1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "bif/bif_4_1_d.h" 63 64 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 65 66 67 /** 68 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 69 * memory request. 70 * 71 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 72 * @type: The type of memory requested 73 * @man: The memory type manager for each domain 74 * 75 * This is called by ttm_bo_init_mm() when a buffer object is being 76 * initialized. 77 */ 78 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 79 struct ttm_mem_type_manager *man) 80 { 81 struct amdgpu_device *adev; 82 83 adev = amdgpu_ttm_adev(bdev); 84 85 switch (type) { 86 case TTM_PL_SYSTEM: 87 /* System memory */ 88 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 89 man->available_caching = TTM_PL_MASK_CACHING; 90 man->default_caching = TTM_PL_FLAG_CACHED; 91 break; 92 case TTM_PL_TT: 93 /* GTT memory */ 94 man->func = &amdgpu_gtt_mgr_func; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 98 break; 99 case TTM_PL_VRAM: 100 /* "On-card" video ram */ 101 man->func = &amdgpu_vram_mgr_func; 102 man->flags = TTM_MEMTYPE_FLAG_FIXED | 103 TTM_MEMTYPE_FLAG_MAPPABLE; 104 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 105 man->default_caching = TTM_PL_FLAG_WC; 106 break; 107 case AMDGPU_PL_GDS: 108 case AMDGPU_PL_GWS: 109 case AMDGPU_PL_OA: 110 /* On-chip GDS memory*/ 111 man->func = &ttm_bo_manager_func; 112 man->flags = TTM_MEMTYPE_FLAG_FIXED; 113 man->available_caching = TTM_PL_FLAG_UNCACHED; 114 man->default_caching = TTM_PL_FLAG_UNCACHED; 115 break; 116 default: 117 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 118 return -EINVAL; 119 } 120 return 0; 121 } 122 123 /** 124 * amdgpu_evict_flags - Compute placement flags 125 * 126 * @bo: The buffer object to evict 127 * @placement: Possible destination(s) for evicted BO 128 * 129 * Fill in placement data when ttm_bo_evict() is called 130 */ 131 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 132 struct ttm_placement *placement) 133 { 134 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 135 struct amdgpu_bo *abo; 136 static const struct ttm_place placements = { 137 .fpfn = 0, 138 .lpfn = 0, 139 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 140 }; 141 142 /* Don't handle scatter gather BOs */ 143 if (bo->type == ttm_bo_type_sg) { 144 placement->num_placement = 0; 145 placement->num_busy_placement = 0; 146 return; 147 } 148 149 /* Object isn't an AMDGPU object so ignore */ 150 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 151 placement->placement = &placements; 152 placement->busy_placement = &placements; 153 placement->num_placement = 1; 154 placement->num_busy_placement = 1; 155 return; 156 } 157 158 abo = ttm_to_amdgpu_bo(bo); 159 switch (bo->mem.mem_type) { 160 case AMDGPU_PL_GDS: 161 case AMDGPU_PL_GWS: 162 case AMDGPU_PL_OA: 163 placement->num_placement = 0; 164 placement->num_busy_placement = 0; 165 return; 166 167 case TTM_PL_VRAM: 168 if (!adev->mman.buffer_funcs_enabled) { 169 /* Move to system memory */ 170 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 171 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 172 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 173 amdgpu_bo_in_cpu_visible_vram(abo)) { 174 175 /* Try evicting to the CPU inaccessible part of VRAM 176 * first, but only set GTT as busy placement, so this 177 * BO will be evicted to GTT rather than causing other 178 * BOs to be evicted from VRAM 179 */ 180 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 181 AMDGPU_GEM_DOMAIN_GTT); 182 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 183 abo->placements[0].lpfn = 0; 184 abo->placement.busy_placement = &abo->placements[1]; 185 abo->placement.num_busy_placement = 1; 186 } else { 187 /* Move to GTT memory */ 188 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 189 } 190 break; 191 case TTM_PL_TT: 192 default: 193 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 194 break; 195 } 196 *placement = abo->placement; 197 } 198 199 /** 200 * amdgpu_verify_access - Verify access for a mmap call 201 * 202 * @bo: The buffer object to map 203 * @filp: The file pointer from the process performing the mmap 204 * 205 * This is called by ttm_bo_mmap() to verify whether a process 206 * has the right to mmap a BO to their process space. 207 */ 208 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 209 { 210 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 211 212 /* 213 * Don't verify access for KFD BOs. They don't have a GEM 214 * object associated with them. 215 */ 216 if (abo->kfd_bo) 217 return 0; 218 219 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 220 return -EPERM; 221 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 222 filp->private_data); 223 } 224 225 /** 226 * amdgpu_move_null - Register memory for a buffer object 227 * 228 * @bo: The bo to assign the memory to 229 * @new_mem: The memory to be assigned. 230 * 231 * Assign the memory from new_mem to the memory of the buffer object bo. 232 */ 233 static void amdgpu_move_null(struct ttm_buffer_object *bo, 234 struct ttm_mem_reg *new_mem) 235 { 236 struct ttm_mem_reg *old_mem = &bo->mem; 237 238 BUG_ON(old_mem->mm_node != NULL); 239 *old_mem = *new_mem; 240 new_mem->mm_node = NULL; 241 } 242 243 /** 244 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 245 * 246 * @bo: The bo to assign the memory to. 247 * @mm_node: Memory manager node for drm allocator. 248 * @mem: The region where the bo resides. 249 * 250 */ 251 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 252 struct drm_mm_node *mm_node, 253 struct ttm_mem_reg *mem) 254 { 255 uint64_t addr = 0; 256 257 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 258 addr = mm_node->start << PAGE_SHIFT; 259 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), 260 mem->mem_type); 261 } 262 return addr; 263 } 264 265 /** 266 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 267 * @offset. It also modifies the offset to be within the drm_mm_node returned 268 * 269 * @mem: The region where the bo resides. 270 * @offset: The offset that drm_mm_node is used for finding. 271 * 272 */ 273 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 274 uint64_t *offset) 275 { 276 struct drm_mm_node *mm_node = mem->mm_node; 277 278 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 279 *offset -= (mm_node->size << PAGE_SHIFT); 280 ++mm_node; 281 } 282 return mm_node; 283 } 284 285 /** 286 * amdgpu_ttm_map_buffer - Map memory into the GART windows 287 * @bo: buffer object to map 288 * @mem: memory object to map 289 * @mm_node: drm_mm node object to map 290 * @num_pages: number of pages to map 291 * @offset: offset into @mm_node where to start 292 * @window: which GART window to use 293 * @ring: DMA ring to use for the copy 294 * @tmz: if we should setup a TMZ enabled mapping 295 * @addr: resulting address inside the MC address space 296 * 297 * Setup one of the GART windows to access a specific piece of memory or return 298 * the physical address for local memory. 299 */ 300 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 301 struct ttm_mem_reg *mem, 302 struct drm_mm_node *mm_node, 303 unsigned num_pages, uint64_t offset, 304 unsigned window, struct amdgpu_ring *ring, 305 bool tmz, uint64_t *addr) 306 { 307 struct amdgpu_device *adev = ring->adev; 308 struct amdgpu_job *job; 309 unsigned num_dw, num_bytes; 310 struct dma_fence *fence; 311 uint64_t src_addr, dst_addr; 312 void *cpu_addr; 313 uint64_t flags; 314 unsigned int i; 315 int r; 316 317 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 318 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 319 320 /* Map only what can't be accessed directly */ 321 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 322 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; 323 return 0; 324 } 325 326 *addr = adev->gmc.gart_start; 327 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 328 AMDGPU_GPU_PAGE_SIZE; 329 *addr += offset & ~PAGE_MASK; 330 331 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 332 num_bytes = num_pages * 8; 333 334 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 335 AMDGPU_IB_POOL_DELAYED, &job); 336 if (r) 337 return r; 338 339 src_addr = num_dw * 4; 340 src_addr += job->ibs[0].gpu_addr; 341 342 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 343 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 344 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 345 dst_addr, num_bytes, false); 346 347 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 348 WARN_ON(job->ibs[0].length_dw > num_dw); 349 350 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 351 if (tmz) 352 flags |= AMDGPU_PTE_TMZ; 353 354 cpu_addr = &job->ibs[0].ptr[num_dw]; 355 356 if (mem->mem_type == TTM_PL_TT) { 357 struct ttm_dma_tt *dma; 358 dma_addr_t *dma_address; 359 360 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm); 361 dma_address = &dma->dma_address[offset >> PAGE_SHIFT]; 362 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 363 cpu_addr); 364 if (r) 365 goto error_free; 366 } else { 367 dma_addr_t dma_address; 368 369 dma_address = (mm_node->start << PAGE_SHIFT) + offset; 370 dma_address += adev->vm_manager.vram_base_offset; 371 372 for (i = 0; i < num_pages; ++i) { 373 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 374 &dma_address, flags, cpu_addr); 375 if (r) 376 goto error_free; 377 378 dma_address += PAGE_SIZE; 379 } 380 } 381 382 r = amdgpu_job_submit(job, &adev->mman.entity, 383 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 384 if (r) 385 goto error_free; 386 387 dma_fence_put(fence); 388 389 return r; 390 391 error_free: 392 amdgpu_job_free(job); 393 return r; 394 } 395 396 /** 397 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 398 * @adev: amdgpu device 399 * @src: buffer/address where to read from 400 * @dst: buffer/address where to write to 401 * @size: number of bytes to copy 402 * @tmz: if a secure copy should be used 403 * @resv: resv object to sync to 404 * @f: Returns the last fence if multiple jobs are submitted. 405 * 406 * The function copies @size bytes from {src->mem + src->offset} to 407 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 408 * move and different for a BO to BO copy. 409 * 410 */ 411 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 412 const struct amdgpu_copy_mem *src, 413 const struct amdgpu_copy_mem *dst, 414 uint64_t size, bool tmz, 415 struct dma_resv *resv, 416 struct dma_fence **f) 417 { 418 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 419 AMDGPU_GPU_PAGE_SIZE); 420 421 uint64_t src_node_size, dst_node_size, src_offset, dst_offset; 422 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 423 struct drm_mm_node *src_mm, *dst_mm; 424 struct dma_fence *fence = NULL; 425 int r = 0; 426 427 if (!adev->mman.buffer_funcs_enabled) { 428 DRM_ERROR("Trying to move memory with ring turned off.\n"); 429 return -EINVAL; 430 } 431 432 src_offset = src->offset; 433 if (src->mem->mm_node) { 434 src_mm = amdgpu_find_mm_node(src->mem, &src_offset); 435 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; 436 } else { 437 src_mm = NULL; 438 src_node_size = ULLONG_MAX; 439 } 440 441 dst_offset = dst->offset; 442 if (dst->mem->mm_node) { 443 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); 444 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; 445 } else { 446 dst_mm = NULL; 447 dst_node_size = ULLONG_MAX; 448 } 449 450 mutex_lock(&adev->mman.gtt_window_lock); 451 452 while (size) { 453 uint32_t src_page_offset = src_offset & ~PAGE_MASK; 454 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK; 455 struct dma_fence *next; 456 uint32_t cur_size; 457 uint64_t from, to; 458 459 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 460 * begins at an offset, then adjust the size accordingly 461 */ 462 cur_size = max(src_page_offset, dst_page_offset); 463 cur_size = min(min3(src_node_size, dst_node_size, size), 464 (uint64_t)(GTT_MAX_BYTES - cur_size)); 465 466 /* Map src to window 0 and dst to window 1. */ 467 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, 468 PFN_UP(cur_size + src_page_offset), 469 src_offset, 0, ring, tmz, &from); 470 if (r) 471 goto error; 472 473 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, 474 PFN_UP(cur_size + dst_page_offset), 475 dst_offset, 1, ring, tmz, &to); 476 if (r) 477 goto error; 478 479 r = amdgpu_copy_buffer(ring, from, to, cur_size, 480 resv, &next, false, true, tmz); 481 if (r) 482 goto error; 483 484 dma_fence_put(fence); 485 fence = next; 486 487 size -= cur_size; 488 if (!size) 489 break; 490 491 src_node_size -= cur_size; 492 if (!src_node_size) { 493 ++src_mm; 494 src_node_size = src_mm->size << PAGE_SHIFT; 495 src_offset = 0; 496 } else { 497 src_offset += cur_size; 498 } 499 500 dst_node_size -= cur_size; 501 if (!dst_node_size) { 502 ++dst_mm; 503 dst_node_size = dst_mm->size << PAGE_SHIFT; 504 dst_offset = 0; 505 } else { 506 dst_offset += cur_size; 507 } 508 } 509 error: 510 mutex_unlock(&adev->mman.gtt_window_lock); 511 if (f) 512 *f = dma_fence_get(fence); 513 dma_fence_put(fence); 514 return r; 515 } 516 517 /** 518 * amdgpu_move_blit - Copy an entire buffer to another buffer 519 * 520 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 521 * help move buffers to and from VRAM. 522 */ 523 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 524 bool evict, bool no_wait_gpu, 525 struct ttm_mem_reg *new_mem, 526 struct ttm_mem_reg *old_mem) 527 { 528 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 529 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 530 struct amdgpu_copy_mem src, dst; 531 struct dma_fence *fence = NULL; 532 int r; 533 534 src.bo = bo; 535 dst.bo = bo; 536 src.mem = old_mem; 537 dst.mem = new_mem; 538 src.offset = 0; 539 dst.offset = 0; 540 541 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 542 new_mem->num_pages << PAGE_SHIFT, 543 amdgpu_bo_encrypted(abo), 544 bo->base.resv, &fence); 545 if (r) 546 goto error; 547 548 /* clear the space being freed */ 549 if (old_mem->mem_type == TTM_PL_VRAM && 550 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 551 struct dma_fence *wipe_fence = NULL; 552 553 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 554 NULL, &wipe_fence); 555 if (r) { 556 goto error; 557 } else if (wipe_fence) { 558 dma_fence_put(fence); 559 fence = wipe_fence; 560 } 561 } 562 563 /* Always block for VM page tables before committing the new location */ 564 if (bo->type == ttm_bo_type_kernel) 565 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 566 else 567 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 568 dma_fence_put(fence); 569 return r; 570 571 error: 572 if (fence) 573 dma_fence_wait(fence, false); 574 dma_fence_put(fence); 575 return r; 576 } 577 578 /** 579 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 580 * 581 * Called by amdgpu_bo_move(). 582 */ 583 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 584 struct ttm_operation_ctx *ctx, 585 struct ttm_mem_reg *new_mem) 586 { 587 struct ttm_mem_reg *old_mem = &bo->mem; 588 struct ttm_mem_reg tmp_mem; 589 struct ttm_place placements; 590 struct ttm_placement placement; 591 int r; 592 593 /* create space/pages for new_mem in GTT space */ 594 tmp_mem = *new_mem; 595 tmp_mem.mm_node = NULL; 596 placement.num_placement = 1; 597 placement.placement = &placements; 598 placement.num_busy_placement = 1; 599 placement.busy_placement = &placements; 600 placements.fpfn = 0; 601 placements.lpfn = 0; 602 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 603 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 604 if (unlikely(r)) { 605 pr_err("Failed to find GTT space for blit from VRAM\n"); 606 return r; 607 } 608 609 /* set caching flags */ 610 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 611 if (unlikely(r)) { 612 goto out_cleanup; 613 } 614 615 /* Bind the memory to the GTT space */ 616 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 617 if (unlikely(r)) { 618 goto out_cleanup; 619 } 620 621 /* blit VRAM to GTT */ 622 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 623 if (unlikely(r)) { 624 goto out_cleanup; 625 } 626 627 /* move BO (in tmp_mem) to new_mem */ 628 r = ttm_bo_move_ttm(bo, ctx, new_mem); 629 out_cleanup: 630 ttm_bo_mem_put(bo, &tmp_mem); 631 return r; 632 } 633 634 /** 635 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 636 * 637 * Called by amdgpu_bo_move(). 638 */ 639 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 640 struct ttm_operation_ctx *ctx, 641 struct ttm_mem_reg *new_mem) 642 { 643 struct ttm_mem_reg *old_mem = &bo->mem; 644 struct ttm_mem_reg tmp_mem; 645 struct ttm_placement placement; 646 struct ttm_place placements; 647 int r; 648 649 /* make space in GTT for old_mem buffer */ 650 tmp_mem = *new_mem; 651 tmp_mem.mm_node = NULL; 652 placement.num_placement = 1; 653 placement.placement = &placements; 654 placement.num_busy_placement = 1; 655 placement.busy_placement = &placements; 656 placements.fpfn = 0; 657 placements.lpfn = 0; 658 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 659 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 660 if (unlikely(r)) { 661 pr_err("Failed to find GTT space for blit to VRAM\n"); 662 return r; 663 } 664 665 /* move/bind old memory to GTT space */ 666 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 667 if (unlikely(r)) { 668 goto out_cleanup; 669 } 670 671 /* copy to VRAM */ 672 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 673 if (unlikely(r)) { 674 goto out_cleanup; 675 } 676 out_cleanup: 677 ttm_bo_mem_put(bo, &tmp_mem); 678 return r; 679 } 680 681 /** 682 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 683 * 684 * Called by amdgpu_bo_move() 685 */ 686 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 687 struct ttm_mem_reg *mem) 688 { 689 struct drm_mm_node *nodes = mem->mm_node; 690 691 if (mem->mem_type == TTM_PL_SYSTEM || 692 mem->mem_type == TTM_PL_TT) 693 return true; 694 if (mem->mem_type != TTM_PL_VRAM) 695 return false; 696 697 /* ttm_mem_reg_ioremap only supports contiguous memory */ 698 if (nodes->size != mem->num_pages) 699 return false; 700 701 return ((nodes->start + nodes->size) << PAGE_SHIFT) 702 <= adev->gmc.visible_vram_size; 703 } 704 705 /** 706 * amdgpu_bo_move - Move a buffer object to a new memory location 707 * 708 * Called by ttm_bo_handle_move_mem() 709 */ 710 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 711 struct ttm_operation_ctx *ctx, 712 struct ttm_mem_reg *new_mem) 713 { 714 struct amdgpu_device *adev; 715 struct amdgpu_bo *abo; 716 struct ttm_mem_reg *old_mem = &bo->mem; 717 int r; 718 719 /* Can't move a pinned BO */ 720 abo = ttm_to_amdgpu_bo(bo); 721 if (WARN_ON_ONCE(abo->pin_count > 0)) 722 return -EINVAL; 723 724 adev = amdgpu_ttm_adev(bo->bdev); 725 726 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 727 amdgpu_move_null(bo, new_mem); 728 return 0; 729 } 730 if ((old_mem->mem_type == TTM_PL_TT && 731 new_mem->mem_type == TTM_PL_SYSTEM) || 732 (old_mem->mem_type == TTM_PL_SYSTEM && 733 new_mem->mem_type == TTM_PL_TT)) { 734 /* bind is enough */ 735 amdgpu_move_null(bo, new_mem); 736 return 0; 737 } 738 if (old_mem->mem_type == AMDGPU_PL_GDS || 739 old_mem->mem_type == AMDGPU_PL_GWS || 740 old_mem->mem_type == AMDGPU_PL_OA || 741 new_mem->mem_type == AMDGPU_PL_GDS || 742 new_mem->mem_type == AMDGPU_PL_GWS || 743 new_mem->mem_type == AMDGPU_PL_OA) { 744 /* Nothing to save here */ 745 amdgpu_move_null(bo, new_mem); 746 return 0; 747 } 748 749 if (!adev->mman.buffer_funcs_enabled) { 750 r = -ENODEV; 751 goto memcpy; 752 } 753 754 if (old_mem->mem_type == TTM_PL_VRAM && 755 new_mem->mem_type == TTM_PL_SYSTEM) { 756 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 757 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 758 new_mem->mem_type == TTM_PL_VRAM) { 759 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 760 } else { 761 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 762 new_mem, old_mem); 763 } 764 765 if (r) { 766 memcpy: 767 /* Check that all memory is CPU accessible */ 768 if (!amdgpu_mem_visible(adev, old_mem) || 769 !amdgpu_mem_visible(adev, new_mem)) { 770 pr_err("Move buffer fallback to memcpy unavailable\n"); 771 return r; 772 } 773 774 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 775 if (r) 776 return r; 777 } 778 779 if (bo->type == ttm_bo_type_device && 780 new_mem->mem_type == TTM_PL_VRAM && 781 old_mem->mem_type != TTM_PL_VRAM) { 782 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 783 * accesses the BO after it's moved. 784 */ 785 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 786 } 787 788 /* update statistics */ 789 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 790 return 0; 791 } 792 793 /** 794 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 795 * 796 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 797 */ 798 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 799 { 800 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 801 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 802 struct drm_mm_node *mm_node = mem->mm_node; 803 804 mem->bus.addr = NULL; 805 mem->bus.offset = 0; 806 mem->bus.size = mem->num_pages << PAGE_SHIFT; 807 mem->bus.base = 0; 808 mem->bus.is_iomem = false; 809 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 810 return -EINVAL; 811 switch (mem->mem_type) { 812 case TTM_PL_SYSTEM: 813 /* system memory */ 814 return 0; 815 case TTM_PL_TT: 816 break; 817 case TTM_PL_VRAM: 818 mem->bus.offset = mem->start << PAGE_SHIFT; 819 /* check if it's visible */ 820 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 821 return -EINVAL; 822 /* Only physically contiguous buffers apply. In a contiguous 823 * buffer, size of the first mm_node would match the number of 824 * pages in ttm_mem_reg. 825 */ 826 if (adev->mman.aper_base_kaddr && 827 (mm_node->size == mem->num_pages)) 828 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 829 mem->bus.offset; 830 831 mem->bus.base = adev->gmc.aper_base; 832 mem->bus.is_iomem = true; 833 break; 834 default: 835 return -EINVAL; 836 } 837 return 0; 838 } 839 840 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 841 unsigned long page_offset) 842 { 843 uint64_t offset = (page_offset << PAGE_SHIFT); 844 struct drm_mm_node *mm; 845 846 mm = amdgpu_find_mm_node(&bo->mem, &offset); 847 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 848 (offset >> PAGE_SHIFT); 849 } 850 851 /** 852 * amdgpu_ttm_domain_start - Returns GPU start address 853 * @adev: amdgpu device object 854 * @type: type of the memory 855 * 856 * Returns: 857 * GPU start address of a memory domain 858 */ 859 860 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 861 { 862 switch (type) { 863 case TTM_PL_TT: 864 return adev->gmc.gart_start; 865 case TTM_PL_VRAM: 866 return adev->gmc.vram_start; 867 } 868 869 return 0; 870 } 871 872 /* 873 * TTM backend functions. 874 */ 875 struct amdgpu_ttm_tt { 876 struct ttm_dma_tt ttm; 877 struct drm_gem_object *gobj; 878 u64 offset; 879 uint64_t userptr; 880 struct task_struct *usertask; 881 uint32_t userflags; 882 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 883 struct hmm_range *range; 884 #endif 885 }; 886 887 #ifdef CONFIG_DRM_AMDGPU_USERPTR 888 /** 889 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 890 * memory and start HMM tracking CPU page table update 891 * 892 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 893 * once afterwards to stop HMM tracking 894 */ 895 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 896 { 897 struct ttm_tt *ttm = bo->tbo.ttm; 898 struct amdgpu_ttm_tt *gtt = (void *)ttm; 899 unsigned long start = gtt->userptr; 900 struct vm_area_struct *vma; 901 struct hmm_range *range; 902 unsigned long timeout; 903 struct mm_struct *mm; 904 unsigned long i; 905 int r = 0; 906 907 mm = bo->notifier.mm; 908 if (unlikely(!mm)) { 909 DRM_DEBUG_DRIVER("BO is not registered?\n"); 910 return -EFAULT; 911 } 912 913 /* Another get_user_pages is running at the same time?? */ 914 if (WARN_ON(gtt->range)) 915 return -EFAULT; 916 917 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 918 return -ESRCH; 919 920 range = kzalloc(sizeof(*range), GFP_KERNEL); 921 if (unlikely(!range)) { 922 r = -ENOMEM; 923 goto out; 924 } 925 range->notifier = &bo->notifier; 926 range->start = bo->notifier.interval_tree.start; 927 range->end = bo->notifier.interval_tree.last + 1; 928 range->default_flags = HMM_PFN_REQ_FAULT; 929 if (!amdgpu_ttm_tt_is_readonly(ttm)) 930 range->default_flags |= HMM_PFN_REQ_WRITE; 931 932 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 933 sizeof(*range->hmm_pfns), GFP_KERNEL); 934 if (unlikely(!range->hmm_pfns)) { 935 r = -ENOMEM; 936 goto out_free_ranges; 937 } 938 939 mmap_read_lock(mm); 940 vma = find_vma(mm, start); 941 if (unlikely(!vma || start < vma->vm_start)) { 942 r = -EFAULT; 943 goto out_unlock; 944 } 945 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 946 vma->vm_file)) { 947 r = -EPERM; 948 goto out_unlock; 949 } 950 mmap_read_unlock(mm); 951 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 952 953 retry: 954 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 955 956 mmap_read_lock(mm); 957 r = hmm_range_fault(range); 958 mmap_read_unlock(mm); 959 if (unlikely(r)) { 960 /* 961 * FIXME: This timeout should encompass the retry from 962 * mmu_interval_read_retry() as well. 963 */ 964 if (r == -EBUSY && !time_after(jiffies, timeout)) 965 goto retry; 966 goto out_free_pfns; 967 } 968 969 /* 970 * Due to default_flags, all pages are HMM_PFN_VALID or 971 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 972 * the notifier_lock, and mmu_interval_read_retry() must be done first. 973 */ 974 for (i = 0; i < ttm->num_pages; i++) 975 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 976 977 gtt->range = range; 978 mmput(mm); 979 980 return 0; 981 982 out_unlock: 983 mmap_read_unlock(mm); 984 out_free_pfns: 985 kvfree(range->hmm_pfns); 986 out_free_ranges: 987 kfree(range); 988 out: 989 mmput(mm); 990 return r; 991 } 992 993 /** 994 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 995 * Check if the pages backing this ttm range have been invalidated 996 * 997 * Returns: true if pages are still valid 998 */ 999 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 1000 { 1001 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1002 bool r = false; 1003 1004 if (!gtt || !gtt->userptr) 1005 return false; 1006 1007 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 1008 gtt->userptr, ttm->num_pages); 1009 1010 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 1011 "No user pages to check\n"); 1012 1013 if (gtt->range) { 1014 /* 1015 * FIXME: Must always hold notifier_lock for this, and must 1016 * not ignore the return code. 1017 */ 1018 r = mmu_interval_read_retry(gtt->range->notifier, 1019 gtt->range->notifier_seq); 1020 kvfree(gtt->range->hmm_pfns); 1021 kfree(gtt->range); 1022 gtt->range = NULL; 1023 } 1024 1025 return !r; 1026 } 1027 #endif 1028 1029 /** 1030 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 1031 * 1032 * Called by amdgpu_cs_list_validate(). This creates the page list 1033 * that backs user memory and will ultimately be mapped into the device 1034 * address space. 1035 */ 1036 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 1037 { 1038 unsigned long i; 1039 1040 for (i = 0; i < ttm->num_pages; ++i) 1041 ttm->pages[i] = pages ? pages[i] : NULL; 1042 } 1043 1044 /** 1045 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 1046 * 1047 * Called by amdgpu_ttm_backend_bind() 1048 **/ 1049 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 1050 { 1051 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1052 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1053 int r; 1054 1055 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1056 enum dma_data_direction direction = write ? 1057 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1058 1059 /* Allocate an SG array and squash pages into it */ 1060 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 1061 ttm->num_pages << PAGE_SHIFT, 1062 GFP_KERNEL); 1063 if (r) 1064 goto release_sg; 1065 1066 /* Map SG to device */ 1067 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 1068 if (r) 1069 goto release_sg; 1070 1071 /* convert SG to linear array of pages and dma addresses */ 1072 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1073 gtt->ttm.dma_address, ttm->num_pages); 1074 1075 return 0; 1076 1077 release_sg: 1078 kfree(ttm->sg); 1079 ttm->sg = NULL; 1080 return r; 1081 } 1082 1083 /** 1084 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 1085 */ 1086 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 1087 { 1088 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1089 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1090 1091 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1092 enum dma_data_direction direction = write ? 1093 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1094 1095 /* double check that we don't free the table twice */ 1096 if (!ttm->sg->sgl) 1097 return; 1098 1099 /* unmap the pages mapped to the device */ 1100 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 1101 sg_free_table(ttm->sg); 1102 1103 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1104 if (gtt->range) { 1105 unsigned long i; 1106 1107 for (i = 0; i < ttm->num_pages; i++) { 1108 if (ttm->pages[i] != 1109 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 1110 break; 1111 } 1112 1113 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1114 } 1115 #endif 1116 } 1117 1118 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1119 struct ttm_buffer_object *tbo, 1120 uint64_t flags) 1121 { 1122 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1123 struct ttm_tt *ttm = tbo->ttm; 1124 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1125 int r; 1126 1127 if (amdgpu_bo_encrypted(abo)) 1128 flags |= AMDGPU_PTE_TMZ; 1129 1130 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1131 uint64_t page_idx = 1; 1132 1133 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1134 ttm->pages, gtt->ttm.dma_address, flags); 1135 if (r) 1136 goto gart_bind_fail; 1137 1138 /* The memory type of the first page defaults to UC. Now 1139 * modify the memory type to NC from the second page of 1140 * the BO onward. 1141 */ 1142 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1143 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1144 1145 r = amdgpu_gart_bind(adev, 1146 gtt->offset + (page_idx << PAGE_SHIFT), 1147 ttm->num_pages - page_idx, 1148 &ttm->pages[page_idx], 1149 &(gtt->ttm.dma_address[page_idx]), flags); 1150 } else { 1151 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1152 ttm->pages, gtt->ttm.dma_address, flags); 1153 } 1154 1155 gart_bind_fail: 1156 if (r) 1157 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1158 ttm->num_pages, gtt->offset); 1159 1160 return r; 1161 } 1162 1163 /** 1164 * amdgpu_ttm_backend_bind - Bind GTT memory 1165 * 1166 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1167 * This handles binding GTT memory to the device address space. 1168 */ 1169 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1170 struct ttm_mem_reg *bo_mem) 1171 { 1172 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1173 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1174 uint64_t flags; 1175 int r = 0; 1176 1177 if (gtt->userptr) { 1178 r = amdgpu_ttm_tt_pin_userptr(ttm); 1179 if (r) { 1180 DRM_ERROR("failed to pin userptr\n"); 1181 return r; 1182 } 1183 } 1184 if (!ttm->num_pages) { 1185 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1186 ttm->num_pages, bo_mem, ttm); 1187 } 1188 1189 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1190 bo_mem->mem_type == AMDGPU_PL_GWS || 1191 bo_mem->mem_type == AMDGPU_PL_OA) 1192 return -EINVAL; 1193 1194 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1195 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1196 return 0; 1197 } 1198 1199 /* compute PTE flags relevant to this BO memory */ 1200 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1201 1202 /* bind pages into GART page tables */ 1203 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1204 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1205 ttm->pages, gtt->ttm.dma_address, flags); 1206 1207 if (r) 1208 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1209 ttm->num_pages, gtt->offset); 1210 return r; 1211 } 1212 1213 /** 1214 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1215 */ 1216 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1217 { 1218 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1219 struct ttm_operation_ctx ctx = { false, false }; 1220 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1221 struct ttm_mem_reg tmp; 1222 struct ttm_placement placement; 1223 struct ttm_place placements; 1224 uint64_t addr, flags; 1225 int r; 1226 1227 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1228 return 0; 1229 1230 addr = amdgpu_gmc_agp_addr(bo); 1231 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1232 bo->mem.start = addr >> PAGE_SHIFT; 1233 } else { 1234 1235 /* allocate GART space */ 1236 tmp = bo->mem; 1237 tmp.mm_node = NULL; 1238 placement.num_placement = 1; 1239 placement.placement = &placements; 1240 placement.num_busy_placement = 1; 1241 placement.busy_placement = &placements; 1242 placements.fpfn = 0; 1243 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1244 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1245 TTM_PL_FLAG_TT; 1246 1247 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1248 if (unlikely(r)) 1249 return r; 1250 1251 /* compute PTE flags for this buffer object */ 1252 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1253 1254 /* Bind pages */ 1255 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1256 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1257 if (unlikely(r)) { 1258 ttm_bo_mem_put(bo, &tmp); 1259 return r; 1260 } 1261 1262 ttm_bo_mem_put(bo, &bo->mem); 1263 bo->mem = tmp; 1264 } 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * amdgpu_ttm_recover_gart - Rebind GTT pages 1271 * 1272 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1273 * rebind GTT pages during a GPU reset. 1274 */ 1275 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1276 { 1277 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1278 uint64_t flags; 1279 int r; 1280 1281 if (!tbo->ttm) 1282 return 0; 1283 1284 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1285 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1286 1287 return r; 1288 } 1289 1290 /** 1291 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1292 * 1293 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1294 * ttm_tt_destroy(). 1295 */ 1296 static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1297 { 1298 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1299 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1300 int r; 1301 1302 /* if the pages have userptr pinning then clear that first */ 1303 if (gtt->userptr) 1304 amdgpu_ttm_tt_unpin_userptr(ttm); 1305 1306 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1307 return; 1308 1309 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1310 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1311 if (r) 1312 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1313 gtt->ttm.ttm.num_pages, gtt->offset); 1314 } 1315 1316 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1317 { 1318 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1319 1320 if (gtt->usertask) 1321 put_task_struct(gtt->usertask); 1322 1323 ttm_dma_tt_fini(>t->ttm); 1324 kfree(gtt); 1325 } 1326 1327 static struct ttm_backend_func amdgpu_backend_func = { 1328 .bind = &amdgpu_ttm_backend_bind, 1329 .unbind = &amdgpu_ttm_backend_unbind, 1330 .destroy = &amdgpu_ttm_backend_destroy, 1331 }; 1332 1333 /** 1334 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1335 * 1336 * @bo: The buffer object to create a GTT ttm_tt object around 1337 * 1338 * Called by ttm_tt_create(). 1339 */ 1340 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1341 uint32_t page_flags) 1342 { 1343 struct amdgpu_ttm_tt *gtt; 1344 1345 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1346 if (gtt == NULL) { 1347 return NULL; 1348 } 1349 gtt->ttm.ttm.func = &amdgpu_backend_func; 1350 gtt->gobj = &bo->base; 1351 1352 /* allocate space for the uninitialized page entries */ 1353 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1354 kfree(gtt); 1355 return NULL; 1356 } 1357 return >t->ttm.ttm; 1358 } 1359 1360 /** 1361 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1362 * 1363 * Map the pages of a ttm_tt object to an address space visible 1364 * to the underlying device. 1365 */ 1366 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1367 struct ttm_operation_ctx *ctx) 1368 { 1369 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1370 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1371 1372 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1373 if (gtt && gtt->userptr) { 1374 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1375 if (!ttm->sg) 1376 return -ENOMEM; 1377 1378 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1379 ttm->state = tt_unbound; 1380 return 0; 1381 } 1382 1383 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1384 if (!ttm->sg) { 1385 struct dma_buf_attachment *attach; 1386 struct sg_table *sgt; 1387 1388 attach = gtt->gobj->import_attach; 1389 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1390 if (IS_ERR(sgt)) 1391 return PTR_ERR(sgt); 1392 1393 ttm->sg = sgt; 1394 } 1395 1396 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1397 gtt->ttm.dma_address, 1398 ttm->num_pages); 1399 ttm->state = tt_unbound; 1400 return 0; 1401 } 1402 1403 #ifdef CONFIG_SWIOTLB 1404 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1405 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1406 } 1407 #endif 1408 1409 /* fall back to generic helper to populate the page array 1410 * and map them to the device */ 1411 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1412 } 1413 1414 /** 1415 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1416 * 1417 * Unmaps pages of a ttm_tt object from the device address space and 1418 * unpopulates the page array backing it. 1419 */ 1420 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1421 { 1422 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1423 struct amdgpu_device *adev; 1424 1425 if (gtt && gtt->userptr) { 1426 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1427 kfree(ttm->sg); 1428 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1429 return; 1430 } 1431 1432 if (ttm->sg && gtt->gobj->import_attach) { 1433 struct dma_buf_attachment *attach; 1434 1435 attach = gtt->gobj->import_attach; 1436 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1437 ttm->sg = NULL; 1438 return; 1439 } 1440 1441 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1442 return; 1443 1444 adev = amdgpu_ttm_adev(ttm->bdev); 1445 1446 #ifdef CONFIG_SWIOTLB 1447 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1448 ttm_dma_unpopulate(>t->ttm, adev->dev); 1449 return; 1450 } 1451 #endif 1452 1453 /* fall back to generic helper to unmap and unpopulate array */ 1454 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1455 } 1456 1457 /** 1458 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1459 * task 1460 * 1461 * @ttm: The ttm_tt object to bind this userptr object to 1462 * @addr: The address in the current tasks VM space to use 1463 * @flags: Requirements of userptr object. 1464 * 1465 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1466 * to current task 1467 */ 1468 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1469 uint32_t flags) 1470 { 1471 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1472 1473 if (gtt == NULL) 1474 return -EINVAL; 1475 1476 gtt->userptr = addr; 1477 gtt->userflags = flags; 1478 1479 if (gtt->usertask) 1480 put_task_struct(gtt->usertask); 1481 gtt->usertask = current->group_leader; 1482 get_task_struct(gtt->usertask); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1489 */ 1490 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1491 { 1492 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1493 1494 if (gtt == NULL) 1495 return NULL; 1496 1497 if (gtt->usertask == NULL) 1498 return NULL; 1499 1500 return gtt->usertask->mm; 1501 } 1502 1503 /** 1504 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1505 * address range for the current task. 1506 * 1507 */ 1508 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1509 unsigned long end) 1510 { 1511 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1512 unsigned long size; 1513 1514 if (gtt == NULL || !gtt->userptr) 1515 return false; 1516 1517 /* Return false if no part of the ttm_tt object lies within 1518 * the range 1519 */ 1520 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1521 if (gtt->userptr > end || gtt->userptr + size <= start) 1522 return false; 1523 1524 return true; 1525 } 1526 1527 /** 1528 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1529 */ 1530 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1531 { 1532 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1533 1534 if (gtt == NULL || !gtt->userptr) 1535 return false; 1536 1537 return true; 1538 } 1539 1540 /** 1541 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1542 */ 1543 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1544 { 1545 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1546 1547 if (gtt == NULL) 1548 return false; 1549 1550 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1551 } 1552 1553 /** 1554 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1555 * 1556 * @ttm: The ttm_tt object to compute the flags for 1557 * @mem: The memory registry backing this ttm_tt object 1558 * 1559 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1560 */ 1561 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1562 { 1563 uint64_t flags = 0; 1564 1565 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1566 flags |= AMDGPU_PTE_VALID; 1567 1568 if (mem && mem->mem_type == TTM_PL_TT) { 1569 flags |= AMDGPU_PTE_SYSTEM; 1570 1571 if (ttm->caching_state == tt_cached) 1572 flags |= AMDGPU_PTE_SNOOPED; 1573 } 1574 1575 return flags; 1576 } 1577 1578 /** 1579 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1580 * 1581 * @ttm: The ttm_tt object to compute the flags for 1582 * @mem: The memory registry backing this ttm_tt object 1583 1584 * Figure out the flags to use for a VM PTE (Page Table Entry). 1585 */ 1586 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1587 struct ttm_mem_reg *mem) 1588 { 1589 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1590 1591 flags |= adev->gart.gart_pte_flags; 1592 flags |= AMDGPU_PTE_READABLE; 1593 1594 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1595 flags |= AMDGPU_PTE_WRITEABLE; 1596 1597 return flags; 1598 } 1599 1600 /** 1601 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1602 * object. 1603 * 1604 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1605 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1606 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1607 * used to clean out a memory space. 1608 */ 1609 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1610 const struct ttm_place *place) 1611 { 1612 unsigned long num_pages = bo->mem.num_pages; 1613 struct drm_mm_node *node = bo->mem.mm_node; 1614 struct dma_resv_list *flist; 1615 struct dma_fence *f; 1616 int i; 1617 1618 if (bo->type == ttm_bo_type_kernel && 1619 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1620 return false; 1621 1622 /* If bo is a KFD BO, check if the bo belongs to the current process. 1623 * If true, then return false as any KFD process needs all its BOs to 1624 * be resident to run successfully 1625 */ 1626 flist = dma_resv_get_list(bo->base.resv); 1627 if (flist) { 1628 for (i = 0; i < flist->shared_count; ++i) { 1629 f = rcu_dereference_protected(flist->shared[i], 1630 dma_resv_held(bo->base.resv)); 1631 if (amdkfd_fence_check_mm(f, current->mm)) 1632 return false; 1633 } 1634 } 1635 1636 switch (bo->mem.mem_type) { 1637 case TTM_PL_TT: 1638 if (amdgpu_bo_is_amdgpu_bo(bo) && 1639 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1640 return false; 1641 return true; 1642 1643 case TTM_PL_VRAM: 1644 /* Check each drm MM node individually */ 1645 while (num_pages) { 1646 if (place->fpfn < (node->start + node->size) && 1647 !(place->lpfn && place->lpfn <= node->start)) 1648 return true; 1649 1650 num_pages -= node->size; 1651 ++node; 1652 } 1653 return false; 1654 1655 default: 1656 break; 1657 } 1658 1659 return ttm_bo_eviction_valuable(bo, place); 1660 } 1661 1662 /** 1663 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1664 * 1665 * @bo: The buffer object to read/write 1666 * @offset: Offset into buffer object 1667 * @buf: Secondary buffer to write/read from 1668 * @len: Length in bytes of access 1669 * @write: true if writing 1670 * 1671 * This is used to access VRAM that backs a buffer object via MMIO 1672 * access for debugging purposes. 1673 */ 1674 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1675 unsigned long offset, 1676 void *buf, int len, int write) 1677 { 1678 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1679 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1680 struct drm_mm_node *nodes; 1681 uint32_t value = 0; 1682 int ret = 0; 1683 uint64_t pos; 1684 unsigned long flags; 1685 1686 if (bo->mem.mem_type != TTM_PL_VRAM) 1687 return -EIO; 1688 1689 pos = offset; 1690 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); 1691 pos += (nodes->start << PAGE_SHIFT); 1692 1693 while (len && pos < adev->gmc.mc_vram_size) { 1694 uint64_t aligned_pos = pos & ~(uint64_t)3; 1695 uint64_t bytes = 4 - (pos & 3); 1696 uint32_t shift = (pos & 3) * 8; 1697 uint32_t mask = 0xffffffff << shift; 1698 1699 if (len < bytes) { 1700 mask &= 0xffffffff >> (bytes - len) * 8; 1701 bytes = len; 1702 } 1703 1704 if (mask != 0xffffffff) { 1705 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1706 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1707 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1708 if (!write || mask != 0xffffffff) 1709 value = RREG32_NO_KIQ(mmMM_DATA); 1710 if (write) { 1711 value &= ~mask; 1712 value |= (*(uint32_t *)buf << shift) & mask; 1713 WREG32_NO_KIQ(mmMM_DATA, value); 1714 } 1715 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1716 if (!write) { 1717 value = (value & mask) >> shift; 1718 memcpy(buf, &value, bytes); 1719 } 1720 } else { 1721 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1722 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1723 1724 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1725 bytes, write); 1726 } 1727 1728 ret += bytes; 1729 buf = (uint8_t *)buf + bytes; 1730 pos += bytes; 1731 len -= bytes; 1732 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1733 ++nodes; 1734 pos = (nodes->start << PAGE_SHIFT); 1735 } 1736 } 1737 1738 return ret; 1739 } 1740 1741 static struct ttm_bo_driver amdgpu_bo_driver = { 1742 .ttm_tt_create = &amdgpu_ttm_tt_create, 1743 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1744 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1745 .init_mem_type = &amdgpu_init_mem_type, 1746 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1747 .evict_flags = &amdgpu_evict_flags, 1748 .move = &amdgpu_bo_move, 1749 .verify_access = &amdgpu_verify_access, 1750 .move_notify = &amdgpu_bo_move_notify, 1751 .release_notify = &amdgpu_bo_release_notify, 1752 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1753 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1754 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1755 .access_memory = &amdgpu_ttm_access_memory, 1756 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1757 }; 1758 1759 /* 1760 * Firmware Reservation functions 1761 */ 1762 /** 1763 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1764 * 1765 * @adev: amdgpu_device pointer 1766 * 1767 * free fw reserved vram if it has been reserved. 1768 */ 1769 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1770 { 1771 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1772 NULL, &adev->fw_vram_usage.va); 1773 } 1774 1775 /** 1776 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1777 * 1778 * @adev: amdgpu_device pointer 1779 * 1780 * create bo vram reservation from fw. 1781 */ 1782 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1783 { 1784 uint64_t vram_size = adev->gmc.visible_vram_size; 1785 1786 adev->fw_vram_usage.va = NULL; 1787 adev->fw_vram_usage.reserved_bo = NULL; 1788 1789 if (adev->fw_vram_usage.size == 0 || 1790 adev->fw_vram_usage.size > vram_size) 1791 return 0; 1792 1793 return amdgpu_bo_create_kernel_at(adev, 1794 adev->fw_vram_usage.start_offset, 1795 adev->fw_vram_usage.size, 1796 AMDGPU_GEM_DOMAIN_VRAM, 1797 &adev->fw_vram_usage.reserved_bo, 1798 &adev->fw_vram_usage.va); 1799 } 1800 1801 /* 1802 * Memoy training reservation functions 1803 */ 1804 1805 /** 1806 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1807 * 1808 * @adev: amdgpu_device pointer 1809 * 1810 * free memory training reserved vram if it has been reserved. 1811 */ 1812 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1813 { 1814 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1815 1816 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1817 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1818 ctx->c2p_bo = NULL; 1819 1820 return 0; 1821 } 1822 1823 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1824 { 1825 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1826 1827 memset(ctx, 0, sizeof(*ctx)); 1828 1829 ctx->c2p_train_data_offset = 1830 ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M); 1831 ctx->p2c_train_data_offset = 1832 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1833 ctx->train_data_size = 1834 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1835 1836 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1837 ctx->train_data_size, 1838 ctx->p2c_train_data_offset, 1839 ctx->c2p_train_data_offset); 1840 } 1841 1842 /* 1843 * reserve TMR memory at the top of VRAM which holds 1844 * IP Discovery data and is protected by PSP. 1845 */ 1846 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1847 { 1848 int ret; 1849 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1850 bool mem_train_support = false; 1851 1852 if (!amdgpu_sriov_vf(adev)) { 1853 ret = amdgpu_mem_train_support(adev); 1854 if (ret == 1) 1855 mem_train_support = true; 1856 else if (ret == -1) 1857 return -EINVAL; 1858 else 1859 DRM_DEBUG("memory training does not support!\n"); 1860 } 1861 1862 /* 1863 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1864 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1865 * 1866 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1867 * discovery data and G6 memory training data respectively 1868 */ 1869 adev->discovery_tmr_size = 1870 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1871 if (!adev->discovery_tmr_size) 1872 adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1873 1874 if (mem_train_support) { 1875 /* reserve vram for mem train according to TMR location */ 1876 amdgpu_ttm_training_data_block_init(adev); 1877 ret = amdgpu_bo_create_kernel_at(adev, 1878 ctx->c2p_train_data_offset, 1879 ctx->train_data_size, 1880 AMDGPU_GEM_DOMAIN_VRAM, 1881 &ctx->c2p_bo, 1882 NULL); 1883 if (ret) { 1884 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1885 amdgpu_ttm_training_reserve_vram_fini(adev); 1886 return ret; 1887 } 1888 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1889 } 1890 1891 ret = amdgpu_bo_create_kernel_at(adev, 1892 adev->gmc.real_vram_size - adev->discovery_tmr_size, 1893 adev->discovery_tmr_size, 1894 AMDGPU_GEM_DOMAIN_VRAM, 1895 &adev->discovery_memory, 1896 NULL); 1897 if (ret) { 1898 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1899 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 1900 return ret; 1901 } 1902 1903 return 0; 1904 } 1905 1906 /** 1907 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1908 * gtt/vram related fields. 1909 * 1910 * This initializes all of the memory space pools that the TTM layer 1911 * will need such as the GTT space (system memory mapped to the device), 1912 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1913 * can be mapped per VMID. 1914 */ 1915 int amdgpu_ttm_init(struct amdgpu_device *adev) 1916 { 1917 uint64_t gtt_size; 1918 int r; 1919 u64 vis_vram_limit; 1920 void *stolen_vga_buf; 1921 1922 mutex_init(&adev->mman.gtt_window_lock); 1923 1924 /* No others user of address space so set it to 0 */ 1925 r = ttm_bo_device_init(&adev->mman.bdev, 1926 &amdgpu_bo_driver, 1927 adev->ddev->anon_inode->i_mapping, 1928 adev->ddev->vma_offset_manager, 1929 dma_addressing_limited(adev->dev)); 1930 if (r) { 1931 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1932 return r; 1933 } 1934 adev->mman.initialized = true; 1935 1936 /* We opt to avoid OOM on system pages allocations */ 1937 adev->mman.bdev.no_retry = true; 1938 1939 /* Initialize VRAM pool with all of VRAM divided into pages */ 1940 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1941 adev->gmc.real_vram_size >> PAGE_SHIFT); 1942 if (r) { 1943 DRM_ERROR("Failed initializing VRAM heap.\n"); 1944 return r; 1945 } 1946 1947 /* Reduce size of CPU-visible VRAM if requested */ 1948 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1949 if (amdgpu_vis_vram_limit > 0 && 1950 vis_vram_limit <= adev->gmc.visible_vram_size) 1951 adev->gmc.visible_vram_size = vis_vram_limit; 1952 1953 /* Change the size here instead of the init above so only lpfn is affected */ 1954 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1955 #ifdef CONFIG_64BIT 1956 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1957 adev->gmc.visible_vram_size); 1958 #endif 1959 1960 /* 1961 *The reserved vram for firmware must be pinned to the specified 1962 *place on the VRAM, so reserve it early. 1963 */ 1964 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1965 if (r) { 1966 return r; 1967 } 1968 1969 /* 1970 * only NAVI10 and onwards ASIC support for IP discovery. 1971 * If IP discovery enabled, a block of memory should be 1972 * reserved for IP discovey. 1973 */ 1974 if (adev->discovery_bin) { 1975 r = amdgpu_ttm_reserve_tmr(adev); 1976 if (r) 1977 return r; 1978 } 1979 1980 /* allocate memory as required for VGA 1981 * This is used for VGA emulation and pre-OS scanout buffers to 1982 * avoid display artifacts while transitioning between pre-OS 1983 * and driver. */ 1984 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1985 AMDGPU_GEM_DOMAIN_VRAM, 1986 &adev->stolen_vga_memory, 1987 NULL, &stolen_vga_buf); 1988 if (r) 1989 return r; 1990 1991 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1992 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1993 1994 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1995 * or whatever the user passed on module init */ 1996 if (amdgpu_gtt_size == -1) { 1997 struct sysinfo si; 1998 1999 si_meminfo(&si); 2000 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 2001 adev->gmc.mc_vram_size), 2002 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 2003 } 2004 else 2005 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 2006 2007 /* Initialize GTT memory pool */ 2008 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 2009 if (r) { 2010 DRM_ERROR("Failed initializing GTT heap.\n"); 2011 return r; 2012 } 2013 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 2014 (unsigned)(gtt_size / (1024 * 1024))); 2015 2016 /* Initialize various on-chip memory pools */ 2017 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 2018 adev->gds.gds_size); 2019 if (r) { 2020 DRM_ERROR("Failed initializing GDS heap.\n"); 2021 return r; 2022 } 2023 2024 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 2025 adev->gds.gws_size); 2026 if (r) { 2027 DRM_ERROR("Failed initializing gws heap.\n"); 2028 return r; 2029 } 2030 2031 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 2032 adev->gds.oa_size); 2033 if (r) { 2034 DRM_ERROR("Failed initializing oa heap.\n"); 2035 return r; 2036 } 2037 2038 return 0; 2039 } 2040 2041 /** 2042 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 2043 */ 2044 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 2045 { 2046 void *stolen_vga_buf; 2047 /* return the VGA stolen memory (if any) back to VRAM */ 2048 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf); 2049 } 2050 2051 /** 2052 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2053 */ 2054 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2055 { 2056 if (!adev->mman.initialized) 2057 return; 2058 2059 amdgpu_ttm_training_reserve_vram_fini(adev); 2060 /* return the IP Discovery TMR memory back to VRAM */ 2061 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL); 2062 amdgpu_ttm_fw_reserve_vram_fini(adev); 2063 2064 if (adev->mman.aper_base_kaddr) 2065 iounmap(adev->mman.aper_base_kaddr); 2066 adev->mman.aper_base_kaddr = NULL; 2067 2068 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 2069 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 2070 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 2071 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 2072 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 2073 ttm_bo_device_release(&adev->mman.bdev); 2074 adev->mman.initialized = false; 2075 DRM_INFO("amdgpu: ttm finalized\n"); 2076 } 2077 2078 /** 2079 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2080 * 2081 * @adev: amdgpu_device pointer 2082 * @enable: true when we can use buffer functions. 2083 * 2084 * Enable/disable use of buffer functions during suspend/resume. This should 2085 * only be called at bootup or when userspace isn't running. 2086 */ 2087 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2088 { 2089 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 2090 uint64_t size; 2091 int r; 2092 2093 if (!adev->mman.initialized || adev->in_gpu_reset || 2094 adev->mman.buffer_funcs_enabled == enable) 2095 return; 2096 2097 if (enable) { 2098 struct amdgpu_ring *ring; 2099 struct drm_gpu_scheduler *sched; 2100 2101 ring = adev->mman.buffer_funcs_ring; 2102 sched = &ring->sched; 2103 r = drm_sched_entity_init(&adev->mman.entity, 2104 DRM_SCHED_PRIORITY_KERNEL, &sched, 2105 1, NULL); 2106 if (r) { 2107 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2108 r); 2109 return; 2110 } 2111 } else { 2112 drm_sched_entity_destroy(&adev->mman.entity); 2113 dma_fence_put(man->move); 2114 man->move = NULL; 2115 } 2116 2117 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2118 if (enable) 2119 size = adev->gmc.real_vram_size; 2120 else 2121 size = adev->gmc.visible_vram_size; 2122 man->size = size >> PAGE_SHIFT; 2123 adev->mman.buffer_funcs_enabled = enable; 2124 } 2125 2126 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2127 { 2128 struct drm_file *file_priv = filp->private_data; 2129 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 2130 2131 if (adev == NULL) 2132 return -EINVAL; 2133 2134 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2135 } 2136 2137 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2138 uint64_t dst_offset, uint32_t byte_count, 2139 struct dma_resv *resv, 2140 struct dma_fence **fence, bool direct_submit, 2141 bool vm_needs_flush, bool tmz) 2142 { 2143 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 2144 AMDGPU_IB_POOL_DELAYED; 2145 struct amdgpu_device *adev = ring->adev; 2146 struct amdgpu_job *job; 2147 2148 uint32_t max_bytes; 2149 unsigned num_loops, num_dw; 2150 unsigned i; 2151 int r; 2152 2153 if (direct_submit && !ring->sched.ready) { 2154 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2155 return -EINVAL; 2156 } 2157 2158 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2159 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2160 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2161 2162 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 2163 if (r) 2164 return r; 2165 2166 if (vm_needs_flush) { 2167 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2168 job->vm_needs_flush = true; 2169 } 2170 if (resv) { 2171 r = amdgpu_sync_resv(adev, &job->sync, resv, 2172 AMDGPU_SYNC_ALWAYS, 2173 AMDGPU_FENCE_OWNER_UNDEFINED); 2174 if (r) { 2175 DRM_ERROR("sync failed (%d).\n", r); 2176 goto error_free; 2177 } 2178 } 2179 2180 for (i = 0; i < num_loops; i++) { 2181 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2182 2183 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2184 dst_offset, cur_size_in_bytes, tmz); 2185 2186 src_offset += cur_size_in_bytes; 2187 dst_offset += cur_size_in_bytes; 2188 byte_count -= cur_size_in_bytes; 2189 } 2190 2191 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2192 WARN_ON(job->ibs[0].length_dw > num_dw); 2193 if (direct_submit) 2194 r = amdgpu_job_submit_direct(job, ring, fence); 2195 else 2196 r = amdgpu_job_submit(job, &adev->mman.entity, 2197 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2198 if (r) 2199 goto error_free; 2200 2201 return r; 2202 2203 error_free: 2204 amdgpu_job_free(job); 2205 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2206 return r; 2207 } 2208 2209 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2210 uint32_t src_data, 2211 struct dma_resv *resv, 2212 struct dma_fence **fence) 2213 { 2214 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2215 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2216 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2217 2218 struct drm_mm_node *mm_node; 2219 unsigned long num_pages; 2220 unsigned int num_loops, num_dw; 2221 2222 struct amdgpu_job *job; 2223 int r; 2224 2225 if (!adev->mman.buffer_funcs_enabled) { 2226 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2227 return -EINVAL; 2228 } 2229 2230 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2231 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2232 if (r) 2233 return r; 2234 } 2235 2236 num_pages = bo->tbo.num_pages; 2237 mm_node = bo->tbo.mem.mm_node; 2238 num_loops = 0; 2239 while (num_pages) { 2240 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2241 2242 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2243 num_pages -= mm_node->size; 2244 ++mm_node; 2245 } 2246 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2247 2248 /* for IB padding */ 2249 num_dw += 64; 2250 2251 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2252 &job); 2253 if (r) 2254 return r; 2255 2256 if (resv) { 2257 r = amdgpu_sync_resv(adev, &job->sync, resv, 2258 AMDGPU_SYNC_ALWAYS, 2259 AMDGPU_FENCE_OWNER_UNDEFINED); 2260 if (r) { 2261 DRM_ERROR("sync failed (%d).\n", r); 2262 goto error_free; 2263 } 2264 } 2265 2266 num_pages = bo->tbo.num_pages; 2267 mm_node = bo->tbo.mem.mm_node; 2268 2269 while (num_pages) { 2270 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2271 uint64_t dst_addr; 2272 2273 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2274 while (byte_count) { 2275 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2276 max_bytes); 2277 2278 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2279 dst_addr, cur_size_in_bytes); 2280 2281 dst_addr += cur_size_in_bytes; 2282 byte_count -= cur_size_in_bytes; 2283 } 2284 2285 num_pages -= mm_node->size; 2286 ++mm_node; 2287 } 2288 2289 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2290 WARN_ON(job->ibs[0].length_dw > num_dw); 2291 r = amdgpu_job_submit(job, &adev->mman.entity, 2292 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2293 if (r) 2294 goto error_free; 2295 2296 return 0; 2297 2298 error_free: 2299 amdgpu_job_free(job); 2300 return r; 2301 } 2302 2303 #if defined(CONFIG_DEBUG_FS) 2304 2305 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2306 { 2307 struct drm_info_node *node = (struct drm_info_node *)m->private; 2308 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2309 struct drm_device *dev = node->minor->dev; 2310 struct amdgpu_device *adev = dev->dev_private; 2311 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2312 struct drm_printer p = drm_seq_file_printer(m); 2313 2314 man->func->debug(man, &p); 2315 return 0; 2316 } 2317 2318 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2319 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2320 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2321 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2322 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2323 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2324 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2325 #ifdef CONFIG_SWIOTLB 2326 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2327 #endif 2328 }; 2329 2330 /** 2331 * amdgpu_ttm_vram_read - Linear read access to VRAM 2332 * 2333 * Accesses VRAM via MMIO for debugging purposes. 2334 */ 2335 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2336 size_t size, loff_t *pos) 2337 { 2338 struct amdgpu_device *adev = file_inode(f)->i_private; 2339 ssize_t result = 0; 2340 2341 if (size & 0x3 || *pos & 0x3) 2342 return -EINVAL; 2343 2344 if (*pos >= adev->gmc.mc_vram_size) 2345 return -ENXIO; 2346 2347 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2348 while (size) { 2349 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2350 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2351 2352 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2353 if (copy_to_user(buf, value, bytes)) 2354 return -EFAULT; 2355 2356 result += bytes; 2357 buf += bytes; 2358 *pos += bytes; 2359 size -= bytes; 2360 } 2361 2362 return result; 2363 } 2364 2365 /** 2366 * amdgpu_ttm_vram_write - Linear write access to VRAM 2367 * 2368 * Accesses VRAM via MMIO for debugging purposes. 2369 */ 2370 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2371 size_t size, loff_t *pos) 2372 { 2373 struct amdgpu_device *adev = file_inode(f)->i_private; 2374 ssize_t result = 0; 2375 int r; 2376 2377 if (size & 0x3 || *pos & 0x3) 2378 return -EINVAL; 2379 2380 if (*pos >= adev->gmc.mc_vram_size) 2381 return -ENXIO; 2382 2383 while (size) { 2384 unsigned long flags; 2385 uint32_t value; 2386 2387 if (*pos >= adev->gmc.mc_vram_size) 2388 return result; 2389 2390 r = get_user(value, (uint32_t *)buf); 2391 if (r) 2392 return r; 2393 2394 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2395 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2396 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2397 WREG32_NO_KIQ(mmMM_DATA, value); 2398 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2399 2400 result += 4; 2401 buf += 4; 2402 *pos += 4; 2403 size -= 4; 2404 } 2405 2406 return result; 2407 } 2408 2409 static const struct file_operations amdgpu_ttm_vram_fops = { 2410 .owner = THIS_MODULE, 2411 .read = amdgpu_ttm_vram_read, 2412 .write = amdgpu_ttm_vram_write, 2413 .llseek = default_llseek, 2414 }; 2415 2416 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2417 2418 /** 2419 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2420 */ 2421 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2422 size_t size, loff_t *pos) 2423 { 2424 struct amdgpu_device *adev = file_inode(f)->i_private; 2425 ssize_t result = 0; 2426 int r; 2427 2428 while (size) { 2429 loff_t p = *pos / PAGE_SIZE; 2430 unsigned off = *pos & ~PAGE_MASK; 2431 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2432 struct page *page; 2433 void *ptr; 2434 2435 if (p >= adev->gart.num_cpu_pages) 2436 return result; 2437 2438 page = adev->gart.pages[p]; 2439 if (page) { 2440 ptr = kmap(page); 2441 ptr += off; 2442 2443 r = copy_to_user(buf, ptr, cur_size); 2444 kunmap(adev->gart.pages[p]); 2445 } else 2446 r = clear_user(buf, cur_size); 2447 2448 if (r) 2449 return -EFAULT; 2450 2451 result += cur_size; 2452 buf += cur_size; 2453 *pos += cur_size; 2454 size -= cur_size; 2455 } 2456 2457 return result; 2458 } 2459 2460 static const struct file_operations amdgpu_ttm_gtt_fops = { 2461 .owner = THIS_MODULE, 2462 .read = amdgpu_ttm_gtt_read, 2463 .llseek = default_llseek 2464 }; 2465 2466 #endif 2467 2468 /** 2469 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2470 * 2471 * This function is used to read memory that has been mapped to the 2472 * GPU and the known addresses are not physical addresses but instead 2473 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2474 */ 2475 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2476 size_t size, loff_t *pos) 2477 { 2478 struct amdgpu_device *adev = file_inode(f)->i_private; 2479 struct iommu_domain *dom; 2480 ssize_t result = 0; 2481 int r; 2482 2483 /* retrieve the IOMMU domain if any for this device */ 2484 dom = iommu_get_domain_for_dev(adev->dev); 2485 2486 while (size) { 2487 phys_addr_t addr = *pos & PAGE_MASK; 2488 loff_t off = *pos & ~PAGE_MASK; 2489 size_t bytes = PAGE_SIZE - off; 2490 unsigned long pfn; 2491 struct page *p; 2492 void *ptr; 2493 2494 bytes = bytes < size ? bytes : size; 2495 2496 /* Translate the bus address to a physical address. If 2497 * the domain is NULL it means there is no IOMMU active 2498 * and the address translation is the identity 2499 */ 2500 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2501 2502 pfn = addr >> PAGE_SHIFT; 2503 if (!pfn_valid(pfn)) 2504 return -EPERM; 2505 2506 p = pfn_to_page(pfn); 2507 if (p->mapping != adev->mman.bdev.dev_mapping) 2508 return -EPERM; 2509 2510 ptr = kmap(p); 2511 r = copy_to_user(buf, ptr + off, bytes); 2512 kunmap(p); 2513 if (r) 2514 return -EFAULT; 2515 2516 size -= bytes; 2517 *pos += bytes; 2518 result += bytes; 2519 } 2520 2521 return result; 2522 } 2523 2524 /** 2525 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2526 * 2527 * This function is used to write memory that has been mapped to the 2528 * GPU and the known addresses are not physical addresses but instead 2529 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2530 */ 2531 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2532 size_t size, loff_t *pos) 2533 { 2534 struct amdgpu_device *adev = file_inode(f)->i_private; 2535 struct iommu_domain *dom; 2536 ssize_t result = 0; 2537 int r; 2538 2539 dom = iommu_get_domain_for_dev(adev->dev); 2540 2541 while (size) { 2542 phys_addr_t addr = *pos & PAGE_MASK; 2543 loff_t off = *pos & ~PAGE_MASK; 2544 size_t bytes = PAGE_SIZE - off; 2545 unsigned long pfn; 2546 struct page *p; 2547 void *ptr; 2548 2549 bytes = bytes < size ? bytes : size; 2550 2551 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2552 2553 pfn = addr >> PAGE_SHIFT; 2554 if (!pfn_valid(pfn)) 2555 return -EPERM; 2556 2557 p = pfn_to_page(pfn); 2558 if (p->mapping != adev->mman.bdev.dev_mapping) 2559 return -EPERM; 2560 2561 ptr = kmap(p); 2562 r = copy_from_user(ptr + off, buf, bytes); 2563 kunmap(p); 2564 if (r) 2565 return -EFAULT; 2566 2567 size -= bytes; 2568 *pos += bytes; 2569 result += bytes; 2570 } 2571 2572 return result; 2573 } 2574 2575 static const struct file_operations amdgpu_ttm_iomem_fops = { 2576 .owner = THIS_MODULE, 2577 .read = amdgpu_iomem_read, 2578 .write = amdgpu_iomem_write, 2579 .llseek = default_llseek 2580 }; 2581 2582 static const struct { 2583 char *name; 2584 const struct file_operations *fops; 2585 int domain; 2586 } ttm_debugfs_entries[] = { 2587 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2588 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2589 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2590 #endif 2591 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2592 }; 2593 2594 #endif 2595 2596 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2597 { 2598 #if defined(CONFIG_DEBUG_FS) 2599 unsigned count; 2600 2601 struct drm_minor *minor = adev->ddev->primary; 2602 struct dentry *ent, *root = minor->debugfs_root; 2603 2604 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2605 ent = debugfs_create_file( 2606 ttm_debugfs_entries[count].name, 2607 S_IFREG | S_IRUGO, root, 2608 adev, 2609 ttm_debugfs_entries[count].fops); 2610 if (IS_ERR(ent)) 2611 return PTR_ERR(ent); 2612 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2613 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2614 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2615 i_size_write(ent->d_inode, adev->gmc.gart_size); 2616 adev->mman.debugfs_entries[count] = ent; 2617 } 2618 2619 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2620 2621 #ifdef CONFIG_SWIOTLB 2622 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2623 --count; 2624 #endif 2625 2626 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2627 #else 2628 return 0; 2629 #endif 2630 } 2631