1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63 
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
65 
66 
67 /**
68  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
69  * memory request.
70  *
71  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
72  * @type: The type of memory requested
73  * @man: The memory type manager for each domain
74  *
75  * This is called by ttm_bo_init_mm() when a buffer object is being
76  * initialized.
77  */
78 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
79 				struct ttm_mem_type_manager *man)
80 {
81 	struct amdgpu_device *adev;
82 
83 	adev = amdgpu_ttm_adev(bdev);
84 
85 	switch (type) {
86 	case TTM_PL_SYSTEM:
87 		/* System memory */
88 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
89 		man->available_caching = TTM_PL_MASK_CACHING;
90 		man->default_caching = TTM_PL_FLAG_CACHED;
91 		break;
92 	case TTM_PL_TT:
93 		/* GTT memory  */
94 		man->func = &amdgpu_gtt_mgr_func;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
98 		break;
99 	case TTM_PL_VRAM:
100 		/* "On-card" video ram */
101 		man->func = &amdgpu_vram_mgr_func;
102 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
103 			     TTM_MEMTYPE_FLAG_MAPPABLE;
104 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
105 		man->default_caching = TTM_PL_FLAG_WC;
106 		break;
107 	case AMDGPU_PL_GDS:
108 	case AMDGPU_PL_GWS:
109 	case AMDGPU_PL_OA:
110 		/* On-chip GDS memory*/
111 		man->func = &ttm_bo_manager_func;
112 		man->flags = TTM_MEMTYPE_FLAG_FIXED;
113 		man->available_caching = TTM_PL_FLAG_UNCACHED;
114 		man->default_caching = TTM_PL_FLAG_UNCACHED;
115 		break;
116 	default:
117 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
118 		return -EINVAL;
119 	}
120 	return 0;
121 }
122 
123 /**
124  * amdgpu_evict_flags - Compute placement flags
125  *
126  * @bo: The buffer object to evict
127  * @placement: Possible destination(s) for evicted BO
128  *
129  * Fill in placement data when ttm_bo_evict() is called
130  */
131 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
132 				struct ttm_placement *placement)
133 {
134 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
135 	struct amdgpu_bo *abo;
136 	static const struct ttm_place placements = {
137 		.fpfn = 0,
138 		.lpfn = 0,
139 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
140 	};
141 
142 	/* Don't handle scatter gather BOs */
143 	if (bo->type == ttm_bo_type_sg) {
144 		placement->num_placement = 0;
145 		placement->num_busy_placement = 0;
146 		return;
147 	}
148 
149 	/* Object isn't an AMDGPU object so ignore */
150 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
151 		placement->placement = &placements;
152 		placement->busy_placement = &placements;
153 		placement->num_placement = 1;
154 		placement->num_busy_placement = 1;
155 		return;
156 	}
157 
158 	abo = ttm_to_amdgpu_bo(bo);
159 	switch (bo->mem.mem_type) {
160 	case AMDGPU_PL_GDS:
161 	case AMDGPU_PL_GWS:
162 	case AMDGPU_PL_OA:
163 		placement->num_placement = 0;
164 		placement->num_busy_placement = 0;
165 		return;
166 
167 	case TTM_PL_VRAM:
168 		if (!adev->mman.buffer_funcs_enabled) {
169 			/* Move to system memory */
170 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
171 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
172 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
173 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
174 
175 			/* Try evicting to the CPU inaccessible part of VRAM
176 			 * first, but only set GTT as busy placement, so this
177 			 * BO will be evicted to GTT rather than causing other
178 			 * BOs to be evicted from VRAM
179 			 */
180 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
181 							 AMDGPU_GEM_DOMAIN_GTT);
182 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
183 			abo->placements[0].lpfn = 0;
184 			abo->placement.busy_placement = &abo->placements[1];
185 			abo->placement.num_busy_placement = 1;
186 		} else {
187 			/* Move to GTT memory */
188 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
189 		}
190 		break;
191 	case TTM_PL_TT:
192 	default:
193 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
194 		break;
195 	}
196 	*placement = abo->placement;
197 }
198 
199 /**
200  * amdgpu_verify_access - Verify access for a mmap call
201  *
202  * @bo:	The buffer object to map
203  * @filp: The file pointer from the process performing the mmap
204  *
205  * This is called by ttm_bo_mmap() to verify whether a process
206  * has the right to mmap a BO to their process space.
207  */
208 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
209 {
210 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
211 
212 	/*
213 	 * Don't verify access for KFD BOs. They don't have a GEM
214 	 * object associated with them.
215 	 */
216 	if (abo->kfd_bo)
217 		return 0;
218 
219 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
220 		return -EPERM;
221 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
222 					  filp->private_data);
223 }
224 
225 /**
226  * amdgpu_move_null - Register memory for a buffer object
227  *
228  * @bo: The bo to assign the memory to
229  * @new_mem: The memory to be assigned.
230  *
231  * Assign the memory from new_mem to the memory of the buffer object bo.
232  */
233 static void amdgpu_move_null(struct ttm_buffer_object *bo,
234 			     struct ttm_mem_reg *new_mem)
235 {
236 	struct ttm_mem_reg *old_mem = &bo->mem;
237 
238 	BUG_ON(old_mem->mm_node != NULL);
239 	*old_mem = *new_mem;
240 	new_mem->mm_node = NULL;
241 }
242 
243 /**
244  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
245  *
246  * @bo: The bo to assign the memory to.
247  * @mm_node: Memory manager node for drm allocator.
248  * @mem: The region where the bo resides.
249  *
250  */
251 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
252 				    struct drm_mm_node *mm_node,
253 				    struct ttm_mem_reg *mem)
254 {
255 	uint64_t addr = 0;
256 
257 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
258 		addr = mm_node->start << PAGE_SHIFT;
259 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
260 						mem->mem_type);
261 	}
262 	return addr;
263 }
264 
265 /**
266  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
267  * @offset. It also modifies the offset to be within the drm_mm_node returned
268  *
269  * @mem: The region where the bo resides.
270  * @offset: The offset that drm_mm_node is used for finding.
271  *
272  */
273 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
274 					       uint64_t *offset)
275 {
276 	struct drm_mm_node *mm_node = mem->mm_node;
277 
278 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
279 		*offset -= (mm_node->size << PAGE_SHIFT);
280 		++mm_node;
281 	}
282 	return mm_node;
283 }
284 
285 /**
286  * amdgpu_ttm_map_buffer - Map memory into the GART windows
287  * @bo: buffer object to map
288  * @mem: memory object to map
289  * @mm_node: drm_mm node object to map
290  * @num_pages: number of pages to map
291  * @offset: offset into @mm_node where to start
292  * @window: which GART window to use
293  * @ring: DMA ring to use for the copy
294  * @tmz: if we should setup a TMZ enabled mapping
295  * @addr: resulting address inside the MC address space
296  *
297  * Setup one of the GART windows to access a specific piece of memory or return
298  * the physical address for local memory.
299  */
300 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
301 				 struct ttm_mem_reg *mem,
302 				 struct drm_mm_node *mm_node,
303 				 unsigned num_pages, uint64_t offset,
304 				 unsigned window, struct amdgpu_ring *ring,
305 				 bool tmz, uint64_t *addr)
306 {
307 	struct amdgpu_device *adev = ring->adev;
308 	struct amdgpu_job *job;
309 	unsigned num_dw, num_bytes;
310 	struct dma_fence *fence;
311 	uint64_t src_addr, dst_addr;
312 	void *cpu_addr;
313 	uint64_t flags;
314 	unsigned int i;
315 	int r;
316 
317 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
318 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
319 
320 	/* Map only what can't be accessed directly */
321 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
322 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
323 		return 0;
324 	}
325 
326 	*addr = adev->gmc.gart_start;
327 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
328 		AMDGPU_GPU_PAGE_SIZE;
329 	*addr += offset & ~PAGE_MASK;
330 
331 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
332 	num_bytes = num_pages * 8;
333 
334 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
335 				     AMDGPU_IB_POOL_DELAYED, &job);
336 	if (r)
337 		return r;
338 
339 	src_addr = num_dw * 4;
340 	src_addr += job->ibs[0].gpu_addr;
341 
342 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
343 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
344 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
345 				dst_addr, num_bytes, false);
346 
347 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
348 	WARN_ON(job->ibs[0].length_dw > num_dw);
349 
350 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
351 	if (tmz)
352 		flags |= AMDGPU_PTE_TMZ;
353 
354 	cpu_addr = &job->ibs[0].ptr[num_dw];
355 
356 	if (mem->mem_type == TTM_PL_TT) {
357 		struct ttm_dma_tt *dma;
358 		dma_addr_t *dma_address;
359 
360 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
361 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
362 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
363 				    cpu_addr);
364 		if (r)
365 			goto error_free;
366 	} else {
367 		dma_addr_t dma_address;
368 
369 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
370 		dma_address += adev->vm_manager.vram_base_offset;
371 
372 		for (i = 0; i < num_pages; ++i) {
373 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
374 					    &dma_address, flags, cpu_addr);
375 			if (r)
376 				goto error_free;
377 
378 			dma_address += PAGE_SIZE;
379 		}
380 	}
381 
382 	r = amdgpu_job_submit(job, &adev->mman.entity,
383 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
384 	if (r)
385 		goto error_free;
386 
387 	dma_fence_put(fence);
388 
389 	return r;
390 
391 error_free:
392 	amdgpu_job_free(job);
393 	return r;
394 }
395 
396 /**
397  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
398  * @adev: amdgpu device
399  * @src: buffer/address where to read from
400  * @dst: buffer/address where to write to
401  * @size: number of bytes to copy
402  * @tmz: if a secure copy should be used
403  * @resv: resv object to sync to
404  * @f: Returns the last fence if multiple jobs are submitted.
405  *
406  * The function copies @size bytes from {src->mem + src->offset} to
407  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
408  * move and different for a BO to BO copy.
409  *
410  */
411 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
412 			       const struct amdgpu_copy_mem *src,
413 			       const struct amdgpu_copy_mem *dst,
414 			       uint64_t size, bool tmz,
415 			       struct dma_resv *resv,
416 			       struct dma_fence **f)
417 {
418 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
419 					AMDGPU_GPU_PAGE_SIZE);
420 
421 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
422 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
423 	struct drm_mm_node *src_mm, *dst_mm;
424 	struct dma_fence *fence = NULL;
425 	int r = 0;
426 
427 	if (!adev->mman.buffer_funcs_enabled) {
428 		DRM_ERROR("Trying to move memory with ring turned off.\n");
429 		return -EINVAL;
430 	}
431 
432 	src_offset = src->offset;
433 	if (src->mem->mm_node) {
434 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
435 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
436 	} else {
437 		src_mm = NULL;
438 		src_node_size = ULLONG_MAX;
439 	}
440 
441 	dst_offset = dst->offset;
442 	if (dst->mem->mm_node) {
443 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
444 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
445 	} else {
446 		dst_mm = NULL;
447 		dst_node_size = ULLONG_MAX;
448 	}
449 
450 	mutex_lock(&adev->mman.gtt_window_lock);
451 
452 	while (size) {
453 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
454 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
455 		struct dma_fence *next;
456 		uint32_t cur_size;
457 		uint64_t from, to;
458 
459 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
460 		 * begins at an offset, then adjust the size accordingly
461 		 */
462 		cur_size = max(src_page_offset, dst_page_offset);
463 		cur_size = min(min3(src_node_size, dst_node_size, size),
464 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
465 
466 		/* Map src to window 0 and dst to window 1. */
467 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
468 					  PFN_UP(cur_size + src_page_offset),
469 					  src_offset, 0, ring, tmz, &from);
470 		if (r)
471 			goto error;
472 
473 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
474 					  PFN_UP(cur_size + dst_page_offset),
475 					  dst_offset, 1, ring, tmz, &to);
476 		if (r)
477 			goto error;
478 
479 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
480 				       resv, &next, false, true, tmz);
481 		if (r)
482 			goto error;
483 
484 		dma_fence_put(fence);
485 		fence = next;
486 
487 		size -= cur_size;
488 		if (!size)
489 			break;
490 
491 		src_node_size -= cur_size;
492 		if (!src_node_size) {
493 			++src_mm;
494 			src_node_size = src_mm->size << PAGE_SHIFT;
495 			src_offset = 0;
496 		} else {
497 			src_offset += cur_size;
498 		}
499 
500 		dst_node_size -= cur_size;
501 		if (!dst_node_size) {
502 			++dst_mm;
503 			dst_node_size = dst_mm->size << PAGE_SHIFT;
504 			dst_offset = 0;
505 		} else {
506 			dst_offset += cur_size;
507 		}
508 	}
509 error:
510 	mutex_unlock(&adev->mman.gtt_window_lock);
511 	if (f)
512 		*f = dma_fence_get(fence);
513 	dma_fence_put(fence);
514 	return r;
515 }
516 
517 /**
518  * amdgpu_move_blit - Copy an entire buffer to another buffer
519  *
520  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
521  * help move buffers to and from VRAM.
522  */
523 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
524 			    bool evict, bool no_wait_gpu,
525 			    struct ttm_mem_reg *new_mem,
526 			    struct ttm_mem_reg *old_mem)
527 {
528 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
529 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
530 	struct amdgpu_copy_mem src, dst;
531 	struct dma_fence *fence = NULL;
532 	int r;
533 
534 	src.bo = bo;
535 	dst.bo = bo;
536 	src.mem = old_mem;
537 	dst.mem = new_mem;
538 	src.offset = 0;
539 	dst.offset = 0;
540 
541 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
542 				       new_mem->num_pages << PAGE_SHIFT,
543 				       amdgpu_bo_encrypted(abo),
544 				       bo->base.resv, &fence);
545 	if (r)
546 		goto error;
547 
548 	/* clear the space being freed */
549 	if (old_mem->mem_type == TTM_PL_VRAM &&
550 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
551 		struct dma_fence *wipe_fence = NULL;
552 
553 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
554 				       NULL, &wipe_fence);
555 		if (r) {
556 			goto error;
557 		} else if (wipe_fence) {
558 			dma_fence_put(fence);
559 			fence = wipe_fence;
560 		}
561 	}
562 
563 	/* Always block for VM page tables before committing the new location */
564 	if (bo->type == ttm_bo_type_kernel)
565 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
566 	else
567 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
568 	dma_fence_put(fence);
569 	return r;
570 
571 error:
572 	if (fence)
573 		dma_fence_wait(fence, false);
574 	dma_fence_put(fence);
575 	return r;
576 }
577 
578 /**
579  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
580  *
581  * Called by amdgpu_bo_move().
582  */
583 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
584 				struct ttm_operation_ctx *ctx,
585 				struct ttm_mem_reg *new_mem)
586 {
587 	struct ttm_mem_reg *old_mem = &bo->mem;
588 	struct ttm_mem_reg tmp_mem;
589 	struct ttm_place placements;
590 	struct ttm_placement placement;
591 	int r;
592 
593 	/* create space/pages for new_mem in GTT space */
594 	tmp_mem = *new_mem;
595 	tmp_mem.mm_node = NULL;
596 	placement.num_placement = 1;
597 	placement.placement = &placements;
598 	placement.num_busy_placement = 1;
599 	placement.busy_placement = &placements;
600 	placements.fpfn = 0;
601 	placements.lpfn = 0;
602 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
603 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
604 	if (unlikely(r)) {
605 		pr_err("Failed to find GTT space for blit from VRAM\n");
606 		return r;
607 	}
608 
609 	/* set caching flags */
610 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
611 	if (unlikely(r)) {
612 		goto out_cleanup;
613 	}
614 
615 	/* Bind the memory to the GTT space */
616 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
617 	if (unlikely(r)) {
618 		goto out_cleanup;
619 	}
620 
621 	/* blit VRAM to GTT */
622 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
623 	if (unlikely(r)) {
624 		goto out_cleanup;
625 	}
626 
627 	/* move BO (in tmp_mem) to new_mem */
628 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
629 out_cleanup:
630 	ttm_bo_mem_put(bo, &tmp_mem);
631 	return r;
632 }
633 
634 /**
635  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
636  *
637  * Called by amdgpu_bo_move().
638  */
639 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
640 				struct ttm_operation_ctx *ctx,
641 				struct ttm_mem_reg *new_mem)
642 {
643 	struct ttm_mem_reg *old_mem = &bo->mem;
644 	struct ttm_mem_reg tmp_mem;
645 	struct ttm_placement placement;
646 	struct ttm_place placements;
647 	int r;
648 
649 	/* make space in GTT for old_mem buffer */
650 	tmp_mem = *new_mem;
651 	tmp_mem.mm_node = NULL;
652 	placement.num_placement = 1;
653 	placement.placement = &placements;
654 	placement.num_busy_placement = 1;
655 	placement.busy_placement = &placements;
656 	placements.fpfn = 0;
657 	placements.lpfn = 0;
658 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
659 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
660 	if (unlikely(r)) {
661 		pr_err("Failed to find GTT space for blit to VRAM\n");
662 		return r;
663 	}
664 
665 	/* move/bind old memory to GTT space */
666 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
667 	if (unlikely(r)) {
668 		goto out_cleanup;
669 	}
670 
671 	/* copy to VRAM */
672 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
673 	if (unlikely(r)) {
674 		goto out_cleanup;
675 	}
676 out_cleanup:
677 	ttm_bo_mem_put(bo, &tmp_mem);
678 	return r;
679 }
680 
681 /**
682  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
683  *
684  * Called by amdgpu_bo_move()
685  */
686 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
687 			       struct ttm_mem_reg *mem)
688 {
689 	struct drm_mm_node *nodes = mem->mm_node;
690 
691 	if (mem->mem_type == TTM_PL_SYSTEM ||
692 	    mem->mem_type == TTM_PL_TT)
693 		return true;
694 	if (mem->mem_type != TTM_PL_VRAM)
695 		return false;
696 
697 	/* ttm_mem_reg_ioremap only supports contiguous memory */
698 	if (nodes->size != mem->num_pages)
699 		return false;
700 
701 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
702 		<= adev->gmc.visible_vram_size;
703 }
704 
705 /**
706  * amdgpu_bo_move - Move a buffer object to a new memory location
707  *
708  * Called by ttm_bo_handle_move_mem()
709  */
710 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
711 			  struct ttm_operation_ctx *ctx,
712 			  struct ttm_mem_reg *new_mem)
713 {
714 	struct amdgpu_device *adev;
715 	struct amdgpu_bo *abo;
716 	struct ttm_mem_reg *old_mem = &bo->mem;
717 	int r;
718 
719 	/* Can't move a pinned BO */
720 	abo = ttm_to_amdgpu_bo(bo);
721 	if (WARN_ON_ONCE(abo->pin_count > 0))
722 		return -EINVAL;
723 
724 	adev = amdgpu_ttm_adev(bo->bdev);
725 
726 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
727 		amdgpu_move_null(bo, new_mem);
728 		return 0;
729 	}
730 	if ((old_mem->mem_type == TTM_PL_TT &&
731 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
732 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
733 	     new_mem->mem_type == TTM_PL_TT)) {
734 		/* bind is enough */
735 		amdgpu_move_null(bo, new_mem);
736 		return 0;
737 	}
738 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
739 	    old_mem->mem_type == AMDGPU_PL_GWS ||
740 	    old_mem->mem_type == AMDGPU_PL_OA ||
741 	    new_mem->mem_type == AMDGPU_PL_GDS ||
742 	    new_mem->mem_type == AMDGPU_PL_GWS ||
743 	    new_mem->mem_type == AMDGPU_PL_OA) {
744 		/* Nothing to save here */
745 		amdgpu_move_null(bo, new_mem);
746 		return 0;
747 	}
748 
749 	if (!adev->mman.buffer_funcs_enabled) {
750 		r = -ENODEV;
751 		goto memcpy;
752 	}
753 
754 	if (old_mem->mem_type == TTM_PL_VRAM &&
755 	    new_mem->mem_type == TTM_PL_SYSTEM) {
756 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
757 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
758 		   new_mem->mem_type == TTM_PL_VRAM) {
759 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
760 	} else {
761 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
762 				     new_mem, old_mem);
763 	}
764 
765 	if (r) {
766 memcpy:
767 		/* Check that all memory is CPU accessible */
768 		if (!amdgpu_mem_visible(adev, old_mem) ||
769 		    !amdgpu_mem_visible(adev, new_mem)) {
770 			pr_err("Move buffer fallback to memcpy unavailable\n");
771 			return r;
772 		}
773 
774 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
775 		if (r)
776 			return r;
777 	}
778 
779 	if (bo->type == ttm_bo_type_device &&
780 	    new_mem->mem_type == TTM_PL_VRAM &&
781 	    old_mem->mem_type != TTM_PL_VRAM) {
782 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
783 		 * accesses the BO after it's moved.
784 		 */
785 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
786 	}
787 
788 	/* update statistics */
789 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
790 	return 0;
791 }
792 
793 /**
794  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
795  *
796  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
797  */
798 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
799 {
800 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
801 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
802 	struct drm_mm_node *mm_node = mem->mm_node;
803 
804 	mem->bus.addr = NULL;
805 	mem->bus.offset = 0;
806 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
807 	mem->bus.base = 0;
808 	mem->bus.is_iomem = false;
809 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
810 		return -EINVAL;
811 	switch (mem->mem_type) {
812 	case TTM_PL_SYSTEM:
813 		/* system memory */
814 		return 0;
815 	case TTM_PL_TT:
816 		break;
817 	case TTM_PL_VRAM:
818 		mem->bus.offset = mem->start << PAGE_SHIFT;
819 		/* check if it's visible */
820 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
821 			return -EINVAL;
822 		/* Only physically contiguous buffers apply. In a contiguous
823 		 * buffer, size of the first mm_node would match the number of
824 		 * pages in ttm_mem_reg.
825 		 */
826 		if (adev->mman.aper_base_kaddr &&
827 		    (mm_node->size == mem->num_pages))
828 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
829 					mem->bus.offset;
830 
831 		mem->bus.base = adev->gmc.aper_base;
832 		mem->bus.is_iomem = true;
833 		break;
834 	default:
835 		return -EINVAL;
836 	}
837 	return 0;
838 }
839 
840 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
841 					   unsigned long page_offset)
842 {
843 	uint64_t offset = (page_offset << PAGE_SHIFT);
844 	struct drm_mm_node *mm;
845 
846 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
847 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
848 		(offset >> PAGE_SHIFT);
849 }
850 
851 /**
852  * amdgpu_ttm_domain_start - Returns GPU start address
853  * @adev: amdgpu device object
854  * @type: type of the memory
855  *
856  * Returns:
857  * GPU start address of a memory domain
858  */
859 
860 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
861 {
862 	switch (type) {
863 	case TTM_PL_TT:
864 		return adev->gmc.gart_start;
865 	case TTM_PL_VRAM:
866 		return adev->gmc.vram_start;
867 	}
868 
869 	return 0;
870 }
871 
872 /*
873  * TTM backend functions.
874  */
875 struct amdgpu_ttm_tt {
876 	struct ttm_dma_tt	ttm;
877 	struct drm_gem_object	*gobj;
878 	u64			offset;
879 	uint64_t		userptr;
880 	struct task_struct	*usertask;
881 	uint32_t		userflags;
882 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
883 	struct hmm_range	*range;
884 #endif
885 };
886 
887 #ifdef CONFIG_DRM_AMDGPU_USERPTR
888 /**
889  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
890  * memory and start HMM tracking CPU page table update
891  *
892  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
893  * once afterwards to stop HMM tracking
894  */
895 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
896 {
897 	struct ttm_tt *ttm = bo->tbo.ttm;
898 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
899 	unsigned long start = gtt->userptr;
900 	struct vm_area_struct *vma;
901 	struct hmm_range *range;
902 	unsigned long timeout;
903 	struct mm_struct *mm;
904 	unsigned long i;
905 	int r = 0;
906 
907 	mm = bo->notifier.mm;
908 	if (unlikely(!mm)) {
909 		DRM_DEBUG_DRIVER("BO is not registered?\n");
910 		return -EFAULT;
911 	}
912 
913 	/* Another get_user_pages is running at the same time?? */
914 	if (WARN_ON(gtt->range))
915 		return -EFAULT;
916 
917 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
918 		return -ESRCH;
919 
920 	range = kzalloc(sizeof(*range), GFP_KERNEL);
921 	if (unlikely(!range)) {
922 		r = -ENOMEM;
923 		goto out;
924 	}
925 	range->notifier = &bo->notifier;
926 	range->start = bo->notifier.interval_tree.start;
927 	range->end = bo->notifier.interval_tree.last + 1;
928 	range->default_flags = HMM_PFN_REQ_FAULT;
929 	if (!amdgpu_ttm_tt_is_readonly(ttm))
930 		range->default_flags |= HMM_PFN_REQ_WRITE;
931 
932 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
933 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
934 	if (unlikely(!range->hmm_pfns)) {
935 		r = -ENOMEM;
936 		goto out_free_ranges;
937 	}
938 
939 	mmap_read_lock(mm);
940 	vma = find_vma(mm, start);
941 	if (unlikely(!vma || start < vma->vm_start)) {
942 		r = -EFAULT;
943 		goto out_unlock;
944 	}
945 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
946 		vma->vm_file)) {
947 		r = -EPERM;
948 		goto out_unlock;
949 	}
950 	mmap_read_unlock(mm);
951 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
952 
953 retry:
954 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
955 
956 	mmap_read_lock(mm);
957 	r = hmm_range_fault(range);
958 	mmap_read_unlock(mm);
959 	if (unlikely(r)) {
960 		/*
961 		 * FIXME: This timeout should encompass the retry from
962 		 * mmu_interval_read_retry() as well.
963 		 */
964 		if (r == -EBUSY && !time_after(jiffies, timeout))
965 			goto retry;
966 		goto out_free_pfns;
967 	}
968 
969 	/*
970 	 * Due to default_flags, all pages are HMM_PFN_VALID or
971 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
972 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
973 	 */
974 	for (i = 0; i < ttm->num_pages; i++)
975 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
976 
977 	gtt->range = range;
978 	mmput(mm);
979 
980 	return 0;
981 
982 out_unlock:
983 	mmap_read_unlock(mm);
984 out_free_pfns:
985 	kvfree(range->hmm_pfns);
986 out_free_ranges:
987 	kfree(range);
988 out:
989 	mmput(mm);
990 	return r;
991 }
992 
993 /**
994  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
995  * Check if the pages backing this ttm range have been invalidated
996  *
997  * Returns: true if pages are still valid
998  */
999 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
1000 {
1001 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1002 	bool r = false;
1003 
1004 	if (!gtt || !gtt->userptr)
1005 		return false;
1006 
1007 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
1008 		gtt->userptr, ttm->num_pages);
1009 
1010 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
1011 		"No user pages to check\n");
1012 
1013 	if (gtt->range) {
1014 		/*
1015 		 * FIXME: Must always hold notifier_lock for this, and must
1016 		 * not ignore the return code.
1017 		 */
1018 		r = mmu_interval_read_retry(gtt->range->notifier,
1019 					 gtt->range->notifier_seq);
1020 		kvfree(gtt->range->hmm_pfns);
1021 		kfree(gtt->range);
1022 		gtt->range = NULL;
1023 	}
1024 
1025 	return !r;
1026 }
1027 #endif
1028 
1029 /**
1030  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
1031  *
1032  * Called by amdgpu_cs_list_validate(). This creates the page list
1033  * that backs user memory and will ultimately be mapped into the device
1034  * address space.
1035  */
1036 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
1037 {
1038 	unsigned long i;
1039 
1040 	for (i = 0; i < ttm->num_pages; ++i)
1041 		ttm->pages[i] = pages ? pages[i] : NULL;
1042 }
1043 
1044 /**
1045  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
1046  *
1047  * Called by amdgpu_ttm_backend_bind()
1048  **/
1049 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
1050 {
1051 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1052 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1053 	int r;
1054 
1055 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1056 	enum dma_data_direction direction = write ?
1057 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1058 
1059 	/* Allocate an SG array and squash pages into it */
1060 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1061 				      ttm->num_pages << PAGE_SHIFT,
1062 				      GFP_KERNEL);
1063 	if (r)
1064 		goto release_sg;
1065 
1066 	/* Map SG to device */
1067 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1068 	if (r)
1069 		goto release_sg;
1070 
1071 	/* convert SG to linear array of pages and dma addresses */
1072 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1073 					 gtt->ttm.dma_address, ttm->num_pages);
1074 
1075 	return 0;
1076 
1077 release_sg:
1078 	kfree(ttm->sg);
1079 	ttm->sg = NULL;
1080 	return r;
1081 }
1082 
1083 /**
1084  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1085  */
1086 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1087 {
1088 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1089 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1090 
1091 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1092 	enum dma_data_direction direction = write ?
1093 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1094 
1095 	/* double check that we don't free the table twice */
1096 	if (!ttm->sg->sgl)
1097 		return;
1098 
1099 	/* unmap the pages mapped to the device */
1100 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1101 	sg_free_table(ttm->sg);
1102 
1103 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1104 	if (gtt->range) {
1105 		unsigned long i;
1106 
1107 		for (i = 0; i < ttm->num_pages; i++) {
1108 			if (ttm->pages[i] !=
1109 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1110 				break;
1111 		}
1112 
1113 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1114 	}
1115 #endif
1116 }
1117 
1118 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1119 				struct ttm_buffer_object *tbo,
1120 				uint64_t flags)
1121 {
1122 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1123 	struct ttm_tt *ttm = tbo->ttm;
1124 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125 	int r;
1126 
1127 	if (amdgpu_bo_encrypted(abo))
1128 		flags |= AMDGPU_PTE_TMZ;
1129 
1130 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1131 		uint64_t page_idx = 1;
1132 
1133 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1134 				ttm->pages, gtt->ttm.dma_address, flags);
1135 		if (r)
1136 			goto gart_bind_fail;
1137 
1138 		/* The memory type of the first page defaults to UC. Now
1139 		 * modify the memory type to NC from the second page of
1140 		 * the BO onward.
1141 		 */
1142 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1143 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1144 
1145 		r = amdgpu_gart_bind(adev,
1146 				gtt->offset + (page_idx << PAGE_SHIFT),
1147 				ttm->num_pages - page_idx,
1148 				&ttm->pages[page_idx],
1149 				&(gtt->ttm.dma_address[page_idx]), flags);
1150 	} else {
1151 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1152 				     ttm->pages, gtt->ttm.dma_address, flags);
1153 	}
1154 
1155 gart_bind_fail:
1156 	if (r)
1157 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1158 			  ttm->num_pages, gtt->offset);
1159 
1160 	return r;
1161 }
1162 
1163 /**
1164  * amdgpu_ttm_backend_bind - Bind GTT memory
1165  *
1166  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1167  * This handles binding GTT memory to the device address space.
1168  */
1169 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1170 				   struct ttm_mem_reg *bo_mem)
1171 {
1172 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1173 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1174 	uint64_t flags;
1175 	int r = 0;
1176 
1177 	if (gtt->userptr) {
1178 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1179 		if (r) {
1180 			DRM_ERROR("failed to pin userptr\n");
1181 			return r;
1182 		}
1183 	}
1184 	if (!ttm->num_pages) {
1185 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1186 		     ttm->num_pages, bo_mem, ttm);
1187 	}
1188 
1189 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1190 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1191 	    bo_mem->mem_type == AMDGPU_PL_OA)
1192 		return -EINVAL;
1193 
1194 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1195 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1196 		return 0;
1197 	}
1198 
1199 	/* compute PTE flags relevant to this BO memory */
1200 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1201 
1202 	/* bind pages into GART page tables */
1203 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1204 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1205 		ttm->pages, gtt->ttm.dma_address, flags);
1206 
1207 	if (r)
1208 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1209 			  ttm->num_pages, gtt->offset);
1210 	return r;
1211 }
1212 
1213 /**
1214  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1215  */
1216 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1217 {
1218 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1219 	struct ttm_operation_ctx ctx = { false, false };
1220 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1221 	struct ttm_mem_reg tmp;
1222 	struct ttm_placement placement;
1223 	struct ttm_place placements;
1224 	uint64_t addr, flags;
1225 	int r;
1226 
1227 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1228 		return 0;
1229 
1230 	addr = amdgpu_gmc_agp_addr(bo);
1231 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1232 		bo->mem.start = addr >> PAGE_SHIFT;
1233 	} else {
1234 
1235 		/* allocate GART space */
1236 		tmp = bo->mem;
1237 		tmp.mm_node = NULL;
1238 		placement.num_placement = 1;
1239 		placement.placement = &placements;
1240 		placement.num_busy_placement = 1;
1241 		placement.busy_placement = &placements;
1242 		placements.fpfn = 0;
1243 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1244 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1245 			TTM_PL_FLAG_TT;
1246 
1247 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1248 		if (unlikely(r))
1249 			return r;
1250 
1251 		/* compute PTE flags for this buffer object */
1252 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1253 
1254 		/* Bind pages */
1255 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1256 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1257 		if (unlikely(r)) {
1258 			ttm_bo_mem_put(bo, &tmp);
1259 			return r;
1260 		}
1261 
1262 		ttm_bo_mem_put(bo, &bo->mem);
1263 		bo->mem = tmp;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 /**
1270  * amdgpu_ttm_recover_gart - Rebind GTT pages
1271  *
1272  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1273  * rebind GTT pages during a GPU reset.
1274  */
1275 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1276 {
1277 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1278 	uint64_t flags;
1279 	int r;
1280 
1281 	if (!tbo->ttm)
1282 		return 0;
1283 
1284 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1285 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1286 
1287 	return r;
1288 }
1289 
1290 /**
1291  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1292  *
1293  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1294  * ttm_tt_destroy().
1295  */
1296 static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1297 {
1298 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1299 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1300 	int r;
1301 
1302 	/* if the pages have userptr pinning then clear that first */
1303 	if (gtt->userptr)
1304 		amdgpu_ttm_tt_unpin_userptr(ttm);
1305 
1306 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1307 		return;
1308 
1309 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1310 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1311 	if (r)
1312 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1313 			  gtt->ttm.ttm.num_pages, gtt->offset);
1314 }
1315 
1316 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1317 {
1318 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1319 
1320 	if (gtt->usertask)
1321 		put_task_struct(gtt->usertask);
1322 
1323 	ttm_dma_tt_fini(&gtt->ttm);
1324 	kfree(gtt);
1325 }
1326 
1327 static struct ttm_backend_func amdgpu_backend_func = {
1328 	.bind = &amdgpu_ttm_backend_bind,
1329 	.unbind = &amdgpu_ttm_backend_unbind,
1330 	.destroy = &amdgpu_ttm_backend_destroy,
1331 };
1332 
1333 /**
1334  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1335  *
1336  * @bo: The buffer object to create a GTT ttm_tt object around
1337  *
1338  * Called by ttm_tt_create().
1339  */
1340 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1341 					   uint32_t page_flags)
1342 {
1343 	struct amdgpu_ttm_tt *gtt;
1344 
1345 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1346 	if (gtt == NULL) {
1347 		return NULL;
1348 	}
1349 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1350 	gtt->gobj = &bo->base;
1351 
1352 	/* allocate space for the uninitialized page entries */
1353 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1354 		kfree(gtt);
1355 		return NULL;
1356 	}
1357 	return &gtt->ttm.ttm;
1358 }
1359 
1360 /**
1361  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1362  *
1363  * Map the pages of a ttm_tt object to an address space visible
1364  * to the underlying device.
1365  */
1366 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1367 			struct ttm_operation_ctx *ctx)
1368 {
1369 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1370 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1371 
1372 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1373 	if (gtt && gtt->userptr) {
1374 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1375 		if (!ttm->sg)
1376 			return -ENOMEM;
1377 
1378 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1379 		ttm->state = tt_unbound;
1380 		return 0;
1381 	}
1382 
1383 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1384 		if (!ttm->sg) {
1385 			struct dma_buf_attachment *attach;
1386 			struct sg_table *sgt;
1387 
1388 			attach = gtt->gobj->import_attach;
1389 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1390 			if (IS_ERR(sgt))
1391 				return PTR_ERR(sgt);
1392 
1393 			ttm->sg = sgt;
1394 		}
1395 
1396 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1397 						 gtt->ttm.dma_address,
1398 						 ttm->num_pages);
1399 		ttm->state = tt_unbound;
1400 		return 0;
1401 	}
1402 
1403 #ifdef CONFIG_SWIOTLB
1404 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1405 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1406 	}
1407 #endif
1408 
1409 	/* fall back to generic helper to populate the page array
1410 	 * and map them to the device */
1411 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1412 }
1413 
1414 /**
1415  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1416  *
1417  * Unmaps pages of a ttm_tt object from the device address space and
1418  * unpopulates the page array backing it.
1419  */
1420 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1421 {
1422 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423 	struct amdgpu_device *adev;
1424 
1425 	if (gtt && gtt->userptr) {
1426 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1427 		kfree(ttm->sg);
1428 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1429 		return;
1430 	}
1431 
1432 	if (ttm->sg && gtt->gobj->import_attach) {
1433 		struct dma_buf_attachment *attach;
1434 
1435 		attach = gtt->gobj->import_attach;
1436 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1437 		ttm->sg = NULL;
1438 		return;
1439 	}
1440 
1441 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1442 		return;
1443 
1444 	adev = amdgpu_ttm_adev(ttm->bdev);
1445 
1446 #ifdef CONFIG_SWIOTLB
1447 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1448 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1449 		return;
1450 	}
1451 #endif
1452 
1453 	/* fall back to generic helper to unmap and unpopulate array */
1454 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1455 }
1456 
1457 /**
1458  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1459  * task
1460  *
1461  * @ttm: The ttm_tt object to bind this userptr object to
1462  * @addr:  The address in the current tasks VM space to use
1463  * @flags: Requirements of userptr object.
1464  *
1465  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1466  * to current task
1467  */
1468 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1469 			      uint32_t flags)
1470 {
1471 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1472 
1473 	if (gtt == NULL)
1474 		return -EINVAL;
1475 
1476 	gtt->userptr = addr;
1477 	gtt->userflags = flags;
1478 
1479 	if (gtt->usertask)
1480 		put_task_struct(gtt->usertask);
1481 	gtt->usertask = current->group_leader;
1482 	get_task_struct(gtt->usertask);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1489  */
1490 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1491 {
1492 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1493 
1494 	if (gtt == NULL)
1495 		return NULL;
1496 
1497 	if (gtt->usertask == NULL)
1498 		return NULL;
1499 
1500 	return gtt->usertask->mm;
1501 }
1502 
1503 /**
1504  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1505  * address range for the current task.
1506  *
1507  */
1508 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1509 				  unsigned long end)
1510 {
1511 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1512 	unsigned long size;
1513 
1514 	if (gtt == NULL || !gtt->userptr)
1515 		return false;
1516 
1517 	/* Return false if no part of the ttm_tt object lies within
1518 	 * the range
1519 	 */
1520 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1521 	if (gtt->userptr > end || gtt->userptr + size <= start)
1522 		return false;
1523 
1524 	return true;
1525 }
1526 
1527 /**
1528  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1529  */
1530 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1531 {
1532 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1533 
1534 	if (gtt == NULL || !gtt->userptr)
1535 		return false;
1536 
1537 	return true;
1538 }
1539 
1540 /**
1541  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1542  */
1543 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1544 {
1545 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1546 
1547 	if (gtt == NULL)
1548 		return false;
1549 
1550 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1551 }
1552 
1553 /**
1554  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1555  *
1556  * @ttm: The ttm_tt object to compute the flags for
1557  * @mem: The memory registry backing this ttm_tt object
1558  *
1559  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1560  */
1561 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1562 {
1563 	uint64_t flags = 0;
1564 
1565 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1566 		flags |= AMDGPU_PTE_VALID;
1567 
1568 	if (mem && mem->mem_type == TTM_PL_TT) {
1569 		flags |= AMDGPU_PTE_SYSTEM;
1570 
1571 		if (ttm->caching_state == tt_cached)
1572 			flags |= AMDGPU_PTE_SNOOPED;
1573 	}
1574 
1575 	return flags;
1576 }
1577 
1578 /**
1579  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1580  *
1581  * @ttm: The ttm_tt object to compute the flags for
1582  * @mem: The memory registry backing this ttm_tt object
1583 
1584  * Figure out the flags to use for a VM PTE (Page Table Entry).
1585  */
1586 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1587 				 struct ttm_mem_reg *mem)
1588 {
1589 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1590 
1591 	flags |= adev->gart.gart_pte_flags;
1592 	flags |= AMDGPU_PTE_READABLE;
1593 
1594 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1595 		flags |= AMDGPU_PTE_WRITEABLE;
1596 
1597 	return flags;
1598 }
1599 
1600 /**
1601  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1602  * object.
1603  *
1604  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1605  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1606  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1607  * used to clean out a memory space.
1608  */
1609 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1610 					    const struct ttm_place *place)
1611 {
1612 	unsigned long num_pages = bo->mem.num_pages;
1613 	struct drm_mm_node *node = bo->mem.mm_node;
1614 	struct dma_resv_list *flist;
1615 	struct dma_fence *f;
1616 	int i;
1617 
1618 	if (bo->type == ttm_bo_type_kernel &&
1619 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1620 		return false;
1621 
1622 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1623 	 * If true, then return false as any KFD process needs all its BOs to
1624 	 * be resident to run successfully
1625 	 */
1626 	flist = dma_resv_get_list(bo->base.resv);
1627 	if (flist) {
1628 		for (i = 0; i < flist->shared_count; ++i) {
1629 			f = rcu_dereference_protected(flist->shared[i],
1630 				dma_resv_held(bo->base.resv));
1631 			if (amdkfd_fence_check_mm(f, current->mm))
1632 				return false;
1633 		}
1634 	}
1635 
1636 	switch (bo->mem.mem_type) {
1637 	case TTM_PL_TT:
1638 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1639 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1640 			return false;
1641 		return true;
1642 
1643 	case TTM_PL_VRAM:
1644 		/* Check each drm MM node individually */
1645 		while (num_pages) {
1646 			if (place->fpfn < (node->start + node->size) &&
1647 			    !(place->lpfn && place->lpfn <= node->start))
1648 				return true;
1649 
1650 			num_pages -= node->size;
1651 			++node;
1652 		}
1653 		return false;
1654 
1655 	default:
1656 		break;
1657 	}
1658 
1659 	return ttm_bo_eviction_valuable(bo, place);
1660 }
1661 
1662 /**
1663  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1664  *
1665  * @bo:  The buffer object to read/write
1666  * @offset:  Offset into buffer object
1667  * @buf:  Secondary buffer to write/read from
1668  * @len: Length in bytes of access
1669  * @write:  true if writing
1670  *
1671  * This is used to access VRAM that backs a buffer object via MMIO
1672  * access for debugging purposes.
1673  */
1674 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1675 				    unsigned long offset,
1676 				    void *buf, int len, int write)
1677 {
1678 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1679 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1680 	struct drm_mm_node *nodes;
1681 	uint32_t value = 0;
1682 	int ret = 0;
1683 	uint64_t pos;
1684 	unsigned long flags;
1685 
1686 	if (bo->mem.mem_type != TTM_PL_VRAM)
1687 		return -EIO;
1688 
1689 	pos = offset;
1690 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1691 	pos += (nodes->start << PAGE_SHIFT);
1692 
1693 	while (len && pos < adev->gmc.mc_vram_size) {
1694 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1695 		uint64_t bytes = 4 - (pos & 3);
1696 		uint32_t shift = (pos & 3) * 8;
1697 		uint32_t mask = 0xffffffff << shift;
1698 
1699 		if (len < bytes) {
1700 			mask &= 0xffffffff >> (bytes - len) * 8;
1701 			bytes = len;
1702 		}
1703 
1704 		if (mask != 0xffffffff) {
1705 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1706 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1707 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1708 			if (!write || mask != 0xffffffff)
1709 				value = RREG32_NO_KIQ(mmMM_DATA);
1710 			if (write) {
1711 				value &= ~mask;
1712 				value |= (*(uint32_t *)buf << shift) & mask;
1713 				WREG32_NO_KIQ(mmMM_DATA, value);
1714 			}
1715 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1716 			if (!write) {
1717 				value = (value & mask) >> shift;
1718 				memcpy(buf, &value, bytes);
1719 			}
1720 		} else {
1721 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1722 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1723 
1724 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1725 						  bytes, write);
1726 		}
1727 
1728 		ret += bytes;
1729 		buf = (uint8_t *)buf + bytes;
1730 		pos += bytes;
1731 		len -= bytes;
1732 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1733 			++nodes;
1734 			pos = (nodes->start << PAGE_SHIFT);
1735 		}
1736 	}
1737 
1738 	return ret;
1739 }
1740 
1741 static struct ttm_bo_driver amdgpu_bo_driver = {
1742 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1743 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1744 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1745 	.init_mem_type = &amdgpu_init_mem_type,
1746 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1747 	.evict_flags = &amdgpu_evict_flags,
1748 	.move = &amdgpu_bo_move,
1749 	.verify_access = &amdgpu_verify_access,
1750 	.move_notify = &amdgpu_bo_move_notify,
1751 	.release_notify = &amdgpu_bo_release_notify,
1752 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1753 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1754 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1755 	.access_memory = &amdgpu_ttm_access_memory,
1756 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1757 };
1758 
1759 /*
1760  * Firmware Reservation functions
1761  */
1762 /**
1763  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1764  *
1765  * @adev: amdgpu_device pointer
1766  *
1767  * free fw reserved vram if it has been reserved.
1768  */
1769 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1770 {
1771 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1772 		NULL, &adev->fw_vram_usage.va);
1773 }
1774 
1775 /**
1776  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1777  *
1778  * @adev: amdgpu_device pointer
1779  *
1780  * create bo vram reservation from fw.
1781  */
1782 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1783 {
1784 	uint64_t vram_size = adev->gmc.visible_vram_size;
1785 
1786 	adev->fw_vram_usage.va = NULL;
1787 	adev->fw_vram_usage.reserved_bo = NULL;
1788 
1789 	if (adev->fw_vram_usage.size == 0 ||
1790 	    adev->fw_vram_usage.size > vram_size)
1791 		return 0;
1792 
1793 	return amdgpu_bo_create_kernel_at(adev,
1794 					  adev->fw_vram_usage.start_offset,
1795 					  adev->fw_vram_usage.size,
1796 					  AMDGPU_GEM_DOMAIN_VRAM,
1797 					  &adev->fw_vram_usage.reserved_bo,
1798 					  &adev->fw_vram_usage.va);
1799 }
1800 
1801 /*
1802  * Memoy training reservation functions
1803  */
1804 
1805 /**
1806  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1807  *
1808  * @adev: amdgpu_device pointer
1809  *
1810  * free memory training reserved vram if it has been reserved.
1811  */
1812 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1813 {
1814 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1815 
1816 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1817 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1818 	ctx->c2p_bo = NULL;
1819 
1820 	return 0;
1821 }
1822 
1823 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1824 {
1825 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1826 
1827 	memset(ctx, 0, sizeof(*ctx));
1828 
1829 	ctx->c2p_train_data_offset =
1830 		ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M);
1831 	ctx->p2c_train_data_offset =
1832 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1833 	ctx->train_data_size =
1834 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1835 
1836 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1837 			ctx->train_data_size,
1838 			ctx->p2c_train_data_offset,
1839 			ctx->c2p_train_data_offset);
1840 }
1841 
1842 /*
1843  * reserve TMR memory at the top of VRAM which holds
1844  * IP Discovery data and is protected by PSP.
1845  */
1846 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1847 {
1848 	int ret;
1849 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1850 	bool mem_train_support = false;
1851 
1852 	if (!amdgpu_sriov_vf(adev)) {
1853 		ret = amdgpu_mem_train_support(adev);
1854 		if (ret == 1)
1855 			mem_train_support = true;
1856 		else if (ret == -1)
1857 			return -EINVAL;
1858 		else
1859 			DRM_DEBUG("memory training does not support!\n");
1860 	}
1861 
1862 	/*
1863 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1864 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1865 	 *
1866 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1867 	 * discovery data and G6 memory training data respectively
1868 	 */
1869 	adev->discovery_tmr_size =
1870 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1871 	if (!adev->discovery_tmr_size)
1872 		adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1873 
1874 	if (mem_train_support) {
1875 		/* reserve vram for mem train according to TMR location */
1876 		amdgpu_ttm_training_data_block_init(adev);
1877 		ret = amdgpu_bo_create_kernel_at(adev,
1878 					 ctx->c2p_train_data_offset,
1879 					 ctx->train_data_size,
1880 					 AMDGPU_GEM_DOMAIN_VRAM,
1881 					 &ctx->c2p_bo,
1882 					 NULL);
1883 		if (ret) {
1884 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1885 			amdgpu_ttm_training_reserve_vram_fini(adev);
1886 			return ret;
1887 		}
1888 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1889 	}
1890 
1891 	ret = amdgpu_bo_create_kernel_at(adev,
1892 				adev->gmc.real_vram_size - adev->discovery_tmr_size,
1893 				adev->discovery_tmr_size,
1894 				AMDGPU_GEM_DOMAIN_VRAM,
1895 				&adev->discovery_memory,
1896 				NULL);
1897 	if (ret) {
1898 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1899 		amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1900 		return ret;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 /**
1907  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1908  * gtt/vram related fields.
1909  *
1910  * This initializes all of the memory space pools that the TTM layer
1911  * will need such as the GTT space (system memory mapped to the device),
1912  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1913  * can be mapped per VMID.
1914  */
1915 int amdgpu_ttm_init(struct amdgpu_device *adev)
1916 {
1917 	uint64_t gtt_size;
1918 	int r;
1919 	u64 vis_vram_limit;
1920 	void *stolen_vga_buf;
1921 
1922 	mutex_init(&adev->mman.gtt_window_lock);
1923 
1924 	/* No others user of address space so set it to 0 */
1925 	r = ttm_bo_device_init(&adev->mman.bdev,
1926 			       &amdgpu_bo_driver,
1927 			       adev->ddev->anon_inode->i_mapping,
1928 			       adev->ddev->vma_offset_manager,
1929 			       dma_addressing_limited(adev->dev));
1930 	if (r) {
1931 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1932 		return r;
1933 	}
1934 	adev->mman.initialized = true;
1935 
1936 	/* We opt to avoid OOM on system pages allocations */
1937 	adev->mman.bdev.no_retry = true;
1938 
1939 	/* Initialize VRAM pool with all of VRAM divided into pages */
1940 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1941 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1942 	if (r) {
1943 		DRM_ERROR("Failed initializing VRAM heap.\n");
1944 		return r;
1945 	}
1946 
1947 	/* Reduce size of CPU-visible VRAM if requested */
1948 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1949 	if (amdgpu_vis_vram_limit > 0 &&
1950 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1951 		adev->gmc.visible_vram_size = vis_vram_limit;
1952 
1953 	/* Change the size here instead of the init above so only lpfn is affected */
1954 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1955 #ifdef CONFIG_64BIT
1956 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1957 						adev->gmc.visible_vram_size);
1958 #endif
1959 
1960 	/*
1961 	 *The reserved vram for firmware must be pinned to the specified
1962 	 *place on the VRAM, so reserve it early.
1963 	 */
1964 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1965 	if (r) {
1966 		return r;
1967 	}
1968 
1969 	/*
1970 	 * only NAVI10 and onwards ASIC support for IP discovery.
1971 	 * If IP discovery enabled, a block of memory should be
1972 	 * reserved for IP discovey.
1973 	 */
1974 	if (adev->discovery_bin) {
1975 		r = amdgpu_ttm_reserve_tmr(adev);
1976 		if (r)
1977 			return r;
1978 	}
1979 
1980 	/* allocate memory as required for VGA
1981 	 * This is used for VGA emulation and pre-OS scanout buffers to
1982 	 * avoid display artifacts while transitioning between pre-OS
1983 	 * and driver.  */
1984 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1985 				    AMDGPU_GEM_DOMAIN_VRAM,
1986 				    &adev->stolen_vga_memory,
1987 				    NULL, &stolen_vga_buf);
1988 	if (r)
1989 		return r;
1990 
1991 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1992 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1993 
1994 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1995 	 * or whatever the user passed on module init */
1996 	if (amdgpu_gtt_size == -1) {
1997 		struct sysinfo si;
1998 
1999 		si_meminfo(&si);
2000 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
2001 			       adev->gmc.mc_vram_size),
2002 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
2003 	}
2004 	else
2005 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
2006 
2007 	/* Initialize GTT memory pool */
2008 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
2009 	if (r) {
2010 		DRM_ERROR("Failed initializing GTT heap.\n");
2011 		return r;
2012 	}
2013 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
2014 		 (unsigned)(gtt_size / (1024 * 1024)));
2015 
2016 	/* Initialize various on-chip memory pools */
2017 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2018 			   adev->gds.gds_size);
2019 	if (r) {
2020 		DRM_ERROR("Failed initializing GDS heap.\n");
2021 		return r;
2022 	}
2023 
2024 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2025 			   adev->gds.gws_size);
2026 	if (r) {
2027 		DRM_ERROR("Failed initializing gws heap.\n");
2028 		return r;
2029 	}
2030 
2031 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2032 			   adev->gds.oa_size);
2033 	if (r) {
2034 		DRM_ERROR("Failed initializing oa heap.\n");
2035 		return r;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 /**
2042  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2043  */
2044 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2045 {
2046 	void *stolen_vga_buf;
2047 	/* return the VGA stolen memory (if any) back to VRAM */
2048 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2049 }
2050 
2051 /**
2052  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2053  */
2054 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2055 {
2056 	if (!adev->mman.initialized)
2057 		return;
2058 
2059 	amdgpu_ttm_training_reserve_vram_fini(adev);
2060 	/* return the IP Discovery TMR memory back to VRAM */
2061 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2062 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2063 
2064 	if (adev->mman.aper_base_kaddr)
2065 		iounmap(adev->mman.aper_base_kaddr);
2066 	adev->mman.aper_base_kaddr = NULL;
2067 
2068 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2069 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2070 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2071 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2072 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2073 	ttm_bo_device_release(&adev->mman.bdev);
2074 	adev->mman.initialized = false;
2075 	DRM_INFO("amdgpu: ttm finalized\n");
2076 }
2077 
2078 /**
2079  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2080  *
2081  * @adev: amdgpu_device pointer
2082  * @enable: true when we can use buffer functions.
2083  *
2084  * Enable/disable use of buffer functions during suspend/resume. This should
2085  * only be called at bootup or when userspace isn't running.
2086  */
2087 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2088 {
2089 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2090 	uint64_t size;
2091 	int r;
2092 
2093 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2094 	    adev->mman.buffer_funcs_enabled == enable)
2095 		return;
2096 
2097 	if (enable) {
2098 		struct amdgpu_ring *ring;
2099 		struct drm_gpu_scheduler *sched;
2100 
2101 		ring = adev->mman.buffer_funcs_ring;
2102 		sched = &ring->sched;
2103 		r = drm_sched_entity_init(&adev->mman.entity,
2104 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2105 					  1, NULL);
2106 		if (r) {
2107 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2108 				  r);
2109 			return;
2110 		}
2111 	} else {
2112 		drm_sched_entity_destroy(&adev->mman.entity);
2113 		dma_fence_put(man->move);
2114 		man->move = NULL;
2115 	}
2116 
2117 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2118 	if (enable)
2119 		size = adev->gmc.real_vram_size;
2120 	else
2121 		size = adev->gmc.visible_vram_size;
2122 	man->size = size >> PAGE_SHIFT;
2123 	adev->mman.buffer_funcs_enabled = enable;
2124 }
2125 
2126 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2127 {
2128 	struct drm_file *file_priv = filp->private_data;
2129 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2130 
2131 	if (adev == NULL)
2132 		return -EINVAL;
2133 
2134 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2135 }
2136 
2137 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2138 		       uint64_t dst_offset, uint32_t byte_count,
2139 		       struct dma_resv *resv,
2140 		       struct dma_fence **fence, bool direct_submit,
2141 		       bool vm_needs_flush, bool tmz)
2142 {
2143 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2144 		AMDGPU_IB_POOL_DELAYED;
2145 	struct amdgpu_device *adev = ring->adev;
2146 	struct amdgpu_job *job;
2147 
2148 	uint32_t max_bytes;
2149 	unsigned num_loops, num_dw;
2150 	unsigned i;
2151 	int r;
2152 
2153 	if (direct_submit && !ring->sched.ready) {
2154 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2155 		return -EINVAL;
2156 	}
2157 
2158 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2159 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2160 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2161 
2162 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2163 	if (r)
2164 		return r;
2165 
2166 	if (vm_needs_flush) {
2167 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2168 		job->vm_needs_flush = true;
2169 	}
2170 	if (resv) {
2171 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2172 				     AMDGPU_SYNC_ALWAYS,
2173 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2174 		if (r) {
2175 			DRM_ERROR("sync failed (%d).\n", r);
2176 			goto error_free;
2177 		}
2178 	}
2179 
2180 	for (i = 0; i < num_loops; i++) {
2181 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2182 
2183 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2184 					dst_offset, cur_size_in_bytes, tmz);
2185 
2186 		src_offset += cur_size_in_bytes;
2187 		dst_offset += cur_size_in_bytes;
2188 		byte_count -= cur_size_in_bytes;
2189 	}
2190 
2191 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192 	WARN_ON(job->ibs[0].length_dw > num_dw);
2193 	if (direct_submit)
2194 		r = amdgpu_job_submit_direct(job, ring, fence);
2195 	else
2196 		r = amdgpu_job_submit(job, &adev->mman.entity,
2197 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2198 	if (r)
2199 		goto error_free;
2200 
2201 	return r;
2202 
2203 error_free:
2204 	amdgpu_job_free(job);
2205 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2206 	return r;
2207 }
2208 
2209 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2210 		       uint32_t src_data,
2211 		       struct dma_resv *resv,
2212 		       struct dma_fence **fence)
2213 {
2214 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2215 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2216 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2217 
2218 	struct drm_mm_node *mm_node;
2219 	unsigned long num_pages;
2220 	unsigned int num_loops, num_dw;
2221 
2222 	struct amdgpu_job *job;
2223 	int r;
2224 
2225 	if (!adev->mman.buffer_funcs_enabled) {
2226 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2227 		return -EINVAL;
2228 	}
2229 
2230 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2231 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2232 		if (r)
2233 			return r;
2234 	}
2235 
2236 	num_pages = bo->tbo.num_pages;
2237 	mm_node = bo->tbo.mem.mm_node;
2238 	num_loops = 0;
2239 	while (num_pages) {
2240 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2241 
2242 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2243 		num_pages -= mm_node->size;
2244 		++mm_node;
2245 	}
2246 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2247 
2248 	/* for IB padding */
2249 	num_dw += 64;
2250 
2251 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2252 				     &job);
2253 	if (r)
2254 		return r;
2255 
2256 	if (resv) {
2257 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2258 				     AMDGPU_SYNC_ALWAYS,
2259 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2260 		if (r) {
2261 			DRM_ERROR("sync failed (%d).\n", r);
2262 			goto error_free;
2263 		}
2264 	}
2265 
2266 	num_pages = bo->tbo.num_pages;
2267 	mm_node = bo->tbo.mem.mm_node;
2268 
2269 	while (num_pages) {
2270 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2271 		uint64_t dst_addr;
2272 
2273 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2274 		while (byte_count) {
2275 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2276 							   max_bytes);
2277 
2278 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2279 						dst_addr, cur_size_in_bytes);
2280 
2281 			dst_addr += cur_size_in_bytes;
2282 			byte_count -= cur_size_in_bytes;
2283 		}
2284 
2285 		num_pages -= mm_node->size;
2286 		++mm_node;
2287 	}
2288 
2289 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2290 	WARN_ON(job->ibs[0].length_dw > num_dw);
2291 	r = amdgpu_job_submit(job, &adev->mman.entity,
2292 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2293 	if (r)
2294 		goto error_free;
2295 
2296 	return 0;
2297 
2298 error_free:
2299 	amdgpu_job_free(job);
2300 	return r;
2301 }
2302 
2303 #if defined(CONFIG_DEBUG_FS)
2304 
2305 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2306 {
2307 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2308 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2309 	struct drm_device *dev = node->minor->dev;
2310 	struct amdgpu_device *adev = dev->dev_private;
2311 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2312 	struct drm_printer p = drm_seq_file_printer(m);
2313 
2314 	man->func->debug(man, &p);
2315 	return 0;
2316 }
2317 
2318 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2319 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2320 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2321 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2322 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2323 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2324 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2325 #ifdef CONFIG_SWIOTLB
2326 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2327 #endif
2328 };
2329 
2330 /**
2331  * amdgpu_ttm_vram_read - Linear read access to VRAM
2332  *
2333  * Accesses VRAM via MMIO for debugging purposes.
2334  */
2335 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2336 				    size_t size, loff_t *pos)
2337 {
2338 	struct amdgpu_device *adev = file_inode(f)->i_private;
2339 	ssize_t result = 0;
2340 
2341 	if (size & 0x3 || *pos & 0x3)
2342 		return -EINVAL;
2343 
2344 	if (*pos >= adev->gmc.mc_vram_size)
2345 		return -ENXIO;
2346 
2347 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2348 	while (size) {
2349 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2350 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2351 
2352 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2353 		if (copy_to_user(buf, value, bytes))
2354 			return -EFAULT;
2355 
2356 		result += bytes;
2357 		buf += bytes;
2358 		*pos += bytes;
2359 		size -= bytes;
2360 	}
2361 
2362 	return result;
2363 }
2364 
2365 /**
2366  * amdgpu_ttm_vram_write - Linear write access to VRAM
2367  *
2368  * Accesses VRAM via MMIO for debugging purposes.
2369  */
2370 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2371 				    size_t size, loff_t *pos)
2372 {
2373 	struct amdgpu_device *adev = file_inode(f)->i_private;
2374 	ssize_t result = 0;
2375 	int r;
2376 
2377 	if (size & 0x3 || *pos & 0x3)
2378 		return -EINVAL;
2379 
2380 	if (*pos >= adev->gmc.mc_vram_size)
2381 		return -ENXIO;
2382 
2383 	while (size) {
2384 		unsigned long flags;
2385 		uint32_t value;
2386 
2387 		if (*pos >= adev->gmc.mc_vram_size)
2388 			return result;
2389 
2390 		r = get_user(value, (uint32_t *)buf);
2391 		if (r)
2392 			return r;
2393 
2394 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2395 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2396 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2397 		WREG32_NO_KIQ(mmMM_DATA, value);
2398 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2399 
2400 		result += 4;
2401 		buf += 4;
2402 		*pos += 4;
2403 		size -= 4;
2404 	}
2405 
2406 	return result;
2407 }
2408 
2409 static const struct file_operations amdgpu_ttm_vram_fops = {
2410 	.owner = THIS_MODULE,
2411 	.read = amdgpu_ttm_vram_read,
2412 	.write = amdgpu_ttm_vram_write,
2413 	.llseek = default_llseek,
2414 };
2415 
2416 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2417 
2418 /**
2419  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2420  */
2421 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2422 				   size_t size, loff_t *pos)
2423 {
2424 	struct amdgpu_device *adev = file_inode(f)->i_private;
2425 	ssize_t result = 0;
2426 	int r;
2427 
2428 	while (size) {
2429 		loff_t p = *pos / PAGE_SIZE;
2430 		unsigned off = *pos & ~PAGE_MASK;
2431 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2432 		struct page *page;
2433 		void *ptr;
2434 
2435 		if (p >= adev->gart.num_cpu_pages)
2436 			return result;
2437 
2438 		page = adev->gart.pages[p];
2439 		if (page) {
2440 			ptr = kmap(page);
2441 			ptr += off;
2442 
2443 			r = copy_to_user(buf, ptr, cur_size);
2444 			kunmap(adev->gart.pages[p]);
2445 		} else
2446 			r = clear_user(buf, cur_size);
2447 
2448 		if (r)
2449 			return -EFAULT;
2450 
2451 		result += cur_size;
2452 		buf += cur_size;
2453 		*pos += cur_size;
2454 		size -= cur_size;
2455 	}
2456 
2457 	return result;
2458 }
2459 
2460 static const struct file_operations amdgpu_ttm_gtt_fops = {
2461 	.owner = THIS_MODULE,
2462 	.read = amdgpu_ttm_gtt_read,
2463 	.llseek = default_llseek
2464 };
2465 
2466 #endif
2467 
2468 /**
2469  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2470  *
2471  * This function is used to read memory that has been mapped to the
2472  * GPU and the known addresses are not physical addresses but instead
2473  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2474  */
2475 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2476 				 size_t size, loff_t *pos)
2477 {
2478 	struct amdgpu_device *adev = file_inode(f)->i_private;
2479 	struct iommu_domain *dom;
2480 	ssize_t result = 0;
2481 	int r;
2482 
2483 	/* retrieve the IOMMU domain if any for this device */
2484 	dom = iommu_get_domain_for_dev(adev->dev);
2485 
2486 	while (size) {
2487 		phys_addr_t addr = *pos & PAGE_MASK;
2488 		loff_t off = *pos & ~PAGE_MASK;
2489 		size_t bytes = PAGE_SIZE - off;
2490 		unsigned long pfn;
2491 		struct page *p;
2492 		void *ptr;
2493 
2494 		bytes = bytes < size ? bytes : size;
2495 
2496 		/* Translate the bus address to a physical address.  If
2497 		 * the domain is NULL it means there is no IOMMU active
2498 		 * and the address translation is the identity
2499 		 */
2500 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2501 
2502 		pfn = addr >> PAGE_SHIFT;
2503 		if (!pfn_valid(pfn))
2504 			return -EPERM;
2505 
2506 		p = pfn_to_page(pfn);
2507 		if (p->mapping != adev->mman.bdev.dev_mapping)
2508 			return -EPERM;
2509 
2510 		ptr = kmap(p);
2511 		r = copy_to_user(buf, ptr + off, bytes);
2512 		kunmap(p);
2513 		if (r)
2514 			return -EFAULT;
2515 
2516 		size -= bytes;
2517 		*pos += bytes;
2518 		result += bytes;
2519 	}
2520 
2521 	return result;
2522 }
2523 
2524 /**
2525  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2526  *
2527  * This function is used to write memory that has been mapped to the
2528  * GPU and the known addresses are not physical addresses but instead
2529  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2530  */
2531 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2532 				 size_t size, loff_t *pos)
2533 {
2534 	struct amdgpu_device *adev = file_inode(f)->i_private;
2535 	struct iommu_domain *dom;
2536 	ssize_t result = 0;
2537 	int r;
2538 
2539 	dom = iommu_get_domain_for_dev(adev->dev);
2540 
2541 	while (size) {
2542 		phys_addr_t addr = *pos & PAGE_MASK;
2543 		loff_t off = *pos & ~PAGE_MASK;
2544 		size_t bytes = PAGE_SIZE - off;
2545 		unsigned long pfn;
2546 		struct page *p;
2547 		void *ptr;
2548 
2549 		bytes = bytes < size ? bytes : size;
2550 
2551 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2552 
2553 		pfn = addr >> PAGE_SHIFT;
2554 		if (!pfn_valid(pfn))
2555 			return -EPERM;
2556 
2557 		p = pfn_to_page(pfn);
2558 		if (p->mapping != adev->mman.bdev.dev_mapping)
2559 			return -EPERM;
2560 
2561 		ptr = kmap(p);
2562 		r = copy_from_user(ptr + off, buf, bytes);
2563 		kunmap(p);
2564 		if (r)
2565 			return -EFAULT;
2566 
2567 		size -= bytes;
2568 		*pos += bytes;
2569 		result += bytes;
2570 	}
2571 
2572 	return result;
2573 }
2574 
2575 static const struct file_operations amdgpu_ttm_iomem_fops = {
2576 	.owner = THIS_MODULE,
2577 	.read = amdgpu_iomem_read,
2578 	.write = amdgpu_iomem_write,
2579 	.llseek = default_llseek
2580 };
2581 
2582 static const struct {
2583 	char *name;
2584 	const struct file_operations *fops;
2585 	int domain;
2586 } ttm_debugfs_entries[] = {
2587 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2588 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2589 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2590 #endif
2591 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2592 };
2593 
2594 #endif
2595 
2596 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2597 {
2598 #if defined(CONFIG_DEBUG_FS)
2599 	unsigned count;
2600 
2601 	struct drm_minor *minor = adev->ddev->primary;
2602 	struct dentry *ent, *root = minor->debugfs_root;
2603 
2604 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2605 		ent = debugfs_create_file(
2606 				ttm_debugfs_entries[count].name,
2607 				S_IFREG | S_IRUGO, root,
2608 				adev,
2609 				ttm_debugfs_entries[count].fops);
2610 		if (IS_ERR(ent))
2611 			return PTR_ERR(ent);
2612 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2613 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2614 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2615 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2616 		adev->mman.debugfs_entries[count] = ent;
2617 	}
2618 
2619 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2620 
2621 #ifdef CONFIG_SWIOTLB
2622 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2623 		--count;
2624 #endif
2625 
2626 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2627 #else
2628 	return 0;
2629 #endif
2630 }
2631