1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_res_cpu_visible(adev, bo->resource)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /** 412 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU 413 * @adev: amdgpu device 414 * @res: the resource to check 415 * 416 * Returns: true if the full resource is CPU visible, false otherwise. 417 */ 418 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev, 419 struct ttm_resource *res) 420 { 421 struct amdgpu_res_cursor cursor; 422 423 if (!res) 424 return false; 425 426 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT || 427 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL) 428 return true; 429 430 if (res->mem_type != TTM_PL_VRAM) 431 return false; 432 433 amdgpu_res_first(res, 0, res->size, &cursor); 434 while (cursor.remaining) { 435 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size) 436 return false; 437 amdgpu_res_next(&cursor, cursor.size); 438 } 439 440 return true; 441 } 442 443 /* 444 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy 445 * 446 * Called by amdgpu_bo_move() 447 */ 448 static bool amdgpu_res_copyable(struct amdgpu_device *adev, 449 struct ttm_resource *mem) 450 { 451 if (!amdgpu_res_cpu_visible(adev, mem)) 452 return false; 453 454 /* ttm_resource_ioremap only supports contiguous memory */ 455 if (mem->mem_type == TTM_PL_VRAM && 456 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS)) 457 return false; 458 459 return true; 460 } 461 462 /* 463 * amdgpu_bo_move - Move a buffer object to a new memory location 464 * 465 * Called by ttm_bo_handle_move_mem() 466 */ 467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 468 struct ttm_operation_ctx *ctx, 469 struct ttm_resource *new_mem, 470 struct ttm_place *hop) 471 { 472 struct amdgpu_device *adev; 473 struct amdgpu_bo *abo; 474 struct ttm_resource *old_mem = bo->resource; 475 int r; 476 477 if (new_mem->mem_type == TTM_PL_TT || 478 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 479 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 480 if (r) 481 return r; 482 } 483 484 abo = ttm_to_amdgpu_bo(bo); 485 adev = amdgpu_ttm_adev(bo->bdev); 486 487 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 488 bo->ttm == NULL)) { 489 amdgpu_bo_move_notify(bo, evict, new_mem); 490 ttm_bo_move_null(bo, new_mem); 491 return 0; 492 } 493 if (old_mem->mem_type == TTM_PL_SYSTEM && 494 (new_mem->mem_type == TTM_PL_TT || 495 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 496 amdgpu_bo_move_notify(bo, evict, new_mem); 497 ttm_bo_move_null(bo, new_mem); 498 return 0; 499 } 500 if ((old_mem->mem_type == TTM_PL_TT || 501 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 502 new_mem->mem_type == TTM_PL_SYSTEM) { 503 r = ttm_bo_wait_ctx(bo, ctx); 504 if (r) 505 return r; 506 507 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 508 amdgpu_bo_move_notify(bo, evict, new_mem); 509 ttm_resource_free(bo, &bo->resource); 510 ttm_bo_assign_mem(bo, new_mem); 511 return 0; 512 } 513 514 if (old_mem->mem_type == AMDGPU_PL_GDS || 515 old_mem->mem_type == AMDGPU_PL_GWS || 516 old_mem->mem_type == AMDGPU_PL_OA || 517 old_mem->mem_type == AMDGPU_PL_DOORBELL || 518 new_mem->mem_type == AMDGPU_PL_GDS || 519 new_mem->mem_type == AMDGPU_PL_GWS || 520 new_mem->mem_type == AMDGPU_PL_OA || 521 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 522 /* Nothing to save here */ 523 amdgpu_bo_move_notify(bo, evict, new_mem); 524 ttm_bo_move_null(bo, new_mem); 525 return 0; 526 } 527 528 if (bo->type == ttm_bo_type_device && 529 new_mem->mem_type == TTM_PL_VRAM && 530 old_mem->mem_type != TTM_PL_VRAM) { 531 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 532 * accesses the BO after it's moved. 533 */ 534 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 535 } 536 537 if (adev->mman.buffer_funcs_enabled && 538 ((old_mem->mem_type == TTM_PL_SYSTEM && 539 new_mem->mem_type == TTM_PL_VRAM) || 540 (old_mem->mem_type == TTM_PL_VRAM && 541 new_mem->mem_type == TTM_PL_SYSTEM))) { 542 hop->fpfn = 0; 543 hop->lpfn = 0; 544 hop->mem_type = TTM_PL_TT; 545 hop->flags = TTM_PL_FLAG_TEMPORARY; 546 return -EMULTIHOP; 547 } 548 549 amdgpu_bo_move_notify(bo, evict, new_mem); 550 if (adev->mman.buffer_funcs_enabled) 551 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 552 else 553 r = -ENODEV; 554 555 if (r) { 556 /* Check that all memory is CPU accessible */ 557 if (!amdgpu_res_copyable(adev, old_mem) || 558 !amdgpu_res_copyable(adev, new_mem)) { 559 pr_err("Move buffer fallback to memcpy unavailable\n"); 560 return r; 561 } 562 563 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 564 if (r) 565 return r; 566 } 567 568 /* update statistics after the move */ 569 if (evict) 570 atomic64_inc(&adev->num_evictions); 571 atomic64_add(bo->base.size, &adev->num_bytes_moved); 572 return 0; 573 } 574 575 /* 576 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 577 * 578 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 579 */ 580 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 581 struct ttm_resource *mem) 582 { 583 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 584 585 switch (mem->mem_type) { 586 case TTM_PL_SYSTEM: 587 /* system memory */ 588 return 0; 589 case TTM_PL_TT: 590 case AMDGPU_PL_PREEMPT: 591 break; 592 case TTM_PL_VRAM: 593 mem->bus.offset = mem->start << PAGE_SHIFT; 594 595 if (adev->mman.aper_base_kaddr && 596 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 597 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 598 mem->bus.offset; 599 600 mem->bus.offset += adev->gmc.aper_base; 601 mem->bus.is_iomem = true; 602 break; 603 case AMDGPU_PL_DOORBELL: 604 mem->bus.offset = mem->start << PAGE_SHIFT; 605 mem->bus.offset += adev->doorbell.base; 606 mem->bus.is_iomem = true; 607 mem->bus.caching = ttm_uncached; 608 break; 609 default: 610 return -EINVAL; 611 } 612 return 0; 613 } 614 615 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 616 unsigned long page_offset) 617 { 618 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 619 struct amdgpu_res_cursor cursor; 620 621 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 622 &cursor); 623 624 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 625 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 626 627 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 628 } 629 630 /** 631 * amdgpu_ttm_domain_start - Returns GPU start address 632 * @adev: amdgpu device object 633 * @type: type of the memory 634 * 635 * Returns: 636 * GPU start address of a memory domain 637 */ 638 639 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 640 { 641 switch (type) { 642 case TTM_PL_TT: 643 return adev->gmc.gart_start; 644 case TTM_PL_VRAM: 645 return adev->gmc.vram_start; 646 } 647 648 return 0; 649 } 650 651 /* 652 * TTM backend functions. 653 */ 654 struct amdgpu_ttm_tt { 655 struct ttm_tt ttm; 656 struct drm_gem_object *gobj; 657 u64 offset; 658 uint64_t userptr; 659 struct task_struct *usertask; 660 uint32_t userflags; 661 bool bound; 662 int32_t pool_id; 663 }; 664 665 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 666 667 #ifdef CONFIG_DRM_AMDGPU_USERPTR 668 /* 669 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 670 * memory and start HMM tracking CPU page table update 671 * 672 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 673 * once afterwards to stop HMM tracking 674 */ 675 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 676 struct hmm_range **range) 677 { 678 struct ttm_tt *ttm = bo->tbo.ttm; 679 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 680 unsigned long start = gtt->userptr; 681 struct vm_area_struct *vma; 682 struct mm_struct *mm; 683 bool readonly; 684 int r = 0; 685 686 /* Make sure get_user_pages_done() can cleanup gracefully */ 687 *range = NULL; 688 689 mm = bo->notifier.mm; 690 if (unlikely(!mm)) { 691 DRM_DEBUG_DRIVER("BO is not registered?\n"); 692 return -EFAULT; 693 } 694 695 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 696 return -ESRCH; 697 698 mmap_read_lock(mm); 699 vma = vma_lookup(mm, start); 700 if (unlikely(!vma)) { 701 r = -EFAULT; 702 goto out_unlock; 703 } 704 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 705 vma->vm_file)) { 706 r = -EPERM; 707 goto out_unlock; 708 } 709 710 readonly = amdgpu_ttm_tt_is_readonly(ttm); 711 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 712 readonly, NULL, pages, range); 713 out_unlock: 714 mmap_read_unlock(mm); 715 if (r) 716 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 717 718 mmput(mm); 719 720 return r; 721 } 722 723 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 724 */ 725 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 726 struct hmm_range *range) 727 { 728 struct amdgpu_ttm_tt *gtt = (void *)ttm; 729 730 if (gtt && gtt->userptr && range) 731 amdgpu_hmm_range_get_pages_done(range); 732 } 733 734 /* 735 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 736 * Check if the pages backing this ttm range have been invalidated 737 * 738 * Returns: true if pages are still valid 739 */ 740 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 741 struct hmm_range *range) 742 { 743 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 744 745 if (!gtt || !gtt->userptr || !range) 746 return false; 747 748 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 749 gtt->userptr, ttm->num_pages); 750 751 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 752 753 return !amdgpu_hmm_range_get_pages_done(range); 754 } 755 #endif 756 757 /* 758 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 759 * 760 * Called by amdgpu_cs_list_validate(). This creates the page list 761 * that backs user memory and will ultimately be mapped into the device 762 * address space. 763 */ 764 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 765 { 766 unsigned long i; 767 768 for (i = 0; i < ttm->num_pages; ++i) 769 ttm->pages[i] = pages ? pages[i] : NULL; 770 } 771 772 /* 773 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 774 * 775 * Called by amdgpu_ttm_backend_bind() 776 **/ 777 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 778 struct ttm_tt *ttm) 779 { 780 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 781 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 782 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 783 enum dma_data_direction direction = write ? 784 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 785 int r; 786 787 /* Allocate an SG array and squash pages into it */ 788 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 789 (u64)ttm->num_pages << PAGE_SHIFT, 790 GFP_KERNEL); 791 if (r) 792 goto release_sg; 793 794 /* Map SG to device */ 795 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 796 if (r) 797 goto release_sg; 798 799 /* convert SG to linear array of pages and dma addresses */ 800 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 801 ttm->num_pages); 802 803 return 0; 804 805 release_sg: 806 kfree(ttm->sg); 807 ttm->sg = NULL; 808 return r; 809 } 810 811 /* 812 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 813 */ 814 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 815 struct ttm_tt *ttm) 816 { 817 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 818 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 819 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 820 enum dma_data_direction direction = write ? 821 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 822 823 /* double check that we don't free the table twice */ 824 if (!ttm->sg || !ttm->sg->sgl) 825 return; 826 827 /* unmap the pages mapped to the device */ 828 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 829 sg_free_table(ttm->sg); 830 } 831 832 /* 833 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 834 * MQDn+CtrlStackn where n is the number of XCCs per partition. 835 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 836 * and uses memory type default, UC. The rest of pages_per_xcc are 837 * Ctrl stack and modify their memory type to NC. 838 */ 839 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 840 struct ttm_tt *ttm, uint64_t flags) 841 { 842 struct amdgpu_ttm_tt *gtt = (void *)ttm; 843 uint64_t total_pages = ttm->num_pages; 844 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 845 uint64_t page_idx, pages_per_xcc; 846 int i; 847 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 848 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 849 850 pages_per_xcc = total_pages; 851 do_div(pages_per_xcc, num_xcc); 852 853 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 854 /* MQD page: use default flags */ 855 amdgpu_gart_bind(adev, 856 gtt->offset + (page_idx << PAGE_SHIFT), 857 1, >t->ttm.dma_address[page_idx], flags); 858 /* 859 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 860 * the second page of the BO onward. 861 */ 862 amdgpu_gart_bind(adev, 863 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 864 pages_per_xcc - 1, 865 >t->ttm.dma_address[page_idx + 1], 866 ctrl_flags); 867 } 868 } 869 870 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 871 struct ttm_buffer_object *tbo, 872 uint64_t flags) 873 { 874 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 875 struct ttm_tt *ttm = tbo->ttm; 876 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 877 878 if (amdgpu_bo_encrypted(abo)) 879 flags |= AMDGPU_PTE_TMZ; 880 881 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 882 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 883 } else { 884 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 885 gtt->ttm.dma_address, flags); 886 } 887 gtt->bound = true; 888 } 889 890 /* 891 * amdgpu_ttm_backend_bind - Bind GTT memory 892 * 893 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 894 * This handles binding GTT memory to the device address space. 895 */ 896 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 897 struct ttm_tt *ttm, 898 struct ttm_resource *bo_mem) 899 { 900 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 901 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 902 uint64_t flags; 903 int r; 904 905 if (!bo_mem) 906 return -EINVAL; 907 908 if (gtt->bound) 909 return 0; 910 911 if (gtt->userptr) { 912 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 913 if (r) { 914 DRM_ERROR("failed to pin userptr\n"); 915 return r; 916 } 917 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 918 if (!ttm->sg) { 919 struct dma_buf_attachment *attach; 920 struct sg_table *sgt; 921 922 attach = gtt->gobj->import_attach; 923 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 924 if (IS_ERR(sgt)) 925 return PTR_ERR(sgt); 926 927 ttm->sg = sgt; 928 } 929 930 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 931 ttm->num_pages); 932 } 933 934 if (!ttm->num_pages) { 935 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 936 ttm->num_pages, bo_mem, ttm); 937 } 938 939 if (bo_mem->mem_type != TTM_PL_TT || 940 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 941 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 942 return 0; 943 } 944 945 /* compute PTE flags relevant to this BO memory */ 946 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 947 948 /* bind pages into GART page tables */ 949 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 950 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 951 gtt->ttm.dma_address, flags); 952 gtt->bound = true; 953 return 0; 954 } 955 956 /* 957 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 958 * through AGP or GART aperture. 959 * 960 * If bo is accessible through AGP aperture, then use AGP aperture 961 * to access bo; otherwise allocate logical space in GART aperture 962 * and map bo to GART aperture. 963 */ 964 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 965 { 966 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 967 struct ttm_operation_ctx ctx = { false, false }; 968 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 969 struct ttm_placement placement; 970 struct ttm_place placements; 971 struct ttm_resource *tmp; 972 uint64_t addr, flags; 973 int r; 974 975 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 976 return 0; 977 978 addr = amdgpu_gmc_agp_addr(bo); 979 if (addr != AMDGPU_BO_INVALID_OFFSET) { 980 bo->resource->start = addr >> PAGE_SHIFT; 981 return 0; 982 } 983 984 /* allocate GART space */ 985 placement.num_placement = 1; 986 placement.placement = &placements; 987 placement.num_busy_placement = 1; 988 placement.busy_placement = &placements; 989 placements.fpfn = 0; 990 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 991 placements.mem_type = TTM_PL_TT; 992 placements.flags = bo->resource->placement; 993 994 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 995 if (unlikely(r)) 996 return r; 997 998 /* compute PTE flags for this buffer object */ 999 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 1000 1001 /* Bind pages */ 1002 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 1003 amdgpu_ttm_gart_bind(adev, bo, flags); 1004 amdgpu_gart_invalidate_tlb(adev); 1005 ttm_resource_free(bo, &bo->resource); 1006 ttm_bo_assign_mem(bo, tmp); 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * amdgpu_ttm_recover_gart - Rebind GTT pages 1013 * 1014 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1015 * rebind GTT pages during a GPU reset. 1016 */ 1017 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1018 { 1019 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1020 uint64_t flags; 1021 1022 if (!tbo->ttm) 1023 return; 1024 1025 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1026 amdgpu_ttm_gart_bind(adev, tbo, flags); 1027 } 1028 1029 /* 1030 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1031 * 1032 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1033 * ttm_tt_destroy(). 1034 */ 1035 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1036 struct ttm_tt *ttm) 1037 { 1038 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1039 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1040 1041 /* if the pages have userptr pinning then clear that first */ 1042 if (gtt->userptr) { 1043 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1044 } else if (ttm->sg && gtt->gobj->import_attach) { 1045 struct dma_buf_attachment *attach; 1046 1047 attach = gtt->gobj->import_attach; 1048 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1049 ttm->sg = NULL; 1050 } 1051 1052 if (!gtt->bound) 1053 return; 1054 1055 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1056 return; 1057 1058 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1059 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1060 gtt->bound = false; 1061 } 1062 1063 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1064 struct ttm_tt *ttm) 1065 { 1066 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1067 1068 if (gtt->usertask) 1069 put_task_struct(gtt->usertask); 1070 1071 ttm_tt_fini(>t->ttm); 1072 kfree(gtt); 1073 } 1074 1075 /** 1076 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1077 * 1078 * @bo: The buffer object to create a GTT ttm_tt object around 1079 * @page_flags: Page flags to be added to the ttm_tt object 1080 * 1081 * Called by ttm_tt_create(). 1082 */ 1083 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1084 uint32_t page_flags) 1085 { 1086 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1087 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1088 struct amdgpu_ttm_tt *gtt; 1089 enum ttm_caching caching; 1090 1091 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1092 if (!gtt) 1093 return NULL; 1094 1095 gtt->gobj = &bo->base; 1096 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1097 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1098 else 1099 gtt->pool_id = abo->xcp_id; 1100 1101 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1102 caching = ttm_write_combined; 1103 else 1104 caching = ttm_cached; 1105 1106 /* allocate space for the uninitialized page entries */ 1107 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1108 kfree(gtt); 1109 return NULL; 1110 } 1111 return >t->ttm; 1112 } 1113 1114 /* 1115 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1116 * 1117 * Map the pages of a ttm_tt object to an address space visible 1118 * to the underlying device. 1119 */ 1120 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1121 struct ttm_tt *ttm, 1122 struct ttm_operation_ctx *ctx) 1123 { 1124 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1125 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1126 struct ttm_pool *pool; 1127 pgoff_t i; 1128 int ret; 1129 1130 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1131 if (gtt->userptr) { 1132 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1133 if (!ttm->sg) 1134 return -ENOMEM; 1135 return 0; 1136 } 1137 1138 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1139 return 0; 1140 1141 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1142 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1143 else 1144 pool = &adev->mman.bdev.pool; 1145 ret = ttm_pool_alloc(pool, ttm, ctx); 1146 if (ret) 1147 return ret; 1148 1149 for (i = 0; i < ttm->num_pages; ++i) 1150 ttm->pages[i]->mapping = bdev->dev_mapping; 1151 1152 return 0; 1153 } 1154 1155 /* 1156 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1157 * 1158 * Unmaps pages of a ttm_tt object from the device address space and 1159 * unpopulates the page array backing it. 1160 */ 1161 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1162 struct ttm_tt *ttm) 1163 { 1164 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1165 struct amdgpu_device *adev; 1166 struct ttm_pool *pool; 1167 pgoff_t i; 1168 1169 amdgpu_ttm_backend_unbind(bdev, ttm); 1170 1171 if (gtt->userptr) { 1172 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1173 kfree(ttm->sg); 1174 ttm->sg = NULL; 1175 return; 1176 } 1177 1178 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1179 return; 1180 1181 for (i = 0; i < ttm->num_pages; ++i) 1182 ttm->pages[i]->mapping = NULL; 1183 1184 adev = amdgpu_ttm_adev(bdev); 1185 1186 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1187 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1188 else 1189 pool = &adev->mman.bdev.pool; 1190 1191 return ttm_pool_free(pool, ttm); 1192 } 1193 1194 /** 1195 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1196 * task 1197 * 1198 * @tbo: The ttm_buffer_object that contains the userptr 1199 * @user_addr: The returned value 1200 */ 1201 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1202 uint64_t *user_addr) 1203 { 1204 struct amdgpu_ttm_tt *gtt; 1205 1206 if (!tbo->ttm) 1207 return -EINVAL; 1208 1209 gtt = (void *)tbo->ttm; 1210 *user_addr = gtt->userptr; 1211 return 0; 1212 } 1213 1214 /** 1215 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1216 * task 1217 * 1218 * @bo: The ttm_buffer_object to bind this userptr to 1219 * @addr: The address in the current tasks VM space to use 1220 * @flags: Requirements of userptr object. 1221 * 1222 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1223 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1224 * initialize GPU VM for a KFD process. 1225 */ 1226 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1227 uint64_t addr, uint32_t flags) 1228 { 1229 struct amdgpu_ttm_tt *gtt; 1230 1231 if (!bo->ttm) { 1232 /* TODO: We want a separate TTM object type for userptrs */ 1233 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1234 if (bo->ttm == NULL) 1235 return -ENOMEM; 1236 } 1237 1238 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1239 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1240 1241 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1242 gtt->userptr = addr; 1243 gtt->userflags = flags; 1244 1245 if (gtt->usertask) 1246 put_task_struct(gtt->usertask); 1247 gtt->usertask = current->group_leader; 1248 get_task_struct(gtt->usertask); 1249 1250 return 0; 1251 } 1252 1253 /* 1254 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1255 */ 1256 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1257 { 1258 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1259 1260 if (gtt == NULL) 1261 return NULL; 1262 1263 if (gtt->usertask == NULL) 1264 return NULL; 1265 1266 return gtt->usertask->mm; 1267 } 1268 1269 /* 1270 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1271 * address range for the current task. 1272 * 1273 */ 1274 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1275 unsigned long end, unsigned long *userptr) 1276 { 1277 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1278 unsigned long size; 1279 1280 if (gtt == NULL || !gtt->userptr) 1281 return false; 1282 1283 /* Return false if no part of the ttm_tt object lies within 1284 * the range 1285 */ 1286 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1287 if (gtt->userptr > end || gtt->userptr + size <= start) 1288 return false; 1289 1290 if (userptr) 1291 *userptr = gtt->userptr; 1292 return true; 1293 } 1294 1295 /* 1296 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1297 */ 1298 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1299 { 1300 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1301 1302 if (gtt == NULL || !gtt->userptr) 1303 return false; 1304 1305 return true; 1306 } 1307 1308 /* 1309 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1310 */ 1311 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1312 { 1313 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1314 1315 if (gtt == NULL) 1316 return false; 1317 1318 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1319 } 1320 1321 /** 1322 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1323 * 1324 * @ttm: The ttm_tt object to compute the flags for 1325 * @mem: The memory registry backing this ttm_tt object 1326 * 1327 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1328 */ 1329 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1330 { 1331 uint64_t flags = 0; 1332 1333 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1334 flags |= AMDGPU_PTE_VALID; 1335 1336 if (mem && (mem->mem_type == TTM_PL_TT || 1337 mem->mem_type == AMDGPU_PL_DOORBELL || 1338 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1339 flags |= AMDGPU_PTE_SYSTEM; 1340 1341 if (ttm->caching == ttm_cached) 1342 flags |= AMDGPU_PTE_SNOOPED; 1343 } 1344 1345 if (mem && mem->mem_type == TTM_PL_VRAM && 1346 mem->bus.caching == ttm_cached) 1347 flags |= AMDGPU_PTE_SNOOPED; 1348 1349 return flags; 1350 } 1351 1352 /** 1353 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1354 * 1355 * @adev: amdgpu_device pointer 1356 * @ttm: The ttm_tt object to compute the flags for 1357 * @mem: The memory registry backing this ttm_tt object 1358 * 1359 * Figure out the flags to use for a VM PTE (Page Table Entry). 1360 */ 1361 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1362 struct ttm_resource *mem) 1363 { 1364 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1365 1366 flags |= adev->gart.gart_pte_flags; 1367 flags |= AMDGPU_PTE_READABLE; 1368 1369 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1370 flags |= AMDGPU_PTE_WRITEABLE; 1371 1372 return flags; 1373 } 1374 1375 /* 1376 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1377 * object. 1378 * 1379 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1380 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1381 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1382 * used to clean out a memory space. 1383 */ 1384 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1385 const struct ttm_place *place) 1386 { 1387 struct dma_resv_iter resv_cursor; 1388 struct dma_fence *f; 1389 1390 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1391 return ttm_bo_eviction_valuable(bo, place); 1392 1393 /* Swapout? */ 1394 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1395 return true; 1396 1397 if (bo->type == ttm_bo_type_kernel && 1398 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1399 return false; 1400 1401 /* If bo is a KFD BO, check if the bo belongs to the current process. 1402 * If true, then return false as any KFD process needs all its BOs to 1403 * be resident to run successfully 1404 */ 1405 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1406 DMA_RESV_USAGE_BOOKKEEP, f) { 1407 if (amdkfd_fence_check_mm(f, current->mm)) 1408 return false; 1409 } 1410 1411 /* Preemptible BOs don't own system resources managed by the 1412 * driver (pages, VRAM, GART space). They point to resources 1413 * owned by someone else (e.g. pageable memory in user mode 1414 * or a DMABuf). They are used in a preemptible context so we 1415 * can guarantee no deadlocks and good QoS in case of MMU 1416 * notifiers or DMABuf move notifiers from the resource owner. 1417 */ 1418 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1419 return false; 1420 1421 if (bo->resource->mem_type == TTM_PL_TT && 1422 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1423 return false; 1424 1425 return ttm_bo_eviction_valuable(bo, place); 1426 } 1427 1428 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1429 void *buf, size_t size, bool write) 1430 { 1431 while (size) { 1432 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1433 uint64_t bytes = 4 - (pos & 0x3); 1434 uint32_t shift = (pos & 0x3) * 8; 1435 uint32_t mask = 0xffffffff << shift; 1436 uint32_t value = 0; 1437 1438 if (size < bytes) { 1439 mask &= 0xffffffff >> (bytes - size) * 8; 1440 bytes = size; 1441 } 1442 1443 if (mask != 0xffffffff) { 1444 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1445 if (write) { 1446 value &= ~mask; 1447 value |= (*(uint32_t *)buf << shift) & mask; 1448 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1449 } else { 1450 value = (value & mask) >> shift; 1451 memcpy(buf, &value, bytes); 1452 } 1453 } else { 1454 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1455 } 1456 1457 pos += bytes; 1458 buf += bytes; 1459 size -= bytes; 1460 } 1461 } 1462 1463 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1464 unsigned long offset, void *buf, 1465 int len, int write) 1466 { 1467 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1468 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1469 struct amdgpu_res_cursor src_mm; 1470 struct amdgpu_job *job; 1471 struct dma_fence *fence; 1472 uint64_t src_addr, dst_addr; 1473 unsigned int num_dw; 1474 int r, idx; 1475 1476 if (len != PAGE_SIZE) 1477 return -EINVAL; 1478 1479 if (!adev->mman.sdma_access_ptr) 1480 return -EACCES; 1481 1482 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1483 return -ENODEV; 1484 1485 if (write) 1486 memcpy(adev->mman.sdma_access_ptr, buf, len); 1487 1488 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1489 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1490 AMDGPU_FENCE_OWNER_UNDEFINED, 1491 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1492 &job); 1493 if (r) 1494 goto out; 1495 1496 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1497 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1498 src_mm.start; 1499 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1500 if (write) 1501 swap(src_addr, dst_addr); 1502 1503 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1504 PAGE_SIZE, false); 1505 1506 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1507 WARN_ON(job->ibs[0].length_dw > num_dw); 1508 1509 fence = amdgpu_job_submit(job); 1510 1511 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1512 r = -ETIMEDOUT; 1513 dma_fence_put(fence); 1514 1515 if (!(r || write)) 1516 memcpy(buf, adev->mman.sdma_access_ptr, len); 1517 out: 1518 drm_dev_exit(idx); 1519 return r; 1520 } 1521 1522 /** 1523 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1524 * 1525 * @bo: The buffer object to read/write 1526 * @offset: Offset into buffer object 1527 * @buf: Secondary buffer to write/read from 1528 * @len: Length in bytes of access 1529 * @write: true if writing 1530 * 1531 * This is used to access VRAM that backs a buffer object via MMIO 1532 * access for debugging purposes. 1533 */ 1534 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1535 unsigned long offset, void *buf, int len, 1536 int write) 1537 { 1538 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1539 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1540 struct amdgpu_res_cursor cursor; 1541 int ret = 0; 1542 1543 if (bo->resource->mem_type != TTM_PL_VRAM) 1544 return -EIO; 1545 1546 if (amdgpu_device_has_timeouts_enabled(adev) && 1547 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1548 return len; 1549 1550 amdgpu_res_first(bo->resource, offset, len, &cursor); 1551 while (cursor.remaining) { 1552 size_t count, size = cursor.size; 1553 loff_t pos = cursor.start; 1554 1555 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1556 size -= count; 1557 if (size) { 1558 /* using MM to access rest vram and handle un-aligned address */ 1559 pos += count; 1560 buf += count; 1561 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1562 } 1563 1564 ret += cursor.size; 1565 buf += cursor.size; 1566 amdgpu_res_next(&cursor, cursor.size); 1567 } 1568 1569 return ret; 1570 } 1571 1572 static void 1573 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1574 { 1575 amdgpu_bo_move_notify(bo, false, NULL); 1576 } 1577 1578 static struct ttm_device_funcs amdgpu_bo_driver = { 1579 .ttm_tt_create = &amdgpu_ttm_tt_create, 1580 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1581 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1582 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1583 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1584 .evict_flags = &amdgpu_evict_flags, 1585 .move = &amdgpu_bo_move, 1586 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1587 .release_notify = &amdgpu_bo_release_notify, 1588 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1589 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1590 .access_memory = &amdgpu_ttm_access_memory, 1591 }; 1592 1593 /* 1594 * Firmware Reservation functions 1595 */ 1596 /** 1597 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1598 * 1599 * @adev: amdgpu_device pointer 1600 * 1601 * free fw reserved vram if it has been reserved. 1602 */ 1603 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1604 { 1605 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1606 NULL, &adev->mman.fw_vram_usage_va); 1607 } 1608 1609 /* 1610 * Driver Reservation functions 1611 */ 1612 /** 1613 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1614 * 1615 * @adev: amdgpu_device pointer 1616 * 1617 * free drv reserved vram if it has been reserved. 1618 */ 1619 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1620 { 1621 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1622 NULL, 1623 &adev->mman.drv_vram_usage_va); 1624 } 1625 1626 /** 1627 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1628 * 1629 * @adev: amdgpu_device pointer 1630 * 1631 * create bo vram reservation from fw. 1632 */ 1633 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1634 { 1635 uint64_t vram_size = adev->gmc.visible_vram_size; 1636 1637 adev->mman.fw_vram_usage_va = NULL; 1638 adev->mman.fw_vram_usage_reserved_bo = NULL; 1639 1640 if (adev->mman.fw_vram_usage_size == 0 || 1641 adev->mman.fw_vram_usage_size > vram_size) 1642 return 0; 1643 1644 return amdgpu_bo_create_kernel_at(adev, 1645 adev->mman.fw_vram_usage_start_offset, 1646 adev->mman.fw_vram_usage_size, 1647 &adev->mman.fw_vram_usage_reserved_bo, 1648 &adev->mman.fw_vram_usage_va); 1649 } 1650 1651 /** 1652 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1653 * 1654 * @adev: amdgpu_device pointer 1655 * 1656 * create bo vram reservation from drv. 1657 */ 1658 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1659 { 1660 u64 vram_size = adev->gmc.visible_vram_size; 1661 1662 adev->mman.drv_vram_usage_va = NULL; 1663 adev->mman.drv_vram_usage_reserved_bo = NULL; 1664 1665 if (adev->mman.drv_vram_usage_size == 0 || 1666 adev->mman.drv_vram_usage_size > vram_size) 1667 return 0; 1668 1669 return amdgpu_bo_create_kernel_at(adev, 1670 adev->mman.drv_vram_usage_start_offset, 1671 adev->mman.drv_vram_usage_size, 1672 &adev->mman.drv_vram_usage_reserved_bo, 1673 &adev->mman.drv_vram_usage_va); 1674 } 1675 1676 /* 1677 * Memoy training reservation functions 1678 */ 1679 1680 /** 1681 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1682 * 1683 * @adev: amdgpu_device pointer 1684 * 1685 * free memory training reserved vram if it has been reserved. 1686 */ 1687 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1688 { 1689 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1690 1691 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1692 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1693 ctx->c2p_bo = NULL; 1694 1695 return 0; 1696 } 1697 1698 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1699 uint32_t reserve_size) 1700 { 1701 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1702 1703 memset(ctx, 0, sizeof(*ctx)); 1704 1705 ctx->c2p_train_data_offset = 1706 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1707 ctx->p2c_train_data_offset = 1708 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1709 ctx->train_data_size = 1710 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1711 1712 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1713 ctx->train_data_size, 1714 ctx->p2c_train_data_offset, 1715 ctx->c2p_train_data_offset); 1716 } 1717 1718 /* 1719 * reserve TMR memory at the top of VRAM which holds 1720 * IP Discovery data and is protected by PSP. 1721 */ 1722 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1723 { 1724 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1725 bool mem_train_support = false; 1726 uint32_t reserve_size = 0; 1727 int ret; 1728 1729 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1730 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1731 mem_train_support = true; 1732 else 1733 DRM_DEBUG("memory training does not support!\n"); 1734 } 1735 1736 /* 1737 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1738 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1739 * 1740 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1741 * discovery data and G6 memory training data respectively 1742 */ 1743 if (adev->bios) 1744 reserve_size = 1745 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1746 1747 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1748 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1749 else if (!reserve_size) 1750 reserve_size = DISCOVERY_TMR_OFFSET; 1751 1752 if (mem_train_support) { 1753 /* reserve vram for mem train according to TMR location */ 1754 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1755 ret = amdgpu_bo_create_kernel_at(adev, 1756 ctx->c2p_train_data_offset, 1757 ctx->train_data_size, 1758 &ctx->c2p_bo, 1759 NULL); 1760 if (ret) { 1761 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1762 amdgpu_ttm_training_reserve_vram_fini(adev); 1763 return ret; 1764 } 1765 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1766 } 1767 1768 if (!adev->gmc.is_app_apu) { 1769 ret = amdgpu_bo_create_kernel_at( 1770 adev, adev->gmc.real_vram_size - reserve_size, 1771 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1772 if (ret) { 1773 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1774 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1775 NULL, NULL); 1776 return ret; 1777 } 1778 } else { 1779 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1780 } 1781 1782 return 0; 1783 } 1784 1785 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1786 { 1787 int i; 1788 1789 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1790 return 0; 1791 1792 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1793 sizeof(*adev->mman.ttm_pools), 1794 GFP_KERNEL); 1795 if (!adev->mman.ttm_pools) 1796 return -ENOMEM; 1797 1798 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1799 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1800 adev->gmc.mem_partitions[i].numa.node, 1801 false, false); 1802 } 1803 return 0; 1804 } 1805 1806 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1807 { 1808 int i; 1809 1810 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1811 return; 1812 1813 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1814 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1815 1816 kfree(adev->mman.ttm_pools); 1817 adev->mman.ttm_pools = NULL; 1818 } 1819 1820 /* 1821 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1822 * gtt/vram related fields. 1823 * 1824 * This initializes all of the memory space pools that the TTM layer 1825 * will need such as the GTT space (system memory mapped to the device), 1826 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1827 * can be mapped per VMID. 1828 */ 1829 int amdgpu_ttm_init(struct amdgpu_device *adev) 1830 { 1831 uint64_t gtt_size; 1832 int r; 1833 1834 mutex_init(&adev->mman.gtt_window_lock); 1835 1836 /* No others user of address space so set it to 0 */ 1837 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1838 adev_to_drm(adev)->anon_inode->i_mapping, 1839 adev_to_drm(adev)->vma_offset_manager, 1840 adev->need_swiotlb, 1841 dma_addressing_limited(adev->dev)); 1842 if (r) { 1843 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1844 return r; 1845 } 1846 1847 r = amdgpu_ttm_pools_init(adev); 1848 if (r) { 1849 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1850 return r; 1851 } 1852 adev->mman.initialized = true; 1853 1854 /* Initialize VRAM pool with all of VRAM divided into pages */ 1855 r = amdgpu_vram_mgr_init(adev); 1856 if (r) { 1857 DRM_ERROR("Failed initializing VRAM heap.\n"); 1858 return r; 1859 } 1860 1861 /* Change the size here instead of the init above so only lpfn is affected */ 1862 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1863 #ifdef CONFIG_64BIT 1864 #ifdef CONFIG_X86 1865 if (adev->gmc.xgmi.connected_to_cpu) 1866 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1867 adev->gmc.visible_vram_size); 1868 1869 else if (adev->gmc.is_app_apu) 1870 DRM_DEBUG_DRIVER( 1871 "No need to ioremap when real vram size is 0\n"); 1872 else 1873 #endif 1874 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1875 adev->gmc.visible_vram_size); 1876 #endif 1877 1878 /* 1879 *The reserved vram for firmware must be pinned to the specified 1880 *place on the VRAM, so reserve it early. 1881 */ 1882 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1883 if (r) 1884 return r; 1885 1886 /* 1887 *The reserved vram for driver must be pinned to the specified 1888 *place on the VRAM, so reserve it early. 1889 */ 1890 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1891 if (r) 1892 return r; 1893 1894 /* 1895 * only NAVI10 and onwards ASIC support for IP discovery. 1896 * If IP discovery enabled, a block of memory should be 1897 * reserved for IP discovey. 1898 */ 1899 if (adev->mman.discovery_bin) { 1900 r = amdgpu_ttm_reserve_tmr(adev); 1901 if (r) 1902 return r; 1903 } 1904 1905 /* allocate memory as required for VGA 1906 * This is used for VGA emulation and pre-OS scanout buffers to 1907 * avoid display artifacts while transitioning between pre-OS 1908 * and driver. 1909 */ 1910 if (!adev->gmc.is_app_apu) { 1911 r = amdgpu_bo_create_kernel_at(adev, 0, 1912 adev->mman.stolen_vga_size, 1913 &adev->mman.stolen_vga_memory, 1914 NULL); 1915 if (r) 1916 return r; 1917 1918 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1919 adev->mman.stolen_extended_size, 1920 &adev->mman.stolen_extended_memory, 1921 NULL); 1922 1923 if (r) 1924 return r; 1925 1926 r = amdgpu_bo_create_kernel_at(adev, 1927 adev->mman.stolen_reserved_offset, 1928 adev->mman.stolen_reserved_size, 1929 &adev->mman.stolen_reserved_memory, 1930 NULL); 1931 if (r) 1932 return r; 1933 } else { 1934 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1935 } 1936 1937 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1938 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1939 1940 /* Compute GTT size, either based on TTM limit 1941 * or whatever the user passed on module init. 1942 */ 1943 if (amdgpu_gtt_size == -1) 1944 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1945 else 1946 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1947 1948 /* Initialize GTT memory pool */ 1949 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1950 if (r) { 1951 DRM_ERROR("Failed initializing GTT heap.\n"); 1952 return r; 1953 } 1954 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1955 (unsigned int)(gtt_size / (1024 * 1024))); 1956 1957 /* Initiailize doorbell pool on PCI BAR */ 1958 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1959 if (r) { 1960 DRM_ERROR("Failed initializing doorbell heap.\n"); 1961 return r; 1962 } 1963 1964 /* Create a boorbell page for kernel usages */ 1965 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1966 if (r) { 1967 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1968 return r; 1969 } 1970 1971 /* Initialize preemptible memory pool */ 1972 r = amdgpu_preempt_mgr_init(adev); 1973 if (r) { 1974 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1975 return r; 1976 } 1977 1978 /* Initialize various on-chip memory pools */ 1979 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1980 if (r) { 1981 DRM_ERROR("Failed initializing GDS heap.\n"); 1982 return r; 1983 } 1984 1985 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1986 if (r) { 1987 DRM_ERROR("Failed initializing gws heap.\n"); 1988 return r; 1989 } 1990 1991 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1992 if (r) { 1993 DRM_ERROR("Failed initializing oa heap.\n"); 1994 return r; 1995 } 1996 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1997 AMDGPU_GEM_DOMAIN_GTT, 1998 &adev->mman.sdma_access_bo, NULL, 1999 &adev->mman.sdma_access_ptr)) 2000 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 2001 2002 return 0; 2003 } 2004 2005 /* 2006 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2007 */ 2008 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2009 { 2010 int idx; 2011 2012 if (!adev->mman.initialized) 2013 return; 2014 2015 amdgpu_ttm_pools_fini(adev); 2016 2017 amdgpu_ttm_training_reserve_vram_fini(adev); 2018 /* return the stolen vga memory back to VRAM */ 2019 if (!adev->gmc.is_app_apu) { 2020 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2021 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2022 /* return the FW reserved memory back to VRAM */ 2023 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2024 NULL); 2025 if (adev->mman.stolen_reserved_size) 2026 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2027 NULL, NULL); 2028 } 2029 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2030 &adev->mman.sdma_access_ptr); 2031 amdgpu_ttm_fw_reserve_vram_fini(adev); 2032 amdgpu_ttm_drv_reserve_vram_fini(adev); 2033 2034 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2035 2036 if (adev->mman.aper_base_kaddr) 2037 iounmap(adev->mman.aper_base_kaddr); 2038 adev->mman.aper_base_kaddr = NULL; 2039 2040 drm_dev_exit(idx); 2041 } 2042 2043 amdgpu_vram_mgr_fini(adev); 2044 amdgpu_gtt_mgr_fini(adev); 2045 amdgpu_preempt_mgr_fini(adev); 2046 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2047 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2048 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2049 ttm_device_fini(&adev->mman.bdev); 2050 adev->mman.initialized = false; 2051 DRM_INFO("amdgpu: ttm finalized\n"); 2052 } 2053 2054 /** 2055 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2056 * 2057 * @adev: amdgpu_device pointer 2058 * @enable: true when we can use buffer functions. 2059 * 2060 * Enable/disable use of buffer functions during suspend/resume. This should 2061 * only be called at bootup or when userspace isn't running. 2062 */ 2063 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2064 { 2065 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2066 uint64_t size; 2067 int r; 2068 2069 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2070 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2071 return; 2072 2073 if (enable) { 2074 struct amdgpu_ring *ring; 2075 struct drm_gpu_scheduler *sched; 2076 2077 ring = adev->mman.buffer_funcs_ring; 2078 sched = &ring->sched; 2079 r = drm_sched_entity_init(&adev->mman.high_pr, 2080 DRM_SCHED_PRIORITY_KERNEL, &sched, 2081 1, NULL); 2082 if (r) { 2083 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2084 r); 2085 return; 2086 } 2087 2088 r = drm_sched_entity_init(&adev->mman.low_pr, 2089 DRM_SCHED_PRIORITY_NORMAL, &sched, 2090 1, NULL); 2091 if (r) { 2092 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2093 r); 2094 goto error_free_entity; 2095 } 2096 } else { 2097 drm_sched_entity_destroy(&adev->mman.high_pr); 2098 drm_sched_entity_destroy(&adev->mman.low_pr); 2099 dma_fence_put(man->move); 2100 man->move = NULL; 2101 } 2102 2103 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2104 if (enable) 2105 size = adev->gmc.real_vram_size; 2106 else 2107 size = adev->gmc.visible_vram_size; 2108 man->size = size; 2109 adev->mman.buffer_funcs_enabled = enable; 2110 2111 return; 2112 2113 error_free_entity: 2114 drm_sched_entity_destroy(&adev->mman.high_pr); 2115 } 2116 2117 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2118 bool direct_submit, 2119 unsigned int num_dw, 2120 struct dma_resv *resv, 2121 bool vm_needs_flush, 2122 struct amdgpu_job **job, 2123 bool delayed) 2124 { 2125 enum amdgpu_ib_pool_type pool = direct_submit ? 2126 AMDGPU_IB_POOL_DIRECT : 2127 AMDGPU_IB_POOL_DELAYED; 2128 int r; 2129 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2130 &adev->mman.high_pr; 2131 r = amdgpu_job_alloc_with_ib(adev, entity, 2132 AMDGPU_FENCE_OWNER_UNDEFINED, 2133 num_dw * 4, pool, job); 2134 if (r) 2135 return r; 2136 2137 if (vm_needs_flush) { 2138 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2139 adev->gmc.pdb0_bo : 2140 adev->gart.bo); 2141 (*job)->vm_needs_flush = true; 2142 } 2143 if (!resv) 2144 return 0; 2145 2146 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2147 DMA_RESV_USAGE_BOOKKEEP); 2148 } 2149 2150 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2151 uint64_t dst_offset, uint32_t byte_count, 2152 struct dma_resv *resv, 2153 struct dma_fence **fence, bool direct_submit, 2154 bool vm_needs_flush, bool tmz) 2155 { 2156 struct amdgpu_device *adev = ring->adev; 2157 unsigned int num_loops, num_dw; 2158 struct amdgpu_job *job; 2159 uint32_t max_bytes; 2160 unsigned int i; 2161 int r; 2162 2163 if (!direct_submit && !ring->sched.ready) { 2164 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2165 return -EINVAL; 2166 } 2167 2168 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2169 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2170 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2171 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2172 resv, vm_needs_flush, &job, false); 2173 if (r) 2174 return r; 2175 2176 for (i = 0; i < num_loops; i++) { 2177 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2178 2179 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2180 dst_offset, cur_size_in_bytes, tmz); 2181 2182 src_offset += cur_size_in_bytes; 2183 dst_offset += cur_size_in_bytes; 2184 byte_count -= cur_size_in_bytes; 2185 } 2186 2187 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2188 WARN_ON(job->ibs[0].length_dw > num_dw); 2189 if (direct_submit) 2190 r = amdgpu_job_submit_direct(job, ring, fence); 2191 else 2192 *fence = amdgpu_job_submit(job); 2193 if (r) 2194 goto error_free; 2195 2196 return r; 2197 2198 error_free: 2199 amdgpu_job_free(job); 2200 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2201 return r; 2202 } 2203 2204 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2205 uint64_t dst_addr, uint32_t byte_count, 2206 struct dma_resv *resv, 2207 struct dma_fence **fence, 2208 bool vm_needs_flush, bool delayed) 2209 { 2210 struct amdgpu_device *adev = ring->adev; 2211 unsigned int num_loops, num_dw; 2212 struct amdgpu_job *job; 2213 uint32_t max_bytes; 2214 unsigned int i; 2215 int r; 2216 2217 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2218 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2219 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2220 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2221 &job, delayed); 2222 if (r) 2223 return r; 2224 2225 for (i = 0; i < num_loops; i++) { 2226 uint32_t cur_size = min(byte_count, max_bytes); 2227 2228 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2229 cur_size); 2230 2231 dst_addr += cur_size; 2232 byte_count -= cur_size; 2233 } 2234 2235 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2236 WARN_ON(job->ibs[0].length_dw > num_dw); 2237 *fence = amdgpu_job_submit(job); 2238 return 0; 2239 } 2240 2241 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2242 uint32_t src_data, 2243 struct dma_resv *resv, 2244 struct dma_fence **f, 2245 bool delayed) 2246 { 2247 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2248 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2249 struct dma_fence *fence = NULL; 2250 struct amdgpu_res_cursor dst; 2251 int r; 2252 2253 if (!adev->mman.buffer_funcs_enabled) { 2254 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2255 return -EINVAL; 2256 } 2257 2258 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2259 2260 mutex_lock(&adev->mman.gtt_window_lock); 2261 while (dst.remaining) { 2262 struct dma_fence *next; 2263 uint64_t cur_size, to; 2264 2265 /* Never fill more than 256MiB at once to avoid timeouts */ 2266 cur_size = min(dst.size, 256ULL << 20); 2267 2268 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2269 1, ring, false, &cur_size, &to); 2270 if (r) 2271 goto error; 2272 2273 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2274 &next, true, delayed); 2275 if (r) 2276 goto error; 2277 2278 dma_fence_put(fence); 2279 fence = next; 2280 2281 amdgpu_res_next(&dst, cur_size); 2282 } 2283 error: 2284 mutex_unlock(&adev->mman.gtt_window_lock); 2285 if (f) 2286 *f = dma_fence_get(fence); 2287 dma_fence_put(fence); 2288 return r; 2289 } 2290 2291 /** 2292 * amdgpu_ttm_evict_resources - evict memory buffers 2293 * @adev: amdgpu device object 2294 * @mem_type: evicted BO's memory type 2295 * 2296 * Evicts all @mem_type buffers on the lru list of the memory type. 2297 * 2298 * Returns: 2299 * 0 for success or a negative error code on failure. 2300 */ 2301 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2302 { 2303 struct ttm_resource_manager *man; 2304 2305 switch (mem_type) { 2306 case TTM_PL_VRAM: 2307 case TTM_PL_TT: 2308 case AMDGPU_PL_GWS: 2309 case AMDGPU_PL_GDS: 2310 case AMDGPU_PL_OA: 2311 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2312 break; 2313 default: 2314 DRM_ERROR("Trying to evict invalid memory type\n"); 2315 return -EINVAL; 2316 } 2317 2318 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2319 } 2320 2321 #if defined(CONFIG_DEBUG_FS) 2322 2323 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2324 { 2325 struct amdgpu_device *adev = m->private; 2326 2327 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2328 } 2329 2330 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2331 2332 /* 2333 * amdgpu_ttm_vram_read - Linear read access to VRAM 2334 * 2335 * Accesses VRAM via MMIO for debugging purposes. 2336 */ 2337 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2338 size_t size, loff_t *pos) 2339 { 2340 struct amdgpu_device *adev = file_inode(f)->i_private; 2341 ssize_t result = 0; 2342 2343 if (size & 0x3 || *pos & 0x3) 2344 return -EINVAL; 2345 2346 if (*pos >= adev->gmc.mc_vram_size) 2347 return -ENXIO; 2348 2349 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2350 while (size) { 2351 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2352 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2353 2354 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2355 if (copy_to_user(buf, value, bytes)) 2356 return -EFAULT; 2357 2358 result += bytes; 2359 buf += bytes; 2360 *pos += bytes; 2361 size -= bytes; 2362 } 2363 2364 return result; 2365 } 2366 2367 /* 2368 * amdgpu_ttm_vram_write - Linear write access to VRAM 2369 * 2370 * Accesses VRAM via MMIO for debugging purposes. 2371 */ 2372 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2373 size_t size, loff_t *pos) 2374 { 2375 struct amdgpu_device *adev = file_inode(f)->i_private; 2376 ssize_t result = 0; 2377 int r; 2378 2379 if (size & 0x3 || *pos & 0x3) 2380 return -EINVAL; 2381 2382 if (*pos >= adev->gmc.mc_vram_size) 2383 return -ENXIO; 2384 2385 while (size) { 2386 uint32_t value; 2387 2388 if (*pos >= adev->gmc.mc_vram_size) 2389 return result; 2390 2391 r = get_user(value, (uint32_t *)buf); 2392 if (r) 2393 return r; 2394 2395 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2396 2397 result += 4; 2398 buf += 4; 2399 *pos += 4; 2400 size -= 4; 2401 } 2402 2403 return result; 2404 } 2405 2406 static const struct file_operations amdgpu_ttm_vram_fops = { 2407 .owner = THIS_MODULE, 2408 .read = amdgpu_ttm_vram_read, 2409 .write = amdgpu_ttm_vram_write, 2410 .llseek = default_llseek, 2411 }; 2412 2413 /* 2414 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2415 * 2416 * This function is used to read memory that has been mapped to the 2417 * GPU and the known addresses are not physical addresses but instead 2418 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2419 */ 2420 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2421 size_t size, loff_t *pos) 2422 { 2423 struct amdgpu_device *adev = file_inode(f)->i_private; 2424 struct iommu_domain *dom; 2425 ssize_t result = 0; 2426 int r; 2427 2428 /* retrieve the IOMMU domain if any for this device */ 2429 dom = iommu_get_domain_for_dev(adev->dev); 2430 2431 while (size) { 2432 phys_addr_t addr = *pos & PAGE_MASK; 2433 loff_t off = *pos & ~PAGE_MASK; 2434 size_t bytes = PAGE_SIZE - off; 2435 unsigned long pfn; 2436 struct page *p; 2437 void *ptr; 2438 2439 bytes = min(bytes, size); 2440 2441 /* Translate the bus address to a physical address. If 2442 * the domain is NULL it means there is no IOMMU active 2443 * and the address translation is the identity 2444 */ 2445 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2446 2447 pfn = addr >> PAGE_SHIFT; 2448 if (!pfn_valid(pfn)) 2449 return -EPERM; 2450 2451 p = pfn_to_page(pfn); 2452 if (p->mapping != adev->mman.bdev.dev_mapping) 2453 return -EPERM; 2454 2455 ptr = kmap_local_page(p); 2456 r = copy_to_user(buf, ptr + off, bytes); 2457 kunmap_local(ptr); 2458 if (r) 2459 return -EFAULT; 2460 2461 size -= bytes; 2462 *pos += bytes; 2463 result += bytes; 2464 } 2465 2466 return result; 2467 } 2468 2469 /* 2470 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2471 * 2472 * This function is used to write memory that has been mapped to the 2473 * GPU and the known addresses are not physical addresses but instead 2474 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2475 */ 2476 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2477 size_t size, loff_t *pos) 2478 { 2479 struct amdgpu_device *adev = file_inode(f)->i_private; 2480 struct iommu_domain *dom; 2481 ssize_t result = 0; 2482 int r; 2483 2484 dom = iommu_get_domain_for_dev(adev->dev); 2485 2486 while (size) { 2487 phys_addr_t addr = *pos & PAGE_MASK; 2488 loff_t off = *pos & ~PAGE_MASK; 2489 size_t bytes = PAGE_SIZE - off; 2490 unsigned long pfn; 2491 struct page *p; 2492 void *ptr; 2493 2494 bytes = min(bytes, size); 2495 2496 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2497 2498 pfn = addr >> PAGE_SHIFT; 2499 if (!pfn_valid(pfn)) 2500 return -EPERM; 2501 2502 p = pfn_to_page(pfn); 2503 if (p->mapping != adev->mman.bdev.dev_mapping) 2504 return -EPERM; 2505 2506 ptr = kmap_local_page(p); 2507 r = copy_from_user(ptr + off, buf, bytes); 2508 kunmap_local(ptr); 2509 if (r) 2510 return -EFAULT; 2511 2512 size -= bytes; 2513 *pos += bytes; 2514 result += bytes; 2515 } 2516 2517 return result; 2518 } 2519 2520 static const struct file_operations amdgpu_ttm_iomem_fops = { 2521 .owner = THIS_MODULE, 2522 .read = amdgpu_iomem_read, 2523 .write = amdgpu_iomem_write, 2524 .llseek = default_llseek 2525 }; 2526 2527 #endif 2528 2529 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2530 { 2531 #if defined(CONFIG_DEBUG_FS) 2532 struct drm_minor *minor = adev_to_drm(adev)->primary; 2533 struct dentry *root = minor->debugfs_root; 2534 2535 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2536 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2537 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2538 &amdgpu_ttm_iomem_fops); 2539 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2540 &amdgpu_ttm_page_pool_fops); 2541 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2542 TTM_PL_VRAM), 2543 root, "amdgpu_vram_mm"); 2544 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2545 TTM_PL_TT), 2546 root, "amdgpu_gtt_mm"); 2547 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2548 AMDGPU_PL_GDS), 2549 root, "amdgpu_gds_mm"); 2550 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2551 AMDGPU_PL_GWS), 2552 root, "amdgpu_gws_mm"); 2553 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2554 AMDGPU_PL_OA), 2555 root, "amdgpu_oa_mm"); 2556 2557 #endif 2558 } 2559