1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo_api.h> 48 #include <drm/ttm/ttm_bo_driver.h> 49 #include <drm/ttm/ttm_placement.h> 50 #include <drm/ttm/ttm_range_manager.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_hmm.h" 62 #include "amdgpu_atomfirmware.h" 63 #include "amdgpu_res_cursor.h" 64 #include "bif/bif_4_1_d.h" 65 66 MODULE_IMPORT_NS(DMA_BUF); 67 68 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 69 70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 71 struct ttm_tt *ttm, 72 struct ttm_resource *bo_mem); 73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 74 struct ttm_tt *ttm); 75 76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 77 unsigned int type, 78 uint64_t size_in_page) 79 { 80 return ttm_range_man_init(&adev->mman.bdev, type, 81 false, size_in_page); 82 } 83 84 /** 85 * amdgpu_evict_flags - Compute placement flags 86 * 87 * @bo: The buffer object to evict 88 * @placement: Possible destination(s) for evicted BO 89 * 90 * Fill in placement data when ttm_bo_evict() is called 91 */ 92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 93 struct ttm_placement *placement) 94 { 95 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 96 struct amdgpu_bo *abo; 97 static const struct ttm_place placements = { 98 .fpfn = 0, 99 .lpfn = 0, 100 .mem_type = TTM_PL_SYSTEM, 101 .flags = 0 102 }; 103 104 /* Don't handle scatter gather BOs */ 105 if (bo->type == ttm_bo_type_sg) { 106 placement->num_placement = 0; 107 placement->num_busy_placement = 0; 108 return; 109 } 110 111 /* Object isn't an AMDGPU object so ignore */ 112 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 113 placement->placement = &placements; 114 placement->busy_placement = &placements; 115 placement->num_placement = 1; 116 placement->num_busy_placement = 1; 117 return; 118 } 119 120 abo = ttm_to_amdgpu_bo(bo); 121 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 122 placement->num_placement = 0; 123 placement->num_busy_placement = 0; 124 return; 125 } 126 127 switch (bo->resource->mem_type) { 128 case AMDGPU_PL_GDS: 129 case AMDGPU_PL_GWS: 130 case AMDGPU_PL_OA: 131 placement->num_placement = 0; 132 placement->num_busy_placement = 0; 133 return; 134 135 case TTM_PL_VRAM: 136 if (!adev->mman.buffer_funcs_enabled) { 137 /* Move to system memory */ 138 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 139 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 140 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 141 amdgpu_bo_in_cpu_visible_vram(abo)) { 142 143 /* Try evicting to the CPU inaccessible part of VRAM 144 * first, but only set GTT as busy placement, so this 145 * BO will be evicted to GTT rather than causing other 146 * BOs to be evicted from VRAM 147 */ 148 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 149 AMDGPU_GEM_DOMAIN_GTT | 150 AMDGPU_GEM_DOMAIN_CPU); 151 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 152 abo->placements[0].lpfn = 0; 153 abo->placement.busy_placement = &abo->placements[1]; 154 abo->placement.num_busy_placement = 1; 155 } else { 156 /* Move to GTT memory */ 157 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 158 AMDGPU_GEM_DOMAIN_CPU); 159 } 160 break; 161 case TTM_PL_TT: 162 case AMDGPU_PL_PREEMPT: 163 default: 164 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 165 break; 166 } 167 *placement = abo->placement; 168 } 169 170 /** 171 * amdgpu_ttm_map_buffer - Map memory into the GART windows 172 * @bo: buffer object to map 173 * @mem: memory object to map 174 * @mm_cur: range to map 175 * @window: which GART window to use 176 * @ring: DMA ring to use for the copy 177 * @tmz: if we should setup a TMZ enabled mapping 178 * @size: in number of bytes to map, out number of bytes mapped 179 * @addr: resulting address inside the MC address space 180 * 181 * Setup one of the GART windows to access a specific piece of memory or return 182 * the physical address for local memory. 183 */ 184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 185 struct ttm_resource *mem, 186 struct amdgpu_res_cursor *mm_cur, 187 unsigned window, struct amdgpu_ring *ring, 188 bool tmz, uint64_t *size, uint64_t *addr) 189 { 190 struct amdgpu_device *adev = ring->adev; 191 unsigned offset, num_pages, num_dw, num_bytes; 192 uint64_t src_addr, dst_addr; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 233 AMDGPU_FENCE_OWNER_UNDEFINED, 234 num_dw * 4 + num_bytes, 235 AMDGPU_IB_POOL_DELAYED, &job); 236 if (r) 237 return r; 238 239 src_addr = num_dw * 4; 240 src_addr += job->ibs[0].gpu_addr; 241 242 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 243 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 244 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 245 dst_addr, num_bytes, false); 246 247 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 248 WARN_ON(job->ibs[0].length_dw > num_dw); 249 250 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 251 if (tmz) 252 flags |= AMDGPU_PTE_TMZ; 253 254 cpu_addr = &job->ibs[0].ptr[num_dw]; 255 256 if (mem->mem_type == TTM_PL_TT) { 257 dma_addr_t *dma_addr; 258 259 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 260 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 261 } else { 262 dma_addr_t dma_address; 263 264 dma_address = mm_cur->start; 265 dma_address += adev->vm_manager.vram_base_offset; 266 267 for (i = 0; i < num_pages; ++i) { 268 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 269 flags, cpu_addr); 270 dma_address += PAGE_SIZE; 271 } 272 } 273 274 dma_fence_put(amdgpu_job_submit(job)); 275 return 0; 276 } 277 278 /** 279 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 280 * @adev: amdgpu device 281 * @src: buffer/address where to read from 282 * @dst: buffer/address where to write to 283 * @size: number of bytes to copy 284 * @tmz: if a secure copy should be used 285 * @resv: resv object to sync to 286 * @f: Returns the last fence if multiple jobs are submitted. 287 * 288 * The function copies @size bytes from {src->mem + src->offset} to 289 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 290 * move and different for a BO to BO copy. 291 * 292 */ 293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 294 const struct amdgpu_copy_mem *src, 295 const struct amdgpu_copy_mem *dst, 296 uint64_t size, bool tmz, 297 struct dma_resv *resv, 298 struct dma_fence **f) 299 { 300 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 301 struct amdgpu_res_cursor src_mm, dst_mm; 302 struct dma_fence *fence = NULL; 303 int r = 0; 304 305 if (!adev->mman.buffer_funcs_enabled) { 306 DRM_ERROR("Trying to move memory with ring turned off.\n"); 307 return -EINVAL; 308 } 309 310 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 311 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 312 313 mutex_lock(&adev->mman.gtt_window_lock); 314 while (src_mm.remaining) { 315 uint64_t from, to, cur_size; 316 struct dma_fence *next; 317 318 /* Never copy more than 256MiB at once to avoid a timeout */ 319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 320 321 /* Map src to window 0 and dst to window 1. */ 322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 323 0, ring, tmz, &cur_size, &from); 324 if (r) 325 goto error; 326 327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 328 1, ring, tmz, &cur_size, &to); 329 if (r) 330 goto error; 331 332 r = amdgpu_copy_buffer(ring, from, to, cur_size, 333 resv, &next, false, true, tmz); 334 if (r) 335 goto error; 336 337 dma_fence_put(fence); 338 fence = next; 339 340 amdgpu_res_next(&src_mm, cur_size); 341 amdgpu_res_next(&dst_mm, cur_size); 342 } 343 error: 344 mutex_unlock(&adev->mman.gtt_window_lock); 345 if (f) 346 *f = dma_fence_get(fence); 347 dma_fence_put(fence); 348 return r; 349 } 350 351 /* 352 * amdgpu_move_blit - Copy an entire buffer to another buffer 353 * 354 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 355 * help move buffers to and from VRAM. 356 */ 357 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 358 bool evict, 359 struct ttm_resource *new_mem, 360 struct ttm_resource *old_mem) 361 { 362 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 363 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 364 struct amdgpu_copy_mem src, dst; 365 struct dma_fence *fence = NULL; 366 int r; 367 368 src.bo = bo; 369 dst.bo = bo; 370 src.mem = old_mem; 371 dst.mem = new_mem; 372 src.offset = 0; 373 dst.offset = 0; 374 375 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 376 new_mem->size, 377 amdgpu_bo_encrypted(abo), 378 bo->base.resv, &fence); 379 if (r) 380 goto error; 381 382 /* clear the space being freed */ 383 if (old_mem->mem_type == TTM_PL_VRAM && 384 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 385 struct dma_fence *wipe_fence = NULL; 386 387 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 /* Can't move a pinned BO */ 470 abo = ttm_to_amdgpu_bo(bo); 471 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 472 return -EINVAL; 473 474 adev = amdgpu_ttm_adev(bo->bdev); 475 476 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 477 bo->ttm == NULL)) { 478 ttm_bo_move_null(bo, new_mem); 479 goto out; 480 } 481 if (old_mem->mem_type == TTM_PL_SYSTEM && 482 (new_mem->mem_type == TTM_PL_TT || 483 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 484 ttm_bo_move_null(bo, new_mem); 485 goto out; 486 } 487 if ((old_mem->mem_type == TTM_PL_TT || 488 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 489 new_mem->mem_type == TTM_PL_SYSTEM) { 490 r = ttm_bo_wait_ctx(bo, ctx); 491 if (r) 492 return r; 493 494 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 495 ttm_resource_free(bo, &bo->resource); 496 ttm_bo_assign_mem(bo, new_mem); 497 goto out; 498 } 499 500 if (old_mem->mem_type == AMDGPU_PL_GDS || 501 old_mem->mem_type == AMDGPU_PL_GWS || 502 old_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_GDS || 504 new_mem->mem_type == AMDGPU_PL_GWS || 505 new_mem->mem_type == AMDGPU_PL_OA) { 506 /* Nothing to save here */ 507 ttm_bo_move_null(bo, new_mem); 508 goto out; 509 } 510 511 if (bo->type == ttm_bo_type_device && 512 new_mem->mem_type == TTM_PL_VRAM && 513 old_mem->mem_type != TTM_PL_VRAM) { 514 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 515 * accesses the BO after it's moved. 516 */ 517 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 518 } 519 520 if (adev->mman.buffer_funcs_enabled) { 521 if (((old_mem->mem_type == TTM_PL_SYSTEM && 522 new_mem->mem_type == TTM_PL_VRAM) || 523 (old_mem->mem_type == TTM_PL_VRAM && 524 new_mem->mem_type == TTM_PL_SYSTEM))) { 525 hop->fpfn = 0; 526 hop->lpfn = 0; 527 hop->mem_type = TTM_PL_TT; 528 hop->flags = TTM_PL_FLAG_TEMPORARY; 529 return -EMULTIHOP; 530 } 531 532 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 533 } else { 534 r = -ENODEV; 535 } 536 537 if (r) { 538 /* Check that all memory is CPU accessible */ 539 if (!amdgpu_mem_visible(adev, old_mem) || 540 !amdgpu_mem_visible(adev, new_mem)) { 541 pr_err("Move buffer fallback to memcpy unavailable\n"); 542 return r; 543 } 544 545 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 546 if (r) 547 return r; 548 } 549 550 out: 551 /* update statistics */ 552 atomic64_add(bo->base.size, &adev->num_bytes_moved); 553 amdgpu_bo_move_notify(bo, evict, new_mem); 554 return 0; 555 } 556 557 /* 558 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 559 * 560 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 561 */ 562 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 563 struct ttm_resource *mem) 564 { 565 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 566 size_t bus_size = (size_t)mem->size; 567 568 switch (mem->mem_type) { 569 case TTM_PL_SYSTEM: 570 /* system memory */ 571 return 0; 572 case TTM_PL_TT: 573 case AMDGPU_PL_PREEMPT: 574 break; 575 case TTM_PL_VRAM: 576 mem->bus.offset = mem->start << PAGE_SHIFT; 577 /* check if it's visible */ 578 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 579 return -EINVAL; 580 581 if (adev->mman.aper_base_kaddr && 582 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 583 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 584 mem->bus.offset; 585 586 mem->bus.offset += adev->gmc.aper_base; 587 mem->bus.is_iomem = true; 588 break; 589 default: 590 return -EINVAL; 591 } 592 return 0; 593 } 594 595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 596 unsigned long page_offset) 597 { 598 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 599 struct amdgpu_res_cursor cursor; 600 601 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 602 &cursor); 603 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 604 } 605 606 /** 607 * amdgpu_ttm_domain_start - Returns GPU start address 608 * @adev: amdgpu device object 609 * @type: type of the memory 610 * 611 * Returns: 612 * GPU start address of a memory domain 613 */ 614 615 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 616 { 617 switch (type) { 618 case TTM_PL_TT: 619 return adev->gmc.gart_start; 620 case TTM_PL_VRAM: 621 return adev->gmc.vram_start; 622 } 623 624 return 0; 625 } 626 627 /* 628 * TTM backend functions. 629 */ 630 struct amdgpu_ttm_tt { 631 struct ttm_tt ttm; 632 struct drm_gem_object *gobj; 633 u64 offset; 634 uint64_t userptr; 635 struct task_struct *usertask; 636 uint32_t userflags; 637 bool bound; 638 }; 639 640 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 641 642 #ifdef CONFIG_DRM_AMDGPU_USERPTR 643 /* 644 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 645 * memory and start HMM tracking CPU page table update 646 * 647 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 648 * once afterwards to stop HMM tracking 649 */ 650 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 651 struct hmm_range **range) 652 { 653 struct ttm_tt *ttm = bo->tbo.ttm; 654 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 655 unsigned long start = gtt->userptr; 656 struct vm_area_struct *vma; 657 struct mm_struct *mm; 658 bool readonly; 659 int r = 0; 660 661 /* Make sure get_user_pages_done() can cleanup gracefully */ 662 *range = NULL; 663 664 mm = bo->notifier.mm; 665 if (unlikely(!mm)) { 666 DRM_DEBUG_DRIVER("BO is not registered?\n"); 667 return -EFAULT; 668 } 669 670 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 671 return -ESRCH; 672 673 mmap_read_lock(mm); 674 vma = vma_lookup(mm, start); 675 if (unlikely(!vma)) { 676 r = -EFAULT; 677 goto out_unlock; 678 } 679 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 680 vma->vm_file)) { 681 r = -EPERM; 682 goto out_unlock; 683 } 684 685 readonly = amdgpu_ttm_tt_is_readonly(ttm); 686 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 687 readonly, NULL, pages, range); 688 out_unlock: 689 mmap_read_unlock(mm); 690 if (r) 691 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 692 693 mmput(mm); 694 695 return r; 696 } 697 698 /* 699 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 700 * Check if the pages backing this ttm range have been invalidated 701 * 702 * Returns: true if pages are still valid 703 */ 704 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 705 struct hmm_range *range) 706 { 707 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 708 709 if (!gtt || !gtt->userptr || !range) 710 return false; 711 712 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 713 gtt->userptr, ttm->num_pages); 714 715 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 716 717 /* 718 * FIXME: Must always hold notifier_lock for this, and must 719 * not ignore the return code. 720 */ 721 return !amdgpu_hmm_range_get_pages_done(range); 722 } 723 #endif 724 725 /* 726 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 727 * 728 * Called by amdgpu_cs_list_validate(). This creates the page list 729 * that backs user memory and will ultimately be mapped into the device 730 * address space. 731 */ 732 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 733 { 734 unsigned long i; 735 736 for (i = 0; i < ttm->num_pages; ++i) 737 ttm->pages[i] = pages ? pages[i] : NULL; 738 } 739 740 /* 741 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 742 * 743 * Called by amdgpu_ttm_backend_bind() 744 **/ 745 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 746 struct ttm_tt *ttm) 747 { 748 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 749 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 750 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 751 enum dma_data_direction direction = write ? 752 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 753 int r; 754 755 /* Allocate an SG array and squash pages into it */ 756 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 757 (u64)ttm->num_pages << PAGE_SHIFT, 758 GFP_KERNEL); 759 if (r) 760 goto release_sg; 761 762 /* Map SG to device */ 763 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 764 if (r) 765 goto release_sg; 766 767 /* convert SG to linear array of pages and dma addresses */ 768 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 769 ttm->num_pages); 770 771 return 0; 772 773 release_sg: 774 kfree(ttm->sg); 775 ttm->sg = NULL; 776 return r; 777 } 778 779 /* 780 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 781 */ 782 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 783 struct ttm_tt *ttm) 784 { 785 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 786 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 787 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 788 enum dma_data_direction direction = write ? 789 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 790 791 /* double check that we don't free the table twice */ 792 if (!ttm->sg || !ttm->sg->sgl) 793 return; 794 795 /* unmap the pages mapped to the device */ 796 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 797 sg_free_table(ttm->sg); 798 } 799 800 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 801 struct ttm_buffer_object *tbo, 802 uint64_t flags) 803 { 804 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 805 struct ttm_tt *ttm = tbo->ttm; 806 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 807 808 if (amdgpu_bo_encrypted(abo)) 809 flags |= AMDGPU_PTE_TMZ; 810 811 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 812 uint64_t page_idx = 1; 813 814 amdgpu_gart_bind(adev, gtt->offset, page_idx, 815 gtt->ttm.dma_address, flags); 816 817 /* The memory type of the first page defaults to UC. Now 818 * modify the memory type to NC from the second page of 819 * the BO onward. 820 */ 821 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 822 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 823 824 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 825 ttm->num_pages - page_idx, 826 &(gtt->ttm.dma_address[page_idx]), flags); 827 } else { 828 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 829 gtt->ttm.dma_address, flags); 830 } 831 } 832 833 /* 834 * amdgpu_ttm_backend_bind - Bind GTT memory 835 * 836 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 837 * This handles binding GTT memory to the device address space. 838 */ 839 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 840 struct ttm_tt *ttm, 841 struct ttm_resource *bo_mem) 842 { 843 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 844 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 845 uint64_t flags; 846 int r; 847 848 if (!bo_mem) 849 return -EINVAL; 850 851 if (gtt->bound) 852 return 0; 853 854 if (gtt->userptr) { 855 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 856 if (r) { 857 DRM_ERROR("failed to pin userptr\n"); 858 return r; 859 } 860 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 861 if (!ttm->sg) { 862 struct dma_buf_attachment *attach; 863 struct sg_table *sgt; 864 865 attach = gtt->gobj->import_attach; 866 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 867 if (IS_ERR(sgt)) 868 return PTR_ERR(sgt); 869 870 ttm->sg = sgt; 871 } 872 873 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 874 ttm->num_pages); 875 } 876 877 if (!ttm->num_pages) { 878 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 879 ttm->num_pages, bo_mem, ttm); 880 } 881 882 if (bo_mem->mem_type != TTM_PL_TT || 883 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 884 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 885 return 0; 886 } 887 888 /* compute PTE flags relevant to this BO memory */ 889 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 890 891 /* bind pages into GART page tables */ 892 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 893 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 894 gtt->ttm.dma_address, flags); 895 gtt->bound = true; 896 return 0; 897 } 898 899 /* 900 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 901 * through AGP or GART aperture. 902 * 903 * If bo is accessible through AGP aperture, then use AGP aperture 904 * to access bo; otherwise allocate logical space in GART aperture 905 * and map bo to GART aperture. 906 */ 907 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 908 { 909 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 910 struct ttm_operation_ctx ctx = { false, false }; 911 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 912 struct ttm_placement placement; 913 struct ttm_place placements; 914 struct ttm_resource *tmp; 915 uint64_t addr, flags; 916 int r; 917 918 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 919 return 0; 920 921 addr = amdgpu_gmc_agp_addr(bo); 922 if (addr != AMDGPU_BO_INVALID_OFFSET) { 923 bo->resource->start = addr >> PAGE_SHIFT; 924 return 0; 925 } 926 927 /* allocate GART space */ 928 placement.num_placement = 1; 929 placement.placement = &placements; 930 placement.num_busy_placement = 1; 931 placement.busy_placement = &placements; 932 placements.fpfn = 0; 933 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 934 placements.mem_type = TTM_PL_TT; 935 placements.flags = bo->resource->placement; 936 937 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 938 if (unlikely(r)) 939 return r; 940 941 /* compute PTE flags for this buffer object */ 942 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 943 944 /* Bind pages */ 945 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 946 amdgpu_ttm_gart_bind(adev, bo, flags); 947 amdgpu_gart_invalidate_tlb(adev); 948 ttm_resource_free(bo, &bo->resource); 949 ttm_bo_assign_mem(bo, tmp); 950 951 return 0; 952 } 953 954 /* 955 * amdgpu_ttm_recover_gart - Rebind GTT pages 956 * 957 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 958 * rebind GTT pages during a GPU reset. 959 */ 960 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 961 { 962 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 963 uint64_t flags; 964 965 if (!tbo->ttm) 966 return; 967 968 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 969 amdgpu_ttm_gart_bind(adev, tbo, flags); 970 } 971 972 /* 973 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 974 * 975 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 976 * ttm_tt_destroy(). 977 */ 978 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 979 struct ttm_tt *ttm) 980 { 981 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 982 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 983 984 /* if the pages have userptr pinning then clear that first */ 985 if (gtt->userptr) { 986 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 987 } else if (ttm->sg && gtt->gobj->import_attach) { 988 struct dma_buf_attachment *attach; 989 990 attach = gtt->gobj->import_attach; 991 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 992 ttm->sg = NULL; 993 } 994 995 if (!gtt->bound) 996 return; 997 998 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 999 return; 1000 1001 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1002 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1003 gtt->bound = false; 1004 } 1005 1006 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1007 struct ttm_tt *ttm) 1008 { 1009 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1010 1011 if (gtt->usertask) 1012 put_task_struct(gtt->usertask); 1013 1014 ttm_tt_fini(>t->ttm); 1015 kfree(gtt); 1016 } 1017 1018 /** 1019 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1020 * 1021 * @bo: The buffer object to create a GTT ttm_tt object around 1022 * @page_flags: Page flags to be added to the ttm_tt object 1023 * 1024 * Called by ttm_tt_create(). 1025 */ 1026 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1027 uint32_t page_flags) 1028 { 1029 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1030 struct amdgpu_ttm_tt *gtt; 1031 enum ttm_caching caching; 1032 1033 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1034 if (gtt == NULL) { 1035 return NULL; 1036 } 1037 gtt->gobj = &bo->base; 1038 1039 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1040 caching = ttm_write_combined; 1041 else 1042 caching = ttm_cached; 1043 1044 /* allocate space for the uninitialized page entries */ 1045 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1046 kfree(gtt); 1047 return NULL; 1048 } 1049 return >t->ttm; 1050 } 1051 1052 /* 1053 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1054 * 1055 * Map the pages of a ttm_tt object to an address space visible 1056 * to the underlying device. 1057 */ 1058 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1059 struct ttm_tt *ttm, 1060 struct ttm_operation_ctx *ctx) 1061 { 1062 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1063 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1064 pgoff_t i; 1065 int ret; 1066 1067 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1068 if (gtt->userptr) { 1069 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1070 if (!ttm->sg) 1071 return -ENOMEM; 1072 return 0; 1073 } 1074 1075 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1076 return 0; 1077 1078 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1079 if (ret) 1080 return ret; 1081 1082 for (i = 0; i < ttm->num_pages; ++i) 1083 ttm->pages[i]->mapping = bdev->dev_mapping; 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1090 * 1091 * Unmaps pages of a ttm_tt object from the device address space and 1092 * unpopulates the page array backing it. 1093 */ 1094 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1095 struct ttm_tt *ttm) 1096 { 1097 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1098 struct amdgpu_device *adev; 1099 pgoff_t i; 1100 1101 amdgpu_ttm_backend_unbind(bdev, ttm); 1102 1103 if (gtt->userptr) { 1104 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1105 kfree(ttm->sg); 1106 ttm->sg = NULL; 1107 return; 1108 } 1109 1110 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1111 return; 1112 1113 for (i = 0; i < ttm->num_pages; ++i) 1114 ttm->pages[i]->mapping = NULL; 1115 1116 adev = amdgpu_ttm_adev(bdev); 1117 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1118 } 1119 1120 /** 1121 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1122 * task 1123 * 1124 * @tbo: The ttm_buffer_object that contains the userptr 1125 * @user_addr: The returned value 1126 */ 1127 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1128 uint64_t *user_addr) 1129 { 1130 struct amdgpu_ttm_tt *gtt; 1131 1132 if (!tbo->ttm) 1133 return -EINVAL; 1134 1135 gtt = (void *)tbo->ttm; 1136 *user_addr = gtt->userptr; 1137 return 0; 1138 } 1139 1140 /** 1141 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1142 * task 1143 * 1144 * @bo: The ttm_buffer_object to bind this userptr to 1145 * @addr: The address in the current tasks VM space to use 1146 * @flags: Requirements of userptr object. 1147 * 1148 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1149 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1150 * initialize GPU VM for a KFD process. 1151 */ 1152 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1153 uint64_t addr, uint32_t flags) 1154 { 1155 struct amdgpu_ttm_tt *gtt; 1156 1157 if (!bo->ttm) { 1158 /* TODO: We want a separate TTM object type for userptrs */ 1159 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1160 if (bo->ttm == NULL) 1161 return -ENOMEM; 1162 } 1163 1164 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1165 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1166 1167 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1168 gtt->userptr = addr; 1169 gtt->userflags = flags; 1170 1171 if (gtt->usertask) 1172 put_task_struct(gtt->usertask); 1173 gtt->usertask = current->group_leader; 1174 get_task_struct(gtt->usertask); 1175 1176 return 0; 1177 } 1178 1179 /* 1180 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1181 */ 1182 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1183 { 1184 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1185 1186 if (gtt == NULL) 1187 return NULL; 1188 1189 if (gtt->usertask == NULL) 1190 return NULL; 1191 1192 return gtt->usertask->mm; 1193 } 1194 1195 /* 1196 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1197 * address range for the current task. 1198 * 1199 */ 1200 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1201 unsigned long end, unsigned long *userptr) 1202 { 1203 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1204 unsigned long size; 1205 1206 if (gtt == NULL || !gtt->userptr) 1207 return false; 1208 1209 /* Return false if no part of the ttm_tt object lies within 1210 * the range 1211 */ 1212 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1213 if (gtt->userptr > end || gtt->userptr + size <= start) 1214 return false; 1215 1216 if (userptr) 1217 *userptr = gtt->userptr; 1218 return true; 1219 } 1220 1221 /* 1222 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1223 */ 1224 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1225 { 1226 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1227 1228 if (gtt == NULL || !gtt->userptr) 1229 return false; 1230 1231 return true; 1232 } 1233 1234 /* 1235 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1236 */ 1237 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1238 { 1239 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1240 1241 if (gtt == NULL) 1242 return false; 1243 1244 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1245 } 1246 1247 /** 1248 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1249 * 1250 * @ttm: The ttm_tt object to compute the flags for 1251 * @mem: The memory registry backing this ttm_tt object 1252 * 1253 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1254 */ 1255 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1256 { 1257 uint64_t flags = 0; 1258 1259 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1260 flags |= AMDGPU_PTE_VALID; 1261 1262 if (mem && (mem->mem_type == TTM_PL_TT || 1263 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1264 flags |= AMDGPU_PTE_SYSTEM; 1265 1266 if (ttm->caching == ttm_cached) 1267 flags |= AMDGPU_PTE_SNOOPED; 1268 } 1269 1270 if (mem && mem->mem_type == TTM_PL_VRAM && 1271 mem->bus.caching == ttm_cached) 1272 flags |= AMDGPU_PTE_SNOOPED; 1273 1274 return flags; 1275 } 1276 1277 /** 1278 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1279 * 1280 * @adev: amdgpu_device pointer 1281 * @ttm: The ttm_tt object to compute the flags for 1282 * @mem: The memory registry backing this ttm_tt object 1283 * 1284 * Figure out the flags to use for a VM PTE (Page Table Entry). 1285 */ 1286 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1287 struct ttm_resource *mem) 1288 { 1289 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1290 1291 flags |= adev->gart.gart_pte_flags; 1292 flags |= AMDGPU_PTE_READABLE; 1293 1294 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1295 flags |= AMDGPU_PTE_WRITEABLE; 1296 1297 return flags; 1298 } 1299 1300 /* 1301 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1302 * object. 1303 * 1304 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1305 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1306 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1307 * used to clean out a memory space. 1308 */ 1309 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1310 const struct ttm_place *place) 1311 { 1312 struct dma_resv_iter resv_cursor; 1313 struct dma_fence *f; 1314 1315 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1316 return ttm_bo_eviction_valuable(bo, place); 1317 1318 /* Swapout? */ 1319 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1320 return true; 1321 1322 if (bo->type == ttm_bo_type_kernel && 1323 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1324 return false; 1325 1326 /* If bo is a KFD BO, check if the bo belongs to the current process. 1327 * If true, then return false as any KFD process needs all its BOs to 1328 * be resident to run successfully 1329 */ 1330 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1331 DMA_RESV_USAGE_BOOKKEEP, f) { 1332 if (amdkfd_fence_check_mm(f, current->mm)) 1333 return false; 1334 } 1335 1336 /* Preemptible BOs don't own system resources managed by the 1337 * driver (pages, VRAM, GART space). They point to resources 1338 * owned by someone else (e.g. pageable memory in user mode 1339 * or a DMABuf). They are used in a preemptible context so we 1340 * can guarantee no deadlocks and good QoS in case of MMU 1341 * notifiers or DMABuf move notifiers from the resource owner. 1342 */ 1343 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1344 return false; 1345 1346 if (bo->resource->mem_type == TTM_PL_TT && 1347 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1348 return false; 1349 1350 return ttm_bo_eviction_valuable(bo, place); 1351 } 1352 1353 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1354 void *buf, size_t size, bool write) 1355 { 1356 while (size) { 1357 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1358 uint64_t bytes = 4 - (pos & 0x3); 1359 uint32_t shift = (pos & 0x3) * 8; 1360 uint32_t mask = 0xffffffff << shift; 1361 uint32_t value = 0; 1362 1363 if (size < bytes) { 1364 mask &= 0xffffffff >> (bytes - size) * 8; 1365 bytes = size; 1366 } 1367 1368 if (mask != 0xffffffff) { 1369 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1370 if (write) { 1371 value &= ~mask; 1372 value |= (*(uint32_t *)buf << shift) & mask; 1373 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1374 } else { 1375 value = (value & mask) >> shift; 1376 memcpy(buf, &value, bytes); 1377 } 1378 } else { 1379 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1380 } 1381 1382 pos += bytes; 1383 buf += bytes; 1384 size -= bytes; 1385 } 1386 } 1387 1388 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1389 unsigned long offset, void *buf, 1390 int len, int write) 1391 { 1392 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1393 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1394 struct amdgpu_res_cursor src_mm; 1395 struct amdgpu_job *job; 1396 struct dma_fence *fence; 1397 uint64_t src_addr, dst_addr; 1398 unsigned int num_dw; 1399 int r, idx; 1400 1401 if (len != PAGE_SIZE) 1402 return -EINVAL; 1403 1404 if (!adev->mman.sdma_access_ptr) 1405 return -EACCES; 1406 1407 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1408 return -ENODEV; 1409 1410 if (write) 1411 memcpy(adev->mman.sdma_access_ptr, buf, len); 1412 1413 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1414 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 1415 AMDGPU_FENCE_OWNER_UNDEFINED, 1416 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1417 &job); 1418 if (r) 1419 goto out; 1420 1421 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1422 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1423 src_mm.start; 1424 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1425 if (write) 1426 swap(src_addr, dst_addr); 1427 1428 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1429 PAGE_SIZE, false); 1430 1431 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1432 WARN_ON(job->ibs[0].length_dw > num_dw); 1433 1434 fence = amdgpu_job_submit(job); 1435 1436 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1437 r = -ETIMEDOUT; 1438 dma_fence_put(fence); 1439 1440 if (!(r || write)) 1441 memcpy(buf, adev->mman.sdma_access_ptr, len); 1442 out: 1443 drm_dev_exit(idx); 1444 return r; 1445 } 1446 1447 /** 1448 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1449 * 1450 * @bo: The buffer object to read/write 1451 * @offset: Offset into buffer object 1452 * @buf: Secondary buffer to write/read from 1453 * @len: Length in bytes of access 1454 * @write: true if writing 1455 * 1456 * This is used to access VRAM that backs a buffer object via MMIO 1457 * access for debugging purposes. 1458 */ 1459 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1460 unsigned long offset, void *buf, int len, 1461 int write) 1462 { 1463 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1464 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1465 struct amdgpu_res_cursor cursor; 1466 int ret = 0; 1467 1468 if (bo->resource->mem_type != TTM_PL_VRAM) 1469 return -EIO; 1470 1471 if (amdgpu_device_has_timeouts_enabled(adev) && 1472 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1473 return len; 1474 1475 amdgpu_res_first(bo->resource, offset, len, &cursor); 1476 while (cursor.remaining) { 1477 size_t count, size = cursor.size; 1478 loff_t pos = cursor.start; 1479 1480 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1481 size -= count; 1482 if (size) { 1483 /* using MM to access rest vram and handle un-aligned address */ 1484 pos += count; 1485 buf += count; 1486 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1487 } 1488 1489 ret += cursor.size; 1490 buf += cursor.size; 1491 amdgpu_res_next(&cursor, cursor.size); 1492 } 1493 1494 return ret; 1495 } 1496 1497 static void 1498 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1499 { 1500 amdgpu_bo_move_notify(bo, false, NULL); 1501 } 1502 1503 static struct ttm_device_funcs amdgpu_bo_driver = { 1504 .ttm_tt_create = &amdgpu_ttm_tt_create, 1505 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1506 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1507 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1508 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1509 .evict_flags = &amdgpu_evict_flags, 1510 .move = &amdgpu_bo_move, 1511 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1512 .release_notify = &amdgpu_bo_release_notify, 1513 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1514 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1515 .access_memory = &amdgpu_ttm_access_memory, 1516 }; 1517 1518 /* 1519 * Firmware Reservation functions 1520 */ 1521 /** 1522 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1523 * 1524 * @adev: amdgpu_device pointer 1525 * 1526 * free fw reserved vram if it has been reserved. 1527 */ 1528 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1529 { 1530 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1531 NULL, &adev->mman.fw_vram_usage_va); 1532 } 1533 1534 /* 1535 * Driver Reservation functions 1536 */ 1537 /** 1538 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1539 * 1540 * @adev: amdgpu_device pointer 1541 * 1542 * free drv reserved vram if it has been reserved. 1543 */ 1544 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1545 { 1546 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1547 NULL, 1548 NULL); 1549 } 1550 1551 /** 1552 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1553 * 1554 * @adev: amdgpu_device pointer 1555 * 1556 * create bo vram reservation from fw. 1557 */ 1558 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1559 { 1560 uint64_t vram_size = adev->gmc.visible_vram_size; 1561 1562 adev->mman.fw_vram_usage_va = NULL; 1563 adev->mman.fw_vram_usage_reserved_bo = NULL; 1564 1565 if (adev->mman.fw_vram_usage_size == 0 || 1566 adev->mman.fw_vram_usage_size > vram_size) 1567 return 0; 1568 1569 return amdgpu_bo_create_kernel_at(adev, 1570 adev->mman.fw_vram_usage_start_offset, 1571 adev->mman.fw_vram_usage_size, 1572 AMDGPU_GEM_DOMAIN_VRAM, 1573 &adev->mman.fw_vram_usage_reserved_bo, 1574 &adev->mman.fw_vram_usage_va); 1575 } 1576 1577 /** 1578 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * create bo vram reservation from drv. 1583 */ 1584 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1585 { 1586 uint64_t vram_size = adev->gmc.visible_vram_size; 1587 1588 adev->mman.drv_vram_usage_reserved_bo = NULL; 1589 1590 if (adev->mman.drv_vram_usage_size == 0 || 1591 adev->mman.drv_vram_usage_size > vram_size) 1592 return 0; 1593 1594 return amdgpu_bo_create_kernel_at(adev, 1595 adev->mman.drv_vram_usage_start_offset, 1596 adev->mman.drv_vram_usage_size, 1597 AMDGPU_GEM_DOMAIN_VRAM, 1598 &adev->mman.drv_vram_usage_reserved_bo, 1599 NULL); 1600 } 1601 1602 /* 1603 * Memoy training reservation functions 1604 */ 1605 1606 /** 1607 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1608 * 1609 * @adev: amdgpu_device pointer 1610 * 1611 * free memory training reserved vram if it has been reserved. 1612 */ 1613 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1614 { 1615 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1616 1617 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1618 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1619 ctx->c2p_bo = NULL; 1620 1621 return 0; 1622 } 1623 1624 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1625 { 1626 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1627 1628 memset(ctx, 0, sizeof(*ctx)); 1629 1630 ctx->c2p_train_data_offset = 1631 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1632 ctx->p2c_train_data_offset = 1633 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1634 ctx->train_data_size = 1635 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1636 1637 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1638 ctx->train_data_size, 1639 ctx->p2c_train_data_offset, 1640 ctx->c2p_train_data_offset); 1641 } 1642 1643 /* 1644 * reserve TMR memory at the top of VRAM which holds 1645 * IP Discovery data and is protected by PSP. 1646 */ 1647 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1648 { 1649 int ret; 1650 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1651 bool mem_train_support = false; 1652 1653 if (!amdgpu_sriov_vf(adev)) { 1654 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1655 mem_train_support = true; 1656 else 1657 DRM_DEBUG("memory training does not support!\n"); 1658 } 1659 1660 /* 1661 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1662 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1663 * 1664 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1665 * discovery data and G6 memory training data respectively 1666 */ 1667 adev->mman.discovery_tmr_size = 1668 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1669 if (!adev->mman.discovery_tmr_size) 1670 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1671 1672 if (mem_train_support) { 1673 /* reserve vram for mem train according to TMR location */ 1674 amdgpu_ttm_training_data_block_init(adev); 1675 ret = amdgpu_bo_create_kernel_at(adev, 1676 ctx->c2p_train_data_offset, 1677 ctx->train_data_size, 1678 AMDGPU_GEM_DOMAIN_VRAM, 1679 &ctx->c2p_bo, 1680 NULL); 1681 if (ret) { 1682 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1683 amdgpu_ttm_training_reserve_vram_fini(adev); 1684 return ret; 1685 } 1686 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1687 } 1688 1689 ret = amdgpu_bo_create_kernel_at(adev, 1690 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1691 adev->mman.discovery_tmr_size, 1692 AMDGPU_GEM_DOMAIN_VRAM, 1693 &adev->mman.discovery_memory, 1694 NULL); 1695 if (ret) { 1696 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1697 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1698 return ret; 1699 } 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1706 * gtt/vram related fields. 1707 * 1708 * This initializes all of the memory space pools that the TTM layer 1709 * will need such as the GTT space (system memory mapped to the device), 1710 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1711 * can be mapped per VMID. 1712 */ 1713 int amdgpu_ttm_init(struct amdgpu_device *adev) 1714 { 1715 uint64_t gtt_size; 1716 int r; 1717 u64 vis_vram_limit; 1718 1719 mutex_init(&adev->mman.gtt_window_lock); 1720 1721 /* No others user of address space so set it to 0 */ 1722 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1723 adev_to_drm(adev)->anon_inode->i_mapping, 1724 adev_to_drm(adev)->vma_offset_manager, 1725 adev->need_swiotlb, 1726 dma_addressing_limited(adev->dev)); 1727 if (r) { 1728 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1729 return r; 1730 } 1731 adev->mman.initialized = true; 1732 1733 /* Initialize VRAM pool with all of VRAM divided into pages */ 1734 r = amdgpu_vram_mgr_init(adev); 1735 if (r) { 1736 DRM_ERROR("Failed initializing VRAM heap.\n"); 1737 return r; 1738 } 1739 1740 /* Reduce size of CPU-visible VRAM if requested */ 1741 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1742 if (amdgpu_vis_vram_limit > 0 && 1743 vis_vram_limit <= adev->gmc.visible_vram_size) 1744 adev->gmc.visible_vram_size = vis_vram_limit; 1745 1746 /* Change the size here instead of the init above so only lpfn is affected */ 1747 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1748 #ifdef CONFIG_64BIT 1749 #ifdef CONFIG_X86 1750 if (adev->gmc.xgmi.connected_to_cpu) 1751 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1752 adev->gmc.visible_vram_size); 1753 1754 else 1755 #endif 1756 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1757 adev->gmc.visible_vram_size); 1758 #endif 1759 1760 /* 1761 *The reserved vram for firmware must be pinned to the specified 1762 *place on the VRAM, so reserve it early. 1763 */ 1764 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1765 if (r) { 1766 return r; 1767 } 1768 1769 /* 1770 *The reserved vram for driver must be pinned to the specified 1771 *place on the VRAM, so reserve it early. 1772 */ 1773 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1774 if (r) 1775 return r; 1776 1777 /* 1778 * only NAVI10 and onwards ASIC support for IP discovery. 1779 * If IP discovery enabled, a block of memory should be 1780 * reserved for IP discovey. 1781 */ 1782 if (adev->mman.discovery_bin) { 1783 r = amdgpu_ttm_reserve_tmr(adev); 1784 if (r) 1785 return r; 1786 } 1787 1788 /* allocate memory as required for VGA 1789 * This is used for VGA emulation and pre-OS scanout buffers to 1790 * avoid display artifacts while transitioning between pre-OS 1791 * and driver. */ 1792 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1793 AMDGPU_GEM_DOMAIN_VRAM, 1794 &adev->mman.stolen_vga_memory, 1795 NULL); 1796 if (r) 1797 return r; 1798 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1799 adev->mman.stolen_extended_size, 1800 AMDGPU_GEM_DOMAIN_VRAM, 1801 &adev->mman.stolen_extended_memory, 1802 NULL); 1803 if (r) 1804 return r; 1805 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1806 adev->mman.stolen_reserved_size, 1807 AMDGPU_GEM_DOMAIN_VRAM, 1808 &adev->mman.stolen_reserved_memory, 1809 NULL); 1810 if (r) 1811 return r; 1812 1813 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1814 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1815 1816 /* Compute GTT size, either based on 1/2 the size of RAM size 1817 * or whatever the user passed on module init */ 1818 if (amdgpu_gtt_size == -1) { 1819 struct sysinfo si; 1820 1821 si_meminfo(&si); 1822 /* Certain GL unit tests for large textures can cause problems 1823 * with the OOM killer since there is no way to link this memory 1824 * to a process. This was originally mitigated (but not necessarily 1825 * eliminated) by limiting the GTT size. The problem is this limit 1826 * is often too low for many modern games so just make the limit 1/2 1827 * of system memory which aligns with TTM. The OOM accounting needs 1828 * to be addressed, but we shouldn't prevent common 3D applications 1829 * from being usable just to potentially mitigate that corner case. 1830 */ 1831 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1832 (u64)si.totalram * si.mem_unit / 2); 1833 } else { 1834 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1835 } 1836 1837 /* Initialize GTT memory pool */ 1838 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1839 if (r) { 1840 DRM_ERROR("Failed initializing GTT heap.\n"); 1841 return r; 1842 } 1843 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1844 (unsigned)(gtt_size / (1024 * 1024))); 1845 1846 /* Initialize preemptible memory pool */ 1847 r = amdgpu_preempt_mgr_init(adev); 1848 if (r) { 1849 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1850 return r; 1851 } 1852 1853 /* Initialize various on-chip memory pools */ 1854 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1855 if (r) { 1856 DRM_ERROR("Failed initializing GDS heap.\n"); 1857 return r; 1858 } 1859 1860 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1861 if (r) { 1862 DRM_ERROR("Failed initializing gws heap.\n"); 1863 return r; 1864 } 1865 1866 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1867 if (r) { 1868 DRM_ERROR("Failed initializing oa heap.\n"); 1869 return r; 1870 } 1871 1872 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1873 AMDGPU_GEM_DOMAIN_GTT, 1874 &adev->mman.sdma_access_bo, NULL, 1875 &adev->mman.sdma_access_ptr)) 1876 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1877 1878 return 0; 1879 } 1880 1881 /* 1882 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1883 */ 1884 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1885 { 1886 int idx; 1887 if (!adev->mman.initialized) 1888 return; 1889 1890 amdgpu_ttm_training_reserve_vram_fini(adev); 1891 /* return the stolen vga memory back to VRAM */ 1892 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1893 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1894 /* return the IP Discovery TMR memory back to VRAM */ 1895 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1896 if (adev->mman.stolen_reserved_size) 1897 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1898 NULL, NULL); 1899 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1900 &adev->mman.sdma_access_ptr); 1901 amdgpu_ttm_fw_reserve_vram_fini(adev); 1902 amdgpu_ttm_drv_reserve_vram_fini(adev); 1903 1904 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1905 1906 if (adev->mman.aper_base_kaddr) 1907 iounmap(adev->mman.aper_base_kaddr); 1908 adev->mman.aper_base_kaddr = NULL; 1909 1910 drm_dev_exit(idx); 1911 } 1912 1913 amdgpu_vram_mgr_fini(adev); 1914 amdgpu_gtt_mgr_fini(adev); 1915 amdgpu_preempt_mgr_fini(adev); 1916 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1917 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1918 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1919 ttm_device_fini(&adev->mman.bdev); 1920 adev->mman.initialized = false; 1921 DRM_INFO("amdgpu: ttm finalized\n"); 1922 } 1923 1924 /** 1925 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1926 * 1927 * @adev: amdgpu_device pointer 1928 * @enable: true when we can use buffer functions. 1929 * 1930 * Enable/disable use of buffer functions during suspend/resume. This should 1931 * only be called at bootup or when userspace isn't running. 1932 */ 1933 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1934 { 1935 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1936 uint64_t size; 1937 int r; 1938 1939 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1940 adev->mman.buffer_funcs_enabled == enable) 1941 return; 1942 1943 if (enable) { 1944 struct amdgpu_ring *ring; 1945 struct drm_gpu_scheduler *sched; 1946 1947 ring = adev->mman.buffer_funcs_ring; 1948 sched = &ring->sched; 1949 r = drm_sched_entity_init(&adev->mman.entity, 1950 DRM_SCHED_PRIORITY_KERNEL, &sched, 1951 1, NULL); 1952 if (r) { 1953 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1954 r); 1955 return; 1956 } 1957 } else { 1958 drm_sched_entity_destroy(&adev->mman.entity); 1959 dma_fence_put(man->move); 1960 man->move = NULL; 1961 } 1962 1963 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1964 if (enable) 1965 size = adev->gmc.real_vram_size; 1966 else 1967 size = adev->gmc.visible_vram_size; 1968 man->size = size; 1969 adev->mman.buffer_funcs_enabled = enable; 1970 } 1971 1972 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1973 bool direct_submit, 1974 unsigned int num_dw, 1975 struct dma_resv *resv, 1976 bool vm_needs_flush, 1977 struct amdgpu_job **job) 1978 { 1979 enum amdgpu_ib_pool_type pool = direct_submit ? 1980 AMDGPU_IB_POOL_DIRECT : 1981 AMDGPU_IB_POOL_DELAYED; 1982 int r; 1983 1984 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 1985 AMDGPU_FENCE_OWNER_UNDEFINED, 1986 num_dw * 4, pool, job); 1987 if (r) 1988 return r; 1989 1990 if (vm_needs_flush) { 1991 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1992 adev->gmc.pdb0_bo : 1993 adev->gart.bo); 1994 (*job)->vm_needs_flush = true; 1995 } 1996 if (!resv) 1997 return 0; 1998 1999 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2000 DMA_RESV_USAGE_BOOKKEEP); 2001 } 2002 2003 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2004 uint64_t dst_offset, uint32_t byte_count, 2005 struct dma_resv *resv, 2006 struct dma_fence **fence, bool direct_submit, 2007 bool vm_needs_flush, bool tmz) 2008 { 2009 struct amdgpu_device *adev = ring->adev; 2010 unsigned num_loops, num_dw; 2011 struct amdgpu_job *job; 2012 uint32_t max_bytes; 2013 unsigned i; 2014 int r; 2015 2016 if (!direct_submit && !ring->sched.ready) { 2017 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2018 return -EINVAL; 2019 } 2020 2021 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2022 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2023 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2024 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2025 resv, vm_needs_flush, &job); 2026 if (r) 2027 return r; 2028 2029 for (i = 0; i < num_loops; i++) { 2030 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2031 2032 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2033 dst_offset, cur_size_in_bytes, tmz); 2034 2035 src_offset += cur_size_in_bytes; 2036 dst_offset += cur_size_in_bytes; 2037 byte_count -= cur_size_in_bytes; 2038 } 2039 2040 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2041 WARN_ON(job->ibs[0].length_dw > num_dw); 2042 if (direct_submit) 2043 r = amdgpu_job_submit_direct(job, ring, fence); 2044 else 2045 *fence = amdgpu_job_submit(job); 2046 if (r) 2047 goto error_free; 2048 2049 return r; 2050 2051 error_free: 2052 amdgpu_job_free(job); 2053 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2054 return r; 2055 } 2056 2057 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2058 uint64_t dst_addr, uint32_t byte_count, 2059 struct dma_resv *resv, 2060 struct dma_fence **fence, 2061 bool vm_needs_flush) 2062 { 2063 struct amdgpu_device *adev = ring->adev; 2064 unsigned int num_loops, num_dw; 2065 struct amdgpu_job *job; 2066 uint32_t max_bytes; 2067 unsigned int i; 2068 int r; 2069 2070 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2071 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2072 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2073 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2074 &job); 2075 if (r) 2076 return r; 2077 2078 for (i = 0; i < num_loops; i++) { 2079 uint32_t cur_size = min(byte_count, max_bytes); 2080 2081 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2082 cur_size); 2083 2084 dst_addr += cur_size; 2085 byte_count -= cur_size; 2086 } 2087 2088 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2089 WARN_ON(job->ibs[0].length_dw > num_dw); 2090 *fence = amdgpu_job_submit(job); 2091 return 0; 2092 } 2093 2094 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2095 uint32_t src_data, 2096 struct dma_resv *resv, 2097 struct dma_fence **f) 2098 { 2099 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2100 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2101 struct dma_fence *fence = NULL; 2102 struct amdgpu_res_cursor dst; 2103 int r; 2104 2105 if (!adev->mman.buffer_funcs_enabled) { 2106 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2107 return -EINVAL; 2108 } 2109 2110 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2111 2112 mutex_lock(&adev->mman.gtt_window_lock); 2113 while (dst.remaining) { 2114 struct dma_fence *next; 2115 uint64_t cur_size, to; 2116 2117 /* Never fill more than 256MiB at once to avoid timeouts */ 2118 cur_size = min(dst.size, 256ULL << 20); 2119 2120 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2121 1, ring, false, &cur_size, &to); 2122 if (r) 2123 goto error; 2124 2125 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2126 &next, true); 2127 if (r) 2128 goto error; 2129 2130 dma_fence_put(fence); 2131 fence = next; 2132 2133 amdgpu_res_next(&dst, cur_size); 2134 } 2135 error: 2136 mutex_unlock(&adev->mman.gtt_window_lock); 2137 if (f) 2138 *f = dma_fence_get(fence); 2139 dma_fence_put(fence); 2140 return r; 2141 } 2142 2143 /** 2144 * amdgpu_ttm_evict_resources - evict memory buffers 2145 * @adev: amdgpu device object 2146 * @mem_type: evicted BO's memory type 2147 * 2148 * Evicts all @mem_type buffers on the lru list of the memory type. 2149 * 2150 * Returns: 2151 * 0 for success or a negative error code on failure. 2152 */ 2153 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2154 { 2155 struct ttm_resource_manager *man; 2156 2157 switch (mem_type) { 2158 case TTM_PL_VRAM: 2159 case TTM_PL_TT: 2160 case AMDGPU_PL_GWS: 2161 case AMDGPU_PL_GDS: 2162 case AMDGPU_PL_OA: 2163 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2164 break; 2165 default: 2166 DRM_ERROR("Trying to evict invalid memory type\n"); 2167 return -EINVAL; 2168 } 2169 2170 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2171 } 2172 2173 #if defined(CONFIG_DEBUG_FS) 2174 2175 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2176 { 2177 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2178 2179 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2180 } 2181 2182 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2183 2184 /* 2185 * amdgpu_ttm_vram_read - Linear read access to VRAM 2186 * 2187 * Accesses VRAM via MMIO for debugging purposes. 2188 */ 2189 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2190 size_t size, loff_t *pos) 2191 { 2192 struct amdgpu_device *adev = file_inode(f)->i_private; 2193 ssize_t result = 0; 2194 2195 if (size & 0x3 || *pos & 0x3) 2196 return -EINVAL; 2197 2198 if (*pos >= adev->gmc.mc_vram_size) 2199 return -ENXIO; 2200 2201 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2202 while (size) { 2203 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2204 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2205 2206 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2207 if (copy_to_user(buf, value, bytes)) 2208 return -EFAULT; 2209 2210 result += bytes; 2211 buf += bytes; 2212 *pos += bytes; 2213 size -= bytes; 2214 } 2215 2216 return result; 2217 } 2218 2219 /* 2220 * amdgpu_ttm_vram_write - Linear write access to VRAM 2221 * 2222 * Accesses VRAM via MMIO for debugging purposes. 2223 */ 2224 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2225 size_t size, loff_t *pos) 2226 { 2227 struct amdgpu_device *adev = file_inode(f)->i_private; 2228 ssize_t result = 0; 2229 int r; 2230 2231 if (size & 0x3 || *pos & 0x3) 2232 return -EINVAL; 2233 2234 if (*pos >= adev->gmc.mc_vram_size) 2235 return -ENXIO; 2236 2237 while (size) { 2238 uint32_t value; 2239 2240 if (*pos >= adev->gmc.mc_vram_size) 2241 return result; 2242 2243 r = get_user(value, (uint32_t *)buf); 2244 if (r) 2245 return r; 2246 2247 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2248 2249 result += 4; 2250 buf += 4; 2251 *pos += 4; 2252 size -= 4; 2253 } 2254 2255 return result; 2256 } 2257 2258 static const struct file_operations amdgpu_ttm_vram_fops = { 2259 .owner = THIS_MODULE, 2260 .read = amdgpu_ttm_vram_read, 2261 .write = amdgpu_ttm_vram_write, 2262 .llseek = default_llseek, 2263 }; 2264 2265 /* 2266 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2267 * 2268 * This function is used to read memory that has been mapped to the 2269 * GPU and the known addresses are not physical addresses but instead 2270 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2271 */ 2272 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2273 size_t size, loff_t *pos) 2274 { 2275 struct amdgpu_device *adev = file_inode(f)->i_private; 2276 struct iommu_domain *dom; 2277 ssize_t result = 0; 2278 int r; 2279 2280 /* retrieve the IOMMU domain if any for this device */ 2281 dom = iommu_get_domain_for_dev(adev->dev); 2282 2283 while (size) { 2284 phys_addr_t addr = *pos & PAGE_MASK; 2285 loff_t off = *pos & ~PAGE_MASK; 2286 size_t bytes = PAGE_SIZE - off; 2287 unsigned long pfn; 2288 struct page *p; 2289 void *ptr; 2290 2291 bytes = bytes < size ? bytes : size; 2292 2293 /* Translate the bus address to a physical address. If 2294 * the domain is NULL it means there is no IOMMU active 2295 * and the address translation is the identity 2296 */ 2297 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2298 2299 pfn = addr >> PAGE_SHIFT; 2300 if (!pfn_valid(pfn)) 2301 return -EPERM; 2302 2303 p = pfn_to_page(pfn); 2304 if (p->mapping != adev->mman.bdev.dev_mapping) 2305 return -EPERM; 2306 2307 ptr = kmap_local_page(p); 2308 r = copy_to_user(buf, ptr + off, bytes); 2309 kunmap_local(ptr); 2310 if (r) 2311 return -EFAULT; 2312 2313 size -= bytes; 2314 *pos += bytes; 2315 result += bytes; 2316 } 2317 2318 return result; 2319 } 2320 2321 /* 2322 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2323 * 2324 * This function is used to write memory that has been mapped to the 2325 * GPU and the known addresses are not physical addresses but instead 2326 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2327 */ 2328 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2329 size_t size, loff_t *pos) 2330 { 2331 struct amdgpu_device *adev = file_inode(f)->i_private; 2332 struct iommu_domain *dom; 2333 ssize_t result = 0; 2334 int r; 2335 2336 dom = iommu_get_domain_for_dev(adev->dev); 2337 2338 while (size) { 2339 phys_addr_t addr = *pos & PAGE_MASK; 2340 loff_t off = *pos & ~PAGE_MASK; 2341 size_t bytes = PAGE_SIZE - off; 2342 unsigned long pfn; 2343 struct page *p; 2344 void *ptr; 2345 2346 bytes = bytes < size ? bytes : size; 2347 2348 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2349 2350 pfn = addr >> PAGE_SHIFT; 2351 if (!pfn_valid(pfn)) 2352 return -EPERM; 2353 2354 p = pfn_to_page(pfn); 2355 if (p->mapping != adev->mman.bdev.dev_mapping) 2356 return -EPERM; 2357 2358 ptr = kmap_local_page(p); 2359 r = copy_from_user(ptr + off, buf, bytes); 2360 kunmap_local(ptr); 2361 if (r) 2362 return -EFAULT; 2363 2364 size -= bytes; 2365 *pos += bytes; 2366 result += bytes; 2367 } 2368 2369 return result; 2370 } 2371 2372 static const struct file_operations amdgpu_ttm_iomem_fops = { 2373 .owner = THIS_MODULE, 2374 .read = amdgpu_iomem_read, 2375 .write = amdgpu_iomem_write, 2376 .llseek = default_llseek 2377 }; 2378 2379 #endif 2380 2381 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2382 { 2383 #if defined(CONFIG_DEBUG_FS) 2384 struct drm_minor *minor = adev_to_drm(adev)->primary; 2385 struct dentry *root = minor->debugfs_root; 2386 2387 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2388 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2389 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2390 &amdgpu_ttm_iomem_fops); 2391 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2392 &amdgpu_ttm_page_pool_fops); 2393 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2394 TTM_PL_VRAM), 2395 root, "amdgpu_vram_mm"); 2396 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2397 TTM_PL_TT), 2398 root, "amdgpu_gtt_mm"); 2399 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2400 AMDGPU_PL_GDS), 2401 root, "amdgpu_gds_mm"); 2402 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2403 AMDGPU_PL_GWS), 2404 root, "amdgpu_gws_mm"); 2405 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2406 AMDGPU_PL_OA), 2407 root, "amdgpu_oa_mm"); 2408 2409 #endif 2410 } 2411