm->invalidated_lock); 2888 INIT_LIST_HEAD(&vm->freed); 2889 INIT_LIST_HEAD(&vm->done); 2890 2891 /* create scheduler entities for page table updates */ 2892 r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL, 2893 adev->vm_manager.vm_pte_scheds, 2894 adev->vm_manager.vm_pte_num_scheds, NULL); 2895 if (r) 2896 return r; 2897 2898 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL, 2899 adev->vm_manager.vm_pte_scheds, 2900 adev->vm_manager.vm_pte_num_scheds, NULL); 2901 if (r) 2902 goto error_free_immediate; 2903 2904 vm->pte_support_ats = false; 2905 vm->is_compute_context = false; 2906 2907 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 2908 AMDGPU_VM_USE_CPU_FOR_GFX); 2909 2910 DRM_DEBUG_DRIVER("VM update mode is %s\n", 2911 vm->use_cpu_for_update ? "CPU" : "SDMA"); 2912 WARN_ONCE((vm->use_cpu_for_update && 2913 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 2914 "CPU update of VM recommended only for large BAR system\n"); 2915 2916 if (vm->use_cpu_for_update) 2917 vm->update_funcs = &amdgpu_vm_cpu_funcs; 2918 else 2919 vm->update_funcs = &amdgpu_vm_sdma_funcs; 2920 vm->last_update = NULL; 2921 vm->last_unlocked = dma_fence_get_stub(); 2922 2923 mutex_init(&vm->eviction_lock); 2924 vm->evicting = false; 2925 2926 r = amdgpu_vm_pt_create(adev, vm, adev->vm_manager.root_level, 2927 false, &root); 2928 if (r) 2929 goto error_free_delayed; 2930 root_bo = &root->bo; 2931 r = amdgpu_bo_reserve(root_bo, true); 2932 if (r) 2933 goto error_free_root; 2934 2935 r = dma_resv_reserve_shared(root_bo->tbo.base.resv, 1); 2936 if (r) 2937 goto error_unreserve; 2938 2939 amdgpu_vm_bo_base_init(&vm->root, vm, root_bo); 2940 2941 r = amdgpu_vm_clear_bo(adev, vm, root, false); 2942 if (r) 2943 goto error_unreserve; 2944 2945 amdgpu_bo_unreserve(vm->root.bo); 2946 2947 if (pasid) { 2948 unsigned long flags; 2949 2950 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 2951 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 2952 GFP_ATOMIC); 2953 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 2954 if (r < 0) 2955 goto error_free_root; 2956 2957 vm->pasid = pasid; 2958 } 2959 2960 INIT_KFIFO(vm->faults); 2961 2962 return 0; 2963 2964 error_unreserve: 2965 amdgpu_bo_unreserve(vm->root.bo); 2966 2967 error_free_root: 2968 amdgpu_bo_unref(&root->shadow); 2969 amdgpu_bo_unref(&root_bo); 2970 vm->root.bo = NULL; 2971 2972 error_free_delayed: 2973 dma_fence_put(vm->last_unlocked); 2974 drm_sched_entity_destroy(&vm->delayed); 2975 2976 error_free_immediate: 2977 drm_sched_entity_destroy(&vm->immediate); 2978 2979 return r; 2980 } 2981 2982 /** 2983 * amdgpu_vm_check_clean_reserved - check if a VM is clean 2984 * 2985 * @adev: amdgpu_device pointer 2986 * @vm: the VM to check 2987 * 2988 * check all entries of the root PD, if any subsequent PDs are allocated, 2989 * it means there are page table creating and filling, and is no a clean 2990 * VM 2991 * 2992 * Returns: 2993 * 0 if this VM is clean 2994 */ 2995 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev, 2996 struct amdgpu_vm *vm) 2997 { 2998 enum amdgpu_vm_level root = adev->vm_manager.root_level; 2999 unsigned int entries = amdgpu_vm_num_entries(adev, root); 3000 unsigned int i = 0; 3001 3002 for (i = 0; i < entries; i++) { 3003 if (to_amdgpu_bo_vm(vm->root.bo)->entries[i].bo) 3004 return -EINVAL; 3005 } 3006 3007 return 0; 3008 } 3009 3010 /** 3011 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3012 * 3013 * @adev: amdgpu_device pointer 3014 * @vm: requested vm 3015 * @pasid: pasid to use 3016 * 3017 * This only works on GFX VMs that don't have any BOs added and no 3018 * page tables allocated yet. 3019 * 3020 * Changes the following VM parameters: 3021 * - use_cpu_for_update 3022 * - pte_supports_ats 3023 * - pasid (old PASID is released, because compute manages its own PASIDs) 3024 * 3025 * Reinitializes the page directory to reflect the changed ATS 3026 * setting. 3027 * 3028 * Returns: 3029 * 0 for success, -errno for errors. 3030 */ 3031 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, 3032 u32 pasid) 3033 { 3034 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3035 int r; 3036 3037 r = amdgpu_bo_reserve(vm->root.bo, true); 3038 if (r) 3039 return r; 3040 3041 /* Sanity checks */ 3042 r = amdgpu_vm_check_clean_reserved(adev, vm); 3043 if (r) 3044 goto unreserve_bo; 3045 3046 if (pasid) { 3047 unsigned long flags; 3048 3049 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3050 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3051 GFP_ATOMIC); 3052 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3053 3054 if (r == -ENOSPC) 3055 goto unreserve_bo; 3056 r = 0; 3057 } 3058 3059 /* Check if PD needs to be reinitialized and do it before 3060 * changing any other state, in case it fails. 3061 */ 3062 if (pte_support_ats != vm->pte_support_ats) { 3063 vm->pte_support_ats = pte_support_ats; 3064 r = amdgpu_vm_clear_bo(adev, vm, 3065 to_amdgpu_bo_vm(vm->root.bo), 3066 false); 3067 if (r) 3068 goto free_idr; 3069 } 3070 3071 /* Update VM state */ 3072 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3073 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3074 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3075 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3076 WARN_ONCE((vm->use_cpu_for_update && 3077 !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3078 "CPU update of VM recommended only for large BAR system\n"); 3079 3080 if (vm->use_cpu_for_update) { 3081 /* Sync with last SDMA update/clear before switching to CPU */ 3082 r = amdgpu_bo_sync_wait(vm->root.bo, 3083 AMDGPU_FENCE_OWNER_UNDEFINED, true); 3084 if (r) 3085 goto free_idr; 3086 3087 vm->update_funcs = &amdgpu_vm_cpu_funcs; 3088 } else { 3089 vm->update_funcs = &amdgpu_vm_sdma_funcs; 3090 } 3091 dma_fence_put(vm->last_update); 3092 vm->last_update = NULL; 3093 vm->is_compute_context = true; 3094 3095 if (vm->pasid) { 3096 unsigned long flags; 3097 3098 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3099 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3100 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3101 3102 /* Free the original amdgpu allocated pasid 3103 * Will be replaced with kfd allocated pasid 3104 */ 3105 amdgpu_pasid_free(vm->pasid); 3106 vm->pasid = 0; 3107 } 3108 3109 /* Free the shadow bo for compute VM */ 3110 amdgpu_bo_unref(&to_amdgpu_bo_vm(vm->root.bo)->shadow); 3111 3112 if (pasid) 3113 vm->pasid = pasid; 3114 3115 goto unreserve_bo; 3116 3117 free_idr: 3118 if (pasid) { 3119 unsigned long flags; 3120 3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3122 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3123 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3124 } 3125 unreserve_bo: 3126 amdgpu_bo_unreserve(vm->root.bo); 3127 return r; 3128 } 3129 3130 /** 3131 * amdgpu_vm_release_compute - release a compute vm 3132 * @adev: amdgpu_device pointer 3133 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3134 * 3135 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3136 * pasid from vm. Compute should stop use of vm after this call. 3137 */ 3138 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3139 { 3140 if (vm->pasid) { 3141 unsigned long flags; 3142 3143 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3144 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3145 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3146 } 3147 vm->pasid = 0; 3148 vm->is_compute_context = false; 3149 } 3150 3151 /** 3152 * amdgpu_vm_fini - tear down a vm instance 3153 * 3154 * @adev: amdgpu_device pointer 3155 * @vm: requested vm 3156 * 3157 * Tear down @vm. 3158 * Unbind the VM and remove all bos from the vm bo list 3159 */ 3160 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3161 { 3162 struct amdgpu_bo_va_mapping *mapping, *tmp; 3163 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3164 struct amdgpu_bo *root; 3165 int i; 3166 3167 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3168 3169 root = amdgpu_bo_ref(vm->root.bo); 3170 amdgpu_bo_reserve(root, true); 3171 if (vm->pasid) { 3172 unsigned long flags; 3173 3174 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3175 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3176 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3177 vm->pasid = 0; 3178 } 3179 3180 dma_fence_wait(vm->last_unlocked, false); 3181 dma_fence_put(vm->last_unlocked); 3182 3183 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3184 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3185 amdgpu_vm_prt_fini(adev, vm); 3186 prt_fini_needed = false; 3187 } 3188 3189 list_del(&mapping->list); 3190 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3191 } 3192 3193 amdgpu_vm_free_pts(adev, vm, NULL); 3194 amdgpu_bo_unreserve(root); 3195 amdgpu_bo_unref(&root); 3196 WARN_ON(vm->root.bo); 3197 3198 drm_sched_entity_destroy(&vm->immediate); 3199 drm_sched_entity_destroy(&vm->delayed); 3200 3201 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3202 dev_err(adev->dev, "still active bo inside vm\n"); 3203 } 3204 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3205 &vm->va.rb_root, rb) { 3206 /* Don't remove the mapping here, we don't want to trigger a 3207 * rebalance and the tree is about to be destroyed anyway. 3208 */ 3209 list_del(&mapping->list); 3210 kfree(mapping); 3211 } 3212 3213 dma_fence_put(vm->last_update); 3214 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3215 amdgpu_vmid_free_reserved(adev, vm, i); 3216 } 3217 3218 /** 3219 * amdgpu_vm_manager_init - init the VM manager 3220 * 3221 * @adev: amdgpu_device pointer 3222 * 3223 * Initialize the VM manager structures 3224 */ 3225 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3226 { 3227 unsigned i; 3228 3229 /* Concurrent flushes are only possible starting with Vega10 and 3230 * are broken on Navi10 and Navi14. 3231 */ 3232 adev->vm_manager.concurrent_flush = !(adev->asic_type < CHIP_VEGA10 || 3233 adev->asic_type == CHIP_NAVI10 || 3234 adev->asic_type == CHIP_NAVI14); 3235 amdgpu_vmid_mgr_init(adev); 3236 3237 adev->vm_manager.fence_context = 3238 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3239 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3240 adev->vm_manager.seqno[i] = 0; 3241 3242 spin_lock_init(&adev->vm_manager.prt_lock); 3243 atomic_set(&adev->vm_manager.num_prt_users, 0); 3244 3245 /* If not overridden by the user, by default, only in large BAR systems 3246 * Compute VM tables will be updated by CPU 3247 */ 3248 #ifdef CONFIG_X86_64 3249 if (amdgpu_vm_update_mode == -1) { 3250 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3251 adev->vm_manager.vm_update_mode = 3252 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3253 else 3254 adev->vm_manager.vm_update_mode = 0; 3255 } else 3256 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3257 #else 3258 adev->vm_manager.vm_update_mode = 0; 3259 #endif 3260 3261 idr_init(&adev->vm_manager.pasid_idr); 3262 spin_lock_init(&adev->vm_manager.pasid_lock); 3263 } 3264 3265 /** 3266 * amdgpu_vm_manager_fini - cleanup VM manager 3267 * 3268 * @adev: amdgpu_device pointer 3269 * 3270 * Cleanup the VM manager and free resources. 3271 */ 3272 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3273 { 3274 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3275 idr_destroy(&adev->vm_manager.pasid_idr); 3276 3277 amdgpu_vmid_mgr_fini(adev); 3278 } 3279 3280 /** 3281 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3282 * 3283 * @dev: drm device pointer 3284 * @data: drm_amdgpu_vm 3285 * @filp: drm file pointer 3286 * 3287 * Returns: 3288 * 0 for success, -errno for errors. 3289 */ 3290 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3291 { 3292 union drm_amdgpu_vm *args = data; 3293 struct amdgpu_device *adev = drm_to_adev(dev); 3294 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3295 long timeout = msecs_to_jiffies(2000); 3296 int r; 3297 3298 switch (args->in.op) { 3299 case AMDGPU_VM_OP_RESERVE_VMID: 3300 /* We only have requirement to reserve vmid from gfxhub */ 3301 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, 3302 AMDGPU_GFXHUB_0); 3303 if (r) 3304 return r; 3305 break; 3306 case AMDGPU_VM_OP_UNRESERVE_VMID: 3307 if (amdgpu_sriov_runtime(adev)) 3308 timeout = 8 * timeout; 3309 3310 /* Wait vm idle to make sure the vmid set in SPM_VMID is 3311 * not referenced anymore. 3312 */ 3313 r = amdgpu_bo_reserve(fpriv->vm.root.bo, true); 3314 if (r) 3315 return r; 3316 3317 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout); 3318 if (r < 0) 3319 return r; 3320 3321 amdgpu_bo_unreserve(fpriv->vm.root.bo); 3322 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0); 3323 break; 3324 default: 3325 return -EINVAL; 3326 } 3327 3328 return 0; 3329 } 3330 3331 /** 3332 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3333 * 3334 * @adev: drm device pointer 3335 * @pasid: PASID identifier for VM 3336 * @task_info: task_info to fill. 3337 */ 3338 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid, 3339 struct amdgpu_task_info *task_info) 3340 { 3341 struct amdgpu_vm *vm; 3342 unsigned long flags; 3343 3344 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3345 3346 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3347 if (vm) 3348 *task_info = vm->task_info; 3349 3350 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3351 } 3352 3353 /** 3354 * amdgpu_vm_set_task_info - Sets VMs task info. 3355 * 3356 * @vm: vm for which to set the info 3357 */ 3358 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3359 { 3360 if (vm->task_info.pid) 3361 return; 3362 3363 vm->task_info.pid = current->pid; 3364 get_task_comm(vm->task_info.task_name, current); 3365 3366 if (current->group_leader->mm != current->mm) 3367 return; 3368 3369 vm->task_info.tgid = current->group_leader->pid; 3370 get_task_comm(vm->task_info.process_name, current->group_leader); 3371 } 3372 3373 /** 3374 * amdgpu_vm_handle_fault - graceful handling of VM faults. 3375 * @adev: amdgpu device pointer 3376 * @pasid: PASID of the VM 3377 * @addr: Address of the fault 3378 * 3379 * Try to gracefully handle a VM fault. Return true if the fault was handled and 3380 * shouldn't be reported any more. 3381 */ 3382 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid, 3383 uint64_t addr) 3384 { 3385 bool is_compute_context = false; 3386 struct amdgpu_bo *root; 3387 unsigned long irqflags; 3388 uint64_t value, flags; 3389 struct amdgpu_vm *vm; 3390 int r; 3391 3392 spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags); 3393 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3394 if (vm) { 3395 root = amdgpu_bo_ref(vm->root.bo); 3396 is_compute_context = vm->is_compute_context; 3397 } else { 3398 root = NULL; 3399 } 3400 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags); 3401 3402 if (!root) 3403 return false; 3404 3405 addr /= AMDGPU_GPU_PAGE_SIZE; 3406 3407 if (is_compute_context && 3408 !svm_range_restore_pages(adev, pasid, addr)) { 3409 amdgpu_bo_unref(&root); 3410 return true; 3411 } 3412 3413 r = amdgpu_bo_reserve(root, true); 3414 if (r) 3415 goto error_unref; 3416 3417 /* Double check that the VM still exists */ 3418 spin_lock_irqsave(&adev->vm_manager.pasid_lock, irqflags); 3419 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3420 if (vm && vm->root.bo != root) 3421 vm = NULL; 3422 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, irqflags); 3423 if (!vm) 3424 goto error_unlock; 3425 3426 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED | 3427 AMDGPU_PTE_SYSTEM; 3428 3429 if (is_compute_context) { 3430 /* Intentionally setting invalid PTE flag 3431 * combination to force a no-retry-fault 3432 */ 3433 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE | 3434 AMDGPU_PTE_TF; 3435 value = 0; 3436 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) { 3437 /* Redirect the access to the dummy page */ 3438 value = adev->dummy_page_addr; 3439 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE | 3440 AMDGPU_PTE_WRITEABLE; 3441 3442 } else { 3443 /* Let the hw retry silently on the PTE */ 3444 value = 0; 3445 } 3446 3447 r = dma_resv_reserve_shared(root->tbo.base.resv, 1); 3448 if (r) { 3449 pr_debug("failed %d to reserve fence slot\n", r); 3450 goto error_unlock; 3451 } 3452 3453 r = amdgpu_vm_bo_update_mapping(adev, adev, vm, true, false, NULL, addr, 3454 addr, flags, value, NULL, NULL, NULL, 3455 NULL); 3456 if (r) 3457 goto error_unlock; 3458 3459 r = amdgpu_vm_update_pdes(adev, vm, true); 3460 3461 error_unlock: 3462 amdgpu_bo_unreserve(root); 3463 if (r < 0) 3464 DRM_ERROR("Can't handle page fault (%d)\n", r); 3465 3466 error_unref: 3467 amdgpu_bo_unref(&root); 3468 3469 return false; 3470 } 3471 3472 #if defined(CONFIG_DEBUG_FS) 3473 /** 3474 * amdgpu_debugfs_vm_bo_info - print BO info for the VM 3475 * 3476 * @vm: Requested VM for printing BO info 3477 * @m: debugfs file 3478 * 3479 * Print BO information in debugfs file for the VM 3480 */ 3481 void amdgpu_debugfs_vm_bo_info(struct amdgpu_vm *vm, struct seq_file *m) 3482 { 3483 struct amdgpu_bo_va *bo_va, *tmp; 3484 u64 total_idle = 0; 3485 u64 total_evicted = 0; 3486 u64 total_relocated = 0; 3487 u64 total_moved = 0; 3488 u64 total_invalidated = 0; 3489 u64 total_done = 0; 3490 unsigned int total_idle_objs = 0; 3491 unsigned int total_evicted_objs = 0; 3492 unsigned int total_relocated_objs = 0; 3493 unsigned int total_moved_objs = 0; 3494 unsigned int total_invalidated_objs = 0; 3495 unsigned int total_done_objs = 0; 3496 unsigned int id = 0; 3497 3498 seq_puts(m, "\tIdle BOs:\n"); 3499 list_for_each_entry_safe(bo_va, tmp, &vm->idle, base.vm_status) { 3500 if (!bo_va->base.bo) 3501 continue; 3502 total_idle += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3503 } 3504 total_idle_objs = id; 3505 id = 0; 3506 3507 seq_puts(m, "\tEvicted BOs:\n"); 3508 list_for_each_entry_safe(bo_va, tmp, &vm->evicted, base.vm_status) { 3509 if (!bo_va->base.bo) 3510 continue; 3511 total_evicted += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3512 } 3513 total_evicted_objs = id; 3514 id = 0; 3515 3516 seq_puts(m, "\tRelocated BOs:\n"); 3517 list_for_each_entry_safe(bo_va, tmp, &vm->relocated, base.vm_status) { 3518 if (!bo_va->base.bo) 3519 continue; 3520 total_relocated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3521 } 3522 total_relocated_objs = id; 3523 id = 0; 3524 3525 seq_puts(m, "\tMoved BOs:\n"); 3526 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 3527 if (!bo_va->base.bo) 3528 continue; 3529 total_moved += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3530 } 3531 total_moved_objs = id; 3532 id = 0; 3533 3534 seq_puts(m, "\tInvalidated BOs:\n"); 3535 spin_lock(&vm->invalidated_lock); 3536 list_for_each_entry_safe(bo_va, tmp, &vm->invalidated, base.vm_status) { 3537 if (!bo_va->base.bo) 3538 continue; 3539 total_invalidated += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3540 } 3541 total_invalidated_objs = id; 3542 id = 0; 3543 3544 seq_puts(m, "\tDone BOs:\n"); 3545 list_for_each_entry_safe(bo_va, tmp, &vm->done, base.vm_status) { 3546 if (!bo_va->base.bo) 3547 continue; 3548 total_done += amdgpu_bo_print_info(id++, bo_va->base.bo, m); 3549 } 3550 spin_unlock(&vm->invalidated_lock); 3551 total_done_objs = id; 3552 3553 seq_printf(m, "\tTotal idle size: %12lld\tobjs:\t%d\n", total_idle, 3554 total_idle_objs); 3555 seq_printf(m, "\tTotal evicted size: %12lld\tobjs:\t%d\n", total_evicted, 3556 total_evicted_objs); 3557 seq_printf(m, "\tTotal relocated size: %12lld\tobjs:\t%d\n", total_relocated, 3558 total_relocated_objs); 3559 seq_printf(m, "\tTotal moved size: %12lld\tobjs:\t%d\n", total_moved, 3560 total_moved_objs); 3561 seq_printf(m, "\tTotal invalidated size: %12lld\tobjs:\t%d\n", total_invalidated, 3562 total_invalidated_objs); 3563 seq_printf(m, "\tTotal done size: %12lld\tobjs:\t%d\n", total_done, 3564 total_done_objs); 3565 } 3566 #endif 3567