1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_res_cpu_visible(adev, bo->resource)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /** 412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 413 * @adev: amdgpu device 414 * @res: the resource to check 415 * 416 * Returns: true if the full resource is CPU visible, false otherwise. 417 */ 418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 419 struct ttm_resource *res) 420 { 421 struct amdgpu_res_cursor cursor; 422 423 if (!res) 424 return false; 425 426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 428 return true; 429 430 if (res->mem_type != TTM_PL_VRAM) 431 return false; 432 433 amdgpu_res_first(res, 0, res->size, &cursor); 434 while (cursor.remaining) { 435 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size) 436 return false; 437 amdgpu_res_next(&cursor, cursor.size); 438 } 439 440 return true; 441 } 442 443 /* 444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 445 * 446 * Called by amdgpu_bo_move() 447 */ 448 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 449 struct ttm_resource *mem) 450 { 451 if (!amdgpu_res_cpu_visible(adev, mem)) 452 return false; 453 454 /* ttm_resource_ioremap only supports contiguous memory */ 455 if (mem->mem_type == TTM_PL_VRAM && 456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 457 return false; 458 459 return true; 460 } 461 462 /* 463 * amdgpu_bo_move - Move a buffer object to a new memory location 464 * 465 * Called by ttm_bo_handle_move_mem() 466 */ 467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_resource *new_mem, 470 struct ttm_place *hop) 471 { 472 struct amdgpu_device *adev; 473 struct amdgpu_bo *abo; 474 struct ttm_resource *old_mem = bo->resource; 475 int r; 476 477 if (new_mem->mem_type == TTM_PL_TT || 478 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 480 if (r) 481 return r; 482 } 483 484 abo = ttm_to_amdgpu_bo(bo); 485 adev = amdgpu_ttm_adev(bo->bdev); 486 487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 488 bo->ttm == NULL)) { 489 ttm_bo_move_null(bo, new_mem); 490 goto out; 491 } 492 if (old_mem->mem_type == TTM_PL_SYSTEM && 493 (new_mem->mem_type == TTM_PL_TT || 494 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 495 ttm_bo_move_null(bo, new_mem); 496 goto out; 497 } 498 if ((old_mem->mem_type == TTM_PL_TT || 499 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 500 new_mem->mem_type == TTM_PL_SYSTEM) { 501 r = ttm_bo_wait_ctx(bo, ctx); 502 if (r) 503 return r; 504 505 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 506 ttm_resource_free(bo, &bo->resource); 507 ttm_bo_assign_mem(bo, new_mem); 508 goto out; 509 } 510 511 if (old_mem->mem_type == AMDGPU_PL_GDS || 512 old_mem->mem_type == AMDGPU_PL_GWS || 513 old_mem->mem_type == AMDGPU_PL_OA || 514 old_mem->mem_type == AMDGPU_PL_DOORBELL || 515 new_mem->mem_type == AMDGPU_PL_GDS || 516 new_mem->mem_type == AMDGPU_PL_GWS || 517 new_mem->mem_type == AMDGPU_PL_OA || 518 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 519 /* Nothing to save here */ 520 ttm_bo_move_null(bo, new_mem); 521 goto out; 522 } 523 524 if (bo->type == ttm_bo_type_device && 525 new_mem->mem_type == TTM_PL_VRAM && 526 old_mem->mem_type != TTM_PL_VRAM) { 527 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 528 * accesses the BO after it's moved. 529 */ 530 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 531 } 532 533 if (adev->mman.buffer_funcs_enabled) { 534 if (((old_mem->mem_type == TTM_PL_SYSTEM && 535 new_mem->mem_type == TTM_PL_VRAM) || 536 (old_mem->mem_type == TTM_PL_VRAM && 537 new_mem->mem_type == TTM_PL_SYSTEM))) { 538 hop->fpfn = 0; 539 hop->lpfn = 0; 540 hop->mem_type = TTM_PL_TT; 541 hop->flags = TTM_PL_FLAG_TEMPORARY; 542 return -EMULTIHOP; 543 } 544 545 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 546 } else { 547 r = -ENODEV; 548 } 549 550 if (r) { 551 /* Check that all memory is CPU accessible */ 552 if (!amdgpu_res_copyable(adev, old_mem) || 553 !amdgpu_res_copyable(adev, new_mem)) { 554 pr_err("Move buffer fallback to memcpy unavailable\n"); 555 return r; 556 } 557 558 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 559 if (r) 560 return r; 561 } 562 563 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 564 out: 565 /* update statistics */ 566 atomic64_add(bo->base.size, &adev->num_bytes_moved); 567 amdgpu_bo_move_notify(bo, evict); 568 return 0; 569 } 570 571 /* 572 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 573 * 574 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 575 */ 576 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 577 struct ttm_resource *mem) 578 { 579 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 580 581 switch (mem->mem_type) { 582 case TTM_PL_SYSTEM: 583 /* system memory */ 584 return 0; 585 case TTM_PL_TT: 586 case AMDGPU_PL_PREEMPT: 587 break; 588 case TTM_PL_VRAM: 589 mem->bus.offset = mem->start << PAGE_SHIFT; 590 591 if (adev->mman.aper_base_kaddr && 592 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 593 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 594 mem->bus.offset; 595 596 mem->bus.offset += adev->gmc.aper_base; 597 mem->bus.is_iomem = true; 598 break; 599 case AMDGPU_PL_DOORBELL: 600 mem->bus.offset = mem->start << PAGE_SHIFT; 601 mem->bus.offset += adev->doorbell.base; 602 mem->bus.is_iomem = true; 603 mem->bus.caching = ttm_uncached; 604 break; 605 default: 606 return -EINVAL; 607 } 608 return 0; 609 } 610 611 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 612 unsigned long page_offset) 613 { 614 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 615 struct amdgpu_res_cursor cursor; 616 617 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 618 &cursor); 619 620 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 621 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 622 623 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 624 } 625 626 /** 627 * amdgpu_ttm_domain_start - Returns GPU start address 628 * @adev: amdgpu device object 629 * @type: type of the memory 630 * 631 * Returns: 632 * GPU start address of a memory domain 633 */ 634 635 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 636 { 637 switch (type) { 638 case TTM_PL_TT: 639 return adev->gmc.gart_start; 640 case TTM_PL_VRAM: 641 return adev->gmc.vram_start; 642 } 643 644 return 0; 645 } 646 647 /* 648 * TTM backend functions. 649 */ 650 struct amdgpu_ttm_tt { 651 struct ttm_tt ttm; 652 struct drm_gem_object *gobj; 653 u64 offset; 654 uint64_t userptr; 655 struct task_struct *usertask; 656 uint32_t userflags; 657 bool bound; 658 int32_t pool_id; 659 }; 660 661 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 662 663 #ifdef CONFIG_DRM_AMDGPU_USERPTR 664 /* 665 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 666 * memory and start HMM tracking CPU page table update 667 * 668 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 669 * once afterwards to stop HMM tracking 670 */ 671 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 672 struct hmm_range **range) 673 { 674 struct ttm_tt *ttm = bo->tbo.ttm; 675 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 676 unsigned long start = gtt->userptr; 677 struct vm_area_struct *vma; 678 struct mm_struct *mm; 679 bool readonly; 680 int r = 0; 681 682 /* Make sure get_user_pages_done() can cleanup gracefully */ 683 *range = NULL; 684 685 mm = bo->notifier.mm; 686 if (unlikely(!mm)) { 687 DRM_DEBUG_DRIVER("BO is not registered?\n"); 688 return -EFAULT; 689 } 690 691 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 692 return -ESRCH; 693 694 mmap_read_lock(mm); 695 vma = vma_lookup(mm, start); 696 if (unlikely(!vma)) { 697 r = -EFAULT; 698 goto out_unlock; 699 } 700 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 701 vma->vm_file)) { 702 r = -EPERM; 703 goto out_unlock; 704 } 705 706 readonly = amdgpu_ttm_tt_is_readonly(ttm); 707 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 708 readonly, NULL, pages, range); 709 out_unlock: 710 mmap_read_unlock(mm); 711 if (r) 712 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 713 714 mmput(mm); 715 716 return r; 717 } 718 719 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 720 */ 721 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 722 struct hmm_range *range) 723 { 724 struct amdgpu_ttm_tt *gtt = (void *)ttm; 725 726 if (gtt && gtt->userptr && range) 727 amdgpu_hmm_range_get_pages_done(range); 728 } 729 730 /* 731 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 732 * Check if the pages backing this ttm range have been invalidated 733 * 734 * Returns: true if pages are still valid 735 */ 736 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 737 struct hmm_range *range) 738 { 739 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 740 741 if (!gtt || !gtt->userptr || !range) 742 return false; 743 744 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 745 gtt->userptr, ttm->num_pages); 746 747 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 748 749 return !amdgpu_hmm_range_get_pages_done(range); 750 } 751 #endif 752 753 /* 754 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 755 * 756 * Called by amdgpu_cs_list_validate(). This creates the page list 757 * that backs user memory and will ultimately be mapped into the device 758 * address space. 759 */ 760 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 761 { 762 unsigned long i; 763 764 for (i = 0; i < ttm->num_pages; ++i) 765 ttm->pages[i] = pages ? pages[i] : NULL; 766 } 767 768 /* 769 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 770 * 771 * Called by amdgpu_ttm_backend_bind() 772 **/ 773 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 774 struct ttm_tt *ttm) 775 { 776 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 777 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 778 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 779 enum dma_data_direction direction = write ? 780 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 781 int r; 782 783 /* Allocate an SG array and squash pages into it */ 784 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 785 (u64)ttm->num_pages << PAGE_SHIFT, 786 GFP_KERNEL); 787 if (r) 788 goto release_sg; 789 790 /* Map SG to device */ 791 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 792 if (r) 793 goto release_sg; 794 795 /* convert SG to linear array of pages and dma addresses */ 796 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 797 ttm->num_pages); 798 799 return 0; 800 801 release_sg: 802 kfree(ttm->sg); 803 ttm->sg = NULL; 804 return r; 805 } 806 807 /* 808 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 809 */ 810 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 811 struct ttm_tt *ttm) 812 { 813 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 814 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 815 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 816 enum dma_data_direction direction = write ? 817 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 818 819 /* double check that we don't free the table twice */ 820 if (!ttm->sg || !ttm->sg->sgl) 821 return; 822 823 /* unmap the pages mapped to the device */ 824 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 825 sg_free_table(ttm->sg); 826 } 827 828 /* 829 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 830 * MQDn+CtrlStackn where n is the number of XCCs per partition. 831 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 832 * and uses memory type default, UC. The rest of pages_per_xcc are 833 * Ctrl stack and modify their memory type to NC. 834 */ 835 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 836 struct ttm_tt *ttm, uint64_t flags) 837 { 838 struct amdgpu_ttm_tt *gtt = (void *)ttm; 839 uint64_t total_pages = ttm->num_pages; 840 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 841 uint64_t page_idx, pages_per_xcc; 842 int i; 843 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 844 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 845 846 pages_per_xcc = total_pages; 847 do_div(pages_per_xcc, num_xcc); 848 849 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 850 /* MQD page: use default flags */ 851 amdgpu_gart_bind(adev, 852 gtt->offset + (page_idx << PAGE_SHIFT), 853 1, >t->ttm.dma_address[page_idx], flags); 854 /* 855 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 856 * the second page of the BO onward. 857 */ 858 amdgpu_gart_bind(adev, 859 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 860 pages_per_xcc - 1, 861 >t->ttm.dma_address[page_idx + 1], 862 ctrl_flags); 863 } 864 } 865 866 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 867 struct ttm_buffer_object *tbo, 868 uint64_t flags) 869 { 870 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 871 struct ttm_tt *ttm = tbo->ttm; 872 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 873 874 if (amdgpu_bo_encrypted(abo)) 875 flags |= AMDGPU_PTE_TMZ; 876 877 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 878 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 879 } else { 880 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 881 gtt->ttm.dma_address, flags); 882 } 883 gtt->bound = true; 884 } 885 886 /* 887 * amdgpu_ttm_backend_bind - Bind GTT memory 888 * 889 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 890 * This handles binding GTT memory to the device address space. 891 */ 892 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 893 struct ttm_tt *ttm, 894 struct ttm_resource *bo_mem) 895 { 896 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 897 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 898 uint64_t flags; 899 int r; 900 901 if (!bo_mem) 902 return -EINVAL; 903 904 if (gtt->bound) 905 return 0; 906 907 if (gtt->userptr) { 908 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 909 if (r) { 910 DRM_ERROR("failed to pin userptr\n"); 911 return r; 912 } 913 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 914 if (!ttm->sg) { 915 struct dma_buf_attachment *attach; 916 struct sg_table *sgt; 917 918 attach = gtt->gobj->import_attach; 919 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 920 if (IS_ERR(sgt)) 921 return PTR_ERR(sgt); 922 923 ttm->sg = sgt; 924 } 925 926 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 927 ttm->num_pages); 928 } 929 930 if (!ttm->num_pages) { 931 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 932 ttm->num_pages, bo_mem, ttm); 933 } 934 935 if (bo_mem->mem_type != TTM_PL_TT || 936 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 937 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 938 return 0; 939 } 940 941 /* compute PTE flags relevant to this BO memory */ 942 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 943 944 /* bind pages into GART page tables */ 945 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 946 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 947 gtt->ttm.dma_address, flags); 948 gtt->bound = true; 949 return 0; 950 } 951 952 /* 953 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 954 * through AGP or GART aperture. 955 * 956 * If bo is accessible through AGP aperture, then use AGP aperture 957 * to access bo; otherwise allocate logical space in GART aperture 958 * and map bo to GART aperture. 959 */ 960 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 961 { 962 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 963 struct ttm_operation_ctx ctx = { false, false }; 964 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 965 struct ttm_placement placement; 966 struct ttm_place placements; 967 struct ttm_resource *tmp; 968 uint64_t addr, flags; 969 int r; 970 971 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 972 return 0; 973 974 addr = amdgpu_gmc_agp_addr(bo); 975 if (addr != AMDGPU_BO_INVALID_OFFSET) { 976 bo->resource->start = addr >> PAGE_SHIFT; 977 return 0; 978 } 979 980 /* allocate GART space */ 981 placement.num_placement = 1; 982 placement.placement = &placements; 983 placement.num_busy_placement = 1; 984 placement.busy_placement = &placements; 985 placements.fpfn = 0; 986 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 987 placements.mem_type = TTM_PL_TT; 988 placements.flags = bo->resource->placement; 989 990 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 991 if (unlikely(r)) 992 return r; 993 994 /* compute PTE flags for this buffer object */ 995 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 996 997 /* Bind pages */ 998 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 999 amdgpu_ttm_gart_bind(adev, bo, flags); 1000 amdgpu_gart_invalidate_tlb(adev); 1001 ttm_resource_free(bo, &bo->resource); 1002 ttm_bo_assign_mem(bo, tmp); 1003 1004 return 0; 1005 } 1006 1007 /* 1008 * amdgpu_ttm_recover_gart - Rebind GTT pages 1009 * 1010 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1011 * rebind GTT pages during a GPU reset. 1012 */ 1013 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1014 { 1015 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1016 uint64_t flags; 1017 1018 if (!tbo->ttm) 1019 return; 1020 1021 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1022 amdgpu_ttm_gart_bind(adev, tbo, flags); 1023 } 1024 1025 /* 1026 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1027 * 1028 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1029 * ttm_tt_destroy(). 1030 */ 1031 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1032 struct ttm_tt *ttm) 1033 { 1034 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1035 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1036 1037 /* if the pages have userptr pinning then clear that first */ 1038 if (gtt->userptr) { 1039 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1040 } else if (ttm->sg && gtt->gobj->import_attach) { 1041 struct dma_buf_attachment *attach; 1042 1043 attach = gtt->gobj->import_attach; 1044 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1045 ttm->sg = NULL; 1046 } 1047 1048 if (!gtt->bound) 1049 return; 1050 1051 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1052 return; 1053 1054 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1055 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1056 gtt->bound = false; 1057 } 1058 1059 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1060 struct ttm_tt *ttm) 1061 { 1062 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1063 1064 if (gtt->usertask) 1065 put_task_struct(gtt->usertask); 1066 1067 ttm_tt_fini(>t->ttm); 1068 kfree(gtt); 1069 } 1070 1071 /** 1072 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1073 * 1074 * @bo: The buffer object to create a GTT ttm_tt object around 1075 * @page_flags: Page flags to be added to the ttm_tt object 1076 * 1077 * Called by ttm_tt_create(). 1078 */ 1079 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1080 uint32_t page_flags) 1081 { 1082 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1083 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1084 struct amdgpu_ttm_tt *gtt; 1085 enum ttm_caching caching; 1086 1087 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1088 if (!gtt) 1089 return NULL; 1090 1091 gtt->gobj = &bo->base; 1092 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1093 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1094 else 1095 gtt->pool_id = abo->xcp_id; 1096 1097 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1098 caching = ttm_write_combined; 1099 else 1100 caching = ttm_cached; 1101 1102 /* allocate space for the uninitialized page entries */ 1103 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1104 kfree(gtt); 1105 return NULL; 1106 } 1107 return >t->ttm; 1108 } 1109 1110 /* 1111 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1112 * 1113 * Map the pages of a ttm_tt object to an address space visible 1114 * to the underlying device. 1115 */ 1116 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1117 struct ttm_tt *ttm, 1118 struct ttm_operation_ctx *ctx) 1119 { 1120 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1121 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1122 struct ttm_pool *pool; 1123 pgoff_t i; 1124 int ret; 1125 1126 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1127 if (gtt->userptr) { 1128 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1129 if (!ttm->sg) 1130 return -ENOMEM; 1131 return 0; 1132 } 1133 1134 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1135 return 0; 1136 1137 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1138 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1139 else 1140 pool = &adev->mman.bdev.pool; 1141 ret = ttm_pool_alloc(pool, ttm, ctx); 1142 if (ret) 1143 return ret; 1144 1145 for (i = 0; i < ttm->num_pages; ++i) 1146 ttm->pages[i]->mapping = bdev->dev_mapping; 1147 1148 return 0; 1149 } 1150 1151 /* 1152 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1153 * 1154 * Unmaps pages of a ttm_tt object from the device address space and 1155 * unpopulates the page array backing it. 1156 */ 1157 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1158 struct ttm_tt *ttm) 1159 { 1160 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1161 struct amdgpu_device *adev; 1162 struct ttm_pool *pool; 1163 pgoff_t i; 1164 1165 amdgpu_ttm_backend_unbind(bdev, ttm); 1166 1167 if (gtt->userptr) { 1168 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1169 kfree(ttm->sg); 1170 ttm->sg = NULL; 1171 return; 1172 } 1173 1174 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1175 return; 1176 1177 for (i = 0; i < ttm->num_pages; ++i) 1178 ttm->pages[i]->mapping = NULL; 1179 1180 adev = amdgpu_ttm_adev(bdev); 1181 1182 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1183 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1184 else 1185 pool = &adev->mman.bdev.pool; 1186 1187 return ttm_pool_free(pool, ttm); 1188 } 1189 1190 /** 1191 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1192 * task 1193 * 1194 * @tbo: The ttm_buffer_object that contains the userptr 1195 * @user_addr: The returned value 1196 */ 1197 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1198 uint64_t *user_addr) 1199 { 1200 struct amdgpu_ttm_tt *gtt; 1201 1202 if (!tbo->ttm) 1203 return -EINVAL; 1204 1205 gtt = (void *)tbo->ttm; 1206 *user_addr = gtt->userptr; 1207 return 0; 1208 } 1209 1210 /** 1211 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1212 * task 1213 * 1214 * @bo: The ttm_buffer_object to bind this userptr to 1215 * @addr: The address in the current tasks VM space to use 1216 * @flags: Requirements of userptr object. 1217 * 1218 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1219 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1220 * initialize GPU VM for a KFD process. 1221 */ 1222 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1223 uint64_t addr, uint32_t flags) 1224 { 1225 struct amdgpu_ttm_tt *gtt; 1226 1227 if (!bo->ttm) { 1228 /* TODO: We want a separate TTM object type for userptrs */ 1229 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1230 if (bo->ttm == NULL) 1231 return -ENOMEM; 1232 } 1233 1234 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1235 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1236 1237 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1238 gtt->userptr = addr; 1239 gtt->userflags = flags; 1240 1241 if (gtt->usertask) 1242 put_task_struct(gtt->usertask); 1243 gtt->usertask = current->group_leader; 1244 get_task_struct(gtt->usertask); 1245 1246 return 0; 1247 } 1248 1249 /* 1250 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1251 */ 1252 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1253 { 1254 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1255 1256 if (gtt == NULL) 1257 return NULL; 1258 1259 if (gtt->usertask == NULL) 1260 return NULL; 1261 1262 return gtt->usertask->mm; 1263 } 1264 1265 /* 1266 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1267 * address range for the current task. 1268 * 1269 */ 1270 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1271 unsigned long end, unsigned long *userptr) 1272 { 1273 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1274 unsigned long size; 1275 1276 if (gtt == NULL || !gtt->userptr) 1277 return false; 1278 1279 /* Return false if no part of the ttm_tt object lies within 1280 * the range 1281 */ 1282 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1283 if (gtt->userptr > end || gtt->userptr + size <= start) 1284 return false; 1285 1286 if (userptr) 1287 *userptr = gtt->userptr; 1288 return true; 1289 } 1290 1291 /* 1292 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1293 */ 1294 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1295 { 1296 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1297 1298 if (gtt == NULL || !gtt->userptr) 1299 return false; 1300 1301 return true; 1302 } 1303 1304 /* 1305 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1306 */ 1307 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1308 { 1309 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1310 1311 if (gtt == NULL) 1312 return false; 1313 1314 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1315 } 1316 1317 /** 1318 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1319 * 1320 * @ttm: The ttm_tt object to compute the flags for 1321 * @mem: The memory registry backing this ttm_tt object 1322 * 1323 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1324 */ 1325 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1326 { 1327 uint64_t flags = 0; 1328 1329 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1330 flags |= AMDGPU_PTE_VALID; 1331 1332 if (mem && (mem->mem_type == TTM_PL_TT || 1333 mem->mem_type == AMDGPU_PL_DOORBELL || 1334 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1335 flags |= AMDGPU_PTE_SYSTEM; 1336 1337 if (ttm->caching == ttm_cached) 1338 flags |= AMDGPU_PTE_SNOOPED; 1339 } 1340 1341 if (mem && mem->mem_type == TTM_PL_VRAM && 1342 mem->bus.caching == ttm_cached) 1343 flags |= AMDGPU_PTE_SNOOPED; 1344 1345 return flags; 1346 } 1347 1348 /** 1349 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1350 * 1351 * @adev: amdgpu_device pointer 1352 * @ttm: The ttm_tt object to compute the flags for 1353 * @mem: The memory registry backing this ttm_tt object 1354 * 1355 * Figure out the flags to use for a VM PTE (Page Table Entry). 1356 */ 1357 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1358 struct ttm_resource *mem) 1359 { 1360 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1361 1362 flags |= adev->gart.gart_pte_flags; 1363 flags |= AMDGPU_PTE_READABLE; 1364 1365 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1366 flags |= AMDGPU_PTE_WRITEABLE; 1367 1368 return flags; 1369 } 1370 1371 /* 1372 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1373 * object. 1374 * 1375 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1376 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1377 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1378 * used to clean out a memory space. 1379 */ 1380 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1381 const struct ttm_place *place) 1382 { 1383 struct dma_resv_iter resv_cursor; 1384 struct dma_fence *f; 1385 1386 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1387 return ttm_bo_eviction_valuable(bo, place); 1388 1389 /* Swapout? */ 1390 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1391 return true; 1392 1393 if (bo->type == ttm_bo_type_kernel && 1394 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1395 return false; 1396 1397 /* If bo is a KFD BO, check if the bo belongs to the current process. 1398 * If true, then return false as any KFD process needs all its BOs to 1399 * be resident to run successfully 1400 */ 1401 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1402 DMA_RESV_USAGE_BOOKKEEP, f) { 1403 if (amdkfd_fence_check_mm(f, current->mm)) 1404 return false; 1405 } 1406 1407 /* Preemptible BOs don't own system resources managed by the 1408 * driver (pages, VRAM, GART space). They point to resources 1409 * owned by someone else (e.g. pageable memory in user mode 1410 * or a DMABuf). They are used in a preemptible context so we 1411 * can guarantee no deadlocks and good QoS in case of MMU 1412 * notifiers or DMABuf move notifiers from the resource owner. 1413 */ 1414 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1415 return false; 1416 1417 if (bo->resource->mem_type == TTM_PL_TT && 1418 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1419 return false; 1420 1421 return ttm_bo_eviction_valuable(bo, place); 1422 } 1423 1424 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1425 void *buf, size_t size, bool write) 1426 { 1427 while (size) { 1428 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1429 uint64_t bytes = 4 - (pos & 0x3); 1430 uint32_t shift = (pos & 0x3) * 8; 1431 uint32_t mask = 0xffffffff << shift; 1432 uint32_t value = 0; 1433 1434 if (size < bytes) { 1435 mask &= 0xffffffff >> (bytes - size) * 8; 1436 bytes = size; 1437 } 1438 1439 if (mask != 0xffffffff) { 1440 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1441 if (write) { 1442 value &= ~mask; 1443 value |= (*(uint32_t *)buf << shift) & mask; 1444 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1445 } else { 1446 value = (value & mask) >> shift; 1447 memcpy(buf, &value, bytes); 1448 } 1449 } else { 1450 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1451 } 1452 1453 pos += bytes; 1454 buf += bytes; 1455 size -= bytes; 1456 } 1457 } 1458 1459 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1460 unsigned long offset, void *buf, 1461 int len, int write) 1462 { 1463 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1464 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1465 struct amdgpu_res_cursor src_mm; 1466 struct amdgpu_job *job; 1467 struct dma_fence *fence; 1468 uint64_t src_addr, dst_addr; 1469 unsigned int num_dw; 1470 int r, idx; 1471 1472 if (len != PAGE_SIZE) 1473 return -EINVAL; 1474 1475 if (!adev->mman.sdma_access_ptr) 1476 return -EACCES; 1477 1478 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1479 return -ENODEV; 1480 1481 if (write) 1482 memcpy(adev->mman.sdma_access_ptr, buf, len); 1483 1484 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1485 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1486 AMDGPU_FENCE_OWNER_UNDEFINED, 1487 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1488 &job); 1489 if (r) 1490 goto out; 1491 1492 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1493 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1494 src_mm.start; 1495 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1496 if (write) 1497 swap(src_addr, dst_addr); 1498 1499 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1500 PAGE_SIZE, false); 1501 1502 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1503 WARN_ON(job->ibs[0].length_dw > num_dw); 1504 1505 fence = amdgpu_job_submit(job); 1506 1507 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1508 r = -ETIMEDOUT; 1509 dma_fence_put(fence); 1510 1511 if (!(r || write)) 1512 memcpy(buf, adev->mman.sdma_access_ptr, len); 1513 out: 1514 drm_dev_exit(idx); 1515 return r; 1516 } 1517 1518 /** 1519 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1520 * 1521 * @bo: The buffer object to read/write 1522 * @offset: Offset into buffer object 1523 * @buf: Secondary buffer to write/read from 1524 * @len: Length in bytes of access 1525 * @write: true if writing 1526 * 1527 * This is used to access VRAM that backs a buffer object via MMIO 1528 * access for debugging purposes. 1529 */ 1530 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1531 unsigned long offset, void *buf, int len, 1532 int write) 1533 { 1534 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1535 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1536 struct amdgpu_res_cursor cursor; 1537 int ret = 0; 1538 1539 if (bo->resource->mem_type != TTM_PL_VRAM) 1540 return -EIO; 1541 1542 if (amdgpu_device_has_timeouts_enabled(adev) && 1543 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1544 return len; 1545 1546 amdgpu_res_first(bo->resource, offset, len, &cursor); 1547 while (cursor.remaining) { 1548 size_t count, size = cursor.size; 1549 loff_t pos = cursor.start; 1550 1551 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1552 size -= count; 1553 if (size) { 1554 /* using MM to access rest vram and handle un-aligned address */ 1555 pos += count; 1556 buf += count; 1557 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1558 } 1559 1560 ret += cursor.size; 1561 buf += cursor.size; 1562 amdgpu_res_next(&cursor, cursor.size); 1563 } 1564 1565 return ret; 1566 } 1567 1568 static void 1569 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1570 { 1571 amdgpu_bo_move_notify(bo, false); 1572 } 1573 1574 static struct ttm_device_funcs amdgpu_bo_driver = { 1575 .ttm_tt_create = &amdgpu_ttm_tt_create, 1576 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1577 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1578 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1579 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1580 .evict_flags = &amdgpu_evict_flags, 1581 .move = &amdgpu_bo_move, 1582 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1583 .release_notify = &amdgpu_bo_release_notify, 1584 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1585 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1586 .access_memory = &amdgpu_ttm_access_memory, 1587 }; 1588 1589 /* 1590 * Firmware Reservation functions 1591 */ 1592 /** 1593 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1594 * 1595 * @adev: amdgpu_device pointer 1596 * 1597 * free fw reserved vram if it has been reserved. 1598 */ 1599 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1600 { 1601 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1602 NULL, &adev->mman.fw_vram_usage_va); 1603 } 1604 1605 /* 1606 * Driver Reservation functions 1607 */ 1608 /** 1609 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1610 * 1611 * @adev: amdgpu_device pointer 1612 * 1613 * free drv reserved vram if it has been reserved. 1614 */ 1615 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1616 { 1617 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1618 NULL, 1619 &adev->mman.drv_vram_usage_va); 1620 } 1621 1622 /** 1623 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1624 * 1625 * @adev: amdgpu_device pointer 1626 * 1627 * create bo vram reservation from fw. 1628 */ 1629 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1630 { 1631 uint64_t vram_size = adev->gmc.visible_vram_size; 1632 1633 adev->mman.fw_vram_usage_va = NULL; 1634 adev->mman.fw_vram_usage_reserved_bo = NULL; 1635 1636 if (adev->mman.fw_vram_usage_size == 0 || 1637 adev->mman.fw_vram_usage_size > vram_size) 1638 return 0; 1639 1640 return amdgpu_bo_create_kernel_at(adev, 1641 adev->mman.fw_vram_usage_start_offset, 1642 adev->mman.fw_vram_usage_size, 1643 &adev->mman.fw_vram_usage_reserved_bo, 1644 &adev->mman.fw_vram_usage_va); 1645 } 1646 1647 /** 1648 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1649 * 1650 * @adev: amdgpu_device pointer 1651 * 1652 * create bo vram reservation from drv. 1653 */ 1654 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1655 { 1656 u64 vram_size = adev->gmc.visible_vram_size; 1657 1658 adev->mman.drv_vram_usage_va = NULL; 1659 adev->mman.drv_vram_usage_reserved_bo = NULL; 1660 1661 if (adev->mman.drv_vram_usage_size == 0 || 1662 adev->mman.drv_vram_usage_size > vram_size) 1663 return 0; 1664 1665 return amdgpu_bo_create_kernel_at(adev, 1666 adev->mman.drv_vram_usage_start_offset, 1667 adev->mman.drv_vram_usage_size, 1668 &adev->mman.drv_vram_usage_reserved_bo, 1669 &adev->mman.drv_vram_usage_va); 1670 } 1671 1672 /* 1673 * Memoy training reservation functions 1674 */ 1675 1676 /** 1677 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1678 * 1679 * @adev: amdgpu_device pointer 1680 * 1681 * free memory training reserved vram if it has been reserved. 1682 */ 1683 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1684 { 1685 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1686 1687 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1688 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1689 ctx->c2p_bo = NULL; 1690 1691 return 0; 1692 } 1693 1694 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1695 uint32_t reserve_size) 1696 { 1697 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1698 1699 memset(ctx, 0, sizeof(*ctx)); 1700 1701 ctx->c2p_train_data_offset = 1702 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1703 ctx->p2c_train_data_offset = 1704 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1705 ctx->train_data_size = 1706 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1707 1708 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1709 ctx->train_data_size, 1710 ctx->p2c_train_data_offset, 1711 ctx->c2p_train_data_offset); 1712 } 1713 1714 /* 1715 * reserve TMR memory at the top of VRAM which holds 1716 * IP Discovery data and is protected by PSP. 1717 */ 1718 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1719 { 1720 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1721 bool mem_train_support = false; 1722 uint32_t reserve_size = 0; 1723 int ret; 1724 1725 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1726 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1727 mem_train_support = true; 1728 else 1729 DRM_DEBUG("memory training does not support!\n"); 1730 } 1731 1732 /* 1733 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1734 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1735 * 1736 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1737 * discovery data and G6 memory training data respectively 1738 */ 1739 if (adev->bios) 1740 reserve_size = 1741 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1742 1743 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1744 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1745 else if (!reserve_size) 1746 reserve_size = DISCOVERY_TMR_OFFSET; 1747 1748 if (mem_train_support) { 1749 /* reserve vram for mem train according to TMR location */ 1750 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1751 ret = amdgpu_bo_create_kernel_at(adev, 1752 ctx->c2p_train_data_offset, 1753 ctx->train_data_size, 1754 &ctx->c2p_bo, 1755 NULL); 1756 if (ret) { 1757 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1758 amdgpu_ttm_training_reserve_vram_fini(adev); 1759 return ret; 1760 } 1761 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1762 } 1763 1764 if (!adev->gmc.is_app_apu) { 1765 ret = amdgpu_bo_create_kernel_at( 1766 adev, adev->gmc.real_vram_size - reserve_size, 1767 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1768 if (ret) { 1769 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1770 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1771 NULL, NULL); 1772 return ret; 1773 } 1774 } else { 1775 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1776 } 1777 1778 return 0; 1779 } 1780 1781 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1782 { 1783 int i; 1784 1785 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1786 return 0; 1787 1788 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1789 sizeof(*adev->mman.ttm_pools), 1790 GFP_KERNEL); 1791 if (!adev->mman.ttm_pools) 1792 return -ENOMEM; 1793 1794 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1795 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1796 adev->gmc.mem_partitions[i].numa.node, 1797 false, false); 1798 } 1799 return 0; 1800 } 1801 1802 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1803 { 1804 int i; 1805 1806 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1807 return; 1808 1809 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1810 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1811 1812 kfree(adev->mman.ttm_pools); 1813 adev->mman.ttm_pools = NULL; 1814 } 1815 1816 /* 1817 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1818 * gtt/vram related fields. 1819 * 1820 * This initializes all of the memory space pools that the TTM layer 1821 * will need such as the GTT space (system memory mapped to the device), 1822 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1823 * can be mapped per VMID. 1824 */ 1825 int amdgpu_ttm_init(struct amdgpu_device *adev) 1826 { 1827 uint64_t gtt_size; 1828 int r; 1829 1830 mutex_init(&adev->mman.gtt_window_lock); 1831 1832 /* No others user of address space so set it to 0 */ 1833 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1834 adev_to_drm(adev)->anon_inode->i_mapping, 1835 adev_to_drm(adev)->vma_offset_manager, 1836 adev->need_swiotlb, 1837 dma_addressing_limited(adev->dev)); 1838 if (r) { 1839 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1840 return r; 1841 } 1842 1843 r = amdgpu_ttm_pools_init(adev); 1844 if (r) { 1845 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1846 return r; 1847 } 1848 adev->mman.initialized = true; 1849 1850 /* Initialize VRAM pool with all of VRAM divided into pages */ 1851 r = amdgpu_vram_mgr_init(adev); 1852 if (r) { 1853 DRM_ERROR("Failed initializing VRAM heap.\n"); 1854 return r; 1855 } 1856 1857 /* Change the size here instead of the init above so only lpfn is affected */ 1858 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1859 #ifdef CONFIG_64BIT 1860 #ifdef CONFIG_X86 1861 if (adev->gmc.xgmi.connected_to_cpu) 1862 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1863 adev->gmc.visible_vram_size); 1864 1865 else if (adev->gmc.is_app_apu) 1866 DRM_DEBUG_DRIVER( 1867 "No need to ioremap when real vram size is 0\n"); 1868 else 1869 #endif 1870 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1871 adev->gmc.visible_vram_size); 1872 #endif 1873 1874 /* 1875 *The reserved vram for firmware must be pinned to the specified 1876 *place on the VRAM, so reserve it early. 1877 */ 1878 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1879 if (r) 1880 return r; 1881 1882 /* 1883 *The reserved vram for driver must be pinned to the specified 1884 *place on the VRAM, so reserve it early. 1885 */ 1886 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1887 if (r) 1888 return r; 1889 1890 /* 1891 * only NAVI10 and onwards ASIC support for IP discovery. 1892 * If IP discovery enabled, a block of memory should be 1893 * reserved for IP discovey. 1894 */ 1895 if (adev->mman.discovery_bin) { 1896 r = amdgpu_ttm_reserve_tmr(adev); 1897 if (r) 1898 return r; 1899 } 1900 1901 /* allocate memory as required for VGA 1902 * This is used for VGA emulation and pre-OS scanout buffers to 1903 * avoid display artifacts while transitioning between pre-OS 1904 * and driver. 1905 */ 1906 if (!adev->gmc.is_app_apu) { 1907 r = amdgpu_bo_create_kernel_at(adev, 0, 1908 adev->mman.stolen_vga_size, 1909 &adev->mman.stolen_vga_memory, 1910 NULL); 1911 if (r) 1912 return r; 1913 1914 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1915 adev->mman.stolen_extended_size, 1916 &adev->mman.stolen_extended_memory, 1917 NULL); 1918 1919 if (r) 1920 return r; 1921 1922 r = amdgpu_bo_create_kernel_at(adev, 1923 adev->mman.stolen_reserved_offset, 1924 adev->mman.stolen_reserved_size, 1925 &adev->mman.stolen_reserved_memory, 1926 NULL); 1927 if (r) 1928 return r; 1929 } else { 1930 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1931 } 1932 1933 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1934 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1935 1936 /* Compute GTT size, either based on TTM limit 1937 * or whatever the user passed on module init. 1938 */ 1939 if (amdgpu_gtt_size == -1) 1940 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1941 else 1942 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1943 1944 /* Initialize GTT memory pool */ 1945 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1946 if (r) { 1947 DRM_ERROR("Failed initializing GTT heap.\n"); 1948 return r; 1949 } 1950 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1951 (unsigned int)(gtt_size / (1024 * 1024))); 1952 1953 /* Initiailize doorbell pool on PCI BAR */ 1954 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1955 if (r) { 1956 DRM_ERROR("Failed initializing doorbell heap.\n"); 1957 return r; 1958 } 1959 1960 /* Create a boorbell page for kernel usages */ 1961 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1962 if (r) { 1963 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1964 return r; 1965 } 1966 1967 /* Initialize preemptible memory pool */ 1968 r = amdgpu_preempt_mgr_init(adev); 1969 if (r) { 1970 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1971 return r; 1972 } 1973 1974 /* Initialize various on-chip memory pools */ 1975 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1976 if (r) { 1977 DRM_ERROR("Failed initializing GDS heap.\n"); 1978 return r; 1979 } 1980 1981 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1982 if (r) { 1983 DRM_ERROR("Failed initializing gws heap.\n"); 1984 return r; 1985 } 1986 1987 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1988 if (r) { 1989 DRM_ERROR("Failed initializing oa heap.\n"); 1990 return r; 1991 } 1992 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1993 AMDGPU_GEM_DOMAIN_GTT, 1994 &adev->mman.sdma_access_bo, NULL, 1995 &adev->mman.sdma_access_ptr)) 1996 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1997 1998 return 0; 1999 } 2000 2001 /* 2002 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2003 */ 2004 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2005 { 2006 int idx; 2007 2008 if (!adev->mman.initialized) 2009 return; 2010 2011 amdgpu_ttm_pools_fini(adev); 2012 2013 amdgpu_ttm_training_reserve_vram_fini(adev); 2014 /* return the stolen vga memory back to VRAM */ 2015 if (!adev->gmc.is_app_apu) { 2016 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2017 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2018 /* return the FW reserved memory back to VRAM */ 2019 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2020 NULL); 2021 if (adev->mman.stolen_reserved_size) 2022 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2023 NULL, NULL); 2024 } 2025 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2026 &adev->mman.sdma_access_ptr); 2027 amdgpu_ttm_fw_reserve_vram_fini(adev); 2028 amdgpu_ttm_drv_reserve_vram_fini(adev); 2029 2030 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2031 2032 if (adev->mman.aper_base_kaddr) 2033 iounmap(adev->mman.aper_base_kaddr); 2034 adev->mman.aper_base_kaddr = NULL; 2035 2036 drm_dev_exit(idx); 2037 } 2038 2039 amdgpu_vram_mgr_fini(adev); 2040 amdgpu_gtt_mgr_fini(adev); 2041 amdgpu_preempt_mgr_fini(adev); 2042 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2043 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2044 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2045 ttm_device_fini(&adev->mman.bdev); 2046 adev->mman.initialized = false; 2047 DRM_INFO("amdgpu: ttm finalized\n"); 2048 } 2049 2050 /** 2051 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2052 * 2053 * @adev: amdgpu_device pointer 2054 * @enable: true when we can use buffer functions. 2055 * 2056 * Enable/disable use of buffer functions during suspend/resume. This should 2057 * only be called at bootup or when userspace isn't running. 2058 */ 2059 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2060 { 2061 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2062 uint64_t size; 2063 int r; 2064 2065 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2066 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2067 return; 2068 2069 if (enable) { 2070 struct amdgpu_ring *ring; 2071 struct drm_gpu_scheduler *sched; 2072 2073 ring = adev->mman.buffer_funcs_ring; 2074 sched = &ring->sched; 2075 r = drm_sched_entity_init(&adev->mman.high_pr, 2076 DRM_SCHED_PRIORITY_KERNEL, &sched, 2077 1, NULL); 2078 if (r) { 2079 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2080 r); 2081 return; 2082 } 2083 2084 r = drm_sched_entity_init(&adev->mman.low_pr, 2085 DRM_SCHED_PRIORITY_NORMAL, &sched, 2086 1, NULL); 2087 if (r) { 2088 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2089 r); 2090 goto error_free_entity; 2091 } 2092 } else { 2093 drm_sched_entity_destroy(&adev->mman.high_pr); 2094 drm_sched_entity_destroy(&adev->mman.low_pr); 2095 dma_fence_put(man->move); 2096 man->move = NULL; 2097 } 2098 2099 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2100 if (enable) 2101 size = adev->gmc.real_vram_size; 2102 else 2103 size = adev->gmc.visible_vram_size; 2104 man->size = size; 2105 adev->mman.buffer_funcs_enabled = enable; 2106 2107 return; 2108 2109 error_free_entity: 2110 drm_sched_entity_destroy(&adev->mman.high_pr); 2111 } 2112 2113 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2114 bool direct_submit, 2115 unsigned int num_dw, 2116 struct dma_resv *resv, 2117 bool vm_needs_flush, 2118 struct amdgpu_job **job, 2119 bool delayed) 2120 { 2121 enum amdgpu_ib_pool_type pool = direct_submit ? 2122 AMDGPU_IB_POOL_DIRECT : 2123 AMDGPU_IB_POOL_DELAYED; 2124 int r; 2125 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2126 &adev->mman.high_pr; 2127 r = amdgpu_job_alloc_with_ib(adev, entity, 2128 AMDGPU_FENCE_OWNER_UNDEFINED, 2129 num_dw * 4, pool, job); 2130 if (r) 2131 return r; 2132 2133 if (vm_needs_flush) { 2134 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2135 adev->gmc.pdb0_bo : 2136 adev->gart.bo); 2137 (*job)->vm_needs_flush = true; 2138 } 2139 if (!resv) 2140 return 0; 2141 2142 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2143 DMA_RESV_USAGE_BOOKKEEP); 2144 } 2145 2146 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2147 uint64_t dst_offset, uint32_t byte_count, 2148 struct dma_resv *resv, 2149 struct dma_fence **fence, bool direct_submit, 2150 bool vm_needs_flush, bool tmz) 2151 { 2152 struct amdgpu_device *adev = ring->adev; 2153 unsigned int num_loops, num_dw; 2154 struct amdgpu_job *job; 2155 uint32_t max_bytes; 2156 unsigned int i; 2157 int r; 2158 2159 if (!direct_submit && !ring->sched.ready) { 2160 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2161 return -EINVAL; 2162 } 2163 2164 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2165 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2166 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2167 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2168 resv, vm_needs_flush, &job, false); 2169 if (r) 2170 return r; 2171 2172 for (i = 0; i < num_loops; i++) { 2173 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2174 2175 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2176 dst_offset, cur_size_in_bytes, tmz); 2177 2178 src_offset += cur_size_in_bytes; 2179 dst_offset += cur_size_in_bytes; 2180 byte_count -= cur_size_in_bytes; 2181 } 2182 2183 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2184 WARN_ON(job->ibs[0].length_dw > num_dw); 2185 if (direct_submit) 2186 r = amdgpu_job_submit_direct(job, ring, fence); 2187 else 2188 *fence = amdgpu_job_submit(job); 2189 if (r) 2190 goto error_free; 2191 2192 return r; 2193 2194 error_free: 2195 amdgpu_job_free(job); 2196 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2197 return r; 2198 } 2199 2200 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2201 uint64_t dst_addr, uint32_t byte_count, 2202 struct dma_resv *resv, 2203 struct dma_fence **fence, 2204 bool vm_needs_flush, bool delayed) 2205 { 2206 struct amdgpu_device *adev = ring->adev; 2207 unsigned int num_loops, num_dw; 2208 struct amdgpu_job *job; 2209 uint32_t max_bytes; 2210 unsigned int i; 2211 int r; 2212 2213 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2214 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2215 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2216 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2217 &job, delayed); 2218 if (r) 2219 return r; 2220 2221 for (i = 0; i < num_loops; i++) { 2222 uint32_t cur_size = min(byte_count, max_bytes); 2223 2224 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2225 cur_size); 2226 2227 dst_addr += cur_size; 2228 byte_count -= cur_size; 2229 } 2230 2231 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2232 WARN_ON(job->ibs[0].length_dw > num_dw); 2233 *fence = amdgpu_job_submit(job); 2234 return 0; 2235 } 2236 2237 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2238 uint32_t src_data, 2239 struct dma_resv *resv, 2240 struct dma_fence **f, 2241 bool delayed) 2242 { 2243 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2244 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2245 struct dma_fence *fence = NULL; 2246 struct amdgpu_res_cursor dst; 2247 int r; 2248 2249 if (!adev->mman.buffer_funcs_enabled) { 2250 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2251 return -EINVAL; 2252 } 2253 2254 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2255 2256 mutex_lock(&adev->mman.gtt_window_lock); 2257 while (dst.remaining) { 2258 struct dma_fence *next; 2259 uint64_t cur_size, to; 2260 2261 /* Never fill more than 256MiB at once to avoid timeouts */ 2262 cur_size = min(dst.size, 256ULL << 20); 2263 2264 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2265 1, ring, false, &cur_size, &to); 2266 if (r) 2267 goto error; 2268 2269 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2270 &next, true, delayed); 2271 if (r) 2272 goto error; 2273 2274 dma_fence_put(fence); 2275 fence = next; 2276 2277 amdgpu_res_next(&dst, cur_size); 2278 } 2279 error: 2280 mutex_unlock(&adev->mman.gtt_window_lock); 2281 if (f) 2282 *f = dma_fence_get(fence); 2283 dma_fence_put(fence); 2284 return r; 2285 } 2286 2287 /** 2288 * amdgpu_ttm_evict_resources - evict memory buffers 2289 * @adev: amdgpu device object 2290 * @mem_type: evicted BO's memory type 2291 * 2292 * Evicts all @mem_type buffers on the lru list of the memory type. 2293 * 2294 * Returns: 2295 * 0 for success or a negative error code on failure. 2296 */ 2297 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2298 { 2299 struct ttm_resource_manager *man; 2300 2301 switch (mem_type) { 2302 case TTM_PL_VRAM: 2303 case TTM_PL_TT: 2304 case AMDGPU_PL_GWS: 2305 case AMDGPU_PL_GDS: 2306 case AMDGPU_PL_OA: 2307 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2308 break; 2309 default: 2310 DRM_ERROR("Trying to evict invalid memory type\n"); 2311 return -EINVAL; 2312 } 2313 2314 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2315 } 2316 2317 #if defined(CONFIG_DEBUG_FS) 2318 2319 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2320 { 2321 struct amdgpu_device *adev = m->private; 2322 2323 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2324 } 2325 2326 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2327 2328 /* 2329 * amdgpu_ttm_vram_read - Linear read access to VRAM 2330 * 2331 * Accesses VRAM via MMIO for debugging purposes. 2332 */ 2333 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2334 size_t size, loff_t *pos) 2335 { 2336 struct amdgpu_device *adev = file_inode(f)->i_private; 2337 ssize_t result = 0; 2338 2339 if (size & 0x3 || *pos & 0x3) 2340 return -EINVAL; 2341 2342 if (*pos >= adev->gmc.mc_vram_size) 2343 return -ENXIO; 2344 2345 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2346 while (size) { 2347 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2348 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2349 2350 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2351 if (copy_to_user(buf, value, bytes)) 2352 return -EFAULT; 2353 2354 result += bytes; 2355 buf += bytes; 2356 *pos += bytes; 2357 size -= bytes; 2358 } 2359 2360 return result; 2361 } 2362 2363 /* 2364 * amdgpu_ttm_vram_write - Linear write access to VRAM 2365 * 2366 * Accesses VRAM via MMIO for debugging purposes. 2367 */ 2368 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2369 size_t size, loff_t *pos) 2370 { 2371 struct amdgpu_device *adev = file_inode(f)->i_private; 2372 ssize_t result = 0; 2373 int r; 2374 2375 if (size & 0x3 || *pos & 0x3) 2376 return -EINVAL; 2377 2378 if (*pos >= adev->gmc.mc_vram_size) 2379 return -ENXIO; 2380 2381 while (size) { 2382 uint32_t value; 2383 2384 if (*pos >= adev->gmc.mc_vram_size) 2385 return result; 2386 2387 r = get_user(value, (uint32_t *)buf); 2388 if (r) 2389 return r; 2390 2391 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2392 2393 result += 4; 2394 buf += 4; 2395 *pos += 4; 2396 size -= 4; 2397 } 2398 2399 return result; 2400 } 2401 2402 static const struct file_operations amdgpu_ttm_vram_fops = { 2403 .owner = THIS_MODULE, 2404 .read = amdgpu_ttm_vram_read, 2405 .write = amdgpu_ttm_vram_write, 2406 .llseek = default_llseek, 2407 }; 2408 2409 /* 2410 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2411 * 2412 * This function is used to read memory that has been mapped to the 2413 * GPU and the known addresses are not physical addresses but instead 2414 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2415 */ 2416 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2417 size_t size, loff_t *pos) 2418 { 2419 struct amdgpu_device *adev = file_inode(f)->i_private; 2420 struct iommu_domain *dom; 2421 ssize_t result = 0; 2422 int r; 2423 2424 /* retrieve the IOMMU domain if any for this device */ 2425 dom = iommu_get_domain_for_dev(adev->dev); 2426 2427 while (size) { 2428 phys_addr_t addr = *pos & PAGE_MASK; 2429 loff_t off = *pos & ~PAGE_MASK; 2430 size_t bytes = PAGE_SIZE - off; 2431 unsigned long pfn; 2432 struct page *p; 2433 void *ptr; 2434 2435 bytes = min(bytes, size); 2436 2437 /* Translate the bus address to a physical address. If 2438 * the domain is NULL it means there is no IOMMU active 2439 * and the address translation is the identity 2440 */ 2441 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2442 2443 pfn = addr >> PAGE_SHIFT; 2444 if (!pfn_valid(pfn)) 2445 return -EPERM; 2446 2447 p = pfn_to_page(pfn); 2448 if (p->mapping != adev->mman.bdev.dev_mapping) 2449 return -EPERM; 2450 2451 ptr = kmap_local_page(p); 2452 r = copy_to_user(buf, ptr + off, bytes); 2453 kunmap_local(ptr); 2454 if (r) 2455 return -EFAULT; 2456 2457 size -= bytes; 2458 *pos += bytes; 2459 result += bytes; 2460 } 2461 2462 return result; 2463 } 2464 2465 /* 2466 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2467 * 2468 * This function is used to write memory that has been mapped to the 2469 * GPU and the known addresses are not physical addresses but instead 2470 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2471 */ 2472 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2473 size_t size, loff_t *pos) 2474 { 2475 struct amdgpu_device *adev = file_inode(f)->i_private; 2476 struct iommu_domain *dom; 2477 ssize_t result = 0; 2478 int r; 2479 2480 dom = iommu_get_domain_for_dev(adev->dev); 2481 2482 while (size) { 2483 phys_addr_t addr = *pos & PAGE_MASK; 2484 loff_t off = *pos & ~PAGE_MASK; 2485 size_t bytes = PAGE_SIZE - off; 2486 unsigned long pfn; 2487 struct page *p; 2488 void *ptr; 2489 2490 bytes = min(bytes, size); 2491 2492 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2493 2494 pfn = addr >> PAGE_SHIFT; 2495 if (!pfn_valid(pfn)) 2496 return -EPERM; 2497 2498 p = pfn_to_page(pfn); 2499 if (p->mapping != adev->mman.bdev.dev_mapping) 2500 return -EPERM; 2501 2502 ptr = kmap_local_page(p); 2503 r = copy_from_user(ptr + off, buf, bytes); 2504 kunmap_local(ptr); 2505 if (r) 2506 return -EFAULT; 2507 2508 size -= bytes; 2509 *pos += bytes; 2510 result += bytes; 2511 } 2512 2513 return result; 2514 } 2515 2516 static const struct file_operations amdgpu_ttm_iomem_fops = { 2517 .owner = THIS_MODULE, 2518 .read = amdgpu_iomem_read, 2519 .write = amdgpu_iomem_write, 2520 .llseek = default_llseek 2521 }; 2522 2523 #endif 2524 2525 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2526 { 2527 #if defined(CONFIG_DEBUG_FS) 2528 struct drm_minor *minor = adev_to_drm(adev)->primary; 2529 struct dentry *root = minor->debugfs_root; 2530 2531 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2532 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2533 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2534 &amdgpu_ttm_iomem_fops); 2535 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2536 &amdgpu_ttm_page_pool_fops); 2537 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2538 TTM_PL_VRAM), 2539 root, "amdgpu_vram_mm"); 2540 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2541 TTM_PL_TT), 2542 root, "amdgpu_gtt_mm"); 2543 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2544 AMDGPU_PL_GDS), 2545 root, "amdgpu_gds_mm"); 2546 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2547 AMDGPU_PL_GWS), 2548 root, "amdgpu_gws_mm"); 2549 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2550 AMDGPU_PL_OA), 2551 root, "amdgpu_oa_mm"); 2552 2553 #endif 2554 } 2555