1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_module.h>
50 #include <drm/ttm/ttm_page_alloc.h>
51 
52 #include <drm/drm_debugfs.h>
53 #include <drm/amdgpu_drm.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "bif/bif_4_1_d.h"
63 
64 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
65 
66 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
67 				    unsigned int type,
68 				    uint64_t size)
69 {
70 	return ttm_range_man_init(&adev->mman.bdev, type,
71 				  TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED,
72 				  false, size >> PAGE_SHIFT);
73 }
74 
75 /**
76  * amdgpu_evict_flags - Compute placement flags
77  *
78  * @bo: The buffer object to evict
79  * @placement: Possible destination(s) for evicted BO
80  *
81  * Fill in placement data when ttm_bo_evict() is called
82  */
83 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
84 				struct ttm_placement *placement)
85 {
86 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
87 	struct amdgpu_bo *abo;
88 	static const struct ttm_place placements = {
89 		.fpfn = 0,
90 		.lpfn = 0,
91 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
92 	};
93 
94 	/* Don't handle scatter gather BOs */
95 	if (bo->type == ttm_bo_type_sg) {
96 		placement->num_placement = 0;
97 		placement->num_busy_placement = 0;
98 		return;
99 	}
100 
101 	/* Object isn't an AMDGPU object so ignore */
102 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
103 		placement->placement = &placements;
104 		placement->busy_placement = &placements;
105 		placement->num_placement = 1;
106 		placement->num_busy_placement = 1;
107 		return;
108 	}
109 
110 	abo = ttm_to_amdgpu_bo(bo);
111 	switch (bo->mem.mem_type) {
112 	case AMDGPU_PL_GDS:
113 	case AMDGPU_PL_GWS:
114 	case AMDGPU_PL_OA:
115 		placement->num_placement = 0;
116 		placement->num_busy_placement = 0;
117 		return;
118 
119 	case TTM_PL_VRAM:
120 		if (!adev->mman.buffer_funcs_enabled) {
121 			/* Move to system memory */
122 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
123 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
124 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
125 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
126 
127 			/* Try evicting to the CPU inaccessible part of VRAM
128 			 * first, but only set GTT as busy placement, so this
129 			 * BO will be evicted to GTT rather than causing other
130 			 * BOs to be evicted from VRAM
131 			 */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
133 							 AMDGPU_GEM_DOMAIN_GTT);
134 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
135 			abo->placements[0].lpfn = 0;
136 			abo->placement.busy_placement = &abo->placements[1];
137 			abo->placement.num_busy_placement = 1;
138 		} else {
139 			/* Move to GTT memory */
140 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
141 		}
142 		break;
143 	case TTM_PL_TT:
144 	default:
145 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
146 		break;
147 	}
148 	*placement = abo->placement;
149 }
150 
151 /**
152  * amdgpu_verify_access - Verify access for a mmap call
153  *
154  * @bo:	The buffer object to map
155  * @filp: The file pointer from the process performing the mmap
156  *
157  * This is called by ttm_bo_mmap() to verify whether a process
158  * has the right to mmap a BO to their process space.
159  */
160 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
161 {
162 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
163 
164 	/*
165 	 * Don't verify access for KFD BOs. They don't have a GEM
166 	 * object associated with them.
167 	 */
168 	if (abo->kfd_bo)
169 		return 0;
170 
171 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
172 		return -EPERM;
173 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
174 					  filp->private_data);
175 }
176 
177 /**
178  * amdgpu_move_null - Register memory for a buffer object
179  *
180  * @bo: The bo to assign the memory to
181  * @new_mem: The memory to be assigned.
182  *
183  * Assign the memory from new_mem to the memory of the buffer object bo.
184  */
185 static void amdgpu_move_null(struct ttm_buffer_object *bo,
186 			     struct ttm_resource *new_mem)
187 {
188 	struct ttm_resource *old_mem = &bo->mem;
189 
190 	BUG_ON(old_mem->mm_node != NULL);
191 	*old_mem = *new_mem;
192 	new_mem->mm_node = NULL;
193 }
194 
195 /**
196  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
197  *
198  * @bo: The bo to assign the memory to.
199  * @mm_node: Memory manager node for drm allocator.
200  * @mem: The region where the bo resides.
201  *
202  */
203 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
204 				    struct drm_mm_node *mm_node,
205 				    struct ttm_resource *mem)
206 {
207 	uint64_t addr = 0;
208 
209 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
210 		addr = mm_node->start << PAGE_SHIFT;
211 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
212 						mem->mem_type);
213 	}
214 	return addr;
215 }
216 
217 /**
218  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
219  * @offset. It also modifies the offset to be within the drm_mm_node returned
220  *
221  * @mem: The region where the bo resides.
222  * @offset: The offset that drm_mm_node is used for finding.
223  *
224  */
225 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
226 					       uint64_t *offset)
227 {
228 	struct drm_mm_node *mm_node = mem->mm_node;
229 
230 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
231 		*offset -= (mm_node->size << PAGE_SHIFT);
232 		++mm_node;
233 	}
234 	return mm_node;
235 }
236 
237 /**
238  * amdgpu_ttm_map_buffer - Map memory into the GART windows
239  * @bo: buffer object to map
240  * @mem: memory object to map
241  * @mm_node: drm_mm node object to map
242  * @num_pages: number of pages to map
243  * @offset: offset into @mm_node where to start
244  * @window: which GART window to use
245  * @ring: DMA ring to use for the copy
246  * @tmz: if we should setup a TMZ enabled mapping
247  * @addr: resulting address inside the MC address space
248  *
249  * Setup one of the GART windows to access a specific piece of memory or return
250  * the physical address for local memory.
251  */
252 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
253 				 struct ttm_resource *mem,
254 				 struct drm_mm_node *mm_node,
255 				 unsigned num_pages, uint64_t offset,
256 				 unsigned window, struct amdgpu_ring *ring,
257 				 bool tmz, uint64_t *addr)
258 {
259 	struct amdgpu_device *adev = ring->adev;
260 	struct amdgpu_job *job;
261 	unsigned num_dw, num_bytes;
262 	struct dma_fence *fence;
263 	uint64_t src_addr, dst_addr;
264 	void *cpu_addr;
265 	uint64_t flags;
266 	unsigned int i;
267 	int r;
268 
269 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
270 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
271 
272 	/* Map only what can't be accessed directly */
273 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
274 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
275 		return 0;
276 	}
277 
278 	*addr = adev->gmc.gart_start;
279 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
280 		AMDGPU_GPU_PAGE_SIZE;
281 	*addr += offset & ~PAGE_MASK;
282 
283 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
284 	num_bytes = num_pages * 8;
285 
286 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
287 				     AMDGPU_IB_POOL_DELAYED, &job);
288 	if (r)
289 		return r;
290 
291 	src_addr = num_dw * 4;
292 	src_addr += job->ibs[0].gpu_addr;
293 
294 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
295 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
296 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
297 				dst_addr, num_bytes, false);
298 
299 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
300 	WARN_ON(job->ibs[0].length_dw > num_dw);
301 
302 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
303 	if (tmz)
304 		flags |= AMDGPU_PTE_TMZ;
305 
306 	cpu_addr = &job->ibs[0].ptr[num_dw];
307 
308 	if (mem->mem_type == TTM_PL_TT) {
309 		struct ttm_dma_tt *dma;
310 		dma_addr_t *dma_address;
311 
312 		dma = container_of(bo->ttm, struct ttm_dma_tt, ttm);
313 		dma_address = &dma->dma_address[offset >> PAGE_SHIFT];
314 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
315 				    cpu_addr);
316 		if (r)
317 			goto error_free;
318 	} else {
319 		dma_addr_t dma_address;
320 
321 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
322 		dma_address += adev->vm_manager.vram_base_offset;
323 
324 		for (i = 0; i < num_pages; ++i) {
325 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
326 					    &dma_address, flags, cpu_addr);
327 			if (r)
328 				goto error_free;
329 
330 			dma_address += PAGE_SIZE;
331 		}
332 	}
333 
334 	r = amdgpu_job_submit(job, &adev->mman.entity,
335 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
336 	if (r)
337 		goto error_free;
338 
339 	dma_fence_put(fence);
340 
341 	return r;
342 
343 error_free:
344 	amdgpu_job_free(job);
345 	return r;
346 }
347 
348 /**
349  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
350  * @adev: amdgpu device
351  * @src: buffer/address where to read from
352  * @dst: buffer/address where to write to
353  * @size: number of bytes to copy
354  * @tmz: if a secure copy should be used
355  * @resv: resv object to sync to
356  * @f: Returns the last fence if multiple jobs are submitted.
357  *
358  * The function copies @size bytes from {src->mem + src->offset} to
359  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
360  * move and different for a BO to BO copy.
361  *
362  */
363 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
364 			       const struct amdgpu_copy_mem *src,
365 			       const struct amdgpu_copy_mem *dst,
366 			       uint64_t size, bool tmz,
367 			       struct dma_resv *resv,
368 			       struct dma_fence **f)
369 {
370 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
371 					AMDGPU_GPU_PAGE_SIZE);
372 
373 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
374 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
375 	struct drm_mm_node *src_mm, *dst_mm;
376 	struct dma_fence *fence = NULL;
377 	int r = 0;
378 
379 	if (!adev->mman.buffer_funcs_enabled) {
380 		DRM_ERROR("Trying to move memory with ring turned off.\n");
381 		return -EINVAL;
382 	}
383 
384 	src_offset = src->offset;
385 	if (src->mem->mm_node) {
386 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
387 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
388 	} else {
389 		src_mm = NULL;
390 		src_node_size = ULLONG_MAX;
391 	}
392 
393 	dst_offset = dst->offset;
394 	if (dst->mem->mm_node) {
395 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
396 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
397 	} else {
398 		dst_mm = NULL;
399 		dst_node_size = ULLONG_MAX;
400 	}
401 
402 	mutex_lock(&adev->mman.gtt_window_lock);
403 
404 	while (size) {
405 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
406 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
407 		struct dma_fence *next;
408 		uint32_t cur_size;
409 		uint64_t from, to;
410 
411 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
412 		 * begins at an offset, then adjust the size accordingly
413 		 */
414 		cur_size = max(src_page_offset, dst_page_offset);
415 		cur_size = min(min3(src_node_size, dst_node_size, size),
416 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
417 
418 		/* Map src to window 0 and dst to window 1. */
419 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
420 					  PFN_UP(cur_size + src_page_offset),
421 					  src_offset, 0, ring, tmz, &from);
422 		if (r)
423 			goto error;
424 
425 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
426 					  PFN_UP(cur_size + dst_page_offset),
427 					  dst_offset, 1, ring, tmz, &to);
428 		if (r)
429 			goto error;
430 
431 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
432 				       resv, &next, false, true, tmz);
433 		if (r)
434 			goto error;
435 
436 		dma_fence_put(fence);
437 		fence = next;
438 
439 		size -= cur_size;
440 		if (!size)
441 			break;
442 
443 		src_node_size -= cur_size;
444 		if (!src_node_size) {
445 			++src_mm;
446 			src_node_size = src_mm->size << PAGE_SHIFT;
447 			src_offset = 0;
448 		} else {
449 			src_offset += cur_size;
450 		}
451 
452 		dst_node_size -= cur_size;
453 		if (!dst_node_size) {
454 			++dst_mm;
455 			dst_node_size = dst_mm->size << PAGE_SHIFT;
456 			dst_offset = 0;
457 		} else {
458 			dst_offset += cur_size;
459 		}
460 	}
461 error:
462 	mutex_unlock(&adev->mman.gtt_window_lock);
463 	if (f)
464 		*f = dma_fence_get(fence);
465 	dma_fence_put(fence);
466 	return r;
467 }
468 
469 /**
470  * amdgpu_move_blit - Copy an entire buffer to another buffer
471  *
472  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
473  * help move buffers to and from VRAM.
474  */
475 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
476 			    bool evict,
477 			    struct ttm_resource *new_mem,
478 			    struct ttm_resource *old_mem)
479 {
480 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
481 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
482 	struct amdgpu_copy_mem src, dst;
483 	struct dma_fence *fence = NULL;
484 	int r;
485 
486 	src.bo = bo;
487 	dst.bo = bo;
488 	src.mem = old_mem;
489 	dst.mem = new_mem;
490 	src.offset = 0;
491 	dst.offset = 0;
492 
493 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
494 				       new_mem->num_pages << PAGE_SHIFT,
495 				       amdgpu_bo_encrypted(abo),
496 				       bo->base.resv, &fence);
497 	if (r)
498 		goto error;
499 
500 	/* clear the space being freed */
501 	if (old_mem->mem_type == TTM_PL_VRAM &&
502 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
503 		struct dma_fence *wipe_fence = NULL;
504 
505 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
506 				       NULL, &wipe_fence);
507 		if (r) {
508 			goto error;
509 		} else if (wipe_fence) {
510 			dma_fence_put(fence);
511 			fence = wipe_fence;
512 		}
513 	}
514 
515 	/* Always block for VM page tables before committing the new location */
516 	if (bo->type == ttm_bo_type_kernel)
517 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
518 	else
519 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
520 	dma_fence_put(fence);
521 	return r;
522 
523 error:
524 	if (fence)
525 		dma_fence_wait(fence, false);
526 	dma_fence_put(fence);
527 	return r;
528 }
529 
530 /**
531  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
532  *
533  * Called by amdgpu_bo_move().
534  */
535 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
536 				struct ttm_operation_ctx *ctx,
537 				struct ttm_resource *new_mem)
538 {
539 	struct ttm_resource *old_mem = &bo->mem;
540 	struct ttm_resource tmp_mem;
541 	struct ttm_place placements;
542 	struct ttm_placement placement;
543 	int r;
544 
545 	/* create space/pages for new_mem in GTT space */
546 	tmp_mem = *new_mem;
547 	tmp_mem.mm_node = NULL;
548 	placement.num_placement = 1;
549 	placement.placement = &placements;
550 	placement.num_busy_placement = 1;
551 	placement.busy_placement = &placements;
552 	placements.fpfn = 0;
553 	placements.lpfn = 0;
554 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
555 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
556 	if (unlikely(r)) {
557 		pr_err("Failed to find GTT space for blit from VRAM\n");
558 		return r;
559 	}
560 
561 	/* set caching flags */
562 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
563 	if (unlikely(r)) {
564 		goto out_cleanup;
565 	}
566 
567 	/* Bind the memory to the GTT space */
568 	r = ttm_tt_bind(bo->bdev, bo->ttm, &tmp_mem, ctx);
569 	if (unlikely(r)) {
570 		goto out_cleanup;
571 	}
572 
573 	/* blit VRAM to GTT */
574 	r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem);
575 	if (unlikely(r)) {
576 		goto out_cleanup;
577 	}
578 
579 	/* move BO (in tmp_mem) to new_mem */
580 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
581 out_cleanup:
582 	ttm_resource_free(bo, &tmp_mem);
583 	return r;
584 }
585 
586 /**
587  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
588  *
589  * Called by amdgpu_bo_move().
590  */
591 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
592 				struct ttm_operation_ctx *ctx,
593 				struct ttm_resource *new_mem)
594 {
595 	struct ttm_resource *old_mem = &bo->mem;
596 	struct ttm_resource tmp_mem;
597 	struct ttm_placement placement;
598 	struct ttm_place placements;
599 	int r;
600 
601 	/* make space in GTT for old_mem buffer */
602 	tmp_mem = *new_mem;
603 	tmp_mem.mm_node = NULL;
604 	placement.num_placement = 1;
605 	placement.placement = &placements;
606 	placement.num_busy_placement = 1;
607 	placement.busy_placement = &placements;
608 	placements.fpfn = 0;
609 	placements.lpfn = 0;
610 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
611 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
612 	if (unlikely(r)) {
613 		pr_err("Failed to find GTT space for blit to VRAM\n");
614 		return r;
615 	}
616 
617 	/* move/bind old memory to GTT space */
618 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
619 	if (unlikely(r)) {
620 		goto out_cleanup;
621 	}
622 
623 	/* copy to VRAM */
624 	r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
625 	if (unlikely(r)) {
626 		goto out_cleanup;
627 	}
628 out_cleanup:
629 	ttm_resource_free(bo, &tmp_mem);
630 	return r;
631 }
632 
633 /**
634  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
635  *
636  * Called by amdgpu_bo_move()
637  */
638 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
639 			       struct ttm_resource *mem)
640 {
641 	struct drm_mm_node *nodes = mem->mm_node;
642 
643 	if (mem->mem_type == TTM_PL_SYSTEM ||
644 	    mem->mem_type == TTM_PL_TT)
645 		return true;
646 	if (mem->mem_type != TTM_PL_VRAM)
647 		return false;
648 
649 	/* ttm_resource_ioremap only supports contiguous memory */
650 	if (nodes->size != mem->num_pages)
651 		return false;
652 
653 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
654 		<= adev->gmc.visible_vram_size;
655 }
656 
657 /**
658  * amdgpu_bo_move - Move a buffer object to a new memory location
659  *
660  * Called by ttm_bo_handle_move_mem()
661  */
662 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
663 			  struct ttm_operation_ctx *ctx,
664 			  struct ttm_resource *new_mem)
665 {
666 	struct amdgpu_device *adev;
667 	struct amdgpu_bo *abo;
668 	struct ttm_resource *old_mem = &bo->mem;
669 	int r;
670 
671 	/* Can't move a pinned BO */
672 	abo = ttm_to_amdgpu_bo(bo);
673 	if (WARN_ON_ONCE(abo->pin_count > 0))
674 		return -EINVAL;
675 
676 	adev = amdgpu_ttm_adev(bo->bdev);
677 
678 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
679 		amdgpu_move_null(bo, new_mem);
680 		return 0;
681 	}
682 	if ((old_mem->mem_type == TTM_PL_TT &&
683 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
684 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
685 	     new_mem->mem_type == TTM_PL_TT)) {
686 		/* bind is enough */
687 		amdgpu_move_null(bo, new_mem);
688 		return 0;
689 	}
690 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
691 	    old_mem->mem_type == AMDGPU_PL_GWS ||
692 	    old_mem->mem_type == AMDGPU_PL_OA ||
693 	    new_mem->mem_type == AMDGPU_PL_GDS ||
694 	    new_mem->mem_type == AMDGPU_PL_GWS ||
695 	    new_mem->mem_type == AMDGPU_PL_OA) {
696 		/* Nothing to save here */
697 		amdgpu_move_null(bo, new_mem);
698 		return 0;
699 	}
700 
701 	if (!adev->mman.buffer_funcs_enabled) {
702 		r = -ENODEV;
703 		goto memcpy;
704 	}
705 
706 	if (old_mem->mem_type == TTM_PL_VRAM &&
707 	    new_mem->mem_type == TTM_PL_SYSTEM) {
708 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
709 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
710 		   new_mem->mem_type == TTM_PL_VRAM) {
711 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
712 	} else {
713 		r = amdgpu_move_blit(bo, evict,
714 				     new_mem, old_mem);
715 	}
716 
717 	if (r) {
718 memcpy:
719 		/* Check that all memory is CPU accessible */
720 		if (!amdgpu_mem_visible(adev, old_mem) ||
721 		    !amdgpu_mem_visible(adev, new_mem)) {
722 			pr_err("Move buffer fallback to memcpy unavailable\n");
723 			return r;
724 		}
725 
726 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
727 		if (r)
728 			return r;
729 	}
730 
731 	if (bo->type == ttm_bo_type_device &&
732 	    new_mem->mem_type == TTM_PL_VRAM &&
733 	    old_mem->mem_type != TTM_PL_VRAM) {
734 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
735 		 * accesses the BO after it's moved.
736 		 */
737 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
738 	}
739 
740 	/* update statistics */
741 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
742 	return 0;
743 }
744 
745 /**
746  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
747  *
748  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
749  */
750 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
751 {
752 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753 	struct drm_mm_node *mm_node = mem->mm_node;
754 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
755 
756 	switch (mem->mem_type) {
757 	case TTM_PL_SYSTEM:
758 		/* system memory */
759 		return 0;
760 	case TTM_PL_TT:
761 		break;
762 	case TTM_PL_VRAM:
763 		mem->bus.offset = mem->start << PAGE_SHIFT;
764 		/* check if it's visible */
765 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
766 			return -EINVAL;
767 		/* Only physically contiguous buffers apply. In a contiguous
768 		 * buffer, size of the first mm_node would match the number of
769 		 * pages in ttm_resource.
770 		 */
771 		if (adev->mman.aper_base_kaddr &&
772 		    (mm_node->size == mem->num_pages))
773 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
774 					mem->bus.offset;
775 
776 		mem->bus.offset += adev->gmc.aper_base;
777 		mem->bus.is_iomem = true;
778 		break;
779 	default:
780 		return -EINVAL;
781 	}
782 	return 0;
783 }
784 
785 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
786 					   unsigned long page_offset)
787 {
788 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
789 	uint64_t offset = (page_offset << PAGE_SHIFT);
790 	struct drm_mm_node *mm;
791 
792 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
793 	offset += adev->gmc.aper_base;
794 	return mm->start + (offset >> PAGE_SHIFT);
795 }
796 
797 /**
798  * amdgpu_ttm_domain_start - Returns GPU start address
799  * @adev: amdgpu device object
800  * @type: type of the memory
801  *
802  * Returns:
803  * GPU start address of a memory domain
804  */
805 
806 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
807 {
808 	switch (type) {
809 	case TTM_PL_TT:
810 		return adev->gmc.gart_start;
811 	case TTM_PL_VRAM:
812 		return adev->gmc.vram_start;
813 	}
814 
815 	return 0;
816 }
817 
818 /*
819  * TTM backend functions.
820  */
821 struct amdgpu_ttm_tt {
822 	struct ttm_dma_tt	ttm;
823 	struct drm_gem_object	*gobj;
824 	u64			offset;
825 	uint64_t		userptr;
826 	struct task_struct	*usertask;
827 	uint32_t		userflags;
828 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
829 	struct hmm_range	*range;
830 #endif
831 };
832 
833 #ifdef CONFIG_DRM_AMDGPU_USERPTR
834 /**
835  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
836  * memory and start HMM tracking CPU page table update
837  *
838  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
839  * once afterwards to stop HMM tracking
840  */
841 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
842 {
843 	struct ttm_tt *ttm = bo->tbo.ttm;
844 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
845 	unsigned long start = gtt->userptr;
846 	struct vm_area_struct *vma;
847 	struct hmm_range *range;
848 	unsigned long timeout;
849 	struct mm_struct *mm;
850 	unsigned long i;
851 	int r = 0;
852 
853 	mm = bo->notifier.mm;
854 	if (unlikely(!mm)) {
855 		DRM_DEBUG_DRIVER("BO is not registered?\n");
856 		return -EFAULT;
857 	}
858 
859 	/* Another get_user_pages is running at the same time?? */
860 	if (WARN_ON(gtt->range))
861 		return -EFAULT;
862 
863 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
864 		return -ESRCH;
865 
866 	range = kzalloc(sizeof(*range), GFP_KERNEL);
867 	if (unlikely(!range)) {
868 		r = -ENOMEM;
869 		goto out;
870 	}
871 	range->notifier = &bo->notifier;
872 	range->start = bo->notifier.interval_tree.start;
873 	range->end = bo->notifier.interval_tree.last + 1;
874 	range->default_flags = HMM_PFN_REQ_FAULT;
875 	if (!amdgpu_ttm_tt_is_readonly(ttm))
876 		range->default_flags |= HMM_PFN_REQ_WRITE;
877 
878 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
879 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
880 	if (unlikely(!range->hmm_pfns)) {
881 		r = -ENOMEM;
882 		goto out_free_ranges;
883 	}
884 
885 	mmap_read_lock(mm);
886 	vma = find_vma(mm, start);
887 	if (unlikely(!vma || start < vma->vm_start)) {
888 		r = -EFAULT;
889 		goto out_unlock;
890 	}
891 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
892 		vma->vm_file)) {
893 		r = -EPERM;
894 		goto out_unlock;
895 	}
896 	mmap_read_unlock(mm);
897 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
898 
899 retry:
900 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
901 
902 	mmap_read_lock(mm);
903 	r = hmm_range_fault(range);
904 	mmap_read_unlock(mm);
905 	if (unlikely(r)) {
906 		/*
907 		 * FIXME: This timeout should encompass the retry from
908 		 * mmu_interval_read_retry() as well.
909 		 */
910 		if (r == -EBUSY && !time_after(jiffies, timeout))
911 			goto retry;
912 		goto out_free_pfns;
913 	}
914 
915 	/*
916 	 * Due to default_flags, all pages are HMM_PFN_VALID or
917 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
918 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
919 	 */
920 	for (i = 0; i < ttm->num_pages; i++)
921 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
922 
923 	gtt->range = range;
924 	mmput(mm);
925 
926 	return 0;
927 
928 out_unlock:
929 	mmap_read_unlock(mm);
930 out_free_pfns:
931 	kvfree(range->hmm_pfns);
932 out_free_ranges:
933 	kfree(range);
934 out:
935 	mmput(mm);
936 	return r;
937 }
938 
939 /**
940  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
941  * Check if the pages backing this ttm range have been invalidated
942  *
943  * Returns: true if pages are still valid
944  */
945 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
946 {
947 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
948 	bool r = false;
949 
950 	if (!gtt || !gtt->userptr)
951 		return false;
952 
953 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
954 		gtt->userptr, ttm->num_pages);
955 
956 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
957 		"No user pages to check\n");
958 
959 	if (gtt->range) {
960 		/*
961 		 * FIXME: Must always hold notifier_lock for this, and must
962 		 * not ignore the return code.
963 		 */
964 		r = mmu_interval_read_retry(gtt->range->notifier,
965 					 gtt->range->notifier_seq);
966 		kvfree(gtt->range->hmm_pfns);
967 		kfree(gtt->range);
968 		gtt->range = NULL;
969 	}
970 
971 	return !r;
972 }
973 #endif
974 
975 /**
976  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
977  *
978  * Called by amdgpu_cs_list_validate(). This creates the page list
979  * that backs user memory and will ultimately be mapped into the device
980  * address space.
981  */
982 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
983 {
984 	unsigned long i;
985 
986 	for (i = 0; i < ttm->num_pages; ++i)
987 		ttm->pages[i] = pages ? pages[i] : NULL;
988 }
989 
990 /**
991  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
992  *
993  * Called by amdgpu_ttm_backend_bind()
994  **/
995 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
996 				     struct ttm_tt *ttm)
997 {
998 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
999 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1000 	int r;
1001 
1002 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1003 	enum dma_data_direction direction = write ?
1004 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1005 
1006 	/* Allocate an SG array and squash pages into it */
1007 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
1008 				      ttm->num_pages << PAGE_SHIFT,
1009 				      GFP_KERNEL);
1010 	if (r)
1011 		goto release_sg;
1012 
1013 	/* Map SG to device */
1014 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
1015 	if (r)
1016 		goto release_sg;
1017 
1018 	/* convert SG to linear array of pages and dma addresses */
1019 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1020 					 gtt->ttm.dma_address, ttm->num_pages);
1021 
1022 	return 0;
1023 
1024 release_sg:
1025 	kfree(ttm->sg);
1026 	return r;
1027 }
1028 
1029 /**
1030  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1031  */
1032 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
1033 					struct ttm_tt *ttm)
1034 {
1035 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1036 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1037 
1038 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1039 	enum dma_data_direction direction = write ?
1040 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1041 
1042 	/* double check that we don't free the table twice */
1043 	if (!ttm->sg->sgl)
1044 		return;
1045 
1046 	/* unmap the pages mapped to the device */
1047 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
1048 	sg_free_table(ttm->sg);
1049 
1050 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1051 	if (gtt->range) {
1052 		unsigned long i;
1053 
1054 		for (i = 0; i < ttm->num_pages; i++) {
1055 			if (ttm->pages[i] !=
1056 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
1057 				break;
1058 		}
1059 
1060 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1061 	}
1062 #endif
1063 }
1064 
1065 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1066 				struct ttm_buffer_object *tbo,
1067 				uint64_t flags)
1068 {
1069 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1070 	struct ttm_tt *ttm = tbo->ttm;
1071 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1072 	int r;
1073 
1074 	if (amdgpu_bo_encrypted(abo))
1075 		flags |= AMDGPU_PTE_TMZ;
1076 
1077 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
1078 		uint64_t page_idx = 1;
1079 
1080 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1081 				ttm->pages, gtt->ttm.dma_address, flags);
1082 		if (r)
1083 			goto gart_bind_fail;
1084 
1085 		/* The memory type of the first page defaults to UC. Now
1086 		 * modify the memory type to NC from the second page of
1087 		 * the BO onward.
1088 		 */
1089 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1090 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1091 
1092 		r = amdgpu_gart_bind(adev,
1093 				gtt->offset + (page_idx << PAGE_SHIFT),
1094 				ttm->num_pages - page_idx,
1095 				&ttm->pages[page_idx],
1096 				&(gtt->ttm.dma_address[page_idx]), flags);
1097 	} else {
1098 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1099 				     ttm->pages, gtt->ttm.dma_address, flags);
1100 	}
1101 
1102 gart_bind_fail:
1103 	if (r)
1104 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1105 			  ttm->num_pages, gtt->offset);
1106 
1107 	return r;
1108 }
1109 
1110 /**
1111  * amdgpu_ttm_backend_bind - Bind GTT memory
1112  *
1113  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1114  * This handles binding GTT memory to the device address space.
1115  */
1116 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1117 				   struct ttm_tt *ttm,
1118 				   struct ttm_resource *bo_mem)
1119 {
1120 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1121 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1122 	uint64_t flags;
1123 	int r = 0;
1124 
1125 	if (gtt->userptr) {
1126 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1127 		if (r) {
1128 			DRM_ERROR("failed to pin userptr\n");
1129 			return r;
1130 		}
1131 	}
1132 	if (!ttm->num_pages) {
1133 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1134 		     ttm->num_pages, bo_mem, ttm);
1135 	}
1136 
1137 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1138 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1139 	    bo_mem->mem_type == AMDGPU_PL_OA)
1140 		return -EINVAL;
1141 
1142 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1143 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1144 		return 0;
1145 	}
1146 
1147 	/* compute PTE flags relevant to this BO memory */
1148 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1149 
1150 	/* bind pages into GART page tables */
1151 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1152 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1153 		ttm->pages, gtt->ttm.dma_address, flags);
1154 
1155 	if (r)
1156 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1157 			  ttm->num_pages, gtt->offset);
1158 	return r;
1159 }
1160 
1161 /**
1162  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1163  */
1164 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1165 {
1166 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1167 	struct ttm_operation_ctx ctx = { false, false };
1168 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1169 	struct ttm_resource tmp;
1170 	struct ttm_placement placement;
1171 	struct ttm_place placements;
1172 	uint64_t addr, flags;
1173 	int r;
1174 
1175 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1176 		return 0;
1177 
1178 	addr = amdgpu_gmc_agp_addr(bo);
1179 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1180 		bo->mem.start = addr >> PAGE_SHIFT;
1181 	} else {
1182 
1183 		/* allocate GART space */
1184 		tmp = bo->mem;
1185 		tmp.mm_node = NULL;
1186 		placement.num_placement = 1;
1187 		placement.placement = &placements;
1188 		placement.num_busy_placement = 1;
1189 		placement.busy_placement = &placements;
1190 		placements.fpfn = 0;
1191 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1192 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1193 			TTM_PL_FLAG_TT;
1194 
1195 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1196 		if (unlikely(r))
1197 			return r;
1198 
1199 		/* compute PTE flags for this buffer object */
1200 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1201 
1202 		/* Bind pages */
1203 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1204 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1205 		if (unlikely(r)) {
1206 			ttm_resource_free(bo, &tmp);
1207 			return r;
1208 		}
1209 
1210 		ttm_resource_free(bo, &bo->mem);
1211 		bo->mem = tmp;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /**
1218  * amdgpu_ttm_recover_gart - Rebind GTT pages
1219  *
1220  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1221  * rebind GTT pages during a GPU reset.
1222  */
1223 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1224 {
1225 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1226 	uint64_t flags;
1227 	int r;
1228 
1229 	if (!tbo->ttm)
1230 		return 0;
1231 
1232 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1233 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1234 
1235 	return r;
1236 }
1237 
1238 /**
1239  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1240  *
1241  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1242  * ttm_tt_destroy().
1243  */
1244 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1245 				      struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1248 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249 	int r;
1250 
1251 	/* if the pages have userptr pinning then clear that first */
1252 	if (gtt->userptr)
1253 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1254 
1255 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1256 		return;
1257 
1258 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1259 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1260 	if (r)
1261 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1262 			  gtt->ttm.ttm.num_pages, gtt->offset);
1263 }
1264 
1265 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1266 				       struct ttm_tt *ttm)
1267 {
1268 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1269 
1270 	if (gtt->usertask)
1271 		put_task_struct(gtt->usertask);
1272 
1273 	ttm_dma_tt_fini(&gtt->ttm);
1274 	kfree(gtt);
1275 }
1276 
1277 static struct ttm_backend_func amdgpu_backend_func = {
1278 	.bind = &amdgpu_ttm_backend_bind,
1279 	.unbind = &amdgpu_ttm_backend_unbind,
1280 	.destroy = &amdgpu_ttm_backend_destroy,
1281 };
1282 
1283 /**
1284  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1285  *
1286  * @bo: The buffer object to create a GTT ttm_tt object around
1287  *
1288  * Called by ttm_tt_create().
1289  */
1290 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1291 					   uint32_t page_flags)
1292 {
1293 	struct amdgpu_ttm_tt *gtt;
1294 
1295 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1296 	if (gtt == NULL) {
1297 		return NULL;
1298 	}
1299 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1300 	gtt->gobj = &bo->base;
1301 
1302 	/* allocate space for the uninitialized page entries */
1303 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1304 		kfree(gtt);
1305 		return NULL;
1306 	}
1307 	return &gtt->ttm.ttm;
1308 }
1309 
1310 /**
1311  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1312  *
1313  * Map the pages of a ttm_tt object to an address space visible
1314  * to the underlying device.
1315  */
1316 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1317 				  struct ttm_tt *ttm,
1318 				  struct ttm_operation_ctx *ctx)
1319 {
1320 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1321 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1322 
1323 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1324 	if (gtt && gtt->userptr) {
1325 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1326 		if (!ttm->sg)
1327 			return -ENOMEM;
1328 
1329 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1330 		ttm->state = tt_unbound;
1331 		return 0;
1332 	}
1333 
1334 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1335 		if (!ttm->sg) {
1336 			struct dma_buf_attachment *attach;
1337 			struct sg_table *sgt;
1338 
1339 			attach = gtt->gobj->import_attach;
1340 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1341 			if (IS_ERR(sgt))
1342 				return PTR_ERR(sgt);
1343 
1344 			ttm->sg = sgt;
1345 		}
1346 
1347 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1348 						 gtt->ttm.dma_address,
1349 						 ttm->num_pages);
1350 		ttm->state = tt_unbound;
1351 		return 0;
1352 	}
1353 
1354 #ifdef CONFIG_SWIOTLB
1355 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1356 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1357 	}
1358 #endif
1359 
1360 	/* fall back to generic helper to populate the page array
1361 	 * and map them to the device */
1362 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1363 }
1364 
1365 /**
1366  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1367  *
1368  * Unmaps pages of a ttm_tt object from the device address space and
1369  * unpopulates the page array backing it.
1370  */
1371 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
1372 {
1373 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1374 	struct amdgpu_device *adev;
1375 
1376 	if (gtt && gtt->userptr) {
1377 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1378 		kfree(ttm->sg);
1379 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1380 		return;
1381 	}
1382 
1383 	if (ttm->sg && gtt->gobj->import_attach) {
1384 		struct dma_buf_attachment *attach;
1385 
1386 		attach = gtt->gobj->import_attach;
1387 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1388 		ttm->sg = NULL;
1389 		return;
1390 	}
1391 
1392 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1393 		return;
1394 
1395 	adev = amdgpu_ttm_adev(bdev);
1396 
1397 #ifdef CONFIG_SWIOTLB
1398 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1399 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1400 		return;
1401 	}
1402 #endif
1403 
1404 	/* fall back to generic helper to unmap and unpopulate array */
1405 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1406 }
1407 
1408 /**
1409  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1410  * task
1411  *
1412  * @bo: The ttm_buffer_object to bind this userptr to
1413  * @addr:  The address in the current tasks VM space to use
1414  * @flags: Requirements of userptr object.
1415  *
1416  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1417  * to current task
1418  */
1419 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1420 			      uint64_t addr, uint32_t flags)
1421 {
1422 	struct amdgpu_ttm_tt *gtt;
1423 
1424 	if (!bo->ttm) {
1425 		/* TODO: We want a separate TTM object type for userptrs */
1426 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1427 		if (bo->ttm == NULL)
1428 			return -ENOMEM;
1429 	}
1430 
1431 	gtt = (void*)bo->ttm;
1432 	gtt->userptr = addr;
1433 	gtt->userflags = flags;
1434 
1435 	if (gtt->usertask)
1436 		put_task_struct(gtt->usertask);
1437 	gtt->usertask = current->group_leader;
1438 	get_task_struct(gtt->usertask);
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1445  */
1446 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1447 {
1448 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1449 
1450 	if (gtt == NULL)
1451 		return NULL;
1452 
1453 	if (gtt->usertask == NULL)
1454 		return NULL;
1455 
1456 	return gtt->usertask->mm;
1457 }
1458 
1459 /**
1460  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1461  * address range for the current task.
1462  *
1463  */
1464 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1465 				  unsigned long end)
1466 {
1467 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1468 	unsigned long size;
1469 
1470 	if (gtt == NULL || !gtt->userptr)
1471 		return false;
1472 
1473 	/* Return false if no part of the ttm_tt object lies within
1474 	 * the range
1475 	 */
1476 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1477 	if (gtt->userptr > end || gtt->userptr + size <= start)
1478 		return false;
1479 
1480 	return true;
1481 }
1482 
1483 /**
1484  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1485  */
1486 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1487 {
1488 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1489 
1490 	if (gtt == NULL || !gtt->userptr)
1491 		return false;
1492 
1493 	return true;
1494 }
1495 
1496 /**
1497  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1498  */
1499 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1500 {
1501 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1502 
1503 	if (gtt == NULL)
1504 		return false;
1505 
1506 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1507 }
1508 
1509 /**
1510  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1511  *
1512  * @ttm: The ttm_tt object to compute the flags for
1513  * @mem: The memory registry backing this ttm_tt object
1514  *
1515  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1516  */
1517 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1518 {
1519 	uint64_t flags = 0;
1520 
1521 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1522 		flags |= AMDGPU_PTE_VALID;
1523 
1524 	if (mem && mem->mem_type == TTM_PL_TT) {
1525 		flags |= AMDGPU_PTE_SYSTEM;
1526 
1527 		if (ttm->caching_state == tt_cached)
1528 			flags |= AMDGPU_PTE_SNOOPED;
1529 	}
1530 
1531 	return flags;
1532 }
1533 
1534 /**
1535  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1536  *
1537  * @ttm: The ttm_tt object to compute the flags for
1538  * @mem: The memory registry backing this ttm_tt object
1539 
1540  * Figure out the flags to use for a VM PTE (Page Table Entry).
1541  */
1542 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1543 				 struct ttm_resource *mem)
1544 {
1545 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1546 
1547 	flags |= adev->gart.gart_pte_flags;
1548 	flags |= AMDGPU_PTE_READABLE;
1549 
1550 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1551 		flags |= AMDGPU_PTE_WRITEABLE;
1552 
1553 	return flags;
1554 }
1555 
1556 /**
1557  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1558  * object.
1559  *
1560  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1561  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1562  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1563  * used to clean out a memory space.
1564  */
1565 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1566 					    const struct ttm_place *place)
1567 {
1568 	unsigned long num_pages = bo->mem.num_pages;
1569 	struct drm_mm_node *node = bo->mem.mm_node;
1570 	struct dma_resv_list *flist;
1571 	struct dma_fence *f;
1572 	int i;
1573 
1574 	if (bo->type == ttm_bo_type_kernel &&
1575 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1576 		return false;
1577 
1578 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1579 	 * If true, then return false as any KFD process needs all its BOs to
1580 	 * be resident to run successfully
1581 	 */
1582 	flist = dma_resv_get_list(bo->base.resv);
1583 	if (flist) {
1584 		for (i = 0; i < flist->shared_count; ++i) {
1585 			f = rcu_dereference_protected(flist->shared[i],
1586 				dma_resv_held(bo->base.resv));
1587 			if (amdkfd_fence_check_mm(f, current->mm))
1588 				return false;
1589 		}
1590 	}
1591 
1592 	switch (bo->mem.mem_type) {
1593 	case TTM_PL_TT:
1594 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1595 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1596 			return false;
1597 		return true;
1598 
1599 	case TTM_PL_VRAM:
1600 		/* Check each drm MM node individually */
1601 		while (num_pages) {
1602 			if (place->fpfn < (node->start + node->size) &&
1603 			    !(place->lpfn && place->lpfn <= node->start))
1604 				return true;
1605 
1606 			num_pages -= node->size;
1607 			++node;
1608 		}
1609 		return false;
1610 
1611 	default:
1612 		break;
1613 	}
1614 
1615 	return ttm_bo_eviction_valuable(bo, place);
1616 }
1617 
1618 /**
1619  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1620  *
1621  * @bo:  The buffer object to read/write
1622  * @offset:  Offset into buffer object
1623  * @buf:  Secondary buffer to write/read from
1624  * @len: Length in bytes of access
1625  * @write:  true if writing
1626  *
1627  * This is used to access VRAM that backs a buffer object via MMIO
1628  * access for debugging purposes.
1629  */
1630 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1631 				    unsigned long offset,
1632 				    void *buf, int len, int write)
1633 {
1634 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1635 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1636 	struct drm_mm_node *nodes;
1637 	uint32_t value = 0;
1638 	int ret = 0;
1639 	uint64_t pos;
1640 	unsigned long flags;
1641 
1642 	if (bo->mem.mem_type != TTM_PL_VRAM)
1643 		return -EIO;
1644 
1645 	pos = offset;
1646 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1647 	pos += (nodes->start << PAGE_SHIFT);
1648 
1649 	while (len && pos < adev->gmc.mc_vram_size) {
1650 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1651 		uint64_t bytes = 4 - (pos & 3);
1652 		uint32_t shift = (pos & 3) * 8;
1653 		uint32_t mask = 0xffffffff << shift;
1654 
1655 		if (len < bytes) {
1656 			mask &= 0xffffffff >> (bytes - len) * 8;
1657 			bytes = len;
1658 		}
1659 
1660 		if (mask != 0xffffffff) {
1661 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1662 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1663 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1664 			if (!write || mask != 0xffffffff)
1665 				value = RREG32_NO_KIQ(mmMM_DATA);
1666 			if (write) {
1667 				value &= ~mask;
1668 				value |= (*(uint32_t *)buf << shift) & mask;
1669 				WREG32_NO_KIQ(mmMM_DATA, value);
1670 			}
1671 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1672 			if (!write) {
1673 				value = (value & mask) >> shift;
1674 				memcpy(buf, &value, bytes);
1675 			}
1676 		} else {
1677 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1678 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1679 
1680 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1681 						  bytes, write);
1682 		}
1683 
1684 		ret += bytes;
1685 		buf = (uint8_t *)buf + bytes;
1686 		pos += bytes;
1687 		len -= bytes;
1688 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1689 			++nodes;
1690 			pos = (nodes->start << PAGE_SHIFT);
1691 		}
1692 	}
1693 
1694 	return ret;
1695 }
1696 
1697 static struct ttm_bo_driver amdgpu_bo_driver = {
1698 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1699 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1700 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1701 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1702 	.evict_flags = &amdgpu_evict_flags,
1703 	.move = &amdgpu_bo_move,
1704 	.verify_access = &amdgpu_verify_access,
1705 	.move_notify = &amdgpu_bo_move_notify,
1706 	.release_notify = &amdgpu_bo_release_notify,
1707 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1708 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1709 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1710 	.access_memory = &amdgpu_ttm_access_memory,
1711 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1712 };
1713 
1714 /*
1715  * Firmware Reservation functions
1716  */
1717 /**
1718  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1719  *
1720  * @adev: amdgpu_device pointer
1721  *
1722  * free fw reserved vram if it has been reserved.
1723  */
1724 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1725 {
1726 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1727 		NULL, &adev->fw_vram_usage.va);
1728 }
1729 
1730 /**
1731  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1732  *
1733  * @adev: amdgpu_device pointer
1734  *
1735  * create bo vram reservation from fw.
1736  */
1737 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1738 {
1739 	uint64_t vram_size = adev->gmc.visible_vram_size;
1740 
1741 	adev->fw_vram_usage.va = NULL;
1742 	adev->fw_vram_usage.reserved_bo = NULL;
1743 
1744 	if (adev->fw_vram_usage.size == 0 ||
1745 	    adev->fw_vram_usage.size > vram_size)
1746 		return 0;
1747 
1748 	return amdgpu_bo_create_kernel_at(adev,
1749 					  adev->fw_vram_usage.start_offset,
1750 					  adev->fw_vram_usage.size,
1751 					  AMDGPU_GEM_DOMAIN_VRAM,
1752 					  &adev->fw_vram_usage.reserved_bo,
1753 					  &adev->fw_vram_usage.va);
1754 }
1755 
1756 /*
1757  * Memoy training reservation functions
1758  */
1759 
1760 /**
1761  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1762  *
1763  * @adev: amdgpu_device pointer
1764  *
1765  * free memory training reserved vram if it has been reserved.
1766  */
1767 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1768 {
1769 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1770 
1771 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1772 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1773 	ctx->c2p_bo = NULL;
1774 
1775 	return 0;
1776 }
1777 
1778 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1779 {
1780 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1781 
1782 	memset(ctx, 0, sizeof(*ctx));
1783 
1784 	ctx->c2p_train_data_offset =
1785 		ALIGN((adev->gmc.mc_vram_size - adev->discovery_tmr_size - SZ_1M), SZ_1M);
1786 	ctx->p2c_train_data_offset =
1787 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1788 	ctx->train_data_size =
1789 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1790 
1791 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1792 			ctx->train_data_size,
1793 			ctx->p2c_train_data_offset,
1794 			ctx->c2p_train_data_offset);
1795 }
1796 
1797 /*
1798  * reserve TMR memory at the top of VRAM which holds
1799  * IP Discovery data and is protected by PSP.
1800  */
1801 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1802 {
1803 	int ret;
1804 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1805 	bool mem_train_support = false;
1806 
1807 	if (!amdgpu_sriov_vf(adev)) {
1808 		ret = amdgpu_mem_train_support(adev);
1809 		if (ret == 1)
1810 			mem_train_support = true;
1811 		else if (ret == -1)
1812 			return -EINVAL;
1813 		else
1814 			DRM_DEBUG("memory training does not support!\n");
1815 	}
1816 
1817 	/*
1818 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1819 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1820 	 *
1821 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1822 	 * discovery data and G6 memory training data respectively
1823 	 */
1824 	adev->discovery_tmr_size =
1825 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1826 	if (!adev->discovery_tmr_size)
1827 		adev->discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1828 
1829 	if (mem_train_support) {
1830 		/* reserve vram for mem train according to TMR location */
1831 		amdgpu_ttm_training_data_block_init(adev);
1832 		ret = amdgpu_bo_create_kernel_at(adev,
1833 					 ctx->c2p_train_data_offset,
1834 					 ctx->train_data_size,
1835 					 AMDGPU_GEM_DOMAIN_VRAM,
1836 					 &ctx->c2p_bo,
1837 					 NULL);
1838 		if (ret) {
1839 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1840 			amdgpu_ttm_training_reserve_vram_fini(adev);
1841 			return ret;
1842 		}
1843 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1844 	}
1845 
1846 	ret = amdgpu_bo_create_kernel_at(adev,
1847 				adev->gmc.real_vram_size - adev->discovery_tmr_size,
1848 				adev->discovery_tmr_size,
1849 				AMDGPU_GEM_DOMAIN_VRAM,
1850 				&adev->discovery_memory,
1851 				NULL);
1852 	if (ret) {
1853 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1854 		amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1855 		return ret;
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 /**
1862  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1863  * gtt/vram related fields.
1864  *
1865  * This initializes all of the memory space pools that the TTM layer
1866  * will need such as the GTT space (system memory mapped to the device),
1867  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1868  * can be mapped per VMID.
1869  */
1870 int amdgpu_ttm_init(struct amdgpu_device *adev)
1871 {
1872 	uint64_t gtt_size;
1873 	int r;
1874 	u64 vis_vram_limit;
1875 	void *stolen_vga_buf;
1876 
1877 	mutex_init(&adev->mman.gtt_window_lock);
1878 
1879 	/* No others user of address space so set it to 0 */
1880 	r = ttm_bo_device_init(&adev->mman.bdev,
1881 			       &amdgpu_bo_driver,
1882 			       adev->ddev->anon_inode->i_mapping,
1883 			       adev->ddev->vma_offset_manager,
1884 			       dma_addressing_limited(adev->dev));
1885 	if (r) {
1886 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1887 		return r;
1888 	}
1889 	adev->mman.initialized = true;
1890 
1891 	/* We opt to avoid OOM on system pages allocations */
1892 	adev->mman.bdev.no_retry = true;
1893 
1894 	/* Initialize VRAM pool with all of VRAM divided into pages */
1895 	r = amdgpu_vram_mgr_init(adev);
1896 	if (r) {
1897 		DRM_ERROR("Failed initializing VRAM heap.\n");
1898 		return r;
1899 	}
1900 
1901 	/* Reduce size of CPU-visible VRAM if requested */
1902 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1903 	if (amdgpu_vis_vram_limit > 0 &&
1904 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1905 		adev->gmc.visible_vram_size = vis_vram_limit;
1906 
1907 	/* Change the size here instead of the init above so only lpfn is affected */
1908 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1909 #ifdef CONFIG_64BIT
1910 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1911 						adev->gmc.visible_vram_size);
1912 #endif
1913 
1914 	/*
1915 	 *The reserved vram for firmware must be pinned to the specified
1916 	 *place on the VRAM, so reserve it early.
1917 	 */
1918 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1919 	if (r) {
1920 		return r;
1921 	}
1922 
1923 	/*
1924 	 * only NAVI10 and onwards ASIC support for IP discovery.
1925 	 * If IP discovery enabled, a block of memory should be
1926 	 * reserved for IP discovey.
1927 	 */
1928 	if (adev->discovery_bin) {
1929 		r = amdgpu_ttm_reserve_tmr(adev);
1930 		if (r)
1931 			return r;
1932 	}
1933 
1934 	/* allocate memory as required for VGA
1935 	 * This is used for VGA emulation and pre-OS scanout buffers to
1936 	 * avoid display artifacts while transitioning between pre-OS
1937 	 * and driver.  */
1938 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1939 				    AMDGPU_GEM_DOMAIN_VRAM,
1940 				    &adev->stolen_vga_memory,
1941 				    NULL, &stolen_vga_buf);
1942 	if (r)
1943 		return r;
1944 
1945 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1946 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1947 
1948 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1949 	 * or whatever the user passed on module init */
1950 	if (amdgpu_gtt_size == -1) {
1951 		struct sysinfo si;
1952 
1953 		si_meminfo(&si);
1954 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1955 			       adev->gmc.mc_vram_size),
1956 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1957 	}
1958 	else
1959 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1960 
1961 	/* Initialize GTT memory pool */
1962 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1963 	if (r) {
1964 		DRM_ERROR("Failed initializing GTT heap.\n");
1965 		return r;
1966 	}
1967 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1968 		 (unsigned)(gtt_size / (1024 * 1024)));
1969 
1970 	/* Initialize various on-chip memory pools */
1971 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1972 	if (r) {
1973 		DRM_ERROR("Failed initializing GDS heap.\n");
1974 		return r;
1975 	}
1976 
1977 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1978 	if (r) {
1979 		DRM_ERROR("Failed initializing gws heap.\n");
1980 		return r;
1981 	}
1982 
1983 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1984 	if (r) {
1985 		DRM_ERROR("Failed initializing oa heap.\n");
1986 		return r;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /**
1993  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1994  */
1995 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1996 {
1997 	void *stolen_vga_buf;
1998 	/* return the VGA stolen memory (if any) back to VRAM */
1999 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2000 }
2001 
2002 /**
2003  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2004  */
2005 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2006 {
2007 	if (!adev->mman.initialized)
2008 		return;
2009 
2010 	amdgpu_ttm_training_reserve_vram_fini(adev);
2011 	/* return the IP Discovery TMR memory back to VRAM */
2012 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2013 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2014 
2015 	if (adev->mman.aper_base_kaddr)
2016 		iounmap(adev->mman.aper_base_kaddr);
2017 	adev->mman.aper_base_kaddr = NULL;
2018 
2019 	amdgpu_vram_mgr_fini(adev);
2020 	amdgpu_gtt_mgr_fini(adev);
2021 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2022 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2023 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2024 	ttm_bo_device_release(&adev->mman.bdev);
2025 	adev->mman.initialized = false;
2026 	DRM_INFO("amdgpu: ttm finalized\n");
2027 }
2028 
2029 /**
2030  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2031  *
2032  * @adev: amdgpu_device pointer
2033  * @enable: true when we can use buffer functions.
2034  *
2035  * Enable/disable use of buffer functions during suspend/resume. This should
2036  * only be called at bootup or when userspace isn't running.
2037  */
2038 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2039 {
2040 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2041 	uint64_t size;
2042 	int r;
2043 
2044 	if (!adev->mman.initialized || adev->in_gpu_reset ||
2045 	    adev->mman.buffer_funcs_enabled == enable)
2046 		return;
2047 
2048 	if (enable) {
2049 		struct amdgpu_ring *ring;
2050 		struct drm_gpu_scheduler *sched;
2051 
2052 		ring = adev->mman.buffer_funcs_ring;
2053 		sched = &ring->sched;
2054 		r = drm_sched_entity_init(&adev->mman.entity,
2055 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
2056 					  1, NULL);
2057 		if (r) {
2058 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2059 				  r);
2060 			return;
2061 		}
2062 	} else {
2063 		drm_sched_entity_destroy(&adev->mman.entity);
2064 		dma_fence_put(man->move);
2065 		man->move = NULL;
2066 	}
2067 
2068 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2069 	if (enable)
2070 		size = adev->gmc.real_vram_size;
2071 	else
2072 		size = adev->gmc.visible_vram_size;
2073 	man->size = size >> PAGE_SHIFT;
2074 	adev->mman.buffer_funcs_enabled = enable;
2075 }
2076 
2077 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2078 {
2079 	struct drm_file *file_priv = filp->private_data;
2080 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2081 
2082 	if (adev == NULL)
2083 		return -EINVAL;
2084 
2085 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2086 }
2087 
2088 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2089 		       uint64_t dst_offset, uint32_t byte_count,
2090 		       struct dma_resv *resv,
2091 		       struct dma_fence **fence, bool direct_submit,
2092 		       bool vm_needs_flush, bool tmz)
2093 {
2094 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2095 		AMDGPU_IB_POOL_DELAYED;
2096 	struct amdgpu_device *adev = ring->adev;
2097 	struct amdgpu_job *job;
2098 
2099 	uint32_t max_bytes;
2100 	unsigned num_loops, num_dw;
2101 	unsigned i;
2102 	int r;
2103 
2104 	if (direct_submit && !ring->sched.ready) {
2105 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2106 		return -EINVAL;
2107 	}
2108 
2109 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2110 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2111 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2112 
2113 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2114 	if (r)
2115 		return r;
2116 
2117 	if (vm_needs_flush) {
2118 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2119 		job->vm_needs_flush = true;
2120 	}
2121 	if (resv) {
2122 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2123 				     AMDGPU_SYNC_ALWAYS,
2124 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2125 		if (r) {
2126 			DRM_ERROR("sync failed (%d).\n", r);
2127 			goto error_free;
2128 		}
2129 	}
2130 
2131 	for (i = 0; i < num_loops; i++) {
2132 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2133 
2134 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2135 					dst_offset, cur_size_in_bytes, tmz);
2136 
2137 		src_offset += cur_size_in_bytes;
2138 		dst_offset += cur_size_in_bytes;
2139 		byte_count -= cur_size_in_bytes;
2140 	}
2141 
2142 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2143 	WARN_ON(job->ibs[0].length_dw > num_dw);
2144 	if (direct_submit)
2145 		r = amdgpu_job_submit_direct(job, ring, fence);
2146 	else
2147 		r = amdgpu_job_submit(job, &adev->mman.entity,
2148 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2149 	if (r)
2150 		goto error_free;
2151 
2152 	return r;
2153 
2154 error_free:
2155 	amdgpu_job_free(job);
2156 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2157 	return r;
2158 }
2159 
2160 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2161 		       uint32_t src_data,
2162 		       struct dma_resv *resv,
2163 		       struct dma_fence **fence)
2164 {
2165 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2166 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2167 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2168 
2169 	struct drm_mm_node *mm_node;
2170 	unsigned long num_pages;
2171 	unsigned int num_loops, num_dw;
2172 
2173 	struct amdgpu_job *job;
2174 	int r;
2175 
2176 	if (!adev->mman.buffer_funcs_enabled) {
2177 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2178 		return -EINVAL;
2179 	}
2180 
2181 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2182 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2183 		if (r)
2184 			return r;
2185 	}
2186 
2187 	num_pages = bo->tbo.num_pages;
2188 	mm_node = bo->tbo.mem.mm_node;
2189 	num_loops = 0;
2190 	while (num_pages) {
2191 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2192 
2193 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2194 		num_pages -= mm_node->size;
2195 		++mm_node;
2196 	}
2197 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2198 
2199 	/* for IB padding */
2200 	num_dw += 64;
2201 
2202 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2203 				     &job);
2204 	if (r)
2205 		return r;
2206 
2207 	if (resv) {
2208 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2209 				     AMDGPU_SYNC_ALWAYS,
2210 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2211 		if (r) {
2212 			DRM_ERROR("sync failed (%d).\n", r);
2213 			goto error_free;
2214 		}
2215 	}
2216 
2217 	num_pages = bo->tbo.num_pages;
2218 	mm_node = bo->tbo.mem.mm_node;
2219 
2220 	while (num_pages) {
2221 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2222 		uint64_t dst_addr;
2223 
2224 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2225 		while (byte_count) {
2226 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2227 							   max_bytes);
2228 
2229 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2230 						dst_addr, cur_size_in_bytes);
2231 
2232 			dst_addr += cur_size_in_bytes;
2233 			byte_count -= cur_size_in_bytes;
2234 		}
2235 
2236 		num_pages -= mm_node->size;
2237 		++mm_node;
2238 	}
2239 
2240 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2241 	WARN_ON(job->ibs[0].length_dw > num_dw);
2242 	r = amdgpu_job_submit(job, &adev->mman.entity,
2243 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2244 	if (r)
2245 		goto error_free;
2246 
2247 	return 0;
2248 
2249 error_free:
2250 	amdgpu_job_free(job);
2251 	return r;
2252 }
2253 
2254 #if defined(CONFIG_DEBUG_FS)
2255 
2256 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2257 {
2258 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2259 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2260 	struct drm_device *dev = node->minor->dev;
2261 	struct amdgpu_device *adev = dev->dev_private;
2262 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl);
2263 	struct drm_printer p = drm_seq_file_printer(m);
2264 
2265 	man->func->debug(man, &p);
2266 	return 0;
2267 }
2268 
2269 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2270 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2271 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2272 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2273 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2274 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2275 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2276 #ifdef CONFIG_SWIOTLB
2277 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2278 #endif
2279 };
2280 
2281 /**
2282  * amdgpu_ttm_vram_read - Linear read access to VRAM
2283  *
2284  * Accesses VRAM via MMIO for debugging purposes.
2285  */
2286 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2287 				    size_t size, loff_t *pos)
2288 {
2289 	struct amdgpu_device *adev = file_inode(f)->i_private;
2290 	ssize_t result = 0;
2291 
2292 	if (size & 0x3 || *pos & 0x3)
2293 		return -EINVAL;
2294 
2295 	if (*pos >= adev->gmc.mc_vram_size)
2296 		return -ENXIO;
2297 
2298 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2299 	while (size) {
2300 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2301 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2302 
2303 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2304 		if (copy_to_user(buf, value, bytes))
2305 			return -EFAULT;
2306 
2307 		result += bytes;
2308 		buf += bytes;
2309 		*pos += bytes;
2310 		size -= bytes;
2311 	}
2312 
2313 	return result;
2314 }
2315 
2316 /**
2317  * amdgpu_ttm_vram_write - Linear write access to VRAM
2318  *
2319  * Accesses VRAM via MMIO for debugging purposes.
2320  */
2321 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2322 				    size_t size, loff_t *pos)
2323 {
2324 	struct amdgpu_device *adev = file_inode(f)->i_private;
2325 	ssize_t result = 0;
2326 	int r;
2327 
2328 	if (size & 0x3 || *pos & 0x3)
2329 		return -EINVAL;
2330 
2331 	if (*pos >= adev->gmc.mc_vram_size)
2332 		return -ENXIO;
2333 
2334 	while (size) {
2335 		unsigned long flags;
2336 		uint32_t value;
2337 
2338 		if (*pos >= adev->gmc.mc_vram_size)
2339 			return result;
2340 
2341 		r = get_user(value, (uint32_t *)buf);
2342 		if (r)
2343 			return r;
2344 
2345 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2346 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2347 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2348 		WREG32_NO_KIQ(mmMM_DATA, value);
2349 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2350 
2351 		result += 4;
2352 		buf += 4;
2353 		*pos += 4;
2354 		size -= 4;
2355 	}
2356 
2357 	return result;
2358 }
2359 
2360 static const struct file_operations amdgpu_ttm_vram_fops = {
2361 	.owner = THIS_MODULE,
2362 	.read = amdgpu_ttm_vram_read,
2363 	.write = amdgpu_ttm_vram_write,
2364 	.llseek = default_llseek,
2365 };
2366 
2367 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2368 
2369 /**
2370  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2371  */
2372 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2373 				   size_t size, loff_t *pos)
2374 {
2375 	struct amdgpu_device *adev = file_inode(f)->i_private;
2376 	ssize_t result = 0;
2377 	int r;
2378 
2379 	while (size) {
2380 		loff_t p = *pos / PAGE_SIZE;
2381 		unsigned off = *pos & ~PAGE_MASK;
2382 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2383 		struct page *page;
2384 		void *ptr;
2385 
2386 		if (p >= adev->gart.num_cpu_pages)
2387 			return result;
2388 
2389 		page = adev->gart.pages[p];
2390 		if (page) {
2391 			ptr = kmap(page);
2392 			ptr += off;
2393 
2394 			r = copy_to_user(buf, ptr, cur_size);
2395 			kunmap(adev->gart.pages[p]);
2396 		} else
2397 			r = clear_user(buf, cur_size);
2398 
2399 		if (r)
2400 			return -EFAULT;
2401 
2402 		result += cur_size;
2403 		buf += cur_size;
2404 		*pos += cur_size;
2405 		size -= cur_size;
2406 	}
2407 
2408 	return result;
2409 }
2410 
2411 static const struct file_operations amdgpu_ttm_gtt_fops = {
2412 	.owner = THIS_MODULE,
2413 	.read = amdgpu_ttm_gtt_read,
2414 	.llseek = default_llseek
2415 };
2416 
2417 #endif
2418 
2419 /**
2420  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2421  *
2422  * This function is used to read memory that has been mapped to the
2423  * GPU and the known addresses are not physical addresses but instead
2424  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2425  */
2426 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2427 				 size_t size, loff_t *pos)
2428 {
2429 	struct amdgpu_device *adev = file_inode(f)->i_private;
2430 	struct iommu_domain *dom;
2431 	ssize_t result = 0;
2432 	int r;
2433 
2434 	/* retrieve the IOMMU domain if any for this device */
2435 	dom = iommu_get_domain_for_dev(adev->dev);
2436 
2437 	while (size) {
2438 		phys_addr_t addr = *pos & PAGE_MASK;
2439 		loff_t off = *pos & ~PAGE_MASK;
2440 		size_t bytes = PAGE_SIZE - off;
2441 		unsigned long pfn;
2442 		struct page *p;
2443 		void *ptr;
2444 
2445 		bytes = bytes < size ? bytes : size;
2446 
2447 		/* Translate the bus address to a physical address.  If
2448 		 * the domain is NULL it means there is no IOMMU active
2449 		 * and the address translation is the identity
2450 		 */
2451 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2452 
2453 		pfn = addr >> PAGE_SHIFT;
2454 		if (!pfn_valid(pfn))
2455 			return -EPERM;
2456 
2457 		p = pfn_to_page(pfn);
2458 		if (p->mapping != adev->mman.bdev.dev_mapping)
2459 			return -EPERM;
2460 
2461 		ptr = kmap(p);
2462 		r = copy_to_user(buf, ptr + off, bytes);
2463 		kunmap(p);
2464 		if (r)
2465 			return -EFAULT;
2466 
2467 		size -= bytes;
2468 		*pos += bytes;
2469 		result += bytes;
2470 	}
2471 
2472 	return result;
2473 }
2474 
2475 /**
2476  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2477  *
2478  * This function is used to write memory that has been mapped to the
2479  * GPU and the known addresses are not physical addresses but instead
2480  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2481  */
2482 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2483 				 size_t size, loff_t *pos)
2484 {
2485 	struct amdgpu_device *adev = file_inode(f)->i_private;
2486 	struct iommu_domain *dom;
2487 	ssize_t result = 0;
2488 	int r;
2489 
2490 	dom = iommu_get_domain_for_dev(adev->dev);
2491 
2492 	while (size) {
2493 		phys_addr_t addr = *pos & PAGE_MASK;
2494 		loff_t off = *pos & ~PAGE_MASK;
2495 		size_t bytes = PAGE_SIZE - off;
2496 		unsigned long pfn;
2497 		struct page *p;
2498 		void *ptr;
2499 
2500 		bytes = bytes < size ? bytes : size;
2501 
2502 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2503 
2504 		pfn = addr >> PAGE_SHIFT;
2505 		if (!pfn_valid(pfn))
2506 			return -EPERM;
2507 
2508 		p = pfn_to_page(pfn);
2509 		if (p->mapping != adev->mman.bdev.dev_mapping)
2510 			return -EPERM;
2511 
2512 		ptr = kmap(p);
2513 		r = copy_from_user(ptr + off, buf, bytes);
2514 		kunmap(p);
2515 		if (r)
2516 			return -EFAULT;
2517 
2518 		size -= bytes;
2519 		*pos += bytes;
2520 		result += bytes;
2521 	}
2522 
2523 	return result;
2524 }
2525 
2526 static const struct file_operations amdgpu_ttm_iomem_fops = {
2527 	.owner = THIS_MODULE,
2528 	.read = amdgpu_iomem_read,
2529 	.write = amdgpu_iomem_write,
2530 	.llseek = default_llseek
2531 };
2532 
2533 static const struct {
2534 	char *name;
2535 	const struct file_operations *fops;
2536 	int domain;
2537 } ttm_debugfs_entries[] = {
2538 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2539 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2540 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2541 #endif
2542 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2543 };
2544 
2545 #endif
2546 
2547 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2548 {
2549 #if defined(CONFIG_DEBUG_FS)
2550 	unsigned count;
2551 
2552 	struct drm_minor *minor = adev->ddev->primary;
2553 	struct dentry *ent, *root = minor->debugfs_root;
2554 
2555 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2556 		ent = debugfs_create_file(
2557 				ttm_debugfs_entries[count].name,
2558 				S_IFREG | S_IRUGO, root,
2559 				adev,
2560 				ttm_debugfs_entries[count].fops);
2561 		if (IS_ERR(ent))
2562 			return PTR_ERR(ent);
2563 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2564 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2565 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2566 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2567 		adev->mman.debugfs_entries[count] = ent;
2568 	}
2569 
2570 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2571 
2572 #ifdef CONFIG_SWIOTLB
2573 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2574 		--count;
2575 #endif
2576 
2577 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2578 #else
2579 	return 0;
2580 #endif
2581 }
2582