1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS(DMA_BUF);
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		placement->num_busy_placement = 0;
106 		return;
107 	}
108 
109 	/* Object isn't an AMDGPU object so ignore */
110 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
111 		placement->placement = &placements;
112 		placement->busy_placement = &placements;
113 		placement->num_placement = 1;
114 		placement->num_busy_placement = 1;
115 		return;
116 	}
117 
118 	abo = ttm_to_amdgpu_bo(bo);
119 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
120 		placement->num_placement = 0;
121 		placement->num_busy_placement = 0;
122 		return;
123 	}
124 
125 	switch (bo->resource->mem_type) {
126 	case AMDGPU_PL_GDS:
127 	case AMDGPU_PL_GWS:
128 	case AMDGPU_PL_OA:
129 	case AMDGPU_PL_DOORBELL:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned int window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned int offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct amdgpu_job *job;
193 	void *cpu_addr;
194 	uint64_t flags;
195 	unsigned int i;
196 	int r;
197 
198 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200 
201 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202 		return -EINVAL;
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 
212 	/*
213 	 * If start begins at an offset inside the page, then adjust the size
214 	 * and addr accordingly
215 	 */
216 	offset = mm_cur->start & ~PAGE_MASK;
217 
218 	num_pages = PFN_UP(*size + offset);
219 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220 
221 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222 
223 	*addr = adev->gmc.gart_start;
224 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 		AMDGPU_GPU_PAGE_SIZE;
226 	*addr += offset;
227 
228 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230 
231 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 				     AMDGPU_FENCE_OWNER_UNDEFINED,
233 				     num_dw * 4 + num_bytes,
234 				     AMDGPU_IB_POOL_DELAYED, &job);
235 	if (r)
236 		return r;
237 
238 	src_addr = num_dw * 4;
239 	src_addr += job->ibs[0].gpu_addr;
240 
241 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 				dst_addr, num_bytes, false);
245 
246 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 	WARN_ON(job->ibs[0].length_dw > num_dw);
248 
249 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250 	if (tmz)
251 		flags |= AMDGPU_PTE_TMZ;
252 
253 	cpu_addr = &job->ibs[0].ptr[num_dw];
254 
255 	if (mem->mem_type == TTM_PL_TT) {
256 		dma_addr_t *dma_addr;
257 
258 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268 					flags, cpu_addr);
269 			dma_address += PAGE_SIZE;
270 		}
271 	}
272 
273 	dma_fence_put(amdgpu_job_submit(job));
274 	return 0;
275 }
276 
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 			       const struct amdgpu_copy_mem *src,
294 			       const struct amdgpu_copy_mem *dst,
295 			       uint64_t size, bool tmz,
296 			       struct dma_resv *resv,
297 			       struct dma_fence **f)
298 {
299 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 	struct amdgpu_res_cursor src_mm, dst_mm;
301 	struct dma_fence *fence = NULL;
302 	int r = 0;
303 
304 	if (!adev->mman.buffer_funcs_enabled) {
305 		DRM_ERROR("Trying to move memory with ring turned off.\n");
306 		return -EINVAL;
307 	}
308 
309 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311 
312 	mutex_lock(&adev->mman.gtt_window_lock);
313 	while (src_mm.remaining) {
314 		uint64_t from, to, cur_size;
315 		struct dma_fence *next;
316 
317 		/* Never copy more than 256MiB at once to avoid a timeout */
318 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319 
320 		/* Map src to window 0 and dst to window 1. */
321 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 					  0, ring, tmz, &cur_size, &from);
323 		if (r)
324 			goto error;
325 
326 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 					  1, ring, tmz, &cur_size, &to);
328 		if (r)
329 			goto error;
330 
331 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 				       resv, &next, false, true, tmz);
333 		if (r)
334 			goto error;
335 
336 		dma_fence_put(fence);
337 		fence = next;
338 
339 		amdgpu_res_next(&src_mm, cur_size);
340 		amdgpu_res_next(&dst_mm, cur_size);
341 	}
342 error:
343 	mutex_unlock(&adev->mman.gtt_window_lock);
344 	if (f)
345 		*f = dma_fence_get(fence);
346 	dma_fence_put(fence);
347 	return r;
348 }
349 
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357 			    bool evict,
358 			    struct ttm_resource *new_mem,
359 			    struct ttm_resource *old_mem)
360 {
361 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 	struct amdgpu_copy_mem src, dst;
364 	struct dma_fence *fence = NULL;
365 	int r;
366 
367 	src.bo = bo;
368 	dst.bo = bo;
369 	src.mem = old_mem;
370 	dst.mem = new_mem;
371 	src.offset = 0;
372 	dst.offset = 0;
373 
374 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375 				       new_mem->size,
376 				       amdgpu_bo_encrypted(abo),
377 				       bo->base.resv, &fence);
378 	if (r)
379 		goto error;
380 
381 	/* clear the space being freed */
382 	if (old_mem->mem_type == TTM_PL_VRAM &&
383 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 		struct dma_fence *wipe_fence = NULL;
385 
386 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387 					false);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
413  * @adev: amdgpu device
414  * @res: the resource to check
415  *
416  * Returns: true if the full resource is CPU visible, false otherwise.
417  */
418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
419 			    struct ttm_resource *res)
420 {
421 	struct amdgpu_res_cursor cursor;
422 
423 	if (!res)
424 		return false;
425 
426 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
427 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
428 		return true;
429 
430 	if (res->mem_type != TTM_PL_VRAM)
431 		return false;
432 
433 	amdgpu_res_first(res, 0, res->size, &cursor);
434 	while (cursor.remaining) {
435 		if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
436 			return false;
437 		amdgpu_res_next(&cursor, cursor.size);
438 	}
439 
440 	return true;
441 }
442 
443 /*
444  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
445  *
446  * Called by amdgpu_bo_move()
447  */
448 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
449 				struct ttm_resource *mem)
450 {
451 	if (!amdgpu_res_cpu_visible(adev, mem))
452 		return false;
453 
454 	/* ttm_resource_ioremap only supports contiguous memory */
455 	if (mem->mem_type == TTM_PL_VRAM &&
456 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
457 		return false;
458 
459 	return true;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = bo->resource;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT ||
478 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
479 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
480 		if (r)
481 			return r;
482 	}
483 
484 	abo = ttm_to_amdgpu_bo(bo);
485 	adev = amdgpu_ttm_adev(bo->bdev);
486 
487 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
488 			 bo->ttm == NULL)) {
489 		ttm_bo_move_null(bo, new_mem);
490 		goto out;
491 	}
492 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
493 	    (new_mem->mem_type == TTM_PL_TT ||
494 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
495 		ttm_bo_move_null(bo, new_mem);
496 		goto out;
497 	}
498 	if ((old_mem->mem_type == TTM_PL_TT ||
499 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
500 	    new_mem->mem_type == TTM_PL_SYSTEM) {
501 		r = ttm_bo_wait_ctx(bo, ctx);
502 		if (r)
503 			return r;
504 
505 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
506 		ttm_resource_free(bo, &bo->resource);
507 		ttm_bo_assign_mem(bo, new_mem);
508 		goto out;
509 	}
510 
511 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
512 	    old_mem->mem_type == AMDGPU_PL_GWS ||
513 	    old_mem->mem_type == AMDGPU_PL_OA ||
514 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
515 	    new_mem->mem_type == AMDGPU_PL_GDS ||
516 	    new_mem->mem_type == AMDGPU_PL_GWS ||
517 	    new_mem->mem_type == AMDGPU_PL_OA ||
518 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
519 		/* Nothing to save here */
520 		ttm_bo_move_null(bo, new_mem);
521 		goto out;
522 	}
523 
524 	if (bo->type == ttm_bo_type_device &&
525 	    new_mem->mem_type == TTM_PL_VRAM &&
526 	    old_mem->mem_type != TTM_PL_VRAM) {
527 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
528 		 * accesses the BO after it's moved.
529 		 */
530 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
531 	}
532 
533 	if (adev->mman.buffer_funcs_enabled) {
534 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
535 		      new_mem->mem_type == TTM_PL_VRAM) ||
536 		     (old_mem->mem_type == TTM_PL_VRAM &&
537 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
538 			hop->fpfn = 0;
539 			hop->lpfn = 0;
540 			hop->mem_type = TTM_PL_TT;
541 			hop->flags = TTM_PL_FLAG_TEMPORARY;
542 			return -EMULTIHOP;
543 		}
544 
545 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
546 	} else {
547 		r = -ENODEV;
548 	}
549 
550 	if (r) {
551 		/* Check that all memory is CPU accessible */
552 		if (!amdgpu_res_copyable(adev, old_mem) ||
553 		    !amdgpu_res_copyable(adev, new_mem)) {
554 			pr_err("Move buffer fallback to memcpy unavailable\n");
555 			return r;
556 		}
557 
558 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
559 		if (r)
560 			return r;
561 	}
562 
563 	trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
564 out:
565 	/* update statistics */
566 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
567 	amdgpu_bo_move_notify(bo, evict);
568 	return 0;
569 }
570 
571 /*
572  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
573  *
574  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
575  */
576 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
577 				     struct ttm_resource *mem)
578 {
579 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
580 
581 	switch (mem->mem_type) {
582 	case TTM_PL_SYSTEM:
583 		/* system memory */
584 		return 0;
585 	case TTM_PL_TT:
586 	case AMDGPU_PL_PREEMPT:
587 		break;
588 	case TTM_PL_VRAM:
589 		mem->bus.offset = mem->start << PAGE_SHIFT;
590 
591 		if (adev->mman.aper_base_kaddr &&
592 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
593 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
594 					mem->bus.offset;
595 
596 		mem->bus.offset += adev->gmc.aper_base;
597 		mem->bus.is_iomem = true;
598 		break;
599 	case AMDGPU_PL_DOORBELL:
600 		mem->bus.offset = mem->start << PAGE_SHIFT;
601 		mem->bus.offset += adev->doorbell.base;
602 		mem->bus.is_iomem = true;
603 		mem->bus.caching = ttm_uncached;
604 		break;
605 	default:
606 		return -EINVAL;
607 	}
608 	return 0;
609 }
610 
611 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
612 					   unsigned long page_offset)
613 {
614 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
615 	struct amdgpu_res_cursor cursor;
616 
617 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
618 			 &cursor);
619 
620 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
621 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
622 
623 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
624 }
625 
626 /**
627  * amdgpu_ttm_domain_start - Returns GPU start address
628  * @adev: amdgpu device object
629  * @type: type of the memory
630  *
631  * Returns:
632  * GPU start address of a memory domain
633  */
634 
635 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
636 {
637 	switch (type) {
638 	case TTM_PL_TT:
639 		return adev->gmc.gart_start;
640 	case TTM_PL_VRAM:
641 		return adev->gmc.vram_start;
642 	}
643 
644 	return 0;
645 }
646 
647 /*
648  * TTM backend functions.
649  */
650 struct amdgpu_ttm_tt {
651 	struct ttm_tt	ttm;
652 	struct drm_gem_object	*gobj;
653 	u64			offset;
654 	uint64_t		userptr;
655 	struct task_struct	*usertask;
656 	uint32_t		userflags;
657 	bool			bound;
658 	int32_t			pool_id;
659 };
660 
661 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
662 
663 #ifdef CONFIG_DRM_AMDGPU_USERPTR
664 /*
665  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
666  * memory and start HMM tracking CPU page table update
667  *
668  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
669  * once afterwards to stop HMM tracking
670  */
671 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
672 				 struct hmm_range **range)
673 {
674 	struct ttm_tt *ttm = bo->tbo.ttm;
675 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
676 	unsigned long start = gtt->userptr;
677 	struct vm_area_struct *vma;
678 	struct mm_struct *mm;
679 	bool readonly;
680 	int r = 0;
681 
682 	/* Make sure get_user_pages_done() can cleanup gracefully */
683 	*range = NULL;
684 
685 	mm = bo->notifier.mm;
686 	if (unlikely(!mm)) {
687 		DRM_DEBUG_DRIVER("BO is not registered?\n");
688 		return -EFAULT;
689 	}
690 
691 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
692 		return -ESRCH;
693 
694 	mmap_read_lock(mm);
695 	vma = vma_lookup(mm, start);
696 	if (unlikely(!vma)) {
697 		r = -EFAULT;
698 		goto out_unlock;
699 	}
700 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
701 		vma->vm_file)) {
702 		r = -EPERM;
703 		goto out_unlock;
704 	}
705 
706 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
707 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
708 				       readonly, NULL, pages, range);
709 out_unlock:
710 	mmap_read_unlock(mm);
711 	if (r)
712 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
713 
714 	mmput(mm);
715 
716 	return r;
717 }
718 
719 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
720  */
721 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
722 				      struct hmm_range *range)
723 {
724 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
725 
726 	if (gtt && gtt->userptr && range)
727 		amdgpu_hmm_range_get_pages_done(range);
728 }
729 
730 /*
731  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
732  * Check if the pages backing this ttm range have been invalidated
733  *
734  * Returns: true if pages are still valid
735  */
736 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
737 				       struct hmm_range *range)
738 {
739 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
740 
741 	if (!gtt || !gtt->userptr || !range)
742 		return false;
743 
744 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
745 		gtt->userptr, ttm->num_pages);
746 
747 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
748 
749 	return !amdgpu_hmm_range_get_pages_done(range);
750 }
751 #endif
752 
753 /*
754  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
755  *
756  * Called by amdgpu_cs_list_validate(). This creates the page list
757  * that backs user memory and will ultimately be mapped into the device
758  * address space.
759  */
760 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
761 {
762 	unsigned long i;
763 
764 	for (i = 0; i < ttm->num_pages; ++i)
765 		ttm->pages[i] = pages ? pages[i] : NULL;
766 }
767 
768 /*
769  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
770  *
771  * Called by amdgpu_ttm_backend_bind()
772  **/
773 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
774 				     struct ttm_tt *ttm)
775 {
776 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
777 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
778 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
779 	enum dma_data_direction direction = write ?
780 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
781 	int r;
782 
783 	/* Allocate an SG array and squash pages into it */
784 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
785 				      (u64)ttm->num_pages << PAGE_SHIFT,
786 				      GFP_KERNEL);
787 	if (r)
788 		goto release_sg;
789 
790 	/* Map SG to device */
791 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
792 	if (r)
793 		goto release_sg;
794 
795 	/* convert SG to linear array of pages and dma addresses */
796 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
797 				       ttm->num_pages);
798 
799 	return 0;
800 
801 release_sg:
802 	kfree(ttm->sg);
803 	ttm->sg = NULL;
804 	return r;
805 }
806 
807 /*
808  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
809  */
810 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
811 					struct ttm_tt *ttm)
812 {
813 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
814 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
815 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
816 	enum dma_data_direction direction = write ?
817 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
818 
819 	/* double check that we don't free the table twice */
820 	if (!ttm->sg || !ttm->sg->sgl)
821 		return;
822 
823 	/* unmap the pages mapped to the device */
824 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
825 	sg_free_table(ttm->sg);
826 }
827 
828 /*
829  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
830  * MQDn+CtrlStackn where n is the number of XCCs per partition.
831  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
832  * and uses memory type default, UC. The rest of pages_per_xcc are
833  * Ctrl stack and modify their memory type to NC.
834  */
835 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
836 				struct ttm_tt *ttm, uint64_t flags)
837 {
838 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
839 	uint64_t total_pages = ttm->num_pages;
840 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
841 	uint64_t page_idx, pages_per_xcc;
842 	int i;
843 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
844 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
845 
846 	pages_per_xcc = total_pages;
847 	do_div(pages_per_xcc, num_xcc);
848 
849 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
850 		/* MQD page: use default flags */
851 		amdgpu_gart_bind(adev,
852 				gtt->offset + (page_idx << PAGE_SHIFT),
853 				1, &gtt->ttm.dma_address[page_idx], flags);
854 		/*
855 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
856 		 * the second page of the BO onward.
857 		 */
858 		amdgpu_gart_bind(adev,
859 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
860 				pages_per_xcc - 1,
861 				&gtt->ttm.dma_address[page_idx + 1],
862 				ctrl_flags);
863 	}
864 }
865 
866 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
867 				 struct ttm_buffer_object *tbo,
868 				 uint64_t flags)
869 {
870 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
871 	struct ttm_tt *ttm = tbo->ttm;
872 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
873 
874 	if (amdgpu_bo_encrypted(abo))
875 		flags |= AMDGPU_PTE_TMZ;
876 
877 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
878 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
879 	} else {
880 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
881 				 gtt->ttm.dma_address, flags);
882 	}
883 	gtt->bound = true;
884 }
885 
886 /*
887  * amdgpu_ttm_backend_bind - Bind GTT memory
888  *
889  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
890  * This handles binding GTT memory to the device address space.
891  */
892 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
893 				   struct ttm_tt *ttm,
894 				   struct ttm_resource *bo_mem)
895 {
896 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
897 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
898 	uint64_t flags;
899 	int r;
900 
901 	if (!bo_mem)
902 		return -EINVAL;
903 
904 	if (gtt->bound)
905 		return 0;
906 
907 	if (gtt->userptr) {
908 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
909 		if (r) {
910 			DRM_ERROR("failed to pin userptr\n");
911 			return r;
912 		}
913 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
914 		if (!ttm->sg) {
915 			struct dma_buf_attachment *attach;
916 			struct sg_table *sgt;
917 
918 			attach = gtt->gobj->import_attach;
919 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
920 			if (IS_ERR(sgt))
921 				return PTR_ERR(sgt);
922 
923 			ttm->sg = sgt;
924 		}
925 
926 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
927 					       ttm->num_pages);
928 	}
929 
930 	if (!ttm->num_pages) {
931 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
932 		     ttm->num_pages, bo_mem, ttm);
933 	}
934 
935 	if (bo_mem->mem_type != TTM_PL_TT ||
936 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
937 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
938 		return 0;
939 	}
940 
941 	/* compute PTE flags relevant to this BO memory */
942 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
943 
944 	/* bind pages into GART page tables */
945 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
946 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
947 			 gtt->ttm.dma_address, flags);
948 	gtt->bound = true;
949 	return 0;
950 }
951 
952 /*
953  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
954  * through AGP or GART aperture.
955  *
956  * If bo is accessible through AGP aperture, then use AGP aperture
957  * to access bo; otherwise allocate logical space in GART aperture
958  * and map bo to GART aperture.
959  */
960 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
961 {
962 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
963 	struct ttm_operation_ctx ctx = { false, false };
964 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
965 	struct ttm_placement placement;
966 	struct ttm_place placements;
967 	struct ttm_resource *tmp;
968 	uint64_t addr, flags;
969 	int r;
970 
971 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
972 		return 0;
973 
974 	addr = amdgpu_gmc_agp_addr(bo);
975 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
976 		bo->resource->start = addr >> PAGE_SHIFT;
977 		return 0;
978 	}
979 
980 	/* allocate GART space */
981 	placement.num_placement = 1;
982 	placement.placement = &placements;
983 	placement.num_busy_placement = 1;
984 	placement.busy_placement = &placements;
985 	placements.fpfn = 0;
986 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
987 	placements.mem_type = TTM_PL_TT;
988 	placements.flags = bo->resource->placement;
989 
990 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
991 	if (unlikely(r))
992 		return r;
993 
994 	/* compute PTE flags for this buffer object */
995 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
996 
997 	/* Bind pages */
998 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
999 	amdgpu_ttm_gart_bind(adev, bo, flags);
1000 	amdgpu_gart_invalidate_tlb(adev);
1001 	ttm_resource_free(bo, &bo->resource);
1002 	ttm_bo_assign_mem(bo, tmp);
1003 
1004 	return 0;
1005 }
1006 
1007 /*
1008  * amdgpu_ttm_recover_gart - Rebind GTT pages
1009  *
1010  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1011  * rebind GTT pages during a GPU reset.
1012  */
1013 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1014 {
1015 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1016 	uint64_t flags;
1017 
1018 	if (!tbo->ttm)
1019 		return;
1020 
1021 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1022 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1023 }
1024 
1025 /*
1026  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1027  *
1028  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1029  * ttm_tt_destroy().
1030  */
1031 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1032 				      struct ttm_tt *ttm)
1033 {
1034 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1035 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1036 
1037 	/* if the pages have userptr pinning then clear that first */
1038 	if (gtt->userptr) {
1039 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1040 	} else if (ttm->sg && gtt->gobj->import_attach) {
1041 		struct dma_buf_attachment *attach;
1042 
1043 		attach = gtt->gobj->import_attach;
1044 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1045 		ttm->sg = NULL;
1046 	}
1047 
1048 	if (!gtt->bound)
1049 		return;
1050 
1051 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1052 		return;
1053 
1054 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1055 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1056 	gtt->bound = false;
1057 }
1058 
1059 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1060 				       struct ttm_tt *ttm)
1061 {
1062 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1063 
1064 	if (gtt->usertask)
1065 		put_task_struct(gtt->usertask);
1066 
1067 	ttm_tt_fini(&gtt->ttm);
1068 	kfree(gtt);
1069 }
1070 
1071 /**
1072  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1073  *
1074  * @bo: The buffer object to create a GTT ttm_tt object around
1075  * @page_flags: Page flags to be added to the ttm_tt object
1076  *
1077  * Called by ttm_tt_create().
1078  */
1079 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1080 					   uint32_t page_flags)
1081 {
1082 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1083 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1084 	struct amdgpu_ttm_tt *gtt;
1085 	enum ttm_caching caching;
1086 
1087 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1088 	if (!gtt)
1089 		return NULL;
1090 
1091 	gtt->gobj = &bo->base;
1092 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1093 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1094 	else
1095 		gtt->pool_id = abo->xcp_id;
1096 
1097 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1098 		caching = ttm_write_combined;
1099 	else
1100 		caching = ttm_cached;
1101 
1102 	/* allocate space for the uninitialized page entries */
1103 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1104 		kfree(gtt);
1105 		return NULL;
1106 	}
1107 	return &gtt->ttm;
1108 }
1109 
1110 /*
1111  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1112  *
1113  * Map the pages of a ttm_tt object to an address space visible
1114  * to the underlying device.
1115  */
1116 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1117 				  struct ttm_tt *ttm,
1118 				  struct ttm_operation_ctx *ctx)
1119 {
1120 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1122 	struct ttm_pool *pool;
1123 	pgoff_t i;
1124 	int ret;
1125 
1126 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1127 	if (gtt->userptr) {
1128 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1129 		if (!ttm->sg)
1130 			return -ENOMEM;
1131 		return 0;
1132 	}
1133 
1134 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1135 		return 0;
1136 
1137 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1138 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1139 	else
1140 		pool = &adev->mman.bdev.pool;
1141 	ret = ttm_pool_alloc(pool, ttm, ctx);
1142 	if (ret)
1143 		return ret;
1144 
1145 	for (i = 0; i < ttm->num_pages; ++i)
1146 		ttm->pages[i]->mapping = bdev->dev_mapping;
1147 
1148 	return 0;
1149 }
1150 
1151 /*
1152  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1153  *
1154  * Unmaps pages of a ttm_tt object from the device address space and
1155  * unpopulates the page array backing it.
1156  */
1157 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1158 				     struct ttm_tt *ttm)
1159 {
1160 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1161 	struct amdgpu_device *adev;
1162 	struct ttm_pool *pool;
1163 	pgoff_t i;
1164 
1165 	amdgpu_ttm_backend_unbind(bdev, ttm);
1166 
1167 	if (gtt->userptr) {
1168 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1169 		kfree(ttm->sg);
1170 		ttm->sg = NULL;
1171 		return;
1172 	}
1173 
1174 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1175 		return;
1176 
1177 	for (i = 0; i < ttm->num_pages; ++i)
1178 		ttm->pages[i]->mapping = NULL;
1179 
1180 	adev = amdgpu_ttm_adev(bdev);
1181 
1182 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1183 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1184 	else
1185 		pool = &adev->mman.bdev.pool;
1186 
1187 	return ttm_pool_free(pool, ttm);
1188 }
1189 
1190 /**
1191  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1192  * task
1193  *
1194  * @tbo: The ttm_buffer_object that contains the userptr
1195  * @user_addr:  The returned value
1196  */
1197 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1198 			      uint64_t *user_addr)
1199 {
1200 	struct amdgpu_ttm_tt *gtt;
1201 
1202 	if (!tbo->ttm)
1203 		return -EINVAL;
1204 
1205 	gtt = (void *)tbo->ttm;
1206 	*user_addr = gtt->userptr;
1207 	return 0;
1208 }
1209 
1210 /**
1211  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1212  * task
1213  *
1214  * @bo: The ttm_buffer_object to bind this userptr to
1215  * @addr:  The address in the current tasks VM space to use
1216  * @flags: Requirements of userptr object.
1217  *
1218  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1219  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1220  * initialize GPU VM for a KFD process.
1221  */
1222 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1223 			      uint64_t addr, uint32_t flags)
1224 {
1225 	struct amdgpu_ttm_tt *gtt;
1226 
1227 	if (!bo->ttm) {
1228 		/* TODO: We want a separate TTM object type for userptrs */
1229 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1230 		if (bo->ttm == NULL)
1231 			return -ENOMEM;
1232 	}
1233 
1234 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1235 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1236 
1237 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1238 	gtt->userptr = addr;
1239 	gtt->userflags = flags;
1240 
1241 	if (gtt->usertask)
1242 		put_task_struct(gtt->usertask);
1243 	gtt->usertask = current->group_leader;
1244 	get_task_struct(gtt->usertask);
1245 
1246 	return 0;
1247 }
1248 
1249 /*
1250  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1251  */
1252 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1253 {
1254 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1255 
1256 	if (gtt == NULL)
1257 		return NULL;
1258 
1259 	if (gtt->usertask == NULL)
1260 		return NULL;
1261 
1262 	return gtt->usertask->mm;
1263 }
1264 
1265 /*
1266  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1267  * address range for the current task.
1268  *
1269  */
1270 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1271 				  unsigned long end, unsigned long *userptr)
1272 {
1273 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1274 	unsigned long size;
1275 
1276 	if (gtt == NULL || !gtt->userptr)
1277 		return false;
1278 
1279 	/* Return false if no part of the ttm_tt object lies within
1280 	 * the range
1281 	 */
1282 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1283 	if (gtt->userptr > end || gtt->userptr + size <= start)
1284 		return false;
1285 
1286 	if (userptr)
1287 		*userptr = gtt->userptr;
1288 	return true;
1289 }
1290 
1291 /*
1292  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1293  */
1294 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1295 {
1296 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1297 
1298 	if (gtt == NULL || !gtt->userptr)
1299 		return false;
1300 
1301 	return true;
1302 }
1303 
1304 /*
1305  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1306  */
1307 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1308 {
1309 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1310 
1311 	if (gtt == NULL)
1312 		return false;
1313 
1314 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1315 }
1316 
1317 /**
1318  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1319  *
1320  * @ttm: The ttm_tt object to compute the flags for
1321  * @mem: The memory registry backing this ttm_tt object
1322  *
1323  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1324  */
1325 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1326 {
1327 	uint64_t flags = 0;
1328 
1329 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1330 		flags |= AMDGPU_PTE_VALID;
1331 
1332 	if (mem && (mem->mem_type == TTM_PL_TT ||
1333 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1334 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1335 		flags |= AMDGPU_PTE_SYSTEM;
1336 
1337 		if (ttm->caching == ttm_cached)
1338 			flags |= AMDGPU_PTE_SNOOPED;
1339 	}
1340 
1341 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1342 			mem->bus.caching == ttm_cached)
1343 		flags |= AMDGPU_PTE_SNOOPED;
1344 
1345 	return flags;
1346 }
1347 
1348 /**
1349  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1350  *
1351  * @adev: amdgpu_device pointer
1352  * @ttm: The ttm_tt object to compute the flags for
1353  * @mem: The memory registry backing this ttm_tt object
1354  *
1355  * Figure out the flags to use for a VM PTE (Page Table Entry).
1356  */
1357 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1358 				 struct ttm_resource *mem)
1359 {
1360 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1361 
1362 	flags |= adev->gart.gart_pte_flags;
1363 	flags |= AMDGPU_PTE_READABLE;
1364 
1365 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1366 		flags |= AMDGPU_PTE_WRITEABLE;
1367 
1368 	return flags;
1369 }
1370 
1371 /*
1372  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1373  * object.
1374  *
1375  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1376  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1377  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1378  * used to clean out a memory space.
1379  */
1380 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1381 					    const struct ttm_place *place)
1382 {
1383 	struct dma_resv_iter resv_cursor;
1384 	struct dma_fence *f;
1385 
1386 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1387 		return ttm_bo_eviction_valuable(bo, place);
1388 
1389 	/* Swapout? */
1390 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1391 		return true;
1392 
1393 	if (bo->type == ttm_bo_type_kernel &&
1394 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1395 		return false;
1396 
1397 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1398 	 * If true, then return false as any KFD process needs all its BOs to
1399 	 * be resident to run successfully
1400 	 */
1401 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1402 				DMA_RESV_USAGE_BOOKKEEP, f) {
1403 		if (amdkfd_fence_check_mm(f, current->mm))
1404 			return false;
1405 	}
1406 
1407 	/* Preemptible BOs don't own system resources managed by the
1408 	 * driver (pages, VRAM, GART space). They point to resources
1409 	 * owned by someone else (e.g. pageable memory in user mode
1410 	 * or a DMABuf). They are used in a preemptible context so we
1411 	 * can guarantee no deadlocks and good QoS in case of MMU
1412 	 * notifiers or DMABuf move notifiers from the resource owner.
1413 	 */
1414 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1415 		return false;
1416 
1417 	if (bo->resource->mem_type == TTM_PL_TT &&
1418 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1419 		return false;
1420 
1421 	return ttm_bo_eviction_valuable(bo, place);
1422 }
1423 
1424 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1425 				      void *buf, size_t size, bool write)
1426 {
1427 	while (size) {
1428 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1429 		uint64_t bytes = 4 - (pos & 0x3);
1430 		uint32_t shift = (pos & 0x3) * 8;
1431 		uint32_t mask = 0xffffffff << shift;
1432 		uint32_t value = 0;
1433 
1434 		if (size < bytes) {
1435 			mask &= 0xffffffff >> (bytes - size) * 8;
1436 			bytes = size;
1437 		}
1438 
1439 		if (mask != 0xffffffff) {
1440 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1441 			if (write) {
1442 				value &= ~mask;
1443 				value |= (*(uint32_t *)buf << shift) & mask;
1444 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1445 			} else {
1446 				value = (value & mask) >> shift;
1447 				memcpy(buf, &value, bytes);
1448 			}
1449 		} else {
1450 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1451 		}
1452 
1453 		pos += bytes;
1454 		buf += bytes;
1455 		size -= bytes;
1456 	}
1457 }
1458 
1459 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1460 					unsigned long offset, void *buf,
1461 					int len, int write)
1462 {
1463 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1464 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1465 	struct amdgpu_res_cursor src_mm;
1466 	struct amdgpu_job *job;
1467 	struct dma_fence *fence;
1468 	uint64_t src_addr, dst_addr;
1469 	unsigned int num_dw;
1470 	int r, idx;
1471 
1472 	if (len != PAGE_SIZE)
1473 		return -EINVAL;
1474 
1475 	if (!adev->mman.sdma_access_ptr)
1476 		return -EACCES;
1477 
1478 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1479 		return -ENODEV;
1480 
1481 	if (write)
1482 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1483 
1484 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1485 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1486 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1487 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1488 				     &job);
1489 	if (r)
1490 		goto out;
1491 
1492 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1493 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1494 		src_mm.start;
1495 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1496 	if (write)
1497 		swap(src_addr, dst_addr);
1498 
1499 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1500 				PAGE_SIZE, false);
1501 
1502 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1503 	WARN_ON(job->ibs[0].length_dw > num_dw);
1504 
1505 	fence = amdgpu_job_submit(job);
1506 
1507 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1508 		r = -ETIMEDOUT;
1509 	dma_fence_put(fence);
1510 
1511 	if (!(r || write))
1512 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1513 out:
1514 	drm_dev_exit(idx);
1515 	return r;
1516 }
1517 
1518 /**
1519  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1520  *
1521  * @bo:  The buffer object to read/write
1522  * @offset:  Offset into buffer object
1523  * @buf:  Secondary buffer to write/read from
1524  * @len: Length in bytes of access
1525  * @write:  true if writing
1526  *
1527  * This is used to access VRAM that backs a buffer object via MMIO
1528  * access for debugging purposes.
1529  */
1530 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1531 				    unsigned long offset, void *buf, int len,
1532 				    int write)
1533 {
1534 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1535 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1536 	struct amdgpu_res_cursor cursor;
1537 	int ret = 0;
1538 
1539 	if (bo->resource->mem_type != TTM_PL_VRAM)
1540 		return -EIO;
1541 
1542 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1543 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1544 		return len;
1545 
1546 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1547 	while (cursor.remaining) {
1548 		size_t count, size = cursor.size;
1549 		loff_t pos = cursor.start;
1550 
1551 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1552 		size -= count;
1553 		if (size) {
1554 			/* using MM to access rest vram and handle un-aligned address */
1555 			pos += count;
1556 			buf += count;
1557 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1558 		}
1559 
1560 		ret += cursor.size;
1561 		buf += cursor.size;
1562 		amdgpu_res_next(&cursor, cursor.size);
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 static void
1569 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1570 {
1571 	amdgpu_bo_move_notify(bo, false);
1572 }
1573 
1574 static struct ttm_device_funcs amdgpu_bo_driver = {
1575 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1576 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1577 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1578 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1579 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1580 	.evict_flags = &amdgpu_evict_flags,
1581 	.move = &amdgpu_bo_move,
1582 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1583 	.release_notify = &amdgpu_bo_release_notify,
1584 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1585 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1586 	.access_memory = &amdgpu_ttm_access_memory,
1587 };
1588 
1589 /*
1590  * Firmware Reservation functions
1591  */
1592 /**
1593  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1594  *
1595  * @adev: amdgpu_device pointer
1596  *
1597  * free fw reserved vram if it has been reserved.
1598  */
1599 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1600 {
1601 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1602 		NULL, &adev->mman.fw_vram_usage_va);
1603 }
1604 
1605 /*
1606  * Driver Reservation functions
1607  */
1608 /**
1609  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1610  *
1611  * @adev: amdgpu_device pointer
1612  *
1613  * free drv reserved vram if it has been reserved.
1614  */
1615 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1616 {
1617 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1618 						  NULL,
1619 						  &adev->mman.drv_vram_usage_va);
1620 }
1621 
1622 /**
1623  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1624  *
1625  * @adev: amdgpu_device pointer
1626  *
1627  * create bo vram reservation from fw.
1628  */
1629 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1630 {
1631 	uint64_t vram_size = adev->gmc.visible_vram_size;
1632 
1633 	adev->mman.fw_vram_usage_va = NULL;
1634 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1635 
1636 	if (adev->mman.fw_vram_usage_size == 0 ||
1637 	    adev->mman.fw_vram_usage_size > vram_size)
1638 		return 0;
1639 
1640 	return amdgpu_bo_create_kernel_at(adev,
1641 					  adev->mman.fw_vram_usage_start_offset,
1642 					  adev->mman.fw_vram_usage_size,
1643 					  &adev->mman.fw_vram_usage_reserved_bo,
1644 					  &adev->mman.fw_vram_usage_va);
1645 }
1646 
1647 /**
1648  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1649  *
1650  * @adev: amdgpu_device pointer
1651  *
1652  * create bo vram reservation from drv.
1653  */
1654 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1655 {
1656 	u64 vram_size = adev->gmc.visible_vram_size;
1657 
1658 	adev->mman.drv_vram_usage_va = NULL;
1659 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1660 
1661 	if (adev->mman.drv_vram_usage_size == 0 ||
1662 	    adev->mman.drv_vram_usage_size > vram_size)
1663 		return 0;
1664 
1665 	return amdgpu_bo_create_kernel_at(adev,
1666 					  adev->mman.drv_vram_usage_start_offset,
1667 					  adev->mman.drv_vram_usage_size,
1668 					  &adev->mman.drv_vram_usage_reserved_bo,
1669 					  &adev->mman.drv_vram_usage_va);
1670 }
1671 
1672 /*
1673  * Memoy training reservation functions
1674  */
1675 
1676 /**
1677  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1678  *
1679  * @adev: amdgpu_device pointer
1680  *
1681  * free memory training reserved vram if it has been reserved.
1682  */
1683 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1684 {
1685 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1686 
1687 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1688 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1689 	ctx->c2p_bo = NULL;
1690 
1691 	return 0;
1692 }
1693 
1694 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1695 						uint32_t reserve_size)
1696 {
1697 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1698 
1699 	memset(ctx, 0, sizeof(*ctx));
1700 
1701 	ctx->c2p_train_data_offset =
1702 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1703 	ctx->p2c_train_data_offset =
1704 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1705 	ctx->train_data_size =
1706 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1707 
1708 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1709 			ctx->train_data_size,
1710 			ctx->p2c_train_data_offset,
1711 			ctx->c2p_train_data_offset);
1712 }
1713 
1714 /*
1715  * reserve TMR memory at the top of VRAM which holds
1716  * IP Discovery data and is protected by PSP.
1717  */
1718 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1719 {
1720 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1721 	bool mem_train_support = false;
1722 	uint32_t reserve_size = 0;
1723 	int ret;
1724 
1725 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1726 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1727 			mem_train_support = true;
1728 		else
1729 			DRM_DEBUG("memory training does not support!\n");
1730 	}
1731 
1732 	/*
1733 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1734 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1735 	 *
1736 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1737 	 * discovery data and G6 memory training data respectively
1738 	 */
1739 	if (adev->bios)
1740 		reserve_size =
1741 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1742 
1743 	if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1744 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1745 	else if (!reserve_size)
1746 		reserve_size = DISCOVERY_TMR_OFFSET;
1747 
1748 	if (mem_train_support) {
1749 		/* reserve vram for mem train according to TMR location */
1750 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1751 		ret = amdgpu_bo_create_kernel_at(adev,
1752 						 ctx->c2p_train_data_offset,
1753 						 ctx->train_data_size,
1754 						 &ctx->c2p_bo,
1755 						 NULL);
1756 		if (ret) {
1757 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1758 			amdgpu_ttm_training_reserve_vram_fini(adev);
1759 			return ret;
1760 		}
1761 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1762 	}
1763 
1764 	if (!adev->gmc.is_app_apu) {
1765 		ret = amdgpu_bo_create_kernel_at(
1766 			adev, adev->gmc.real_vram_size - reserve_size,
1767 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1768 		if (ret) {
1769 			DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1770 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1771 					      NULL, NULL);
1772 			return ret;
1773 		}
1774 	} else {
1775 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1782 {
1783 	int i;
1784 
1785 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1786 		return 0;
1787 
1788 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1789 				       sizeof(*adev->mman.ttm_pools),
1790 				       GFP_KERNEL);
1791 	if (!adev->mman.ttm_pools)
1792 		return -ENOMEM;
1793 
1794 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1795 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1796 			      adev->gmc.mem_partitions[i].numa.node,
1797 			      false, false);
1798 	}
1799 	return 0;
1800 }
1801 
1802 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1803 {
1804 	int i;
1805 
1806 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1807 		return;
1808 
1809 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1810 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1811 
1812 	kfree(adev->mman.ttm_pools);
1813 	adev->mman.ttm_pools = NULL;
1814 }
1815 
1816 /*
1817  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1818  * gtt/vram related fields.
1819  *
1820  * This initializes all of the memory space pools that the TTM layer
1821  * will need such as the GTT space (system memory mapped to the device),
1822  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1823  * can be mapped per VMID.
1824  */
1825 int amdgpu_ttm_init(struct amdgpu_device *adev)
1826 {
1827 	uint64_t gtt_size;
1828 	int r;
1829 
1830 	mutex_init(&adev->mman.gtt_window_lock);
1831 
1832 	/* No others user of address space so set it to 0 */
1833 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1834 			       adev_to_drm(adev)->anon_inode->i_mapping,
1835 			       adev_to_drm(adev)->vma_offset_manager,
1836 			       adev->need_swiotlb,
1837 			       dma_addressing_limited(adev->dev));
1838 	if (r) {
1839 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1840 		return r;
1841 	}
1842 
1843 	r = amdgpu_ttm_pools_init(adev);
1844 	if (r) {
1845 		DRM_ERROR("failed to init ttm pools(%d).\n", r);
1846 		return r;
1847 	}
1848 	adev->mman.initialized = true;
1849 
1850 	/* Initialize VRAM pool with all of VRAM divided into pages */
1851 	r = amdgpu_vram_mgr_init(adev);
1852 	if (r) {
1853 		DRM_ERROR("Failed initializing VRAM heap.\n");
1854 		return r;
1855 	}
1856 
1857 	/* Change the size here instead of the init above so only lpfn is affected */
1858 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1859 #ifdef CONFIG_64BIT
1860 #ifdef CONFIG_X86
1861 	if (adev->gmc.xgmi.connected_to_cpu)
1862 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1863 				adev->gmc.visible_vram_size);
1864 
1865 	else if (adev->gmc.is_app_apu)
1866 		DRM_DEBUG_DRIVER(
1867 			"No need to ioremap when real vram size is 0\n");
1868 	else
1869 #endif
1870 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1871 				adev->gmc.visible_vram_size);
1872 #endif
1873 
1874 	/*
1875 	 *The reserved vram for firmware must be pinned to the specified
1876 	 *place on the VRAM, so reserve it early.
1877 	 */
1878 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1879 	if (r)
1880 		return r;
1881 
1882 	/*
1883 	 *The reserved vram for driver must be pinned to the specified
1884 	 *place on the VRAM, so reserve it early.
1885 	 */
1886 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1887 	if (r)
1888 		return r;
1889 
1890 	/*
1891 	 * only NAVI10 and onwards ASIC support for IP discovery.
1892 	 * If IP discovery enabled, a block of memory should be
1893 	 * reserved for IP discovey.
1894 	 */
1895 	if (adev->mman.discovery_bin) {
1896 		r = amdgpu_ttm_reserve_tmr(adev);
1897 		if (r)
1898 			return r;
1899 	}
1900 
1901 	/* allocate memory as required for VGA
1902 	 * This is used for VGA emulation and pre-OS scanout buffers to
1903 	 * avoid display artifacts while transitioning between pre-OS
1904 	 * and driver.
1905 	 */
1906 	if (!adev->gmc.is_app_apu) {
1907 		r = amdgpu_bo_create_kernel_at(adev, 0,
1908 					       adev->mman.stolen_vga_size,
1909 					       &adev->mman.stolen_vga_memory,
1910 					       NULL);
1911 		if (r)
1912 			return r;
1913 
1914 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1915 					       adev->mman.stolen_extended_size,
1916 					       &adev->mman.stolen_extended_memory,
1917 					       NULL);
1918 
1919 		if (r)
1920 			return r;
1921 
1922 		r = amdgpu_bo_create_kernel_at(adev,
1923 					       adev->mman.stolen_reserved_offset,
1924 					       adev->mman.stolen_reserved_size,
1925 					       &adev->mman.stolen_reserved_memory,
1926 					       NULL);
1927 		if (r)
1928 			return r;
1929 	} else {
1930 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1931 	}
1932 
1933 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1934 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1935 
1936 	/* Compute GTT size, either based on TTM limit
1937 	 * or whatever the user passed on module init.
1938 	 */
1939 	if (amdgpu_gtt_size == -1)
1940 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1941 	else
1942 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1943 
1944 	/* Initialize GTT memory pool */
1945 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1946 	if (r) {
1947 		DRM_ERROR("Failed initializing GTT heap.\n");
1948 		return r;
1949 	}
1950 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1951 		 (unsigned int)(gtt_size / (1024 * 1024)));
1952 
1953 	/* Initiailize doorbell pool on PCI BAR */
1954 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1955 	if (r) {
1956 		DRM_ERROR("Failed initializing doorbell heap.\n");
1957 		return r;
1958 	}
1959 
1960 	/* Create a boorbell page for kernel usages */
1961 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
1962 	if (r) {
1963 		DRM_ERROR("Failed to initialize kernel doorbells.\n");
1964 		return r;
1965 	}
1966 
1967 	/* Initialize preemptible memory pool */
1968 	r = amdgpu_preempt_mgr_init(adev);
1969 	if (r) {
1970 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1971 		return r;
1972 	}
1973 
1974 	/* Initialize various on-chip memory pools */
1975 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1976 	if (r) {
1977 		DRM_ERROR("Failed initializing GDS heap.\n");
1978 		return r;
1979 	}
1980 
1981 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1982 	if (r) {
1983 		DRM_ERROR("Failed initializing gws heap.\n");
1984 		return r;
1985 	}
1986 
1987 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1988 	if (r) {
1989 		DRM_ERROR("Failed initializing oa heap.\n");
1990 		return r;
1991 	}
1992 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1993 				AMDGPU_GEM_DOMAIN_GTT,
1994 				&adev->mman.sdma_access_bo, NULL,
1995 				&adev->mman.sdma_access_ptr))
1996 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1997 
1998 	return 0;
1999 }
2000 
2001 /*
2002  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2003  */
2004 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2005 {
2006 	int idx;
2007 
2008 	if (!adev->mman.initialized)
2009 		return;
2010 
2011 	amdgpu_ttm_pools_fini(adev);
2012 
2013 	amdgpu_ttm_training_reserve_vram_fini(adev);
2014 	/* return the stolen vga memory back to VRAM */
2015 	if (!adev->gmc.is_app_apu) {
2016 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2017 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2018 		/* return the FW reserved memory back to VRAM */
2019 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2020 				      NULL);
2021 		if (adev->mman.stolen_reserved_size)
2022 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2023 					      NULL, NULL);
2024 	}
2025 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2026 					&adev->mman.sdma_access_ptr);
2027 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2028 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2029 
2030 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2031 
2032 		if (adev->mman.aper_base_kaddr)
2033 			iounmap(adev->mman.aper_base_kaddr);
2034 		adev->mman.aper_base_kaddr = NULL;
2035 
2036 		drm_dev_exit(idx);
2037 	}
2038 
2039 	amdgpu_vram_mgr_fini(adev);
2040 	amdgpu_gtt_mgr_fini(adev);
2041 	amdgpu_preempt_mgr_fini(adev);
2042 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2043 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2044 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2045 	ttm_device_fini(&adev->mman.bdev);
2046 	adev->mman.initialized = false;
2047 	DRM_INFO("amdgpu: ttm finalized\n");
2048 }
2049 
2050 /**
2051  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2052  *
2053  * @adev: amdgpu_device pointer
2054  * @enable: true when we can use buffer functions.
2055  *
2056  * Enable/disable use of buffer functions during suspend/resume. This should
2057  * only be called at bootup or when userspace isn't running.
2058  */
2059 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2060 {
2061 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2062 	uint64_t size;
2063 	int r;
2064 
2065 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2066 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2067 		return;
2068 
2069 	if (enable) {
2070 		struct amdgpu_ring *ring;
2071 		struct drm_gpu_scheduler *sched;
2072 
2073 		ring = adev->mman.buffer_funcs_ring;
2074 		sched = &ring->sched;
2075 		r = drm_sched_entity_init(&adev->mman.high_pr,
2076 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2077 					  1, NULL);
2078 		if (r) {
2079 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2080 				  r);
2081 			return;
2082 		}
2083 
2084 		r = drm_sched_entity_init(&adev->mman.low_pr,
2085 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2086 					  1, NULL);
2087 		if (r) {
2088 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2089 				  r);
2090 			goto error_free_entity;
2091 		}
2092 	} else {
2093 		drm_sched_entity_destroy(&adev->mman.high_pr);
2094 		drm_sched_entity_destroy(&adev->mman.low_pr);
2095 		dma_fence_put(man->move);
2096 		man->move = NULL;
2097 	}
2098 
2099 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2100 	if (enable)
2101 		size = adev->gmc.real_vram_size;
2102 	else
2103 		size = adev->gmc.visible_vram_size;
2104 	man->size = size;
2105 	adev->mman.buffer_funcs_enabled = enable;
2106 
2107 	return;
2108 
2109 error_free_entity:
2110 	drm_sched_entity_destroy(&adev->mman.high_pr);
2111 }
2112 
2113 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2114 				  bool direct_submit,
2115 				  unsigned int num_dw,
2116 				  struct dma_resv *resv,
2117 				  bool vm_needs_flush,
2118 				  struct amdgpu_job **job,
2119 				  bool delayed)
2120 {
2121 	enum amdgpu_ib_pool_type pool = direct_submit ?
2122 		AMDGPU_IB_POOL_DIRECT :
2123 		AMDGPU_IB_POOL_DELAYED;
2124 	int r;
2125 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2126 						    &adev->mman.high_pr;
2127 	r = amdgpu_job_alloc_with_ib(adev, entity,
2128 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2129 				     num_dw * 4, pool, job);
2130 	if (r)
2131 		return r;
2132 
2133 	if (vm_needs_flush) {
2134 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2135 							adev->gmc.pdb0_bo :
2136 							adev->gart.bo);
2137 		(*job)->vm_needs_flush = true;
2138 	}
2139 	if (!resv)
2140 		return 0;
2141 
2142 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2143 						   DMA_RESV_USAGE_BOOKKEEP);
2144 }
2145 
2146 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2147 		       uint64_t dst_offset, uint32_t byte_count,
2148 		       struct dma_resv *resv,
2149 		       struct dma_fence **fence, bool direct_submit,
2150 		       bool vm_needs_flush, bool tmz)
2151 {
2152 	struct amdgpu_device *adev = ring->adev;
2153 	unsigned int num_loops, num_dw;
2154 	struct amdgpu_job *job;
2155 	uint32_t max_bytes;
2156 	unsigned int i;
2157 	int r;
2158 
2159 	if (!direct_submit && !ring->sched.ready) {
2160 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2161 		return -EINVAL;
2162 	}
2163 
2164 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2165 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2166 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2167 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2168 				   resv, vm_needs_flush, &job, false);
2169 	if (r)
2170 		return r;
2171 
2172 	for (i = 0; i < num_loops; i++) {
2173 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2174 
2175 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2176 					dst_offset, cur_size_in_bytes, tmz);
2177 
2178 		src_offset += cur_size_in_bytes;
2179 		dst_offset += cur_size_in_bytes;
2180 		byte_count -= cur_size_in_bytes;
2181 	}
2182 
2183 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2184 	WARN_ON(job->ibs[0].length_dw > num_dw);
2185 	if (direct_submit)
2186 		r = amdgpu_job_submit_direct(job, ring, fence);
2187 	else
2188 		*fence = amdgpu_job_submit(job);
2189 	if (r)
2190 		goto error_free;
2191 
2192 	return r;
2193 
2194 error_free:
2195 	amdgpu_job_free(job);
2196 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2197 	return r;
2198 }
2199 
2200 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2201 			       uint64_t dst_addr, uint32_t byte_count,
2202 			       struct dma_resv *resv,
2203 			       struct dma_fence **fence,
2204 			       bool vm_needs_flush, bool delayed)
2205 {
2206 	struct amdgpu_device *adev = ring->adev;
2207 	unsigned int num_loops, num_dw;
2208 	struct amdgpu_job *job;
2209 	uint32_t max_bytes;
2210 	unsigned int i;
2211 	int r;
2212 
2213 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2214 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2215 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2216 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2217 				   &job, delayed);
2218 	if (r)
2219 		return r;
2220 
2221 	for (i = 0; i < num_loops; i++) {
2222 		uint32_t cur_size = min(byte_count, max_bytes);
2223 
2224 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2225 					cur_size);
2226 
2227 		dst_addr += cur_size;
2228 		byte_count -= cur_size;
2229 	}
2230 
2231 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2232 	WARN_ON(job->ibs[0].length_dw > num_dw);
2233 	*fence = amdgpu_job_submit(job);
2234 	return 0;
2235 }
2236 
2237 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2238 			uint32_t src_data,
2239 			struct dma_resv *resv,
2240 			struct dma_fence **f,
2241 			bool delayed)
2242 {
2243 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2244 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2245 	struct dma_fence *fence = NULL;
2246 	struct amdgpu_res_cursor dst;
2247 	int r;
2248 
2249 	if (!adev->mman.buffer_funcs_enabled) {
2250 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2251 		return -EINVAL;
2252 	}
2253 
2254 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2255 
2256 	mutex_lock(&adev->mman.gtt_window_lock);
2257 	while (dst.remaining) {
2258 		struct dma_fence *next;
2259 		uint64_t cur_size, to;
2260 
2261 		/* Never fill more than 256MiB at once to avoid timeouts */
2262 		cur_size = min(dst.size, 256ULL << 20);
2263 
2264 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2265 					  1, ring, false, &cur_size, &to);
2266 		if (r)
2267 			goto error;
2268 
2269 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2270 					&next, true, delayed);
2271 		if (r)
2272 			goto error;
2273 
2274 		dma_fence_put(fence);
2275 		fence = next;
2276 
2277 		amdgpu_res_next(&dst, cur_size);
2278 	}
2279 error:
2280 	mutex_unlock(&adev->mman.gtt_window_lock);
2281 	if (f)
2282 		*f = dma_fence_get(fence);
2283 	dma_fence_put(fence);
2284 	return r;
2285 }
2286 
2287 /**
2288  * amdgpu_ttm_evict_resources - evict memory buffers
2289  * @adev: amdgpu device object
2290  * @mem_type: evicted BO's memory type
2291  *
2292  * Evicts all @mem_type buffers on the lru list of the memory type.
2293  *
2294  * Returns:
2295  * 0 for success or a negative error code on failure.
2296  */
2297 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2298 {
2299 	struct ttm_resource_manager *man;
2300 
2301 	switch (mem_type) {
2302 	case TTM_PL_VRAM:
2303 	case TTM_PL_TT:
2304 	case AMDGPU_PL_GWS:
2305 	case AMDGPU_PL_GDS:
2306 	case AMDGPU_PL_OA:
2307 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2308 		break;
2309 	default:
2310 		DRM_ERROR("Trying to evict invalid memory type\n");
2311 		return -EINVAL;
2312 	}
2313 
2314 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2315 }
2316 
2317 #if defined(CONFIG_DEBUG_FS)
2318 
2319 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2320 {
2321 	struct amdgpu_device *adev = m->private;
2322 
2323 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2324 }
2325 
2326 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2327 
2328 /*
2329  * amdgpu_ttm_vram_read - Linear read access to VRAM
2330  *
2331  * Accesses VRAM via MMIO for debugging purposes.
2332  */
2333 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2334 				    size_t size, loff_t *pos)
2335 {
2336 	struct amdgpu_device *adev = file_inode(f)->i_private;
2337 	ssize_t result = 0;
2338 
2339 	if (size & 0x3 || *pos & 0x3)
2340 		return -EINVAL;
2341 
2342 	if (*pos >= adev->gmc.mc_vram_size)
2343 		return -ENXIO;
2344 
2345 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2346 	while (size) {
2347 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2348 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2349 
2350 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2351 		if (copy_to_user(buf, value, bytes))
2352 			return -EFAULT;
2353 
2354 		result += bytes;
2355 		buf += bytes;
2356 		*pos += bytes;
2357 		size -= bytes;
2358 	}
2359 
2360 	return result;
2361 }
2362 
2363 /*
2364  * amdgpu_ttm_vram_write - Linear write access to VRAM
2365  *
2366  * Accesses VRAM via MMIO for debugging purposes.
2367  */
2368 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2369 				    size_t size, loff_t *pos)
2370 {
2371 	struct amdgpu_device *adev = file_inode(f)->i_private;
2372 	ssize_t result = 0;
2373 	int r;
2374 
2375 	if (size & 0x3 || *pos & 0x3)
2376 		return -EINVAL;
2377 
2378 	if (*pos >= adev->gmc.mc_vram_size)
2379 		return -ENXIO;
2380 
2381 	while (size) {
2382 		uint32_t value;
2383 
2384 		if (*pos >= adev->gmc.mc_vram_size)
2385 			return result;
2386 
2387 		r = get_user(value, (uint32_t *)buf);
2388 		if (r)
2389 			return r;
2390 
2391 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2392 
2393 		result += 4;
2394 		buf += 4;
2395 		*pos += 4;
2396 		size -= 4;
2397 	}
2398 
2399 	return result;
2400 }
2401 
2402 static const struct file_operations amdgpu_ttm_vram_fops = {
2403 	.owner = THIS_MODULE,
2404 	.read = amdgpu_ttm_vram_read,
2405 	.write = amdgpu_ttm_vram_write,
2406 	.llseek = default_llseek,
2407 };
2408 
2409 /*
2410  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2411  *
2412  * This function is used to read memory that has been mapped to the
2413  * GPU and the known addresses are not physical addresses but instead
2414  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2415  */
2416 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2417 				 size_t size, loff_t *pos)
2418 {
2419 	struct amdgpu_device *adev = file_inode(f)->i_private;
2420 	struct iommu_domain *dom;
2421 	ssize_t result = 0;
2422 	int r;
2423 
2424 	/* retrieve the IOMMU domain if any for this device */
2425 	dom = iommu_get_domain_for_dev(adev->dev);
2426 
2427 	while (size) {
2428 		phys_addr_t addr = *pos & PAGE_MASK;
2429 		loff_t off = *pos & ~PAGE_MASK;
2430 		size_t bytes = PAGE_SIZE - off;
2431 		unsigned long pfn;
2432 		struct page *p;
2433 		void *ptr;
2434 
2435 		bytes = min(bytes, size);
2436 
2437 		/* Translate the bus address to a physical address.  If
2438 		 * the domain is NULL it means there is no IOMMU active
2439 		 * and the address translation is the identity
2440 		 */
2441 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2442 
2443 		pfn = addr >> PAGE_SHIFT;
2444 		if (!pfn_valid(pfn))
2445 			return -EPERM;
2446 
2447 		p = pfn_to_page(pfn);
2448 		if (p->mapping != adev->mman.bdev.dev_mapping)
2449 			return -EPERM;
2450 
2451 		ptr = kmap_local_page(p);
2452 		r = copy_to_user(buf, ptr + off, bytes);
2453 		kunmap_local(ptr);
2454 		if (r)
2455 			return -EFAULT;
2456 
2457 		size -= bytes;
2458 		*pos += bytes;
2459 		result += bytes;
2460 	}
2461 
2462 	return result;
2463 }
2464 
2465 /*
2466  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2467  *
2468  * This function is used to write memory that has been mapped to the
2469  * GPU and the known addresses are not physical addresses but instead
2470  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2471  */
2472 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2473 				 size_t size, loff_t *pos)
2474 {
2475 	struct amdgpu_device *adev = file_inode(f)->i_private;
2476 	struct iommu_domain *dom;
2477 	ssize_t result = 0;
2478 	int r;
2479 
2480 	dom = iommu_get_domain_for_dev(adev->dev);
2481 
2482 	while (size) {
2483 		phys_addr_t addr = *pos & PAGE_MASK;
2484 		loff_t off = *pos & ~PAGE_MASK;
2485 		size_t bytes = PAGE_SIZE - off;
2486 		unsigned long pfn;
2487 		struct page *p;
2488 		void *ptr;
2489 
2490 		bytes = min(bytes, size);
2491 
2492 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2493 
2494 		pfn = addr >> PAGE_SHIFT;
2495 		if (!pfn_valid(pfn))
2496 			return -EPERM;
2497 
2498 		p = pfn_to_page(pfn);
2499 		if (p->mapping != adev->mman.bdev.dev_mapping)
2500 			return -EPERM;
2501 
2502 		ptr = kmap_local_page(p);
2503 		r = copy_from_user(ptr + off, buf, bytes);
2504 		kunmap_local(ptr);
2505 		if (r)
2506 			return -EFAULT;
2507 
2508 		size -= bytes;
2509 		*pos += bytes;
2510 		result += bytes;
2511 	}
2512 
2513 	return result;
2514 }
2515 
2516 static const struct file_operations amdgpu_ttm_iomem_fops = {
2517 	.owner = THIS_MODULE,
2518 	.read = amdgpu_iomem_read,
2519 	.write = amdgpu_iomem_write,
2520 	.llseek = default_llseek
2521 };
2522 
2523 #endif
2524 
2525 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2526 {
2527 #if defined(CONFIG_DEBUG_FS)
2528 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2529 	struct dentry *root = minor->debugfs_root;
2530 
2531 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2532 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2533 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2534 			    &amdgpu_ttm_iomem_fops);
2535 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2536 			    &amdgpu_ttm_page_pool_fops);
2537 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2538 							     TTM_PL_VRAM),
2539 					    root, "amdgpu_vram_mm");
2540 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2541 							     TTM_PL_TT),
2542 					    root, "amdgpu_gtt_mm");
2543 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2544 							     AMDGPU_PL_GDS),
2545 					    root, "amdgpu_gds_mm");
2546 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2547 							     AMDGPU_PL_GWS),
2548 					    root, "amdgpu_gws_mm");
2549 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2550 							     AMDGPU_PL_OA),
2551 					    root, "amdgpu_oa_mm");
2552 
2553 #endif
2554 }
2555