1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_range_manager.h> 50 #include <drm/ttm/ttm_tt.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_hmm.h" 62 #include "amdgpu_atomfirmware.h" 63 #include "amdgpu_res_cursor.h" 64 #include "bif/bif_4_1_d.h" 65 66 MODULE_IMPORT_NS(DMA_BUF); 67 68 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 69 70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 71 struct ttm_tt *ttm, 72 struct ttm_resource *bo_mem); 73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 74 struct ttm_tt *ttm); 75 76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 77 unsigned int type, 78 uint64_t size_in_page) 79 { 80 return ttm_range_man_init(&adev->mman.bdev, type, 81 false, size_in_page); 82 } 83 84 /** 85 * amdgpu_evict_flags - Compute placement flags 86 * 87 * @bo: The buffer object to evict 88 * @placement: Possible destination(s) for evicted BO 89 * 90 * Fill in placement data when ttm_bo_evict() is called 91 */ 92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 93 struct ttm_placement *placement) 94 { 95 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 96 struct amdgpu_bo *abo; 97 static const struct ttm_place placements = { 98 .fpfn = 0, 99 .lpfn = 0, 100 .mem_type = TTM_PL_SYSTEM, 101 .flags = 0 102 }; 103 104 /* Don't handle scatter gather BOs */ 105 if (bo->type == ttm_bo_type_sg) { 106 placement->num_placement = 0; 107 placement->num_busy_placement = 0; 108 return; 109 } 110 111 /* Object isn't an AMDGPU object so ignore */ 112 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 113 placement->placement = &placements; 114 placement->busy_placement = &placements; 115 placement->num_placement = 1; 116 placement->num_busy_placement = 1; 117 return; 118 } 119 120 abo = ttm_to_amdgpu_bo(bo); 121 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 122 placement->num_placement = 0; 123 placement->num_busy_placement = 0; 124 return; 125 } 126 127 switch (bo->resource->mem_type) { 128 case AMDGPU_PL_GDS: 129 case AMDGPU_PL_GWS: 130 case AMDGPU_PL_OA: 131 placement->num_placement = 0; 132 placement->num_busy_placement = 0; 133 return; 134 135 case TTM_PL_VRAM: 136 if (!adev->mman.buffer_funcs_enabled) { 137 /* Move to system memory */ 138 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 139 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 140 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 141 amdgpu_bo_in_cpu_visible_vram(abo)) { 142 143 /* Try evicting to the CPU inaccessible part of VRAM 144 * first, but only set GTT as busy placement, so this 145 * BO will be evicted to GTT rather than causing other 146 * BOs to be evicted from VRAM 147 */ 148 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 149 AMDGPU_GEM_DOMAIN_GTT | 150 AMDGPU_GEM_DOMAIN_CPU); 151 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 152 abo->placements[0].lpfn = 0; 153 abo->placement.busy_placement = &abo->placements[1]; 154 abo->placement.num_busy_placement = 1; 155 } else { 156 /* Move to GTT memory */ 157 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 158 AMDGPU_GEM_DOMAIN_CPU); 159 } 160 break; 161 case TTM_PL_TT: 162 case AMDGPU_PL_PREEMPT: 163 default: 164 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 165 break; 166 } 167 *placement = abo->placement; 168 } 169 170 /** 171 * amdgpu_ttm_map_buffer - Map memory into the GART windows 172 * @bo: buffer object to map 173 * @mem: memory object to map 174 * @mm_cur: range to map 175 * @window: which GART window to use 176 * @ring: DMA ring to use for the copy 177 * @tmz: if we should setup a TMZ enabled mapping 178 * @size: in number of bytes to map, out number of bytes mapped 179 * @addr: resulting address inside the MC address space 180 * 181 * Setup one of the GART windows to access a specific piece of memory or return 182 * the physical address for local memory. 183 */ 184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 185 struct ttm_resource *mem, 186 struct amdgpu_res_cursor *mm_cur, 187 unsigned window, struct amdgpu_ring *ring, 188 bool tmz, uint64_t *size, uint64_t *addr) 189 { 190 struct amdgpu_device *adev = ring->adev; 191 unsigned offset, num_pages, num_dw, num_bytes; 192 uint64_t src_addr, dst_addr; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 233 AMDGPU_FENCE_OWNER_UNDEFINED, 234 num_dw * 4 + num_bytes, 235 AMDGPU_IB_POOL_DELAYED, &job); 236 if (r) 237 return r; 238 239 src_addr = num_dw * 4; 240 src_addr += job->ibs[0].gpu_addr; 241 242 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 243 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 244 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 245 dst_addr, num_bytes, false); 246 247 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 248 WARN_ON(job->ibs[0].length_dw > num_dw); 249 250 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 251 if (tmz) 252 flags |= AMDGPU_PTE_TMZ; 253 254 cpu_addr = &job->ibs[0].ptr[num_dw]; 255 256 if (mem->mem_type == TTM_PL_TT) { 257 dma_addr_t *dma_addr; 258 259 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 260 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 261 } else { 262 dma_addr_t dma_address; 263 264 dma_address = mm_cur->start; 265 dma_address += adev->vm_manager.vram_base_offset; 266 267 for (i = 0; i < num_pages; ++i) { 268 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 269 flags, cpu_addr); 270 dma_address += PAGE_SIZE; 271 } 272 } 273 274 dma_fence_put(amdgpu_job_submit(job)); 275 return 0; 276 } 277 278 /** 279 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 280 * @adev: amdgpu device 281 * @src: buffer/address where to read from 282 * @dst: buffer/address where to write to 283 * @size: number of bytes to copy 284 * @tmz: if a secure copy should be used 285 * @resv: resv object to sync to 286 * @f: Returns the last fence if multiple jobs are submitted. 287 * 288 * The function copies @size bytes from {src->mem + src->offset} to 289 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 290 * move and different for a BO to BO copy. 291 * 292 */ 293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 294 const struct amdgpu_copy_mem *src, 295 const struct amdgpu_copy_mem *dst, 296 uint64_t size, bool tmz, 297 struct dma_resv *resv, 298 struct dma_fence **f) 299 { 300 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 301 struct amdgpu_res_cursor src_mm, dst_mm; 302 struct dma_fence *fence = NULL; 303 int r = 0; 304 305 if (!adev->mman.buffer_funcs_enabled) { 306 DRM_ERROR("Trying to move memory with ring turned off.\n"); 307 return -EINVAL; 308 } 309 310 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 311 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 312 313 mutex_lock(&adev->mman.gtt_window_lock); 314 while (src_mm.remaining) { 315 uint64_t from, to, cur_size; 316 struct dma_fence *next; 317 318 /* Never copy more than 256MiB at once to avoid a timeout */ 319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 320 321 /* Map src to window 0 and dst to window 1. */ 322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 323 0, ring, tmz, &cur_size, &from); 324 if (r) 325 goto error; 326 327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 328 1, ring, tmz, &cur_size, &to); 329 if (r) 330 goto error; 331 332 r = amdgpu_copy_buffer(ring, from, to, cur_size, 333 resv, &next, false, true, tmz); 334 if (r) 335 goto error; 336 337 dma_fence_put(fence); 338 fence = next; 339 340 amdgpu_res_next(&src_mm, cur_size); 341 amdgpu_res_next(&dst_mm, cur_size); 342 } 343 error: 344 mutex_unlock(&adev->mman.gtt_window_lock); 345 if (f) 346 *f = dma_fence_get(fence); 347 dma_fence_put(fence); 348 return r; 349 } 350 351 /* 352 * amdgpu_move_blit - Copy an entire buffer to another buffer 353 * 354 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 355 * help move buffers to and from VRAM. 356 */ 357 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 358 bool evict, 359 struct ttm_resource *new_mem, 360 struct ttm_resource *old_mem) 361 { 362 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 363 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 364 struct amdgpu_copy_mem src, dst; 365 struct dma_fence *fence = NULL; 366 int r; 367 368 src.bo = bo; 369 dst.bo = bo; 370 src.mem = old_mem; 371 dst.mem = new_mem; 372 src.offset = 0; 373 dst.offset = 0; 374 375 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 376 new_mem->size, 377 amdgpu_bo_encrypted(abo), 378 bo->base.resv, &fence); 379 if (r) 380 goto error; 381 382 /* clear the space being freed */ 383 if (old_mem->mem_type == TTM_PL_VRAM && 384 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 385 struct dma_fence *wipe_fence = NULL; 386 387 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 new_mem->mem_type == AMDGPU_PL_GDS || 500 new_mem->mem_type == AMDGPU_PL_GWS || 501 new_mem->mem_type == AMDGPU_PL_OA) { 502 /* Nothing to save here */ 503 ttm_bo_move_null(bo, new_mem); 504 goto out; 505 } 506 507 if (bo->type == ttm_bo_type_device && 508 new_mem->mem_type == TTM_PL_VRAM && 509 old_mem->mem_type != TTM_PL_VRAM) { 510 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 511 * accesses the BO after it's moved. 512 */ 513 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 514 } 515 516 if (adev->mman.buffer_funcs_enabled) { 517 if (((old_mem->mem_type == TTM_PL_SYSTEM && 518 new_mem->mem_type == TTM_PL_VRAM) || 519 (old_mem->mem_type == TTM_PL_VRAM && 520 new_mem->mem_type == TTM_PL_SYSTEM))) { 521 hop->fpfn = 0; 522 hop->lpfn = 0; 523 hop->mem_type = TTM_PL_TT; 524 hop->flags = TTM_PL_FLAG_TEMPORARY; 525 return -EMULTIHOP; 526 } 527 528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 529 } else { 530 r = -ENODEV; 531 } 532 533 if (r) { 534 /* Check that all memory is CPU accessible */ 535 if (!amdgpu_mem_visible(adev, old_mem) || 536 !amdgpu_mem_visible(adev, new_mem)) { 537 pr_err("Move buffer fallback to memcpy unavailable\n"); 538 return r; 539 } 540 541 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 542 if (r) 543 return r; 544 } 545 546 out: 547 /* update statistics */ 548 atomic64_add(bo->base.size, &adev->num_bytes_moved); 549 amdgpu_bo_move_notify(bo, evict, new_mem); 550 return 0; 551 } 552 553 /* 554 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 555 * 556 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 557 */ 558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 559 struct ttm_resource *mem) 560 { 561 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 562 size_t bus_size = (size_t)mem->size; 563 564 switch (mem->mem_type) { 565 case TTM_PL_SYSTEM: 566 /* system memory */ 567 return 0; 568 case TTM_PL_TT: 569 case AMDGPU_PL_PREEMPT: 570 break; 571 case TTM_PL_VRAM: 572 mem->bus.offset = mem->start << PAGE_SHIFT; 573 /* check if it's visible */ 574 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 575 return -EINVAL; 576 577 if (adev->mman.aper_base_kaddr && 578 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 579 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 580 mem->bus.offset; 581 582 mem->bus.offset += adev->gmc.aper_base; 583 mem->bus.is_iomem = true; 584 break; 585 default: 586 return -EINVAL; 587 } 588 return 0; 589 } 590 591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 592 unsigned long page_offset) 593 { 594 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 595 struct amdgpu_res_cursor cursor; 596 597 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 598 &cursor); 599 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 600 } 601 602 /** 603 * amdgpu_ttm_domain_start - Returns GPU start address 604 * @adev: amdgpu device object 605 * @type: type of the memory 606 * 607 * Returns: 608 * GPU start address of a memory domain 609 */ 610 611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 612 { 613 switch (type) { 614 case TTM_PL_TT: 615 return adev->gmc.gart_start; 616 case TTM_PL_VRAM: 617 return adev->gmc.vram_start; 618 } 619 620 return 0; 621 } 622 623 /* 624 * TTM backend functions. 625 */ 626 struct amdgpu_ttm_tt { 627 struct ttm_tt ttm; 628 struct drm_gem_object *gobj; 629 u64 offset; 630 uint64_t userptr; 631 struct task_struct *usertask; 632 uint32_t userflags; 633 bool bound; 634 }; 635 636 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 637 638 #ifdef CONFIG_DRM_AMDGPU_USERPTR 639 /* 640 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 641 * memory and start HMM tracking CPU page table update 642 * 643 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 644 * once afterwards to stop HMM tracking 645 */ 646 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 647 struct hmm_range **range) 648 { 649 struct ttm_tt *ttm = bo->tbo.ttm; 650 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 651 unsigned long start = gtt->userptr; 652 struct vm_area_struct *vma; 653 struct mm_struct *mm; 654 bool readonly; 655 int r = 0; 656 657 /* Make sure get_user_pages_done() can cleanup gracefully */ 658 *range = NULL; 659 660 mm = bo->notifier.mm; 661 if (unlikely(!mm)) { 662 DRM_DEBUG_DRIVER("BO is not registered?\n"); 663 return -EFAULT; 664 } 665 666 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 667 return -ESRCH; 668 669 mmap_read_lock(mm); 670 vma = vma_lookup(mm, start); 671 if (unlikely(!vma)) { 672 r = -EFAULT; 673 goto out_unlock; 674 } 675 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 676 vma->vm_file)) { 677 r = -EPERM; 678 goto out_unlock; 679 } 680 681 readonly = amdgpu_ttm_tt_is_readonly(ttm); 682 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 683 readonly, NULL, pages, range); 684 out_unlock: 685 mmap_read_unlock(mm); 686 if (r) 687 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 688 689 mmput(mm); 690 691 return r; 692 } 693 694 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 695 */ 696 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 697 struct hmm_range *range) 698 { 699 struct amdgpu_ttm_tt *gtt = (void *)ttm; 700 701 if (gtt && gtt->userptr && range) 702 amdgpu_hmm_range_get_pages_done(range); 703 } 704 705 /* 706 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 707 * Check if the pages backing this ttm range have been invalidated 708 * 709 * Returns: true if pages are still valid 710 */ 711 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 712 struct hmm_range *range) 713 { 714 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 715 716 if (!gtt || !gtt->userptr || !range) 717 return false; 718 719 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 720 gtt->userptr, ttm->num_pages); 721 722 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 723 724 return !amdgpu_hmm_range_get_pages_done(range); 725 } 726 #endif 727 728 /* 729 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 730 * 731 * Called by amdgpu_cs_list_validate(). This creates the page list 732 * that backs user memory and will ultimately be mapped into the device 733 * address space. 734 */ 735 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 736 { 737 unsigned long i; 738 739 for (i = 0; i < ttm->num_pages; ++i) 740 ttm->pages[i] = pages ? pages[i] : NULL; 741 } 742 743 /* 744 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 745 * 746 * Called by amdgpu_ttm_backend_bind() 747 **/ 748 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 749 struct ttm_tt *ttm) 750 { 751 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 752 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 753 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 754 enum dma_data_direction direction = write ? 755 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 756 int r; 757 758 /* Allocate an SG array and squash pages into it */ 759 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 760 (u64)ttm->num_pages << PAGE_SHIFT, 761 GFP_KERNEL); 762 if (r) 763 goto release_sg; 764 765 /* Map SG to device */ 766 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 767 if (r) 768 goto release_sg; 769 770 /* convert SG to linear array of pages and dma addresses */ 771 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 772 ttm->num_pages); 773 774 return 0; 775 776 release_sg: 777 kfree(ttm->sg); 778 ttm->sg = NULL; 779 return r; 780 } 781 782 /* 783 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 784 */ 785 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 786 struct ttm_tt *ttm) 787 { 788 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 789 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 790 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 791 enum dma_data_direction direction = write ? 792 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 793 794 /* double check that we don't free the table twice */ 795 if (!ttm->sg || !ttm->sg->sgl) 796 return; 797 798 /* unmap the pages mapped to the device */ 799 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 800 sg_free_table(ttm->sg); 801 } 802 803 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 804 struct ttm_buffer_object *tbo, 805 uint64_t flags) 806 { 807 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 808 struct ttm_tt *ttm = tbo->ttm; 809 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 810 811 if (amdgpu_bo_encrypted(abo)) 812 flags |= AMDGPU_PTE_TMZ; 813 814 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 815 uint64_t page_idx = 1; 816 817 amdgpu_gart_bind(adev, gtt->offset, page_idx, 818 gtt->ttm.dma_address, flags); 819 820 /* The memory type of the first page defaults to UC. Now 821 * modify the memory type to NC from the second page of 822 * the BO onward. 823 */ 824 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 825 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 826 827 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 828 ttm->num_pages - page_idx, 829 &(gtt->ttm.dma_address[page_idx]), flags); 830 } else { 831 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 832 gtt->ttm.dma_address, flags); 833 } 834 } 835 836 /* 837 * amdgpu_ttm_backend_bind - Bind GTT memory 838 * 839 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 840 * This handles binding GTT memory to the device address space. 841 */ 842 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 843 struct ttm_tt *ttm, 844 struct ttm_resource *bo_mem) 845 { 846 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 847 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 848 uint64_t flags; 849 int r; 850 851 if (!bo_mem) 852 return -EINVAL; 853 854 if (gtt->bound) 855 return 0; 856 857 if (gtt->userptr) { 858 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 859 if (r) { 860 DRM_ERROR("failed to pin userptr\n"); 861 return r; 862 } 863 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 864 if (!ttm->sg) { 865 struct dma_buf_attachment *attach; 866 struct sg_table *sgt; 867 868 attach = gtt->gobj->import_attach; 869 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 870 if (IS_ERR(sgt)) 871 return PTR_ERR(sgt); 872 873 ttm->sg = sgt; 874 } 875 876 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 877 ttm->num_pages); 878 } 879 880 if (!ttm->num_pages) { 881 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 882 ttm->num_pages, bo_mem, ttm); 883 } 884 885 if (bo_mem->mem_type != TTM_PL_TT || 886 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 887 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 888 return 0; 889 } 890 891 /* compute PTE flags relevant to this BO memory */ 892 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 893 894 /* bind pages into GART page tables */ 895 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 896 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 897 gtt->ttm.dma_address, flags); 898 gtt->bound = true; 899 return 0; 900 } 901 902 /* 903 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 904 * through AGP or GART aperture. 905 * 906 * If bo is accessible through AGP aperture, then use AGP aperture 907 * to access bo; otherwise allocate logical space in GART aperture 908 * and map bo to GART aperture. 909 */ 910 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 911 { 912 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 913 struct ttm_operation_ctx ctx = { false, false }; 914 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 915 struct ttm_placement placement; 916 struct ttm_place placements; 917 struct ttm_resource *tmp; 918 uint64_t addr, flags; 919 int r; 920 921 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 922 return 0; 923 924 addr = amdgpu_gmc_agp_addr(bo); 925 if (addr != AMDGPU_BO_INVALID_OFFSET) { 926 bo->resource->start = addr >> PAGE_SHIFT; 927 return 0; 928 } 929 930 /* allocate GART space */ 931 placement.num_placement = 1; 932 placement.placement = &placements; 933 placement.num_busy_placement = 1; 934 placement.busy_placement = &placements; 935 placements.fpfn = 0; 936 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 937 placements.mem_type = TTM_PL_TT; 938 placements.flags = bo->resource->placement; 939 940 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 941 if (unlikely(r)) 942 return r; 943 944 /* compute PTE flags for this buffer object */ 945 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 946 947 /* Bind pages */ 948 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 949 amdgpu_ttm_gart_bind(adev, bo, flags); 950 amdgpu_gart_invalidate_tlb(adev); 951 ttm_resource_free(bo, &bo->resource); 952 ttm_bo_assign_mem(bo, tmp); 953 954 return 0; 955 } 956 957 /* 958 * amdgpu_ttm_recover_gart - Rebind GTT pages 959 * 960 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 961 * rebind GTT pages during a GPU reset. 962 */ 963 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 964 { 965 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 966 uint64_t flags; 967 968 if (!tbo->ttm) 969 return; 970 971 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 972 amdgpu_ttm_gart_bind(adev, tbo, flags); 973 } 974 975 /* 976 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 977 * 978 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 979 * ttm_tt_destroy(). 980 */ 981 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 982 struct ttm_tt *ttm) 983 { 984 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 985 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 986 987 /* if the pages have userptr pinning then clear that first */ 988 if (gtt->userptr) { 989 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 990 } else if (ttm->sg && gtt->gobj->import_attach) { 991 struct dma_buf_attachment *attach; 992 993 attach = gtt->gobj->import_attach; 994 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 995 ttm->sg = NULL; 996 } 997 998 if (!gtt->bound) 999 return; 1000 1001 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1002 return; 1003 1004 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1005 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1006 gtt->bound = false; 1007 } 1008 1009 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1010 struct ttm_tt *ttm) 1011 { 1012 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1013 1014 if (gtt->usertask) 1015 put_task_struct(gtt->usertask); 1016 1017 ttm_tt_fini(>t->ttm); 1018 kfree(gtt); 1019 } 1020 1021 /** 1022 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1023 * 1024 * @bo: The buffer object to create a GTT ttm_tt object around 1025 * @page_flags: Page flags to be added to the ttm_tt object 1026 * 1027 * Called by ttm_tt_create(). 1028 */ 1029 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1030 uint32_t page_flags) 1031 { 1032 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1033 struct amdgpu_ttm_tt *gtt; 1034 enum ttm_caching caching; 1035 1036 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1037 if (gtt == NULL) { 1038 return NULL; 1039 } 1040 gtt->gobj = &bo->base; 1041 1042 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1043 caching = ttm_write_combined; 1044 else 1045 caching = ttm_cached; 1046 1047 /* allocate space for the uninitialized page entries */ 1048 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1049 kfree(gtt); 1050 return NULL; 1051 } 1052 return >t->ttm; 1053 } 1054 1055 /* 1056 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1057 * 1058 * Map the pages of a ttm_tt object to an address space visible 1059 * to the underlying device. 1060 */ 1061 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1062 struct ttm_tt *ttm, 1063 struct ttm_operation_ctx *ctx) 1064 { 1065 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1066 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1067 pgoff_t i; 1068 int ret; 1069 1070 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1071 if (gtt->userptr) { 1072 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1073 if (!ttm->sg) 1074 return -ENOMEM; 1075 return 0; 1076 } 1077 1078 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1079 return 0; 1080 1081 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1082 if (ret) 1083 return ret; 1084 1085 for (i = 0; i < ttm->num_pages; ++i) 1086 ttm->pages[i]->mapping = bdev->dev_mapping; 1087 1088 return 0; 1089 } 1090 1091 /* 1092 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1093 * 1094 * Unmaps pages of a ttm_tt object from the device address space and 1095 * unpopulates the page array backing it. 1096 */ 1097 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1098 struct ttm_tt *ttm) 1099 { 1100 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1101 struct amdgpu_device *adev; 1102 pgoff_t i; 1103 1104 amdgpu_ttm_backend_unbind(bdev, ttm); 1105 1106 if (gtt->userptr) { 1107 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1108 kfree(ttm->sg); 1109 ttm->sg = NULL; 1110 return; 1111 } 1112 1113 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1114 return; 1115 1116 for (i = 0; i < ttm->num_pages; ++i) 1117 ttm->pages[i]->mapping = NULL; 1118 1119 adev = amdgpu_ttm_adev(bdev); 1120 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1121 } 1122 1123 /** 1124 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1125 * task 1126 * 1127 * @tbo: The ttm_buffer_object that contains the userptr 1128 * @user_addr: The returned value 1129 */ 1130 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1131 uint64_t *user_addr) 1132 { 1133 struct amdgpu_ttm_tt *gtt; 1134 1135 if (!tbo->ttm) 1136 return -EINVAL; 1137 1138 gtt = (void *)tbo->ttm; 1139 *user_addr = gtt->userptr; 1140 return 0; 1141 } 1142 1143 /** 1144 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1145 * task 1146 * 1147 * @bo: The ttm_buffer_object to bind this userptr to 1148 * @addr: The address in the current tasks VM space to use 1149 * @flags: Requirements of userptr object. 1150 * 1151 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1152 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1153 * initialize GPU VM for a KFD process. 1154 */ 1155 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1156 uint64_t addr, uint32_t flags) 1157 { 1158 struct amdgpu_ttm_tt *gtt; 1159 1160 if (!bo->ttm) { 1161 /* TODO: We want a separate TTM object type for userptrs */ 1162 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1163 if (bo->ttm == NULL) 1164 return -ENOMEM; 1165 } 1166 1167 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1168 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1169 1170 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1171 gtt->userptr = addr; 1172 gtt->userflags = flags; 1173 1174 if (gtt->usertask) 1175 put_task_struct(gtt->usertask); 1176 gtt->usertask = current->group_leader; 1177 get_task_struct(gtt->usertask); 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1184 */ 1185 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1186 { 1187 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1188 1189 if (gtt == NULL) 1190 return NULL; 1191 1192 if (gtt->usertask == NULL) 1193 return NULL; 1194 1195 return gtt->usertask->mm; 1196 } 1197 1198 /* 1199 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1200 * address range for the current task. 1201 * 1202 */ 1203 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1204 unsigned long end, unsigned long *userptr) 1205 { 1206 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1207 unsigned long size; 1208 1209 if (gtt == NULL || !gtt->userptr) 1210 return false; 1211 1212 /* Return false if no part of the ttm_tt object lies within 1213 * the range 1214 */ 1215 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1216 if (gtt->userptr > end || gtt->userptr + size <= start) 1217 return false; 1218 1219 if (userptr) 1220 *userptr = gtt->userptr; 1221 return true; 1222 } 1223 1224 /* 1225 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1226 */ 1227 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1228 { 1229 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1230 1231 if (gtt == NULL || !gtt->userptr) 1232 return false; 1233 1234 return true; 1235 } 1236 1237 /* 1238 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1239 */ 1240 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1241 { 1242 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1243 1244 if (gtt == NULL) 1245 return false; 1246 1247 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1248 } 1249 1250 /** 1251 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1252 * 1253 * @ttm: The ttm_tt object to compute the flags for 1254 * @mem: The memory registry backing this ttm_tt object 1255 * 1256 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1257 */ 1258 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1259 { 1260 uint64_t flags = 0; 1261 1262 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1263 flags |= AMDGPU_PTE_VALID; 1264 1265 if (mem && (mem->mem_type == TTM_PL_TT || 1266 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1267 flags |= AMDGPU_PTE_SYSTEM; 1268 1269 if (ttm->caching == ttm_cached) 1270 flags |= AMDGPU_PTE_SNOOPED; 1271 } 1272 1273 if (mem && mem->mem_type == TTM_PL_VRAM && 1274 mem->bus.caching == ttm_cached) 1275 flags |= AMDGPU_PTE_SNOOPED; 1276 1277 return flags; 1278 } 1279 1280 /** 1281 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1282 * 1283 * @adev: amdgpu_device pointer 1284 * @ttm: The ttm_tt object to compute the flags for 1285 * @mem: The memory registry backing this ttm_tt object 1286 * 1287 * Figure out the flags to use for a VM PTE (Page Table Entry). 1288 */ 1289 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1290 struct ttm_resource *mem) 1291 { 1292 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1293 1294 flags |= adev->gart.gart_pte_flags; 1295 flags |= AMDGPU_PTE_READABLE; 1296 1297 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1298 flags |= AMDGPU_PTE_WRITEABLE; 1299 1300 return flags; 1301 } 1302 1303 /* 1304 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1305 * object. 1306 * 1307 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1308 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1309 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1310 * used to clean out a memory space. 1311 */ 1312 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1313 const struct ttm_place *place) 1314 { 1315 struct dma_resv_iter resv_cursor; 1316 struct dma_fence *f; 1317 1318 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1319 return ttm_bo_eviction_valuable(bo, place); 1320 1321 /* Swapout? */ 1322 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1323 return true; 1324 1325 if (bo->type == ttm_bo_type_kernel && 1326 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1327 return false; 1328 1329 /* If bo is a KFD BO, check if the bo belongs to the current process. 1330 * If true, then return false as any KFD process needs all its BOs to 1331 * be resident to run successfully 1332 */ 1333 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1334 DMA_RESV_USAGE_BOOKKEEP, f) { 1335 if (amdkfd_fence_check_mm(f, current->mm)) 1336 return false; 1337 } 1338 1339 /* Preemptible BOs don't own system resources managed by the 1340 * driver (pages, VRAM, GART space). They point to resources 1341 * owned by someone else (e.g. pageable memory in user mode 1342 * or a DMABuf). They are used in a preemptible context so we 1343 * can guarantee no deadlocks and good QoS in case of MMU 1344 * notifiers or DMABuf move notifiers from the resource owner. 1345 */ 1346 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1347 return false; 1348 1349 if (bo->resource->mem_type == TTM_PL_TT && 1350 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1351 return false; 1352 1353 return ttm_bo_eviction_valuable(bo, place); 1354 } 1355 1356 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1357 void *buf, size_t size, bool write) 1358 { 1359 while (size) { 1360 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1361 uint64_t bytes = 4 - (pos & 0x3); 1362 uint32_t shift = (pos & 0x3) * 8; 1363 uint32_t mask = 0xffffffff << shift; 1364 uint32_t value = 0; 1365 1366 if (size < bytes) { 1367 mask &= 0xffffffff >> (bytes - size) * 8; 1368 bytes = size; 1369 } 1370 1371 if (mask != 0xffffffff) { 1372 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1373 if (write) { 1374 value &= ~mask; 1375 value |= (*(uint32_t *)buf << shift) & mask; 1376 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1377 } else { 1378 value = (value & mask) >> shift; 1379 memcpy(buf, &value, bytes); 1380 } 1381 } else { 1382 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1383 } 1384 1385 pos += bytes; 1386 buf += bytes; 1387 size -= bytes; 1388 } 1389 } 1390 1391 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1392 unsigned long offset, void *buf, 1393 int len, int write) 1394 { 1395 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1396 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1397 struct amdgpu_res_cursor src_mm; 1398 struct amdgpu_job *job; 1399 struct dma_fence *fence; 1400 uint64_t src_addr, dst_addr; 1401 unsigned int num_dw; 1402 int r, idx; 1403 1404 if (len != PAGE_SIZE) 1405 return -EINVAL; 1406 1407 if (!adev->mman.sdma_access_ptr) 1408 return -EACCES; 1409 1410 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1411 return -ENODEV; 1412 1413 if (write) 1414 memcpy(adev->mman.sdma_access_ptr, buf, len); 1415 1416 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1417 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 1418 AMDGPU_FENCE_OWNER_UNDEFINED, 1419 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1420 &job); 1421 if (r) 1422 goto out; 1423 1424 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1425 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1426 src_mm.start; 1427 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1428 if (write) 1429 swap(src_addr, dst_addr); 1430 1431 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1432 PAGE_SIZE, false); 1433 1434 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1435 WARN_ON(job->ibs[0].length_dw > num_dw); 1436 1437 fence = amdgpu_job_submit(job); 1438 1439 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1440 r = -ETIMEDOUT; 1441 dma_fence_put(fence); 1442 1443 if (!(r || write)) 1444 memcpy(buf, adev->mman.sdma_access_ptr, len); 1445 out: 1446 drm_dev_exit(idx); 1447 return r; 1448 } 1449 1450 /** 1451 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1452 * 1453 * @bo: The buffer object to read/write 1454 * @offset: Offset into buffer object 1455 * @buf: Secondary buffer to write/read from 1456 * @len: Length in bytes of access 1457 * @write: true if writing 1458 * 1459 * This is used to access VRAM that backs a buffer object via MMIO 1460 * access for debugging purposes. 1461 */ 1462 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1463 unsigned long offset, void *buf, int len, 1464 int write) 1465 { 1466 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1467 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1468 struct amdgpu_res_cursor cursor; 1469 int ret = 0; 1470 1471 if (bo->resource->mem_type != TTM_PL_VRAM) 1472 return -EIO; 1473 1474 if (amdgpu_device_has_timeouts_enabled(adev) && 1475 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1476 return len; 1477 1478 amdgpu_res_first(bo->resource, offset, len, &cursor); 1479 while (cursor.remaining) { 1480 size_t count, size = cursor.size; 1481 loff_t pos = cursor.start; 1482 1483 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1484 size -= count; 1485 if (size) { 1486 /* using MM to access rest vram and handle un-aligned address */ 1487 pos += count; 1488 buf += count; 1489 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1490 } 1491 1492 ret += cursor.size; 1493 buf += cursor.size; 1494 amdgpu_res_next(&cursor, cursor.size); 1495 } 1496 1497 return ret; 1498 } 1499 1500 static void 1501 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1502 { 1503 amdgpu_bo_move_notify(bo, false, NULL); 1504 } 1505 1506 static struct ttm_device_funcs amdgpu_bo_driver = { 1507 .ttm_tt_create = &amdgpu_ttm_tt_create, 1508 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1509 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1510 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1511 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1512 .evict_flags = &amdgpu_evict_flags, 1513 .move = &amdgpu_bo_move, 1514 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1515 .release_notify = &amdgpu_bo_release_notify, 1516 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1517 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1518 .access_memory = &amdgpu_ttm_access_memory, 1519 }; 1520 1521 /* 1522 * Firmware Reservation functions 1523 */ 1524 /** 1525 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1526 * 1527 * @adev: amdgpu_device pointer 1528 * 1529 * free fw reserved vram if it has been reserved. 1530 */ 1531 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1532 { 1533 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1534 NULL, &adev->mman.fw_vram_usage_va); 1535 } 1536 1537 /* 1538 * Driver Reservation functions 1539 */ 1540 /** 1541 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1542 * 1543 * @adev: amdgpu_device pointer 1544 * 1545 * free drv reserved vram if it has been reserved. 1546 */ 1547 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1548 { 1549 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1550 NULL, 1551 &adev->mman.drv_vram_usage_va); 1552 } 1553 1554 /** 1555 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1556 * 1557 * @adev: amdgpu_device pointer 1558 * 1559 * create bo vram reservation from fw. 1560 */ 1561 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1562 { 1563 uint64_t vram_size = adev->gmc.visible_vram_size; 1564 1565 adev->mman.fw_vram_usage_va = NULL; 1566 adev->mman.fw_vram_usage_reserved_bo = NULL; 1567 1568 if (adev->mman.fw_vram_usage_size == 0 || 1569 adev->mman.fw_vram_usage_size > vram_size) 1570 return 0; 1571 1572 return amdgpu_bo_create_kernel_at(adev, 1573 adev->mman.fw_vram_usage_start_offset, 1574 adev->mman.fw_vram_usage_size, 1575 &adev->mman.fw_vram_usage_reserved_bo, 1576 &adev->mman.fw_vram_usage_va); 1577 } 1578 1579 /** 1580 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1581 * 1582 * @adev: amdgpu_device pointer 1583 * 1584 * create bo vram reservation from drv. 1585 */ 1586 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1587 { 1588 u64 vram_size = adev->gmc.visible_vram_size; 1589 1590 adev->mman.drv_vram_usage_va = NULL; 1591 adev->mman.drv_vram_usage_reserved_bo = NULL; 1592 1593 if (adev->mman.drv_vram_usage_size == 0 || 1594 adev->mman.drv_vram_usage_size > vram_size) 1595 return 0; 1596 1597 return amdgpu_bo_create_kernel_at(adev, 1598 adev->mman.drv_vram_usage_start_offset, 1599 adev->mman.drv_vram_usage_size, 1600 &adev->mman.drv_vram_usage_reserved_bo, 1601 &adev->mman.drv_vram_usage_va); 1602 } 1603 1604 /* 1605 * Memoy training reservation functions 1606 */ 1607 1608 /** 1609 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1610 * 1611 * @adev: amdgpu_device pointer 1612 * 1613 * free memory training reserved vram if it has been reserved. 1614 */ 1615 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1616 { 1617 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1618 1619 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1620 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1621 ctx->c2p_bo = NULL; 1622 1623 return 0; 1624 } 1625 1626 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1627 { 1628 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1629 1630 memset(ctx, 0, sizeof(*ctx)); 1631 1632 ctx->c2p_train_data_offset = 1633 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1634 ctx->p2c_train_data_offset = 1635 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1636 ctx->train_data_size = 1637 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1638 1639 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1640 ctx->train_data_size, 1641 ctx->p2c_train_data_offset, 1642 ctx->c2p_train_data_offset); 1643 } 1644 1645 /* 1646 * reserve TMR memory at the top of VRAM which holds 1647 * IP Discovery data and is protected by PSP. 1648 */ 1649 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1650 { 1651 int ret; 1652 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1653 bool mem_train_support = false; 1654 1655 if (!amdgpu_sriov_vf(adev)) { 1656 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1657 mem_train_support = true; 1658 else 1659 DRM_DEBUG("memory training does not support!\n"); 1660 } 1661 1662 /* 1663 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1664 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1665 * 1666 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1667 * discovery data and G6 memory training data respectively 1668 */ 1669 adev->mman.discovery_tmr_size = 1670 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1671 if (!adev->mman.discovery_tmr_size) 1672 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1673 1674 if (mem_train_support) { 1675 /* reserve vram for mem train according to TMR location */ 1676 amdgpu_ttm_training_data_block_init(adev); 1677 ret = amdgpu_bo_create_kernel_at(adev, 1678 ctx->c2p_train_data_offset, 1679 ctx->train_data_size, 1680 &ctx->c2p_bo, 1681 NULL); 1682 if (ret) { 1683 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1684 amdgpu_ttm_training_reserve_vram_fini(adev); 1685 return ret; 1686 } 1687 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1688 } 1689 1690 ret = amdgpu_bo_create_kernel_at(adev, 1691 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1692 adev->mman.discovery_tmr_size, 1693 &adev->mman.discovery_memory, 1694 NULL); 1695 if (ret) { 1696 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1697 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1698 return ret; 1699 } 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1706 * gtt/vram related fields. 1707 * 1708 * This initializes all of the memory space pools that the TTM layer 1709 * will need such as the GTT space (system memory mapped to the device), 1710 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1711 * can be mapped per VMID. 1712 */ 1713 int amdgpu_ttm_init(struct amdgpu_device *adev) 1714 { 1715 uint64_t gtt_size; 1716 int r; 1717 1718 mutex_init(&adev->mman.gtt_window_lock); 1719 1720 /* No others user of address space so set it to 0 */ 1721 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1722 adev_to_drm(adev)->anon_inode->i_mapping, 1723 adev_to_drm(adev)->vma_offset_manager, 1724 adev->need_swiotlb, 1725 dma_addressing_limited(adev->dev)); 1726 if (r) { 1727 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1728 return r; 1729 } 1730 adev->mman.initialized = true; 1731 1732 /* Initialize VRAM pool with all of VRAM divided into pages */ 1733 r = amdgpu_vram_mgr_init(adev); 1734 if (r) { 1735 DRM_ERROR("Failed initializing VRAM heap.\n"); 1736 return r; 1737 } 1738 1739 /* Change the size here instead of the init above so only lpfn is affected */ 1740 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1741 #ifdef CONFIG_64BIT 1742 #ifdef CONFIG_X86 1743 if (adev->gmc.xgmi.connected_to_cpu) 1744 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1745 adev->gmc.visible_vram_size); 1746 1747 else 1748 #endif 1749 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1750 adev->gmc.visible_vram_size); 1751 #endif 1752 1753 /* 1754 *The reserved vram for firmware must be pinned to the specified 1755 *place on the VRAM, so reserve it early. 1756 */ 1757 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1758 if (r) { 1759 return r; 1760 } 1761 1762 /* 1763 *The reserved vram for driver must be pinned to the specified 1764 *place on the VRAM, so reserve it early. 1765 */ 1766 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1767 if (r) 1768 return r; 1769 1770 /* 1771 * only NAVI10 and onwards ASIC support for IP discovery. 1772 * If IP discovery enabled, a block of memory should be 1773 * reserved for IP discovey. 1774 */ 1775 if (adev->mman.discovery_bin) { 1776 r = amdgpu_ttm_reserve_tmr(adev); 1777 if (r) 1778 return r; 1779 } 1780 1781 /* allocate memory as required for VGA 1782 * This is used for VGA emulation and pre-OS scanout buffers to 1783 * avoid display artifacts while transitioning between pre-OS 1784 * and driver. */ 1785 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1786 &adev->mman.stolen_vga_memory, 1787 NULL); 1788 if (r) 1789 return r; 1790 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1791 adev->mman.stolen_extended_size, 1792 &adev->mman.stolen_extended_memory, 1793 NULL); 1794 if (r) 1795 return r; 1796 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1797 adev->mman.stolen_reserved_size, 1798 &adev->mman.stolen_reserved_memory, 1799 NULL); 1800 if (r) 1801 return r; 1802 1803 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1804 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1805 1806 /* Compute GTT size, either based on 1/2 the size of RAM size 1807 * or whatever the user passed on module init */ 1808 if (amdgpu_gtt_size == -1) { 1809 struct sysinfo si; 1810 1811 si_meminfo(&si); 1812 /* Certain GL unit tests for large textures can cause problems 1813 * with the OOM killer since there is no way to link this memory 1814 * to a process. This was originally mitigated (but not necessarily 1815 * eliminated) by limiting the GTT size. The problem is this limit 1816 * is often too low for many modern games so just make the limit 1/2 1817 * of system memory which aligns with TTM. The OOM accounting needs 1818 * to be addressed, but we shouldn't prevent common 3D applications 1819 * from being usable just to potentially mitigate that corner case. 1820 */ 1821 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1822 (u64)si.totalram * si.mem_unit / 2); 1823 } else { 1824 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1825 } 1826 1827 /* Initialize GTT memory pool */ 1828 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1829 if (r) { 1830 DRM_ERROR("Failed initializing GTT heap.\n"); 1831 return r; 1832 } 1833 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1834 (unsigned)(gtt_size / (1024 * 1024))); 1835 1836 /* Initialize preemptible memory pool */ 1837 r = amdgpu_preempt_mgr_init(adev); 1838 if (r) { 1839 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1840 return r; 1841 } 1842 1843 /* Initialize various on-chip memory pools */ 1844 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1845 if (r) { 1846 DRM_ERROR("Failed initializing GDS heap.\n"); 1847 return r; 1848 } 1849 1850 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1851 if (r) { 1852 DRM_ERROR("Failed initializing gws heap.\n"); 1853 return r; 1854 } 1855 1856 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1857 if (r) { 1858 DRM_ERROR("Failed initializing oa heap.\n"); 1859 return r; 1860 } 1861 1862 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1863 AMDGPU_GEM_DOMAIN_GTT, 1864 &adev->mman.sdma_access_bo, NULL, 1865 &adev->mman.sdma_access_ptr)) 1866 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1867 1868 return 0; 1869 } 1870 1871 /* 1872 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1873 */ 1874 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1875 { 1876 int idx; 1877 if (!adev->mman.initialized) 1878 return; 1879 1880 amdgpu_ttm_training_reserve_vram_fini(adev); 1881 /* return the stolen vga memory back to VRAM */ 1882 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1883 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1884 /* return the IP Discovery TMR memory back to VRAM */ 1885 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1886 if (adev->mman.stolen_reserved_size) 1887 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1888 NULL, NULL); 1889 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1890 &adev->mman.sdma_access_ptr); 1891 amdgpu_ttm_fw_reserve_vram_fini(adev); 1892 amdgpu_ttm_drv_reserve_vram_fini(adev); 1893 1894 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1895 1896 if (adev->mman.aper_base_kaddr) 1897 iounmap(adev->mman.aper_base_kaddr); 1898 adev->mman.aper_base_kaddr = NULL; 1899 1900 drm_dev_exit(idx); 1901 } 1902 1903 amdgpu_vram_mgr_fini(adev); 1904 amdgpu_gtt_mgr_fini(adev); 1905 amdgpu_preempt_mgr_fini(adev); 1906 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1907 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1908 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1909 ttm_device_fini(&adev->mman.bdev); 1910 adev->mman.initialized = false; 1911 DRM_INFO("amdgpu: ttm finalized\n"); 1912 } 1913 1914 /** 1915 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1916 * 1917 * @adev: amdgpu_device pointer 1918 * @enable: true when we can use buffer functions. 1919 * 1920 * Enable/disable use of buffer functions during suspend/resume. This should 1921 * only be called at bootup or when userspace isn't running. 1922 */ 1923 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1924 { 1925 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1926 uint64_t size; 1927 int r; 1928 1929 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1930 adev->mman.buffer_funcs_enabled == enable) 1931 return; 1932 1933 if (enable) { 1934 struct amdgpu_ring *ring; 1935 struct drm_gpu_scheduler *sched; 1936 1937 ring = adev->mman.buffer_funcs_ring; 1938 sched = &ring->sched; 1939 r = drm_sched_entity_init(&adev->mman.entity, 1940 DRM_SCHED_PRIORITY_KERNEL, &sched, 1941 1, NULL); 1942 if (r) { 1943 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1944 r); 1945 return; 1946 } 1947 } else { 1948 drm_sched_entity_destroy(&adev->mman.entity); 1949 dma_fence_put(man->move); 1950 man->move = NULL; 1951 } 1952 1953 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1954 if (enable) 1955 size = adev->gmc.real_vram_size; 1956 else 1957 size = adev->gmc.visible_vram_size; 1958 man->size = size; 1959 adev->mman.buffer_funcs_enabled = enable; 1960 } 1961 1962 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1963 bool direct_submit, 1964 unsigned int num_dw, 1965 struct dma_resv *resv, 1966 bool vm_needs_flush, 1967 struct amdgpu_job **job) 1968 { 1969 enum amdgpu_ib_pool_type pool = direct_submit ? 1970 AMDGPU_IB_POOL_DIRECT : 1971 AMDGPU_IB_POOL_DELAYED; 1972 int r; 1973 1974 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 1975 AMDGPU_FENCE_OWNER_UNDEFINED, 1976 num_dw * 4, pool, job); 1977 if (r) 1978 return r; 1979 1980 if (vm_needs_flush) { 1981 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1982 adev->gmc.pdb0_bo : 1983 adev->gart.bo); 1984 (*job)->vm_needs_flush = true; 1985 } 1986 if (!resv) 1987 return 0; 1988 1989 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 1990 DMA_RESV_USAGE_BOOKKEEP); 1991 } 1992 1993 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1994 uint64_t dst_offset, uint32_t byte_count, 1995 struct dma_resv *resv, 1996 struct dma_fence **fence, bool direct_submit, 1997 bool vm_needs_flush, bool tmz) 1998 { 1999 struct amdgpu_device *adev = ring->adev; 2000 unsigned num_loops, num_dw; 2001 struct amdgpu_job *job; 2002 uint32_t max_bytes; 2003 unsigned i; 2004 int r; 2005 2006 if (!direct_submit && !ring->sched.ready) { 2007 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2008 return -EINVAL; 2009 } 2010 2011 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2012 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2013 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2014 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2015 resv, vm_needs_flush, &job); 2016 if (r) 2017 return r; 2018 2019 for (i = 0; i < num_loops; i++) { 2020 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2021 2022 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2023 dst_offset, cur_size_in_bytes, tmz); 2024 2025 src_offset += cur_size_in_bytes; 2026 dst_offset += cur_size_in_bytes; 2027 byte_count -= cur_size_in_bytes; 2028 } 2029 2030 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2031 WARN_ON(job->ibs[0].length_dw > num_dw); 2032 if (direct_submit) 2033 r = amdgpu_job_submit_direct(job, ring, fence); 2034 else 2035 *fence = amdgpu_job_submit(job); 2036 if (r) 2037 goto error_free; 2038 2039 return r; 2040 2041 error_free: 2042 amdgpu_job_free(job); 2043 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2044 return r; 2045 } 2046 2047 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2048 uint64_t dst_addr, uint32_t byte_count, 2049 struct dma_resv *resv, 2050 struct dma_fence **fence, 2051 bool vm_needs_flush) 2052 { 2053 struct amdgpu_device *adev = ring->adev; 2054 unsigned int num_loops, num_dw; 2055 struct amdgpu_job *job; 2056 uint32_t max_bytes; 2057 unsigned int i; 2058 int r; 2059 2060 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2061 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2062 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2063 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2064 &job); 2065 if (r) 2066 return r; 2067 2068 for (i = 0; i < num_loops; i++) { 2069 uint32_t cur_size = min(byte_count, max_bytes); 2070 2071 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2072 cur_size); 2073 2074 dst_addr += cur_size; 2075 byte_count -= cur_size; 2076 } 2077 2078 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2079 WARN_ON(job->ibs[0].length_dw > num_dw); 2080 *fence = amdgpu_job_submit(job); 2081 return 0; 2082 } 2083 2084 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2085 uint32_t src_data, 2086 struct dma_resv *resv, 2087 struct dma_fence **f) 2088 { 2089 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2090 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2091 struct dma_fence *fence = NULL; 2092 struct amdgpu_res_cursor dst; 2093 int r; 2094 2095 if (!adev->mman.buffer_funcs_enabled) { 2096 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2097 return -EINVAL; 2098 } 2099 2100 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2101 2102 mutex_lock(&adev->mman.gtt_window_lock); 2103 while (dst.remaining) { 2104 struct dma_fence *next; 2105 uint64_t cur_size, to; 2106 2107 /* Never fill more than 256MiB at once to avoid timeouts */ 2108 cur_size = min(dst.size, 256ULL << 20); 2109 2110 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2111 1, ring, false, &cur_size, &to); 2112 if (r) 2113 goto error; 2114 2115 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2116 &next, true); 2117 if (r) 2118 goto error; 2119 2120 dma_fence_put(fence); 2121 fence = next; 2122 2123 amdgpu_res_next(&dst, cur_size); 2124 } 2125 error: 2126 mutex_unlock(&adev->mman.gtt_window_lock); 2127 if (f) 2128 *f = dma_fence_get(fence); 2129 dma_fence_put(fence); 2130 return r; 2131 } 2132 2133 /** 2134 * amdgpu_ttm_evict_resources - evict memory buffers 2135 * @adev: amdgpu device object 2136 * @mem_type: evicted BO's memory type 2137 * 2138 * Evicts all @mem_type buffers on the lru list of the memory type. 2139 * 2140 * Returns: 2141 * 0 for success or a negative error code on failure. 2142 */ 2143 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2144 { 2145 struct ttm_resource_manager *man; 2146 2147 switch (mem_type) { 2148 case TTM_PL_VRAM: 2149 case TTM_PL_TT: 2150 case AMDGPU_PL_GWS: 2151 case AMDGPU_PL_GDS: 2152 case AMDGPU_PL_OA: 2153 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2154 break; 2155 default: 2156 DRM_ERROR("Trying to evict invalid memory type\n"); 2157 return -EINVAL; 2158 } 2159 2160 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2161 } 2162 2163 #if defined(CONFIG_DEBUG_FS) 2164 2165 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2166 { 2167 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2168 2169 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2170 } 2171 2172 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2173 2174 /* 2175 * amdgpu_ttm_vram_read - Linear read access to VRAM 2176 * 2177 * Accesses VRAM via MMIO for debugging purposes. 2178 */ 2179 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2180 size_t size, loff_t *pos) 2181 { 2182 struct amdgpu_device *adev = file_inode(f)->i_private; 2183 ssize_t result = 0; 2184 2185 if (size & 0x3 || *pos & 0x3) 2186 return -EINVAL; 2187 2188 if (*pos >= adev->gmc.mc_vram_size) 2189 return -ENXIO; 2190 2191 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2192 while (size) { 2193 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2194 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2195 2196 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2197 if (copy_to_user(buf, value, bytes)) 2198 return -EFAULT; 2199 2200 result += bytes; 2201 buf += bytes; 2202 *pos += bytes; 2203 size -= bytes; 2204 } 2205 2206 return result; 2207 } 2208 2209 /* 2210 * amdgpu_ttm_vram_write - Linear write access to VRAM 2211 * 2212 * Accesses VRAM via MMIO for debugging purposes. 2213 */ 2214 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2215 size_t size, loff_t *pos) 2216 { 2217 struct amdgpu_device *adev = file_inode(f)->i_private; 2218 ssize_t result = 0; 2219 int r; 2220 2221 if (size & 0x3 || *pos & 0x3) 2222 return -EINVAL; 2223 2224 if (*pos >= adev->gmc.mc_vram_size) 2225 return -ENXIO; 2226 2227 while (size) { 2228 uint32_t value; 2229 2230 if (*pos >= adev->gmc.mc_vram_size) 2231 return result; 2232 2233 r = get_user(value, (uint32_t *)buf); 2234 if (r) 2235 return r; 2236 2237 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2238 2239 result += 4; 2240 buf += 4; 2241 *pos += 4; 2242 size -= 4; 2243 } 2244 2245 return result; 2246 } 2247 2248 static const struct file_operations amdgpu_ttm_vram_fops = { 2249 .owner = THIS_MODULE, 2250 .read = amdgpu_ttm_vram_read, 2251 .write = amdgpu_ttm_vram_write, 2252 .llseek = default_llseek, 2253 }; 2254 2255 /* 2256 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2257 * 2258 * This function is used to read memory that has been mapped to the 2259 * GPU and the known addresses are not physical addresses but instead 2260 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2261 */ 2262 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2263 size_t size, loff_t *pos) 2264 { 2265 struct amdgpu_device *adev = file_inode(f)->i_private; 2266 struct iommu_domain *dom; 2267 ssize_t result = 0; 2268 int r; 2269 2270 /* retrieve the IOMMU domain if any for this device */ 2271 dom = iommu_get_domain_for_dev(adev->dev); 2272 2273 while (size) { 2274 phys_addr_t addr = *pos & PAGE_MASK; 2275 loff_t off = *pos & ~PAGE_MASK; 2276 size_t bytes = PAGE_SIZE - off; 2277 unsigned long pfn; 2278 struct page *p; 2279 void *ptr; 2280 2281 bytes = bytes < size ? bytes : size; 2282 2283 /* Translate the bus address to a physical address. If 2284 * the domain is NULL it means there is no IOMMU active 2285 * and the address translation is the identity 2286 */ 2287 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2288 2289 pfn = addr >> PAGE_SHIFT; 2290 if (!pfn_valid(pfn)) 2291 return -EPERM; 2292 2293 p = pfn_to_page(pfn); 2294 if (p->mapping != adev->mman.bdev.dev_mapping) 2295 return -EPERM; 2296 2297 ptr = kmap_local_page(p); 2298 r = copy_to_user(buf, ptr + off, bytes); 2299 kunmap_local(ptr); 2300 if (r) 2301 return -EFAULT; 2302 2303 size -= bytes; 2304 *pos += bytes; 2305 result += bytes; 2306 } 2307 2308 return result; 2309 } 2310 2311 /* 2312 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2313 * 2314 * This function is used to write memory that has been mapped to the 2315 * GPU and the known addresses are not physical addresses but instead 2316 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2317 */ 2318 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2319 size_t size, loff_t *pos) 2320 { 2321 struct amdgpu_device *adev = file_inode(f)->i_private; 2322 struct iommu_domain *dom; 2323 ssize_t result = 0; 2324 int r; 2325 2326 dom = iommu_get_domain_for_dev(adev->dev); 2327 2328 while (size) { 2329 phys_addr_t addr = *pos & PAGE_MASK; 2330 loff_t off = *pos & ~PAGE_MASK; 2331 size_t bytes = PAGE_SIZE - off; 2332 unsigned long pfn; 2333 struct page *p; 2334 void *ptr; 2335 2336 bytes = bytes < size ? bytes : size; 2337 2338 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2339 2340 pfn = addr >> PAGE_SHIFT; 2341 if (!pfn_valid(pfn)) 2342 return -EPERM; 2343 2344 p = pfn_to_page(pfn); 2345 if (p->mapping != adev->mman.bdev.dev_mapping) 2346 return -EPERM; 2347 2348 ptr = kmap_local_page(p); 2349 r = copy_from_user(ptr + off, buf, bytes); 2350 kunmap_local(ptr); 2351 if (r) 2352 return -EFAULT; 2353 2354 size -= bytes; 2355 *pos += bytes; 2356 result += bytes; 2357 } 2358 2359 return result; 2360 } 2361 2362 static const struct file_operations amdgpu_ttm_iomem_fops = { 2363 .owner = THIS_MODULE, 2364 .read = amdgpu_iomem_read, 2365 .write = amdgpu_iomem_write, 2366 .llseek = default_llseek 2367 }; 2368 2369 #endif 2370 2371 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2372 { 2373 #if defined(CONFIG_DEBUG_FS) 2374 struct drm_minor *minor = adev_to_drm(adev)->primary; 2375 struct dentry *root = minor->debugfs_root; 2376 2377 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2378 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2379 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2380 &amdgpu_ttm_iomem_fops); 2381 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2382 &amdgpu_ttm_page_pool_fops); 2383 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2384 TTM_PL_VRAM), 2385 root, "amdgpu_vram_mm"); 2386 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2387 TTM_PL_TT), 2388 root, "amdgpu_gtt_mm"); 2389 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2390 AMDGPU_PL_GDS), 2391 root, "amdgpu_gds_mm"); 2392 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2393 AMDGPU_PL_GWS), 2394 root, "amdgpu_gws_mm"); 2395 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2396 AMDGPU_PL_OA), 2397 root, "amdgpu_oa_mm"); 2398 2399 #endif 2400 } 2401