xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "amdgpu_sdma.h"
51 #include "bif/bif_4_1_d.h"
52 
53 #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT)
54 
55 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
56 			     struct ttm_mem_reg *mem, unsigned num_pages,
57 			     uint64_t offset, unsigned window,
58 			     struct amdgpu_ring *ring,
59 			     uint64_t *addr);
60 
61 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
62 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
63 
64 /*
65  * Global memory.
66  */
67 
68 /**
69  * amdgpu_ttm_mem_global_init - Initialize and acquire reference to
70  * memory object
71  *
72  * @ref: Object for initialization.
73  *
74  * This is called by drm_global_item_ref() when an object is being
75  * initialized.
76  */
77 static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref)
78 {
79 	return ttm_mem_global_init(ref->object);
80 }
81 
82 /**
83  * amdgpu_ttm_mem_global_release - Drop reference to a memory object
84  *
85  * @ref: Object being removed
86  *
87  * This is called by drm_global_item_unref() when an object is being
88  * released.
89  */
90 static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref)
91 {
92 	ttm_mem_global_release(ref->object);
93 }
94 
95 /**
96  * amdgpu_ttm_global_init - Initialize global TTM memory reference structures.
97  *
98  * @adev: AMDGPU device for which the global structures need to be registered.
99  *
100  * This is called as part of the AMDGPU ttm init from amdgpu_ttm_init()
101  * during bring up.
102  */
103 static int amdgpu_ttm_global_init(struct amdgpu_device *adev)
104 {
105 	struct drm_global_reference *global_ref;
106 	int r;
107 
108 	/* ensure reference is false in case init fails */
109 	adev->mman.mem_global_referenced = false;
110 
111 	global_ref = &adev->mman.mem_global_ref;
112 	global_ref->global_type = DRM_GLOBAL_TTM_MEM;
113 	global_ref->size = sizeof(struct ttm_mem_global);
114 	global_ref->init = &amdgpu_ttm_mem_global_init;
115 	global_ref->release = &amdgpu_ttm_mem_global_release;
116 	r = drm_global_item_ref(global_ref);
117 	if (r) {
118 		DRM_ERROR("Failed setting up TTM memory accounting "
119 			  "subsystem.\n");
120 		goto error_mem;
121 	}
122 
123 	adev->mman.bo_global_ref.mem_glob =
124 		adev->mman.mem_global_ref.object;
125 	global_ref = &adev->mman.bo_global_ref.ref;
126 	global_ref->global_type = DRM_GLOBAL_TTM_BO;
127 	global_ref->size = sizeof(struct ttm_bo_global);
128 	global_ref->init = &ttm_bo_global_init;
129 	global_ref->release = &ttm_bo_global_release;
130 	r = drm_global_item_ref(global_ref);
131 	if (r) {
132 		DRM_ERROR("Failed setting up TTM BO subsystem.\n");
133 		goto error_bo;
134 	}
135 
136 	mutex_init(&adev->mman.gtt_window_lock);
137 
138 	adev->mman.mem_global_referenced = true;
139 
140 	return 0;
141 
142 error_bo:
143 	drm_global_item_unref(&adev->mman.mem_global_ref);
144 error_mem:
145 	return r;
146 }
147 
148 static void amdgpu_ttm_global_fini(struct amdgpu_device *adev)
149 {
150 	if (adev->mman.mem_global_referenced) {
151 		mutex_destroy(&adev->mman.gtt_window_lock);
152 		drm_global_item_unref(&adev->mman.bo_global_ref.ref);
153 		drm_global_item_unref(&adev->mman.mem_global_ref);
154 		adev->mman.mem_global_referenced = false;
155 	}
156 }
157 
158 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
159 {
160 	return 0;
161 }
162 
163 /**
164  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
165  * memory request.
166  *
167  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
168  * @type: The type of memory requested
169  * @man: The memory type manager for each domain
170  *
171  * This is called by ttm_bo_init_mm() when a buffer object is being
172  * initialized.
173  */
174 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
175 				struct ttm_mem_type_manager *man)
176 {
177 	struct amdgpu_device *adev;
178 
179 	adev = amdgpu_ttm_adev(bdev);
180 
181 	switch (type) {
182 	case TTM_PL_SYSTEM:
183 		/* System memory */
184 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
185 		man->available_caching = TTM_PL_MASK_CACHING;
186 		man->default_caching = TTM_PL_FLAG_CACHED;
187 		break;
188 	case TTM_PL_TT:
189 		/* GTT memory  */
190 		man->func = &amdgpu_gtt_mgr_func;
191 		man->gpu_offset = adev->gmc.gart_start;
192 		man->available_caching = TTM_PL_MASK_CACHING;
193 		man->default_caching = TTM_PL_FLAG_CACHED;
194 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
195 		break;
196 	case TTM_PL_VRAM:
197 		/* "On-card" video ram */
198 		man->func = &amdgpu_vram_mgr_func;
199 		man->gpu_offset = adev->gmc.vram_start;
200 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
201 			     TTM_MEMTYPE_FLAG_MAPPABLE;
202 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
203 		man->default_caching = TTM_PL_FLAG_WC;
204 		break;
205 	case AMDGPU_PL_GDS:
206 	case AMDGPU_PL_GWS:
207 	case AMDGPU_PL_OA:
208 		/* On-chip GDS memory*/
209 		man->func = &ttm_bo_manager_func;
210 		man->gpu_offset = 0;
211 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
212 		man->available_caching = TTM_PL_FLAG_UNCACHED;
213 		man->default_caching = TTM_PL_FLAG_UNCACHED;
214 		break;
215 	default:
216 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
217 		return -EINVAL;
218 	}
219 	return 0;
220 }
221 
222 /**
223  * amdgpu_evict_flags - Compute placement flags
224  *
225  * @bo: The buffer object to evict
226  * @placement: Possible destination(s) for evicted BO
227  *
228  * Fill in placement data when ttm_bo_evict() is called
229  */
230 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
231 				struct ttm_placement *placement)
232 {
233 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
234 	struct amdgpu_bo *abo;
235 	static const struct ttm_place placements = {
236 		.fpfn = 0,
237 		.lpfn = 0,
238 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
239 	};
240 
241 	/* Don't handle scatter gather BOs */
242 	if (bo->type == ttm_bo_type_sg) {
243 		placement->num_placement = 0;
244 		placement->num_busy_placement = 0;
245 		return;
246 	}
247 
248 	/* Object isn't an AMDGPU object so ignore */
249 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
250 		placement->placement = &placements;
251 		placement->busy_placement = &placements;
252 		placement->num_placement = 1;
253 		placement->num_busy_placement = 1;
254 		return;
255 	}
256 
257 	abo = ttm_to_amdgpu_bo(bo);
258 	switch (bo->mem.mem_type) {
259 	case TTM_PL_VRAM:
260 		if (!adev->mman.buffer_funcs_enabled) {
261 			/* Move to system memory */
262 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
263 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
264 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
265 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
266 
267 			/* Try evicting to the CPU inaccessible part of VRAM
268 			 * first, but only set GTT as busy placement, so this
269 			 * BO will be evicted to GTT rather than causing other
270 			 * BOs to be evicted from VRAM
271 			 */
272 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
273 							 AMDGPU_GEM_DOMAIN_GTT);
274 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
275 			abo->placements[0].lpfn = 0;
276 			abo->placement.busy_placement = &abo->placements[1];
277 			abo->placement.num_busy_placement = 1;
278 		} else {
279 			/* Move to GTT memory */
280 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
281 		}
282 		break;
283 	case TTM_PL_TT:
284 	default:
285 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
286 	}
287 	*placement = abo->placement;
288 }
289 
290 /**
291  * amdgpu_verify_access - Verify access for a mmap call
292  *
293  * @bo:	The buffer object to map
294  * @filp: The file pointer from the process performing the mmap
295  *
296  * This is called by ttm_bo_mmap() to verify whether a process
297  * has the right to mmap a BO to their process space.
298  */
299 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
300 {
301 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
302 
303 	/*
304 	 * Don't verify access for KFD BOs. They don't have a GEM
305 	 * object associated with them.
306 	 */
307 	if (abo->kfd_bo)
308 		return 0;
309 
310 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
311 		return -EPERM;
312 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
313 					  filp->private_data);
314 }
315 
316 /**
317  * amdgpu_move_null - Register memory for a buffer object
318  *
319  * @bo: The bo to assign the memory to
320  * @new_mem: The memory to be assigned.
321  *
322  * Assign the memory from new_mem to the memory of the buffer object bo.
323  */
324 static void amdgpu_move_null(struct ttm_buffer_object *bo,
325 			     struct ttm_mem_reg *new_mem)
326 {
327 	struct ttm_mem_reg *old_mem = &bo->mem;
328 
329 	BUG_ON(old_mem->mm_node != NULL);
330 	*old_mem = *new_mem;
331 	new_mem->mm_node = NULL;
332 }
333 
334 /**
335  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
336  *
337  * @bo: The bo to assign the memory to.
338  * @mm_node: Memory manager node for drm allocator.
339  * @mem: The region where the bo resides.
340  *
341  */
342 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
343 				    struct drm_mm_node *mm_node,
344 				    struct ttm_mem_reg *mem)
345 {
346 	uint64_t addr = 0;
347 
348 	if (mem->mem_type != TTM_PL_TT || amdgpu_gtt_mgr_has_gart_addr(mem)) {
349 		addr = mm_node->start << PAGE_SHIFT;
350 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
351 	}
352 	return addr;
353 }
354 
355 /**
356  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
357  * @offset. It also modifies the offset to be within the drm_mm_node returned
358  *
359  * @mem: The region where the bo resides.
360  * @offset: The offset that drm_mm_node is used for finding.
361  *
362  */
363 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
364 					       unsigned long *offset)
365 {
366 	struct drm_mm_node *mm_node = mem->mm_node;
367 
368 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
369 		*offset -= (mm_node->size << PAGE_SHIFT);
370 		++mm_node;
371 	}
372 	return mm_node;
373 }
374 
375 /**
376  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
377  *
378  * The function copies @size bytes from {src->mem + src->offset} to
379  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
380  * move and different for a BO to BO copy.
381  *
382  * @f: Returns the last fence if multiple jobs are submitted.
383  */
384 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
385 			       struct amdgpu_copy_mem *src,
386 			       struct amdgpu_copy_mem *dst,
387 			       uint64_t size,
388 			       struct reservation_object *resv,
389 			       struct dma_fence **f)
390 {
391 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
392 	struct drm_mm_node *src_mm, *dst_mm;
393 	uint64_t src_node_start, dst_node_start, src_node_size,
394 		 dst_node_size, src_page_offset, dst_page_offset;
395 	struct dma_fence *fence = NULL;
396 	int r = 0;
397 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
398 					AMDGPU_GPU_PAGE_SIZE);
399 
400 	if (!adev->mman.buffer_funcs_enabled) {
401 		DRM_ERROR("Trying to move memory with ring turned off.\n");
402 		return -EINVAL;
403 	}
404 
405 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
406 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
407 					     src->offset;
408 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
409 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
410 
411 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
412 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
413 					     dst->offset;
414 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
415 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
416 
417 	mutex_lock(&adev->mman.gtt_window_lock);
418 
419 	while (size) {
420 		unsigned long cur_size;
421 		uint64_t from = src_node_start, to = dst_node_start;
422 		struct dma_fence *next;
423 
424 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
425 		 * begins at an offset, then adjust the size accordingly
426 		 */
427 		cur_size = min3(min(src_node_size, dst_node_size), size,
428 				GTT_MAX_BYTES);
429 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
430 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
431 			cur_size -= max(src_page_offset, dst_page_offset);
432 
433 		/* Map only what needs to be accessed. Map src to window 0 and
434 		 * dst to window 1
435 		 */
436 		if (src->mem->mem_type == TTM_PL_TT &&
437 		    !amdgpu_gtt_mgr_has_gart_addr(src->mem)) {
438 			r = amdgpu_map_buffer(src->bo, src->mem,
439 					PFN_UP(cur_size + src_page_offset),
440 					src_node_start, 0, ring,
441 					&from);
442 			if (r)
443 				goto error;
444 			/* Adjust the offset because amdgpu_map_buffer returns
445 			 * start of mapped page
446 			 */
447 			from += src_page_offset;
448 		}
449 
450 		if (dst->mem->mem_type == TTM_PL_TT &&
451 		    !amdgpu_gtt_mgr_has_gart_addr(dst->mem)) {
452 			r = amdgpu_map_buffer(dst->bo, dst->mem,
453 					PFN_UP(cur_size + dst_page_offset),
454 					dst_node_start, 1, ring,
455 					&to);
456 			if (r)
457 				goto error;
458 			to += dst_page_offset;
459 		}
460 
461 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
462 				       resv, &next, false, true);
463 		if (r)
464 			goto error;
465 
466 		dma_fence_put(fence);
467 		fence = next;
468 
469 		size -= cur_size;
470 		if (!size)
471 			break;
472 
473 		src_node_size -= cur_size;
474 		if (!src_node_size) {
475 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
476 							     src->mem);
477 			src_node_size = (src_mm->size << PAGE_SHIFT);
478 		} else {
479 			src_node_start += cur_size;
480 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
481 		}
482 		dst_node_size -= cur_size;
483 		if (!dst_node_size) {
484 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
485 							     dst->mem);
486 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
487 		} else {
488 			dst_node_start += cur_size;
489 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
490 		}
491 	}
492 error:
493 	mutex_unlock(&adev->mman.gtt_window_lock);
494 	if (f)
495 		*f = dma_fence_get(fence);
496 	dma_fence_put(fence);
497 	return r;
498 }
499 
500 /**
501  * amdgpu_move_blit - Copy an entire buffer to another buffer
502  *
503  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
504  * help move buffers to and from VRAM.
505  */
506 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
507 			    bool evict, bool no_wait_gpu,
508 			    struct ttm_mem_reg *new_mem,
509 			    struct ttm_mem_reg *old_mem)
510 {
511 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
512 	struct amdgpu_copy_mem src, dst;
513 	struct dma_fence *fence = NULL;
514 	int r;
515 
516 	src.bo = bo;
517 	dst.bo = bo;
518 	src.mem = old_mem;
519 	dst.mem = new_mem;
520 	src.offset = 0;
521 	dst.offset = 0;
522 
523 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
524 				       new_mem->num_pages << PAGE_SHIFT,
525 				       bo->resv, &fence);
526 	if (r)
527 		goto error;
528 
529 	r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
530 	dma_fence_put(fence);
531 	return r;
532 
533 error:
534 	if (fence)
535 		dma_fence_wait(fence, false);
536 	dma_fence_put(fence);
537 	return r;
538 }
539 
540 /**
541  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
542  *
543  * Called by amdgpu_bo_move().
544  */
545 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
546 				struct ttm_operation_ctx *ctx,
547 				struct ttm_mem_reg *new_mem)
548 {
549 	struct amdgpu_device *adev;
550 	struct ttm_mem_reg *old_mem = &bo->mem;
551 	struct ttm_mem_reg tmp_mem;
552 	struct ttm_place placements;
553 	struct ttm_placement placement;
554 	int r;
555 
556 	adev = amdgpu_ttm_adev(bo->bdev);
557 
558 	/* create space/pages for new_mem in GTT space */
559 	tmp_mem = *new_mem;
560 	tmp_mem.mm_node = NULL;
561 	placement.num_placement = 1;
562 	placement.placement = &placements;
563 	placement.num_busy_placement = 1;
564 	placement.busy_placement = &placements;
565 	placements.fpfn = 0;
566 	placements.lpfn = 0;
567 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
568 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
569 	if (unlikely(r)) {
570 		return r;
571 	}
572 
573 	/* set caching flags */
574 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
575 	if (unlikely(r)) {
576 		goto out_cleanup;
577 	}
578 
579 	/* Bind the memory to the GTT space */
580 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
581 	if (unlikely(r)) {
582 		goto out_cleanup;
583 	}
584 
585 	/* blit VRAM to GTT */
586 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
587 	if (unlikely(r)) {
588 		goto out_cleanup;
589 	}
590 
591 	/* move BO (in tmp_mem) to new_mem */
592 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
593 out_cleanup:
594 	ttm_bo_mem_put(bo, &tmp_mem);
595 	return r;
596 }
597 
598 /**
599  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
600  *
601  * Called by amdgpu_bo_move().
602  */
603 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
604 				struct ttm_operation_ctx *ctx,
605 				struct ttm_mem_reg *new_mem)
606 {
607 	struct amdgpu_device *adev;
608 	struct ttm_mem_reg *old_mem = &bo->mem;
609 	struct ttm_mem_reg tmp_mem;
610 	struct ttm_placement placement;
611 	struct ttm_place placements;
612 	int r;
613 
614 	adev = amdgpu_ttm_adev(bo->bdev);
615 
616 	/* make space in GTT for old_mem buffer */
617 	tmp_mem = *new_mem;
618 	tmp_mem.mm_node = NULL;
619 	placement.num_placement = 1;
620 	placement.placement = &placements;
621 	placement.num_busy_placement = 1;
622 	placement.busy_placement = &placements;
623 	placements.fpfn = 0;
624 	placements.lpfn = 0;
625 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
626 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
627 	if (unlikely(r)) {
628 		return r;
629 	}
630 
631 	/* move/bind old memory to GTT space */
632 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
633 	if (unlikely(r)) {
634 		goto out_cleanup;
635 	}
636 
637 	/* copy to VRAM */
638 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
639 	if (unlikely(r)) {
640 		goto out_cleanup;
641 	}
642 out_cleanup:
643 	ttm_bo_mem_put(bo, &tmp_mem);
644 	return r;
645 }
646 
647 /**
648  * amdgpu_bo_move - Move a buffer object to a new memory location
649  *
650  * Called by ttm_bo_handle_move_mem()
651  */
652 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
653 			  struct ttm_operation_ctx *ctx,
654 			  struct ttm_mem_reg *new_mem)
655 {
656 	struct amdgpu_device *adev;
657 	struct amdgpu_bo *abo;
658 	struct ttm_mem_reg *old_mem = &bo->mem;
659 	int r;
660 
661 	/* Can't move a pinned BO */
662 	abo = ttm_to_amdgpu_bo(bo);
663 	if (WARN_ON_ONCE(abo->pin_count > 0))
664 		return -EINVAL;
665 
666 	adev = amdgpu_ttm_adev(bo->bdev);
667 
668 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
669 		amdgpu_move_null(bo, new_mem);
670 		return 0;
671 	}
672 	if ((old_mem->mem_type == TTM_PL_TT &&
673 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
674 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
675 	     new_mem->mem_type == TTM_PL_TT)) {
676 		/* bind is enough */
677 		amdgpu_move_null(bo, new_mem);
678 		return 0;
679 	}
680 
681 	if (!adev->mman.buffer_funcs_enabled)
682 		goto memcpy;
683 
684 	if (old_mem->mem_type == TTM_PL_VRAM &&
685 	    new_mem->mem_type == TTM_PL_SYSTEM) {
686 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
687 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
688 		   new_mem->mem_type == TTM_PL_VRAM) {
689 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
690 	} else {
691 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
692 				     new_mem, old_mem);
693 	}
694 
695 	if (r) {
696 memcpy:
697 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
698 		if (r) {
699 			return r;
700 		}
701 	}
702 
703 	if (bo->type == ttm_bo_type_device &&
704 	    new_mem->mem_type == TTM_PL_VRAM &&
705 	    old_mem->mem_type != TTM_PL_VRAM) {
706 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
707 		 * accesses the BO after it's moved.
708 		 */
709 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
710 	}
711 
712 	/* update statistics */
713 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
714 	return 0;
715 }
716 
717 /**
718  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
719  *
720  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
721  */
722 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
723 {
724 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
725 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
726 	struct drm_mm_node *mm_node = mem->mm_node;
727 
728 	mem->bus.addr = NULL;
729 	mem->bus.offset = 0;
730 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
731 	mem->bus.base = 0;
732 	mem->bus.is_iomem = false;
733 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
734 		return -EINVAL;
735 	switch (mem->mem_type) {
736 	case TTM_PL_SYSTEM:
737 		/* system memory */
738 		return 0;
739 	case TTM_PL_TT:
740 		break;
741 	case TTM_PL_VRAM:
742 		mem->bus.offset = mem->start << PAGE_SHIFT;
743 		/* check if it's visible */
744 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
745 			return -EINVAL;
746 		/* Only physically contiguous buffers apply. In a contiguous
747 		 * buffer, size of the first mm_node would match the number of
748 		 * pages in ttm_mem_reg.
749 		 */
750 		if (adev->mman.aper_base_kaddr &&
751 		    (mm_node->size == mem->num_pages))
752 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
753 					mem->bus.offset;
754 
755 		mem->bus.base = adev->gmc.aper_base;
756 		mem->bus.is_iomem = true;
757 		break;
758 	default:
759 		return -EINVAL;
760 	}
761 	return 0;
762 }
763 
764 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
765 {
766 }
767 
768 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
769 					   unsigned long page_offset)
770 {
771 	struct drm_mm_node *mm;
772 	unsigned long offset = (page_offset << PAGE_SHIFT);
773 
774 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
775 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
776 		(offset >> PAGE_SHIFT);
777 }
778 
779 /*
780  * TTM backend functions.
781  */
782 struct amdgpu_ttm_gup_task_list {
783 	struct list_head	list;
784 	struct task_struct	*task;
785 };
786 
787 struct amdgpu_ttm_tt {
788 	struct ttm_dma_tt	ttm;
789 	u64			offset;
790 	uint64_t		userptr;
791 	struct task_struct	*usertask;
792 	uint32_t		userflags;
793 	spinlock_t              guptasklock;
794 	struct list_head        guptasks;
795 	atomic_t		mmu_invalidations;
796 	uint32_t		last_set_pages;
797 };
798 
799 /**
800  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
801  * pointer to memory
802  *
803  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
804  * This provides a wrapper around the get_user_pages() call to provide
805  * device accessible pages that back user memory.
806  */
807 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
808 {
809 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
810 	struct mm_struct *mm = gtt->usertask->mm;
811 	unsigned int flags = 0;
812 	unsigned pinned = 0;
813 	int r;
814 
815 	if (!mm) /* Happens during process shutdown */
816 		return -ESRCH;
817 
818 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
819 		flags |= FOLL_WRITE;
820 
821 	down_read(&mm->mmap_sem);
822 
823 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
824 		/*
825 		 * check that we only use anonymous memory to prevent problems
826 		 * with writeback
827 		 */
828 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
829 		struct vm_area_struct *vma;
830 
831 		vma = find_vma(mm, gtt->userptr);
832 		if (!vma || vma->vm_file || vma->vm_end < end) {
833 			up_read(&mm->mmap_sem);
834 			return -EPERM;
835 		}
836 	}
837 
838 	/* loop enough times using contiguous pages of memory */
839 	do {
840 		unsigned num_pages = ttm->num_pages - pinned;
841 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
842 		struct page **p = pages + pinned;
843 		struct amdgpu_ttm_gup_task_list guptask;
844 
845 		guptask.task = current;
846 		spin_lock(&gtt->guptasklock);
847 		list_add(&guptask.list, &gtt->guptasks);
848 		spin_unlock(&gtt->guptasklock);
849 
850 		if (mm == current->mm)
851 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
852 		else
853 			r = get_user_pages_remote(gtt->usertask,
854 					mm, userptr, num_pages,
855 					flags, p, NULL, NULL);
856 
857 		spin_lock(&gtt->guptasklock);
858 		list_del(&guptask.list);
859 		spin_unlock(&gtt->guptasklock);
860 
861 		if (r < 0)
862 			goto release_pages;
863 
864 		pinned += r;
865 
866 	} while (pinned < ttm->num_pages);
867 
868 	up_read(&mm->mmap_sem);
869 	return 0;
870 
871 release_pages:
872 	release_pages(pages, pinned);
873 	up_read(&mm->mmap_sem);
874 	return r;
875 }
876 
877 /**
878  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
879  *
880  * Called by amdgpu_cs_list_validate(). This creates the page list
881  * that backs user memory and will ultimately be mapped into the device
882  * address space.
883  */
884 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
885 {
886 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
887 	unsigned i;
888 
889 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
890 	for (i = 0; i < ttm->num_pages; ++i) {
891 		if (ttm->pages[i])
892 			put_page(ttm->pages[i]);
893 
894 		ttm->pages[i] = pages ? pages[i] : NULL;
895 	}
896 }
897 
898 /**
899  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
900  *
901  * Called while unpinning userptr pages
902  */
903 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
904 {
905 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
906 	unsigned i;
907 
908 	for (i = 0; i < ttm->num_pages; ++i) {
909 		struct page *page = ttm->pages[i];
910 
911 		if (!page)
912 			continue;
913 
914 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
915 			set_page_dirty(page);
916 
917 		mark_page_accessed(page);
918 	}
919 }
920 
921 /**
922  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
923  *
924  * Called by amdgpu_ttm_backend_bind()
925  **/
926 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
927 {
928 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
929 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
930 	unsigned nents;
931 	int r;
932 
933 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
934 	enum dma_data_direction direction = write ?
935 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
936 
937 	/* Allocate an SG array and squash pages into it */
938 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
939 				      ttm->num_pages << PAGE_SHIFT,
940 				      GFP_KERNEL);
941 	if (r)
942 		goto release_sg;
943 
944 	/* Map SG to device */
945 	r = -ENOMEM;
946 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
947 	if (nents != ttm->sg->nents)
948 		goto release_sg;
949 
950 	/* convert SG to linear array of pages and dma addresses */
951 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
952 					 gtt->ttm.dma_address, ttm->num_pages);
953 
954 	return 0;
955 
956 release_sg:
957 	kfree(ttm->sg);
958 	return r;
959 }
960 
961 /**
962  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
963  */
964 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
965 {
966 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
967 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
968 
969 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
970 	enum dma_data_direction direction = write ?
971 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
972 
973 	/* double check that we don't free the table twice */
974 	if (!ttm->sg->sgl)
975 		return;
976 
977 	/* unmap the pages mapped to the device */
978 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
979 
980 	/* mark the pages as dirty */
981 	amdgpu_ttm_tt_mark_user_pages(ttm);
982 
983 	sg_free_table(ttm->sg);
984 }
985 
986 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
987 				struct ttm_buffer_object *tbo,
988 				uint64_t flags)
989 {
990 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
991 	struct ttm_tt *ttm = tbo->ttm;
992 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
993 	int r;
994 
995 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
996 		uint64_t page_idx = 1;
997 
998 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
999 				ttm->pages, gtt->ttm.dma_address, flags);
1000 		if (r)
1001 			goto gart_bind_fail;
1002 
1003 		/* Patch mtype of the second part BO */
1004 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
1005 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
1006 
1007 		r = amdgpu_gart_bind(adev,
1008 				gtt->offset + (page_idx << PAGE_SHIFT),
1009 				ttm->num_pages - page_idx,
1010 				&ttm->pages[page_idx],
1011 				&(gtt->ttm.dma_address[page_idx]), flags);
1012 	} else {
1013 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1014 				     ttm->pages, gtt->ttm.dma_address, flags);
1015 	}
1016 
1017 gart_bind_fail:
1018 	if (r)
1019 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1020 			  ttm->num_pages, gtt->offset);
1021 
1022 	return r;
1023 }
1024 
1025 /**
1026  * amdgpu_ttm_backend_bind - Bind GTT memory
1027  *
1028  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1029  * This handles binding GTT memory to the device address space.
1030  */
1031 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1032 				   struct ttm_mem_reg *bo_mem)
1033 {
1034 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1035 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1036 	uint64_t flags;
1037 	int r = 0;
1038 
1039 	if (gtt->userptr) {
1040 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1041 		if (r) {
1042 			DRM_ERROR("failed to pin userptr\n");
1043 			return r;
1044 		}
1045 	}
1046 	if (!ttm->num_pages) {
1047 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1048 		     ttm->num_pages, bo_mem, ttm);
1049 	}
1050 
1051 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1052 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1053 	    bo_mem->mem_type == AMDGPU_PL_OA)
1054 		return -EINVAL;
1055 
1056 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1057 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1058 		return 0;
1059 	}
1060 
1061 	/* compute PTE flags relevant to this BO memory */
1062 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1063 
1064 	/* bind pages into GART page tables */
1065 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1066 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1067 		ttm->pages, gtt->ttm.dma_address, flags);
1068 
1069 	if (r)
1070 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1071 			  ttm->num_pages, gtt->offset);
1072 	return r;
1073 }
1074 
1075 /**
1076  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1077  */
1078 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1079 {
1080 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1081 	struct ttm_operation_ctx ctx = { false, false };
1082 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1083 	struct ttm_mem_reg tmp;
1084 	struct ttm_placement placement;
1085 	struct ttm_place placements;
1086 	uint64_t flags;
1087 	int r;
1088 
1089 	if (bo->mem.mem_type != TTM_PL_TT ||
1090 	    amdgpu_gtt_mgr_has_gart_addr(&bo->mem))
1091 		return 0;
1092 
1093 	/* allocate GTT space */
1094 	tmp = bo->mem;
1095 	tmp.mm_node = NULL;
1096 	placement.num_placement = 1;
1097 	placement.placement = &placements;
1098 	placement.num_busy_placement = 1;
1099 	placement.busy_placement = &placements;
1100 	placements.fpfn = 0;
1101 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1102 	placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1103 		TTM_PL_FLAG_TT;
1104 
1105 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1106 	if (unlikely(r))
1107 		return r;
1108 
1109 	/* compute PTE flags for this buffer object */
1110 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1111 
1112 	/* Bind pages */
1113 	gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1114 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
1115 	if (unlikely(r)) {
1116 		ttm_bo_mem_put(bo, &tmp);
1117 		return r;
1118 	}
1119 
1120 	ttm_bo_mem_put(bo, &bo->mem);
1121 	bo->mem = tmp;
1122 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1123 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1124 
1125 	return 0;
1126 }
1127 
1128 /**
1129  * amdgpu_ttm_recover_gart - Rebind GTT pages
1130  *
1131  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1132  * rebind GTT pages during a GPU reset.
1133  */
1134 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1135 {
1136 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1137 	uint64_t flags;
1138 	int r;
1139 
1140 	if (!tbo->ttm)
1141 		return 0;
1142 
1143 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1144 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1145 
1146 	return r;
1147 }
1148 
1149 /**
1150  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1151  *
1152  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1153  * ttm_tt_destroy().
1154  */
1155 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1156 {
1157 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1158 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1159 	int r;
1160 
1161 	/* if the pages have userptr pinning then clear that first */
1162 	if (gtt->userptr)
1163 		amdgpu_ttm_tt_unpin_userptr(ttm);
1164 
1165 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1166 		return 0;
1167 
1168 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1169 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1170 	if (r)
1171 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1172 			  gtt->ttm.ttm.num_pages, gtt->offset);
1173 	return r;
1174 }
1175 
1176 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1177 {
1178 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1179 
1180 	if (gtt->usertask)
1181 		put_task_struct(gtt->usertask);
1182 
1183 	ttm_dma_tt_fini(&gtt->ttm);
1184 	kfree(gtt);
1185 }
1186 
1187 static struct ttm_backend_func amdgpu_backend_func = {
1188 	.bind = &amdgpu_ttm_backend_bind,
1189 	.unbind = &amdgpu_ttm_backend_unbind,
1190 	.destroy = &amdgpu_ttm_backend_destroy,
1191 };
1192 
1193 /**
1194  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1195  *
1196  * @bo: The buffer object to create a GTT ttm_tt object around
1197  *
1198  * Called by ttm_tt_create().
1199  */
1200 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1201 					   uint32_t page_flags)
1202 {
1203 	struct amdgpu_device *adev;
1204 	struct amdgpu_ttm_tt *gtt;
1205 
1206 	adev = amdgpu_ttm_adev(bo->bdev);
1207 
1208 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1209 	if (gtt == NULL) {
1210 		return NULL;
1211 	}
1212 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1213 
1214 	/* allocate space for the uninitialized page entries */
1215 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1216 		kfree(gtt);
1217 		return NULL;
1218 	}
1219 	return &gtt->ttm.ttm;
1220 }
1221 
1222 /**
1223  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1224  *
1225  * Map the pages of a ttm_tt object to an address space visible
1226  * to the underlying device.
1227  */
1228 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1229 			struct ttm_operation_ctx *ctx)
1230 {
1231 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1232 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1233 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1234 
1235 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1236 	if (gtt && gtt->userptr) {
1237 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1238 		if (!ttm->sg)
1239 			return -ENOMEM;
1240 
1241 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1242 		ttm->state = tt_unbound;
1243 		return 0;
1244 	}
1245 
1246 	if (slave && ttm->sg) {
1247 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1248 						 gtt->ttm.dma_address,
1249 						 ttm->num_pages);
1250 		ttm->state = tt_unbound;
1251 		return 0;
1252 	}
1253 
1254 #ifdef CONFIG_SWIOTLB
1255 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1256 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1257 	}
1258 #endif
1259 
1260 	/* fall back to generic helper to populate the page array
1261 	 * and map them to the device */
1262 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1263 }
1264 
1265 /**
1266  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1267  *
1268  * Unmaps pages of a ttm_tt object from the device address space and
1269  * unpopulates the page array backing it.
1270  */
1271 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_device *adev;
1274 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1275 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1276 
1277 	if (gtt && gtt->userptr) {
1278 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1279 		kfree(ttm->sg);
1280 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1281 		return;
1282 	}
1283 
1284 	if (slave)
1285 		return;
1286 
1287 	adev = amdgpu_ttm_adev(ttm->bdev);
1288 
1289 #ifdef CONFIG_SWIOTLB
1290 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1291 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1292 		return;
1293 	}
1294 #endif
1295 
1296 	/* fall back to generic helper to unmap and unpopulate array */
1297 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1298 }
1299 
1300 /**
1301  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1302  * task
1303  *
1304  * @ttm: The ttm_tt object to bind this userptr object to
1305  * @addr:  The address in the current tasks VM space to use
1306  * @flags: Requirements of userptr object.
1307  *
1308  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1309  * to current task
1310  */
1311 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1312 			      uint32_t flags)
1313 {
1314 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1315 
1316 	if (gtt == NULL)
1317 		return -EINVAL;
1318 
1319 	gtt->userptr = addr;
1320 	gtt->userflags = flags;
1321 
1322 	if (gtt->usertask)
1323 		put_task_struct(gtt->usertask);
1324 	gtt->usertask = current->group_leader;
1325 	get_task_struct(gtt->usertask);
1326 
1327 	spin_lock_init(&gtt->guptasklock);
1328 	INIT_LIST_HEAD(&gtt->guptasks);
1329 	atomic_set(&gtt->mmu_invalidations, 0);
1330 	gtt->last_set_pages = 0;
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1337  */
1338 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1339 {
1340 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1341 
1342 	if (gtt == NULL)
1343 		return NULL;
1344 
1345 	if (gtt->usertask == NULL)
1346 		return NULL;
1347 
1348 	return gtt->usertask->mm;
1349 }
1350 
1351 /**
1352  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1353  * address range for the current task.
1354  *
1355  */
1356 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1357 				  unsigned long end)
1358 {
1359 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1360 	struct amdgpu_ttm_gup_task_list *entry;
1361 	unsigned long size;
1362 
1363 	if (gtt == NULL || !gtt->userptr)
1364 		return false;
1365 
1366 	/* Return false if no part of the ttm_tt object lies within
1367 	 * the range
1368 	 */
1369 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1370 	if (gtt->userptr > end || gtt->userptr + size <= start)
1371 		return false;
1372 
1373 	/* Search the lists of tasks that hold this mapping and see
1374 	 * if current is one of them.  If it is return false.
1375 	 */
1376 	spin_lock(&gtt->guptasklock);
1377 	list_for_each_entry(entry, &gtt->guptasks, list) {
1378 		if (entry->task == current) {
1379 			spin_unlock(&gtt->guptasklock);
1380 			return false;
1381 		}
1382 	}
1383 	spin_unlock(&gtt->guptasklock);
1384 
1385 	atomic_inc(&gtt->mmu_invalidations);
1386 
1387 	return true;
1388 }
1389 
1390 /**
1391  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1392  */
1393 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1394 				       int *last_invalidated)
1395 {
1396 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1397 	int prev_invalidated = *last_invalidated;
1398 
1399 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1400 	return prev_invalidated != *last_invalidated;
1401 }
1402 
1403 /**
1404  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1405  * been invalidated since the last time they've been set?
1406  */
1407 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1408 {
1409 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1410 
1411 	if (gtt == NULL || !gtt->userptr)
1412 		return false;
1413 
1414 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1415 }
1416 
1417 /**
1418  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1419  */
1420 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1421 {
1422 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1423 
1424 	if (gtt == NULL)
1425 		return false;
1426 
1427 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1428 }
1429 
1430 /**
1431  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1432  *
1433  * @ttm: The ttm_tt object to compute the flags for
1434  * @mem: The memory registry backing this ttm_tt object
1435  */
1436 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1437 				 struct ttm_mem_reg *mem)
1438 {
1439 	uint64_t flags = 0;
1440 
1441 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1442 		flags |= AMDGPU_PTE_VALID;
1443 
1444 	if (mem && mem->mem_type == TTM_PL_TT) {
1445 		flags |= AMDGPU_PTE_SYSTEM;
1446 
1447 		if (ttm->caching_state == tt_cached)
1448 			flags |= AMDGPU_PTE_SNOOPED;
1449 	}
1450 
1451 	flags |= adev->gart.gart_pte_flags;
1452 	flags |= AMDGPU_PTE_READABLE;
1453 
1454 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1455 		flags |= AMDGPU_PTE_WRITEABLE;
1456 
1457 	return flags;
1458 }
1459 
1460 /**
1461  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1462  * object.
1463  *
1464  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1465  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1466  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1467  * used to clean out a memory space.
1468  */
1469 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1470 					    const struct ttm_place *place)
1471 {
1472 	unsigned long num_pages = bo->mem.num_pages;
1473 	struct drm_mm_node *node = bo->mem.mm_node;
1474 	struct reservation_object_list *flist;
1475 	struct dma_fence *f;
1476 	int i;
1477 
1478 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1479 	 * If true, then return false as any KFD process needs all its BOs to
1480 	 * be resident to run successfully
1481 	 */
1482 	flist = reservation_object_get_list(bo->resv);
1483 	if (flist) {
1484 		for (i = 0; i < flist->shared_count; ++i) {
1485 			f = rcu_dereference_protected(flist->shared[i],
1486 				reservation_object_held(bo->resv));
1487 			if (amdkfd_fence_check_mm(f, current->mm))
1488 				return false;
1489 		}
1490 	}
1491 
1492 	switch (bo->mem.mem_type) {
1493 	case TTM_PL_TT:
1494 		return true;
1495 
1496 	case TTM_PL_VRAM:
1497 		/* Check each drm MM node individually */
1498 		while (num_pages) {
1499 			if (place->fpfn < (node->start + node->size) &&
1500 			    !(place->lpfn && place->lpfn <= node->start))
1501 				return true;
1502 
1503 			num_pages -= node->size;
1504 			++node;
1505 		}
1506 		return false;
1507 
1508 	default:
1509 		break;
1510 	}
1511 
1512 	return ttm_bo_eviction_valuable(bo, place);
1513 }
1514 
1515 /**
1516  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1517  *
1518  * @bo:  The buffer object to read/write
1519  * @offset:  Offset into buffer object
1520  * @buf:  Secondary buffer to write/read from
1521  * @len: Length in bytes of access
1522  * @write:  true if writing
1523  *
1524  * This is used to access VRAM that backs a buffer object via MMIO
1525  * access for debugging purposes.
1526  */
1527 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1528 				    unsigned long offset,
1529 				    void *buf, int len, int write)
1530 {
1531 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1532 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1533 	struct drm_mm_node *nodes;
1534 	uint32_t value = 0;
1535 	int ret = 0;
1536 	uint64_t pos;
1537 	unsigned long flags;
1538 
1539 	if (bo->mem.mem_type != TTM_PL_VRAM)
1540 		return -EIO;
1541 
1542 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1543 	pos = (nodes->start << PAGE_SHIFT) + offset;
1544 
1545 	while (len && pos < adev->gmc.mc_vram_size) {
1546 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1547 		uint32_t bytes = 4 - (pos & 3);
1548 		uint32_t shift = (pos & 3) * 8;
1549 		uint32_t mask = 0xffffffff << shift;
1550 
1551 		if (len < bytes) {
1552 			mask &= 0xffffffff >> (bytes - len) * 8;
1553 			bytes = len;
1554 		}
1555 
1556 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1557 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1558 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1559 		if (!write || mask != 0xffffffff)
1560 			value = RREG32_NO_KIQ(mmMM_DATA);
1561 		if (write) {
1562 			value &= ~mask;
1563 			value |= (*(uint32_t *)buf << shift) & mask;
1564 			WREG32_NO_KIQ(mmMM_DATA, value);
1565 		}
1566 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1567 		if (!write) {
1568 			value = (value & mask) >> shift;
1569 			memcpy(buf, &value, bytes);
1570 		}
1571 
1572 		ret += bytes;
1573 		buf = (uint8_t *)buf + bytes;
1574 		pos += bytes;
1575 		len -= bytes;
1576 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1577 			++nodes;
1578 			pos = (nodes->start << PAGE_SHIFT);
1579 		}
1580 	}
1581 
1582 	return ret;
1583 }
1584 
1585 static struct ttm_bo_driver amdgpu_bo_driver = {
1586 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1587 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1588 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1589 	.invalidate_caches = &amdgpu_invalidate_caches,
1590 	.init_mem_type = &amdgpu_init_mem_type,
1591 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1592 	.evict_flags = &amdgpu_evict_flags,
1593 	.move = &amdgpu_bo_move,
1594 	.verify_access = &amdgpu_verify_access,
1595 	.move_notify = &amdgpu_bo_move_notify,
1596 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1597 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1598 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1599 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1600 	.access_memory = &amdgpu_ttm_access_memory
1601 };
1602 
1603 /*
1604  * Firmware Reservation functions
1605  */
1606 /**
1607  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1608  *
1609  * @adev: amdgpu_device pointer
1610  *
1611  * free fw reserved vram if it has been reserved.
1612  */
1613 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1614 {
1615 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1616 		NULL, &adev->fw_vram_usage.va);
1617 }
1618 
1619 /**
1620  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1621  *
1622  * @adev: amdgpu_device pointer
1623  *
1624  * create bo vram reservation from fw.
1625  */
1626 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1627 {
1628 	struct ttm_operation_ctx ctx = { false, false };
1629 	struct amdgpu_bo_param bp;
1630 	int r = 0;
1631 	int i;
1632 	u64 vram_size = adev->gmc.visible_vram_size;
1633 	u64 offset = adev->fw_vram_usage.start_offset;
1634 	u64 size = adev->fw_vram_usage.size;
1635 	struct amdgpu_bo *bo;
1636 
1637 	memset(&bp, 0, sizeof(bp));
1638 	bp.size = adev->fw_vram_usage.size;
1639 	bp.byte_align = PAGE_SIZE;
1640 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1641 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1642 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1643 	bp.type = ttm_bo_type_kernel;
1644 	bp.resv = NULL;
1645 	adev->fw_vram_usage.va = NULL;
1646 	adev->fw_vram_usage.reserved_bo = NULL;
1647 
1648 	if (adev->fw_vram_usage.size > 0 &&
1649 		adev->fw_vram_usage.size <= vram_size) {
1650 
1651 		r = amdgpu_bo_create(adev, &bp,
1652 				     &adev->fw_vram_usage.reserved_bo);
1653 		if (r)
1654 			goto error_create;
1655 
1656 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1657 		if (r)
1658 			goto error_reserve;
1659 
1660 		/* remove the original mem node and create a new one at the
1661 		 * request position
1662 		 */
1663 		bo = adev->fw_vram_usage.reserved_bo;
1664 		offset = ALIGN(offset, PAGE_SIZE);
1665 		for (i = 0; i < bo->placement.num_placement; ++i) {
1666 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1667 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1668 		}
1669 
1670 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1671 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1672 				     &bo->tbo.mem, &ctx);
1673 		if (r)
1674 			goto error_pin;
1675 
1676 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1677 			AMDGPU_GEM_DOMAIN_VRAM,
1678 			adev->fw_vram_usage.start_offset,
1679 			(adev->fw_vram_usage.start_offset +
1680 			adev->fw_vram_usage.size));
1681 		if (r)
1682 			goto error_pin;
1683 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1684 			&adev->fw_vram_usage.va);
1685 		if (r)
1686 			goto error_kmap;
1687 
1688 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1689 	}
1690 	return r;
1691 
1692 error_kmap:
1693 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1694 error_pin:
1695 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1696 error_reserve:
1697 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1698 error_create:
1699 	adev->fw_vram_usage.va = NULL;
1700 	adev->fw_vram_usage.reserved_bo = NULL;
1701 	return r;
1702 }
1703 /**
1704  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1705  * gtt/vram related fields.
1706  *
1707  * This initializes all of the memory space pools that the TTM layer
1708  * will need such as the GTT space (system memory mapped to the device),
1709  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1710  * can be mapped per VMID.
1711  */
1712 int amdgpu_ttm_init(struct amdgpu_device *adev)
1713 {
1714 	uint64_t gtt_size;
1715 	int r;
1716 	u64 vis_vram_limit;
1717 
1718 	/* initialize global references for vram/gtt */
1719 	r = amdgpu_ttm_global_init(adev);
1720 	if (r) {
1721 		return r;
1722 	}
1723 	/* No others user of address space so set it to 0 */
1724 	r = ttm_bo_device_init(&adev->mman.bdev,
1725 			       adev->mman.bo_global_ref.ref.object,
1726 			       &amdgpu_bo_driver,
1727 			       adev->ddev->anon_inode->i_mapping,
1728 			       DRM_FILE_PAGE_OFFSET,
1729 			       adev->need_dma32);
1730 	if (r) {
1731 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1732 		return r;
1733 	}
1734 	adev->mman.initialized = true;
1735 
1736 	/* We opt to avoid OOM on system pages allocations */
1737 	adev->mman.bdev.no_retry = true;
1738 
1739 	/* Initialize VRAM pool with all of VRAM divided into pages */
1740 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1741 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1742 	if (r) {
1743 		DRM_ERROR("Failed initializing VRAM heap.\n");
1744 		return r;
1745 	}
1746 
1747 	/* Reduce size of CPU-visible VRAM if requested */
1748 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1749 	if (amdgpu_vis_vram_limit > 0 &&
1750 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1751 		adev->gmc.visible_vram_size = vis_vram_limit;
1752 
1753 	/* Change the size here instead of the init above so only lpfn is affected */
1754 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1755 #ifdef CONFIG_64BIT
1756 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1757 						adev->gmc.visible_vram_size);
1758 #endif
1759 
1760 	/*
1761 	 *The reserved vram for firmware must be pinned to the specified
1762 	 *place on the VRAM, so reserve it early.
1763 	 */
1764 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1765 	if (r) {
1766 		return r;
1767 	}
1768 
1769 	/* allocate memory as required for VGA
1770 	 * This is used for VGA emulation and pre-OS scanout buffers to
1771 	 * avoid display artifacts while transitioning between pre-OS
1772 	 * and driver.  */
1773 	if (adev->gmc.stolen_size) {
1774 		r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1775 					    AMDGPU_GEM_DOMAIN_VRAM,
1776 					    &adev->stolen_vga_memory,
1777 					    NULL, NULL);
1778 		if (r)
1779 			return r;
1780 	}
1781 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1782 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1783 
1784 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1785 	 * or whatever the user passed on module init */
1786 	if (amdgpu_gtt_size == -1) {
1787 		struct sysinfo si;
1788 
1789 		si_meminfo(&si);
1790 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1791 			       adev->gmc.mc_vram_size),
1792 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1793 	}
1794 	else
1795 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1796 
1797 	/* Initialize GTT memory pool */
1798 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1799 	if (r) {
1800 		DRM_ERROR("Failed initializing GTT heap.\n");
1801 		return r;
1802 	}
1803 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1804 		 (unsigned)(gtt_size / (1024 * 1024)));
1805 
1806 	/* Initialize various on-chip memory pools */
1807 	adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT;
1808 	adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT;
1809 	adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT;
1810 	adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT;
1811 	adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT;
1812 	adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT;
1813 	adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT;
1814 	adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT;
1815 	adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT;
1816 	/* GDS Memory */
1817 	if (adev->gds.mem.total_size) {
1818 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1819 				   adev->gds.mem.total_size >> PAGE_SHIFT);
1820 		if (r) {
1821 			DRM_ERROR("Failed initializing GDS heap.\n");
1822 			return r;
1823 		}
1824 	}
1825 
1826 	/* GWS */
1827 	if (adev->gds.gws.total_size) {
1828 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1829 				   adev->gds.gws.total_size >> PAGE_SHIFT);
1830 		if (r) {
1831 			DRM_ERROR("Failed initializing gws heap.\n");
1832 			return r;
1833 		}
1834 	}
1835 
1836 	/* OA */
1837 	if (adev->gds.oa.total_size) {
1838 		r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1839 				   adev->gds.oa.total_size >> PAGE_SHIFT);
1840 		if (r) {
1841 			DRM_ERROR("Failed initializing oa heap.\n");
1842 			return r;
1843 		}
1844 	}
1845 
1846 	/* Register debugfs entries for amdgpu_ttm */
1847 	r = amdgpu_ttm_debugfs_init(adev);
1848 	if (r) {
1849 		DRM_ERROR("Failed to init debugfs\n");
1850 		return r;
1851 	}
1852 	return 0;
1853 }
1854 
1855 /**
1856  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1857  */
1858 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1859 {
1860 	/* return the VGA stolen memory (if any) back to VRAM */
1861 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1862 }
1863 
1864 /**
1865  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1866  */
1867 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1868 {
1869 	if (!adev->mman.initialized)
1870 		return;
1871 
1872 	amdgpu_ttm_debugfs_fini(adev);
1873 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1874 	if (adev->mman.aper_base_kaddr)
1875 		iounmap(adev->mman.aper_base_kaddr);
1876 	adev->mman.aper_base_kaddr = NULL;
1877 
1878 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1879 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1880 	if (adev->gds.mem.total_size)
1881 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1882 	if (adev->gds.gws.total_size)
1883 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1884 	if (adev->gds.oa.total_size)
1885 		ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1886 	ttm_bo_device_release(&adev->mman.bdev);
1887 	amdgpu_ttm_global_fini(adev);
1888 	adev->mman.initialized = false;
1889 	DRM_INFO("amdgpu: ttm finalized\n");
1890 }
1891 
1892 /**
1893  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1894  *
1895  * @adev: amdgpu_device pointer
1896  * @enable: true when we can use buffer functions.
1897  *
1898  * Enable/disable use of buffer functions during suspend/resume. This should
1899  * only be called at bootup or when userspace isn't running.
1900  */
1901 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1902 {
1903 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1904 	uint64_t size;
1905 	int r;
1906 
1907 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1908 	    adev->mman.buffer_funcs_enabled == enable)
1909 		return;
1910 
1911 	if (enable) {
1912 		struct amdgpu_ring *ring;
1913 		struct drm_sched_rq *rq;
1914 
1915 		ring = adev->mman.buffer_funcs_ring;
1916 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1917 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1918 		if (r) {
1919 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1920 				  r);
1921 			return;
1922 		}
1923 	} else {
1924 		drm_sched_entity_destroy(&adev->mman.entity);
1925 		dma_fence_put(man->move);
1926 		man->move = NULL;
1927 	}
1928 
1929 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1930 	if (enable)
1931 		size = adev->gmc.real_vram_size;
1932 	else
1933 		size = adev->gmc.visible_vram_size;
1934 	man->size = size >> PAGE_SHIFT;
1935 	adev->mman.buffer_funcs_enabled = enable;
1936 }
1937 
1938 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1939 {
1940 	struct drm_file *file_priv;
1941 	struct amdgpu_device *adev;
1942 
1943 	if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET))
1944 		return -EINVAL;
1945 
1946 	file_priv = filp->private_data;
1947 	adev = file_priv->minor->dev->dev_private;
1948 	if (adev == NULL)
1949 		return -EINVAL;
1950 
1951 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1952 }
1953 
1954 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1955 			     struct ttm_mem_reg *mem, unsigned num_pages,
1956 			     uint64_t offset, unsigned window,
1957 			     struct amdgpu_ring *ring,
1958 			     uint64_t *addr)
1959 {
1960 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1961 	struct amdgpu_device *adev = ring->adev;
1962 	struct ttm_tt *ttm = bo->ttm;
1963 	struct amdgpu_job *job;
1964 	unsigned num_dw, num_bytes;
1965 	dma_addr_t *dma_address;
1966 	struct dma_fence *fence;
1967 	uint64_t src_addr, dst_addr;
1968 	uint64_t flags;
1969 	int r;
1970 
1971 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1972 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1973 
1974 	*addr = adev->gmc.gart_start;
1975 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1976 		AMDGPU_GPU_PAGE_SIZE;
1977 
1978 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1979 	while (num_dw & 0x7)
1980 		num_dw++;
1981 
1982 	num_bytes = num_pages * 8;
1983 
1984 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1985 	if (r)
1986 		return r;
1987 
1988 	src_addr = num_dw * 4;
1989 	src_addr += job->ibs[0].gpu_addr;
1990 
1991 	dst_addr = adev->gart.table_addr;
1992 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1993 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1994 				dst_addr, num_bytes);
1995 
1996 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1997 	WARN_ON(job->ibs[0].length_dw > num_dw);
1998 
1999 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
2000 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2001 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2002 			    &job->ibs[0].ptr[num_dw]);
2003 	if (r)
2004 		goto error_free;
2005 
2006 	r = amdgpu_job_submit(job, &adev->mman.entity,
2007 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2008 	if (r)
2009 		goto error_free;
2010 
2011 	dma_fence_put(fence);
2012 
2013 	return r;
2014 
2015 error_free:
2016 	amdgpu_job_free(job);
2017 	return r;
2018 }
2019 
2020 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2021 		       uint64_t dst_offset, uint32_t byte_count,
2022 		       struct reservation_object *resv,
2023 		       struct dma_fence **fence, bool direct_submit,
2024 		       bool vm_needs_flush)
2025 {
2026 	struct amdgpu_device *adev = ring->adev;
2027 	struct amdgpu_job *job;
2028 
2029 	uint32_t max_bytes;
2030 	unsigned num_loops, num_dw;
2031 	unsigned i;
2032 	int r;
2033 
2034 	if (direct_submit && !ring->ready) {
2035 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2036 		return -EINVAL;
2037 	}
2038 
2039 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2040 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2041 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2042 
2043 	/* for IB padding */
2044 	while (num_dw & 0x7)
2045 		num_dw++;
2046 
2047 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2048 	if (r)
2049 		return r;
2050 
2051 	job->vm_needs_flush = vm_needs_flush;
2052 	if (resv) {
2053 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2054 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2055 				     false);
2056 		if (r) {
2057 			DRM_ERROR("sync failed (%d).\n", r);
2058 			goto error_free;
2059 		}
2060 	}
2061 
2062 	for (i = 0; i < num_loops; i++) {
2063 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2064 
2065 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2066 					dst_offset, cur_size_in_bytes);
2067 
2068 		src_offset += cur_size_in_bytes;
2069 		dst_offset += cur_size_in_bytes;
2070 		byte_count -= cur_size_in_bytes;
2071 	}
2072 
2073 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2074 	WARN_ON(job->ibs[0].length_dw > num_dw);
2075 	if (direct_submit)
2076 		r = amdgpu_job_submit_direct(job, ring, fence);
2077 	else
2078 		r = amdgpu_job_submit(job, &adev->mman.entity,
2079 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2080 	if (r)
2081 		goto error_free;
2082 
2083 	return r;
2084 
2085 error_free:
2086 	amdgpu_job_free(job);
2087 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2088 	return r;
2089 }
2090 
2091 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2092 		       uint32_t src_data,
2093 		       struct reservation_object *resv,
2094 		       struct dma_fence **fence)
2095 {
2096 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2097 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2098 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2099 
2100 	struct drm_mm_node *mm_node;
2101 	unsigned long num_pages;
2102 	unsigned int num_loops, num_dw;
2103 
2104 	struct amdgpu_job *job;
2105 	int r;
2106 
2107 	if (!adev->mman.buffer_funcs_enabled) {
2108 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2109 		return -EINVAL;
2110 	}
2111 
2112 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2113 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2114 		if (r)
2115 			return r;
2116 	}
2117 
2118 	num_pages = bo->tbo.num_pages;
2119 	mm_node = bo->tbo.mem.mm_node;
2120 	num_loops = 0;
2121 	while (num_pages) {
2122 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2123 
2124 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2125 		num_pages -= mm_node->size;
2126 		++mm_node;
2127 	}
2128 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2129 
2130 	/* for IB padding */
2131 	num_dw += 64;
2132 
2133 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2134 	if (r)
2135 		return r;
2136 
2137 	if (resv) {
2138 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2139 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2140 		if (r) {
2141 			DRM_ERROR("sync failed (%d).\n", r);
2142 			goto error_free;
2143 		}
2144 	}
2145 
2146 	num_pages = bo->tbo.num_pages;
2147 	mm_node = bo->tbo.mem.mm_node;
2148 
2149 	while (num_pages) {
2150 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2151 		uint64_t dst_addr;
2152 
2153 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2154 		while (byte_count) {
2155 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2156 
2157 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2158 						dst_addr, cur_size_in_bytes);
2159 
2160 			dst_addr += cur_size_in_bytes;
2161 			byte_count -= cur_size_in_bytes;
2162 		}
2163 
2164 		num_pages -= mm_node->size;
2165 		++mm_node;
2166 	}
2167 
2168 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2169 	WARN_ON(job->ibs[0].length_dw > num_dw);
2170 	r = amdgpu_job_submit(job, &adev->mman.entity,
2171 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2172 	if (r)
2173 		goto error_free;
2174 
2175 	return 0;
2176 
2177 error_free:
2178 	amdgpu_job_free(job);
2179 	return r;
2180 }
2181 
2182 #if defined(CONFIG_DEBUG_FS)
2183 
2184 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2185 {
2186 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2187 	unsigned ttm_pl = *(int *)node->info_ent->data;
2188 	struct drm_device *dev = node->minor->dev;
2189 	struct amdgpu_device *adev = dev->dev_private;
2190 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2191 	struct drm_printer p = drm_seq_file_printer(m);
2192 
2193 	man->func->debug(man, &p);
2194 	return 0;
2195 }
2196 
2197 static int ttm_pl_vram = TTM_PL_VRAM;
2198 static int ttm_pl_tt = TTM_PL_TT;
2199 
2200 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2201 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram},
2202 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt},
2203 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2204 #ifdef CONFIG_SWIOTLB
2205 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2206 #endif
2207 };
2208 
2209 /**
2210  * amdgpu_ttm_vram_read - Linear read access to VRAM
2211  *
2212  * Accesses VRAM via MMIO for debugging purposes.
2213  */
2214 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2215 				    size_t size, loff_t *pos)
2216 {
2217 	struct amdgpu_device *adev = file_inode(f)->i_private;
2218 	ssize_t result = 0;
2219 	int r;
2220 
2221 	if (size & 0x3 || *pos & 0x3)
2222 		return -EINVAL;
2223 
2224 	if (*pos >= adev->gmc.mc_vram_size)
2225 		return -ENXIO;
2226 
2227 	while (size) {
2228 		unsigned long flags;
2229 		uint32_t value;
2230 
2231 		if (*pos >= adev->gmc.mc_vram_size)
2232 			return result;
2233 
2234 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2235 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2236 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2237 		value = RREG32_NO_KIQ(mmMM_DATA);
2238 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2239 
2240 		r = put_user(value, (uint32_t *)buf);
2241 		if (r)
2242 			return r;
2243 
2244 		result += 4;
2245 		buf += 4;
2246 		*pos += 4;
2247 		size -= 4;
2248 	}
2249 
2250 	return result;
2251 }
2252 
2253 /**
2254  * amdgpu_ttm_vram_write - Linear write access to VRAM
2255  *
2256  * Accesses VRAM via MMIO for debugging purposes.
2257  */
2258 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2259 				    size_t size, loff_t *pos)
2260 {
2261 	struct amdgpu_device *adev = file_inode(f)->i_private;
2262 	ssize_t result = 0;
2263 	int r;
2264 
2265 	if (size & 0x3 || *pos & 0x3)
2266 		return -EINVAL;
2267 
2268 	if (*pos >= adev->gmc.mc_vram_size)
2269 		return -ENXIO;
2270 
2271 	while (size) {
2272 		unsigned long flags;
2273 		uint32_t value;
2274 
2275 		if (*pos >= adev->gmc.mc_vram_size)
2276 			return result;
2277 
2278 		r = get_user(value, (uint32_t *)buf);
2279 		if (r)
2280 			return r;
2281 
2282 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2283 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2284 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2285 		WREG32_NO_KIQ(mmMM_DATA, value);
2286 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2287 
2288 		result += 4;
2289 		buf += 4;
2290 		*pos += 4;
2291 		size -= 4;
2292 	}
2293 
2294 	return result;
2295 }
2296 
2297 static const struct file_operations amdgpu_ttm_vram_fops = {
2298 	.owner = THIS_MODULE,
2299 	.read = amdgpu_ttm_vram_read,
2300 	.write = amdgpu_ttm_vram_write,
2301 	.llseek = default_llseek,
2302 };
2303 
2304 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2305 
2306 /**
2307  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2308  */
2309 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2310 				   size_t size, loff_t *pos)
2311 {
2312 	struct amdgpu_device *adev = file_inode(f)->i_private;
2313 	ssize_t result = 0;
2314 	int r;
2315 
2316 	while (size) {
2317 		loff_t p = *pos / PAGE_SIZE;
2318 		unsigned off = *pos & ~PAGE_MASK;
2319 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2320 		struct page *page;
2321 		void *ptr;
2322 
2323 		if (p >= adev->gart.num_cpu_pages)
2324 			return result;
2325 
2326 		page = adev->gart.pages[p];
2327 		if (page) {
2328 			ptr = kmap(page);
2329 			ptr += off;
2330 
2331 			r = copy_to_user(buf, ptr, cur_size);
2332 			kunmap(adev->gart.pages[p]);
2333 		} else
2334 			r = clear_user(buf, cur_size);
2335 
2336 		if (r)
2337 			return -EFAULT;
2338 
2339 		result += cur_size;
2340 		buf += cur_size;
2341 		*pos += cur_size;
2342 		size -= cur_size;
2343 	}
2344 
2345 	return result;
2346 }
2347 
2348 static const struct file_operations amdgpu_ttm_gtt_fops = {
2349 	.owner = THIS_MODULE,
2350 	.read = amdgpu_ttm_gtt_read,
2351 	.llseek = default_llseek
2352 };
2353 
2354 #endif
2355 
2356 /**
2357  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2358  *
2359  * This function is used to read memory that has been mapped to the
2360  * GPU and the known addresses are not physical addresses but instead
2361  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2362  */
2363 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2364 				 size_t size, loff_t *pos)
2365 {
2366 	struct amdgpu_device *adev = file_inode(f)->i_private;
2367 	struct iommu_domain *dom;
2368 	ssize_t result = 0;
2369 	int r;
2370 
2371 	/* retrieve the IOMMU domain if any for this device */
2372 	dom = iommu_get_domain_for_dev(adev->dev);
2373 
2374 	while (size) {
2375 		phys_addr_t addr = *pos & PAGE_MASK;
2376 		loff_t off = *pos & ~PAGE_MASK;
2377 		size_t bytes = PAGE_SIZE - off;
2378 		unsigned long pfn;
2379 		struct page *p;
2380 		void *ptr;
2381 
2382 		bytes = bytes < size ? bytes : size;
2383 
2384 		/* Translate the bus address to a physical address.  If
2385 		 * the domain is NULL it means there is no IOMMU active
2386 		 * and the address translation is the identity
2387 		 */
2388 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2389 
2390 		pfn = addr >> PAGE_SHIFT;
2391 		if (!pfn_valid(pfn))
2392 			return -EPERM;
2393 
2394 		p = pfn_to_page(pfn);
2395 		if (p->mapping != adev->mman.bdev.dev_mapping)
2396 			return -EPERM;
2397 
2398 		ptr = kmap(p);
2399 		r = copy_to_user(buf, ptr + off, bytes);
2400 		kunmap(p);
2401 		if (r)
2402 			return -EFAULT;
2403 
2404 		size -= bytes;
2405 		*pos += bytes;
2406 		result += bytes;
2407 	}
2408 
2409 	return result;
2410 }
2411 
2412 /**
2413  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2414  *
2415  * This function is used to write memory that has been mapped to the
2416  * GPU and the known addresses are not physical addresses but instead
2417  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2418  */
2419 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2420 				 size_t size, loff_t *pos)
2421 {
2422 	struct amdgpu_device *adev = file_inode(f)->i_private;
2423 	struct iommu_domain *dom;
2424 	ssize_t result = 0;
2425 	int r;
2426 
2427 	dom = iommu_get_domain_for_dev(adev->dev);
2428 
2429 	while (size) {
2430 		phys_addr_t addr = *pos & PAGE_MASK;
2431 		loff_t off = *pos & ~PAGE_MASK;
2432 		size_t bytes = PAGE_SIZE - off;
2433 		unsigned long pfn;
2434 		struct page *p;
2435 		void *ptr;
2436 
2437 		bytes = bytes < size ? bytes : size;
2438 
2439 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2440 
2441 		pfn = addr >> PAGE_SHIFT;
2442 		if (!pfn_valid(pfn))
2443 			return -EPERM;
2444 
2445 		p = pfn_to_page(pfn);
2446 		if (p->mapping != adev->mman.bdev.dev_mapping)
2447 			return -EPERM;
2448 
2449 		ptr = kmap(p);
2450 		r = copy_from_user(ptr + off, buf, bytes);
2451 		kunmap(p);
2452 		if (r)
2453 			return -EFAULT;
2454 
2455 		size -= bytes;
2456 		*pos += bytes;
2457 		result += bytes;
2458 	}
2459 
2460 	return result;
2461 }
2462 
2463 static const struct file_operations amdgpu_ttm_iomem_fops = {
2464 	.owner = THIS_MODULE,
2465 	.read = amdgpu_iomem_read,
2466 	.write = amdgpu_iomem_write,
2467 	.llseek = default_llseek
2468 };
2469 
2470 static const struct {
2471 	char *name;
2472 	const struct file_operations *fops;
2473 	int domain;
2474 } ttm_debugfs_entries[] = {
2475 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2476 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2477 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2478 #endif
2479 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2480 };
2481 
2482 #endif
2483 
2484 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2485 {
2486 #if defined(CONFIG_DEBUG_FS)
2487 	unsigned count;
2488 
2489 	struct drm_minor *minor = adev->ddev->primary;
2490 	struct dentry *ent, *root = minor->debugfs_root;
2491 
2492 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2493 		ent = debugfs_create_file(
2494 				ttm_debugfs_entries[count].name,
2495 				S_IFREG | S_IRUGO, root,
2496 				adev,
2497 				ttm_debugfs_entries[count].fops);
2498 		if (IS_ERR(ent))
2499 			return PTR_ERR(ent);
2500 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2501 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2502 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2503 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2504 		adev->mman.debugfs_entries[count] = ent;
2505 	}
2506 
2507 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2508 
2509 #ifdef CONFIG_SWIOTLB
2510 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2511 		--count;
2512 #endif
2513 
2514 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2515 #else
2516 	return 0;
2517 #endif
2518 }
2519 
2520 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2521 {
2522 #if defined(CONFIG_DEBUG_FS)
2523 	unsigned i;
2524 
2525 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2526 		debugfs_remove(adev->mman.debugfs_entries[i]);
2527 #endif
2528 }
2529