1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "bif/bif_4_1_d.h" 63 64 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 65 66 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 67 struct ttm_tt *ttm, 68 struct ttm_resource *bo_mem); 69 70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 71 unsigned int type, 72 uint64_t size_in_page) 73 { 74 return ttm_range_man_init(&adev->mman.bdev, type, 75 false, size_in_page); 76 } 77 78 /** 79 * amdgpu_evict_flags - Compute placement flags 80 * 81 * @bo: The buffer object to evict 82 * @placement: Possible destination(s) for evicted BO 83 * 84 * Fill in placement data when ttm_bo_evict() is called 85 */ 86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 87 struct ttm_placement *placement) 88 { 89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 90 struct amdgpu_bo *abo; 91 static const struct ttm_place placements = { 92 .fpfn = 0, 93 .lpfn = 0, 94 .mem_type = TTM_PL_SYSTEM, 95 .flags = TTM_PL_MASK_CACHING 96 }; 97 98 /* Don't handle scatter gather BOs */ 99 if (bo->type == ttm_bo_type_sg) { 100 placement->num_placement = 0; 101 placement->num_busy_placement = 0; 102 return; 103 } 104 105 /* Object isn't an AMDGPU object so ignore */ 106 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 107 placement->placement = &placements; 108 placement->busy_placement = &placements; 109 placement->num_placement = 1; 110 placement->num_busy_placement = 1; 111 return; 112 } 113 114 abo = ttm_to_amdgpu_bo(bo); 115 switch (bo->mem.mem_type) { 116 case AMDGPU_PL_GDS: 117 case AMDGPU_PL_GWS: 118 case AMDGPU_PL_OA: 119 placement->num_placement = 0; 120 placement->num_busy_placement = 0; 121 return; 122 123 case TTM_PL_VRAM: 124 if (!adev->mman.buffer_funcs_enabled) { 125 /* Move to system memory */ 126 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 127 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 128 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 129 amdgpu_bo_in_cpu_visible_vram(abo)) { 130 131 /* Try evicting to the CPU inaccessible part of VRAM 132 * first, but only set GTT as busy placement, so this 133 * BO will be evicted to GTT rather than causing other 134 * BOs to be evicted from VRAM 135 */ 136 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 137 AMDGPU_GEM_DOMAIN_GTT); 138 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 139 abo->placements[0].lpfn = 0; 140 abo->placement.busy_placement = &abo->placements[1]; 141 abo->placement.num_busy_placement = 1; 142 } else { 143 /* Move to GTT memory */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 145 } 146 break; 147 case TTM_PL_TT: 148 default: 149 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 150 break; 151 } 152 *placement = abo->placement; 153 } 154 155 /** 156 * amdgpu_verify_access - Verify access for a mmap call 157 * 158 * @bo: The buffer object to map 159 * @filp: The file pointer from the process performing the mmap 160 * 161 * This is called by ttm_bo_mmap() to verify whether a process 162 * has the right to mmap a BO to their process space. 163 */ 164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 165 { 166 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 167 168 /* 169 * Don't verify access for KFD BOs. They don't have a GEM 170 * object associated with them. 171 */ 172 if (abo->kfd_bo) 173 return 0; 174 175 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 176 return -EPERM; 177 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 178 filp->private_data); 179 } 180 181 /** 182 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 183 * 184 * @bo: The bo to assign the memory to. 185 * @mm_node: Memory manager node for drm allocator. 186 * @mem: The region where the bo resides. 187 * 188 */ 189 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 190 struct drm_mm_node *mm_node, 191 struct ttm_resource *mem) 192 { 193 uint64_t addr = 0; 194 195 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 196 addr = mm_node->start << PAGE_SHIFT; 197 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), 198 mem->mem_type); 199 } 200 return addr; 201 } 202 203 /** 204 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 205 * @offset. It also modifies the offset to be within the drm_mm_node returned 206 * 207 * @mem: The region where the bo resides. 208 * @offset: The offset that drm_mm_node is used for finding. 209 * 210 */ 211 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem, 212 uint64_t *offset) 213 { 214 struct drm_mm_node *mm_node = mem->mm_node; 215 216 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 217 *offset -= (mm_node->size << PAGE_SHIFT); 218 ++mm_node; 219 } 220 return mm_node; 221 } 222 223 /** 224 * amdgpu_ttm_map_buffer - Map memory into the GART windows 225 * @bo: buffer object to map 226 * @mem: memory object to map 227 * @mm_node: drm_mm node object to map 228 * @num_pages: number of pages to map 229 * @offset: offset into @mm_node where to start 230 * @window: which GART window to use 231 * @ring: DMA ring to use for the copy 232 * @tmz: if we should setup a TMZ enabled mapping 233 * @addr: resulting address inside the MC address space 234 * 235 * Setup one of the GART windows to access a specific piece of memory or return 236 * the physical address for local memory. 237 */ 238 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 239 struct ttm_resource *mem, 240 struct drm_mm_node *mm_node, 241 unsigned num_pages, uint64_t offset, 242 unsigned window, struct amdgpu_ring *ring, 243 bool tmz, uint64_t *addr) 244 { 245 struct amdgpu_device *adev = ring->adev; 246 struct amdgpu_job *job; 247 unsigned num_dw, num_bytes; 248 struct dma_fence *fence; 249 uint64_t src_addr, dst_addr; 250 void *cpu_addr; 251 uint64_t flags; 252 unsigned int i; 253 int r; 254 255 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 256 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 257 258 /* Map only what can't be accessed directly */ 259 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 260 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; 261 return 0; 262 } 263 264 *addr = adev->gmc.gart_start; 265 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 266 AMDGPU_GPU_PAGE_SIZE; 267 *addr += offset & ~PAGE_MASK; 268 269 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 270 num_bytes = num_pages * 8; 271 272 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 273 AMDGPU_IB_POOL_DELAYED, &job); 274 if (r) 275 return r; 276 277 src_addr = num_dw * 4; 278 src_addr += job->ibs[0].gpu_addr; 279 280 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 281 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 282 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 283 dst_addr, num_bytes, false); 284 285 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 286 WARN_ON(job->ibs[0].length_dw > num_dw); 287 288 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 289 if (tmz) 290 flags |= AMDGPU_PTE_TMZ; 291 292 cpu_addr = &job->ibs[0].ptr[num_dw]; 293 294 if (mem->mem_type == TTM_PL_TT) { 295 struct ttm_dma_tt *dma; 296 dma_addr_t *dma_address; 297 298 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm); 299 dma_address = &dma->dma_address[offset >> PAGE_SHIFT]; 300 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 301 cpu_addr); 302 if (r) 303 goto error_free; 304 } else { 305 dma_addr_t dma_address; 306 307 dma_address = (mm_node->start << PAGE_SHIFT) + offset; 308 dma_address += adev->vm_manager.vram_base_offset; 309 310 for (i = 0; i < num_pages; ++i) { 311 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 312 &dma_address, flags, cpu_addr); 313 if (r) 314 goto error_free; 315 316 dma_address += PAGE_SIZE; 317 } 318 } 319 320 r = amdgpu_job_submit(job, &adev->mman.entity, 321 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 322 if (r) 323 goto error_free; 324 325 dma_fence_put(fence); 326 327 return r; 328 329 error_free: 330 amdgpu_job_free(job); 331 return r; 332 } 333 334 /** 335 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 336 * @adev: amdgpu device 337 * @src: buffer/address where to read from 338 * @dst: buffer/address where to write to 339 * @size: number of bytes to copy 340 * @tmz: if a secure copy should be used 341 * @resv: resv object to sync to 342 * @f: Returns the last fence if multiple jobs are submitted. 343 * 344 * The function copies @size bytes from {src->mem + src->offset} to 345 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 346 * move and different for a BO to BO copy. 347 * 348 */ 349 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 350 const struct amdgpu_copy_mem *src, 351 const struct amdgpu_copy_mem *dst, 352 uint64_t size, bool tmz, 353 struct dma_resv *resv, 354 struct dma_fence **f) 355 { 356 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 357 AMDGPU_GPU_PAGE_SIZE); 358 359 uint64_t src_node_size, dst_node_size, src_offset, dst_offset; 360 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 361 struct drm_mm_node *src_mm, *dst_mm; 362 struct dma_fence *fence = NULL; 363 int r = 0; 364 365 if (!adev->mman.buffer_funcs_enabled) { 366 DRM_ERROR("Trying to move memory with ring turned off.\n"); 367 return -EINVAL; 368 } 369 370 src_offset = src->offset; 371 if (src->mem->mm_node) { 372 src_mm = amdgpu_find_mm_node(src->mem, &src_offset); 373 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; 374 } else { 375 src_mm = NULL; 376 src_node_size = ULLONG_MAX; 377 } 378 379 dst_offset = dst->offset; 380 if (dst->mem->mm_node) { 381 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); 382 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; 383 } else { 384 dst_mm = NULL; 385 dst_node_size = ULLONG_MAX; 386 } 387 388 mutex_lock(&adev->mman.gtt_window_lock); 389 390 while (size) { 391 uint32_t src_page_offset = src_offset & ~PAGE_MASK; 392 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK; 393 struct dma_fence *next; 394 uint32_t cur_size; 395 uint64_t from, to; 396 397 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 398 * begins at an offset, then adjust the size accordingly 399 */ 400 cur_size = max(src_page_offset, dst_page_offset); 401 cur_size = min(min3(src_node_size, dst_node_size, size), 402 (uint64_t)(GTT_MAX_BYTES - cur_size)); 403 404 /* Map src to window 0 and dst to window 1. */ 405 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, 406 PFN_UP(cur_size + src_page_offset), 407 src_offset, 0, ring, tmz, &from); 408 if (r) 409 goto error; 410 411 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, 412 PFN_UP(cur_size + dst_page_offset), 413 dst_offset, 1, ring, tmz, &to); 414 if (r) 415 goto error; 416 417 r = amdgpu_copy_buffer(ring, from, to, cur_size, 418 resv, &next, false, true, tmz); 419 if (r) 420 goto error; 421 422 dma_fence_put(fence); 423 fence = next; 424 425 size -= cur_size; 426 if (!size) 427 break; 428 429 src_node_size -= cur_size; 430 if (!src_node_size) { 431 ++src_mm; 432 src_node_size = src_mm->size << PAGE_SHIFT; 433 src_offset = 0; 434 } else { 435 src_offset += cur_size; 436 } 437 438 dst_node_size -= cur_size; 439 if (!dst_node_size) { 440 ++dst_mm; 441 dst_node_size = dst_mm->size << PAGE_SHIFT; 442 dst_offset = 0; 443 } else { 444 dst_offset += cur_size; 445 } 446 } 447 error: 448 mutex_unlock(&adev->mman.gtt_window_lock); 449 if (f) 450 *f = dma_fence_get(fence); 451 dma_fence_put(fence); 452 return r; 453 } 454 455 /** 456 * amdgpu_move_blit - Copy an entire buffer to another buffer 457 * 458 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 459 * help move buffers to and from VRAM. 460 */ 461 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 462 bool evict, 463 struct ttm_resource *new_mem, 464 struct ttm_resource *old_mem) 465 { 466 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 467 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 468 struct amdgpu_copy_mem src, dst; 469 struct dma_fence *fence = NULL; 470 int r; 471 472 src.bo = bo; 473 dst.bo = bo; 474 src.mem = old_mem; 475 dst.mem = new_mem; 476 src.offset = 0; 477 dst.offset = 0; 478 479 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 480 new_mem->num_pages << PAGE_SHIFT, 481 amdgpu_bo_encrypted(abo), 482 bo->base.resv, &fence); 483 if (r) 484 goto error; 485 486 /* clear the space being freed */ 487 if (old_mem->mem_type == TTM_PL_VRAM && 488 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 489 struct dma_fence *wipe_fence = NULL; 490 491 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 492 NULL, &wipe_fence); 493 if (r) { 494 goto error; 495 } else if (wipe_fence) { 496 dma_fence_put(fence); 497 fence = wipe_fence; 498 } 499 } 500 501 /* Always block for VM page tables before committing the new location */ 502 if (bo->type == ttm_bo_type_kernel) 503 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 504 else 505 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 506 dma_fence_put(fence); 507 return r; 508 509 error: 510 if (fence) 511 dma_fence_wait(fence, false); 512 dma_fence_put(fence); 513 return r; 514 } 515 516 /** 517 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 518 * 519 * Called by amdgpu_bo_move(). 520 */ 521 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 522 struct ttm_operation_ctx *ctx, 523 struct ttm_resource *new_mem) 524 { 525 struct ttm_resource *old_mem = &bo->mem; 526 struct ttm_resource tmp_mem; 527 struct ttm_place placements; 528 struct ttm_placement placement; 529 int r; 530 531 /* create space/pages for new_mem in GTT space */ 532 tmp_mem = *new_mem; 533 tmp_mem.mm_node = NULL; 534 placement.num_placement = 1; 535 placement.placement = &placements; 536 placement.num_busy_placement = 1; 537 placement.busy_placement = &placements; 538 placements.fpfn = 0; 539 placements.lpfn = 0; 540 placements.mem_type = TTM_PL_TT; 541 placements.flags = TTM_PL_MASK_CACHING; 542 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 543 if (unlikely(r)) { 544 pr_err("Failed to find GTT space for blit from VRAM\n"); 545 return r; 546 } 547 548 /* set caching flags */ 549 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 550 if (unlikely(r)) { 551 goto out_cleanup; 552 } 553 554 r = ttm_tt_populate(bo->bdev, bo->ttm, ctx); 555 if (unlikely(r)) 556 goto out_cleanup; 557 558 /* Bind the memory to the GTT space */ 559 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, &tmp_mem); 560 if (unlikely(r)) { 561 goto out_cleanup; 562 } 563 564 /* blit VRAM to GTT */ 565 r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem); 566 if (unlikely(r)) { 567 goto out_cleanup; 568 } 569 570 /* move BO (in tmp_mem) to new_mem */ 571 r = ttm_bo_move_ttm(bo, ctx, new_mem); 572 out_cleanup: 573 ttm_resource_free(bo, &tmp_mem); 574 return r; 575 } 576 577 /** 578 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 579 * 580 * Called by amdgpu_bo_move(). 581 */ 582 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 583 struct ttm_operation_ctx *ctx, 584 struct ttm_resource *new_mem) 585 { 586 struct ttm_resource *old_mem = &bo->mem; 587 struct ttm_resource tmp_mem; 588 struct ttm_placement placement; 589 struct ttm_place placements; 590 int r; 591 592 /* make space in GTT for old_mem buffer */ 593 tmp_mem = *new_mem; 594 tmp_mem.mm_node = NULL; 595 placement.num_placement = 1; 596 placement.placement = &placements; 597 placement.num_busy_placement = 1; 598 placement.busy_placement = &placements; 599 placements.fpfn = 0; 600 placements.lpfn = 0; 601 placements.mem_type = TTM_PL_TT; 602 placements.flags = TTM_PL_MASK_CACHING; 603 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 604 if (unlikely(r)) { 605 pr_err("Failed to find GTT space for blit to VRAM\n"); 606 return r; 607 } 608 609 /* move/bind old memory to GTT space */ 610 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 611 if (unlikely(r)) { 612 goto out_cleanup; 613 } 614 615 /* copy to VRAM */ 616 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 617 if (unlikely(r)) { 618 goto out_cleanup; 619 } 620 out_cleanup: 621 ttm_resource_free(bo, &tmp_mem); 622 return r; 623 } 624 625 /** 626 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 627 * 628 * Called by amdgpu_bo_move() 629 */ 630 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 631 struct ttm_resource *mem) 632 { 633 struct drm_mm_node *nodes = mem->mm_node; 634 635 if (mem->mem_type == TTM_PL_SYSTEM || 636 mem->mem_type == TTM_PL_TT) 637 return true; 638 if (mem->mem_type != TTM_PL_VRAM) 639 return false; 640 641 /* ttm_resource_ioremap only supports contiguous memory */ 642 if (nodes->size != mem->num_pages) 643 return false; 644 645 return ((nodes->start + nodes->size) << PAGE_SHIFT) 646 <= adev->gmc.visible_vram_size; 647 } 648 649 /** 650 * amdgpu_bo_move - Move a buffer object to a new memory location 651 * 652 * Called by ttm_bo_handle_move_mem() 653 */ 654 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 655 struct ttm_operation_ctx *ctx, 656 struct ttm_resource *new_mem) 657 { 658 struct amdgpu_device *adev; 659 struct amdgpu_bo *abo; 660 struct ttm_resource *old_mem = &bo->mem; 661 int r; 662 663 /* Can't move a pinned BO */ 664 abo = ttm_to_amdgpu_bo(bo); 665 if (WARN_ON_ONCE(abo->pin_count > 0)) 666 return -EINVAL; 667 668 adev = amdgpu_ttm_adev(bo->bdev); 669 670 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 671 ttm_bo_move_null(bo, new_mem); 672 return 0; 673 } 674 if ((old_mem->mem_type == TTM_PL_TT && 675 new_mem->mem_type == TTM_PL_SYSTEM) || 676 (old_mem->mem_type == TTM_PL_SYSTEM && 677 new_mem->mem_type == TTM_PL_TT)) { 678 /* bind is enough */ 679 ttm_bo_move_null(bo, new_mem); 680 return 0; 681 } 682 if (old_mem->mem_type == AMDGPU_PL_GDS || 683 old_mem->mem_type == AMDGPU_PL_GWS || 684 old_mem->mem_type == AMDGPU_PL_OA || 685 new_mem->mem_type == AMDGPU_PL_GDS || 686 new_mem->mem_type == AMDGPU_PL_GWS || 687 new_mem->mem_type == AMDGPU_PL_OA) { 688 /* Nothing to save here */ 689 ttm_bo_move_null(bo, new_mem); 690 return 0; 691 } 692 693 if (!adev->mman.buffer_funcs_enabled) { 694 r = -ENODEV; 695 goto memcpy; 696 } 697 698 if (old_mem->mem_type == TTM_PL_VRAM && 699 new_mem->mem_type == TTM_PL_SYSTEM) { 700 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 701 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 702 new_mem->mem_type == TTM_PL_VRAM) { 703 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 704 } else { 705 r = amdgpu_move_blit(bo, evict, 706 new_mem, old_mem); 707 } 708 709 if (r) { 710 memcpy: 711 /* Check that all memory is CPU accessible */ 712 if (!amdgpu_mem_visible(adev, old_mem) || 713 !amdgpu_mem_visible(adev, new_mem)) { 714 pr_err("Move buffer fallback to memcpy unavailable\n"); 715 return r; 716 } 717 718 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 719 if (r) 720 return r; 721 } 722 723 if (bo->type == ttm_bo_type_device && 724 new_mem->mem_type == TTM_PL_VRAM && 725 old_mem->mem_type != TTM_PL_VRAM) { 726 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 727 * accesses the BO after it's moved. 728 */ 729 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 730 } 731 732 /* update statistics */ 733 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 734 return 0; 735 } 736 737 /** 738 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 739 * 740 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 741 */ 742 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem) 743 { 744 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 745 struct drm_mm_node *mm_node = mem->mm_node; 746 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 747 748 switch (mem->mem_type) { 749 case TTM_PL_SYSTEM: 750 /* system memory */ 751 return 0; 752 case TTM_PL_TT: 753 break; 754 case TTM_PL_VRAM: 755 mem->bus.offset = mem->start << PAGE_SHIFT; 756 /* check if it's visible */ 757 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 758 return -EINVAL; 759 /* Only physically contiguous buffers apply. In a contiguous 760 * buffer, size of the first mm_node would match the number of 761 * pages in ttm_resource. 762 */ 763 if (adev->mman.aper_base_kaddr && 764 (mm_node->size == mem->num_pages)) 765 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 766 mem->bus.offset; 767 768 mem->bus.offset += adev->gmc.aper_base; 769 mem->bus.is_iomem = true; 770 break; 771 default: 772 return -EINVAL; 773 } 774 return 0; 775 } 776 777 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 778 unsigned long page_offset) 779 { 780 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 781 uint64_t offset = (page_offset << PAGE_SHIFT); 782 struct drm_mm_node *mm; 783 784 mm = amdgpu_find_mm_node(&bo->mem, &offset); 785 offset += adev->gmc.aper_base; 786 return mm->start + (offset >> PAGE_SHIFT); 787 } 788 789 /** 790 * amdgpu_ttm_domain_start - Returns GPU start address 791 * @adev: amdgpu device object 792 * @type: type of the memory 793 * 794 * Returns: 795 * GPU start address of a memory domain 796 */ 797 798 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 799 { 800 switch (type) { 801 case TTM_PL_TT: 802 return adev->gmc.gart_start; 803 case TTM_PL_VRAM: 804 return adev->gmc.vram_start; 805 } 806 807 return 0; 808 } 809 810 /* 811 * TTM backend functions. 812 */ 813 struct amdgpu_ttm_tt { 814 struct ttm_dma_tt ttm; 815 struct drm_gem_object *gobj; 816 u64 offset; 817 uint64_t userptr; 818 struct task_struct *usertask; 819 uint32_t userflags; 820 bool bound; 821 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 822 struct hmm_range *range; 823 #endif 824 }; 825 826 #ifdef CONFIG_DRM_AMDGPU_USERPTR 827 /** 828 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 829 * memory and start HMM tracking CPU page table update 830 * 831 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 832 * once afterwards to stop HMM tracking 833 */ 834 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 835 { 836 struct ttm_tt *ttm = bo->tbo.ttm; 837 struct amdgpu_ttm_tt *gtt = (void *)ttm; 838 unsigned long start = gtt->userptr; 839 struct vm_area_struct *vma; 840 struct hmm_range *range; 841 unsigned long timeout; 842 struct mm_struct *mm; 843 unsigned long i; 844 int r = 0; 845 846 mm = bo->notifier.mm; 847 if (unlikely(!mm)) { 848 DRM_DEBUG_DRIVER("BO is not registered?\n"); 849 return -EFAULT; 850 } 851 852 /* Another get_user_pages is running at the same time?? */ 853 if (WARN_ON(gtt->range)) 854 return -EFAULT; 855 856 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 857 return -ESRCH; 858 859 range = kzalloc(sizeof(*range), GFP_KERNEL); 860 if (unlikely(!range)) { 861 r = -ENOMEM; 862 goto out; 863 } 864 range->notifier = &bo->notifier; 865 range->start = bo->notifier.interval_tree.start; 866 range->end = bo->notifier.interval_tree.last + 1; 867 range->default_flags = HMM_PFN_REQ_FAULT; 868 if (!amdgpu_ttm_tt_is_readonly(ttm)) 869 range->default_flags |= HMM_PFN_REQ_WRITE; 870 871 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 872 sizeof(*range->hmm_pfns), GFP_KERNEL); 873 if (unlikely(!range->hmm_pfns)) { 874 r = -ENOMEM; 875 goto out_free_ranges; 876 } 877 878 mmap_read_lock(mm); 879 vma = find_vma(mm, start); 880 if (unlikely(!vma || start < vma->vm_start)) { 881 r = -EFAULT; 882 goto out_unlock; 883 } 884 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 885 vma->vm_file)) { 886 r = -EPERM; 887 goto out_unlock; 888 } 889 mmap_read_unlock(mm); 890 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 891 892 retry: 893 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 894 895 mmap_read_lock(mm); 896 r = hmm_range_fault(range); 897 mmap_read_unlock(mm); 898 if (unlikely(r)) { 899 /* 900 * FIXME: This timeout should encompass the retry from 901 * mmu_interval_read_retry() as well. 902 */ 903 if (r == -EBUSY && !time_after(jiffies, timeout)) 904 goto retry; 905 goto out_free_pfns; 906 } 907 908 /* 909 * Due to default_flags, all pages are HMM_PFN_VALID or 910 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 911 * the notifier_lock, and mmu_interval_read_retry() must be done first. 912 */ 913 for (i = 0; i < ttm->num_pages; i++) 914 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 915 916 gtt->range = range; 917 mmput(mm); 918 919 return 0; 920 921 out_unlock: 922 mmap_read_unlock(mm); 923 out_free_pfns: 924 kvfree(range->hmm_pfns); 925 out_free_ranges: 926 kfree(range); 927 out: 928 mmput(mm); 929 return r; 930 } 931 932 /** 933 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 934 * Check if the pages backing this ttm range have been invalidated 935 * 936 * Returns: true if pages are still valid 937 */ 938 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 939 { 940 struct amdgpu_ttm_tt *gtt = (void *)ttm; 941 bool r = false; 942 943 if (!gtt || !gtt->userptr) 944 return false; 945 946 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 947 gtt->userptr, ttm->num_pages); 948 949 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 950 "No user pages to check\n"); 951 952 if (gtt->range) { 953 /* 954 * FIXME: Must always hold notifier_lock for this, and must 955 * not ignore the return code. 956 */ 957 r = mmu_interval_read_retry(gtt->range->notifier, 958 gtt->range->notifier_seq); 959 kvfree(gtt->range->hmm_pfns); 960 kfree(gtt->range); 961 gtt->range = NULL; 962 } 963 964 return !r; 965 } 966 #endif 967 968 /** 969 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 970 * 971 * Called by amdgpu_cs_list_validate(). This creates the page list 972 * that backs user memory and will ultimately be mapped into the device 973 * address space. 974 */ 975 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 976 { 977 unsigned long i; 978 979 for (i = 0; i < ttm->num_pages; ++i) 980 ttm->pages[i] = pages ? pages[i] : NULL; 981 } 982 983 /** 984 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 985 * 986 * Called by amdgpu_ttm_backend_bind() 987 **/ 988 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev, 989 struct ttm_tt *ttm) 990 { 991 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 992 struct amdgpu_ttm_tt *gtt = (void *)ttm; 993 int r; 994 995 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 996 enum dma_data_direction direction = write ? 997 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 998 999 /* Allocate an SG array and squash pages into it */ 1000 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 1001 ttm->num_pages << PAGE_SHIFT, 1002 GFP_KERNEL); 1003 if (r) 1004 goto release_sg; 1005 1006 /* Map SG to device */ 1007 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 1008 if (r) 1009 goto release_sg; 1010 1011 /* convert SG to linear array of pages and dma addresses */ 1012 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1013 gtt->ttm.dma_address, ttm->num_pages); 1014 1015 return 0; 1016 1017 release_sg: 1018 kfree(ttm->sg); 1019 ttm->sg = NULL; 1020 return r; 1021 } 1022 1023 /** 1024 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 1025 */ 1026 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev, 1027 struct ttm_tt *ttm) 1028 { 1029 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1030 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1031 1032 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1033 enum dma_data_direction direction = write ? 1034 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1035 1036 /* double check that we don't free the table twice */ 1037 if (!ttm->sg->sgl) 1038 return; 1039 1040 /* unmap the pages mapped to the device */ 1041 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 1042 sg_free_table(ttm->sg); 1043 1044 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1045 if (gtt->range) { 1046 unsigned long i; 1047 1048 for (i = 0; i < ttm->num_pages; i++) { 1049 if (ttm->pages[i] != 1050 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 1051 break; 1052 } 1053 1054 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1055 } 1056 #endif 1057 } 1058 1059 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1060 struct ttm_buffer_object *tbo, 1061 uint64_t flags) 1062 { 1063 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1064 struct ttm_tt *ttm = tbo->ttm; 1065 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1066 int r; 1067 1068 if (amdgpu_bo_encrypted(abo)) 1069 flags |= AMDGPU_PTE_TMZ; 1070 1071 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1072 uint64_t page_idx = 1; 1073 1074 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1075 ttm->pages, gtt->ttm.dma_address, flags); 1076 if (r) 1077 goto gart_bind_fail; 1078 1079 /* The memory type of the first page defaults to UC. Now 1080 * modify the memory type to NC from the second page of 1081 * the BO onward. 1082 */ 1083 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1084 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1085 1086 r = amdgpu_gart_bind(adev, 1087 gtt->offset + (page_idx << PAGE_SHIFT), 1088 ttm->num_pages - page_idx, 1089 &ttm->pages[page_idx], 1090 &(gtt->ttm.dma_address[page_idx]), flags); 1091 } else { 1092 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1093 ttm->pages, gtt->ttm.dma_address, flags); 1094 } 1095 1096 gart_bind_fail: 1097 if (r) 1098 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1099 ttm->num_pages, gtt->offset); 1100 1101 return r; 1102 } 1103 1104 /** 1105 * amdgpu_ttm_backend_bind - Bind GTT memory 1106 * 1107 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1108 * This handles binding GTT memory to the device address space. 1109 */ 1110 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev, 1111 struct ttm_tt *ttm, 1112 struct ttm_resource *bo_mem) 1113 { 1114 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1115 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1116 uint64_t flags; 1117 int r = 0; 1118 1119 if (!bo_mem) 1120 return -EINVAL; 1121 1122 if (gtt->bound) 1123 return 0; 1124 1125 if (gtt->userptr) { 1126 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 1127 if (r) { 1128 DRM_ERROR("failed to pin userptr\n"); 1129 return r; 1130 } 1131 } 1132 if (!ttm->num_pages) { 1133 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1134 ttm->num_pages, bo_mem, ttm); 1135 } 1136 1137 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1138 bo_mem->mem_type == AMDGPU_PL_GWS || 1139 bo_mem->mem_type == AMDGPU_PL_OA) 1140 return -EINVAL; 1141 1142 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1143 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1144 return 0; 1145 } 1146 1147 /* compute PTE flags relevant to this BO memory */ 1148 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1149 1150 /* bind pages into GART page tables */ 1151 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1152 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1153 ttm->pages, gtt->ttm.dma_address, flags); 1154 1155 if (r) 1156 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1157 ttm->num_pages, gtt->offset); 1158 gtt->bound = true; 1159 return r; 1160 } 1161 1162 /** 1163 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 1164 * through AGP or GART aperture. 1165 * 1166 * If bo is accessible through AGP aperture, then use AGP aperture 1167 * to access bo; otherwise allocate logical space in GART aperture 1168 * and map bo to GART aperture. 1169 */ 1170 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1171 { 1172 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1173 struct ttm_operation_ctx ctx = { false, false }; 1174 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1175 struct ttm_resource tmp; 1176 struct ttm_placement placement; 1177 struct ttm_place placements; 1178 uint64_t addr, flags; 1179 int r; 1180 1181 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1182 return 0; 1183 1184 addr = amdgpu_gmc_agp_addr(bo); 1185 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1186 bo->mem.start = addr >> PAGE_SHIFT; 1187 } else { 1188 1189 /* allocate GART space */ 1190 tmp = bo->mem; 1191 tmp.mm_node = NULL; 1192 placement.num_placement = 1; 1193 placement.placement = &placements; 1194 placement.num_busy_placement = 1; 1195 placement.busy_placement = &placements; 1196 placements.fpfn = 0; 1197 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1198 placements.mem_type = TTM_PL_TT; 1199 placements.flags = bo->mem.placement; 1200 1201 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1202 if (unlikely(r)) 1203 return r; 1204 1205 /* compute PTE flags for this buffer object */ 1206 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1207 1208 /* Bind pages */ 1209 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1210 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1211 if (unlikely(r)) { 1212 ttm_resource_free(bo, &tmp); 1213 return r; 1214 } 1215 1216 ttm_resource_free(bo, &bo->mem); 1217 bo->mem = tmp; 1218 } 1219 1220 return 0; 1221 } 1222 1223 /** 1224 * amdgpu_ttm_recover_gart - Rebind GTT pages 1225 * 1226 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1227 * rebind GTT pages during a GPU reset. 1228 */ 1229 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1230 { 1231 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1232 uint64_t flags; 1233 int r; 1234 1235 if (!tbo->ttm) 1236 return 0; 1237 1238 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1239 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1240 1241 return r; 1242 } 1243 1244 /** 1245 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1246 * 1247 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1248 * ttm_tt_destroy(). 1249 */ 1250 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev, 1251 struct ttm_tt *ttm) 1252 { 1253 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1254 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1255 int r; 1256 1257 if (!gtt->bound) 1258 return; 1259 1260 /* if the pages have userptr pinning then clear that first */ 1261 if (gtt->userptr) 1262 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1263 1264 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1265 return; 1266 1267 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1268 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1269 if (r) 1270 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1271 gtt->ttm.ttm.num_pages, gtt->offset); 1272 gtt->bound = false; 1273 } 1274 1275 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev, 1276 struct ttm_tt *ttm) 1277 { 1278 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1279 1280 amdgpu_ttm_backend_unbind(bdev, ttm); 1281 ttm_tt_destroy_common(bdev, ttm); 1282 if (gtt->usertask) 1283 put_task_struct(gtt->usertask); 1284 1285 ttm_dma_tt_fini(>t->ttm); 1286 kfree(gtt); 1287 } 1288 1289 /** 1290 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1291 * 1292 * @bo: The buffer object to create a GTT ttm_tt object around 1293 * 1294 * Called by ttm_tt_create(). 1295 */ 1296 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1297 uint32_t page_flags) 1298 { 1299 struct amdgpu_ttm_tt *gtt; 1300 1301 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1302 if (gtt == NULL) { 1303 return NULL; 1304 } 1305 gtt->gobj = &bo->base; 1306 1307 /* allocate space for the uninitialized page entries */ 1308 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1309 kfree(gtt); 1310 return NULL; 1311 } 1312 return >t->ttm.ttm; 1313 } 1314 1315 /** 1316 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1317 * 1318 * Map the pages of a ttm_tt object to an address space visible 1319 * to the underlying device. 1320 */ 1321 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev, 1322 struct ttm_tt *ttm, 1323 struct ttm_operation_ctx *ctx) 1324 { 1325 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1326 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1327 1328 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1329 if (gtt && gtt->userptr) { 1330 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1331 if (!ttm->sg) 1332 return -ENOMEM; 1333 1334 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1335 ttm_tt_set_populated(ttm); 1336 return 0; 1337 } 1338 1339 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1340 if (!ttm->sg) { 1341 struct dma_buf_attachment *attach; 1342 struct sg_table *sgt; 1343 1344 attach = gtt->gobj->import_attach; 1345 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1346 if (IS_ERR(sgt)) 1347 return PTR_ERR(sgt); 1348 1349 ttm->sg = sgt; 1350 } 1351 1352 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1353 gtt->ttm.dma_address, 1354 ttm->num_pages); 1355 ttm_tt_set_populated(ttm); 1356 return 0; 1357 } 1358 1359 #ifdef CONFIG_SWIOTLB 1360 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1361 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1362 } 1363 #endif 1364 1365 /* fall back to generic helper to populate the page array 1366 * and map them to the device */ 1367 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1368 } 1369 1370 /** 1371 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1372 * 1373 * Unmaps pages of a ttm_tt object from the device address space and 1374 * unpopulates the page array backing it. 1375 */ 1376 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev, struct ttm_tt *ttm) 1377 { 1378 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1379 struct amdgpu_device *adev; 1380 1381 if (gtt && gtt->userptr) { 1382 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1383 kfree(ttm->sg); 1384 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1385 return; 1386 } 1387 1388 if (ttm->sg && gtt->gobj->import_attach) { 1389 struct dma_buf_attachment *attach; 1390 1391 attach = gtt->gobj->import_attach; 1392 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1393 ttm->sg = NULL; 1394 return; 1395 } 1396 1397 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1398 return; 1399 1400 adev = amdgpu_ttm_adev(bdev); 1401 1402 #ifdef CONFIG_SWIOTLB 1403 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1404 ttm_dma_unpopulate(>t->ttm, adev->dev); 1405 return; 1406 } 1407 #endif 1408 1409 /* fall back to generic helper to unmap and unpopulate array */ 1410 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1411 } 1412 1413 /** 1414 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1415 * task 1416 * 1417 * @bo: The ttm_buffer_object to bind this userptr to 1418 * @addr: The address in the current tasks VM space to use 1419 * @flags: Requirements of userptr object. 1420 * 1421 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1422 * to current task 1423 */ 1424 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1425 uint64_t addr, uint32_t flags) 1426 { 1427 struct amdgpu_ttm_tt *gtt; 1428 1429 if (!bo->ttm) { 1430 /* TODO: We want a separate TTM object type for userptrs */ 1431 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1432 if (bo->ttm == NULL) 1433 return -ENOMEM; 1434 } 1435 1436 gtt = (void*)bo->ttm; 1437 gtt->userptr = addr; 1438 gtt->userflags = flags; 1439 1440 if (gtt->usertask) 1441 put_task_struct(gtt->usertask); 1442 gtt->usertask = current->group_leader; 1443 get_task_struct(gtt->usertask); 1444 1445 return 0; 1446 } 1447 1448 /** 1449 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1450 */ 1451 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1452 { 1453 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1454 1455 if (gtt == NULL) 1456 return NULL; 1457 1458 if (gtt->usertask == NULL) 1459 return NULL; 1460 1461 return gtt->usertask->mm; 1462 } 1463 1464 /** 1465 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1466 * address range for the current task. 1467 * 1468 */ 1469 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1470 unsigned long end) 1471 { 1472 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1473 unsigned long size; 1474 1475 if (gtt == NULL || !gtt->userptr) 1476 return false; 1477 1478 /* Return false if no part of the ttm_tt object lies within 1479 * the range 1480 */ 1481 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1482 if (gtt->userptr > end || gtt->userptr + size <= start) 1483 return false; 1484 1485 return true; 1486 } 1487 1488 /** 1489 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1490 */ 1491 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1492 { 1493 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1494 1495 if (gtt == NULL || !gtt->userptr) 1496 return false; 1497 1498 return true; 1499 } 1500 1501 /** 1502 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1503 */ 1504 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1505 { 1506 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1507 1508 if (gtt == NULL) 1509 return false; 1510 1511 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1512 } 1513 1514 /** 1515 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1516 * 1517 * @ttm: The ttm_tt object to compute the flags for 1518 * @mem: The memory registry backing this ttm_tt object 1519 * 1520 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1521 */ 1522 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1523 { 1524 uint64_t flags = 0; 1525 1526 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1527 flags |= AMDGPU_PTE_VALID; 1528 1529 if (mem && mem->mem_type == TTM_PL_TT) { 1530 flags |= AMDGPU_PTE_SYSTEM; 1531 1532 if (ttm->caching_state == tt_cached) 1533 flags |= AMDGPU_PTE_SNOOPED; 1534 } 1535 1536 return flags; 1537 } 1538 1539 /** 1540 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1541 * 1542 * @ttm: The ttm_tt object to compute the flags for 1543 * @mem: The memory registry backing this ttm_tt object 1544 1545 * Figure out the flags to use for a VM PTE (Page Table Entry). 1546 */ 1547 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1548 struct ttm_resource *mem) 1549 { 1550 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1551 1552 flags |= adev->gart.gart_pte_flags; 1553 flags |= AMDGPU_PTE_READABLE; 1554 1555 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1556 flags |= AMDGPU_PTE_WRITEABLE; 1557 1558 return flags; 1559 } 1560 1561 /** 1562 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1563 * object. 1564 * 1565 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1566 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1567 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1568 * used to clean out a memory space. 1569 */ 1570 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1571 const struct ttm_place *place) 1572 { 1573 unsigned long num_pages = bo->mem.num_pages; 1574 struct drm_mm_node *node = bo->mem.mm_node; 1575 struct dma_resv_list *flist; 1576 struct dma_fence *f; 1577 int i; 1578 1579 if (bo->type == ttm_bo_type_kernel && 1580 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1581 return false; 1582 1583 /* If bo is a KFD BO, check if the bo belongs to the current process. 1584 * If true, then return false as any KFD process needs all its BOs to 1585 * be resident to run successfully 1586 */ 1587 flist = dma_resv_get_list(bo->base.resv); 1588 if (flist) { 1589 for (i = 0; i < flist->shared_count; ++i) { 1590 f = rcu_dereference_protected(flist->shared[i], 1591 dma_resv_held(bo->base.resv)); 1592 if (amdkfd_fence_check_mm(f, current->mm)) 1593 return false; 1594 } 1595 } 1596 1597 switch (bo->mem.mem_type) { 1598 case TTM_PL_TT: 1599 if (amdgpu_bo_is_amdgpu_bo(bo) && 1600 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1601 return false; 1602 return true; 1603 1604 case TTM_PL_VRAM: 1605 /* Check each drm MM node individually */ 1606 while (num_pages) { 1607 if (place->fpfn < (node->start + node->size) && 1608 !(place->lpfn && place->lpfn <= node->start)) 1609 return true; 1610 1611 num_pages -= node->size; 1612 ++node; 1613 } 1614 return false; 1615 1616 default: 1617 break; 1618 } 1619 1620 return ttm_bo_eviction_valuable(bo, place); 1621 } 1622 1623 /** 1624 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1625 * 1626 * @bo: The buffer object to read/write 1627 * @offset: Offset into buffer object 1628 * @buf: Secondary buffer to write/read from 1629 * @len: Length in bytes of access 1630 * @write: true if writing 1631 * 1632 * This is used to access VRAM that backs a buffer object via MMIO 1633 * access for debugging purposes. 1634 */ 1635 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1636 unsigned long offset, 1637 void *buf, int len, int write) 1638 { 1639 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1640 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1641 struct drm_mm_node *nodes; 1642 uint32_t value = 0; 1643 int ret = 0; 1644 uint64_t pos; 1645 unsigned long flags; 1646 1647 if (bo->mem.mem_type != TTM_PL_VRAM) 1648 return -EIO; 1649 1650 pos = offset; 1651 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); 1652 pos += (nodes->start << PAGE_SHIFT); 1653 1654 while (len && pos < adev->gmc.mc_vram_size) { 1655 uint64_t aligned_pos = pos & ~(uint64_t)3; 1656 uint64_t bytes = 4 - (pos & 3); 1657 uint32_t shift = (pos & 3) * 8; 1658 uint32_t mask = 0xffffffff << shift; 1659 1660 if (len < bytes) { 1661 mask &= 0xffffffff >> (bytes - len) * 8; 1662 bytes = len; 1663 } 1664 1665 if (mask != 0xffffffff) { 1666 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1667 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1668 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1669 if (!write || mask != 0xffffffff) 1670 value = RREG32_NO_KIQ(mmMM_DATA); 1671 if (write) { 1672 value &= ~mask; 1673 value |= (*(uint32_t *)buf << shift) & mask; 1674 WREG32_NO_KIQ(mmMM_DATA, value); 1675 } 1676 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1677 if (!write) { 1678 value = (value & mask) >> shift; 1679 memcpy(buf, &value, bytes); 1680 } 1681 } else { 1682 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1683 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1684 1685 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1686 bytes, write); 1687 } 1688 1689 ret += bytes; 1690 buf = (uint8_t *)buf + bytes; 1691 pos += bytes; 1692 len -= bytes; 1693 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1694 ++nodes; 1695 pos = (nodes->start << PAGE_SHIFT); 1696 } 1697 } 1698 1699 return ret; 1700 } 1701 1702 static struct ttm_bo_driver amdgpu_bo_driver = { 1703 .ttm_tt_create = &amdgpu_ttm_tt_create, 1704 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1705 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1706 .ttm_tt_bind = &amdgpu_ttm_backend_bind, 1707 .ttm_tt_unbind = &amdgpu_ttm_backend_unbind, 1708 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1709 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1710 .evict_flags = &amdgpu_evict_flags, 1711 .move = &amdgpu_bo_move, 1712 .verify_access = &amdgpu_verify_access, 1713 .move_notify = &amdgpu_bo_move_notify, 1714 .release_notify = &amdgpu_bo_release_notify, 1715 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1716 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1717 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1718 .access_memory = &amdgpu_ttm_access_memory, 1719 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1720 }; 1721 1722 /* 1723 * Firmware Reservation functions 1724 */ 1725 /** 1726 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1727 * 1728 * @adev: amdgpu_device pointer 1729 * 1730 * free fw reserved vram if it has been reserved. 1731 */ 1732 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1733 { 1734 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1735 NULL, &adev->mman.fw_vram_usage_va); 1736 } 1737 1738 /** 1739 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1740 * 1741 * @adev: amdgpu_device pointer 1742 * 1743 * create bo vram reservation from fw. 1744 */ 1745 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1746 { 1747 uint64_t vram_size = adev->gmc.visible_vram_size; 1748 1749 adev->mman.fw_vram_usage_va = NULL; 1750 adev->mman.fw_vram_usage_reserved_bo = NULL; 1751 1752 if (adev->mman.fw_vram_usage_size == 0 || 1753 adev->mman.fw_vram_usage_size > vram_size) 1754 return 0; 1755 1756 return amdgpu_bo_create_kernel_at(adev, 1757 adev->mman.fw_vram_usage_start_offset, 1758 adev->mman.fw_vram_usage_size, 1759 AMDGPU_GEM_DOMAIN_VRAM, 1760 &adev->mman.fw_vram_usage_reserved_bo, 1761 &adev->mman.fw_vram_usage_va); 1762 } 1763 1764 /* 1765 * Memoy training reservation functions 1766 */ 1767 1768 /** 1769 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1770 * 1771 * @adev: amdgpu_device pointer 1772 * 1773 * free memory training reserved vram if it has been reserved. 1774 */ 1775 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1776 { 1777 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1778 1779 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1780 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1781 ctx->c2p_bo = NULL; 1782 1783 return 0; 1784 } 1785 1786 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1787 { 1788 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1789 1790 memset(ctx, 0, sizeof(*ctx)); 1791 1792 ctx->c2p_train_data_offset = 1793 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1794 ctx->p2c_train_data_offset = 1795 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1796 ctx->train_data_size = 1797 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1798 1799 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1800 ctx->train_data_size, 1801 ctx->p2c_train_data_offset, 1802 ctx->c2p_train_data_offset); 1803 } 1804 1805 /* 1806 * reserve TMR memory at the top of VRAM which holds 1807 * IP Discovery data and is protected by PSP. 1808 */ 1809 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1810 { 1811 int ret; 1812 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1813 bool mem_train_support = false; 1814 1815 if (!amdgpu_sriov_vf(adev)) { 1816 ret = amdgpu_mem_train_support(adev); 1817 if (ret == 1) 1818 mem_train_support = true; 1819 else if (ret == -1) 1820 return -EINVAL; 1821 else 1822 DRM_DEBUG("memory training does not support!\n"); 1823 } 1824 1825 /* 1826 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1827 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1828 * 1829 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1830 * discovery data and G6 memory training data respectively 1831 */ 1832 adev->mman.discovery_tmr_size = 1833 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1834 if (!adev->mman.discovery_tmr_size) 1835 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1836 1837 if (mem_train_support) { 1838 /* reserve vram for mem train according to TMR location */ 1839 amdgpu_ttm_training_data_block_init(adev); 1840 ret = amdgpu_bo_create_kernel_at(adev, 1841 ctx->c2p_train_data_offset, 1842 ctx->train_data_size, 1843 AMDGPU_GEM_DOMAIN_VRAM, 1844 &ctx->c2p_bo, 1845 NULL); 1846 if (ret) { 1847 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1848 amdgpu_ttm_training_reserve_vram_fini(adev); 1849 return ret; 1850 } 1851 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1852 } 1853 1854 ret = amdgpu_bo_create_kernel_at(adev, 1855 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1856 adev->mman.discovery_tmr_size, 1857 AMDGPU_GEM_DOMAIN_VRAM, 1858 &adev->mman.discovery_memory, 1859 NULL); 1860 if (ret) { 1861 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1862 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1863 return ret; 1864 } 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1871 * gtt/vram related fields. 1872 * 1873 * This initializes all of the memory space pools that the TTM layer 1874 * will need such as the GTT space (system memory mapped to the device), 1875 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1876 * can be mapped per VMID. 1877 */ 1878 int amdgpu_ttm_init(struct amdgpu_device *adev) 1879 { 1880 uint64_t gtt_size; 1881 int r; 1882 u64 vis_vram_limit; 1883 1884 mutex_init(&adev->mman.gtt_window_lock); 1885 1886 /* No others user of address space so set it to 0 */ 1887 r = ttm_bo_device_init(&adev->mman.bdev, 1888 &amdgpu_bo_driver, 1889 adev_to_drm(adev)->anon_inode->i_mapping, 1890 adev_to_drm(adev)->vma_offset_manager, 1891 dma_addressing_limited(adev->dev)); 1892 if (r) { 1893 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1894 return r; 1895 } 1896 adev->mman.initialized = true; 1897 1898 /* We opt to avoid OOM on system pages allocations */ 1899 adev->mman.bdev.no_retry = true; 1900 1901 /* Initialize VRAM pool with all of VRAM divided into pages */ 1902 r = amdgpu_vram_mgr_init(adev); 1903 if (r) { 1904 DRM_ERROR("Failed initializing VRAM heap.\n"); 1905 return r; 1906 } 1907 1908 /* Reduce size of CPU-visible VRAM if requested */ 1909 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1910 if (amdgpu_vis_vram_limit > 0 && 1911 vis_vram_limit <= adev->gmc.visible_vram_size) 1912 adev->gmc.visible_vram_size = vis_vram_limit; 1913 1914 /* Change the size here instead of the init above so only lpfn is affected */ 1915 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1916 #ifdef CONFIG_64BIT 1917 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1918 adev->gmc.visible_vram_size); 1919 #endif 1920 1921 /* 1922 *The reserved vram for firmware must be pinned to the specified 1923 *place on the VRAM, so reserve it early. 1924 */ 1925 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1926 if (r) { 1927 return r; 1928 } 1929 1930 /* 1931 * only NAVI10 and onwards ASIC support for IP discovery. 1932 * If IP discovery enabled, a block of memory should be 1933 * reserved for IP discovey. 1934 */ 1935 if (adev->mman.discovery_bin) { 1936 r = amdgpu_ttm_reserve_tmr(adev); 1937 if (r) 1938 return r; 1939 } 1940 1941 /* allocate memory as required for VGA 1942 * This is used for VGA emulation and pre-OS scanout buffers to 1943 * avoid display artifacts while transitioning between pre-OS 1944 * and driver. */ 1945 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1946 AMDGPU_GEM_DOMAIN_VRAM, 1947 &adev->mman.stolen_vga_memory, 1948 NULL); 1949 if (r) 1950 return r; 1951 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1952 adev->mman.stolen_extended_size, 1953 AMDGPU_GEM_DOMAIN_VRAM, 1954 &adev->mman.stolen_extended_memory, 1955 NULL); 1956 if (r) 1957 return r; 1958 1959 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1960 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1961 1962 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1963 * or whatever the user passed on module init */ 1964 if (amdgpu_gtt_size == -1) { 1965 struct sysinfo si; 1966 1967 si_meminfo(&si); 1968 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1969 adev->gmc.mc_vram_size), 1970 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1971 } 1972 else 1973 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1974 1975 /* Initialize GTT memory pool */ 1976 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1977 if (r) { 1978 DRM_ERROR("Failed initializing GTT heap.\n"); 1979 return r; 1980 } 1981 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1982 (unsigned)(gtt_size / (1024 * 1024))); 1983 1984 /* Initialize various on-chip memory pools */ 1985 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1986 if (r) { 1987 DRM_ERROR("Failed initializing GDS heap.\n"); 1988 return r; 1989 } 1990 1991 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1992 if (r) { 1993 DRM_ERROR("Failed initializing gws heap.\n"); 1994 return r; 1995 } 1996 1997 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1998 if (r) { 1999 DRM_ERROR("Failed initializing oa heap.\n"); 2000 return r; 2001 } 2002 2003 return 0; 2004 } 2005 2006 /** 2007 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 2008 */ 2009 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 2010 { 2011 /* return the VGA stolen memory (if any) back to VRAM */ 2012 if (!adev->mman.keep_stolen_vga_memory) 2013 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2014 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2015 } 2016 2017 /** 2018 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2019 */ 2020 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2021 { 2022 if (!adev->mman.initialized) 2023 return; 2024 2025 amdgpu_ttm_training_reserve_vram_fini(adev); 2026 /* return the stolen vga memory back to VRAM */ 2027 if (adev->mman.keep_stolen_vga_memory) 2028 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2029 /* return the IP Discovery TMR memory back to VRAM */ 2030 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 2031 amdgpu_ttm_fw_reserve_vram_fini(adev); 2032 2033 if (adev->mman.aper_base_kaddr) 2034 iounmap(adev->mman.aper_base_kaddr); 2035 adev->mman.aper_base_kaddr = NULL; 2036 2037 amdgpu_vram_mgr_fini(adev); 2038 amdgpu_gtt_mgr_fini(adev); 2039 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2040 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2041 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2042 ttm_bo_device_release(&adev->mman.bdev); 2043 adev->mman.initialized = false; 2044 DRM_INFO("amdgpu: ttm finalized\n"); 2045 } 2046 2047 /** 2048 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2049 * 2050 * @adev: amdgpu_device pointer 2051 * @enable: true when we can use buffer functions. 2052 * 2053 * Enable/disable use of buffer functions during suspend/resume. This should 2054 * only be called at bootup or when userspace isn't running. 2055 */ 2056 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2057 { 2058 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2059 uint64_t size; 2060 int r; 2061 2062 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2063 adev->mman.buffer_funcs_enabled == enable) 2064 return; 2065 2066 if (enable) { 2067 struct amdgpu_ring *ring; 2068 struct drm_gpu_scheduler *sched; 2069 2070 ring = adev->mman.buffer_funcs_ring; 2071 sched = &ring->sched; 2072 r = drm_sched_entity_init(&adev->mman.entity, 2073 DRM_SCHED_PRIORITY_KERNEL, &sched, 2074 1, NULL); 2075 if (r) { 2076 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2077 r); 2078 return; 2079 } 2080 } else { 2081 drm_sched_entity_destroy(&adev->mman.entity); 2082 dma_fence_put(man->move); 2083 man->move = NULL; 2084 } 2085 2086 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2087 if (enable) 2088 size = adev->gmc.real_vram_size; 2089 else 2090 size = adev->gmc.visible_vram_size; 2091 man->size = size >> PAGE_SHIFT; 2092 adev->mman.buffer_funcs_enabled = enable; 2093 } 2094 2095 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2096 { 2097 struct drm_file *file_priv = filp->private_data; 2098 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 2099 2100 if (adev == NULL) 2101 return -EINVAL; 2102 2103 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2104 } 2105 2106 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2107 uint64_t dst_offset, uint32_t byte_count, 2108 struct dma_resv *resv, 2109 struct dma_fence **fence, bool direct_submit, 2110 bool vm_needs_flush, bool tmz) 2111 { 2112 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 2113 AMDGPU_IB_POOL_DELAYED; 2114 struct amdgpu_device *adev = ring->adev; 2115 struct amdgpu_job *job; 2116 2117 uint32_t max_bytes; 2118 unsigned num_loops, num_dw; 2119 unsigned i; 2120 int r; 2121 2122 if (direct_submit && !ring->sched.ready) { 2123 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2124 return -EINVAL; 2125 } 2126 2127 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2128 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2129 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2130 2131 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 2132 if (r) 2133 return r; 2134 2135 if (vm_needs_flush) { 2136 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2137 job->vm_needs_flush = true; 2138 } 2139 if (resv) { 2140 r = amdgpu_sync_resv(adev, &job->sync, resv, 2141 AMDGPU_SYNC_ALWAYS, 2142 AMDGPU_FENCE_OWNER_UNDEFINED); 2143 if (r) { 2144 DRM_ERROR("sync failed (%d).\n", r); 2145 goto error_free; 2146 } 2147 } 2148 2149 for (i = 0; i < num_loops; i++) { 2150 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2151 2152 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2153 dst_offset, cur_size_in_bytes, tmz); 2154 2155 src_offset += cur_size_in_bytes; 2156 dst_offset += cur_size_in_bytes; 2157 byte_count -= cur_size_in_bytes; 2158 } 2159 2160 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2161 WARN_ON(job->ibs[0].length_dw > num_dw); 2162 if (direct_submit) 2163 r = amdgpu_job_submit_direct(job, ring, fence); 2164 else 2165 r = amdgpu_job_submit(job, &adev->mman.entity, 2166 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2167 if (r) 2168 goto error_free; 2169 2170 return r; 2171 2172 error_free: 2173 amdgpu_job_free(job); 2174 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2175 return r; 2176 } 2177 2178 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2179 uint32_t src_data, 2180 struct dma_resv *resv, 2181 struct dma_fence **fence) 2182 { 2183 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2184 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2185 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2186 2187 struct drm_mm_node *mm_node; 2188 unsigned long num_pages; 2189 unsigned int num_loops, num_dw; 2190 2191 struct amdgpu_job *job; 2192 int r; 2193 2194 if (!adev->mman.buffer_funcs_enabled) { 2195 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2196 return -EINVAL; 2197 } 2198 2199 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2200 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2201 if (r) 2202 return r; 2203 } 2204 2205 num_pages = bo->tbo.num_pages; 2206 mm_node = bo->tbo.mem.mm_node; 2207 num_loops = 0; 2208 while (num_pages) { 2209 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2210 2211 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2212 num_pages -= mm_node->size; 2213 ++mm_node; 2214 } 2215 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2216 2217 /* for IB padding */ 2218 num_dw += 64; 2219 2220 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2221 &job); 2222 if (r) 2223 return r; 2224 2225 if (resv) { 2226 r = amdgpu_sync_resv(adev, &job->sync, resv, 2227 AMDGPU_SYNC_ALWAYS, 2228 AMDGPU_FENCE_OWNER_UNDEFINED); 2229 if (r) { 2230 DRM_ERROR("sync failed (%d).\n", r); 2231 goto error_free; 2232 } 2233 } 2234 2235 num_pages = bo->tbo.num_pages; 2236 mm_node = bo->tbo.mem.mm_node; 2237 2238 while (num_pages) { 2239 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2240 uint64_t dst_addr; 2241 2242 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2243 while (byte_count) { 2244 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2245 max_bytes); 2246 2247 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2248 dst_addr, cur_size_in_bytes); 2249 2250 dst_addr += cur_size_in_bytes; 2251 byte_count -= cur_size_in_bytes; 2252 } 2253 2254 num_pages -= mm_node->size; 2255 ++mm_node; 2256 } 2257 2258 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2259 WARN_ON(job->ibs[0].length_dw > num_dw); 2260 r = amdgpu_job_submit(job, &adev->mman.entity, 2261 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2262 if (r) 2263 goto error_free; 2264 2265 return 0; 2266 2267 error_free: 2268 amdgpu_job_free(job); 2269 return r; 2270 } 2271 2272 #if defined(CONFIG_DEBUG_FS) 2273 2274 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2275 { 2276 struct drm_info_node *node = (struct drm_info_node *)m->private; 2277 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2278 struct drm_device *dev = node->minor->dev; 2279 struct amdgpu_device *adev = drm_to_adev(dev); 2280 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl); 2281 struct drm_printer p = drm_seq_file_printer(m); 2282 2283 man->func->debug(man, &p); 2284 return 0; 2285 } 2286 2287 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2288 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2289 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2290 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2291 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2292 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2293 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2294 #ifdef CONFIG_SWIOTLB 2295 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2296 #endif 2297 }; 2298 2299 /** 2300 * amdgpu_ttm_vram_read - Linear read access to VRAM 2301 * 2302 * Accesses VRAM via MMIO for debugging purposes. 2303 */ 2304 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2305 size_t size, loff_t *pos) 2306 { 2307 struct amdgpu_device *adev = file_inode(f)->i_private; 2308 ssize_t result = 0; 2309 2310 if (size & 0x3 || *pos & 0x3) 2311 return -EINVAL; 2312 2313 if (*pos >= adev->gmc.mc_vram_size) 2314 return -ENXIO; 2315 2316 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2317 while (size) { 2318 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2319 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2320 2321 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2322 if (copy_to_user(buf, value, bytes)) 2323 return -EFAULT; 2324 2325 result += bytes; 2326 buf += bytes; 2327 *pos += bytes; 2328 size -= bytes; 2329 } 2330 2331 return result; 2332 } 2333 2334 /** 2335 * amdgpu_ttm_vram_write - Linear write access to VRAM 2336 * 2337 * Accesses VRAM via MMIO for debugging purposes. 2338 */ 2339 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2340 size_t size, loff_t *pos) 2341 { 2342 struct amdgpu_device *adev = file_inode(f)->i_private; 2343 ssize_t result = 0; 2344 int r; 2345 2346 if (size & 0x3 || *pos & 0x3) 2347 return -EINVAL; 2348 2349 if (*pos >= adev->gmc.mc_vram_size) 2350 return -ENXIO; 2351 2352 while (size) { 2353 unsigned long flags; 2354 uint32_t value; 2355 2356 if (*pos >= adev->gmc.mc_vram_size) 2357 return result; 2358 2359 r = get_user(value, (uint32_t *)buf); 2360 if (r) 2361 return r; 2362 2363 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2364 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2365 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2366 WREG32_NO_KIQ(mmMM_DATA, value); 2367 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2368 2369 result += 4; 2370 buf += 4; 2371 *pos += 4; 2372 size -= 4; 2373 } 2374 2375 return result; 2376 } 2377 2378 static const struct file_operations amdgpu_ttm_vram_fops = { 2379 .owner = THIS_MODULE, 2380 .read = amdgpu_ttm_vram_read, 2381 .write = amdgpu_ttm_vram_write, 2382 .llseek = default_llseek, 2383 }; 2384 2385 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2386 2387 /** 2388 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2389 */ 2390 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2391 size_t size, loff_t *pos) 2392 { 2393 struct amdgpu_device *adev = file_inode(f)->i_private; 2394 ssize_t result = 0; 2395 int r; 2396 2397 while (size) { 2398 loff_t p = *pos / PAGE_SIZE; 2399 unsigned off = *pos & ~PAGE_MASK; 2400 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2401 struct page *page; 2402 void *ptr; 2403 2404 if (p >= adev->gart.num_cpu_pages) 2405 return result; 2406 2407 page = adev->gart.pages[p]; 2408 if (page) { 2409 ptr = kmap(page); 2410 ptr += off; 2411 2412 r = copy_to_user(buf, ptr, cur_size); 2413 kunmap(adev->gart.pages[p]); 2414 } else 2415 r = clear_user(buf, cur_size); 2416 2417 if (r) 2418 return -EFAULT; 2419 2420 result += cur_size; 2421 buf += cur_size; 2422 *pos += cur_size; 2423 size -= cur_size; 2424 } 2425 2426 return result; 2427 } 2428 2429 static const struct file_operations amdgpu_ttm_gtt_fops = { 2430 .owner = THIS_MODULE, 2431 .read = amdgpu_ttm_gtt_read, 2432 .llseek = default_llseek 2433 }; 2434 2435 #endif 2436 2437 /** 2438 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2439 * 2440 * This function is used to read memory that has been mapped to the 2441 * GPU and the known addresses are not physical addresses but instead 2442 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2443 */ 2444 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2445 size_t size, loff_t *pos) 2446 { 2447 struct amdgpu_device *adev = file_inode(f)->i_private; 2448 struct iommu_domain *dom; 2449 ssize_t result = 0; 2450 int r; 2451 2452 /* retrieve the IOMMU domain if any for this device */ 2453 dom = iommu_get_domain_for_dev(adev->dev); 2454 2455 while (size) { 2456 phys_addr_t addr = *pos & PAGE_MASK; 2457 loff_t off = *pos & ~PAGE_MASK; 2458 size_t bytes = PAGE_SIZE - off; 2459 unsigned long pfn; 2460 struct page *p; 2461 void *ptr; 2462 2463 bytes = bytes < size ? bytes : size; 2464 2465 /* Translate the bus address to a physical address. If 2466 * the domain is NULL it means there is no IOMMU active 2467 * and the address translation is the identity 2468 */ 2469 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2470 2471 pfn = addr >> PAGE_SHIFT; 2472 if (!pfn_valid(pfn)) 2473 return -EPERM; 2474 2475 p = pfn_to_page(pfn); 2476 if (p->mapping != adev->mman.bdev.dev_mapping) 2477 return -EPERM; 2478 2479 ptr = kmap(p); 2480 r = copy_to_user(buf, ptr + off, bytes); 2481 kunmap(p); 2482 if (r) 2483 return -EFAULT; 2484 2485 size -= bytes; 2486 *pos += bytes; 2487 result += bytes; 2488 } 2489 2490 return result; 2491 } 2492 2493 /** 2494 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2495 * 2496 * This function is used to write memory that has been mapped to the 2497 * GPU and the known addresses are not physical addresses but instead 2498 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2499 */ 2500 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2501 size_t size, loff_t *pos) 2502 { 2503 struct amdgpu_device *adev = file_inode(f)->i_private; 2504 struct iommu_domain *dom; 2505 ssize_t result = 0; 2506 int r; 2507 2508 dom = iommu_get_domain_for_dev(adev->dev); 2509 2510 while (size) { 2511 phys_addr_t addr = *pos & PAGE_MASK; 2512 loff_t off = *pos & ~PAGE_MASK; 2513 size_t bytes = PAGE_SIZE - off; 2514 unsigned long pfn; 2515 struct page *p; 2516 void *ptr; 2517 2518 bytes = bytes < size ? bytes : size; 2519 2520 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2521 2522 pfn = addr >> PAGE_SHIFT; 2523 if (!pfn_valid(pfn)) 2524 return -EPERM; 2525 2526 p = pfn_to_page(pfn); 2527 if (p->mapping != adev->mman.bdev.dev_mapping) 2528 return -EPERM; 2529 2530 ptr = kmap(p); 2531 r = copy_from_user(ptr + off, buf, bytes); 2532 kunmap(p); 2533 if (r) 2534 return -EFAULT; 2535 2536 size -= bytes; 2537 *pos += bytes; 2538 result += bytes; 2539 } 2540 2541 return result; 2542 } 2543 2544 static const struct file_operations amdgpu_ttm_iomem_fops = { 2545 .owner = THIS_MODULE, 2546 .read = amdgpu_iomem_read, 2547 .write = amdgpu_iomem_write, 2548 .llseek = default_llseek 2549 }; 2550 2551 static const struct { 2552 char *name; 2553 const struct file_operations *fops; 2554 int domain; 2555 } ttm_debugfs_entries[] = { 2556 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2557 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2558 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2559 #endif 2560 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2561 }; 2562 2563 #endif 2564 2565 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2566 { 2567 #if defined(CONFIG_DEBUG_FS) 2568 unsigned count; 2569 2570 struct drm_minor *minor = adev_to_drm(adev)->primary; 2571 struct dentry *ent, *root = minor->debugfs_root; 2572 2573 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2574 ent = debugfs_create_file( 2575 ttm_debugfs_entries[count].name, 2576 S_IFREG | S_IRUGO, root, 2577 adev, 2578 ttm_debugfs_entries[count].fops); 2579 if (IS_ERR(ent)) 2580 return PTR_ERR(ent); 2581 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2582 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2583 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2584 i_size_write(ent->d_inode, adev->gmc.gart_size); 2585 adev->mman.debugfs_entries[count] = ent; 2586 } 2587 2588 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2589 2590 #ifdef CONFIG_SWIOTLB 2591 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2592 --count; 2593 #endif 2594 2595 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2596 #else 2597 return 0; 2598 #endif 2599 } 2600