1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 43 #include <drm/ttm/ttm_bo_api.h> 44 #include <drm/ttm/ttm_bo_driver.h> 45 #include <drm/ttm/ttm_placement.h> 46 #include <drm/ttm/ttm_module.h> 47 #include <drm/ttm/ttm_page_alloc.h> 48 49 #include <drm/drm_debugfs.h> 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "bif/bif_4_1_d.h" 58 59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 60 struct ttm_mem_reg *mem, unsigned num_pages, 61 uint64_t offset, unsigned window, 62 struct amdgpu_ring *ring, 63 uint64_t *addr); 64 65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 67 68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 69 { 70 return 0; 71 } 72 73 /** 74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 75 * memory request. 76 * 77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 78 * @type: The type of memory requested 79 * @man: The memory type manager for each domain 80 * 81 * This is called by ttm_bo_init_mm() when a buffer object is being 82 * initialized. 83 */ 84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 85 struct ttm_mem_type_manager *man) 86 { 87 struct amdgpu_device *adev; 88 89 adev = amdgpu_ttm_adev(bdev); 90 91 switch (type) { 92 case TTM_PL_SYSTEM: 93 /* System memory */ 94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 break; 98 case TTM_PL_TT: 99 /* GTT memory */ 100 man->func = &amdgpu_gtt_mgr_func; 101 man->gpu_offset = adev->gmc.gart_start; 102 man->available_caching = TTM_PL_MASK_CACHING; 103 man->default_caching = TTM_PL_FLAG_CACHED; 104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 105 break; 106 case TTM_PL_VRAM: 107 /* "On-card" video ram */ 108 man->func = &amdgpu_vram_mgr_func; 109 man->gpu_offset = adev->gmc.vram_start; 110 man->flags = TTM_MEMTYPE_FLAG_FIXED | 111 TTM_MEMTYPE_FLAG_MAPPABLE; 112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 113 man->default_caching = TTM_PL_FLAG_WC; 114 break; 115 case AMDGPU_PL_GDS: 116 case AMDGPU_PL_GWS: 117 case AMDGPU_PL_OA: 118 /* On-chip GDS memory*/ 119 man->func = &ttm_bo_manager_func; 120 man->gpu_offset = 0; 121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 122 man->available_caching = TTM_PL_FLAG_UNCACHED; 123 man->default_caching = TTM_PL_FLAG_UNCACHED; 124 break; 125 default: 126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /** 133 * amdgpu_evict_flags - Compute placement flags 134 * 135 * @bo: The buffer object to evict 136 * @placement: Possible destination(s) for evicted BO 137 * 138 * Fill in placement data when ttm_bo_evict() is called 139 */ 140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 141 struct ttm_placement *placement) 142 { 143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 144 struct amdgpu_bo *abo; 145 static const struct ttm_place placements = { 146 .fpfn = 0, 147 .lpfn = 0, 148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 149 }; 150 151 /* Don't handle scatter gather BOs */ 152 if (bo->type == ttm_bo_type_sg) { 153 placement->num_placement = 0; 154 placement->num_busy_placement = 0; 155 return; 156 } 157 158 /* Object isn't an AMDGPU object so ignore */ 159 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 160 placement->placement = &placements; 161 placement->busy_placement = &placements; 162 placement->num_placement = 1; 163 placement->num_busy_placement = 1; 164 return; 165 } 166 167 abo = ttm_to_amdgpu_bo(bo); 168 switch (bo->mem.mem_type) { 169 case AMDGPU_PL_GDS: 170 case AMDGPU_PL_GWS: 171 case AMDGPU_PL_OA: 172 placement->num_placement = 0; 173 placement->num_busy_placement = 0; 174 return; 175 176 case TTM_PL_VRAM: 177 if (!adev->mman.buffer_funcs_enabled) { 178 /* Move to system memory */ 179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 182 amdgpu_bo_in_cpu_visible_vram(abo)) { 183 184 /* Try evicting to the CPU inaccessible part of VRAM 185 * first, but only set GTT as busy placement, so this 186 * BO will be evicted to GTT rather than causing other 187 * BOs to be evicted from VRAM 188 */ 189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 190 AMDGPU_GEM_DOMAIN_GTT); 191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 192 abo->placements[0].lpfn = 0; 193 abo->placement.busy_placement = &abo->placements[1]; 194 abo->placement.num_busy_placement = 1; 195 } else { 196 /* Move to GTT memory */ 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 198 } 199 break; 200 case TTM_PL_TT: 201 default: 202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 203 break; 204 } 205 *placement = abo->placement; 206 } 207 208 /** 209 * amdgpu_verify_access - Verify access for a mmap call 210 * 211 * @bo: The buffer object to map 212 * @filp: The file pointer from the process performing the mmap 213 * 214 * This is called by ttm_bo_mmap() to verify whether a process 215 * has the right to mmap a BO to their process space. 216 */ 217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 218 { 219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 220 221 /* 222 * Don't verify access for KFD BOs. They don't have a GEM 223 * object associated with them. 224 */ 225 if (abo->kfd_bo) 226 return 0; 227 228 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 229 return -EPERM; 230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 231 filp->private_data); 232 } 233 234 /** 235 * amdgpu_move_null - Register memory for a buffer object 236 * 237 * @bo: The bo to assign the memory to 238 * @new_mem: The memory to be assigned. 239 * 240 * Assign the memory from new_mem to the memory of the buffer object bo. 241 */ 242 static void amdgpu_move_null(struct ttm_buffer_object *bo, 243 struct ttm_mem_reg *new_mem) 244 { 245 struct ttm_mem_reg *old_mem = &bo->mem; 246 247 BUG_ON(old_mem->mm_node != NULL); 248 *old_mem = *new_mem; 249 new_mem->mm_node = NULL; 250 } 251 252 /** 253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 254 * 255 * @bo: The bo to assign the memory to. 256 * @mm_node: Memory manager node for drm allocator. 257 * @mem: The region where the bo resides. 258 * 259 */ 260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 261 struct drm_mm_node *mm_node, 262 struct ttm_mem_reg *mem) 263 { 264 uint64_t addr = 0; 265 266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 267 addr = mm_node->start << PAGE_SHIFT; 268 addr += bo->bdev->man[mem->mem_type].gpu_offset; 269 } 270 return addr; 271 } 272 273 /** 274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 275 * @offset. It also modifies the offset to be within the drm_mm_node returned 276 * 277 * @mem: The region where the bo resides. 278 * @offset: The offset that drm_mm_node is used for finding. 279 * 280 */ 281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 282 unsigned long *offset) 283 { 284 struct drm_mm_node *mm_node = mem->mm_node; 285 286 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 287 *offset -= (mm_node->size << PAGE_SHIFT); 288 ++mm_node; 289 } 290 return mm_node; 291 } 292 293 /** 294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 * @f: Returns the last fence if multiple jobs are submitted. 301 */ 302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 303 struct amdgpu_copy_mem *src, 304 struct amdgpu_copy_mem *dst, 305 uint64_t size, 306 struct dma_resv *resv, 307 struct dma_fence **f) 308 { 309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 310 struct drm_mm_node *src_mm, *dst_mm; 311 uint64_t src_node_start, dst_node_start, src_node_size, 312 dst_node_size, src_page_offset, dst_page_offset; 313 struct dma_fence *fence = NULL; 314 int r = 0; 315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 316 AMDGPU_GPU_PAGE_SIZE); 317 318 if (!adev->mman.buffer_funcs_enabled) { 319 DRM_ERROR("Trying to move memory with ring turned off.\n"); 320 return -EINVAL; 321 } 322 323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 325 src->offset; 326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 327 src_page_offset = src_node_start & (PAGE_SIZE - 1); 328 329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 331 dst->offset; 332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 334 335 mutex_lock(&adev->mman.gtt_window_lock); 336 337 while (size) { 338 unsigned long cur_size; 339 uint64_t from = src_node_start, to = dst_node_start; 340 struct dma_fence *next; 341 342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 343 * begins at an offset, then adjust the size accordingly 344 */ 345 cur_size = min3(min(src_node_size, dst_node_size), size, 346 GTT_MAX_BYTES); 347 if (cur_size + src_page_offset > GTT_MAX_BYTES || 348 cur_size + dst_page_offset > GTT_MAX_BYTES) 349 cur_size -= max(src_page_offset, dst_page_offset); 350 351 /* Map only what needs to be accessed. Map src to window 0 and 352 * dst to window 1 353 */ 354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 355 r = amdgpu_map_buffer(src->bo, src->mem, 356 PFN_UP(cur_size + src_page_offset), 357 src_node_start, 0, ring, 358 &from); 359 if (r) 360 goto error; 361 /* Adjust the offset because amdgpu_map_buffer returns 362 * start of mapped page 363 */ 364 from += src_page_offset; 365 } 366 367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 368 r = amdgpu_map_buffer(dst->bo, dst->mem, 369 PFN_UP(cur_size + dst_page_offset), 370 dst_node_start, 1, ring, 371 &to); 372 if (r) 373 goto error; 374 to += dst_page_offset; 375 } 376 377 r = amdgpu_copy_buffer(ring, from, to, cur_size, 378 resv, &next, false, true); 379 if (r) 380 goto error; 381 382 dma_fence_put(fence); 383 fence = next; 384 385 size -= cur_size; 386 if (!size) 387 break; 388 389 src_node_size -= cur_size; 390 if (!src_node_size) { 391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 392 src->mem); 393 src_node_size = (src_mm->size << PAGE_SHIFT); 394 src_page_offset = 0; 395 } else { 396 src_node_start += cur_size; 397 src_page_offset = src_node_start & (PAGE_SIZE - 1); 398 } 399 dst_node_size -= cur_size; 400 if (!dst_node_size) { 401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 402 dst->mem); 403 dst_node_size = (dst_mm->size << PAGE_SHIFT); 404 dst_page_offset = 0; 405 } else { 406 dst_node_start += cur_size; 407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 408 } 409 } 410 error: 411 mutex_unlock(&adev->mman.gtt_window_lock); 412 if (f) 413 *f = dma_fence_get(fence); 414 dma_fence_put(fence); 415 return r; 416 } 417 418 /** 419 * amdgpu_move_blit - Copy an entire buffer to another buffer 420 * 421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 422 * help move buffers to and from VRAM. 423 */ 424 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 425 bool evict, bool no_wait_gpu, 426 struct ttm_mem_reg *new_mem, 427 struct ttm_mem_reg *old_mem) 428 { 429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 430 struct amdgpu_copy_mem src, dst; 431 struct dma_fence *fence = NULL; 432 int r; 433 434 src.bo = bo; 435 dst.bo = bo; 436 src.mem = old_mem; 437 dst.mem = new_mem; 438 src.offset = 0; 439 dst.offset = 0; 440 441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 442 new_mem->num_pages << PAGE_SHIFT, 443 bo->base.resv, &fence); 444 if (r) 445 goto error; 446 447 /* clear the space being freed */ 448 if (old_mem->mem_type == TTM_PL_VRAM && 449 (ttm_to_amdgpu_bo(bo)->flags & 450 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 451 struct dma_fence *wipe_fence = NULL; 452 453 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 454 NULL, &wipe_fence); 455 if (r) { 456 goto error; 457 } else if (wipe_fence) { 458 dma_fence_put(fence); 459 fence = wipe_fence; 460 } 461 } 462 463 /* Always block for VM page tables before committing the new location */ 464 if (bo->type == ttm_bo_type_kernel) 465 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 466 else 467 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 468 dma_fence_put(fence); 469 return r; 470 471 error: 472 if (fence) 473 dma_fence_wait(fence, false); 474 dma_fence_put(fence); 475 return r; 476 } 477 478 /** 479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 480 * 481 * Called by amdgpu_bo_move(). 482 */ 483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 484 struct ttm_operation_ctx *ctx, 485 struct ttm_mem_reg *new_mem) 486 { 487 struct amdgpu_device *adev; 488 struct ttm_mem_reg *old_mem = &bo->mem; 489 struct ttm_mem_reg tmp_mem; 490 struct ttm_place placements; 491 struct ttm_placement placement; 492 int r; 493 494 adev = amdgpu_ttm_adev(bo->bdev); 495 496 /* create space/pages for new_mem in GTT space */ 497 tmp_mem = *new_mem; 498 tmp_mem.mm_node = NULL; 499 placement.num_placement = 1; 500 placement.placement = &placements; 501 placement.num_busy_placement = 1; 502 placement.busy_placement = &placements; 503 placements.fpfn = 0; 504 placements.lpfn = 0; 505 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 506 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 507 if (unlikely(r)) { 508 pr_err("Failed to find GTT space for blit from VRAM\n"); 509 return r; 510 } 511 512 /* set caching flags */ 513 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 514 if (unlikely(r)) { 515 goto out_cleanup; 516 } 517 518 /* Bind the memory to the GTT space */ 519 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 520 if (unlikely(r)) { 521 goto out_cleanup; 522 } 523 524 /* blit VRAM to GTT */ 525 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 526 if (unlikely(r)) { 527 goto out_cleanup; 528 } 529 530 /* move BO (in tmp_mem) to new_mem */ 531 r = ttm_bo_move_ttm(bo, ctx, new_mem); 532 out_cleanup: 533 ttm_bo_mem_put(bo, &tmp_mem); 534 return r; 535 } 536 537 /** 538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 539 * 540 * Called by amdgpu_bo_move(). 541 */ 542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 543 struct ttm_operation_ctx *ctx, 544 struct ttm_mem_reg *new_mem) 545 { 546 struct amdgpu_device *adev; 547 struct ttm_mem_reg *old_mem = &bo->mem; 548 struct ttm_mem_reg tmp_mem; 549 struct ttm_placement placement; 550 struct ttm_place placements; 551 int r; 552 553 adev = amdgpu_ttm_adev(bo->bdev); 554 555 /* make space in GTT for old_mem buffer */ 556 tmp_mem = *new_mem; 557 tmp_mem.mm_node = NULL; 558 placement.num_placement = 1; 559 placement.placement = &placements; 560 placement.num_busy_placement = 1; 561 placement.busy_placement = &placements; 562 placements.fpfn = 0; 563 placements.lpfn = 0; 564 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 565 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 566 if (unlikely(r)) { 567 pr_err("Failed to find GTT space for blit to VRAM\n"); 568 return r; 569 } 570 571 /* move/bind old memory to GTT space */ 572 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 573 if (unlikely(r)) { 574 goto out_cleanup; 575 } 576 577 /* copy to VRAM */ 578 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 579 if (unlikely(r)) { 580 goto out_cleanup; 581 } 582 out_cleanup: 583 ttm_bo_mem_put(bo, &tmp_mem); 584 return r; 585 } 586 587 /** 588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 589 * 590 * Called by amdgpu_bo_move() 591 */ 592 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 593 struct ttm_mem_reg *mem) 594 { 595 struct drm_mm_node *nodes = mem->mm_node; 596 597 if (mem->mem_type == TTM_PL_SYSTEM || 598 mem->mem_type == TTM_PL_TT) 599 return true; 600 if (mem->mem_type != TTM_PL_VRAM) 601 return false; 602 603 /* ttm_mem_reg_ioremap only supports contiguous memory */ 604 if (nodes->size != mem->num_pages) 605 return false; 606 607 return ((nodes->start + nodes->size) << PAGE_SHIFT) 608 <= adev->gmc.visible_vram_size; 609 } 610 611 /** 612 * amdgpu_bo_move - Move a buffer object to a new memory location 613 * 614 * Called by ttm_bo_handle_move_mem() 615 */ 616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 617 struct ttm_operation_ctx *ctx, 618 struct ttm_mem_reg *new_mem) 619 { 620 struct amdgpu_device *adev; 621 struct amdgpu_bo *abo; 622 struct ttm_mem_reg *old_mem = &bo->mem; 623 int r; 624 625 /* Can't move a pinned BO */ 626 abo = ttm_to_amdgpu_bo(bo); 627 if (WARN_ON_ONCE(abo->pin_count > 0)) 628 return -EINVAL; 629 630 adev = amdgpu_ttm_adev(bo->bdev); 631 632 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 633 amdgpu_move_null(bo, new_mem); 634 return 0; 635 } 636 if ((old_mem->mem_type == TTM_PL_TT && 637 new_mem->mem_type == TTM_PL_SYSTEM) || 638 (old_mem->mem_type == TTM_PL_SYSTEM && 639 new_mem->mem_type == TTM_PL_TT)) { 640 /* bind is enough */ 641 amdgpu_move_null(bo, new_mem); 642 return 0; 643 } 644 if (old_mem->mem_type == AMDGPU_PL_GDS || 645 old_mem->mem_type == AMDGPU_PL_GWS || 646 old_mem->mem_type == AMDGPU_PL_OA || 647 new_mem->mem_type == AMDGPU_PL_GDS || 648 new_mem->mem_type == AMDGPU_PL_GWS || 649 new_mem->mem_type == AMDGPU_PL_OA) { 650 /* Nothing to save here */ 651 amdgpu_move_null(bo, new_mem); 652 return 0; 653 } 654 655 if (!adev->mman.buffer_funcs_enabled) { 656 r = -ENODEV; 657 goto memcpy; 658 } 659 660 if (old_mem->mem_type == TTM_PL_VRAM && 661 new_mem->mem_type == TTM_PL_SYSTEM) { 662 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 663 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 664 new_mem->mem_type == TTM_PL_VRAM) { 665 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 666 } else { 667 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 668 new_mem, old_mem); 669 } 670 671 if (r) { 672 memcpy: 673 /* Check that all memory is CPU accessible */ 674 if (!amdgpu_mem_visible(adev, old_mem) || 675 !amdgpu_mem_visible(adev, new_mem)) { 676 pr_err("Move buffer fallback to memcpy unavailable\n"); 677 return r; 678 } 679 680 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 681 if (r) 682 return r; 683 } 684 685 if (bo->type == ttm_bo_type_device && 686 new_mem->mem_type == TTM_PL_VRAM && 687 old_mem->mem_type != TTM_PL_VRAM) { 688 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 689 * accesses the BO after it's moved. 690 */ 691 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 692 } 693 694 /* update statistics */ 695 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 696 return 0; 697 } 698 699 /** 700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 701 * 702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 703 */ 704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 705 { 706 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 707 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 708 struct drm_mm_node *mm_node = mem->mm_node; 709 710 mem->bus.addr = NULL; 711 mem->bus.offset = 0; 712 mem->bus.size = mem->num_pages << PAGE_SHIFT; 713 mem->bus.base = 0; 714 mem->bus.is_iomem = false; 715 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 716 return -EINVAL; 717 switch (mem->mem_type) { 718 case TTM_PL_SYSTEM: 719 /* system memory */ 720 return 0; 721 case TTM_PL_TT: 722 break; 723 case TTM_PL_VRAM: 724 mem->bus.offset = mem->start << PAGE_SHIFT; 725 /* check if it's visible */ 726 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 727 return -EINVAL; 728 /* Only physically contiguous buffers apply. In a contiguous 729 * buffer, size of the first mm_node would match the number of 730 * pages in ttm_mem_reg. 731 */ 732 if (adev->mman.aper_base_kaddr && 733 (mm_node->size == mem->num_pages)) 734 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 735 mem->bus.offset; 736 737 mem->bus.base = adev->gmc.aper_base; 738 mem->bus.is_iomem = true; 739 break; 740 default: 741 return -EINVAL; 742 } 743 return 0; 744 } 745 746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 747 { 748 } 749 750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 751 unsigned long page_offset) 752 { 753 struct drm_mm_node *mm; 754 unsigned long offset = (page_offset << PAGE_SHIFT); 755 756 mm = amdgpu_find_mm_node(&bo->mem, &offset); 757 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 758 (offset >> PAGE_SHIFT); 759 } 760 761 /* 762 * TTM backend functions. 763 */ 764 struct amdgpu_ttm_tt { 765 struct ttm_dma_tt ttm; 766 u64 offset; 767 uint64_t userptr; 768 struct task_struct *usertask; 769 uint32_t userflags; 770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 771 struct hmm_range *range; 772 #endif 773 }; 774 775 /** 776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 777 * memory and start HMM tracking CPU page table update 778 * 779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 780 * once afterwards to stop HMM tracking 781 */ 782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 783 784 #define MAX_RETRY_HMM_RANGE_FAULT 16 785 786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 787 { 788 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 789 struct ttm_tt *ttm = bo->tbo.ttm; 790 struct amdgpu_ttm_tt *gtt = (void *)ttm; 791 struct mm_struct *mm = gtt->usertask->mm; 792 unsigned long start = gtt->userptr; 793 struct vm_area_struct *vma; 794 struct hmm_range *range; 795 unsigned long i; 796 uint64_t *pfns; 797 int r = 0; 798 799 if (!mm) /* Happens during process shutdown */ 800 return -ESRCH; 801 802 if (unlikely(!mirror)) { 803 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 804 r = -EFAULT; 805 goto out; 806 } 807 808 vma = find_vma(mm, start); 809 if (unlikely(!vma || start < vma->vm_start)) { 810 r = -EFAULT; 811 goto out; 812 } 813 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 814 vma->vm_file)) { 815 r = -EPERM; 816 goto out; 817 } 818 819 range = kzalloc(sizeof(*range), GFP_KERNEL); 820 if (unlikely(!range)) { 821 r = -ENOMEM; 822 goto out; 823 } 824 825 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 826 if (unlikely(!pfns)) { 827 r = -ENOMEM; 828 goto out_free_ranges; 829 } 830 831 amdgpu_hmm_init_range(range); 832 range->default_flags = range->flags[HMM_PFN_VALID]; 833 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 834 0 : range->flags[HMM_PFN_WRITE]; 835 range->pfn_flags_mask = 0; 836 range->pfns = pfns; 837 range->start = start; 838 range->end = start + ttm->num_pages * PAGE_SIZE; 839 840 hmm_range_register(range, mirror); 841 842 /* 843 * Just wait for range to be valid, safe to ignore return value as we 844 * will use the return value of hmm_range_fault() below under the 845 * mmap_sem to ascertain the validity of the range. 846 */ 847 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 848 849 down_read(&mm->mmap_sem); 850 r = hmm_range_fault(range, 0); 851 up_read(&mm->mmap_sem); 852 853 if (unlikely(r < 0)) 854 goto out_free_pfns; 855 856 for (i = 0; i < ttm->num_pages; i++) { 857 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 858 if (unlikely(!pages[i])) { 859 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 860 i, pfns[i]); 861 r = -ENOMEM; 862 863 goto out_free_pfns; 864 } 865 } 866 867 gtt->range = range; 868 869 return 0; 870 871 out_free_pfns: 872 hmm_range_unregister(range); 873 kvfree(pfns); 874 out_free_ranges: 875 kfree(range); 876 out: 877 return r; 878 } 879 880 /** 881 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 882 * Check if the pages backing this ttm range have been invalidated 883 * 884 * Returns: true if pages are still valid 885 */ 886 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 887 { 888 struct amdgpu_ttm_tt *gtt = (void *)ttm; 889 bool r = false; 890 891 if (!gtt || !gtt->userptr) 892 return false; 893 894 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 895 gtt->userptr, ttm->num_pages); 896 897 WARN_ONCE(!gtt->range || !gtt->range->pfns, 898 "No user pages to check\n"); 899 900 if (gtt->range) { 901 r = hmm_range_valid(gtt->range); 902 hmm_range_unregister(gtt->range); 903 904 kvfree(gtt->range->pfns); 905 kfree(gtt->range); 906 gtt->range = NULL; 907 } 908 909 return r; 910 } 911 #endif 912 913 /** 914 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 915 * 916 * Called by amdgpu_cs_list_validate(). This creates the page list 917 * that backs user memory and will ultimately be mapped into the device 918 * address space. 919 */ 920 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 921 { 922 unsigned long i; 923 924 for (i = 0; i < ttm->num_pages; ++i) 925 ttm->pages[i] = pages ? pages[i] : NULL; 926 } 927 928 /** 929 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 930 * 931 * Called by amdgpu_ttm_backend_bind() 932 **/ 933 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 934 { 935 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 936 struct amdgpu_ttm_tt *gtt = (void *)ttm; 937 unsigned nents; 938 int r; 939 940 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 941 enum dma_data_direction direction = write ? 942 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 943 944 /* Allocate an SG array and squash pages into it */ 945 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 946 ttm->num_pages << PAGE_SHIFT, 947 GFP_KERNEL); 948 if (r) 949 goto release_sg; 950 951 /* Map SG to device */ 952 r = -ENOMEM; 953 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 954 if (nents != ttm->sg->nents) 955 goto release_sg; 956 957 /* convert SG to linear array of pages and dma addresses */ 958 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 959 gtt->ttm.dma_address, ttm->num_pages); 960 961 return 0; 962 963 release_sg: 964 kfree(ttm->sg); 965 return r; 966 } 967 968 /** 969 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 970 */ 971 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 972 { 973 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 974 struct amdgpu_ttm_tt *gtt = (void *)ttm; 975 976 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 977 enum dma_data_direction direction = write ? 978 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 979 980 /* double check that we don't free the table twice */ 981 if (!ttm->sg->sgl) 982 return; 983 984 /* unmap the pages mapped to the device */ 985 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 986 987 sg_free_table(ttm->sg); 988 989 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 990 if (gtt->range && 991 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 992 gtt->range->pfns[0])) 993 WARN_ONCE(1, "Missing get_user_page_done\n"); 994 #endif 995 } 996 997 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 998 struct ttm_buffer_object *tbo, 999 uint64_t flags) 1000 { 1001 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1002 struct ttm_tt *ttm = tbo->ttm; 1003 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1004 int r; 1005 1006 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1007 uint64_t page_idx = 1; 1008 1009 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1010 ttm->pages, gtt->ttm.dma_address, flags); 1011 if (r) 1012 goto gart_bind_fail; 1013 1014 /* Patch mtype of the second part BO */ 1015 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1016 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1017 1018 r = amdgpu_gart_bind(adev, 1019 gtt->offset + (page_idx << PAGE_SHIFT), 1020 ttm->num_pages - page_idx, 1021 &ttm->pages[page_idx], 1022 &(gtt->ttm.dma_address[page_idx]), flags); 1023 } else { 1024 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1025 ttm->pages, gtt->ttm.dma_address, flags); 1026 } 1027 1028 gart_bind_fail: 1029 if (r) 1030 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1031 ttm->num_pages, gtt->offset); 1032 1033 return r; 1034 } 1035 1036 /** 1037 * amdgpu_ttm_backend_bind - Bind GTT memory 1038 * 1039 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1040 * This handles binding GTT memory to the device address space. 1041 */ 1042 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1043 struct ttm_mem_reg *bo_mem) 1044 { 1045 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1046 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1047 uint64_t flags; 1048 int r = 0; 1049 1050 if (gtt->userptr) { 1051 r = amdgpu_ttm_tt_pin_userptr(ttm); 1052 if (r) { 1053 DRM_ERROR("failed to pin userptr\n"); 1054 return r; 1055 } 1056 } 1057 if (!ttm->num_pages) { 1058 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1059 ttm->num_pages, bo_mem, ttm); 1060 } 1061 1062 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1063 bo_mem->mem_type == AMDGPU_PL_GWS || 1064 bo_mem->mem_type == AMDGPU_PL_OA) 1065 return -EINVAL; 1066 1067 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1068 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1069 return 0; 1070 } 1071 1072 /* compute PTE flags relevant to this BO memory */ 1073 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1074 1075 /* bind pages into GART page tables */ 1076 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1077 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1078 ttm->pages, gtt->ttm.dma_address, flags); 1079 1080 if (r) 1081 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1082 ttm->num_pages, gtt->offset); 1083 return r; 1084 } 1085 1086 /** 1087 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1088 */ 1089 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1090 { 1091 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1092 struct ttm_operation_ctx ctx = { false, false }; 1093 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1094 struct ttm_mem_reg tmp; 1095 struct ttm_placement placement; 1096 struct ttm_place placements; 1097 uint64_t addr, flags; 1098 int r; 1099 1100 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1101 return 0; 1102 1103 addr = amdgpu_gmc_agp_addr(bo); 1104 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1105 bo->mem.start = addr >> PAGE_SHIFT; 1106 } else { 1107 1108 /* allocate GART space */ 1109 tmp = bo->mem; 1110 tmp.mm_node = NULL; 1111 placement.num_placement = 1; 1112 placement.placement = &placements; 1113 placement.num_busy_placement = 1; 1114 placement.busy_placement = &placements; 1115 placements.fpfn = 0; 1116 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1117 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1118 TTM_PL_FLAG_TT; 1119 1120 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1121 if (unlikely(r)) 1122 return r; 1123 1124 /* compute PTE flags for this buffer object */ 1125 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1126 1127 /* Bind pages */ 1128 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1129 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1130 if (unlikely(r)) { 1131 ttm_bo_mem_put(bo, &tmp); 1132 return r; 1133 } 1134 1135 ttm_bo_mem_put(bo, &bo->mem); 1136 bo->mem = tmp; 1137 } 1138 1139 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1140 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1141 1142 return 0; 1143 } 1144 1145 /** 1146 * amdgpu_ttm_recover_gart - Rebind GTT pages 1147 * 1148 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1149 * rebind GTT pages during a GPU reset. 1150 */ 1151 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1152 { 1153 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1154 uint64_t flags; 1155 int r; 1156 1157 if (!tbo->ttm) 1158 return 0; 1159 1160 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1161 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1162 1163 return r; 1164 } 1165 1166 /** 1167 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1168 * 1169 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1170 * ttm_tt_destroy(). 1171 */ 1172 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1173 { 1174 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1175 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1176 int r; 1177 1178 /* if the pages have userptr pinning then clear that first */ 1179 if (gtt->userptr) 1180 amdgpu_ttm_tt_unpin_userptr(ttm); 1181 1182 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1183 return 0; 1184 1185 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1186 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1187 if (r) 1188 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1189 gtt->ttm.ttm.num_pages, gtt->offset); 1190 return r; 1191 } 1192 1193 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1194 { 1195 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1196 1197 if (gtt->usertask) 1198 put_task_struct(gtt->usertask); 1199 1200 ttm_dma_tt_fini(>t->ttm); 1201 kfree(gtt); 1202 } 1203 1204 static struct ttm_backend_func amdgpu_backend_func = { 1205 .bind = &amdgpu_ttm_backend_bind, 1206 .unbind = &amdgpu_ttm_backend_unbind, 1207 .destroy = &amdgpu_ttm_backend_destroy, 1208 }; 1209 1210 /** 1211 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1212 * 1213 * @bo: The buffer object to create a GTT ttm_tt object around 1214 * 1215 * Called by ttm_tt_create(). 1216 */ 1217 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1218 uint32_t page_flags) 1219 { 1220 struct amdgpu_device *adev; 1221 struct amdgpu_ttm_tt *gtt; 1222 1223 adev = amdgpu_ttm_adev(bo->bdev); 1224 1225 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1226 if (gtt == NULL) { 1227 return NULL; 1228 } 1229 gtt->ttm.ttm.func = &amdgpu_backend_func; 1230 1231 /* allocate space for the uninitialized page entries */ 1232 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1233 kfree(gtt); 1234 return NULL; 1235 } 1236 return >t->ttm.ttm; 1237 } 1238 1239 /** 1240 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1241 * 1242 * Map the pages of a ttm_tt object to an address space visible 1243 * to the underlying device. 1244 */ 1245 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1246 struct ttm_operation_ctx *ctx) 1247 { 1248 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1249 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1250 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1251 1252 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1253 if (gtt && gtt->userptr) { 1254 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1255 if (!ttm->sg) 1256 return -ENOMEM; 1257 1258 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1259 ttm->state = tt_unbound; 1260 return 0; 1261 } 1262 1263 if (slave && ttm->sg) { 1264 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1265 gtt->ttm.dma_address, 1266 ttm->num_pages); 1267 ttm->state = tt_unbound; 1268 return 0; 1269 } 1270 1271 #ifdef CONFIG_SWIOTLB 1272 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1273 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1274 } 1275 #endif 1276 1277 /* fall back to generic helper to populate the page array 1278 * and map them to the device */ 1279 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1280 } 1281 1282 /** 1283 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1284 * 1285 * Unmaps pages of a ttm_tt object from the device address space and 1286 * unpopulates the page array backing it. 1287 */ 1288 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1289 { 1290 struct amdgpu_device *adev; 1291 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1292 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1293 1294 if (gtt && gtt->userptr) { 1295 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1296 kfree(ttm->sg); 1297 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1298 return; 1299 } 1300 1301 if (slave) 1302 return; 1303 1304 adev = amdgpu_ttm_adev(ttm->bdev); 1305 1306 #ifdef CONFIG_SWIOTLB 1307 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1308 ttm_dma_unpopulate(>t->ttm, adev->dev); 1309 return; 1310 } 1311 #endif 1312 1313 /* fall back to generic helper to unmap and unpopulate array */ 1314 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1315 } 1316 1317 /** 1318 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1319 * task 1320 * 1321 * @ttm: The ttm_tt object to bind this userptr object to 1322 * @addr: The address in the current tasks VM space to use 1323 * @flags: Requirements of userptr object. 1324 * 1325 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1326 * to current task 1327 */ 1328 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1329 uint32_t flags) 1330 { 1331 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1332 1333 if (gtt == NULL) 1334 return -EINVAL; 1335 1336 gtt->userptr = addr; 1337 gtt->userflags = flags; 1338 1339 if (gtt->usertask) 1340 put_task_struct(gtt->usertask); 1341 gtt->usertask = current->group_leader; 1342 get_task_struct(gtt->usertask); 1343 1344 return 0; 1345 } 1346 1347 /** 1348 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1349 */ 1350 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1351 { 1352 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1353 1354 if (gtt == NULL) 1355 return NULL; 1356 1357 if (gtt->usertask == NULL) 1358 return NULL; 1359 1360 return gtt->usertask->mm; 1361 } 1362 1363 /** 1364 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1365 * address range for the current task. 1366 * 1367 */ 1368 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1369 unsigned long end) 1370 { 1371 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1372 unsigned long size; 1373 1374 if (gtt == NULL || !gtt->userptr) 1375 return false; 1376 1377 /* Return false if no part of the ttm_tt object lies within 1378 * the range 1379 */ 1380 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1381 if (gtt->userptr > end || gtt->userptr + size <= start) 1382 return false; 1383 1384 return true; 1385 } 1386 1387 /** 1388 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1389 */ 1390 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1391 { 1392 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1393 1394 if (gtt == NULL || !gtt->userptr) 1395 return false; 1396 1397 return true; 1398 } 1399 1400 /** 1401 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1402 */ 1403 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1404 { 1405 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1406 1407 if (gtt == NULL) 1408 return false; 1409 1410 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1411 } 1412 1413 /** 1414 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1415 * 1416 * @ttm: The ttm_tt object to compute the flags for 1417 * @mem: The memory registry backing this ttm_tt object 1418 * 1419 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1420 */ 1421 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1422 { 1423 uint64_t flags = 0; 1424 1425 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1426 flags |= AMDGPU_PTE_VALID; 1427 1428 if (mem && mem->mem_type == TTM_PL_TT) { 1429 flags |= AMDGPU_PTE_SYSTEM; 1430 1431 if (ttm->caching_state == tt_cached) 1432 flags |= AMDGPU_PTE_SNOOPED; 1433 } 1434 1435 return flags; 1436 } 1437 1438 /** 1439 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1440 * 1441 * @ttm: The ttm_tt object to compute the flags for 1442 * @mem: The memory registry backing this ttm_tt object 1443 1444 * Figure out the flags to use for a VM PTE (Page Table Entry). 1445 */ 1446 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1447 struct ttm_mem_reg *mem) 1448 { 1449 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1450 1451 flags |= adev->gart.gart_pte_flags; 1452 flags |= AMDGPU_PTE_READABLE; 1453 1454 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1455 flags |= AMDGPU_PTE_WRITEABLE; 1456 1457 return flags; 1458 } 1459 1460 /** 1461 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1462 * object. 1463 * 1464 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1465 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1466 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1467 * used to clean out a memory space. 1468 */ 1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1470 const struct ttm_place *place) 1471 { 1472 unsigned long num_pages = bo->mem.num_pages; 1473 struct drm_mm_node *node = bo->mem.mm_node; 1474 struct dma_resv_list *flist; 1475 struct dma_fence *f; 1476 int i; 1477 1478 /* Don't evict VM page tables while they are busy, otherwise we can't 1479 * cleanly handle page faults. 1480 */ 1481 if (bo->type == ttm_bo_type_kernel && 1482 !dma_resv_test_signaled_rcu(bo->base.resv, true)) 1483 return false; 1484 1485 /* If bo is a KFD BO, check if the bo belongs to the current process. 1486 * If true, then return false as any KFD process needs all its BOs to 1487 * be resident to run successfully 1488 */ 1489 flist = dma_resv_get_list(bo->base.resv); 1490 if (flist) { 1491 for (i = 0; i < flist->shared_count; ++i) { 1492 f = rcu_dereference_protected(flist->shared[i], 1493 dma_resv_held(bo->base.resv)); 1494 if (amdkfd_fence_check_mm(f, current->mm)) 1495 return false; 1496 } 1497 } 1498 1499 switch (bo->mem.mem_type) { 1500 case TTM_PL_TT: 1501 return true; 1502 1503 case TTM_PL_VRAM: 1504 /* Check each drm MM node individually */ 1505 while (num_pages) { 1506 if (place->fpfn < (node->start + node->size) && 1507 !(place->lpfn && place->lpfn <= node->start)) 1508 return true; 1509 1510 num_pages -= node->size; 1511 ++node; 1512 } 1513 return false; 1514 1515 default: 1516 break; 1517 } 1518 1519 return ttm_bo_eviction_valuable(bo, place); 1520 } 1521 1522 /** 1523 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1524 * 1525 * @bo: The buffer object to read/write 1526 * @offset: Offset into buffer object 1527 * @buf: Secondary buffer to write/read from 1528 * @len: Length in bytes of access 1529 * @write: true if writing 1530 * 1531 * This is used to access VRAM that backs a buffer object via MMIO 1532 * access for debugging purposes. 1533 */ 1534 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1535 unsigned long offset, 1536 void *buf, int len, int write) 1537 { 1538 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1539 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1540 struct drm_mm_node *nodes; 1541 uint32_t value = 0; 1542 int ret = 0; 1543 uint64_t pos; 1544 unsigned long flags; 1545 1546 if (bo->mem.mem_type != TTM_PL_VRAM) 1547 return -EIO; 1548 1549 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1550 pos = (nodes->start << PAGE_SHIFT) + offset; 1551 1552 while (len && pos < adev->gmc.mc_vram_size) { 1553 uint64_t aligned_pos = pos & ~(uint64_t)3; 1554 uint32_t bytes = 4 - (pos & 3); 1555 uint32_t shift = (pos & 3) * 8; 1556 uint32_t mask = 0xffffffff << shift; 1557 1558 if (len < bytes) { 1559 mask &= 0xffffffff >> (bytes - len) * 8; 1560 bytes = len; 1561 } 1562 1563 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1564 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1565 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1566 if (!write || mask != 0xffffffff) 1567 value = RREG32_NO_KIQ(mmMM_DATA); 1568 if (write) { 1569 value &= ~mask; 1570 value |= (*(uint32_t *)buf << shift) & mask; 1571 WREG32_NO_KIQ(mmMM_DATA, value); 1572 } 1573 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1574 if (!write) { 1575 value = (value & mask) >> shift; 1576 memcpy(buf, &value, bytes); 1577 } 1578 1579 ret += bytes; 1580 buf = (uint8_t *)buf + bytes; 1581 pos += bytes; 1582 len -= bytes; 1583 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1584 ++nodes; 1585 pos = (nodes->start << PAGE_SHIFT); 1586 } 1587 } 1588 1589 return ret; 1590 } 1591 1592 static struct ttm_bo_driver amdgpu_bo_driver = { 1593 .ttm_tt_create = &amdgpu_ttm_tt_create, 1594 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1595 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1596 .invalidate_caches = &amdgpu_invalidate_caches, 1597 .init_mem_type = &amdgpu_init_mem_type, 1598 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1599 .evict_flags = &amdgpu_evict_flags, 1600 .move = &amdgpu_bo_move, 1601 .verify_access = &amdgpu_verify_access, 1602 .move_notify = &amdgpu_bo_move_notify, 1603 .release_notify = &amdgpu_bo_release_notify, 1604 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1605 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1606 .io_mem_free = &amdgpu_ttm_io_mem_free, 1607 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1608 .access_memory = &amdgpu_ttm_access_memory, 1609 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1610 }; 1611 1612 /* 1613 * Firmware Reservation functions 1614 */ 1615 /** 1616 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1617 * 1618 * @adev: amdgpu_device pointer 1619 * 1620 * free fw reserved vram if it has been reserved. 1621 */ 1622 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1623 { 1624 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1625 NULL, &adev->fw_vram_usage.va); 1626 } 1627 1628 /** 1629 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1630 * 1631 * @adev: amdgpu_device pointer 1632 * 1633 * create bo vram reservation from fw. 1634 */ 1635 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1636 { 1637 struct ttm_operation_ctx ctx = { false, false }; 1638 struct amdgpu_bo_param bp; 1639 int r = 0; 1640 int i; 1641 u64 vram_size = adev->gmc.visible_vram_size; 1642 u64 offset = adev->fw_vram_usage.start_offset; 1643 u64 size = adev->fw_vram_usage.size; 1644 struct amdgpu_bo *bo; 1645 1646 memset(&bp, 0, sizeof(bp)); 1647 bp.size = adev->fw_vram_usage.size; 1648 bp.byte_align = PAGE_SIZE; 1649 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1650 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1651 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1652 bp.type = ttm_bo_type_kernel; 1653 bp.resv = NULL; 1654 adev->fw_vram_usage.va = NULL; 1655 adev->fw_vram_usage.reserved_bo = NULL; 1656 1657 if (adev->fw_vram_usage.size > 0 && 1658 adev->fw_vram_usage.size <= vram_size) { 1659 1660 r = amdgpu_bo_create(adev, &bp, 1661 &adev->fw_vram_usage.reserved_bo); 1662 if (r) 1663 goto error_create; 1664 1665 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1666 if (r) 1667 goto error_reserve; 1668 1669 /* remove the original mem node and create a new one at the 1670 * request position 1671 */ 1672 bo = adev->fw_vram_usage.reserved_bo; 1673 offset = ALIGN(offset, PAGE_SIZE); 1674 for (i = 0; i < bo->placement.num_placement; ++i) { 1675 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1676 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1677 } 1678 1679 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1680 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1681 &bo->tbo.mem, &ctx); 1682 if (r) 1683 goto error_pin; 1684 1685 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1686 AMDGPU_GEM_DOMAIN_VRAM, 1687 adev->fw_vram_usage.start_offset, 1688 (adev->fw_vram_usage.start_offset + 1689 adev->fw_vram_usage.size)); 1690 if (r) 1691 goto error_pin; 1692 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1693 &adev->fw_vram_usage.va); 1694 if (r) 1695 goto error_kmap; 1696 1697 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1698 } 1699 return r; 1700 1701 error_kmap: 1702 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1703 error_pin: 1704 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1705 error_reserve: 1706 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1707 error_create: 1708 adev->fw_vram_usage.va = NULL; 1709 adev->fw_vram_usage.reserved_bo = NULL; 1710 return r; 1711 } 1712 /** 1713 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1714 * gtt/vram related fields. 1715 * 1716 * This initializes all of the memory space pools that the TTM layer 1717 * will need such as the GTT space (system memory mapped to the device), 1718 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1719 * can be mapped per VMID. 1720 */ 1721 int amdgpu_ttm_init(struct amdgpu_device *adev) 1722 { 1723 uint64_t gtt_size; 1724 int r; 1725 u64 vis_vram_limit; 1726 void *stolen_vga_buf; 1727 1728 mutex_init(&adev->mman.gtt_window_lock); 1729 1730 /* No others user of address space so set it to 0 */ 1731 r = ttm_bo_device_init(&adev->mman.bdev, 1732 &amdgpu_bo_driver, 1733 adev->ddev->anon_inode->i_mapping, 1734 dma_addressing_limited(adev->dev)); 1735 if (r) { 1736 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1737 return r; 1738 } 1739 adev->mman.initialized = true; 1740 1741 /* We opt to avoid OOM on system pages allocations */ 1742 adev->mman.bdev.no_retry = true; 1743 1744 /* Initialize VRAM pool with all of VRAM divided into pages */ 1745 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1746 adev->gmc.real_vram_size >> PAGE_SHIFT); 1747 if (r) { 1748 DRM_ERROR("Failed initializing VRAM heap.\n"); 1749 return r; 1750 } 1751 1752 /* Reduce size of CPU-visible VRAM if requested */ 1753 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1754 if (amdgpu_vis_vram_limit > 0 && 1755 vis_vram_limit <= adev->gmc.visible_vram_size) 1756 adev->gmc.visible_vram_size = vis_vram_limit; 1757 1758 /* Change the size here instead of the init above so only lpfn is affected */ 1759 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1760 #ifdef CONFIG_64BIT 1761 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1762 adev->gmc.visible_vram_size); 1763 #endif 1764 1765 /* 1766 *The reserved vram for firmware must be pinned to the specified 1767 *place on the VRAM, so reserve it early. 1768 */ 1769 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1770 if (r) { 1771 return r; 1772 } 1773 1774 /* allocate memory as required for VGA 1775 * This is used for VGA emulation and pre-OS scanout buffers to 1776 * avoid display artifacts while transitioning between pre-OS 1777 * and driver. */ 1778 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1779 AMDGPU_GEM_DOMAIN_VRAM, 1780 &adev->stolen_vga_memory, 1781 NULL, &stolen_vga_buf); 1782 if (r) 1783 return r; 1784 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1785 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1786 1787 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1788 * or whatever the user passed on module init */ 1789 if (amdgpu_gtt_size == -1) { 1790 struct sysinfo si; 1791 1792 si_meminfo(&si); 1793 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1794 adev->gmc.mc_vram_size), 1795 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1796 } 1797 else 1798 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1799 1800 /* Initialize GTT memory pool */ 1801 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1802 if (r) { 1803 DRM_ERROR("Failed initializing GTT heap.\n"); 1804 return r; 1805 } 1806 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1807 (unsigned)(gtt_size / (1024 * 1024))); 1808 1809 /* Initialize various on-chip memory pools */ 1810 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1811 adev->gds.gds_size); 1812 if (r) { 1813 DRM_ERROR("Failed initializing GDS heap.\n"); 1814 return r; 1815 } 1816 1817 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1818 adev->gds.gws_size); 1819 if (r) { 1820 DRM_ERROR("Failed initializing gws heap.\n"); 1821 return r; 1822 } 1823 1824 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1825 adev->gds.oa_size); 1826 if (r) { 1827 DRM_ERROR("Failed initializing oa heap.\n"); 1828 return r; 1829 } 1830 1831 /* Register debugfs entries for amdgpu_ttm */ 1832 r = amdgpu_ttm_debugfs_init(adev); 1833 if (r) { 1834 DRM_ERROR("Failed to init debugfs\n"); 1835 return r; 1836 } 1837 return 0; 1838 } 1839 1840 /** 1841 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1842 */ 1843 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1844 { 1845 void *stolen_vga_buf; 1846 /* return the VGA stolen memory (if any) back to VRAM */ 1847 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 1848 } 1849 1850 /** 1851 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1852 */ 1853 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1854 { 1855 if (!adev->mman.initialized) 1856 return; 1857 1858 amdgpu_ttm_debugfs_fini(adev); 1859 amdgpu_ttm_fw_reserve_vram_fini(adev); 1860 if (adev->mman.aper_base_kaddr) 1861 iounmap(adev->mman.aper_base_kaddr); 1862 adev->mman.aper_base_kaddr = NULL; 1863 1864 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1865 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1866 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1867 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1868 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1869 ttm_bo_device_release(&adev->mman.bdev); 1870 adev->mman.initialized = false; 1871 DRM_INFO("amdgpu: ttm finalized\n"); 1872 } 1873 1874 /** 1875 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1876 * 1877 * @adev: amdgpu_device pointer 1878 * @enable: true when we can use buffer functions. 1879 * 1880 * Enable/disable use of buffer functions during suspend/resume. This should 1881 * only be called at bootup or when userspace isn't running. 1882 */ 1883 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1884 { 1885 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1886 uint64_t size; 1887 int r; 1888 1889 if (!adev->mman.initialized || adev->in_gpu_reset || 1890 adev->mman.buffer_funcs_enabled == enable) 1891 return; 1892 1893 if (enable) { 1894 struct amdgpu_ring *ring; 1895 struct drm_sched_rq *rq; 1896 1897 ring = adev->mman.buffer_funcs_ring; 1898 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1899 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1900 if (r) { 1901 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1902 r); 1903 return; 1904 } 1905 } else { 1906 drm_sched_entity_destroy(&adev->mman.entity); 1907 dma_fence_put(man->move); 1908 man->move = NULL; 1909 } 1910 1911 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1912 if (enable) 1913 size = adev->gmc.real_vram_size; 1914 else 1915 size = adev->gmc.visible_vram_size; 1916 man->size = size >> PAGE_SHIFT; 1917 adev->mman.buffer_funcs_enabled = enable; 1918 } 1919 1920 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1921 { 1922 struct drm_file *file_priv = filp->private_data; 1923 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1924 1925 if (adev == NULL) 1926 return -EINVAL; 1927 1928 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1929 } 1930 1931 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1932 struct ttm_mem_reg *mem, unsigned num_pages, 1933 uint64_t offset, unsigned window, 1934 struct amdgpu_ring *ring, 1935 uint64_t *addr) 1936 { 1937 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1938 struct amdgpu_device *adev = ring->adev; 1939 struct ttm_tt *ttm = bo->ttm; 1940 struct amdgpu_job *job; 1941 unsigned num_dw, num_bytes; 1942 dma_addr_t *dma_address; 1943 struct dma_fence *fence; 1944 uint64_t src_addr, dst_addr; 1945 uint64_t flags; 1946 int r; 1947 1948 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1949 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1950 1951 *addr = adev->gmc.gart_start; 1952 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1953 AMDGPU_GPU_PAGE_SIZE; 1954 1955 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1956 while (num_dw & 0x7) 1957 num_dw++; 1958 1959 num_bytes = num_pages * 8; 1960 1961 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1962 if (r) 1963 return r; 1964 1965 src_addr = num_dw * 4; 1966 src_addr += job->ibs[0].gpu_addr; 1967 1968 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1969 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1970 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1971 dst_addr, num_bytes); 1972 1973 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1974 WARN_ON(job->ibs[0].length_dw > num_dw); 1975 1976 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1977 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1978 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1979 &job->ibs[0].ptr[num_dw]); 1980 if (r) 1981 goto error_free; 1982 1983 r = amdgpu_job_submit(job, &adev->mman.entity, 1984 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1985 if (r) 1986 goto error_free; 1987 1988 dma_fence_put(fence); 1989 1990 return r; 1991 1992 error_free: 1993 amdgpu_job_free(job); 1994 return r; 1995 } 1996 1997 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1998 uint64_t dst_offset, uint32_t byte_count, 1999 struct dma_resv *resv, 2000 struct dma_fence **fence, bool direct_submit, 2001 bool vm_needs_flush) 2002 { 2003 struct amdgpu_device *adev = ring->adev; 2004 struct amdgpu_job *job; 2005 2006 uint32_t max_bytes; 2007 unsigned num_loops, num_dw; 2008 unsigned i; 2009 int r; 2010 2011 if (direct_submit && !ring->sched.ready) { 2012 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2013 return -EINVAL; 2014 } 2015 2016 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2017 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2018 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2019 2020 /* for IB padding */ 2021 while (num_dw & 0x7) 2022 num_dw++; 2023 2024 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2025 if (r) 2026 return r; 2027 2028 if (vm_needs_flush) { 2029 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2030 job->vm_needs_flush = true; 2031 } 2032 if (resv) { 2033 r = amdgpu_sync_resv(adev, &job->sync, resv, 2034 AMDGPU_FENCE_OWNER_UNDEFINED, 2035 false); 2036 if (r) { 2037 DRM_ERROR("sync failed (%d).\n", r); 2038 goto error_free; 2039 } 2040 } 2041 2042 for (i = 0; i < num_loops; i++) { 2043 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2044 2045 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2046 dst_offset, cur_size_in_bytes); 2047 2048 src_offset += cur_size_in_bytes; 2049 dst_offset += cur_size_in_bytes; 2050 byte_count -= cur_size_in_bytes; 2051 } 2052 2053 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2054 WARN_ON(job->ibs[0].length_dw > num_dw); 2055 if (direct_submit) 2056 r = amdgpu_job_submit_direct(job, ring, fence); 2057 else 2058 r = amdgpu_job_submit(job, &adev->mman.entity, 2059 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2060 if (r) 2061 goto error_free; 2062 2063 return r; 2064 2065 error_free: 2066 amdgpu_job_free(job); 2067 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2068 return r; 2069 } 2070 2071 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2072 uint32_t src_data, 2073 struct dma_resv *resv, 2074 struct dma_fence **fence) 2075 { 2076 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2077 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2078 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2079 2080 struct drm_mm_node *mm_node; 2081 unsigned long num_pages; 2082 unsigned int num_loops, num_dw; 2083 2084 struct amdgpu_job *job; 2085 int r; 2086 2087 if (!adev->mman.buffer_funcs_enabled) { 2088 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2089 return -EINVAL; 2090 } 2091 2092 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2093 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2094 if (r) 2095 return r; 2096 } 2097 2098 num_pages = bo->tbo.num_pages; 2099 mm_node = bo->tbo.mem.mm_node; 2100 num_loops = 0; 2101 while (num_pages) { 2102 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2103 2104 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2105 num_pages -= mm_node->size; 2106 ++mm_node; 2107 } 2108 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2109 2110 /* for IB padding */ 2111 num_dw += 64; 2112 2113 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2114 if (r) 2115 return r; 2116 2117 if (resv) { 2118 r = amdgpu_sync_resv(adev, &job->sync, resv, 2119 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2120 if (r) { 2121 DRM_ERROR("sync failed (%d).\n", r); 2122 goto error_free; 2123 } 2124 } 2125 2126 num_pages = bo->tbo.num_pages; 2127 mm_node = bo->tbo.mem.mm_node; 2128 2129 while (num_pages) { 2130 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2131 uint64_t dst_addr; 2132 2133 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2134 while (byte_count) { 2135 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2136 max_bytes); 2137 2138 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2139 dst_addr, cur_size_in_bytes); 2140 2141 dst_addr += cur_size_in_bytes; 2142 byte_count -= cur_size_in_bytes; 2143 } 2144 2145 num_pages -= mm_node->size; 2146 ++mm_node; 2147 } 2148 2149 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2150 WARN_ON(job->ibs[0].length_dw > num_dw); 2151 r = amdgpu_job_submit(job, &adev->mman.entity, 2152 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2153 if (r) 2154 goto error_free; 2155 2156 return 0; 2157 2158 error_free: 2159 amdgpu_job_free(job); 2160 return r; 2161 } 2162 2163 #if defined(CONFIG_DEBUG_FS) 2164 2165 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2166 { 2167 struct drm_info_node *node = (struct drm_info_node *)m->private; 2168 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2169 struct drm_device *dev = node->minor->dev; 2170 struct amdgpu_device *adev = dev->dev_private; 2171 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2172 struct drm_printer p = drm_seq_file_printer(m); 2173 2174 man->func->debug(man, &p); 2175 return 0; 2176 } 2177 2178 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2179 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2180 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2181 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2182 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2183 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2184 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2185 #ifdef CONFIG_SWIOTLB 2186 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2187 #endif 2188 }; 2189 2190 /** 2191 * amdgpu_ttm_vram_read - Linear read access to VRAM 2192 * 2193 * Accesses VRAM via MMIO for debugging purposes. 2194 */ 2195 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2196 size_t size, loff_t *pos) 2197 { 2198 struct amdgpu_device *adev = file_inode(f)->i_private; 2199 ssize_t result = 0; 2200 int r; 2201 2202 if (size & 0x3 || *pos & 0x3) 2203 return -EINVAL; 2204 2205 if (*pos >= adev->gmc.mc_vram_size) 2206 return -ENXIO; 2207 2208 while (size) { 2209 unsigned long flags; 2210 uint32_t value; 2211 2212 if (*pos >= adev->gmc.mc_vram_size) 2213 return result; 2214 2215 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2216 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2217 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2218 value = RREG32_NO_KIQ(mmMM_DATA); 2219 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2220 2221 r = put_user(value, (uint32_t *)buf); 2222 if (r) 2223 return r; 2224 2225 result += 4; 2226 buf += 4; 2227 *pos += 4; 2228 size -= 4; 2229 } 2230 2231 return result; 2232 } 2233 2234 /** 2235 * amdgpu_ttm_vram_write - Linear write access to VRAM 2236 * 2237 * Accesses VRAM via MMIO for debugging purposes. 2238 */ 2239 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2240 size_t size, loff_t *pos) 2241 { 2242 struct amdgpu_device *adev = file_inode(f)->i_private; 2243 ssize_t result = 0; 2244 int r; 2245 2246 if (size & 0x3 || *pos & 0x3) 2247 return -EINVAL; 2248 2249 if (*pos >= adev->gmc.mc_vram_size) 2250 return -ENXIO; 2251 2252 while (size) { 2253 unsigned long flags; 2254 uint32_t value; 2255 2256 if (*pos >= adev->gmc.mc_vram_size) 2257 return result; 2258 2259 r = get_user(value, (uint32_t *)buf); 2260 if (r) 2261 return r; 2262 2263 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2264 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2265 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2266 WREG32_NO_KIQ(mmMM_DATA, value); 2267 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2268 2269 result += 4; 2270 buf += 4; 2271 *pos += 4; 2272 size -= 4; 2273 } 2274 2275 return result; 2276 } 2277 2278 static const struct file_operations amdgpu_ttm_vram_fops = { 2279 .owner = THIS_MODULE, 2280 .read = amdgpu_ttm_vram_read, 2281 .write = amdgpu_ttm_vram_write, 2282 .llseek = default_llseek, 2283 }; 2284 2285 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2286 2287 /** 2288 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2289 */ 2290 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2291 size_t size, loff_t *pos) 2292 { 2293 struct amdgpu_device *adev = file_inode(f)->i_private; 2294 ssize_t result = 0; 2295 int r; 2296 2297 while (size) { 2298 loff_t p = *pos / PAGE_SIZE; 2299 unsigned off = *pos & ~PAGE_MASK; 2300 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2301 struct page *page; 2302 void *ptr; 2303 2304 if (p >= adev->gart.num_cpu_pages) 2305 return result; 2306 2307 page = adev->gart.pages[p]; 2308 if (page) { 2309 ptr = kmap(page); 2310 ptr += off; 2311 2312 r = copy_to_user(buf, ptr, cur_size); 2313 kunmap(adev->gart.pages[p]); 2314 } else 2315 r = clear_user(buf, cur_size); 2316 2317 if (r) 2318 return -EFAULT; 2319 2320 result += cur_size; 2321 buf += cur_size; 2322 *pos += cur_size; 2323 size -= cur_size; 2324 } 2325 2326 return result; 2327 } 2328 2329 static const struct file_operations amdgpu_ttm_gtt_fops = { 2330 .owner = THIS_MODULE, 2331 .read = amdgpu_ttm_gtt_read, 2332 .llseek = default_llseek 2333 }; 2334 2335 #endif 2336 2337 /** 2338 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2339 * 2340 * This function is used to read memory that has been mapped to the 2341 * GPU and the known addresses are not physical addresses but instead 2342 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2343 */ 2344 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2345 size_t size, loff_t *pos) 2346 { 2347 struct amdgpu_device *adev = file_inode(f)->i_private; 2348 struct iommu_domain *dom; 2349 ssize_t result = 0; 2350 int r; 2351 2352 /* retrieve the IOMMU domain if any for this device */ 2353 dom = iommu_get_domain_for_dev(adev->dev); 2354 2355 while (size) { 2356 phys_addr_t addr = *pos & PAGE_MASK; 2357 loff_t off = *pos & ~PAGE_MASK; 2358 size_t bytes = PAGE_SIZE - off; 2359 unsigned long pfn; 2360 struct page *p; 2361 void *ptr; 2362 2363 bytes = bytes < size ? bytes : size; 2364 2365 /* Translate the bus address to a physical address. If 2366 * the domain is NULL it means there is no IOMMU active 2367 * and the address translation is the identity 2368 */ 2369 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2370 2371 pfn = addr >> PAGE_SHIFT; 2372 if (!pfn_valid(pfn)) 2373 return -EPERM; 2374 2375 p = pfn_to_page(pfn); 2376 if (p->mapping != adev->mman.bdev.dev_mapping) 2377 return -EPERM; 2378 2379 ptr = kmap(p); 2380 r = copy_to_user(buf, ptr + off, bytes); 2381 kunmap(p); 2382 if (r) 2383 return -EFAULT; 2384 2385 size -= bytes; 2386 *pos += bytes; 2387 result += bytes; 2388 } 2389 2390 return result; 2391 } 2392 2393 /** 2394 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2395 * 2396 * This function is used to write memory that has been mapped to the 2397 * GPU and the known addresses are not physical addresses but instead 2398 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2399 */ 2400 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2401 size_t size, loff_t *pos) 2402 { 2403 struct amdgpu_device *adev = file_inode(f)->i_private; 2404 struct iommu_domain *dom; 2405 ssize_t result = 0; 2406 int r; 2407 2408 dom = iommu_get_domain_for_dev(adev->dev); 2409 2410 while (size) { 2411 phys_addr_t addr = *pos & PAGE_MASK; 2412 loff_t off = *pos & ~PAGE_MASK; 2413 size_t bytes = PAGE_SIZE - off; 2414 unsigned long pfn; 2415 struct page *p; 2416 void *ptr; 2417 2418 bytes = bytes < size ? bytes : size; 2419 2420 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2421 2422 pfn = addr >> PAGE_SHIFT; 2423 if (!pfn_valid(pfn)) 2424 return -EPERM; 2425 2426 p = pfn_to_page(pfn); 2427 if (p->mapping != adev->mman.bdev.dev_mapping) 2428 return -EPERM; 2429 2430 ptr = kmap(p); 2431 r = copy_from_user(ptr + off, buf, bytes); 2432 kunmap(p); 2433 if (r) 2434 return -EFAULT; 2435 2436 size -= bytes; 2437 *pos += bytes; 2438 result += bytes; 2439 } 2440 2441 return result; 2442 } 2443 2444 static const struct file_operations amdgpu_ttm_iomem_fops = { 2445 .owner = THIS_MODULE, 2446 .read = amdgpu_iomem_read, 2447 .write = amdgpu_iomem_write, 2448 .llseek = default_llseek 2449 }; 2450 2451 static const struct { 2452 char *name; 2453 const struct file_operations *fops; 2454 int domain; 2455 } ttm_debugfs_entries[] = { 2456 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2457 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2458 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2459 #endif 2460 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2461 }; 2462 2463 #endif 2464 2465 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2466 { 2467 #if defined(CONFIG_DEBUG_FS) 2468 unsigned count; 2469 2470 struct drm_minor *minor = adev->ddev->primary; 2471 struct dentry *ent, *root = minor->debugfs_root; 2472 2473 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2474 ent = debugfs_create_file( 2475 ttm_debugfs_entries[count].name, 2476 S_IFREG | S_IRUGO, root, 2477 adev, 2478 ttm_debugfs_entries[count].fops); 2479 if (IS_ERR(ent)) 2480 return PTR_ERR(ent); 2481 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2482 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2483 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2484 i_size_write(ent->d_inode, adev->gmc.gart_size); 2485 adev->mman.debugfs_entries[count] = ent; 2486 } 2487 2488 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2489 2490 #ifdef CONFIG_SWIOTLB 2491 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2492 --count; 2493 #endif 2494 2495 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2496 #else 2497 return 0; 2498 #endif 2499 } 2500 2501 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2502 { 2503 #if defined(CONFIG_DEBUG_FS) 2504 unsigned i; 2505 2506 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2507 debugfs_remove(adev->mman.debugfs_entries[i]); 2508 #endif 2509 } 2510