1 /* 2 * Copyright 2008 Advanced Micro Devices, Inc. 3 * Copyright 2008 Red Hat Inc. 4 * Copyright 2009 Jerome Glisse. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: Dave Airlie 25 * Alex Deucher 26 * Jerome Glisse 27 */ 28 #include <linux/dma-fence-array.h> 29 #include <linux/interval_tree_generic.h> 30 #include <linux/idr.h> 31 #include <drm/drmP.h> 32 #include <drm/amdgpu_drm.h> 33 #include "amdgpu.h" 34 #include "amdgpu_trace.h" 35 #include "amdgpu_amdkfd.h" 36 #include "amdgpu_gmc.h" 37 38 /** 39 * DOC: GPUVM 40 * 41 * GPUVM is similar to the legacy gart on older asics, however 42 * rather than there being a single global gart table 43 * for the entire GPU, there are multiple VM page tables active 44 * at any given time. The VM page tables can contain a mix 45 * vram pages and system memory pages and system memory pages 46 * can be mapped as snooped (cached system pages) or unsnooped 47 * (uncached system pages). 48 * Each VM has an ID associated with it and there is a page table 49 * associated with each VMID. When execting a command buffer, 50 * the kernel tells the the ring what VMID to use for that command 51 * buffer. VMIDs are allocated dynamically as commands are submitted. 52 * The userspace drivers maintain their own address space and the kernel 53 * sets up their pages tables accordingly when they submit their 54 * command buffers and a VMID is assigned. 55 * Cayman/Trinity support up to 8 active VMs at any given time; 56 * SI supports 16. 57 */ 58 59 #define START(node) ((node)->start) 60 #define LAST(node) ((node)->last) 61 62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, 63 START, LAST, static, amdgpu_vm_it) 64 65 #undef START 66 #undef LAST 67 68 /** 69 * struct amdgpu_pte_update_params - Local structure 70 * 71 * Encapsulate some VM table update parameters to reduce 72 * the number of function parameters 73 * 74 */ 75 struct amdgpu_pte_update_params { 76 77 /** 78 * @adev: amdgpu device we do this update for 79 */ 80 struct amdgpu_device *adev; 81 82 /** 83 * @vm: optional amdgpu_vm we do this update for 84 */ 85 struct amdgpu_vm *vm; 86 87 /** 88 * @src: address where to copy page table entries from 89 */ 90 uint64_t src; 91 92 /** 93 * @ib: indirect buffer to fill with commands 94 */ 95 struct amdgpu_ib *ib; 96 97 /** 98 * @func: Function which actually does the update 99 */ 100 void (*func)(struct amdgpu_pte_update_params *params, 101 struct amdgpu_bo *bo, uint64_t pe, 102 uint64_t addr, unsigned count, uint32_t incr, 103 uint64_t flags); 104 /** 105 * @pages_addr: 106 * 107 * DMA addresses to use for mapping, used during VM update by CPU 108 */ 109 dma_addr_t *pages_addr; 110 111 /** 112 * @kptr: 113 * 114 * Kernel pointer of PD/PT BO that needs to be updated, 115 * used during VM update by CPU 116 */ 117 void *kptr; 118 }; 119 120 /** 121 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback 122 */ 123 struct amdgpu_prt_cb { 124 125 /** 126 * @adev: amdgpu device 127 */ 128 struct amdgpu_device *adev; 129 130 /** 131 * @cb: callback 132 */ 133 struct dma_fence_cb cb; 134 }; 135 136 /** 137 * amdgpu_vm_level_shift - return the addr shift for each level 138 * 139 * @adev: amdgpu_device pointer 140 * @level: VMPT level 141 * 142 * Returns: 143 * The number of bits the pfn needs to be right shifted for a level. 144 */ 145 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev, 146 unsigned level) 147 { 148 unsigned shift = 0xff; 149 150 switch (level) { 151 case AMDGPU_VM_PDB2: 152 case AMDGPU_VM_PDB1: 153 case AMDGPU_VM_PDB0: 154 shift = 9 * (AMDGPU_VM_PDB0 - level) + 155 adev->vm_manager.block_size; 156 break; 157 case AMDGPU_VM_PTB: 158 shift = 0; 159 break; 160 default: 161 dev_err(adev->dev, "the level%d isn't supported.\n", level); 162 } 163 164 return shift; 165 } 166 167 /** 168 * amdgpu_vm_num_entries - return the number of entries in a PD/PT 169 * 170 * @adev: amdgpu_device pointer 171 * @level: VMPT level 172 * 173 * Returns: 174 * The number of entries in a page directory or page table. 175 */ 176 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, 177 unsigned level) 178 { 179 unsigned shift = amdgpu_vm_level_shift(adev, 180 adev->vm_manager.root_level); 181 182 if (level == adev->vm_manager.root_level) 183 /* For the root directory */ 184 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift; 185 else if (level != AMDGPU_VM_PTB) 186 /* Everything in between */ 187 return 512; 188 else 189 /* For the page tables on the leaves */ 190 return AMDGPU_VM_PTE_COUNT(adev); 191 } 192 193 /** 194 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT 195 * 196 * @adev: amdgpu_device pointer 197 * @level: VMPT level 198 * 199 * Returns: 200 * The mask to extract the entry number of a PD/PT from an address. 201 */ 202 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev, 203 unsigned int level) 204 { 205 if (level <= adev->vm_manager.root_level) 206 return 0xffffffff; 207 else if (level != AMDGPU_VM_PTB) 208 return 0x1ff; 209 else 210 return AMDGPU_VM_PTE_COUNT(adev) - 1; 211 } 212 213 /** 214 * amdgpu_vm_bo_size - returns the size of the BOs in bytes 215 * 216 * @adev: amdgpu_device pointer 217 * @level: VMPT level 218 * 219 * Returns: 220 * The size of the BO for a page directory or page table in bytes. 221 */ 222 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) 223 { 224 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); 225 } 226 227 /** 228 * amdgpu_vm_bo_evicted - vm_bo is evicted 229 * 230 * @vm_bo: vm_bo which is evicted 231 * 232 * State for PDs/PTs and per VM BOs which are not at the location they should 233 * be. 234 */ 235 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo) 236 { 237 struct amdgpu_vm *vm = vm_bo->vm; 238 struct amdgpu_bo *bo = vm_bo->bo; 239 240 vm_bo->moved = true; 241 if (bo->tbo.type == ttm_bo_type_kernel) 242 list_move(&vm_bo->vm_status, &vm->evicted); 243 else 244 list_move_tail(&vm_bo->vm_status, &vm->evicted); 245 } 246 247 /** 248 * amdgpu_vm_bo_relocated - vm_bo is reloacted 249 * 250 * @vm_bo: vm_bo which is relocated 251 * 252 * State for PDs/PTs which needs to update their parent PD. 253 */ 254 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo) 255 { 256 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated); 257 } 258 259 /** 260 * amdgpu_vm_bo_moved - vm_bo is moved 261 * 262 * @vm_bo: vm_bo which is moved 263 * 264 * State for per VM BOs which are moved, but that change is not yet reflected 265 * in the page tables. 266 */ 267 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo) 268 { 269 list_move(&vm_bo->vm_status, &vm_bo->vm->moved); 270 } 271 272 /** 273 * amdgpu_vm_bo_idle - vm_bo is idle 274 * 275 * @vm_bo: vm_bo which is now idle 276 * 277 * State for PDs/PTs and per VM BOs which have gone through the state machine 278 * and are now idle. 279 */ 280 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo) 281 { 282 list_move(&vm_bo->vm_status, &vm_bo->vm->idle); 283 vm_bo->moved = false; 284 } 285 286 /** 287 * amdgpu_vm_bo_invalidated - vm_bo is invalidated 288 * 289 * @vm_bo: vm_bo which is now invalidated 290 * 291 * State for normal BOs which are invalidated and that change not yet reflected 292 * in the PTs. 293 */ 294 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo) 295 { 296 spin_lock(&vm_bo->vm->invalidated_lock); 297 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated); 298 spin_unlock(&vm_bo->vm->invalidated_lock); 299 } 300 301 /** 302 * amdgpu_vm_bo_done - vm_bo is done 303 * 304 * @vm_bo: vm_bo which is now done 305 * 306 * State for normal BOs which are invalidated and that change has been updated 307 * in the PTs. 308 */ 309 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo) 310 { 311 spin_lock(&vm_bo->vm->invalidated_lock); 312 list_del_init(&vm_bo->vm_status); 313 spin_unlock(&vm_bo->vm->invalidated_lock); 314 } 315 316 /** 317 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm 318 * 319 * @base: base structure for tracking BO usage in a VM 320 * @vm: vm to which bo is to be added 321 * @bo: amdgpu buffer object 322 * 323 * Initialize a bo_va_base structure and add it to the appropriate lists 324 * 325 */ 326 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base, 327 struct amdgpu_vm *vm, 328 struct amdgpu_bo *bo) 329 { 330 base->vm = vm; 331 base->bo = bo; 332 base->next = NULL; 333 INIT_LIST_HEAD(&base->vm_status); 334 335 if (!bo) 336 return; 337 base->next = bo->vm_bo; 338 bo->vm_bo = base; 339 340 if (bo->tbo.resv != vm->root.base.bo->tbo.resv) 341 return; 342 343 vm->bulk_moveable = false; 344 if (bo->tbo.type == ttm_bo_type_kernel) 345 amdgpu_vm_bo_relocated(base); 346 else 347 amdgpu_vm_bo_idle(base); 348 349 if (bo->preferred_domains & 350 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type)) 351 return; 352 353 /* 354 * we checked all the prerequisites, but it looks like this per vm bo 355 * is currently evicted. add the bo to the evicted list to make sure it 356 * is validated on next vm use to avoid fault. 357 * */ 358 amdgpu_vm_bo_evicted(base); 359 } 360 361 /** 362 * amdgpu_vm_pt_parent - get the parent page directory 363 * 364 * @pt: child page table 365 * 366 * Helper to get the parent entry for the child page table. NULL if we are at 367 * the root page directory. 368 */ 369 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt) 370 { 371 struct amdgpu_bo *parent = pt->base.bo->parent; 372 373 if (!parent) 374 return NULL; 375 376 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base); 377 } 378 379 /** 380 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt 381 */ 382 struct amdgpu_vm_pt_cursor { 383 uint64_t pfn; 384 struct amdgpu_vm_pt *parent; 385 struct amdgpu_vm_pt *entry; 386 unsigned level; 387 }; 388 389 /** 390 * amdgpu_vm_pt_start - start PD/PT walk 391 * 392 * @adev: amdgpu_device pointer 393 * @vm: amdgpu_vm structure 394 * @start: start address of the walk 395 * @cursor: state to initialize 396 * 397 * Initialize a amdgpu_vm_pt_cursor to start a walk. 398 */ 399 static void amdgpu_vm_pt_start(struct amdgpu_device *adev, 400 struct amdgpu_vm *vm, uint64_t start, 401 struct amdgpu_vm_pt_cursor *cursor) 402 { 403 cursor->pfn = start; 404 cursor->parent = NULL; 405 cursor->entry = &vm->root; 406 cursor->level = adev->vm_manager.root_level; 407 } 408 409 /** 410 * amdgpu_vm_pt_descendant - go to child node 411 * 412 * @adev: amdgpu_device pointer 413 * @cursor: current state 414 * 415 * Walk to the child node of the current node. 416 * Returns: 417 * True if the walk was possible, false otherwise. 418 */ 419 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev, 420 struct amdgpu_vm_pt_cursor *cursor) 421 { 422 unsigned mask, shift, idx; 423 424 if (!cursor->entry->entries) 425 return false; 426 427 BUG_ON(!cursor->entry->base.bo); 428 mask = amdgpu_vm_entries_mask(adev, cursor->level); 429 shift = amdgpu_vm_level_shift(adev, cursor->level); 430 431 ++cursor->level; 432 idx = (cursor->pfn >> shift) & mask; 433 cursor->parent = cursor->entry; 434 cursor->entry = &cursor->entry->entries[idx]; 435 return true; 436 } 437 438 /** 439 * amdgpu_vm_pt_sibling - go to sibling node 440 * 441 * @adev: amdgpu_device pointer 442 * @cursor: current state 443 * 444 * Walk to the sibling node of the current node. 445 * Returns: 446 * True if the walk was possible, false otherwise. 447 */ 448 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev, 449 struct amdgpu_vm_pt_cursor *cursor) 450 { 451 unsigned shift, num_entries; 452 453 /* Root doesn't have a sibling */ 454 if (!cursor->parent) 455 return false; 456 457 /* Go to our parents and see if we got a sibling */ 458 shift = amdgpu_vm_level_shift(adev, cursor->level - 1); 459 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1); 460 461 if (cursor->entry == &cursor->parent->entries[num_entries - 1]) 462 return false; 463 464 cursor->pfn += 1ULL << shift; 465 cursor->pfn &= ~((1ULL << shift) - 1); 466 ++cursor->entry; 467 return true; 468 } 469 470 /** 471 * amdgpu_vm_pt_ancestor - go to parent node 472 * 473 * @cursor: current state 474 * 475 * Walk to the parent node of the current node. 476 * Returns: 477 * True if the walk was possible, false otherwise. 478 */ 479 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor) 480 { 481 if (!cursor->parent) 482 return false; 483 484 --cursor->level; 485 cursor->entry = cursor->parent; 486 cursor->parent = amdgpu_vm_pt_parent(cursor->parent); 487 return true; 488 } 489 490 /** 491 * amdgpu_vm_pt_next - get next PD/PT in hieratchy 492 * 493 * @adev: amdgpu_device pointer 494 * @cursor: current state 495 * 496 * Walk the PD/PT tree to the next node. 497 */ 498 static void amdgpu_vm_pt_next(struct amdgpu_device *adev, 499 struct amdgpu_vm_pt_cursor *cursor) 500 { 501 /* First try a newborn child */ 502 if (amdgpu_vm_pt_descendant(adev, cursor)) 503 return; 504 505 /* If that didn't worked try to find a sibling */ 506 while (!amdgpu_vm_pt_sibling(adev, cursor)) { 507 /* No sibling, go to our parents and grandparents */ 508 if (!amdgpu_vm_pt_ancestor(cursor)) { 509 cursor->pfn = ~0ll; 510 return; 511 } 512 } 513 } 514 515 /** 516 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT 517 * 518 * @adev: amdgpu_device pointer 519 * @vm: amdgpu_vm structure 520 * @start: start addr of the walk 521 * @cursor: state to initialize 522 * 523 * Start a walk and go directly to the leaf node. 524 */ 525 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev, 526 struct amdgpu_vm *vm, uint64_t start, 527 struct amdgpu_vm_pt_cursor *cursor) 528 { 529 amdgpu_vm_pt_start(adev, vm, start, cursor); 530 while (amdgpu_vm_pt_descendant(adev, cursor)); 531 } 532 533 /** 534 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT 535 * 536 * @adev: amdgpu_device pointer 537 * @cursor: current state 538 * 539 * Walk the PD/PT tree to the next leaf node. 540 */ 541 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev, 542 struct amdgpu_vm_pt_cursor *cursor) 543 { 544 amdgpu_vm_pt_next(adev, cursor); 545 if (cursor->pfn != ~0ll) 546 while (amdgpu_vm_pt_descendant(adev, cursor)); 547 } 548 549 /** 550 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy 551 */ 552 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \ 553 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \ 554 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor))) 555 556 /** 557 * amdgpu_vm_pt_first_dfs - start a deep first search 558 * 559 * @adev: amdgpu_device structure 560 * @vm: amdgpu_vm structure 561 * @cursor: state to initialize 562 * 563 * Starts a deep first traversal of the PD/PT tree. 564 */ 565 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev, 566 struct amdgpu_vm *vm, 567 struct amdgpu_vm_pt_cursor *cursor) 568 { 569 amdgpu_vm_pt_start(adev, vm, 0, cursor); 570 while (amdgpu_vm_pt_descendant(adev, cursor)); 571 } 572 573 /** 574 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search 575 * 576 * @adev: amdgpu_device structure 577 * @cursor: current state 578 * 579 * Move the cursor to the next node in a deep first search. 580 */ 581 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev, 582 struct amdgpu_vm_pt_cursor *cursor) 583 { 584 if (!cursor->entry) 585 return; 586 587 if (!cursor->parent) 588 cursor->entry = NULL; 589 else if (amdgpu_vm_pt_sibling(adev, cursor)) 590 while (amdgpu_vm_pt_descendant(adev, cursor)); 591 else 592 amdgpu_vm_pt_ancestor(cursor); 593 } 594 595 /** 596 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs 597 */ 598 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \ 599 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \ 600 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\ 601 (entry); (entry) = (cursor).entry, \ 602 amdgpu_vm_pt_next_dfs((adev), &(cursor))) 603 604 /** 605 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list 606 * 607 * @vm: vm providing the BOs 608 * @validated: head of validation list 609 * @entry: entry to add 610 * 611 * Add the page directory to the list of BOs to 612 * validate for command submission. 613 */ 614 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, 615 struct list_head *validated, 616 struct amdgpu_bo_list_entry *entry) 617 { 618 entry->priority = 0; 619 entry->tv.bo = &vm->root.base.bo->tbo; 620 entry->tv.shared = true; 621 entry->user_pages = NULL; 622 list_add(&entry->tv.head, validated); 623 } 624 625 /** 626 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU 627 * 628 * @adev: amdgpu device pointer 629 * @vm: vm providing the BOs 630 * 631 * Move all BOs to the end of LRU and remember their positions to put them 632 * together. 633 */ 634 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev, 635 struct amdgpu_vm *vm) 636 { 637 struct ttm_bo_global *glob = adev->mman.bdev.glob; 638 struct amdgpu_vm_bo_base *bo_base; 639 640 if (vm->bulk_moveable) { 641 spin_lock(&glob->lru_lock); 642 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move); 643 spin_unlock(&glob->lru_lock); 644 return; 645 } 646 647 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move)); 648 649 spin_lock(&glob->lru_lock); 650 list_for_each_entry(bo_base, &vm->idle, vm_status) { 651 struct amdgpu_bo *bo = bo_base->bo; 652 653 if (!bo->parent) 654 continue; 655 656 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move); 657 if (bo->shadow) 658 ttm_bo_move_to_lru_tail(&bo->shadow->tbo, 659 &vm->lru_bulk_move); 660 } 661 spin_unlock(&glob->lru_lock); 662 663 vm->bulk_moveable = true; 664 } 665 666 /** 667 * amdgpu_vm_validate_pt_bos - validate the page table BOs 668 * 669 * @adev: amdgpu device pointer 670 * @vm: vm providing the BOs 671 * @validate: callback to do the validation 672 * @param: parameter for the validation callback 673 * 674 * Validate the page table BOs on command submission if neccessary. 675 * 676 * Returns: 677 * Validation result. 678 */ 679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, 680 int (*validate)(void *p, struct amdgpu_bo *bo), 681 void *param) 682 { 683 struct amdgpu_vm_bo_base *bo_base, *tmp; 684 int r = 0; 685 686 vm->bulk_moveable &= list_empty(&vm->evicted); 687 688 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) { 689 struct amdgpu_bo *bo = bo_base->bo; 690 691 r = validate(param, bo); 692 if (r) 693 break; 694 695 if (bo->tbo.type != ttm_bo_type_kernel) { 696 amdgpu_vm_bo_moved(bo_base); 697 } else { 698 if (vm->use_cpu_for_update) 699 r = amdgpu_bo_kmap(bo, NULL); 700 else 701 r = amdgpu_ttm_alloc_gart(&bo->tbo); 702 if (r) 703 break; 704 if (bo->shadow) { 705 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo); 706 if (r) 707 break; 708 } 709 amdgpu_vm_bo_relocated(bo_base); 710 } 711 } 712 713 return r; 714 } 715 716 /** 717 * amdgpu_vm_ready - check VM is ready for updates 718 * 719 * @vm: VM to check 720 * 721 * Check if all VM PDs/PTs are ready for updates 722 * 723 * Returns: 724 * True if eviction list is empty. 725 */ 726 bool amdgpu_vm_ready(struct amdgpu_vm *vm) 727 { 728 return list_empty(&vm->evicted); 729 } 730 731 /** 732 * amdgpu_vm_clear_bo - initially clear the PDs/PTs 733 * 734 * @adev: amdgpu_device pointer 735 * @vm: VM to clear BO from 736 * @bo: BO to clear 737 * @level: level this BO is at 738 * @pte_support_ats: indicate ATS support from PTE 739 * 740 * Root PD needs to be reserved when calling this. 741 * 742 * Returns: 743 * 0 on success, errno otherwise. 744 */ 745 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, 746 struct amdgpu_vm *vm, struct amdgpu_bo *bo, 747 unsigned level, bool pte_support_ats) 748 { 749 struct ttm_operation_ctx ctx = { true, false }; 750 struct dma_fence *fence = NULL; 751 unsigned entries, ats_entries; 752 struct amdgpu_ring *ring; 753 struct amdgpu_job *job; 754 uint64_t addr; 755 int r; 756 757 entries = amdgpu_bo_size(bo) / 8; 758 759 if (pte_support_ats) { 760 if (level == adev->vm_manager.root_level) { 761 ats_entries = amdgpu_vm_level_shift(adev, level); 762 ats_entries += AMDGPU_GPU_PAGE_SHIFT; 763 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries; 764 ats_entries = min(ats_entries, entries); 765 entries -= ats_entries; 766 } else { 767 ats_entries = entries; 768 entries = 0; 769 } 770 } else { 771 ats_entries = 0; 772 } 773 774 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 775 776 r = reservation_object_reserve_shared(bo->tbo.resv); 777 if (r) 778 return r; 779 780 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 781 if (r) 782 goto error; 783 784 r = amdgpu_ttm_alloc_gart(&bo->tbo); 785 if (r) 786 return r; 787 788 r = amdgpu_job_alloc_with_ib(adev, 64, &job); 789 if (r) 790 goto error; 791 792 addr = amdgpu_bo_gpu_offset(bo); 793 if (ats_entries) { 794 uint64_t ats_value; 795 796 ats_value = AMDGPU_PTE_DEFAULT_ATC; 797 if (level != AMDGPU_VM_PTB) 798 ats_value |= AMDGPU_PDE_PTE; 799 800 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 801 ats_entries, 0, ats_value); 802 addr += ats_entries * 8; 803 } 804 805 if (entries) 806 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0, 807 entries, 0, 0); 808 809 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 810 811 WARN_ON(job->ibs[0].length_dw > 64); 812 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv, 813 AMDGPU_FENCE_OWNER_UNDEFINED, false); 814 if (r) 815 goto error_free; 816 817 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED, 818 &fence); 819 if (r) 820 goto error_free; 821 822 amdgpu_bo_fence(bo, fence, true); 823 dma_fence_put(fence); 824 825 if (bo->shadow) 826 return amdgpu_vm_clear_bo(adev, vm, bo->shadow, 827 level, pte_support_ats); 828 829 return 0; 830 831 error_free: 832 amdgpu_job_free(job); 833 834 error: 835 return r; 836 } 837 838 /** 839 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation 840 * 841 * @adev: amdgpu_device pointer 842 * @vm: requesting vm 843 * @bp: resulting BO allocation parameters 844 */ 845 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm, 846 int level, struct amdgpu_bo_param *bp) 847 { 848 memset(bp, 0, sizeof(*bp)); 849 850 bp->size = amdgpu_vm_bo_size(adev, level); 851 bp->byte_align = AMDGPU_GPU_PAGE_SIZE; 852 bp->domain = AMDGPU_GEM_DOMAIN_VRAM; 853 if (bp->size <= PAGE_SIZE && adev->asic_type >= CHIP_VEGA10 && 854 adev->flags & AMD_IS_APU) 855 bp->domain |= AMDGPU_GEM_DOMAIN_GTT; 856 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain); 857 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | 858 AMDGPU_GEM_CREATE_CPU_GTT_USWC; 859 if (vm->use_cpu_for_update) 860 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 861 else if (!vm->root.base.bo || vm->root.base.bo->shadow) 862 bp->flags |= AMDGPU_GEM_CREATE_SHADOW; 863 bp->type = ttm_bo_type_kernel; 864 if (vm->root.base.bo) 865 bp->resv = vm->root.base.bo->tbo.resv; 866 } 867 868 /** 869 * amdgpu_vm_alloc_pts - Allocate page tables. 870 * 871 * @adev: amdgpu_device pointer 872 * @vm: VM to allocate page tables for 873 * @saddr: Start address which needs to be allocated 874 * @size: Size from start address we need. 875 * 876 * Make sure the page directories and page tables are allocated 877 * 878 * Returns: 879 * 0 on success, errno otherwise. 880 */ 881 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, 882 struct amdgpu_vm *vm, 883 uint64_t saddr, uint64_t size) 884 { 885 struct amdgpu_vm_pt_cursor cursor; 886 struct amdgpu_bo *pt; 887 bool ats = false; 888 uint64_t eaddr; 889 int r; 890 891 /* validate the parameters */ 892 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) 893 return -EINVAL; 894 895 eaddr = saddr + size - 1; 896 897 if (vm->pte_support_ats) 898 ats = saddr < AMDGPU_GMC_HOLE_START; 899 900 saddr /= AMDGPU_GPU_PAGE_SIZE; 901 eaddr /= AMDGPU_GPU_PAGE_SIZE; 902 903 if (eaddr >= adev->vm_manager.max_pfn) { 904 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", 905 eaddr, adev->vm_manager.max_pfn); 906 return -EINVAL; 907 } 908 909 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) { 910 struct amdgpu_vm_pt *entry = cursor.entry; 911 struct amdgpu_bo_param bp; 912 913 if (cursor.level < AMDGPU_VM_PTB) { 914 unsigned num_entries; 915 916 num_entries = amdgpu_vm_num_entries(adev, cursor.level); 917 entry->entries = kvmalloc_array(num_entries, 918 sizeof(*entry->entries), 919 GFP_KERNEL | 920 __GFP_ZERO); 921 if (!entry->entries) 922 return -ENOMEM; 923 } 924 925 926 if (entry->base.bo) 927 continue; 928 929 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp); 930 931 r = amdgpu_bo_create(adev, &bp, &pt); 932 if (r) 933 return r; 934 935 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats); 936 if (r) 937 goto error_free_pt; 938 939 if (vm->use_cpu_for_update) { 940 r = amdgpu_bo_kmap(pt, NULL); 941 if (r) 942 goto error_free_pt; 943 } 944 945 /* Keep a reference to the root directory to avoid 946 * freeing them up in the wrong order. 947 */ 948 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo); 949 950 amdgpu_vm_bo_base_init(&entry->base, vm, pt); 951 } 952 953 return 0; 954 955 error_free_pt: 956 amdgpu_bo_unref(&pt->shadow); 957 amdgpu_bo_unref(&pt); 958 return r; 959 } 960 961 /** 962 * amdgpu_vm_free_pts - free PD/PT levels 963 * 964 * @adev: amdgpu device structure 965 * @vm: amdgpu vm structure 966 * 967 * Free the page directory or page table level and all sub levels. 968 */ 969 static void amdgpu_vm_free_pts(struct amdgpu_device *adev, 970 struct amdgpu_vm *vm) 971 { 972 struct amdgpu_vm_pt_cursor cursor; 973 struct amdgpu_vm_pt *entry; 974 975 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) { 976 977 if (entry->base.bo) { 978 entry->base.bo->vm_bo = NULL; 979 list_del(&entry->base.vm_status); 980 amdgpu_bo_unref(&entry->base.bo->shadow); 981 amdgpu_bo_unref(&entry->base.bo); 982 } 983 kvfree(entry->entries); 984 } 985 986 BUG_ON(vm->root.base.bo); 987 } 988 989 /** 990 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug 991 * 992 * @adev: amdgpu_device pointer 993 */ 994 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) 995 { 996 const struct amdgpu_ip_block *ip_block; 997 bool has_compute_vm_bug; 998 struct amdgpu_ring *ring; 999 int i; 1000 1001 has_compute_vm_bug = false; 1002 1003 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); 1004 if (ip_block) { 1005 /* Compute has a VM bug for GFX version < 7. 1006 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ 1007 if (ip_block->version->major <= 7) 1008 has_compute_vm_bug = true; 1009 else if (ip_block->version->major == 8) 1010 if (adev->gfx.mec_fw_version < 673) 1011 has_compute_vm_bug = true; 1012 } 1013 1014 for (i = 0; i < adev->num_rings; i++) { 1015 ring = adev->rings[i]; 1016 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) 1017 /* only compute rings */ 1018 ring->has_compute_vm_bug = has_compute_vm_bug; 1019 else 1020 ring->has_compute_vm_bug = false; 1021 } 1022 } 1023 1024 /** 1025 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job. 1026 * 1027 * @ring: ring on which the job will be submitted 1028 * @job: job to submit 1029 * 1030 * Returns: 1031 * True if sync is needed. 1032 */ 1033 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, 1034 struct amdgpu_job *job) 1035 { 1036 struct amdgpu_device *adev = ring->adev; 1037 unsigned vmhub = ring->funcs->vmhub; 1038 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1039 struct amdgpu_vmid *id; 1040 bool gds_switch_needed; 1041 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; 1042 1043 if (job->vmid == 0) 1044 return false; 1045 id = &id_mgr->ids[job->vmid]; 1046 gds_switch_needed = ring->funcs->emit_gds_switch && ( 1047 id->gds_base != job->gds_base || 1048 id->gds_size != job->gds_size || 1049 id->gws_base != job->gws_base || 1050 id->gws_size != job->gws_size || 1051 id->oa_base != job->oa_base || 1052 id->oa_size != job->oa_size); 1053 1054 if (amdgpu_vmid_had_gpu_reset(adev, id)) 1055 return true; 1056 1057 return vm_flush_needed || gds_switch_needed; 1058 } 1059 1060 /** 1061 * amdgpu_vm_flush - hardware flush the vm 1062 * 1063 * @ring: ring to use for flush 1064 * @job: related job 1065 * @need_pipe_sync: is pipe sync needed 1066 * 1067 * Emit a VM flush when it is necessary. 1068 * 1069 * Returns: 1070 * 0 on success, errno otherwise. 1071 */ 1072 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) 1073 { 1074 struct amdgpu_device *adev = ring->adev; 1075 unsigned vmhub = ring->funcs->vmhub; 1076 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub]; 1077 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid]; 1078 bool gds_switch_needed = ring->funcs->emit_gds_switch && ( 1079 id->gds_base != job->gds_base || 1080 id->gds_size != job->gds_size || 1081 id->gws_base != job->gws_base || 1082 id->gws_size != job->gws_size || 1083 id->oa_base != job->oa_base || 1084 id->oa_size != job->oa_size); 1085 bool vm_flush_needed = job->vm_needs_flush; 1086 bool pasid_mapping_needed = id->pasid != job->pasid || 1087 !id->pasid_mapping || 1088 !dma_fence_is_signaled(id->pasid_mapping); 1089 struct dma_fence *fence = NULL; 1090 unsigned patch_offset = 0; 1091 int r; 1092 1093 if (amdgpu_vmid_had_gpu_reset(adev, id)) { 1094 gds_switch_needed = true; 1095 vm_flush_needed = true; 1096 pasid_mapping_needed = true; 1097 } 1098 1099 gds_switch_needed &= !!ring->funcs->emit_gds_switch; 1100 vm_flush_needed &= !!ring->funcs->emit_vm_flush && 1101 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET; 1102 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping && 1103 ring->funcs->emit_wreg; 1104 1105 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) 1106 return 0; 1107 1108 if (ring->funcs->init_cond_exec) 1109 patch_offset = amdgpu_ring_init_cond_exec(ring); 1110 1111 if (need_pipe_sync) 1112 amdgpu_ring_emit_pipeline_sync(ring); 1113 1114 if (vm_flush_needed) { 1115 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr); 1116 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr); 1117 } 1118 1119 if (pasid_mapping_needed) 1120 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid); 1121 1122 if (vm_flush_needed || pasid_mapping_needed) { 1123 r = amdgpu_fence_emit(ring, &fence, 0); 1124 if (r) 1125 return r; 1126 } 1127 1128 if (vm_flush_needed) { 1129 mutex_lock(&id_mgr->lock); 1130 dma_fence_put(id->last_flush); 1131 id->last_flush = dma_fence_get(fence); 1132 id->current_gpu_reset_count = 1133 atomic_read(&adev->gpu_reset_counter); 1134 mutex_unlock(&id_mgr->lock); 1135 } 1136 1137 if (pasid_mapping_needed) { 1138 id->pasid = job->pasid; 1139 dma_fence_put(id->pasid_mapping); 1140 id->pasid_mapping = dma_fence_get(fence); 1141 } 1142 dma_fence_put(fence); 1143 1144 if (ring->funcs->emit_gds_switch && gds_switch_needed) { 1145 id->gds_base = job->gds_base; 1146 id->gds_size = job->gds_size; 1147 id->gws_base = job->gws_base; 1148 id->gws_size = job->gws_size; 1149 id->oa_base = job->oa_base; 1150 id->oa_size = job->oa_size; 1151 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base, 1152 job->gds_size, job->gws_base, 1153 job->gws_size, job->oa_base, 1154 job->oa_size); 1155 } 1156 1157 if (ring->funcs->patch_cond_exec) 1158 amdgpu_ring_patch_cond_exec(ring, patch_offset); 1159 1160 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ 1161 if (ring->funcs->emit_switch_buffer) { 1162 amdgpu_ring_emit_switch_buffer(ring); 1163 amdgpu_ring_emit_switch_buffer(ring); 1164 } 1165 return 0; 1166 } 1167 1168 /** 1169 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo 1170 * 1171 * @vm: requested vm 1172 * @bo: requested buffer object 1173 * 1174 * Find @bo inside the requested vm. 1175 * Search inside the @bos vm list for the requested vm 1176 * Returns the found bo_va or NULL if none is found 1177 * 1178 * Object has to be reserved! 1179 * 1180 * Returns: 1181 * Found bo_va or NULL. 1182 */ 1183 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, 1184 struct amdgpu_bo *bo) 1185 { 1186 struct amdgpu_vm_bo_base *base; 1187 1188 for (base = bo->vm_bo; base; base = base->next) { 1189 if (base->vm != vm) 1190 continue; 1191 1192 return container_of(base, struct amdgpu_bo_va, base); 1193 } 1194 return NULL; 1195 } 1196 1197 /** 1198 * amdgpu_vm_do_set_ptes - helper to call the right asic function 1199 * 1200 * @params: see amdgpu_pte_update_params definition 1201 * @bo: PD/PT to update 1202 * @pe: addr of the page entry 1203 * @addr: dst addr to write into pe 1204 * @count: number of page entries to update 1205 * @incr: increase next addr by incr bytes 1206 * @flags: hw access flags 1207 * 1208 * Traces the parameters and calls the right asic functions 1209 * to setup the page table using the DMA. 1210 */ 1211 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, 1212 struct amdgpu_bo *bo, 1213 uint64_t pe, uint64_t addr, 1214 unsigned count, uint32_t incr, 1215 uint64_t flags) 1216 { 1217 pe += amdgpu_bo_gpu_offset(bo); 1218 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1219 1220 if (count < 3) { 1221 amdgpu_vm_write_pte(params->adev, params->ib, pe, 1222 addr | flags, count, incr); 1223 1224 } else { 1225 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, 1226 count, incr, flags); 1227 } 1228 } 1229 1230 /** 1231 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART 1232 * 1233 * @params: see amdgpu_pte_update_params definition 1234 * @bo: PD/PT to update 1235 * @pe: addr of the page entry 1236 * @addr: dst addr to write into pe 1237 * @count: number of page entries to update 1238 * @incr: increase next addr by incr bytes 1239 * @flags: hw access flags 1240 * 1241 * Traces the parameters and calls the DMA function to copy the PTEs. 1242 */ 1243 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, 1244 struct amdgpu_bo *bo, 1245 uint64_t pe, uint64_t addr, 1246 unsigned count, uint32_t incr, 1247 uint64_t flags) 1248 { 1249 uint64_t src = (params->src + (addr >> 12) * 8); 1250 1251 pe += amdgpu_bo_gpu_offset(bo); 1252 trace_amdgpu_vm_copy_ptes(pe, src, count); 1253 1254 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); 1255 } 1256 1257 /** 1258 * amdgpu_vm_map_gart - Resolve gart mapping of addr 1259 * 1260 * @pages_addr: optional DMA address to use for lookup 1261 * @addr: the unmapped addr 1262 * 1263 * Look up the physical address of the page that the pte resolves 1264 * to. 1265 * 1266 * Returns: 1267 * The pointer for the page table entry. 1268 */ 1269 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) 1270 { 1271 uint64_t result; 1272 1273 /* page table offset */ 1274 result = pages_addr[addr >> PAGE_SHIFT]; 1275 1276 /* in case cpu page size != gpu page size*/ 1277 result |= addr & (~PAGE_MASK); 1278 1279 result &= 0xFFFFFFFFFFFFF000ULL; 1280 1281 return result; 1282 } 1283 1284 /** 1285 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU 1286 * 1287 * @params: see amdgpu_pte_update_params definition 1288 * @bo: PD/PT to update 1289 * @pe: kmap addr of the page entry 1290 * @addr: dst addr to write into pe 1291 * @count: number of page entries to update 1292 * @incr: increase next addr by incr bytes 1293 * @flags: hw access flags 1294 * 1295 * Write count number of PT/PD entries directly. 1296 */ 1297 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, 1298 struct amdgpu_bo *bo, 1299 uint64_t pe, uint64_t addr, 1300 unsigned count, uint32_t incr, 1301 uint64_t flags) 1302 { 1303 unsigned int i; 1304 uint64_t value; 1305 1306 pe += (unsigned long)amdgpu_bo_kptr(bo); 1307 1308 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); 1309 1310 for (i = 0; i < count; i++) { 1311 value = params->pages_addr ? 1312 amdgpu_vm_map_gart(params->pages_addr, addr) : 1313 addr; 1314 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe, 1315 i, value, flags); 1316 addr += incr; 1317 } 1318 } 1319 1320 1321 /** 1322 * amdgpu_vm_wait_pd - Wait for PT BOs to be free. 1323 * 1324 * @adev: amdgpu_device pointer 1325 * @vm: related vm 1326 * @owner: fence owner 1327 * 1328 * Returns: 1329 * 0 on success, errno otherwise. 1330 */ 1331 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, 1332 void *owner) 1333 { 1334 struct amdgpu_sync sync; 1335 int r; 1336 1337 amdgpu_sync_create(&sync); 1338 amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false); 1339 r = amdgpu_sync_wait(&sync, true); 1340 amdgpu_sync_free(&sync); 1341 1342 return r; 1343 } 1344 1345 /** 1346 * amdgpu_vm_update_func - helper to call update function 1347 * 1348 * Calls the update function for both the given BO as well as its shadow. 1349 */ 1350 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params, 1351 struct amdgpu_bo *bo, 1352 uint64_t pe, uint64_t addr, 1353 unsigned count, uint32_t incr, 1354 uint64_t flags) 1355 { 1356 if (bo->shadow) 1357 params->func(params, bo->shadow, pe, addr, count, incr, flags); 1358 params->func(params, bo, pe, addr, count, incr, flags); 1359 } 1360 1361 /* 1362 * amdgpu_vm_update_pde - update a single level in the hierarchy 1363 * 1364 * @param: parameters for the update 1365 * @vm: requested vm 1366 * @parent: parent directory 1367 * @entry: entry to update 1368 * 1369 * Makes sure the requested entry in parent is up to date. 1370 */ 1371 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params, 1372 struct amdgpu_vm *vm, 1373 struct amdgpu_vm_pt *parent, 1374 struct amdgpu_vm_pt *entry) 1375 { 1376 struct amdgpu_bo *bo = parent->base.bo, *pbo; 1377 uint64_t pde, pt, flags; 1378 unsigned level; 1379 1380 /* Don't update huge pages here */ 1381 if (entry->huge) 1382 return; 1383 1384 for (level = 0, pbo = bo->parent; pbo; ++level) 1385 pbo = pbo->parent; 1386 1387 level += params->adev->vm_manager.root_level; 1388 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags); 1389 pde = (entry - parent->entries) * 8; 1390 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags); 1391 } 1392 1393 /* 1394 * amdgpu_vm_invalidate_pds - mark all PDs as invalid 1395 * 1396 * @adev: amdgpu_device pointer 1397 * @vm: related vm 1398 * 1399 * Mark all PD level as invalid after an error. 1400 */ 1401 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev, 1402 struct amdgpu_vm *vm) 1403 { 1404 struct amdgpu_vm_pt_cursor cursor; 1405 struct amdgpu_vm_pt *entry; 1406 1407 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) 1408 if (entry->base.bo && !entry->base.moved) 1409 amdgpu_vm_bo_relocated(&entry->base); 1410 } 1411 1412 /* 1413 * amdgpu_vm_update_directories - make sure that all directories are valid 1414 * 1415 * @adev: amdgpu_device pointer 1416 * @vm: requested vm 1417 * 1418 * Makes sure all directories are up to date. 1419 * 1420 * Returns: 1421 * 0 for success, error for failure. 1422 */ 1423 int amdgpu_vm_update_directories(struct amdgpu_device *adev, 1424 struct amdgpu_vm *vm) 1425 { 1426 struct amdgpu_pte_update_params params; 1427 struct amdgpu_job *job; 1428 unsigned ndw = 0; 1429 int r = 0; 1430 1431 if (list_empty(&vm->relocated)) 1432 return 0; 1433 1434 restart: 1435 memset(¶ms, 0, sizeof(params)); 1436 params.adev = adev; 1437 1438 if (vm->use_cpu_for_update) { 1439 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); 1440 if (unlikely(r)) 1441 return r; 1442 1443 params.func = amdgpu_vm_cpu_set_ptes; 1444 } else { 1445 ndw = 512 * 8; 1446 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1447 if (r) 1448 return r; 1449 1450 params.ib = &job->ibs[0]; 1451 params.func = amdgpu_vm_do_set_ptes; 1452 } 1453 1454 while (!list_empty(&vm->relocated)) { 1455 struct amdgpu_vm_pt *pt, *entry; 1456 1457 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt, 1458 base.vm_status); 1459 amdgpu_vm_bo_idle(&entry->base); 1460 1461 pt = amdgpu_vm_pt_parent(entry); 1462 if (!pt) 1463 continue; 1464 1465 amdgpu_vm_update_pde(¶ms, vm, pt, entry); 1466 1467 if (!vm->use_cpu_for_update && 1468 (ndw - params.ib->length_dw) < 32) 1469 break; 1470 } 1471 1472 if (vm->use_cpu_for_update) { 1473 /* Flush HDP */ 1474 mb(); 1475 amdgpu_asic_flush_hdp(adev, NULL); 1476 } else if (params.ib->length_dw == 0) { 1477 amdgpu_job_free(job); 1478 } else { 1479 struct amdgpu_bo *root = vm->root.base.bo; 1480 struct amdgpu_ring *ring; 1481 struct dma_fence *fence; 1482 1483 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, 1484 sched); 1485 1486 amdgpu_ring_pad_ib(ring, params.ib); 1487 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv, 1488 AMDGPU_FENCE_OWNER_VM, false); 1489 WARN_ON(params.ib->length_dw > ndw); 1490 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, 1491 &fence); 1492 if (r) 1493 goto error; 1494 1495 amdgpu_bo_fence(root, fence, true); 1496 dma_fence_put(vm->last_update); 1497 vm->last_update = fence; 1498 } 1499 1500 if (!list_empty(&vm->relocated)) 1501 goto restart; 1502 1503 return 0; 1504 1505 error: 1506 amdgpu_vm_invalidate_pds(adev, vm); 1507 amdgpu_job_free(job); 1508 return r; 1509 } 1510 1511 /** 1512 * amdgpu_vm_update_huge - figure out parameters for PTE updates 1513 * 1514 * Make sure to set the right flags for the PTEs at the desired level. 1515 */ 1516 static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params, 1517 struct amdgpu_bo *bo, unsigned level, 1518 uint64_t pe, uint64_t addr, 1519 unsigned count, uint32_t incr, 1520 uint64_t flags) 1521 1522 { 1523 if (level != AMDGPU_VM_PTB) { 1524 flags |= AMDGPU_PDE_PTE; 1525 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags); 1526 } 1527 1528 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags); 1529 } 1530 1531 /** 1532 * amdgpu_vm_fragment - get fragment for PTEs 1533 * 1534 * @params: see amdgpu_pte_update_params definition 1535 * @start: first PTE to handle 1536 * @end: last PTE to handle 1537 * @flags: hw mapping flags 1538 * @frag: resulting fragment size 1539 * @frag_end: end of this fragment 1540 * 1541 * Returns the first possible fragment for the start and end address. 1542 */ 1543 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params, 1544 uint64_t start, uint64_t end, uint64_t flags, 1545 unsigned int *frag, uint64_t *frag_end) 1546 { 1547 /** 1548 * The MC L1 TLB supports variable sized pages, based on a fragment 1549 * field in the PTE. When this field is set to a non-zero value, page 1550 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE 1551 * flags are considered valid for all PTEs within the fragment range 1552 * and corresponding mappings are assumed to be physically contiguous. 1553 * 1554 * The L1 TLB can store a single PTE for the whole fragment, 1555 * significantly increasing the space available for translation 1556 * caching. This leads to large improvements in throughput when the 1557 * TLB is under pressure. 1558 * 1559 * The L2 TLB distributes small and large fragments into two 1560 * asymmetric partitions. The large fragment cache is significantly 1561 * larger. Thus, we try to use large fragments wherever possible. 1562 * Userspace can support this by aligning virtual base address and 1563 * allocation size to the fragment size. 1564 * 1565 * Starting with Vega10 the fragment size only controls the L1. The L2 1566 * is now directly feed with small/huge/giant pages from the walker. 1567 */ 1568 unsigned max_frag; 1569 1570 if (params->adev->asic_type < CHIP_VEGA10) 1571 max_frag = params->adev->vm_manager.fragment_size; 1572 else 1573 max_frag = 31; 1574 1575 /* system pages are non continuously */ 1576 if (params->src) { 1577 *frag = 0; 1578 *frag_end = end; 1579 return; 1580 } 1581 1582 /* This intentionally wraps around if no bit is set */ 1583 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); 1584 if (*frag >= max_frag) { 1585 *frag = max_frag; 1586 *frag_end = end & ~((1ULL << max_frag) - 1); 1587 } else { 1588 *frag_end = start + (1 << *frag); 1589 } 1590 } 1591 1592 /** 1593 * amdgpu_vm_update_ptes - make sure that page tables are valid 1594 * 1595 * @params: see amdgpu_pte_update_params definition 1596 * @start: start of GPU address range 1597 * @end: end of GPU address range 1598 * @dst: destination address to map to, the next dst inside the function 1599 * @flags: mapping flags 1600 * 1601 * Update the page tables in the range @start - @end. 1602 * 1603 * Returns: 1604 * 0 for success, -EINVAL for failure. 1605 */ 1606 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, 1607 uint64_t start, uint64_t end, 1608 uint64_t dst, uint64_t flags) 1609 { 1610 struct amdgpu_device *adev = params->adev; 1611 struct amdgpu_vm_pt_cursor cursor; 1612 uint64_t frag_start = start, frag_end; 1613 unsigned int frag; 1614 1615 /* figure out the initial fragment */ 1616 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end); 1617 1618 /* walk over the address space and update the PTs */ 1619 amdgpu_vm_pt_start(adev, params->vm, start, &cursor); 1620 while (cursor.pfn < end) { 1621 struct amdgpu_bo *pt = cursor.entry->base.bo; 1622 unsigned shift, parent_shift, mask; 1623 uint64_t incr, entry_end, pe_start; 1624 1625 if (!pt) 1626 return -ENOENT; 1627 1628 /* The root level can't be a huge page */ 1629 if (cursor.level == adev->vm_manager.root_level) { 1630 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1631 return -ENOENT; 1632 continue; 1633 } 1634 1635 /* If it isn't already handled it can't be a huge page */ 1636 if (cursor.entry->huge) { 1637 /* Add the entry to the relocated list to update it. */ 1638 cursor.entry->huge = false; 1639 amdgpu_vm_bo_relocated(&cursor.entry->base); 1640 } 1641 1642 shift = amdgpu_vm_level_shift(adev, cursor.level); 1643 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1); 1644 if (adev->asic_type < CHIP_VEGA10) { 1645 /* No huge page support before GMC v9 */ 1646 if (cursor.level != AMDGPU_VM_PTB) { 1647 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1648 return -ENOENT; 1649 continue; 1650 } 1651 } else if (frag < shift) { 1652 /* We can't use this level when the fragment size is 1653 * smaller than the address shift. Go to the next 1654 * child entry and try again. 1655 */ 1656 if (!amdgpu_vm_pt_descendant(adev, &cursor)) 1657 return -ENOENT; 1658 continue; 1659 } else if (frag >= parent_shift && 1660 cursor.level - 1 != adev->vm_manager.root_level) { 1661 /* If the fragment size is even larger than the parent 1662 * shift we should go up one level and check it again 1663 * unless one level up is the root level. 1664 */ 1665 if (!amdgpu_vm_pt_ancestor(&cursor)) 1666 return -ENOENT; 1667 continue; 1668 } 1669 1670 /* Looks good so far, calculate parameters for the update */ 1671 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift; 1672 mask = amdgpu_vm_entries_mask(adev, cursor.level); 1673 pe_start = ((cursor.pfn >> shift) & mask) * 8; 1674 entry_end = (uint64_t)(mask + 1) << shift; 1675 entry_end += cursor.pfn & ~(entry_end - 1); 1676 entry_end = min(entry_end, end); 1677 1678 do { 1679 uint64_t upd_end = min(entry_end, frag_end); 1680 unsigned nptes = (upd_end - frag_start) >> shift; 1681 1682 amdgpu_vm_update_huge(params, pt, cursor.level, 1683 pe_start, dst, nptes, incr, 1684 flags | AMDGPU_PTE_FRAG(frag)); 1685 1686 pe_start += nptes * 8; 1687 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift; 1688 1689 frag_start = upd_end; 1690 if (frag_start >= frag_end) { 1691 /* figure out the next fragment */ 1692 amdgpu_vm_fragment(params, frag_start, end, 1693 flags, &frag, &frag_end); 1694 if (frag < shift) 1695 break; 1696 } 1697 } while (frag_start < entry_end); 1698 1699 if (amdgpu_vm_pt_descendant(adev, &cursor)) { 1700 /* Mark all child entries as huge */ 1701 while (cursor.pfn < frag_start) { 1702 cursor.entry->huge = true; 1703 amdgpu_vm_pt_next(adev, &cursor); 1704 } 1705 1706 } else if (frag >= shift) { 1707 /* or just move on to the next on the same level. */ 1708 amdgpu_vm_pt_next(adev, &cursor); 1709 } 1710 } 1711 1712 return 0; 1713 } 1714 1715 /** 1716 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table 1717 * 1718 * @adev: amdgpu_device pointer 1719 * @exclusive: fence we need to sync to 1720 * @pages_addr: DMA addresses to use for mapping 1721 * @vm: requested vm 1722 * @start: start of mapped range 1723 * @last: last mapped entry 1724 * @flags: flags for the entries 1725 * @addr: addr to set the area to 1726 * @fence: optional resulting fence 1727 * 1728 * Fill in the page table entries between @start and @last. 1729 * 1730 * Returns: 1731 * 0 for success, -EINVAL for failure. 1732 */ 1733 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, 1734 struct dma_fence *exclusive, 1735 dma_addr_t *pages_addr, 1736 struct amdgpu_vm *vm, 1737 uint64_t start, uint64_t last, 1738 uint64_t flags, uint64_t addr, 1739 struct dma_fence **fence) 1740 { 1741 struct amdgpu_ring *ring; 1742 void *owner = AMDGPU_FENCE_OWNER_VM; 1743 unsigned nptes, ncmds, ndw; 1744 struct amdgpu_job *job; 1745 struct amdgpu_pte_update_params params; 1746 struct dma_fence *f = NULL; 1747 int r; 1748 1749 memset(¶ms, 0, sizeof(params)); 1750 params.adev = adev; 1751 params.vm = vm; 1752 1753 /* sync to everything on unmapping */ 1754 if (!(flags & AMDGPU_PTE_VALID)) 1755 owner = AMDGPU_FENCE_OWNER_UNDEFINED; 1756 1757 if (vm->use_cpu_for_update) { 1758 /* params.src is used as flag to indicate system Memory */ 1759 if (pages_addr) 1760 params.src = ~0; 1761 1762 /* Wait for PT BOs to be free. PTs share the same resv. object 1763 * as the root PD BO 1764 */ 1765 r = amdgpu_vm_wait_pd(adev, vm, owner); 1766 if (unlikely(r)) 1767 return r; 1768 1769 params.func = amdgpu_vm_cpu_set_ptes; 1770 params.pages_addr = pages_addr; 1771 return amdgpu_vm_update_ptes(¶ms, start, last + 1, 1772 addr, flags); 1773 } 1774 1775 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched); 1776 1777 nptes = last - start + 1; 1778 1779 /* 1780 * reserve space for two commands every (1 << BLOCK_SIZE) 1781 * entries or 2k dwords (whatever is smaller) 1782 * 1783 * The second command is for the shadow pagetables. 1784 */ 1785 if (vm->root.base.bo->shadow) 1786 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; 1787 else 1788 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1); 1789 1790 /* padding, etc. */ 1791 ndw = 64; 1792 1793 if (pages_addr) { 1794 /* copy commands needed */ 1795 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; 1796 1797 /* and also PTEs */ 1798 ndw += nptes * 2; 1799 1800 params.func = amdgpu_vm_do_copy_ptes; 1801 1802 } else { 1803 /* set page commands needed */ 1804 ndw += ncmds * 10; 1805 1806 /* extra commands for begin/end fragments */ 1807 if (vm->root.base.bo->shadow) 1808 ndw += 2 * 10 * adev->vm_manager.fragment_size * 2; 1809 else 1810 ndw += 2 * 10 * adev->vm_manager.fragment_size; 1811 1812 params.func = amdgpu_vm_do_set_ptes; 1813 } 1814 1815 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); 1816 if (r) 1817 return r; 1818 1819 params.ib = &job->ibs[0]; 1820 1821 if (pages_addr) { 1822 uint64_t *pte; 1823 unsigned i; 1824 1825 /* Put the PTEs at the end of the IB. */ 1826 i = ndw - nptes * 2; 1827 pte= (uint64_t *)&(job->ibs->ptr[i]); 1828 params.src = job->ibs->gpu_addr + i * 4; 1829 1830 for (i = 0; i < nptes; ++i) { 1831 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * 1832 AMDGPU_GPU_PAGE_SIZE); 1833 pte[i] |= flags; 1834 } 1835 addr = 0; 1836 } 1837 1838 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false); 1839 if (r) 1840 goto error_free; 1841 1842 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, 1843 owner, false); 1844 if (r) 1845 goto error_free; 1846 1847 r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); 1848 if (r) 1849 goto error_free; 1850 1851 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags); 1852 if (r) 1853 goto error_free; 1854 1855 amdgpu_ring_pad_ib(ring, params.ib); 1856 WARN_ON(params.ib->length_dw > ndw); 1857 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); 1858 if (r) 1859 goto error_free; 1860 1861 amdgpu_bo_fence(vm->root.base.bo, f, true); 1862 dma_fence_put(*fence); 1863 *fence = f; 1864 return 0; 1865 1866 error_free: 1867 amdgpu_job_free(job); 1868 return r; 1869 } 1870 1871 /** 1872 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks 1873 * 1874 * @adev: amdgpu_device pointer 1875 * @exclusive: fence we need to sync to 1876 * @pages_addr: DMA addresses to use for mapping 1877 * @vm: requested vm 1878 * @mapping: mapped range and flags to use for the update 1879 * @flags: HW flags for the mapping 1880 * @nodes: array of drm_mm_nodes with the MC addresses 1881 * @fence: optional resulting fence 1882 * 1883 * Split the mapping into smaller chunks so that each update fits 1884 * into a SDMA IB. 1885 * 1886 * Returns: 1887 * 0 for success, -EINVAL for failure. 1888 */ 1889 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, 1890 struct dma_fence *exclusive, 1891 dma_addr_t *pages_addr, 1892 struct amdgpu_vm *vm, 1893 struct amdgpu_bo_va_mapping *mapping, 1894 uint64_t flags, 1895 struct drm_mm_node *nodes, 1896 struct dma_fence **fence) 1897 { 1898 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size; 1899 uint64_t pfn, start = mapping->start; 1900 int r; 1901 1902 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here 1903 * but in case of something, we filter the flags in first place 1904 */ 1905 if (!(mapping->flags & AMDGPU_PTE_READABLE)) 1906 flags &= ~AMDGPU_PTE_READABLE; 1907 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) 1908 flags &= ~AMDGPU_PTE_WRITEABLE; 1909 1910 flags &= ~AMDGPU_PTE_EXECUTABLE; 1911 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; 1912 1913 flags &= ~AMDGPU_PTE_MTYPE_MASK; 1914 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); 1915 1916 if ((mapping->flags & AMDGPU_PTE_PRT) && 1917 (adev->asic_type >= CHIP_VEGA10)) { 1918 flags |= AMDGPU_PTE_PRT; 1919 flags &= ~AMDGPU_PTE_VALID; 1920 } 1921 1922 trace_amdgpu_vm_bo_update(mapping); 1923 1924 pfn = mapping->offset >> PAGE_SHIFT; 1925 if (nodes) { 1926 while (pfn >= nodes->size) { 1927 pfn -= nodes->size; 1928 ++nodes; 1929 } 1930 } 1931 1932 do { 1933 dma_addr_t *dma_addr = NULL; 1934 uint64_t max_entries; 1935 uint64_t addr, last; 1936 1937 if (nodes) { 1938 addr = nodes->start << PAGE_SHIFT; 1939 max_entries = (nodes->size - pfn) * 1940 AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1941 } else { 1942 addr = 0; 1943 max_entries = S64_MAX; 1944 } 1945 1946 if (pages_addr) { 1947 uint64_t count; 1948 1949 max_entries = min(max_entries, 16ull * 1024ull); 1950 for (count = 1; 1951 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1952 ++count) { 1953 uint64_t idx = pfn + count; 1954 1955 if (pages_addr[idx] != 1956 (pages_addr[idx - 1] + PAGE_SIZE)) 1957 break; 1958 } 1959 1960 if (count < min_linear_pages) { 1961 addr = pfn << PAGE_SHIFT; 1962 dma_addr = pages_addr; 1963 } else { 1964 addr = pages_addr[pfn]; 1965 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1966 } 1967 1968 } else if (flags & AMDGPU_PTE_VALID) { 1969 addr += adev->vm_manager.vram_base_offset; 1970 addr += pfn << PAGE_SHIFT; 1971 } 1972 1973 last = min((uint64_t)mapping->last, start + max_entries - 1); 1974 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm, 1975 start, last, flags, addr, 1976 fence); 1977 if (r) 1978 return r; 1979 1980 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE; 1981 if (nodes && nodes->size == pfn) { 1982 pfn = 0; 1983 ++nodes; 1984 } 1985 start = last + 1; 1986 1987 } while (unlikely(start != mapping->last + 1)); 1988 1989 return 0; 1990 } 1991 1992 /** 1993 * amdgpu_vm_bo_update - update all BO mappings in the vm page table 1994 * 1995 * @adev: amdgpu_device pointer 1996 * @bo_va: requested BO and VM object 1997 * @clear: if true clear the entries 1998 * 1999 * Fill in the page table entries for @bo_va. 2000 * 2001 * Returns: 2002 * 0 for success, -EINVAL for failure. 2003 */ 2004 int amdgpu_vm_bo_update(struct amdgpu_device *adev, 2005 struct amdgpu_bo_va *bo_va, 2006 bool clear) 2007 { 2008 struct amdgpu_bo *bo = bo_va->base.bo; 2009 struct amdgpu_vm *vm = bo_va->base.vm; 2010 struct amdgpu_bo_va_mapping *mapping; 2011 dma_addr_t *pages_addr = NULL; 2012 struct ttm_mem_reg *mem; 2013 struct drm_mm_node *nodes; 2014 struct dma_fence *exclusive, **last_update; 2015 uint64_t flags; 2016 int r; 2017 2018 if (clear || !bo) { 2019 mem = NULL; 2020 nodes = NULL; 2021 exclusive = NULL; 2022 } else { 2023 struct ttm_dma_tt *ttm; 2024 2025 mem = &bo->tbo.mem; 2026 nodes = mem->mm_node; 2027 if (mem->mem_type == TTM_PL_TT) { 2028 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm); 2029 pages_addr = ttm->dma_address; 2030 } 2031 exclusive = reservation_object_get_excl(bo->tbo.resv); 2032 } 2033 2034 if (bo) 2035 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); 2036 else 2037 flags = 0x0; 2038 2039 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) 2040 last_update = &vm->last_update; 2041 else 2042 last_update = &bo_va->last_pt_update; 2043 2044 if (!clear && bo_va->base.moved) { 2045 bo_va->base.moved = false; 2046 list_splice_init(&bo_va->valids, &bo_va->invalids); 2047 2048 } else if (bo_va->cleared != clear) { 2049 list_splice_init(&bo_va->valids, &bo_va->invalids); 2050 } 2051 2052 list_for_each_entry(mapping, &bo_va->invalids, list) { 2053 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, 2054 mapping, flags, nodes, 2055 last_update); 2056 if (r) 2057 return r; 2058 } 2059 2060 if (vm->use_cpu_for_update) { 2061 /* Flush HDP */ 2062 mb(); 2063 amdgpu_asic_flush_hdp(adev, NULL); 2064 } 2065 2066 /* If the BO is not in its preferred location add it back to 2067 * the evicted list so that it gets validated again on the 2068 * next command submission. 2069 */ 2070 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2071 uint32_t mem_type = bo->tbo.mem.mem_type; 2072 2073 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type))) 2074 amdgpu_vm_bo_evicted(&bo_va->base); 2075 else 2076 amdgpu_vm_bo_idle(&bo_va->base); 2077 } else { 2078 amdgpu_vm_bo_done(&bo_va->base); 2079 } 2080 2081 list_splice_init(&bo_va->invalids, &bo_va->valids); 2082 bo_va->cleared = clear; 2083 2084 if (trace_amdgpu_vm_bo_mapping_enabled()) { 2085 list_for_each_entry(mapping, &bo_va->valids, list) 2086 trace_amdgpu_vm_bo_mapping(mapping); 2087 } 2088 2089 return 0; 2090 } 2091 2092 /** 2093 * amdgpu_vm_update_prt_state - update the global PRT state 2094 * 2095 * @adev: amdgpu_device pointer 2096 */ 2097 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) 2098 { 2099 unsigned long flags; 2100 bool enable; 2101 2102 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); 2103 enable = !!atomic_read(&adev->vm_manager.num_prt_users); 2104 adev->gmc.gmc_funcs->set_prt(adev, enable); 2105 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); 2106 } 2107 2108 /** 2109 * amdgpu_vm_prt_get - add a PRT user 2110 * 2111 * @adev: amdgpu_device pointer 2112 */ 2113 static void amdgpu_vm_prt_get(struct amdgpu_device *adev) 2114 { 2115 if (!adev->gmc.gmc_funcs->set_prt) 2116 return; 2117 2118 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) 2119 amdgpu_vm_update_prt_state(adev); 2120 } 2121 2122 /** 2123 * amdgpu_vm_prt_put - drop a PRT user 2124 * 2125 * @adev: amdgpu_device pointer 2126 */ 2127 static void amdgpu_vm_prt_put(struct amdgpu_device *adev) 2128 { 2129 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) 2130 amdgpu_vm_update_prt_state(adev); 2131 } 2132 2133 /** 2134 * amdgpu_vm_prt_cb - callback for updating the PRT status 2135 * 2136 * @fence: fence for the callback 2137 * @_cb: the callback function 2138 */ 2139 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) 2140 { 2141 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); 2142 2143 amdgpu_vm_prt_put(cb->adev); 2144 kfree(cb); 2145 } 2146 2147 /** 2148 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status 2149 * 2150 * @adev: amdgpu_device pointer 2151 * @fence: fence for the callback 2152 */ 2153 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, 2154 struct dma_fence *fence) 2155 { 2156 struct amdgpu_prt_cb *cb; 2157 2158 if (!adev->gmc.gmc_funcs->set_prt) 2159 return; 2160 2161 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); 2162 if (!cb) { 2163 /* Last resort when we are OOM */ 2164 if (fence) 2165 dma_fence_wait(fence, false); 2166 2167 amdgpu_vm_prt_put(adev); 2168 } else { 2169 cb->adev = adev; 2170 if (!fence || dma_fence_add_callback(fence, &cb->cb, 2171 amdgpu_vm_prt_cb)) 2172 amdgpu_vm_prt_cb(fence, &cb->cb); 2173 } 2174 } 2175 2176 /** 2177 * amdgpu_vm_free_mapping - free a mapping 2178 * 2179 * @adev: amdgpu_device pointer 2180 * @vm: requested vm 2181 * @mapping: mapping to be freed 2182 * @fence: fence of the unmap operation 2183 * 2184 * Free a mapping and make sure we decrease the PRT usage count if applicable. 2185 */ 2186 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, 2187 struct amdgpu_vm *vm, 2188 struct amdgpu_bo_va_mapping *mapping, 2189 struct dma_fence *fence) 2190 { 2191 if (mapping->flags & AMDGPU_PTE_PRT) 2192 amdgpu_vm_add_prt_cb(adev, fence); 2193 kfree(mapping); 2194 } 2195 2196 /** 2197 * amdgpu_vm_prt_fini - finish all prt mappings 2198 * 2199 * @adev: amdgpu_device pointer 2200 * @vm: requested vm 2201 * 2202 * Register a cleanup callback to disable PRT support after VM dies. 2203 */ 2204 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 2205 { 2206 struct reservation_object *resv = vm->root.base.bo->tbo.resv; 2207 struct dma_fence *excl, **shared; 2208 unsigned i, shared_count; 2209 int r; 2210 2211 r = reservation_object_get_fences_rcu(resv, &excl, 2212 &shared_count, &shared); 2213 if (r) { 2214 /* Not enough memory to grab the fence list, as last resort 2215 * block for all the fences to complete. 2216 */ 2217 reservation_object_wait_timeout_rcu(resv, true, false, 2218 MAX_SCHEDULE_TIMEOUT); 2219 return; 2220 } 2221 2222 /* Add a callback for each fence in the reservation object */ 2223 amdgpu_vm_prt_get(adev); 2224 amdgpu_vm_add_prt_cb(adev, excl); 2225 2226 for (i = 0; i < shared_count; ++i) { 2227 amdgpu_vm_prt_get(adev); 2228 amdgpu_vm_add_prt_cb(adev, shared[i]); 2229 } 2230 2231 kfree(shared); 2232 } 2233 2234 /** 2235 * amdgpu_vm_clear_freed - clear freed BOs in the PT 2236 * 2237 * @adev: amdgpu_device pointer 2238 * @vm: requested vm 2239 * @fence: optional resulting fence (unchanged if no work needed to be done 2240 * or if an error occurred) 2241 * 2242 * Make sure all freed BOs are cleared in the PT. 2243 * PTs have to be reserved and mutex must be locked! 2244 * 2245 * Returns: 2246 * 0 for success. 2247 * 2248 */ 2249 int amdgpu_vm_clear_freed(struct amdgpu_device *adev, 2250 struct amdgpu_vm *vm, 2251 struct dma_fence **fence) 2252 { 2253 struct amdgpu_bo_va_mapping *mapping; 2254 uint64_t init_pte_value = 0; 2255 struct dma_fence *f = NULL; 2256 int r; 2257 2258 while (!list_empty(&vm->freed)) { 2259 mapping = list_first_entry(&vm->freed, 2260 struct amdgpu_bo_va_mapping, list); 2261 list_del(&mapping->list); 2262 2263 if (vm->pte_support_ats && 2264 mapping->start < AMDGPU_GMC_HOLE_START) 2265 init_pte_value = AMDGPU_PTE_DEFAULT_ATC; 2266 2267 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, 2268 mapping->start, mapping->last, 2269 init_pte_value, 0, &f); 2270 amdgpu_vm_free_mapping(adev, vm, mapping, f); 2271 if (r) { 2272 dma_fence_put(f); 2273 return r; 2274 } 2275 } 2276 2277 if (fence && f) { 2278 dma_fence_put(*fence); 2279 *fence = f; 2280 } else { 2281 dma_fence_put(f); 2282 } 2283 2284 return 0; 2285 2286 } 2287 2288 /** 2289 * amdgpu_vm_handle_moved - handle moved BOs in the PT 2290 * 2291 * @adev: amdgpu_device pointer 2292 * @vm: requested vm 2293 * 2294 * Make sure all BOs which are moved are updated in the PTs. 2295 * 2296 * Returns: 2297 * 0 for success. 2298 * 2299 * PTs have to be reserved! 2300 */ 2301 int amdgpu_vm_handle_moved(struct amdgpu_device *adev, 2302 struct amdgpu_vm *vm) 2303 { 2304 struct amdgpu_bo_va *bo_va, *tmp; 2305 struct reservation_object *resv; 2306 bool clear; 2307 int r; 2308 2309 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) { 2310 /* Per VM BOs never need to bo cleared in the page tables */ 2311 r = amdgpu_vm_bo_update(adev, bo_va, false); 2312 if (r) 2313 return r; 2314 } 2315 2316 spin_lock(&vm->invalidated_lock); 2317 while (!list_empty(&vm->invalidated)) { 2318 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, 2319 base.vm_status); 2320 resv = bo_va->base.bo->tbo.resv; 2321 spin_unlock(&vm->invalidated_lock); 2322 2323 /* Try to reserve the BO to avoid clearing its ptes */ 2324 if (!amdgpu_vm_debug && reservation_object_trylock(resv)) 2325 clear = false; 2326 /* Somebody else is using the BO right now */ 2327 else 2328 clear = true; 2329 2330 r = amdgpu_vm_bo_update(adev, bo_va, clear); 2331 if (r) 2332 return r; 2333 2334 if (!clear) 2335 reservation_object_unlock(resv); 2336 spin_lock(&vm->invalidated_lock); 2337 } 2338 spin_unlock(&vm->invalidated_lock); 2339 2340 return 0; 2341 } 2342 2343 /** 2344 * amdgpu_vm_bo_add - add a bo to a specific vm 2345 * 2346 * @adev: amdgpu_device pointer 2347 * @vm: requested vm 2348 * @bo: amdgpu buffer object 2349 * 2350 * Add @bo into the requested vm. 2351 * Add @bo to the list of bos associated with the vm 2352 * 2353 * Returns: 2354 * Newly added bo_va or NULL for failure 2355 * 2356 * Object has to be reserved! 2357 */ 2358 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, 2359 struct amdgpu_vm *vm, 2360 struct amdgpu_bo *bo) 2361 { 2362 struct amdgpu_bo_va *bo_va; 2363 2364 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); 2365 if (bo_va == NULL) { 2366 return NULL; 2367 } 2368 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo); 2369 2370 bo_va->ref_count = 1; 2371 INIT_LIST_HEAD(&bo_va->valids); 2372 INIT_LIST_HEAD(&bo_va->invalids); 2373 2374 return bo_va; 2375 } 2376 2377 2378 /** 2379 * amdgpu_vm_bo_insert_mapping - insert a new mapping 2380 * 2381 * @adev: amdgpu_device pointer 2382 * @bo_va: bo_va to store the address 2383 * @mapping: the mapping to insert 2384 * 2385 * Insert a new mapping into all structures. 2386 */ 2387 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, 2388 struct amdgpu_bo_va *bo_va, 2389 struct amdgpu_bo_va_mapping *mapping) 2390 { 2391 struct amdgpu_vm *vm = bo_va->base.vm; 2392 struct amdgpu_bo *bo = bo_va->base.bo; 2393 2394 mapping->bo_va = bo_va; 2395 list_add(&mapping->list, &bo_va->invalids); 2396 amdgpu_vm_it_insert(mapping, &vm->va); 2397 2398 if (mapping->flags & AMDGPU_PTE_PRT) 2399 amdgpu_vm_prt_get(adev); 2400 2401 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv && 2402 !bo_va->base.moved) { 2403 list_move(&bo_va->base.vm_status, &vm->moved); 2404 } 2405 trace_amdgpu_vm_bo_map(bo_va, mapping); 2406 } 2407 2408 /** 2409 * amdgpu_vm_bo_map - map bo inside a vm 2410 * 2411 * @adev: amdgpu_device pointer 2412 * @bo_va: bo_va to store the address 2413 * @saddr: where to map the BO 2414 * @offset: requested offset in the BO 2415 * @size: BO size in bytes 2416 * @flags: attributes of pages (read/write/valid/etc.) 2417 * 2418 * Add a mapping of the BO at the specefied addr into the VM. 2419 * 2420 * Returns: 2421 * 0 for success, error for failure. 2422 * 2423 * Object has to be reserved and unreserved outside! 2424 */ 2425 int amdgpu_vm_bo_map(struct amdgpu_device *adev, 2426 struct amdgpu_bo_va *bo_va, 2427 uint64_t saddr, uint64_t offset, 2428 uint64_t size, uint64_t flags) 2429 { 2430 struct amdgpu_bo_va_mapping *mapping, *tmp; 2431 struct amdgpu_bo *bo = bo_va->base.bo; 2432 struct amdgpu_vm *vm = bo_va->base.vm; 2433 uint64_t eaddr; 2434 2435 /* validate the parameters */ 2436 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2437 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2438 return -EINVAL; 2439 2440 /* make sure object fit at this offset */ 2441 eaddr = saddr + size - 1; 2442 if (saddr >= eaddr || 2443 (bo && offset + size > amdgpu_bo_size(bo))) 2444 return -EINVAL; 2445 2446 saddr /= AMDGPU_GPU_PAGE_SIZE; 2447 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2448 2449 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2450 if (tmp) { 2451 /* bo and tmp overlap, invalid addr */ 2452 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " 2453 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, 2454 tmp->start, tmp->last + 1); 2455 return -EINVAL; 2456 } 2457 2458 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2459 if (!mapping) 2460 return -ENOMEM; 2461 2462 mapping->start = saddr; 2463 mapping->last = eaddr; 2464 mapping->offset = offset; 2465 mapping->flags = flags; 2466 2467 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2468 2469 return 0; 2470 } 2471 2472 /** 2473 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings 2474 * 2475 * @adev: amdgpu_device pointer 2476 * @bo_va: bo_va to store the address 2477 * @saddr: where to map the BO 2478 * @offset: requested offset in the BO 2479 * @size: BO size in bytes 2480 * @flags: attributes of pages (read/write/valid/etc.) 2481 * 2482 * Add a mapping of the BO at the specefied addr into the VM. Replace existing 2483 * mappings as we do so. 2484 * 2485 * Returns: 2486 * 0 for success, error for failure. 2487 * 2488 * Object has to be reserved and unreserved outside! 2489 */ 2490 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, 2491 struct amdgpu_bo_va *bo_va, 2492 uint64_t saddr, uint64_t offset, 2493 uint64_t size, uint64_t flags) 2494 { 2495 struct amdgpu_bo_va_mapping *mapping; 2496 struct amdgpu_bo *bo = bo_va->base.bo; 2497 uint64_t eaddr; 2498 int r; 2499 2500 /* validate the parameters */ 2501 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || 2502 size == 0 || size & AMDGPU_GPU_PAGE_MASK) 2503 return -EINVAL; 2504 2505 /* make sure object fit at this offset */ 2506 eaddr = saddr + size - 1; 2507 if (saddr >= eaddr || 2508 (bo && offset + size > amdgpu_bo_size(bo))) 2509 return -EINVAL; 2510 2511 /* Allocate all the needed memory */ 2512 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); 2513 if (!mapping) 2514 return -ENOMEM; 2515 2516 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); 2517 if (r) { 2518 kfree(mapping); 2519 return r; 2520 } 2521 2522 saddr /= AMDGPU_GPU_PAGE_SIZE; 2523 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2524 2525 mapping->start = saddr; 2526 mapping->last = eaddr; 2527 mapping->offset = offset; 2528 mapping->flags = flags; 2529 2530 amdgpu_vm_bo_insert_map(adev, bo_va, mapping); 2531 2532 return 0; 2533 } 2534 2535 /** 2536 * amdgpu_vm_bo_unmap - remove bo mapping from vm 2537 * 2538 * @adev: amdgpu_device pointer 2539 * @bo_va: bo_va to remove the address from 2540 * @saddr: where to the BO is mapped 2541 * 2542 * Remove a mapping of the BO at the specefied addr from the VM. 2543 * 2544 * Returns: 2545 * 0 for success, error for failure. 2546 * 2547 * Object has to be reserved and unreserved outside! 2548 */ 2549 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, 2550 struct amdgpu_bo_va *bo_va, 2551 uint64_t saddr) 2552 { 2553 struct amdgpu_bo_va_mapping *mapping; 2554 struct amdgpu_vm *vm = bo_va->base.vm; 2555 bool valid = true; 2556 2557 saddr /= AMDGPU_GPU_PAGE_SIZE; 2558 2559 list_for_each_entry(mapping, &bo_va->valids, list) { 2560 if (mapping->start == saddr) 2561 break; 2562 } 2563 2564 if (&mapping->list == &bo_va->valids) { 2565 valid = false; 2566 2567 list_for_each_entry(mapping, &bo_va->invalids, list) { 2568 if (mapping->start == saddr) 2569 break; 2570 } 2571 2572 if (&mapping->list == &bo_va->invalids) 2573 return -ENOENT; 2574 } 2575 2576 list_del(&mapping->list); 2577 amdgpu_vm_it_remove(mapping, &vm->va); 2578 mapping->bo_va = NULL; 2579 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2580 2581 if (valid) 2582 list_add(&mapping->list, &vm->freed); 2583 else 2584 amdgpu_vm_free_mapping(adev, vm, mapping, 2585 bo_va->last_pt_update); 2586 2587 return 0; 2588 } 2589 2590 /** 2591 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range 2592 * 2593 * @adev: amdgpu_device pointer 2594 * @vm: VM structure to use 2595 * @saddr: start of the range 2596 * @size: size of the range 2597 * 2598 * Remove all mappings in a range, split them as appropriate. 2599 * 2600 * Returns: 2601 * 0 for success, error for failure. 2602 */ 2603 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, 2604 struct amdgpu_vm *vm, 2605 uint64_t saddr, uint64_t size) 2606 { 2607 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; 2608 LIST_HEAD(removed); 2609 uint64_t eaddr; 2610 2611 eaddr = saddr + size - 1; 2612 saddr /= AMDGPU_GPU_PAGE_SIZE; 2613 eaddr /= AMDGPU_GPU_PAGE_SIZE; 2614 2615 /* Allocate all the needed memory */ 2616 before = kzalloc(sizeof(*before), GFP_KERNEL); 2617 if (!before) 2618 return -ENOMEM; 2619 INIT_LIST_HEAD(&before->list); 2620 2621 after = kzalloc(sizeof(*after), GFP_KERNEL); 2622 if (!after) { 2623 kfree(before); 2624 return -ENOMEM; 2625 } 2626 INIT_LIST_HEAD(&after->list); 2627 2628 /* Now gather all removed mappings */ 2629 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); 2630 while (tmp) { 2631 /* Remember mapping split at the start */ 2632 if (tmp->start < saddr) { 2633 before->start = tmp->start; 2634 before->last = saddr - 1; 2635 before->offset = tmp->offset; 2636 before->flags = tmp->flags; 2637 before->bo_va = tmp->bo_va; 2638 list_add(&before->list, &tmp->bo_va->invalids); 2639 } 2640 2641 /* Remember mapping split at the end */ 2642 if (tmp->last > eaddr) { 2643 after->start = eaddr + 1; 2644 after->last = tmp->last; 2645 after->offset = tmp->offset; 2646 after->offset += after->start - tmp->start; 2647 after->flags = tmp->flags; 2648 after->bo_va = tmp->bo_va; 2649 list_add(&after->list, &tmp->bo_va->invalids); 2650 } 2651 2652 list_del(&tmp->list); 2653 list_add(&tmp->list, &removed); 2654 2655 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); 2656 } 2657 2658 /* And free them up */ 2659 list_for_each_entry_safe(tmp, next, &removed, list) { 2660 amdgpu_vm_it_remove(tmp, &vm->va); 2661 list_del(&tmp->list); 2662 2663 if (tmp->start < saddr) 2664 tmp->start = saddr; 2665 if (tmp->last > eaddr) 2666 tmp->last = eaddr; 2667 2668 tmp->bo_va = NULL; 2669 list_add(&tmp->list, &vm->freed); 2670 trace_amdgpu_vm_bo_unmap(NULL, tmp); 2671 } 2672 2673 /* Insert partial mapping before the range */ 2674 if (!list_empty(&before->list)) { 2675 amdgpu_vm_it_insert(before, &vm->va); 2676 if (before->flags & AMDGPU_PTE_PRT) 2677 amdgpu_vm_prt_get(adev); 2678 } else { 2679 kfree(before); 2680 } 2681 2682 /* Insert partial mapping after the range */ 2683 if (!list_empty(&after->list)) { 2684 amdgpu_vm_it_insert(after, &vm->va); 2685 if (after->flags & AMDGPU_PTE_PRT) 2686 amdgpu_vm_prt_get(adev); 2687 } else { 2688 kfree(after); 2689 } 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * amdgpu_vm_bo_lookup_mapping - find mapping by address 2696 * 2697 * @vm: the requested VM 2698 * @addr: the address 2699 * 2700 * Find a mapping by it's address. 2701 * 2702 * Returns: 2703 * The amdgpu_bo_va_mapping matching for addr or NULL 2704 * 2705 */ 2706 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, 2707 uint64_t addr) 2708 { 2709 return amdgpu_vm_it_iter_first(&vm->va, addr, addr); 2710 } 2711 2712 /** 2713 * amdgpu_vm_bo_trace_cs - trace all reserved mappings 2714 * 2715 * @vm: the requested vm 2716 * @ticket: CS ticket 2717 * 2718 * Trace all mappings of BOs reserved during a command submission. 2719 */ 2720 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) 2721 { 2722 struct amdgpu_bo_va_mapping *mapping; 2723 2724 if (!trace_amdgpu_vm_bo_cs_enabled()) 2725 return; 2726 2727 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping; 2728 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) { 2729 if (mapping->bo_va && mapping->bo_va->base.bo) { 2730 struct amdgpu_bo *bo; 2731 2732 bo = mapping->bo_va->base.bo; 2733 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket) 2734 continue; 2735 } 2736 2737 trace_amdgpu_vm_bo_cs(mapping); 2738 } 2739 } 2740 2741 /** 2742 * amdgpu_vm_bo_rmv - remove a bo to a specific vm 2743 * 2744 * @adev: amdgpu_device pointer 2745 * @bo_va: requested bo_va 2746 * 2747 * Remove @bo_va->bo from the requested vm. 2748 * 2749 * Object have to be reserved! 2750 */ 2751 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, 2752 struct amdgpu_bo_va *bo_va) 2753 { 2754 struct amdgpu_bo_va_mapping *mapping, *next; 2755 struct amdgpu_bo *bo = bo_va->base.bo; 2756 struct amdgpu_vm *vm = bo_va->base.vm; 2757 struct amdgpu_vm_bo_base **base; 2758 2759 if (bo) { 2760 if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2761 vm->bulk_moveable = false; 2762 2763 for (base = &bo_va->base.bo->vm_bo; *base; 2764 base = &(*base)->next) { 2765 if (*base != &bo_va->base) 2766 continue; 2767 2768 *base = bo_va->base.next; 2769 break; 2770 } 2771 } 2772 2773 spin_lock(&vm->invalidated_lock); 2774 list_del(&bo_va->base.vm_status); 2775 spin_unlock(&vm->invalidated_lock); 2776 2777 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { 2778 list_del(&mapping->list); 2779 amdgpu_vm_it_remove(mapping, &vm->va); 2780 mapping->bo_va = NULL; 2781 trace_amdgpu_vm_bo_unmap(bo_va, mapping); 2782 list_add(&mapping->list, &vm->freed); 2783 } 2784 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { 2785 list_del(&mapping->list); 2786 amdgpu_vm_it_remove(mapping, &vm->va); 2787 amdgpu_vm_free_mapping(adev, vm, mapping, 2788 bo_va->last_pt_update); 2789 } 2790 2791 dma_fence_put(bo_va->last_pt_update); 2792 kfree(bo_va); 2793 } 2794 2795 /** 2796 * amdgpu_vm_bo_invalidate - mark the bo as invalid 2797 * 2798 * @adev: amdgpu_device pointer 2799 * @bo: amdgpu buffer object 2800 * @evicted: is the BO evicted 2801 * 2802 * Mark @bo as invalid. 2803 */ 2804 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, 2805 struct amdgpu_bo *bo, bool evicted) 2806 { 2807 struct amdgpu_vm_bo_base *bo_base; 2808 2809 /* shadow bo doesn't have bo base, its validation needs its parent */ 2810 if (bo->parent && bo->parent->shadow == bo) 2811 bo = bo->parent; 2812 2813 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) { 2814 struct amdgpu_vm *vm = bo_base->vm; 2815 2816 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { 2817 amdgpu_vm_bo_evicted(bo_base); 2818 continue; 2819 } 2820 2821 if (bo_base->moved) 2822 continue; 2823 bo_base->moved = true; 2824 2825 if (bo->tbo.type == ttm_bo_type_kernel) 2826 amdgpu_vm_bo_relocated(bo_base); 2827 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv) 2828 amdgpu_vm_bo_moved(bo_base); 2829 else 2830 amdgpu_vm_bo_invalidated(bo_base); 2831 } 2832 } 2833 2834 /** 2835 * amdgpu_vm_get_block_size - calculate VM page table size as power of two 2836 * 2837 * @vm_size: VM size 2838 * 2839 * Returns: 2840 * VM page table as power of two 2841 */ 2842 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) 2843 { 2844 /* Total bits covered by PD + PTs */ 2845 unsigned bits = ilog2(vm_size) + 18; 2846 2847 /* Make sure the PD is 4K in size up to 8GB address space. 2848 Above that split equal between PD and PTs */ 2849 if (vm_size <= 8) 2850 return (bits - 9); 2851 else 2852 return ((bits + 3) / 2); 2853 } 2854 2855 /** 2856 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size 2857 * 2858 * @adev: amdgpu_device pointer 2859 * @min_vm_size: the minimum vm size in GB if it's set auto 2860 * @fragment_size_default: Default PTE fragment size 2861 * @max_level: max VMPT level 2862 * @max_bits: max address space size in bits 2863 * 2864 */ 2865 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size, 2866 uint32_t fragment_size_default, unsigned max_level, 2867 unsigned max_bits) 2868 { 2869 unsigned int max_size = 1 << (max_bits - 30); 2870 unsigned int vm_size; 2871 uint64_t tmp; 2872 2873 /* adjust vm size first */ 2874 if (amdgpu_vm_size != -1) { 2875 vm_size = amdgpu_vm_size; 2876 if (vm_size > max_size) { 2877 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n", 2878 amdgpu_vm_size, max_size); 2879 vm_size = max_size; 2880 } 2881 } else { 2882 struct sysinfo si; 2883 unsigned int phys_ram_gb; 2884 2885 /* Optimal VM size depends on the amount of physical 2886 * RAM available. Underlying requirements and 2887 * assumptions: 2888 * 2889 * - Need to map system memory and VRAM from all GPUs 2890 * - VRAM from other GPUs not known here 2891 * - Assume VRAM <= system memory 2892 * - On GFX8 and older, VM space can be segmented for 2893 * different MTYPEs 2894 * - Need to allow room for fragmentation, guard pages etc. 2895 * 2896 * This adds up to a rough guess of system memory x3. 2897 * Round up to power of two to maximize the available 2898 * VM size with the given page table size. 2899 */ 2900 si_meminfo(&si); 2901 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit + 2902 (1 << 30) - 1) >> 30; 2903 vm_size = roundup_pow_of_two( 2904 min(max(phys_ram_gb * 3, min_vm_size), max_size)); 2905 } 2906 2907 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18; 2908 2909 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn); 2910 if (amdgpu_vm_block_size != -1) 2911 tmp >>= amdgpu_vm_block_size - 9; 2912 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1; 2913 adev->vm_manager.num_level = min(max_level, (unsigned)tmp); 2914 switch (adev->vm_manager.num_level) { 2915 case 3: 2916 adev->vm_manager.root_level = AMDGPU_VM_PDB2; 2917 break; 2918 case 2: 2919 adev->vm_manager.root_level = AMDGPU_VM_PDB1; 2920 break; 2921 case 1: 2922 adev->vm_manager.root_level = AMDGPU_VM_PDB0; 2923 break; 2924 default: 2925 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n"); 2926 } 2927 /* block size depends on vm size and hw setup*/ 2928 if (amdgpu_vm_block_size != -1) 2929 adev->vm_manager.block_size = 2930 min((unsigned)amdgpu_vm_block_size, max_bits 2931 - AMDGPU_GPU_PAGE_SHIFT 2932 - 9 * adev->vm_manager.num_level); 2933 else if (adev->vm_manager.num_level > 1) 2934 adev->vm_manager.block_size = 9; 2935 else 2936 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp); 2937 2938 if (amdgpu_vm_fragment_size == -1) 2939 adev->vm_manager.fragment_size = fragment_size_default; 2940 else 2941 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; 2942 2943 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n", 2944 vm_size, adev->vm_manager.num_level + 1, 2945 adev->vm_manager.block_size, 2946 adev->vm_manager.fragment_size); 2947 } 2948 2949 static struct amdgpu_retryfault_hashtable *init_fault_hash(void) 2950 { 2951 struct amdgpu_retryfault_hashtable *fault_hash; 2952 2953 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL); 2954 if (!fault_hash) 2955 return fault_hash; 2956 2957 INIT_CHASH_TABLE(fault_hash->hash, 2958 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0); 2959 spin_lock_init(&fault_hash->lock); 2960 fault_hash->count = 0; 2961 2962 return fault_hash; 2963 } 2964 2965 /** 2966 * amdgpu_vm_init - initialize a vm instance 2967 * 2968 * @adev: amdgpu_device pointer 2969 * @vm: requested vm 2970 * @vm_context: Indicates if it GFX or Compute context 2971 * @pasid: Process address space identifier 2972 * 2973 * Init @vm fields. 2974 * 2975 * Returns: 2976 * 0 for success, error for failure. 2977 */ 2978 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, 2979 int vm_context, unsigned int pasid) 2980 { 2981 struct amdgpu_bo_param bp; 2982 struct amdgpu_bo *root; 2983 int r, i; 2984 2985 vm->va = RB_ROOT_CACHED; 2986 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 2987 vm->reserved_vmid[i] = NULL; 2988 INIT_LIST_HEAD(&vm->evicted); 2989 INIT_LIST_HEAD(&vm->relocated); 2990 INIT_LIST_HEAD(&vm->moved); 2991 INIT_LIST_HEAD(&vm->idle); 2992 INIT_LIST_HEAD(&vm->invalidated); 2993 spin_lock_init(&vm->invalidated_lock); 2994 INIT_LIST_HEAD(&vm->freed); 2995 2996 /* create scheduler entity for page table updates */ 2997 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs, 2998 adev->vm_manager.vm_pte_num_rqs, NULL); 2999 if (r) 3000 return r; 3001 3002 vm->pte_support_ats = false; 3003 3004 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { 3005 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3006 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3007 3008 if (adev->asic_type == CHIP_RAVEN) 3009 vm->pte_support_ats = true; 3010 } else { 3011 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3012 AMDGPU_VM_USE_CPU_FOR_GFX); 3013 } 3014 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3015 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3016 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3017 "CPU update of VM recommended only for large BAR system\n"); 3018 vm->last_update = NULL; 3019 3020 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp); 3021 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) 3022 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW; 3023 r = amdgpu_bo_create(adev, &bp, &root); 3024 if (r) 3025 goto error_free_sched_entity; 3026 3027 r = amdgpu_bo_reserve(root, true); 3028 if (r) 3029 goto error_free_root; 3030 3031 r = amdgpu_vm_clear_bo(adev, vm, root, 3032 adev->vm_manager.root_level, 3033 vm->pte_support_ats); 3034 if (r) 3035 goto error_unreserve; 3036 3037 amdgpu_vm_bo_base_init(&vm->root.base, vm, root); 3038 amdgpu_bo_unreserve(vm->root.base.bo); 3039 3040 if (pasid) { 3041 unsigned long flags; 3042 3043 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3044 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3045 GFP_ATOMIC); 3046 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3047 if (r < 0) 3048 goto error_free_root; 3049 3050 vm->pasid = pasid; 3051 } 3052 3053 vm->fault_hash = init_fault_hash(); 3054 if (!vm->fault_hash) { 3055 r = -ENOMEM; 3056 goto error_free_root; 3057 } 3058 3059 INIT_KFIFO(vm->faults); 3060 vm->fault_credit = 16; 3061 3062 return 0; 3063 3064 error_unreserve: 3065 amdgpu_bo_unreserve(vm->root.base.bo); 3066 3067 error_free_root: 3068 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3069 amdgpu_bo_unref(&vm->root.base.bo); 3070 vm->root.base.bo = NULL; 3071 3072 error_free_sched_entity: 3073 drm_sched_entity_destroy(&vm->entity); 3074 3075 return r; 3076 } 3077 3078 /** 3079 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM 3080 * 3081 * @adev: amdgpu_device pointer 3082 * @vm: requested vm 3083 * 3084 * This only works on GFX VMs that don't have any BOs added and no 3085 * page tables allocated yet. 3086 * 3087 * Changes the following VM parameters: 3088 * - use_cpu_for_update 3089 * - pte_supports_ats 3090 * - pasid (old PASID is released, because compute manages its own PASIDs) 3091 * 3092 * Reinitializes the page directory to reflect the changed ATS 3093 * setting. 3094 * 3095 * Returns: 3096 * 0 for success, -errno for errors. 3097 */ 3098 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid) 3099 { 3100 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN); 3101 int r; 3102 3103 r = amdgpu_bo_reserve(vm->root.base.bo, true); 3104 if (r) 3105 return r; 3106 3107 /* Sanity checks */ 3108 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) { 3109 r = -EINVAL; 3110 goto unreserve_bo; 3111 } 3112 3113 if (pasid) { 3114 unsigned long flags; 3115 3116 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3117 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, 3118 GFP_ATOMIC); 3119 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3120 3121 if (r == -ENOSPC) 3122 goto unreserve_bo; 3123 r = 0; 3124 } 3125 3126 /* Check if PD needs to be reinitialized and do it before 3127 * changing any other state, in case it fails. 3128 */ 3129 if (pte_support_ats != vm->pte_support_ats) { 3130 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, 3131 adev->vm_manager.root_level, 3132 pte_support_ats); 3133 if (r) 3134 goto free_idr; 3135 } 3136 3137 /* Update VM state */ 3138 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & 3139 AMDGPU_VM_USE_CPU_FOR_COMPUTE); 3140 vm->pte_support_ats = pte_support_ats; 3141 DRM_DEBUG_DRIVER("VM update mode is %s\n", 3142 vm->use_cpu_for_update ? "CPU" : "SDMA"); 3143 WARN_ONCE((vm->use_cpu_for_update & !amdgpu_gmc_vram_full_visible(&adev->gmc)), 3144 "CPU update of VM recommended only for large BAR system\n"); 3145 3146 if (vm->pasid) { 3147 unsigned long flags; 3148 3149 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3150 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3151 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3152 3153 /* Free the original amdgpu allocated pasid 3154 * Will be replaced with kfd allocated pasid 3155 */ 3156 amdgpu_pasid_free(vm->pasid); 3157 vm->pasid = 0; 3158 } 3159 3160 /* Free the shadow bo for compute VM */ 3161 amdgpu_bo_unref(&vm->root.base.bo->shadow); 3162 3163 if (pasid) 3164 vm->pasid = pasid; 3165 3166 goto unreserve_bo; 3167 3168 free_idr: 3169 if (pasid) { 3170 unsigned long flags; 3171 3172 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3173 idr_remove(&adev->vm_manager.pasid_idr, pasid); 3174 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3175 } 3176 unreserve_bo: 3177 amdgpu_bo_unreserve(vm->root.base.bo); 3178 return r; 3179 } 3180 3181 /** 3182 * amdgpu_vm_release_compute - release a compute vm 3183 * @adev: amdgpu_device pointer 3184 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute 3185 * 3186 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute 3187 * pasid from vm. Compute should stop use of vm after this call. 3188 */ 3189 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3190 { 3191 if (vm->pasid) { 3192 unsigned long flags; 3193 3194 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3195 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3196 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3197 } 3198 vm->pasid = 0; 3199 } 3200 3201 /** 3202 * amdgpu_vm_fini - tear down a vm instance 3203 * 3204 * @adev: amdgpu_device pointer 3205 * @vm: requested vm 3206 * 3207 * Tear down @vm. 3208 * Unbind the VM and remove all bos from the vm bo list 3209 */ 3210 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) 3211 { 3212 struct amdgpu_bo_va_mapping *mapping, *tmp; 3213 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt; 3214 struct amdgpu_bo *root; 3215 u64 fault; 3216 int i, r; 3217 3218 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm); 3219 3220 /* Clear pending page faults from IH when the VM is destroyed */ 3221 while (kfifo_get(&vm->faults, &fault)) 3222 amdgpu_vm_clear_fault(vm->fault_hash, fault); 3223 3224 if (vm->pasid) { 3225 unsigned long flags; 3226 3227 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); 3228 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); 3229 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); 3230 } 3231 3232 kfree(vm->fault_hash); 3233 vm->fault_hash = NULL; 3234 3235 drm_sched_entity_destroy(&vm->entity); 3236 3237 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) { 3238 dev_err(adev->dev, "still active bo inside vm\n"); 3239 } 3240 rbtree_postorder_for_each_entry_safe(mapping, tmp, 3241 &vm->va.rb_root, rb) { 3242 /* Don't remove the mapping here, we don't want to trigger a 3243 * rebalance and the tree is about to be destroyed anyway. 3244 */ 3245 list_del(&mapping->list); 3246 kfree(mapping); 3247 } 3248 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { 3249 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { 3250 amdgpu_vm_prt_fini(adev, vm); 3251 prt_fini_needed = false; 3252 } 3253 3254 list_del(&mapping->list); 3255 amdgpu_vm_free_mapping(adev, vm, mapping, NULL); 3256 } 3257 3258 root = amdgpu_bo_ref(vm->root.base.bo); 3259 r = amdgpu_bo_reserve(root, true); 3260 if (r) { 3261 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n"); 3262 } else { 3263 amdgpu_vm_free_pts(adev, vm); 3264 amdgpu_bo_unreserve(root); 3265 } 3266 amdgpu_bo_unref(&root); 3267 dma_fence_put(vm->last_update); 3268 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) 3269 amdgpu_vmid_free_reserved(adev, vm, i); 3270 } 3271 3272 /** 3273 * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID 3274 * 3275 * @adev: amdgpu_device pointer 3276 * @pasid: PASID do identify the VM 3277 * 3278 * This function is expected to be called in interrupt context. 3279 * 3280 * Returns: 3281 * True if there was fault credit, false otherwise 3282 */ 3283 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev, 3284 unsigned int pasid) 3285 { 3286 struct amdgpu_vm *vm; 3287 3288 spin_lock(&adev->vm_manager.pasid_lock); 3289 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3290 if (!vm) { 3291 /* VM not found, can't track fault credit */ 3292 spin_unlock(&adev->vm_manager.pasid_lock); 3293 return true; 3294 } 3295 3296 /* No lock needed. only accessed by IRQ handler */ 3297 if (!vm->fault_credit) { 3298 /* Too many faults in this VM */ 3299 spin_unlock(&adev->vm_manager.pasid_lock); 3300 return false; 3301 } 3302 3303 vm->fault_credit--; 3304 spin_unlock(&adev->vm_manager.pasid_lock); 3305 return true; 3306 } 3307 3308 /** 3309 * amdgpu_vm_manager_init - init the VM manager 3310 * 3311 * @adev: amdgpu_device pointer 3312 * 3313 * Initialize the VM manager structures 3314 */ 3315 void amdgpu_vm_manager_init(struct amdgpu_device *adev) 3316 { 3317 unsigned i; 3318 3319 amdgpu_vmid_mgr_init(adev); 3320 3321 adev->vm_manager.fence_context = 3322 dma_fence_context_alloc(AMDGPU_MAX_RINGS); 3323 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) 3324 adev->vm_manager.seqno[i] = 0; 3325 3326 spin_lock_init(&adev->vm_manager.prt_lock); 3327 atomic_set(&adev->vm_manager.num_prt_users, 0); 3328 3329 /* If not overridden by the user, by default, only in large BAR systems 3330 * Compute VM tables will be updated by CPU 3331 */ 3332 #ifdef CONFIG_X86_64 3333 if (amdgpu_vm_update_mode == -1) { 3334 if (amdgpu_gmc_vram_full_visible(&adev->gmc)) 3335 adev->vm_manager.vm_update_mode = 3336 AMDGPU_VM_USE_CPU_FOR_COMPUTE; 3337 else 3338 adev->vm_manager.vm_update_mode = 0; 3339 } else 3340 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; 3341 #else 3342 adev->vm_manager.vm_update_mode = 0; 3343 #endif 3344 3345 idr_init(&adev->vm_manager.pasid_idr); 3346 spin_lock_init(&adev->vm_manager.pasid_lock); 3347 } 3348 3349 /** 3350 * amdgpu_vm_manager_fini - cleanup VM manager 3351 * 3352 * @adev: amdgpu_device pointer 3353 * 3354 * Cleanup the VM manager and free resources. 3355 */ 3356 void amdgpu_vm_manager_fini(struct amdgpu_device *adev) 3357 { 3358 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); 3359 idr_destroy(&adev->vm_manager.pasid_idr); 3360 3361 amdgpu_vmid_mgr_fini(adev); 3362 } 3363 3364 /** 3365 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs. 3366 * 3367 * @dev: drm device pointer 3368 * @data: drm_amdgpu_vm 3369 * @filp: drm file pointer 3370 * 3371 * Returns: 3372 * 0 for success, -errno for errors. 3373 */ 3374 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 3375 { 3376 union drm_amdgpu_vm *args = data; 3377 struct amdgpu_device *adev = dev->dev_private; 3378 struct amdgpu_fpriv *fpriv = filp->driver_priv; 3379 int r; 3380 3381 switch (args->in.op) { 3382 case AMDGPU_VM_OP_RESERVE_VMID: 3383 /* current, we only have requirement to reserve vmid from gfxhub */ 3384 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3385 if (r) 3386 return r; 3387 break; 3388 case AMDGPU_VM_OP_UNRESERVE_VMID: 3389 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB); 3390 break; 3391 default: 3392 return -EINVAL; 3393 } 3394 3395 return 0; 3396 } 3397 3398 /** 3399 * amdgpu_vm_get_task_info - Extracts task info for a PASID. 3400 * 3401 * @adev: drm device pointer 3402 * @pasid: PASID identifier for VM 3403 * @task_info: task_info to fill. 3404 */ 3405 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid, 3406 struct amdgpu_task_info *task_info) 3407 { 3408 struct amdgpu_vm *vm; 3409 3410 spin_lock(&adev->vm_manager.pasid_lock); 3411 3412 vm = idr_find(&adev->vm_manager.pasid_idr, pasid); 3413 if (vm) 3414 *task_info = vm->task_info; 3415 3416 spin_unlock(&adev->vm_manager.pasid_lock); 3417 } 3418 3419 /** 3420 * amdgpu_vm_set_task_info - Sets VMs task info. 3421 * 3422 * @vm: vm for which to set the info 3423 */ 3424 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm) 3425 { 3426 if (!vm->task_info.pid) { 3427 vm->task_info.pid = current->pid; 3428 get_task_comm(vm->task_info.task_name, current); 3429 3430 if (current->group_leader->mm == current->mm) { 3431 vm->task_info.tgid = current->group_leader->pid; 3432 get_task_comm(vm->task_info.process_name, current->group_leader); 3433 } 3434 } 3435 } 3436 3437 /** 3438 * amdgpu_vm_add_fault - Add a page fault record to fault hash table 3439 * 3440 * @fault_hash: fault hash table 3441 * @key: 64-bit encoding of PASID and address 3442 * 3443 * This should be called when a retry page fault interrupt is 3444 * received. If this is a new page fault, it will be added to a hash 3445 * table. The return value indicates whether this is a new fault, or 3446 * a fault that was already known and is already being handled. 3447 * 3448 * If there are too many pending page faults, this will fail. Retry 3449 * interrupts should be ignored in this case until there is enough 3450 * free space. 3451 * 3452 * Returns 0 if the fault was added, 1 if the fault was already known, 3453 * -ENOSPC if there are too many pending faults. 3454 */ 3455 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3456 { 3457 unsigned long flags; 3458 int r = -ENOSPC; 3459 3460 if (WARN_ON_ONCE(!fault_hash)) 3461 /* Should be allocated in amdgpu_vm_init 3462 */ 3463 return r; 3464 3465 spin_lock_irqsave(&fault_hash->lock, flags); 3466 3467 /* Only let the hash table fill up to 50% for best performance */ 3468 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1))) 3469 goto unlock_out; 3470 3471 r = chash_table_copy_in(&fault_hash->hash, key, NULL); 3472 if (!r) 3473 fault_hash->count++; 3474 3475 /* chash_table_copy_in should never fail unless we're losing count */ 3476 WARN_ON_ONCE(r < 0); 3477 3478 unlock_out: 3479 spin_unlock_irqrestore(&fault_hash->lock, flags); 3480 return r; 3481 } 3482 3483 /** 3484 * amdgpu_vm_clear_fault - Remove a page fault record 3485 * 3486 * @fault_hash: fault hash table 3487 * @key: 64-bit encoding of PASID and address 3488 * 3489 * This should be called when a page fault has been handled. Any 3490 * future interrupt with this key will be processed as a new 3491 * page fault. 3492 */ 3493 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key) 3494 { 3495 unsigned long flags; 3496 int r; 3497 3498 if (!fault_hash) 3499 return; 3500 3501 spin_lock_irqsave(&fault_hash->lock, flags); 3502 3503 r = chash_table_remove(&fault_hash->hash, key, NULL); 3504 if (!WARN_ON_ONCE(r < 0)) { 3505 fault_hash->count--; 3506 WARN_ON_ONCE(fault_hash->count < 0); 3507 } 3508 3509 spin_unlock_irqrestore(&fault_hash->lock, flags); 3510 } 3511