xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision e90886291c7cd89577bf11729b205cc0ed42fbec)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo_api.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_placement.h>
50 #include <drm/ttm/ttm_range_manager.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64 
65 MODULE_IMPORT_NS(DMA_BUF);
66 
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
68 
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70 				   struct ttm_tt *ttm,
71 				   struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73 				      struct ttm_tt *ttm);
74 
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76 				    unsigned int type,
77 				    uint64_t size_in_page)
78 {
79 	return ttm_range_man_init(&adev->mman.bdev, type,
80 				  false, size_in_page);
81 }
82 
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 				struct ttm_placement *placement)
93 {
94 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 	struct amdgpu_bo *abo;
96 	static const struct ttm_place placements = {
97 		.fpfn = 0,
98 		.lpfn = 0,
99 		.mem_type = TTM_PL_SYSTEM,
100 		.flags = 0
101 	};
102 
103 	/* Don't handle scatter gather BOs */
104 	if (bo->type == ttm_bo_type_sg) {
105 		placement->num_placement = 0;
106 		placement->num_busy_placement = 0;
107 		return;
108 	}
109 
110 	/* Object isn't an AMDGPU object so ignore */
111 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 		placement->placement = &placements;
113 		placement->busy_placement = &placements;
114 		placement->num_placement = 1;
115 		placement->num_busy_placement = 1;
116 		return;
117 	}
118 
119 	abo = ttm_to_amdgpu_bo(bo);
120 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 		placement->num_placement = 0;
122 		placement->num_busy_placement = 0;
123 		return;
124 	}
125 
126 	switch (bo->resource->mem_type) {
127 	case AMDGPU_PL_GDS:
128 	case AMDGPU_PL_GWS:
129 	case AMDGPU_PL_OA:
130 		placement->num_placement = 0;
131 		placement->num_busy_placement = 0;
132 		return;
133 
134 	case TTM_PL_VRAM:
135 		if (!adev->mman.buffer_funcs_enabled) {
136 			/* Move to system memory */
137 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
141 
142 			/* Try evicting to the CPU inaccessible part of VRAM
143 			 * first, but only set GTT as busy placement, so this
144 			 * BO will be evicted to GTT rather than causing other
145 			 * BOs to be evicted from VRAM
146 			 */
147 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 							AMDGPU_GEM_DOMAIN_GTT |
149 							AMDGPU_GEM_DOMAIN_CPU);
150 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 			abo->placements[0].lpfn = 0;
152 			abo->placement.busy_placement = &abo->placements[1];
153 			abo->placement.num_busy_placement = 1;
154 		} else {
155 			/* Move to GTT memory */
156 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 							AMDGPU_GEM_DOMAIN_CPU);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned window, struct amdgpu_ring *ring,
187 				 bool tmz, uint64_t *size, uint64_t *addr)
188 {
189 	struct amdgpu_device *adev = ring->adev;
190 	unsigned offset, num_pages, num_dw, num_bytes;
191 	uint64_t src_addr, dst_addr;
192 	struct dma_fence *fence;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
233 				     AMDGPU_IB_POOL_DELAYED, &job);
234 	if (r)
235 		return r;
236 
237 	src_addr = num_dw * 4;
238 	src_addr += job->ibs[0].gpu_addr;
239 
240 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
241 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
242 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
243 				dst_addr, num_bytes, false);
244 
245 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
246 	WARN_ON(job->ibs[0].length_dw > num_dw);
247 
248 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
249 	if (tmz)
250 		flags |= AMDGPU_PTE_TMZ;
251 
252 	cpu_addr = &job->ibs[0].ptr[num_dw];
253 
254 	if (mem->mem_type == TTM_PL_TT) {
255 		dma_addr_t *dma_addr;
256 
257 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
258 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
259 	} else {
260 		dma_addr_t dma_address;
261 
262 		dma_address = mm_cur->start;
263 		dma_address += adev->vm_manager.vram_base_offset;
264 
265 		for (i = 0; i < num_pages; ++i) {
266 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
267 					flags, cpu_addr);
268 			dma_address += PAGE_SIZE;
269 		}
270 	}
271 
272 	r = amdgpu_job_submit(job, &adev->mman.entity,
273 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
274 	if (r)
275 		goto error_free;
276 
277 	dma_fence_put(fence);
278 
279 	return r;
280 
281 error_free:
282 	amdgpu_job_free(job);
283 	return r;
284 }
285 
286 /**
287  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
288  * @adev: amdgpu device
289  * @src: buffer/address where to read from
290  * @dst: buffer/address where to write to
291  * @size: number of bytes to copy
292  * @tmz: if a secure copy should be used
293  * @resv: resv object to sync to
294  * @f: Returns the last fence if multiple jobs are submitted.
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  */
301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
302 			       const struct amdgpu_copy_mem *src,
303 			       const struct amdgpu_copy_mem *dst,
304 			       uint64_t size, bool tmz,
305 			       struct dma_resv *resv,
306 			       struct dma_fence **f)
307 {
308 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
309 	struct amdgpu_res_cursor src_mm, dst_mm;
310 	struct dma_fence *fence = NULL;
311 	int r = 0;
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
319 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
320 
321 	mutex_lock(&adev->mman.gtt_window_lock);
322 	while (src_mm.remaining) {
323 		uint64_t from, to, cur_size;
324 		struct dma_fence *next;
325 
326 		/* Never copy more than 256MiB at once to avoid a timeout */
327 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
328 
329 		/* Map src to window 0 and dst to window 1. */
330 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
331 					  0, ring, tmz, &cur_size, &from);
332 		if (r)
333 			goto error;
334 
335 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
336 					  1, ring, tmz, &cur_size, &to);
337 		if (r)
338 			goto error;
339 
340 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
341 				       resv, &next, false, true, tmz);
342 		if (r)
343 			goto error;
344 
345 		dma_fence_put(fence);
346 		fence = next;
347 
348 		amdgpu_res_next(&src_mm, cur_size);
349 		amdgpu_res_next(&dst_mm, cur_size);
350 	}
351 error:
352 	mutex_unlock(&adev->mman.gtt_window_lock);
353 	if (f)
354 		*f = dma_fence_get(fence);
355 	dma_fence_put(fence);
356 	return r;
357 }
358 
359 /*
360  * amdgpu_move_blit - Copy an entire buffer to another buffer
361  *
362  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
363  * help move buffers to and from VRAM.
364  */
365 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
366 			    bool evict,
367 			    struct ttm_resource *new_mem,
368 			    struct ttm_resource *old_mem)
369 {
370 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
371 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
372 	struct amdgpu_copy_mem src, dst;
373 	struct dma_fence *fence = NULL;
374 	int r;
375 
376 	src.bo = bo;
377 	dst.bo = bo;
378 	src.mem = old_mem;
379 	dst.mem = new_mem;
380 	src.offset = 0;
381 	dst.offset = 0;
382 
383 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
384 				       new_mem->num_pages << PAGE_SHIFT,
385 				       amdgpu_bo_encrypted(abo),
386 				       bo->base.resv, &fence);
387 	if (r)
388 		goto error;
389 
390 	/* clear the space being freed */
391 	if (old_mem->mem_type == TTM_PL_VRAM &&
392 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
393 		struct dma_fence *wipe_fence = NULL;
394 
395 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
396 		if (r) {
397 			goto error;
398 		} else if (wipe_fence) {
399 			dma_fence_put(fence);
400 			fence = wipe_fence;
401 		}
402 	}
403 
404 	/* Always block for VM page tables before committing the new location */
405 	if (bo->type == ttm_bo_type_kernel)
406 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
407 	else
408 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
409 	dma_fence_put(fence);
410 	return r;
411 
412 error:
413 	if (fence)
414 		dma_fence_wait(fence, false);
415 	dma_fence_put(fence);
416 	return r;
417 }
418 
419 /*
420  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
421  *
422  * Called by amdgpu_bo_move()
423  */
424 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
425 			       struct ttm_resource *mem)
426 {
427 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
428 	struct amdgpu_res_cursor cursor;
429 
430 	if (mem->mem_type == TTM_PL_SYSTEM ||
431 	    mem->mem_type == TTM_PL_TT)
432 		return true;
433 	if (mem->mem_type != TTM_PL_VRAM)
434 		return false;
435 
436 	amdgpu_res_first(mem, 0, mem_size, &cursor);
437 
438 	/* ttm_resource_ioremap only supports contiguous memory */
439 	if (cursor.size != mem_size)
440 		return false;
441 
442 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
443 }
444 
445 /*
446  * amdgpu_bo_move - Move a buffer object to a new memory location
447  *
448  * Called by ttm_bo_handle_move_mem()
449  */
450 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
451 			  struct ttm_operation_ctx *ctx,
452 			  struct ttm_resource *new_mem,
453 			  struct ttm_place *hop)
454 {
455 	struct amdgpu_device *adev;
456 	struct amdgpu_bo *abo;
457 	struct ttm_resource *old_mem = bo->resource;
458 	int r;
459 
460 	if (new_mem->mem_type == TTM_PL_TT ||
461 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
462 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
463 		if (r)
464 			return r;
465 	}
466 
467 	/* Can't move a pinned BO */
468 	abo = ttm_to_amdgpu_bo(bo);
469 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
470 		return -EINVAL;
471 
472 	adev = amdgpu_ttm_adev(bo->bdev);
473 
474 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
475 		ttm_bo_move_null(bo, new_mem);
476 		goto out;
477 	}
478 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
479 	    (new_mem->mem_type == TTM_PL_TT ||
480 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
481 		ttm_bo_move_null(bo, new_mem);
482 		goto out;
483 	}
484 	if ((old_mem->mem_type == TTM_PL_TT ||
485 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
486 	    new_mem->mem_type == TTM_PL_SYSTEM) {
487 		r = ttm_bo_wait_ctx(bo, ctx);
488 		if (r)
489 			return r;
490 
491 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
492 		ttm_resource_free(bo, &bo->resource);
493 		ttm_bo_assign_mem(bo, new_mem);
494 		goto out;
495 	}
496 
497 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
498 	    old_mem->mem_type == AMDGPU_PL_GWS ||
499 	    old_mem->mem_type == AMDGPU_PL_OA ||
500 	    new_mem->mem_type == AMDGPU_PL_GDS ||
501 	    new_mem->mem_type == AMDGPU_PL_GWS ||
502 	    new_mem->mem_type == AMDGPU_PL_OA) {
503 		/* Nothing to save here */
504 		ttm_bo_move_null(bo, new_mem);
505 		goto out;
506 	}
507 
508 	if (bo->type == ttm_bo_type_device &&
509 	    new_mem->mem_type == TTM_PL_VRAM &&
510 	    old_mem->mem_type != TTM_PL_VRAM) {
511 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
512 		 * accesses the BO after it's moved.
513 		 */
514 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
515 	}
516 
517 	if (adev->mman.buffer_funcs_enabled) {
518 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
519 		      new_mem->mem_type == TTM_PL_VRAM) ||
520 		     (old_mem->mem_type == TTM_PL_VRAM &&
521 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
522 			hop->fpfn = 0;
523 			hop->lpfn = 0;
524 			hop->mem_type = TTM_PL_TT;
525 			hop->flags = TTM_PL_FLAG_TEMPORARY;
526 			return -EMULTIHOP;
527 		}
528 
529 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
530 	} else {
531 		r = -ENODEV;
532 	}
533 
534 	if (r) {
535 		/* Check that all memory is CPU accessible */
536 		if (!amdgpu_mem_visible(adev, old_mem) ||
537 		    !amdgpu_mem_visible(adev, new_mem)) {
538 			pr_err("Move buffer fallback to memcpy unavailable\n");
539 			return r;
540 		}
541 
542 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
543 		if (r)
544 			return r;
545 	}
546 
547 out:
548 	/* update statistics */
549 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
550 	amdgpu_bo_move_notify(bo, evict, new_mem);
551 	return 0;
552 }
553 
554 /*
555  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556  *
557  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558  */
559 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
560 				     struct ttm_resource *mem)
561 {
562 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
563 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
564 
565 	switch (mem->mem_type) {
566 	case TTM_PL_SYSTEM:
567 		/* system memory */
568 		return 0;
569 	case TTM_PL_TT:
570 	case AMDGPU_PL_PREEMPT:
571 		break;
572 	case TTM_PL_VRAM:
573 		mem->bus.offset = mem->start << PAGE_SHIFT;
574 		/* check if it's visible */
575 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
576 			return -EINVAL;
577 
578 		if (adev->mman.aper_base_kaddr &&
579 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
580 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
581 					mem->bus.offset;
582 
583 		mem->bus.offset += adev->gmc.aper_base;
584 		mem->bus.is_iomem = true;
585 		break;
586 	default:
587 		return -EINVAL;
588 	}
589 	return 0;
590 }
591 
592 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
593 					   unsigned long page_offset)
594 {
595 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
596 	struct amdgpu_res_cursor cursor;
597 
598 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 			 &cursor);
600 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
601 }
602 
603 /**
604  * amdgpu_ttm_domain_start - Returns GPU start address
605  * @adev: amdgpu device object
606  * @type: type of the memory
607  *
608  * Returns:
609  * GPU start address of a memory domain
610  */
611 
612 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
613 {
614 	switch (type) {
615 	case TTM_PL_TT:
616 		return adev->gmc.gart_start;
617 	case TTM_PL_VRAM:
618 		return adev->gmc.vram_start;
619 	}
620 
621 	return 0;
622 }
623 
624 /*
625  * TTM backend functions.
626  */
627 struct amdgpu_ttm_tt {
628 	struct ttm_tt	ttm;
629 	struct drm_gem_object	*gobj;
630 	u64			offset;
631 	uint64_t		userptr;
632 	struct task_struct	*usertask;
633 	uint32_t		userflags;
634 	bool			bound;
635 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
636 	struct hmm_range	*range;
637 #endif
638 };
639 
640 #ifdef CONFIG_DRM_AMDGPU_USERPTR
641 /*
642  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
643  * memory and start HMM tracking CPU page table update
644  *
645  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
646  * once afterwards to stop HMM tracking
647  */
648 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
649 {
650 	struct ttm_tt *ttm = bo->tbo.ttm;
651 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
652 	unsigned long start = gtt->userptr;
653 	struct vm_area_struct *vma;
654 	struct mm_struct *mm;
655 	bool readonly;
656 	int r = 0;
657 
658 	mm = bo->notifier.mm;
659 	if (unlikely(!mm)) {
660 		DRM_DEBUG_DRIVER("BO is not registered?\n");
661 		return -EFAULT;
662 	}
663 
664 	/* Another get_user_pages is running at the same time?? */
665 	if (WARN_ON(gtt->range))
666 		return -EFAULT;
667 
668 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
669 		return -ESRCH;
670 
671 	mmap_read_lock(mm);
672 	vma = vma_lookup(mm, start);
673 	if (unlikely(!vma)) {
674 		r = -EFAULT;
675 		goto out_unlock;
676 	}
677 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
678 		vma->vm_file)) {
679 		r = -EPERM;
680 		goto out_unlock;
681 	}
682 
683 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
684 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
685 				       ttm->num_pages, &gtt->range, readonly,
686 				       true, NULL);
687 out_unlock:
688 	mmap_read_unlock(mm);
689 	if (r)
690 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
691 
692 	mmput(mm);
693 
694 	return r;
695 }
696 
697 /*
698  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
699  * Check if the pages backing this ttm range have been invalidated
700  *
701  * Returns: true if pages are still valid
702  */
703 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
704 {
705 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
706 	bool r = false;
707 
708 	if (!gtt || !gtt->userptr)
709 		return false;
710 
711 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
712 		gtt->userptr, ttm->num_pages);
713 
714 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
715 		"No user pages to check\n");
716 
717 	if (gtt->range) {
718 		/*
719 		 * FIXME: Must always hold notifier_lock for this, and must
720 		 * not ignore the return code.
721 		 */
722 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
723 		gtt->range = NULL;
724 	}
725 
726 	return !r;
727 }
728 #endif
729 
730 /*
731  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
732  *
733  * Called by amdgpu_cs_list_validate(). This creates the page list
734  * that backs user memory and will ultimately be mapped into the device
735  * address space.
736  */
737 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
738 {
739 	unsigned long i;
740 
741 	for (i = 0; i < ttm->num_pages; ++i)
742 		ttm->pages[i] = pages ? pages[i] : NULL;
743 }
744 
745 /*
746  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
747  *
748  * Called by amdgpu_ttm_backend_bind()
749  **/
750 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
751 				     struct ttm_tt *ttm)
752 {
753 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
754 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
755 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
756 	enum dma_data_direction direction = write ?
757 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
758 	int r;
759 
760 	/* Allocate an SG array and squash pages into it */
761 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
762 				      (u64)ttm->num_pages << PAGE_SHIFT,
763 				      GFP_KERNEL);
764 	if (r)
765 		goto release_sg;
766 
767 	/* Map SG to device */
768 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
769 	if (r)
770 		goto release_sg;
771 
772 	/* convert SG to linear array of pages and dma addresses */
773 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
774 				       ttm->num_pages);
775 
776 	return 0;
777 
778 release_sg:
779 	kfree(ttm->sg);
780 	ttm->sg = NULL;
781 	return r;
782 }
783 
784 /*
785  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
786  */
787 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
788 					struct ttm_tt *ttm)
789 {
790 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
791 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
792 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
793 	enum dma_data_direction direction = write ?
794 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
795 
796 	/* double check that we don't free the table twice */
797 	if (!ttm->sg || !ttm->sg->sgl)
798 		return;
799 
800 	/* unmap the pages mapped to the device */
801 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
802 	sg_free_table(ttm->sg);
803 
804 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
805 	if (gtt->range) {
806 		unsigned long i;
807 
808 		for (i = 0; i < ttm->num_pages; i++) {
809 			if (ttm->pages[i] !=
810 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
811 				break;
812 		}
813 
814 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
815 	}
816 #endif
817 }
818 
819 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
820 				 struct ttm_buffer_object *tbo,
821 				 uint64_t flags)
822 {
823 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
824 	struct ttm_tt *ttm = tbo->ttm;
825 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
826 
827 	if (amdgpu_bo_encrypted(abo))
828 		flags |= AMDGPU_PTE_TMZ;
829 
830 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
831 		uint64_t page_idx = 1;
832 
833 		amdgpu_gart_bind(adev, gtt->offset, page_idx,
834 				 gtt->ttm.dma_address, flags);
835 
836 		/* The memory type of the first page defaults to UC. Now
837 		 * modify the memory type to NC from the second page of
838 		 * the BO onward.
839 		 */
840 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
841 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
842 
843 		amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT),
844 				 ttm->num_pages - page_idx,
845 				 &(gtt->ttm.dma_address[page_idx]), flags);
846 	} else {
847 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
848 				 gtt->ttm.dma_address, flags);
849 	}
850 }
851 
852 /*
853  * amdgpu_ttm_backend_bind - Bind GTT memory
854  *
855  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
856  * This handles binding GTT memory to the device address space.
857  */
858 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
859 				   struct ttm_tt *ttm,
860 				   struct ttm_resource *bo_mem)
861 {
862 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
863 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
864 	uint64_t flags;
865 	int r;
866 
867 	if (!bo_mem)
868 		return -EINVAL;
869 
870 	if (gtt->bound)
871 		return 0;
872 
873 	if (gtt->userptr) {
874 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
875 		if (r) {
876 			DRM_ERROR("failed to pin userptr\n");
877 			return r;
878 		}
879 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
880 		if (!ttm->sg) {
881 			struct dma_buf_attachment *attach;
882 			struct sg_table *sgt;
883 
884 			attach = gtt->gobj->import_attach;
885 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
886 			if (IS_ERR(sgt))
887 				return PTR_ERR(sgt);
888 
889 			ttm->sg = sgt;
890 		}
891 
892 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
893 					       ttm->num_pages);
894 	}
895 
896 	if (!ttm->num_pages) {
897 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
898 		     ttm->num_pages, bo_mem, ttm);
899 	}
900 
901 	if (bo_mem->mem_type != TTM_PL_TT ||
902 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
903 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
904 		return 0;
905 	}
906 
907 	/* compute PTE flags relevant to this BO memory */
908 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
909 
910 	/* bind pages into GART page tables */
911 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
912 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
913 			 gtt->ttm.dma_address, flags);
914 	gtt->bound = true;
915 	return 0;
916 }
917 
918 /*
919  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
920  * through AGP or GART aperture.
921  *
922  * If bo is accessible through AGP aperture, then use AGP aperture
923  * to access bo; otherwise allocate logical space in GART aperture
924  * and map bo to GART aperture.
925  */
926 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
927 {
928 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
929 	struct ttm_operation_ctx ctx = { false, false };
930 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
931 	struct ttm_placement placement;
932 	struct ttm_place placements;
933 	struct ttm_resource *tmp;
934 	uint64_t addr, flags;
935 	int r;
936 
937 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
938 		return 0;
939 
940 	addr = amdgpu_gmc_agp_addr(bo);
941 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
942 		bo->resource->start = addr >> PAGE_SHIFT;
943 		return 0;
944 	}
945 
946 	/* allocate GART space */
947 	placement.num_placement = 1;
948 	placement.placement = &placements;
949 	placement.num_busy_placement = 1;
950 	placement.busy_placement = &placements;
951 	placements.fpfn = 0;
952 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
953 	placements.mem_type = TTM_PL_TT;
954 	placements.flags = bo->resource->placement;
955 
956 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
957 	if (unlikely(r))
958 		return r;
959 
960 	/* compute PTE flags for this buffer object */
961 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
962 
963 	/* Bind pages */
964 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
965 	amdgpu_ttm_gart_bind(adev, bo, flags);
966 	amdgpu_gart_invalidate_tlb(adev);
967 	ttm_resource_free(bo, &bo->resource);
968 	ttm_bo_assign_mem(bo, tmp);
969 
970 	return 0;
971 }
972 
973 /*
974  * amdgpu_ttm_recover_gart - Rebind GTT pages
975  *
976  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
977  * rebind GTT pages during a GPU reset.
978  */
979 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
980 {
981 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
982 	uint64_t flags;
983 
984 	if (!tbo->ttm)
985 		return;
986 
987 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
988 	amdgpu_ttm_gart_bind(adev, tbo, flags);
989 }
990 
991 /*
992  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
993  *
994  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
995  * ttm_tt_destroy().
996  */
997 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
998 				      struct ttm_tt *ttm)
999 {
1000 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1001 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002 
1003 	/* if the pages have userptr pinning then clear that first */
1004 	if (gtt->userptr) {
1005 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1006 	} else if (ttm->sg && gtt->gobj->import_attach) {
1007 		struct dma_buf_attachment *attach;
1008 
1009 		attach = gtt->gobj->import_attach;
1010 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1011 		ttm->sg = NULL;
1012 	}
1013 
1014 	if (!gtt->bound)
1015 		return;
1016 
1017 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1018 		return;
1019 
1020 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1021 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1022 	gtt->bound = false;
1023 }
1024 
1025 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1026 				       struct ttm_tt *ttm)
1027 {
1028 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1029 
1030 	if (gtt->usertask)
1031 		put_task_struct(gtt->usertask);
1032 
1033 	ttm_tt_fini(&gtt->ttm);
1034 	kfree(gtt);
1035 }
1036 
1037 /**
1038  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1039  *
1040  * @bo: The buffer object to create a GTT ttm_tt object around
1041  * @page_flags: Page flags to be added to the ttm_tt object
1042  *
1043  * Called by ttm_tt_create().
1044  */
1045 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1046 					   uint32_t page_flags)
1047 {
1048 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1049 	struct amdgpu_ttm_tt *gtt;
1050 	enum ttm_caching caching;
1051 
1052 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1053 	if (gtt == NULL) {
1054 		return NULL;
1055 	}
1056 	gtt->gobj = &bo->base;
1057 
1058 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1059 		caching = ttm_write_combined;
1060 	else
1061 		caching = ttm_cached;
1062 
1063 	/* allocate space for the uninitialized page entries */
1064 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1065 		kfree(gtt);
1066 		return NULL;
1067 	}
1068 	return &gtt->ttm;
1069 }
1070 
1071 /*
1072  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1073  *
1074  * Map the pages of a ttm_tt object to an address space visible
1075  * to the underlying device.
1076  */
1077 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1078 				  struct ttm_tt *ttm,
1079 				  struct ttm_operation_ctx *ctx)
1080 {
1081 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1082 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1083 	pgoff_t i;
1084 	int ret;
1085 
1086 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1087 	if (gtt->userptr) {
1088 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1089 		if (!ttm->sg)
1090 			return -ENOMEM;
1091 		return 0;
1092 	}
1093 
1094 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1095 		return 0;
1096 
1097 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1098 	if (ret)
1099 		return ret;
1100 
1101 	for (i = 0; i < ttm->num_pages; ++i)
1102 		ttm->pages[i]->mapping = bdev->dev_mapping;
1103 
1104 	return 0;
1105 }
1106 
1107 /*
1108  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1109  *
1110  * Unmaps pages of a ttm_tt object from the device address space and
1111  * unpopulates the page array backing it.
1112  */
1113 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1114 				     struct ttm_tt *ttm)
1115 {
1116 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1117 	struct amdgpu_device *adev;
1118 	pgoff_t i;
1119 
1120 	amdgpu_ttm_backend_unbind(bdev, ttm);
1121 
1122 	if (gtt->userptr) {
1123 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1124 		kfree(ttm->sg);
1125 		ttm->sg = NULL;
1126 		return;
1127 	}
1128 
1129 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1130 		return;
1131 
1132 	for (i = 0; i < ttm->num_pages; ++i)
1133 		ttm->pages[i]->mapping = NULL;
1134 
1135 	adev = amdgpu_ttm_adev(bdev);
1136 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1137 }
1138 
1139 /**
1140  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1141  * task
1142  *
1143  * @tbo: The ttm_buffer_object that contains the userptr
1144  * @user_addr:  The returned value
1145  */
1146 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1147 			      uint64_t *user_addr)
1148 {
1149 	struct amdgpu_ttm_tt *gtt;
1150 
1151 	if (!tbo->ttm)
1152 		return -EINVAL;
1153 
1154 	gtt = (void *)tbo->ttm;
1155 	*user_addr = gtt->userptr;
1156 	return 0;
1157 }
1158 
1159 /**
1160  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1161  * task
1162  *
1163  * @bo: The ttm_buffer_object to bind this userptr to
1164  * @addr:  The address in the current tasks VM space to use
1165  * @flags: Requirements of userptr object.
1166  *
1167  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1168  * to current task
1169  */
1170 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1171 			      uint64_t addr, uint32_t flags)
1172 {
1173 	struct amdgpu_ttm_tt *gtt;
1174 
1175 	if (!bo->ttm) {
1176 		/* TODO: We want a separate TTM object type for userptrs */
1177 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1178 		if (bo->ttm == NULL)
1179 			return -ENOMEM;
1180 	}
1181 
1182 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1183 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1184 
1185 	gtt = (void *)bo->ttm;
1186 	gtt->userptr = addr;
1187 	gtt->userflags = flags;
1188 
1189 	if (gtt->usertask)
1190 		put_task_struct(gtt->usertask);
1191 	gtt->usertask = current->group_leader;
1192 	get_task_struct(gtt->usertask);
1193 
1194 	return 0;
1195 }
1196 
1197 /*
1198  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1199  */
1200 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1201 {
1202 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1203 
1204 	if (gtt == NULL)
1205 		return NULL;
1206 
1207 	if (gtt->usertask == NULL)
1208 		return NULL;
1209 
1210 	return gtt->usertask->mm;
1211 }
1212 
1213 /*
1214  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1215  * address range for the current task.
1216  *
1217  */
1218 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1219 				  unsigned long end, unsigned long *userptr)
1220 {
1221 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1222 	unsigned long size;
1223 
1224 	if (gtt == NULL || !gtt->userptr)
1225 		return false;
1226 
1227 	/* Return false if no part of the ttm_tt object lies within
1228 	 * the range
1229 	 */
1230 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1231 	if (gtt->userptr > end || gtt->userptr + size <= start)
1232 		return false;
1233 
1234 	if (userptr)
1235 		*userptr = gtt->userptr;
1236 	return true;
1237 }
1238 
1239 /*
1240  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1241  */
1242 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1243 {
1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 
1246 	if (gtt == NULL || !gtt->userptr)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 /*
1253  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1254  */
1255 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1256 {
1257 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1258 
1259 	if (gtt == NULL)
1260 		return false;
1261 
1262 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1263 }
1264 
1265 /**
1266  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1267  *
1268  * @ttm: The ttm_tt object to compute the flags for
1269  * @mem: The memory registry backing this ttm_tt object
1270  *
1271  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1272  */
1273 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1274 {
1275 	uint64_t flags = 0;
1276 
1277 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1278 		flags |= AMDGPU_PTE_VALID;
1279 
1280 	if (mem && (mem->mem_type == TTM_PL_TT ||
1281 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1282 		flags |= AMDGPU_PTE_SYSTEM;
1283 
1284 		if (ttm->caching == ttm_cached)
1285 			flags |= AMDGPU_PTE_SNOOPED;
1286 	}
1287 
1288 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1289 			mem->bus.caching == ttm_cached)
1290 		flags |= AMDGPU_PTE_SNOOPED;
1291 
1292 	return flags;
1293 }
1294 
1295 /**
1296  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1297  *
1298  * @adev: amdgpu_device pointer
1299  * @ttm: The ttm_tt object to compute the flags for
1300  * @mem: The memory registry backing this ttm_tt object
1301  *
1302  * Figure out the flags to use for a VM PTE (Page Table Entry).
1303  */
1304 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1305 				 struct ttm_resource *mem)
1306 {
1307 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1308 
1309 	flags |= adev->gart.gart_pte_flags;
1310 	flags |= AMDGPU_PTE_READABLE;
1311 
1312 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1313 		flags |= AMDGPU_PTE_WRITEABLE;
1314 
1315 	return flags;
1316 }
1317 
1318 /*
1319  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1320  * object.
1321  *
1322  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1323  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1324  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1325  * used to clean out a memory space.
1326  */
1327 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1328 					    const struct ttm_place *place)
1329 {
1330 	unsigned long num_pages = bo->resource->num_pages;
1331 	struct dma_resv_iter resv_cursor;
1332 	struct amdgpu_res_cursor cursor;
1333 	struct dma_fence *f;
1334 
1335 	/* Swapout? */
1336 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1337 		return true;
1338 
1339 	if (bo->type == ttm_bo_type_kernel &&
1340 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1341 		return false;
1342 
1343 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1344 	 * If true, then return false as any KFD process needs all its BOs to
1345 	 * be resident to run successfully
1346 	 */
1347 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1348 				DMA_RESV_USAGE_BOOKKEEP, f) {
1349 		if (amdkfd_fence_check_mm(f, current->mm))
1350 			return false;
1351 	}
1352 
1353 	switch (bo->resource->mem_type) {
1354 	case AMDGPU_PL_PREEMPT:
1355 		/* Preemptible BOs don't own system resources managed by the
1356 		 * driver (pages, VRAM, GART space). They point to resources
1357 		 * owned by someone else (e.g. pageable memory in user mode
1358 		 * or a DMABuf). They are used in a preemptible context so we
1359 		 * can guarantee no deadlocks and good QoS in case of MMU
1360 		 * notifiers or DMABuf move notifiers from the resource owner.
1361 		 */
1362 		return false;
1363 	case TTM_PL_TT:
1364 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1365 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1366 			return false;
1367 		return true;
1368 
1369 	case TTM_PL_VRAM:
1370 		/* Check each drm MM node individually */
1371 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1372 				 &cursor);
1373 		while (cursor.remaining) {
1374 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1375 			    && !(place->lpfn &&
1376 				 place->lpfn <= PFN_DOWN(cursor.start)))
1377 				return true;
1378 
1379 			amdgpu_res_next(&cursor, cursor.size);
1380 		}
1381 		return false;
1382 
1383 	default:
1384 		break;
1385 	}
1386 
1387 	return ttm_bo_eviction_valuable(bo, place);
1388 }
1389 
1390 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1391 				      void *buf, size_t size, bool write)
1392 {
1393 	while (size) {
1394 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1395 		uint64_t bytes = 4 - (pos & 0x3);
1396 		uint32_t shift = (pos & 0x3) * 8;
1397 		uint32_t mask = 0xffffffff << shift;
1398 		uint32_t value = 0;
1399 
1400 		if (size < bytes) {
1401 			mask &= 0xffffffff >> (bytes - size) * 8;
1402 			bytes = size;
1403 		}
1404 
1405 		if (mask != 0xffffffff) {
1406 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1407 			if (write) {
1408 				value &= ~mask;
1409 				value |= (*(uint32_t *)buf << shift) & mask;
1410 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1411 			} else {
1412 				value = (value & mask) >> shift;
1413 				memcpy(buf, &value, bytes);
1414 			}
1415 		} else {
1416 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1417 		}
1418 
1419 		pos += bytes;
1420 		buf += bytes;
1421 		size -= bytes;
1422 	}
1423 }
1424 
1425 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1426 					unsigned long offset, void *buf, int len, int write)
1427 {
1428 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1429 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1430 	struct amdgpu_res_cursor src_mm;
1431 	struct amdgpu_job *job;
1432 	struct dma_fence *fence;
1433 	uint64_t src_addr, dst_addr;
1434 	unsigned int num_dw;
1435 	int r, idx;
1436 
1437 	if (len != PAGE_SIZE)
1438 		return -EINVAL;
1439 
1440 	if (!adev->mman.sdma_access_ptr)
1441 		return -EACCES;
1442 
1443 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1444 		return -ENODEV;
1445 
1446 	if (write)
1447 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1448 
1449 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1450 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job);
1451 	if (r)
1452 		goto out;
1453 
1454 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1455 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start;
1456 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1457 	if (write)
1458 		swap(src_addr, dst_addr);
1459 
1460 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false);
1461 
1462 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1463 	WARN_ON(job->ibs[0].length_dw > num_dw);
1464 
1465 	r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1466 	if (r) {
1467 		amdgpu_job_free(job);
1468 		goto out;
1469 	}
1470 
1471 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1472 		r = -ETIMEDOUT;
1473 	dma_fence_put(fence);
1474 
1475 	if (!(r || write))
1476 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1477 out:
1478 	drm_dev_exit(idx);
1479 	return r;
1480 }
1481 
1482 /**
1483  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1484  *
1485  * @bo:  The buffer object to read/write
1486  * @offset:  Offset into buffer object
1487  * @buf:  Secondary buffer to write/read from
1488  * @len: Length in bytes of access
1489  * @write:  true if writing
1490  *
1491  * This is used to access VRAM that backs a buffer object via MMIO
1492  * access for debugging purposes.
1493  */
1494 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1495 				    unsigned long offset, void *buf, int len,
1496 				    int write)
1497 {
1498 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1499 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1500 	struct amdgpu_res_cursor cursor;
1501 	int ret = 0;
1502 
1503 	if (bo->resource->mem_type != TTM_PL_VRAM)
1504 		return -EIO;
1505 
1506 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1507 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1508 		return len;
1509 
1510 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1511 	while (cursor.remaining) {
1512 		size_t count, size = cursor.size;
1513 		loff_t pos = cursor.start;
1514 
1515 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1516 		size -= count;
1517 		if (size) {
1518 			/* using MM to access rest vram and handle un-aligned address */
1519 			pos += count;
1520 			buf += count;
1521 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1522 		}
1523 
1524 		ret += cursor.size;
1525 		buf += cursor.size;
1526 		amdgpu_res_next(&cursor, cursor.size);
1527 	}
1528 
1529 	return ret;
1530 }
1531 
1532 static void
1533 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1534 {
1535 	amdgpu_bo_move_notify(bo, false, NULL);
1536 }
1537 
1538 static struct ttm_device_funcs amdgpu_bo_driver = {
1539 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1540 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1541 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1542 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1543 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1544 	.evict_flags = &amdgpu_evict_flags,
1545 	.move = &amdgpu_bo_move,
1546 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1547 	.release_notify = &amdgpu_bo_release_notify,
1548 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1549 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1550 	.access_memory = &amdgpu_ttm_access_memory,
1551 };
1552 
1553 /*
1554  * Firmware Reservation functions
1555  */
1556 /**
1557  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1558  *
1559  * @adev: amdgpu_device pointer
1560  *
1561  * free fw reserved vram if it has been reserved.
1562  */
1563 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1564 {
1565 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1566 		NULL, &adev->mman.fw_vram_usage_va);
1567 }
1568 
1569 /**
1570  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1571  *
1572  * @adev: amdgpu_device pointer
1573  *
1574  * create bo vram reservation from fw.
1575  */
1576 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1577 {
1578 	uint64_t vram_size = adev->gmc.visible_vram_size;
1579 
1580 	adev->mman.fw_vram_usage_va = NULL;
1581 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1582 
1583 	if (adev->mman.fw_vram_usage_size == 0 ||
1584 	    adev->mman.fw_vram_usage_size > vram_size)
1585 		return 0;
1586 
1587 	return amdgpu_bo_create_kernel_at(adev,
1588 					  adev->mman.fw_vram_usage_start_offset,
1589 					  adev->mman.fw_vram_usage_size,
1590 					  AMDGPU_GEM_DOMAIN_VRAM,
1591 					  &adev->mman.fw_vram_usage_reserved_bo,
1592 					  &adev->mman.fw_vram_usage_va);
1593 }
1594 
1595 /*
1596  * Memoy training reservation functions
1597  */
1598 
1599 /**
1600  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1601  *
1602  * @adev: amdgpu_device pointer
1603  *
1604  * free memory training reserved vram if it has been reserved.
1605  */
1606 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1607 {
1608 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1609 
1610 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1611 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1612 	ctx->c2p_bo = NULL;
1613 
1614 	return 0;
1615 }
1616 
1617 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1618 {
1619 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1620 
1621 	memset(ctx, 0, sizeof(*ctx));
1622 
1623 	ctx->c2p_train_data_offset =
1624 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1625 	ctx->p2c_train_data_offset =
1626 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1627 	ctx->train_data_size =
1628 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1629 
1630 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1631 			ctx->train_data_size,
1632 			ctx->p2c_train_data_offset,
1633 			ctx->c2p_train_data_offset);
1634 }
1635 
1636 /*
1637  * reserve TMR memory at the top of VRAM which holds
1638  * IP Discovery data and is protected by PSP.
1639  */
1640 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1641 {
1642 	int ret;
1643 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1644 	bool mem_train_support = false;
1645 
1646 	if (!amdgpu_sriov_vf(adev)) {
1647 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1648 			mem_train_support = true;
1649 		else
1650 			DRM_DEBUG("memory training does not support!\n");
1651 	}
1652 
1653 	/*
1654 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1655 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1656 	 *
1657 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1658 	 * discovery data and G6 memory training data respectively
1659 	 */
1660 	adev->mman.discovery_tmr_size =
1661 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1662 	if (!adev->mman.discovery_tmr_size)
1663 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1664 
1665 	if (mem_train_support) {
1666 		/* reserve vram for mem train according to TMR location */
1667 		amdgpu_ttm_training_data_block_init(adev);
1668 		ret = amdgpu_bo_create_kernel_at(adev,
1669 					 ctx->c2p_train_data_offset,
1670 					 ctx->train_data_size,
1671 					 AMDGPU_GEM_DOMAIN_VRAM,
1672 					 &ctx->c2p_bo,
1673 					 NULL);
1674 		if (ret) {
1675 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1676 			amdgpu_ttm_training_reserve_vram_fini(adev);
1677 			return ret;
1678 		}
1679 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1680 	}
1681 
1682 	ret = amdgpu_bo_create_kernel_at(adev,
1683 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1684 				adev->mman.discovery_tmr_size,
1685 				AMDGPU_GEM_DOMAIN_VRAM,
1686 				&adev->mman.discovery_memory,
1687 				NULL);
1688 	if (ret) {
1689 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1690 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1691 		return ret;
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 /*
1698  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1699  * gtt/vram related fields.
1700  *
1701  * This initializes all of the memory space pools that the TTM layer
1702  * will need such as the GTT space (system memory mapped to the device),
1703  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1704  * can be mapped per VMID.
1705  */
1706 int amdgpu_ttm_init(struct amdgpu_device *adev)
1707 {
1708 	uint64_t gtt_size;
1709 	int r;
1710 	u64 vis_vram_limit;
1711 
1712 	mutex_init(&adev->mman.gtt_window_lock);
1713 
1714 	/* No others user of address space so set it to 0 */
1715 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1716 			       adev_to_drm(adev)->anon_inode->i_mapping,
1717 			       adev_to_drm(adev)->vma_offset_manager,
1718 			       adev->need_swiotlb,
1719 			       dma_addressing_limited(adev->dev));
1720 	if (r) {
1721 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1722 		return r;
1723 	}
1724 	adev->mman.initialized = true;
1725 
1726 	/* Initialize VRAM pool with all of VRAM divided into pages */
1727 	r = amdgpu_vram_mgr_init(adev);
1728 	if (r) {
1729 		DRM_ERROR("Failed initializing VRAM heap.\n");
1730 		return r;
1731 	}
1732 
1733 	/* Reduce size of CPU-visible VRAM if requested */
1734 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1735 	if (amdgpu_vis_vram_limit > 0 &&
1736 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1737 		adev->gmc.visible_vram_size = vis_vram_limit;
1738 
1739 	/* Change the size here instead of the init above so only lpfn is affected */
1740 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1741 #ifdef CONFIG_64BIT
1742 #ifdef CONFIG_X86
1743 	if (adev->gmc.xgmi.connected_to_cpu)
1744 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1745 				adev->gmc.visible_vram_size);
1746 
1747 	else
1748 #endif
1749 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1750 				adev->gmc.visible_vram_size);
1751 #endif
1752 
1753 	/*
1754 	 *The reserved vram for firmware must be pinned to the specified
1755 	 *place on the VRAM, so reserve it early.
1756 	 */
1757 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1758 	if (r) {
1759 		return r;
1760 	}
1761 
1762 	/*
1763 	 * only NAVI10 and onwards ASIC support for IP discovery.
1764 	 * If IP discovery enabled, a block of memory should be
1765 	 * reserved for IP discovey.
1766 	 */
1767 	if (adev->mman.discovery_bin) {
1768 		r = amdgpu_ttm_reserve_tmr(adev);
1769 		if (r)
1770 			return r;
1771 	}
1772 
1773 	/* allocate memory as required for VGA
1774 	 * This is used for VGA emulation and pre-OS scanout buffers to
1775 	 * avoid display artifacts while transitioning between pre-OS
1776 	 * and driver.  */
1777 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1778 				       AMDGPU_GEM_DOMAIN_VRAM,
1779 				       &adev->mman.stolen_vga_memory,
1780 				       NULL);
1781 	if (r)
1782 		return r;
1783 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1784 				       adev->mman.stolen_extended_size,
1785 				       AMDGPU_GEM_DOMAIN_VRAM,
1786 				       &adev->mman.stolen_extended_memory,
1787 				       NULL);
1788 	if (r)
1789 		return r;
1790 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1791 				       adev->mman.stolen_reserved_size,
1792 				       AMDGPU_GEM_DOMAIN_VRAM,
1793 				       &adev->mman.stolen_reserved_memory,
1794 				       NULL);
1795 	if (r)
1796 		return r;
1797 
1798 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1799 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1800 
1801 	/* Compute GTT size, either based on 1/2 the size of RAM size
1802 	 * or whatever the user passed on module init */
1803 	if (amdgpu_gtt_size == -1) {
1804 		struct sysinfo si;
1805 
1806 		si_meminfo(&si);
1807 		/* Certain GL unit tests for large textures can cause problems
1808 		 * with the OOM killer since there is no way to link this memory
1809 		 * to a process.  This was originally mitigated (but not necessarily
1810 		 * eliminated) by limiting the GTT size.  The problem is this limit
1811 		 * is often too low for many modern games so just make the limit 1/2
1812 		 * of system memory which aligns with TTM. The OOM accounting needs
1813 		 * to be addressed, but we shouldn't prevent common 3D applications
1814 		 * from being usable just to potentially mitigate that corner case.
1815 		 */
1816 		gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1817 			       (u64)si.totalram * si.mem_unit / 2);
1818 	} else {
1819 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1820 	}
1821 
1822 	/* Initialize GTT memory pool */
1823 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1824 	if (r) {
1825 		DRM_ERROR("Failed initializing GTT heap.\n");
1826 		return r;
1827 	}
1828 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1829 		 (unsigned)(gtt_size / (1024 * 1024)));
1830 
1831 	/* Initialize preemptible memory pool */
1832 	r = amdgpu_preempt_mgr_init(adev);
1833 	if (r) {
1834 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1835 		return r;
1836 	}
1837 
1838 	/* Initialize various on-chip memory pools */
1839 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1840 	if (r) {
1841 		DRM_ERROR("Failed initializing GDS heap.\n");
1842 		return r;
1843 	}
1844 
1845 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1846 	if (r) {
1847 		DRM_ERROR("Failed initializing gws heap.\n");
1848 		return r;
1849 	}
1850 
1851 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1852 	if (r) {
1853 		DRM_ERROR("Failed initializing oa heap.\n");
1854 		return r;
1855 	}
1856 
1857 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1858 				AMDGPU_GEM_DOMAIN_GTT,
1859 				&adev->mman.sdma_access_bo, NULL,
1860 				&adev->mman.sdma_access_ptr))
1861 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1862 
1863 	return 0;
1864 }
1865 
1866 /*
1867  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1868  */
1869 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1870 {
1871 	int idx;
1872 	if (!adev->mman.initialized)
1873 		return;
1874 
1875 	amdgpu_ttm_training_reserve_vram_fini(adev);
1876 	/* return the stolen vga memory back to VRAM */
1877 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1878 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1879 	/* return the IP Discovery TMR memory back to VRAM */
1880 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1881 	if (adev->mman.stolen_reserved_size)
1882 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1883 				      NULL, NULL);
1884 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1885 					&adev->mman.sdma_access_ptr);
1886 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1887 
1888 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1889 
1890 		if (adev->mman.aper_base_kaddr)
1891 			iounmap(adev->mman.aper_base_kaddr);
1892 		adev->mman.aper_base_kaddr = NULL;
1893 
1894 		drm_dev_exit(idx);
1895 	}
1896 
1897 	amdgpu_vram_mgr_fini(adev);
1898 	amdgpu_gtt_mgr_fini(adev);
1899 	amdgpu_preempt_mgr_fini(adev);
1900 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1901 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1902 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1903 	ttm_device_fini(&adev->mman.bdev);
1904 	adev->mman.initialized = false;
1905 	DRM_INFO("amdgpu: ttm finalized\n");
1906 }
1907 
1908 /**
1909  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1910  *
1911  * @adev: amdgpu_device pointer
1912  * @enable: true when we can use buffer functions.
1913  *
1914  * Enable/disable use of buffer functions during suspend/resume. This should
1915  * only be called at bootup or when userspace isn't running.
1916  */
1917 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1918 {
1919 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1920 	uint64_t size;
1921 	int r;
1922 
1923 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1924 	    adev->mman.buffer_funcs_enabled == enable)
1925 		return;
1926 
1927 	if (enable) {
1928 		struct amdgpu_ring *ring;
1929 		struct drm_gpu_scheduler *sched;
1930 
1931 		ring = adev->mman.buffer_funcs_ring;
1932 		sched = &ring->sched;
1933 		r = drm_sched_entity_init(&adev->mman.entity,
1934 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1935 					  1, NULL);
1936 		if (r) {
1937 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1938 				  r);
1939 			return;
1940 		}
1941 	} else {
1942 		drm_sched_entity_destroy(&adev->mman.entity);
1943 		dma_fence_put(man->move);
1944 		man->move = NULL;
1945 	}
1946 
1947 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1948 	if (enable)
1949 		size = adev->gmc.real_vram_size;
1950 	else
1951 		size = adev->gmc.visible_vram_size;
1952 	man->size = size;
1953 	adev->mman.buffer_funcs_enabled = enable;
1954 }
1955 
1956 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1957 				  bool direct_submit,
1958 				  unsigned int num_dw,
1959 				  struct dma_resv *resv,
1960 				  bool vm_needs_flush,
1961 				  struct amdgpu_job **job)
1962 {
1963 	enum amdgpu_ib_pool_type pool = direct_submit ?
1964 		AMDGPU_IB_POOL_DIRECT :
1965 		AMDGPU_IB_POOL_DELAYED;
1966 	int r;
1967 
1968 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job);
1969 	if (r)
1970 		return r;
1971 
1972 	if (vm_needs_flush) {
1973 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1974 							adev->gmc.pdb0_bo :
1975 							adev->gart.bo);
1976 		(*job)->vm_needs_flush = true;
1977 	}
1978 	if (resv) {
1979 		r = amdgpu_sync_resv(adev, &(*job)->sync, resv,
1980 				     AMDGPU_SYNC_ALWAYS,
1981 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1982 		if (r) {
1983 			DRM_ERROR("sync failed (%d).\n", r);
1984 			amdgpu_job_free(*job);
1985 			return r;
1986 		}
1987 	}
1988 	return 0;
1989 }
1990 
1991 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1992 		       uint64_t dst_offset, uint32_t byte_count,
1993 		       struct dma_resv *resv,
1994 		       struct dma_fence **fence, bool direct_submit,
1995 		       bool vm_needs_flush, bool tmz)
1996 {
1997 	struct amdgpu_device *adev = ring->adev;
1998 	unsigned num_loops, num_dw;
1999 	struct amdgpu_job *job;
2000 	uint32_t max_bytes;
2001 	unsigned i;
2002 	int r;
2003 
2004 	if (!direct_submit && !ring->sched.ready) {
2005 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2006 		return -EINVAL;
2007 	}
2008 
2009 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2010 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2011 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2012 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2013 				   resv, vm_needs_flush, &job);
2014 	if (r)
2015 		return r;
2016 
2017 	for (i = 0; i < num_loops; i++) {
2018 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2019 
2020 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2021 					dst_offset, cur_size_in_bytes, tmz);
2022 
2023 		src_offset += cur_size_in_bytes;
2024 		dst_offset += cur_size_in_bytes;
2025 		byte_count -= cur_size_in_bytes;
2026 	}
2027 
2028 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2029 	WARN_ON(job->ibs[0].length_dw > num_dw);
2030 	if (direct_submit)
2031 		r = amdgpu_job_submit_direct(job, ring, fence);
2032 	else
2033 		r = amdgpu_job_submit(job, &adev->mman.entity,
2034 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2035 	if (r)
2036 		goto error_free;
2037 
2038 	return r;
2039 
2040 error_free:
2041 	amdgpu_job_free(job);
2042 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2043 	return r;
2044 }
2045 
2046 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2047 			       uint64_t dst_addr, uint32_t byte_count,
2048 			       struct dma_resv *resv,
2049 			       struct dma_fence **fence,
2050 			       bool vm_needs_flush)
2051 {
2052 	struct amdgpu_device *adev = ring->adev;
2053 	unsigned int num_loops, num_dw;
2054 	struct amdgpu_job *job;
2055 	uint32_t max_bytes;
2056 	unsigned int i;
2057 	int r;
2058 
2059 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2060 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2061 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2062 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2063 				   &job);
2064 	if (r)
2065 		return r;
2066 
2067 	for (i = 0; i < num_loops; i++) {
2068 		uint32_t cur_size = min(byte_count, max_bytes);
2069 
2070 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2071 					cur_size);
2072 
2073 		dst_addr += cur_size;
2074 		byte_count -= cur_size;
2075 	}
2076 
2077 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2078 	WARN_ON(job->ibs[0].length_dw > num_dw);
2079 	r = amdgpu_job_submit(job, &adev->mman.entity,
2080 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2081 	if (r)
2082 		goto error_free;
2083 
2084 	return 0;
2085 
2086 error_free:
2087 	amdgpu_job_free(job);
2088 	return r;
2089 }
2090 
2091 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2092 			uint32_t src_data,
2093 			struct dma_resv *resv,
2094 			struct dma_fence **f)
2095 {
2096 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2097 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2098 	struct dma_fence *fence = NULL;
2099 	struct amdgpu_res_cursor dst;
2100 	int r;
2101 
2102 	if (!adev->mman.buffer_funcs_enabled) {
2103 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2104 		return -EINVAL;
2105 	}
2106 
2107 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2108 
2109 	mutex_lock(&adev->mman.gtt_window_lock);
2110 	while (dst.remaining) {
2111 		struct dma_fence *next;
2112 		uint64_t cur_size, to;
2113 
2114 		/* Never fill more than 256MiB at once to avoid timeouts */
2115 		cur_size = min(dst.size, 256ULL << 20);
2116 
2117 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2118 					  1, ring, false, &cur_size, &to);
2119 		if (r)
2120 			goto error;
2121 
2122 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2123 					&next, true);
2124 		if (r)
2125 			goto error;
2126 
2127 		dma_fence_put(fence);
2128 		fence = next;
2129 
2130 		amdgpu_res_next(&dst, cur_size);
2131 	}
2132 error:
2133 	mutex_unlock(&adev->mman.gtt_window_lock);
2134 	if (f)
2135 		*f = dma_fence_get(fence);
2136 	dma_fence_put(fence);
2137 	return r;
2138 }
2139 
2140 /**
2141  * amdgpu_ttm_evict_resources - evict memory buffers
2142  * @adev: amdgpu device object
2143  * @mem_type: evicted BO's memory type
2144  *
2145  * Evicts all @mem_type buffers on the lru list of the memory type.
2146  *
2147  * Returns:
2148  * 0 for success or a negative error code on failure.
2149  */
2150 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2151 {
2152 	struct ttm_resource_manager *man;
2153 
2154 	switch (mem_type) {
2155 	case TTM_PL_VRAM:
2156 	case TTM_PL_TT:
2157 	case AMDGPU_PL_GWS:
2158 	case AMDGPU_PL_GDS:
2159 	case AMDGPU_PL_OA:
2160 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2161 		break;
2162 	default:
2163 		DRM_ERROR("Trying to evict invalid memory type\n");
2164 		return -EINVAL;
2165 	}
2166 
2167 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2168 }
2169 
2170 #if defined(CONFIG_DEBUG_FS)
2171 
2172 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2173 {
2174 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2175 
2176 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2177 }
2178 
2179 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2180 
2181 /*
2182  * amdgpu_ttm_vram_read - Linear read access to VRAM
2183  *
2184  * Accesses VRAM via MMIO for debugging purposes.
2185  */
2186 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2187 				    size_t size, loff_t *pos)
2188 {
2189 	struct amdgpu_device *adev = file_inode(f)->i_private;
2190 	ssize_t result = 0;
2191 
2192 	if (size & 0x3 || *pos & 0x3)
2193 		return -EINVAL;
2194 
2195 	if (*pos >= adev->gmc.mc_vram_size)
2196 		return -ENXIO;
2197 
2198 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2199 	while (size) {
2200 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2201 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2202 
2203 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2204 		if (copy_to_user(buf, value, bytes))
2205 			return -EFAULT;
2206 
2207 		result += bytes;
2208 		buf += bytes;
2209 		*pos += bytes;
2210 		size -= bytes;
2211 	}
2212 
2213 	return result;
2214 }
2215 
2216 /*
2217  * amdgpu_ttm_vram_write - Linear write access to VRAM
2218  *
2219  * Accesses VRAM via MMIO for debugging purposes.
2220  */
2221 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2222 				    size_t size, loff_t *pos)
2223 {
2224 	struct amdgpu_device *adev = file_inode(f)->i_private;
2225 	ssize_t result = 0;
2226 	int r;
2227 
2228 	if (size & 0x3 || *pos & 0x3)
2229 		return -EINVAL;
2230 
2231 	if (*pos >= adev->gmc.mc_vram_size)
2232 		return -ENXIO;
2233 
2234 	while (size) {
2235 		uint32_t value;
2236 
2237 		if (*pos >= adev->gmc.mc_vram_size)
2238 			return result;
2239 
2240 		r = get_user(value, (uint32_t *)buf);
2241 		if (r)
2242 			return r;
2243 
2244 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2245 
2246 		result += 4;
2247 		buf += 4;
2248 		*pos += 4;
2249 		size -= 4;
2250 	}
2251 
2252 	return result;
2253 }
2254 
2255 static const struct file_operations amdgpu_ttm_vram_fops = {
2256 	.owner = THIS_MODULE,
2257 	.read = amdgpu_ttm_vram_read,
2258 	.write = amdgpu_ttm_vram_write,
2259 	.llseek = default_llseek,
2260 };
2261 
2262 /*
2263  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2264  *
2265  * This function is used to read memory that has been mapped to the
2266  * GPU and the known addresses are not physical addresses but instead
2267  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2268  */
2269 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2270 				 size_t size, loff_t *pos)
2271 {
2272 	struct amdgpu_device *adev = file_inode(f)->i_private;
2273 	struct iommu_domain *dom;
2274 	ssize_t result = 0;
2275 	int r;
2276 
2277 	/* retrieve the IOMMU domain if any for this device */
2278 	dom = iommu_get_domain_for_dev(adev->dev);
2279 
2280 	while (size) {
2281 		phys_addr_t addr = *pos & PAGE_MASK;
2282 		loff_t off = *pos & ~PAGE_MASK;
2283 		size_t bytes = PAGE_SIZE - off;
2284 		unsigned long pfn;
2285 		struct page *p;
2286 		void *ptr;
2287 
2288 		bytes = bytes < size ? bytes : size;
2289 
2290 		/* Translate the bus address to a physical address.  If
2291 		 * the domain is NULL it means there is no IOMMU active
2292 		 * and the address translation is the identity
2293 		 */
2294 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2295 
2296 		pfn = addr >> PAGE_SHIFT;
2297 		if (!pfn_valid(pfn))
2298 			return -EPERM;
2299 
2300 		p = pfn_to_page(pfn);
2301 		if (p->mapping != adev->mman.bdev.dev_mapping)
2302 			return -EPERM;
2303 
2304 		ptr = kmap(p);
2305 		r = copy_to_user(buf, ptr + off, bytes);
2306 		kunmap(p);
2307 		if (r)
2308 			return -EFAULT;
2309 
2310 		size -= bytes;
2311 		*pos += bytes;
2312 		result += bytes;
2313 	}
2314 
2315 	return result;
2316 }
2317 
2318 /*
2319  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2320  *
2321  * This function is used to write memory that has been mapped to the
2322  * GPU and the known addresses are not physical addresses but instead
2323  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2324  */
2325 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2326 				 size_t size, loff_t *pos)
2327 {
2328 	struct amdgpu_device *adev = file_inode(f)->i_private;
2329 	struct iommu_domain *dom;
2330 	ssize_t result = 0;
2331 	int r;
2332 
2333 	dom = iommu_get_domain_for_dev(adev->dev);
2334 
2335 	while (size) {
2336 		phys_addr_t addr = *pos & PAGE_MASK;
2337 		loff_t off = *pos & ~PAGE_MASK;
2338 		size_t bytes = PAGE_SIZE - off;
2339 		unsigned long pfn;
2340 		struct page *p;
2341 		void *ptr;
2342 
2343 		bytes = bytes < size ? bytes : size;
2344 
2345 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2346 
2347 		pfn = addr >> PAGE_SHIFT;
2348 		if (!pfn_valid(pfn))
2349 			return -EPERM;
2350 
2351 		p = pfn_to_page(pfn);
2352 		if (p->mapping != adev->mman.bdev.dev_mapping)
2353 			return -EPERM;
2354 
2355 		ptr = kmap(p);
2356 		r = copy_from_user(ptr + off, buf, bytes);
2357 		kunmap(p);
2358 		if (r)
2359 			return -EFAULT;
2360 
2361 		size -= bytes;
2362 		*pos += bytes;
2363 		result += bytes;
2364 	}
2365 
2366 	return result;
2367 }
2368 
2369 static const struct file_operations amdgpu_ttm_iomem_fops = {
2370 	.owner = THIS_MODULE,
2371 	.read = amdgpu_iomem_read,
2372 	.write = amdgpu_iomem_write,
2373 	.llseek = default_llseek
2374 };
2375 
2376 #endif
2377 
2378 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2379 {
2380 #if defined(CONFIG_DEBUG_FS)
2381 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2382 	struct dentry *root = minor->debugfs_root;
2383 
2384 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2385 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2386 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2387 			    &amdgpu_ttm_iomem_fops);
2388 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2389 			    &amdgpu_ttm_page_pool_fops);
2390 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2391 							     TTM_PL_VRAM),
2392 					    root, "amdgpu_vram_mm");
2393 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2394 							     TTM_PL_TT),
2395 					    root, "amdgpu_gtt_mm");
2396 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2397 							     AMDGPU_PL_GDS),
2398 					    root, "amdgpu_gds_mm");
2399 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2400 							     AMDGPU_PL_GWS),
2401 					    root, "amdgpu_gws_mm");
2402 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2403 							     AMDGPU_PL_OA),
2404 					    root, "amdgpu_oa_mm");
2405 
2406 #endif
2407 }
2408