1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_range_manager.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_atomfirmware.h" 60 #include "amdgpu_res_cursor.h" 61 #include "bif/bif_4_1_d.h" 62 63 MODULE_IMPORT_NS(DMA_BUF); 64 65 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 66 67 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 68 struct ttm_tt *ttm, 69 struct ttm_resource *bo_mem); 70 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 71 struct ttm_tt *ttm); 72 73 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 74 unsigned int type, 75 uint64_t size_in_page) 76 { 77 return ttm_range_man_init(&adev->mman.bdev, type, 78 false, size_in_page); 79 } 80 81 /** 82 * amdgpu_evict_flags - Compute placement flags 83 * 84 * @bo: The buffer object to evict 85 * @placement: Possible destination(s) for evicted BO 86 * 87 * Fill in placement data when ttm_bo_evict() is called 88 */ 89 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 90 struct ttm_placement *placement) 91 { 92 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 93 struct amdgpu_bo *abo; 94 static const struct ttm_place placements = { 95 .fpfn = 0, 96 .lpfn = 0, 97 .mem_type = TTM_PL_SYSTEM, 98 .flags = 0 99 }; 100 101 /* Don't handle scatter gather BOs */ 102 if (bo->type == ttm_bo_type_sg) { 103 placement->num_placement = 0; 104 placement->num_busy_placement = 0; 105 return; 106 } 107 108 /* Object isn't an AMDGPU object so ignore */ 109 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 110 placement->placement = &placements; 111 placement->busy_placement = &placements; 112 placement->num_placement = 1; 113 placement->num_busy_placement = 1; 114 return; 115 } 116 117 abo = ttm_to_amdgpu_bo(bo); 118 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) { 119 struct dma_fence *fence; 120 struct dma_resv *resv = &bo->base._resv; 121 122 rcu_read_lock(); 123 fence = rcu_dereference(resv->fence_excl); 124 if (fence && !fence->ops->signaled) 125 dma_fence_enable_sw_signaling(fence); 126 127 placement->num_placement = 0; 128 placement->num_busy_placement = 0; 129 rcu_read_unlock(); 130 return; 131 } 132 133 switch (bo->resource->mem_type) { 134 case AMDGPU_PL_GDS: 135 case AMDGPU_PL_GWS: 136 case AMDGPU_PL_OA: 137 placement->num_placement = 0; 138 placement->num_busy_placement = 0; 139 return; 140 141 case TTM_PL_VRAM: 142 if (!adev->mman.buffer_funcs_enabled) { 143 /* Move to system memory */ 144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 145 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 146 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 147 amdgpu_bo_in_cpu_visible_vram(abo)) { 148 149 /* Try evicting to the CPU inaccessible part of VRAM 150 * first, but only set GTT as busy placement, so this 151 * BO will be evicted to GTT rather than causing other 152 * BOs to be evicted from VRAM 153 */ 154 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 155 AMDGPU_GEM_DOMAIN_GTT | 156 AMDGPU_GEM_DOMAIN_CPU); 157 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 158 abo->placements[0].lpfn = 0; 159 abo->placement.busy_placement = &abo->placements[1]; 160 abo->placement.num_busy_placement = 1; 161 } else { 162 /* Move to GTT memory */ 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 164 AMDGPU_GEM_DOMAIN_CPU); 165 } 166 break; 167 case TTM_PL_TT: 168 case AMDGPU_PL_PREEMPT: 169 default: 170 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 171 break; 172 } 173 *placement = abo->placement; 174 } 175 176 /** 177 * amdgpu_ttm_map_buffer - Map memory into the GART windows 178 * @bo: buffer object to map 179 * @mem: memory object to map 180 * @mm_cur: range to map 181 * @num_pages: number of pages to map 182 * @window: which GART window to use 183 * @ring: DMA ring to use for the copy 184 * @tmz: if we should setup a TMZ enabled mapping 185 * @addr: resulting address inside the MC address space 186 * 187 * Setup one of the GART windows to access a specific piece of memory or return 188 * the physical address for local memory. 189 */ 190 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 191 struct ttm_resource *mem, 192 struct amdgpu_res_cursor *mm_cur, 193 unsigned num_pages, unsigned window, 194 struct amdgpu_ring *ring, bool tmz, 195 uint64_t *addr) 196 { 197 struct amdgpu_device *adev = ring->adev; 198 struct amdgpu_job *job; 199 unsigned num_dw, num_bytes; 200 struct dma_fence *fence; 201 uint64_t src_addr, dst_addr; 202 void *cpu_addr; 203 uint64_t flags; 204 unsigned int i; 205 int r; 206 207 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 208 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 209 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT); 210 211 /* Map only what can't be accessed directly */ 212 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 213 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 214 mm_cur->start; 215 return 0; 216 } 217 218 *addr = adev->gmc.gart_start; 219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 220 AMDGPU_GPU_PAGE_SIZE; 221 *addr += mm_cur->start & ~PAGE_MASK; 222 223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 225 226 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 227 AMDGPU_IB_POOL_DELAYED, &job); 228 if (r) 229 return r; 230 231 src_addr = num_dw * 4; 232 src_addr += job->ibs[0].gpu_addr; 233 234 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 235 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 236 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 237 dst_addr, num_bytes, false); 238 239 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 240 WARN_ON(job->ibs[0].length_dw > num_dw); 241 242 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 243 if (tmz) 244 flags |= AMDGPU_PTE_TMZ; 245 246 cpu_addr = &job->ibs[0].ptr[num_dw]; 247 248 if (mem->mem_type == TTM_PL_TT) { 249 dma_addr_t *dma_addr; 250 251 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 252 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, 253 cpu_addr); 254 if (r) 255 goto error_free; 256 } else { 257 dma_addr_t dma_address; 258 259 dma_address = mm_cur->start; 260 dma_address += adev->vm_manager.vram_base_offset; 261 262 for (i = 0; i < num_pages; ++i) { 263 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 264 &dma_address, flags, cpu_addr); 265 if (r) 266 goto error_free; 267 268 dma_address += PAGE_SIZE; 269 } 270 } 271 272 r = amdgpu_job_submit(job, &adev->mman.entity, 273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 274 if (r) 275 goto error_free; 276 277 dma_fence_put(fence); 278 279 return r; 280 281 error_free: 282 amdgpu_job_free(job); 283 return r; 284 } 285 286 /** 287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 288 * @adev: amdgpu device 289 * @src: buffer/address where to read from 290 * @dst: buffer/address where to write to 291 * @size: number of bytes to copy 292 * @tmz: if a secure copy should be used 293 * @resv: resv object to sync to 294 * @f: Returns the last fence if multiple jobs are submitted. 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 const struct amdgpu_copy_mem *src, 303 const struct amdgpu_copy_mem *dst, 304 uint64_t size, bool tmz, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 309 AMDGPU_GPU_PAGE_SIZE); 310 311 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 312 struct amdgpu_res_cursor src_mm, dst_mm; 313 struct dma_fence *fence = NULL; 314 int r = 0; 315 316 if (!adev->mman.buffer_funcs_enabled) { 317 DRM_ERROR("Trying to move memory with ring turned off.\n"); 318 return -EINVAL; 319 } 320 321 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 322 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 323 324 mutex_lock(&adev->mman.gtt_window_lock); 325 while (src_mm.remaining) { 326 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK; 327 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK; 328 struct dma_fence *next; 329 uint32_t cur_size; 330 uint64_t from, to; 331 332 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 333 * begins at an offset, then adjust the size accordingly 334 */ 335 cur_size = max(src_page_offset, dst_page_offset); 336 cur_size = min(min3(src_mm.size, dst_mm.size, size), 337 (uint64_t)(GTT_MAX_BYTES - cur_size)); 338 339 /* Map src to window 0 and dst to window 1. */ 340 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 341 PFN_UP(cur_size + src_page_offset), 342 0, ring, tmz, &from); 343 if (r) 344 goto error; 345 346 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 347 PFN_UP(cur_size + dst_page_offset), 348 1, ring, tmz, &to); 349 if (r) 350 goto error; 351 352 r = amdgpu_copy_buffer(ring, from, to, cur_size, 353 resv, &next, false, true, tmz); 354 if (r) 355 goto error; 356 357 dma_fence_put(fence); 358 fence = next; 359 360 amdgpu_res_next(&src_mm, cur_size); 361 amdgpu_res_next(&dst_mm, cur_size); 362 } 363 error: 364 mutex_unlock(&adev->mman.gtt_window_lock); 365 if (f) 366 *f = dma_fence_get(fence); 367 dma_fence_put(fence); 368 return r; 369 } 370 371 /* 372 * amdgpu_move_blit - Copy an entire buffer to another buffer 373 * 374 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 375 * help move buffers to and from VRAM. 376 */ 377 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 378 bool evict, 379 struct ttm_resource *new_mem, 380 struct ttm_resource *old_mem) 381 { 382 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 383 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 384 struct amdgpu_copy_mem src, dst; 385 struct dma_fence *fence = NULL; 386 int r; 387 388 src.bo = bo; 389 dst.bo = bo; 390 src.mem = old_mem; 391 dst.mem = new_mem; 392 src.offset = 0; 393 dst.offset = 0; 394 395 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 396 new_mem->num_pages << PAGE_SHIFT, 397 amdgpu_bo_encrypted(abo), 398 bo->base.resv, &fence); 399 if (r) 400 goto error; 401 402 /* clear the space being freed */ 403 if (old_mem->mem_type == TTM_PL_VRAM && 404 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 405 struct dma_fence *wipe_fence = NULL; 406 407 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 408 NULL, &wipe_fence); 409 if (r) { 410 goto error; 411 } else if (wipe_fence) { 412 dma_fence_put(fence); 413 fence = wipe_fence; 414 } 415 } 416 417 /* Always block for VM page tables before committing the new location */ 418 if (bo->type == ttm_bo_type_kernel) 419 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 420 else 421 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 422 dma_fence_put(fence); 423 return r; 424 425 error: 426 if (fence) 427 dma_fence_wait(fence, false); 428 dma_fence_put(fence); 429 return r; 430 } 431 432 /* 433 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 434 * 435 * Called by amdgpu_bo_move() 436 */ 437 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 438 struct ttm_resource *mem) 439 { 440 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT; 441 struct amdgpu_res_cursor cursor; 442 443 if (mem->mem_type == TTM_PL_SYSTEM || 444 mem->mem_type == TTM_PL_TT) 445 return true; 446 if (mem->mem_type != TTM_PL_VRAM) 447 return false; 448 449 amdgpu_res_first(mem, 0, mem_size, &cursor); 450 451 /* ttm_resource_ioremap only supports contiguous memory */ 452 if (cursor.size != mem_size) 453 return false; 454 455 return cursor.start + cursor.size <= adev->gmc.visible_vram_size; 456 } 457 458 /* 459 * amdgpu_bo_move - Move a buffer object to a new memory location 460 * 461 * Called by ttm_bo_handle_move_mem() 462 */ 463 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 464 struct ttm_operation_ctx *ctx, 465 struct ttm_resource *new_mem, 466 struct ttm_place *hop) 467 { 468 struct amdgpu_device *adev; 469 struct amdgpu_bo *abo; 470 struct ttm_resource *old_mem = bo->resource; 471 int r; 472 473 if (new_mem->mem_type == TTM_PL_TT || 474 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 475 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 476 if (r) 477 return r; 478 } 479 480 /* Can't move a pinned BO */ 481 abo = ttm_to_amdgpu_bo(bo); 482 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 483 return -EINVAL; 484 485 adev = amdgpu_ttm_adev(bo->bdev); 486 487 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 488 ttm_bo_move_null(bo, new_mem); 489 goto out; 490 } 491 if (old_mem->mem_type == TTM_PL_SYSTEM && 492 (new_mem->mem_type == TTM_PL_TT || 493 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 494 ttm_bo_move_null(bo, new_mem); 495 goto out; 496 } 497 if ((old_mem->mem_type == TTM_PL_TT || 498 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 499 new_mem->mem_type == TTM_PL_SYSTEM) { 500 r = ttm_bo_wait_ctx(bo, ctx); 501 if (r) 502 return r; 503 504 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 505 ttm_resource_free(bo, &bo->resource); 506 ttm_bo_assign_mem(bo, new_mem); 507 goto out; 508 } 509 510 if (old_mem->mem_type == AMDGPU_PL_GDS || 511 old_mem->mem_type == AMDGPU_PL_GWS || 512 old_mem->mem_type == AMDGPU_PL_OA || 513 new_mem->mem_type == AMDGPU_PL_GDS || 514 new_mem->mem_type == AMDGPU_PL_GWS || 515 new_mem->mem_type == AMDGPU_PL_OA) { 516 /* Nothing to save here */ 517 ttm_bo_move_null(bo, new_mem); 518 goto out; 519 } 520 521 if (bo->type == ttm_bo_type_device && 522 new_mem->mem_type == TTM_PL_VRAM && 523 old_mem->mem_type != TTM_PL_VRAM) { 524 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 525 * accesses the BO after it's moved. 526 */ 527 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 528 } 529 530 if (adev->mman.buffer_funcs_enabled) { 531 if (((old_mem->mem_type == TTM_PL_SYSTEM && 532 new_mem->mem_type == TTM_PL_VRAM) || 533 (old_mem->mem_type == TTM_PL_VRAM && 534 new_mem->mem_type == TTM_PL_SYSTEM))) { 535 hop->fpfn = 0; 536 hop->lpfn = 0; 537 hop->mem_type = TTM_PL_TT; 538 hop->flags = TTM_PL_FLAG_TEMPORARY; 539 return -EMULTIHOP; 540 } 541 542 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 543 } else { 544 r = -ENODEV; 545 } 546 547 if (r) { 548 /* Check that all memory is CPU accessible */ 549 if (!amdgpu_mem_visible(adev, old_mem) || 550 !amdgpu_mem_visible(adev, new_mem)) { 551 pr_err("Move buffer fallback to memcpy unavailable\n"); 552 return r; 553 } 554 555 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 556 if (r) 557 return r; 558 } 559 560 out: 561 /* update statistics */ 562 atomic64_add(bo->base.size, &adev->num_bytes_moved); 563 amdgpu_bo_move_notify(bo, evict, new_mem); 564 return 0; 565 } 566 567 /* 568 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 569 * 570 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 571 */ 572 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 573 struct ttm_resource *mem) 574 { 575 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 576 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 577 578 switch (mem->mem_type) { 579 case TTM_PL_SYSTEM: 580 /* system memory */ 581 return 0; 582 case TTM_PL_TT: 583 case AMDGPU_PL_PREEMPT: 584 break; 585 case TTM_PL_VRAM: 586 mem->bus.offset = mem->start << PAGE_SHIFT; 587 /* check if it's visible */ 588 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 589 return -EINVAL; 590 591 if (adev->mman.aper_base_kaddr && 592 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 593 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 594 mem->bus.offset; 595 596 mem->bus.offset += adev->gmc.aper_base; 597 mem->bus.is_iomem = true; 598 break; 599 default: 600 return -EINVAL; 601 } 602 return 0; 603 } 604 605 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 606 unsigned long page_offset) 607 { 608 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 609 struct amdgpu_res_cursor cursor; 610 611 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 612 &cursor); 613 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 614 } 615 616 /** 617 * amdgpu_ttm_domain_start - Returns GPU start address 618 * @adev: amdgpu device object 619 * @type: type of the memory 620 * 621 * Returns: 622 * GPU start address of a memory domain 623 */ 624 625 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 626 { 627 switch (type) { 628 case TTM_PL_TT: 629 return adev->gmc.gart_start; 630 case TTM_PL_VRAM: 631 return adev->gmc.vram_start; 632 } 633 634 return 0; 635 } 636 637 /* 638 * TTM backend functions. 639 */ 640 struct amdgpu_ttm_tt { 641 struct ttm_tt ttm; 642 struct drm_gem_object *gobj; 643 u64 offset; 644 uint64_t userptr; 645 struct task_struct *usertask; 646 uint32_t userflags; 647 bool bound; 648 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 649 struct hmm_range *range; 650 #endif 651 }; 652 653 #ifdef CONFIG_DRM_AMDGPU_USERPTR 654 /* 655 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 656 * memory and start HMM tracking CPU page table update 657 * 658 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 659 * once afterwards to stop HMM tracking 660 */ 661 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 662 { 663 struct ttm_tt *ttm = bo->tbo.ttm; 664 struct amdgpu_ttm_tt *gtt = (void *)ttm; 665 unsigned long start = gtt->userptr; 666 struct vm_area_struct *vma; 667 struct mm_struct *mm; 668 bool readonly; 669 int r = 0; 670 671 mm = bo->notifier.mm; 672 if (unlikely(!mm)) { 673 DRM_DEBUG_DRIVER("BO is not registered?\n"); 674 return -EFAULT; 675 } 676 677 /* Another get_user_pages is running at the same time?? */ 678 if (WARN_ON(gtt->range)) 679 return -EFAULT; 680 681 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 682 return -ESRCH; 683 684 mmap_read_lock(mm); 685 vma = vma_lookup(mm, start); 686 if (unlikely(!vma)) { 687 r = -EFAULT; 688 goto out_unlock; 689 } 690 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 691 vma->vm_file)) { 692 r = -EPERM; 693 goto out_unlock; 694 } 695 696 readonly = amdgpu_ttm_tt_is_readonly(ttm); 697 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 698 ttm->num_pages, >t->range, readonly, 699 true, NULL); 700 out_unlock: 701 mmap_read_unlock(mm); 702 if (r) 703 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 704 705 mmput(mm); 706 707 return r; 708 } 709 710 /* 711 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 712 * Check if the pages backing this ttm range have been invalidated 713 * 714 * Returns: true if pages are still valid 715 */ 716 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 717 { 718 struct amdgpu_ttm_tt *gtt = (void *)ttm; 719 bool r = false; 720 721 if (!gtt || !gtt->userptr) 722 return false; 723 724 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 725 gtt->userptr, ttm->num_pages); 726 727 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 728 "No user pages to check\n"); 729 730 if (gtt->range) { 731 /* 732 * FIXME: Must always hold notifier_lock for this, and must 733 * not ignore the return code. 734 */ 735 r = amdgpu_hmm_range_get_pages_done(gtt->range); 736 gtt->range = NULL; 737 } 738 739 return !r; 740 } 741 #endif 742 743 /* 744 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 745 * 746 * Called by amdgpu_cs_list_validate(). This creates the page list 747 * that backs user memory and will ultimately be mapped into the device 748 * address space. 749 */ 750 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 751 { 752 unsigned long i; 753 754 for (i = 0; i < ttm->num_pages; ++i) 755 ttm->pages[i] = pages ? pages[i] : NULL; 756 } 757 758 /* 759 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 760 * 761 * Called by amdgpu_ttm_backend_bind() 762 **/ 763 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 764 struct ttm_tt *ttm) 765 { 766 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 767 struct amdgpu_ttm_tt *gtt = (void *)ttm; 768 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 769 enum dma_data_direction direction = write ? 770 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 771 int r; 772 773 /* Allocate an SG array and squash pages into it */ 774 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 775 (u64)ttm->num_pages << PAGE_SHIFT, 776 GFP_KERNEL); 777 if (r) 778 goto release_sg; 779 780 /* Map SG to device */ 781 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 782 if (r) 783 goto release_sg; 784 785 /* convert SG to linear array of pages and dma addresses */ 786 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 787 ttm->num_pages); 788 789 return 0; 790 791 release_sg: 792 kfree(ttm->sg); 793 ttm->sg = NULL; 794 return r; 795 } 796 797 /* 798 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 799 */ 800 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 801 struct ttm_tt *ttm) 802 { 803 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 804 struct amdgpu_ttm_tt *gtt = (void *)ttm; 805 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 806 enum dma_data_direction direction = write ? 807 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 808 809 /* double check that we don't free the table twice */ 810 if (!ttm->sg || !ttm->sg->sgl) 811 return; 812 813 /* unmap the pages mapped to the device */ 814 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 815 sg_free_table(ttm->sg); 816 817 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 818 if (gtt->range) { 819 unsigned long i; 820 821 for (i = 0; i < ttm->num_pages; i++) { 822 if (ttm->pages[i] != 823 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 824 break; 825 } 826 827 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 828 } 829 #endif 830 } 831 832 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 833 struct ttm_buffer_object *tbo, 834 uint64_t flags) 835 { 836 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 837 struct ttm_tt *ttm = tbo->ttm; 838 struct amdgpu_ttm_tt *gtt = (void *)ttm; 839 int r; 840 841 if (amdgpu_bo_encrypted(abo)) 842 flags |= AMDGPU_PTE_TMZ; 843 844 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 845 uint64_t page_idx = 1; 846 847 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 848 gtt->ttm.dma_address, flags); 849 if (r) 850 goto gart_bind_fail; 851 852 /* The memory type of the first page defaults to UC. Now 853 * modify the memory type to NC from the second page of 854 * the BO onward. 855 */ 856 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 857 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 858 859 r = amdgpu_gart_bind(adev, 860 gtt->offset + (page_idx << PAGE_SHIFT), 861 ttm->num_pages - page_idx, 862 &(gtt->ttm.dma_address[page_idx]), flags); 863 } else { 864 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 865 gtt->ttm.dma_address, flags); 866 } 867 868 gart_bind_fail: 869 if (r) 870 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 871 ttm->num_pages, gtt->offset); 872 873 return r; 874 } 875 876 /* 877 * amdgpu_ttm_backend_bind - Bind GTT memory 878 * 879 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 880 * This handles binding GTT memory to the device address space. 881 */ 882 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 883 struct ttm_tt *ttm, 884 struct ttm_resource *bo_mem) 885 { 886 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 887 struct amdgpu_ttm_tt *gtt = (void*)ttm; 888 uint64_t flags; 889 int r = 0; 890 891 if (!bo_mem) 892 return -EINVAL; 893 894 if (gtt->bound) 895 return 0; 896 897 if (gtt->userptr) { 898 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 899 if (r) { 900 DRM_ERROR("failed to pin userptr\n"); 901 return r; 902 } 903 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 904 if (!ttm->sg) { 905 struct dma_buf_attachment *attach; 906 struct sg_table *sgt; 907 908 attach = gtt->gobj->import_attach; 909 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 910 if (IS_ERR(sgt)) 911 return PTR_ERR(sgt); 912 913 ttm->sg = sgt; 914 } 915 916 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 917 ttm->num_pages); 918 } 919 920 if (!ttm->num_pages) { 921 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 922 ttm->num_pages, bo_mem, ttm); 923 } 924 925 if (bo_mem->mem_type == AMDGPU_PL_GDS || 926 bo_mem->mem_type == AMDGPU_PL_GWS || 927 bo_mem->mem_type == AMDGPU_PL_OA) 928 return -EINVAL; 929 930 if (bo_mem->mem_type != TTM_PL_TT || 931 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 932 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 933 return 0; 934 } 935 936 /* compute PTE flags relevant to this BO memory */ 937 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 938 939 /* bind pages into GART page tables */ 940 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 941 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 942 gtt->ttm.dma_address, flags); 943 944 if (r) 945 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 946 ttm->num_pages, gtt->offset); 947 gtt->bound = true; 948 return r; 949 } 950 951 /* 952 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 953 * through AGP or GART aperture. 954 * 955 * If bo is accessible through AGP aperture, then use AGP aperture 956 * to access bo; otherwise allocate logical space in GART aperture 957 * and map bo to GART aperture. 958 */ 959 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 960 { 961 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 962 struct ttm_operation_ctx ctx = { false, false }; 963 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 964 struct ttm_placement placement; 965 struct ttm_place placements; 966 struct ttm_resource *tmp; 967 uint64_t addr, flags; 968 int r; 969 970 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 971 return 0; 972 973 addr = amdgpu_gmc_agp_addr(bo); 974 if (addr != AMDGPU_BO_INVALID_OFFSET) { 975 bo->resource->start = addr >> PAGE_SHIFT; 976 return 0; 977 } 978 979 /* allocate GART space */ 980 placement.num_placement = 1; 981 placement.placement = &placements; 982 placement.num_busy_placement = 1; 983 placement.busy_placement = &placements; 984 placements.fpfn = 0; 985 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 986 placements.mem_type = TTM_PL_TT; 987 placements.flags = bo->resource->placement; 988 989 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 990 if (unlikely(r)) 991 return r; 992 993 /* compute PTE flags for this buffer object */ 994 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 995 996 /* Bind pages */ 997 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 998 r = amdgpu_ttm_gart_bind(adev, bo, flags); 999 if (unlikely(r)) { 1000 ttm_resource_free(bo, &tmp); 1001 return r; 1002 } 1003 1004 amdgpu_gart_invalidate_tlb(adev); 1005 ttm_resource_free(bo, &bo->resource); 1006 ttm_bo_assign_mem(bo, tmp); 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * amdgpu_ttm_recover_gart - Rebind GTT pages 1013 * 1014 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1015 * rebind GTT pages during a GPU reset. 1016 */ 1017 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1018 { 1019 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1020 uint64_t flags; 1021 int r; 1022 1023 if (!tbo->ttm) 1024 return 0; 1025 1026 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1027 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1028 1029 return r; 1030 } 1031 1032 /* 1033 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1034 * 1035 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1036 * ttm_tt_destroy(). 1037 */ 1038 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1039 struct ttm_tt *ttm) 1040 { 1041 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1042 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1043 int r; 1044 1045 /* if the pages have userptr pinning then clear that first */ 1046 if (gtt->userptr) { 1047 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1048 } else if (ttm->sg && gtt->gobj->import_attach) { 1049 struct dma_buf_attachment *attach; 1050 1051 attach = gtt->gobj->import_attach; 1052 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1053 ttm->sg = NULL; 1054 } 1055 1056 if (!gtt->bound) 1057 return; 1058 1059 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1060 return; 1061 1062 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1063 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1064 if (r) 1065 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n", 1066 gtt->ttm.num_pages, gtt->offset); 1067 gtt->bound = false; 1068 } 1069 1070 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1071 struct ttm_tt *ttm) 1072 { 1073 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1074 1075 if (gtt->usertask) 1076 put_task_struct(gtt->usertask); 1077 1078 ttm_tt_fini(>t->ttm); 1079 kfree(gtt); 1080 } 1081 1082 /** 1083 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1084 * 1085 * @bo: The buffer object to create a GTT ttm_tt object around 1086 * @page_flags: Page flags to be added to the ttm_tt object 1087 * 1088 * Called by ttm_tt_create(). 1089 */ 1090 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1091 uint32_t page_flags) 1092 { 1093 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1094 struct amdgpu_ttm_tt *gtt; 1095 enum ttm_caching caching; 1096 1097 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1098 if (gtt == NULL) { 1099 return NULL; 1100 } 1101 gtt->gobj = &bo->base; 1102 1103 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1104 caching = ttm_write_combined; 1105 else 1106 caching = ttm_cached; 1107 1108 /* allocate space for the uninitialized page entries */ 1109 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1110 kfree(gtt); 1111 return NULL; 1112 } 1113 return >t->ttm; 1114 } 1115 1116 /* 1117 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1118 * 1119 * Map the pages of a ttm_tt object to an address space visible 1120 * to the underlying device. 1121 */ 1122 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1123 struct ttm_tt *ttm, 1124 struct ttm_operation_ctx *ctx) 1125 { 1126 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1127 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1128 pgoff_t i; 1129 int ret; 1130 1131 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1132 if (gtt->userptr) { 1133 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1134 if (!ttm->sg) 1135 return -ENOMEM; 1136 return 0; 1137 } 1138 1139 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1140 return 0; 1141 1142 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1143 if (ret) 1144 return ret; 1145 1146 for (i = 0; i < ttm->num_pages; ++i) 1147 ttm->pages[i]->mapping = bdev->dev_mapping; 1148 1149 return 0; 1150 } 1151 1152 /* 1153 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1154 * 1155 * Unmaps pages of a ttm_tt object from the device address space and 1156 * unpopulates the page array backing it. 1157 */ 1158 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1159 struct ttm_tt *ttm) 1160 { 1161 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1162 struct amdgpu_device *adev; 1163 pgoff_t i; 1164 1165 amdgpu_ttm_backend_unbind(bdev, ttm); 1166 1167 if (gtt->userptr) { 1168 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1169 kfree(ttm->sg); 1170 ttm->sg = NULL; 1171 return; 1172 } 1173 1174 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1175 return; 1176 1177 for (i = 0; i < ttm->num_pages; ++i) 1178 ttm->pages[i]->mapping = NULL; 1179 1180 adev = amdgpu_ttm_adev(bdev); 1181 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1182 } 1183 1184 /** 1185 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1186 * task 1187 * 1188 * @bo: The ttm_buffer_object to bind this userptr to 1189 * @addr: The address in the current tasks VM space to use 1190 * @flags: Requirements of userptr object. 1191 * 1192 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1193 * to current task 1194 */ 1195 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1196 uint64_t addr, uint32_t flags) 1197 { 1198 struct amdgpu_ttm_tt *gtt; 1199 1200 if (!bo->ttm) { 1201 /* TODO: We want a separate TTM object type for userptrs */ 1202 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1203 if (bo->ttm == NULL) 1204 return -ENOMEM; 1205 } 1206 1207 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1208 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1209 1210 gtt = (void *)bo->ttm; 1211 gtt->userptr = addr; 1212 gtt->userflags = flags; 1213 1214 if (gtt->usertask) 1215 put_task_struct(gtt->usertask); 1216 gtt->usertask = current->group_leader; 1217 get_task_struct(gtt->usertask); 1218 1219 return 0; 1220 } 1221 1222 /* 1223 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1224 */ 1225 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1226 { 1227 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1228 1229 if (gtt == NULL) 1230 return NULL; 1231 1232 if (gtt->usertask == NULL) 1233 return NULL; 1234 1235 return gtt->usertask->mm; 1236 } 1237 1238 /* 1239 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1240 * address range for the current task. 1241 * 1242 */ 1243 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1244 unsigned long end, unsigned long *userptr) 1245 { 1246 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1247 unsigned long size; 1248 1249 if (gtt == NULL || !gtt->userptr) 1250 return false; 1251 1252 /* Return false if no part of the ttm_tt object lies within 1253 * the range 1254 */ 1255 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1256 if (gtt->userptr > end || gtt->userptr + size <= start) 1257 return false; 1258 1259 if (userptr) 1260 *userptr = gtt->userptr; 1261 return true; 1262 } 1263 1264 /* 1265 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1266 */ 1267 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1268 { 1269 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1270 1271 if (gtt == NULL || !gtt->userptr) 1272 return false; 1273 1274 return true; 1275 } 1276 1277 /* 1278 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1279 */ 1280 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1281 { 1282 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1283 1284 if (gtt == NULL) 1285 return false; 1286 1287 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1288 } 1289 1290 /** 1291 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1292 * 1293 * @ttm: The ttm_tt object to compute the flags for 1294 * @mem: The memory registry backing this ttm_tt object 1295 * 1296 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1297 */ 1298 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1299 { 1300 uint64_t flags = 0; 1301 1302 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1303 flags |= AMDGPU_PTE_VALID; 1304 1305 if (mem && (mem->mem_type == TTM_PL_TT || 1306 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1307 flags |= AMDGPU_PTE_SYSTEM; 1308 1309 if (ttm->caching == ttm_cached) 1310 flags |= AMDGPU_PTE_SNOOPED; 1311 } 1312 1313 if (mem && mem->mem_type == TTM_PL_VRAM && 1314 mem->bus.caching == ttm_cached) 1315 flags |= AMDGPU_PTE_SNOOPED; 1316 1317 return flags; 1318 } 1319 1320 /** 1321 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1322 * 1323 * @adev: amdgpu_device pointer 1324 * @ttm: The ttm_tt object to compute the flags for 1325 * @mem: The memory registry backing this ttm_tt object 1326 * 1327 * Figure out the flags to use for a VM PTE (Page Table Entry). 1328 */ 1329 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1330 struct ttm_resource *mem) 1331 { 1332 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1333 1334 flags |= adev->gart.gart_pte_flags; 1335 flags |= AMDGPU_PTE_READABLE; 1336 1337 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1338 flags |= AMDGPU_PTE_WRITEABLE; 1339 1340 return flags; 1341 } 1342 1343 /* 1344 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1345 * object. 1346 * 1347 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1348 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1349 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1350 * used to clean out a memory space. 1351 */ 1352 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1353 const struct ttm_place *place) 1354 { 1355 unsigned long num_pages = bo->resource->num_pages; 1356 struct amdgpu_res_cursor cursor; 1357 struct dma_resv_list *flist; 1358 struct dma_fence *f; 1359 int i; 1360 1361 /* Swapout? */ 1362 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1363 return true; 1364 1365 if (bo->type == ttm_bo_type_kernel && 1366 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1367 return false; 1368 1369 /* If bo is a KFD BO, check if the bo belongs to the current process. 1370 * If true, then return false as any KFD process needs all its BOs to 1371 * be resident to run successfully 1372 */ 1373 flist = dma_resv_shared_list(bo->base.resv); 1374 if (flist) { 1375 for (i = 0; i < flist->shared_count; ++i) { 1376 f = rcu_dereference_protected(flist->shared[i], 1377 dma_resv_held(bo->base.resv)); 1378 if (amdkfd_fence_check_mm(f, current->mm)) 1379 return false; 1380 } 1381 } 1382 1383 switch (bo->resource->mem_type) { 1384 case AMDGPU_PL_PREEMPT: 1385 /* Preemptible BOs don't own system resources managed by the 1386 * driver (pages, VRAM, GART space). They point to resources 1387 * owned by someone else (e.g. pageable memory in user mode 1388 * or a DMABuf). They are used in a preemptible context so we 1389 * can guarantee no deadlocks and good QoS in case of MMU 1390 * notifiers or DMABuf move notifiers from the resource owner. 1391 */ 1392 return false; 1393 case TTM_PL_TT: 1394 if (amdgpu_bo_is_amdgpu_bo(bo) && 1395 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1396 return false; 1397 return true; 1398 1399 case TTM_PL_VRAM: 1400 /* Check each drm MM node individually */ 1401 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT, 1402 &cursor); 1403 while (cursor.remaining) { 1404 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size) 1405 && !(place->lpfn && 1406 place->lpfn <= PFN_DOWN(cursor.start))) 1407 return true; 1408 1409 amdgpu_res_next(&cursor, cursor.size); 1410 } 1411 return false; 1412 1413 default: 1414 break; 1415 } 1416 1417 return ttm_bo_eviction_valuable(bo, place); 1418 } 1419 1420 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1421 void *buf, size_t size, bool write) 1422 { 1423 while (size) { 1424 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1425 uint64_t bytes = 4 - (pos & 0x3); 1426 uint32_t shift = (pos & 0x3) * 8; 1427 uint32_t mask = 0xffffffff << shift; 1428 uint32_t value = 0; 1429 1430 if (size < bytes) { 1431 mask &= 0xffffffff >> (bytes - size) * 8; 1432 bytes = size; 1433 } 1434 1435 if (mask != 0xffffffff) { 1436 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1437 if (write) { 1438 value &= ~mask; 1439 value |= (*(uint32_t *)buf << shift) & mask; 1440 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1441 } else { 1442 value = (value & mask) >> shift; 1443 memcpy(buf, &value, bytes); 1444 } 1445 } else { 1446 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1447 } 1448 1449 pos += bytes; 1450 buf += bytes; 1451 size -= bytes; 1452 } 1453 } 1454 1455 /** 1456 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1457 * 1458 * @bo: The buffer object to read/write 1459 * @offset: Offset into buffer object 1460 * @buf: Secondary buffer to write/read from 1461 * @len: Length in bytes of access 1462 * @write: true if writing 1463 * 1464 * This is used to access VRAM that backs a buffer object via MMIO 1465 * access for debugging purposes. 1466 */ 1467 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1468 unsigned long offset, void *buf, int len, 1469 int write) 1470 { 1471 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1472 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1473 struct amdgpu_res_cursor cursor; 1474 int ret = 0; 1475 1476 if (bo->resource->mem_type != TTM_PL_VRAM) 1477 return -EIO; 1478 1479 amdgpu_res_first(bo->resource, offset, len, &cursor); 1480 while (cursor.remaining) { 1481 size_t count, size = cursor.size; 1482 loff_t pos = cursor.start; 1483 1484 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1485 size -= count; 1486 if (size) { 1487 /* using MM to access rest vram and handle un-aligned address */ 1488 pos += count; 1489 buf += count; 1490 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1491 } 1492 1493 ret += cursor.size; 1494 buf += cursor.size; 1495 amdgpu_res_next(&cursor, cursor.size); 1496 } 1497 1498 return ret; 1499 } 1500 1501 static void 1502 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1503 { 1504 amdgpu_bo_move_notify(bo, false, NULL); 1505 } 1506 1507 static struct ttm_device_funcs amdgpu_bo_driver = { 1508 .ttm_tt_create = &amdgpu_ttm_tt_create, 1509 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1510 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1511 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1512 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1513 .evict_flags = &amdgpu_evict_flags, 1514 .move = &amdgpu_bo_move, 1515 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1516 .release_notify = &amdgpu_bo_release_notify, 1517 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1518 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1519 .access_memory = &amdgpu_ttm_access_memory, 1520 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1521 }; 1522 1523 /* 1524 * Firmware Reservation functions 1525 */ 1526 /** 1527 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1528 * 1529 * @adev: amdgpu_device pointer 1530 * 1531 * free fw reserved vram if it has been reserved. 1532 */ 1533 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1534 { 1535 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1536 NULL, &adev->mman.fw_vram_usage_va); 1537 } 1538 1539 /** 1540 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1541 * 1542 * @adev: amdgpu_device pointer 1543 * 1544 * create bo vram reservation from fw. 1545 */ 1546 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1547 { 1548 uint64_t vram_size = adev->gmc.visible_vram_size; 1549 1550 adev->mman.fw_vram_usage_va = NULL; 1551 adev->mman.fw_vram_usage_reserved_bo = NULL; 1552 1553 if (adev->mman.fw_vram_usage_size == 0 || 1554 adev->mman.fw_vram_usage_size > vram_size) 1555 return 0; 1556 1557 return amdgpu_bo_create_kernel_at(adev, 1558 adev->mman.fw_vram_usage_start_offset, 1559 adev->mman.fw_vram_usage_size, 1560 AMDGPU_GEM_DOMAIN_VRAM, 1561 &adev->mman.fw_vram_usage_reserved_bo, 1562 &adev->mman.fw_vram_usage_va); 1563 } 1564 1565 /* 1566 * Memoy training reservation functions 1567 */ 1568 1569 /** 1570 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1571 * 1572 * @adev: amdgpu_device pointer 1573 * 1574 * free memory training reserved vram if it has been reserved. 1575 */ 1576 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1577 { 1578 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1579 1580 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1581 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1582 ctx->c2p_bo = NULL; 1583 1584 return 0; 1585 } 1586 1587 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1588 { 1589 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1590 1591 memset(ctx, 0, sizeof(*ctx)); 1592 1593 ctx->c2p_train_data_offset = 1594 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1595 ctx->p2c_train_data_offset = 1596 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1597 ctx->train_data_size = 1598 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1599 1600 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1601 ctx->train_data_size, 1602 ctx->p2c_train_data_offset, 1603 ctx->c2p_train_data_offset); 1604 } 1605 1606 /* 1607 * reserve TMR memory at the top of VRAM which holds 1608 * IP Discovery data and is protected by PSP. 1609 */ 1610 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1611 { 1612 int ret; 1613 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1614 bool mem_train_support = false; 1615 1616 if (!amdgpu_sriov_vf(adev)) { 1617 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1618 mem_train_support = true; 1619 else 1620 DRM_DEBUG("memory training does not support!\n"); 1621 } 1622 1623 /* 1624 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1625 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1626 * 1627 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1628 * discovery data and G6 memory training data respectively 1629 */ 1630 adev->mman.discovery_tmr_size = 1631 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1632 if (!adev->mman.discovery_tmr_size) 1633 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1634 1635 if (mem_train_support) { 1636 /* reserve vram for mem train according to TMR location */ 1637 amdgpu_ttm_training_data_block_init(adev); 1638 ret = amdgpu_bo_create_kernel_at(adev, 1639 ctx->c2p_train_data_offset, 1640 ctx->train_data_size, 1641 AMDGPU_GEM_DOMAIN_VRAM, 1642 &ctx->c2p_bo, 1643 NULL); 1644 if (ret) { 1645 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1646 amdgpu_ttm_training_reserve_vram_fini(adev); 1647 return ret; 1648 } 1649 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1650 } 1651 1652 ret = amdgpu_bo_create_kernel_at(adev, 1653 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1654 adev->mman.discovery_tmr_size, 1655 AMDGPU_GEM_DOMAIN_VRAM, 1656 &adev->mman.discovery_memory, 1657 NULL); 1658 if (ret) { 1659 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1660 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1661 return ret; 1662 } 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1669 * gtt/vram related fields. 1670 * 1671 * This initializes all of the memory space pools that the TTM layer 1672 * will need such as the GTT space (system memory mapped to the device), 1673 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1674 * can be mapped per VMID. 1675 */ 1676 int amdgpu_ttm_init(struct amdgpu_device *adev) 1677 { 1678 uint64_t gtt_size; 1679 int r; 1680 u64 vis_vram_limit; 1681 1682 mutex_init(&adev->mman.gtt_window_lock); 1683 1684 /* No others user of address space so set it to 0 */ 1685 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1686 adev_to_drm(adev)->anon_inode->i_mapping, 1687 adev_to_drm(adev)->vma_offset_manager, 1688 adev->need_swiotlb, 1689 dma_addressing_limited(adev->dev)); 1690 if (r) { 1691 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1692 return r; 1693 } 1694 adev->mman.initialized = true; 1695 1696 /* Initialize VRAM pool with all of VRAM divided into pages */ 1697 r = amdgpu_vram_mgr_init(adev); 1698 if (r) { 1699 DRM_ERROR("Failed initializing VRAM heap.\n"); 1700 return r; 1701 } 1702 1703 /* Reduce size of CPU-visible VRAM if requested */ 1704 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1705 if (amdgpu_vis_vram_limit > 0 && 1706 vis_vram_limit <= adev->gmc.visible_vram_size) 1707 adev->gmc.visible_vram_size = vis_vram_limit; 1708 1709 /* Change the size here instead of the init above so only lpfn is affected */ 1710 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1711 #ifdef CONFIG_64BIT 1712 #ifdef CONFIG_X86 1713 if (adev->gmc.xgmi.connected_to_cpu) 1714 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1715 adev->gmc.visible_vram_size); 1716 1717 else 1718 #endif 1719 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1720 adev->gmc.visible_vram_size); 1721 #endif 1722 1723 /* 1724 *The reserved vram for firmware must be pinned to the specified 1725 *place on the VRAM, so reserve it early. 1726 */ 1727 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1728 if (r) { 1729 return r; 1730 } 1731 1732 /* 1733 * only NAVI10 and onwards ASIC support for IP discovery. 1734 * If IP discovery enabled, a block of memory should be 1735 * reserved for IP discovey. 1736 */ 1737 if (adev->mman.discovery_bin) { 1738 r = amdgpu_ttm_reserve_tmr(adev); 1739 if (r) 1740 return r; 1741 } 1742 1743 /* allocate memory as required for VGA 1744 * This is used for VGA emulation and pre-OS scanout buffers to 1745 * avoid display artifacts while transitioning between pre-OS 1746 * and driver. */ 1747 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1748 AMDGPU_GEM_DOMAIN_VRAM, 1749 &adev->mman.stolen_vga_memory, 1750 NULL); 1751 if (r) 1752 return r; 1753 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1754 adev->mman.stolen_extended_size, 1755 AMDGPU_GEM_DOMAIN_VRAM, 1756 &adev->mman.stolen_extended_memory, 1757 NULL); 1758 if (r) 1759 return r; 1760 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1761 adev->mman.stolen_reserved_size, 1762 AMDGPU_GEM_DOMAIN_VRAM, 1763 &adev->mman.stolen_reserved_memory, 1764 NULL); 1765 if (r) 1766 return r; 1767 1768 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1769 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1770 1771 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1772 * or whatever the user passed on module init */ 1773 if (amdgpu_gtt_size == -1) { 1774 struct sysinfo si; 1775 1776 si_meminfo(&si); 1777 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1778 adev->gmc.mc_vram_size), 1779 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1780 } 1781 else 1782 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1783 1784 /* Initialize GTT memory pool */ 1785 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1786 if (r) { 1787 DRM_ERROR("Failed initializing GTT heap.\n"); 1788 return r; 1789 } 1790 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1791 (unsigned)(gtt_size / (1024 * 1024))); 1792 1793 /* Initialize preemptible memory pool */ 1794 r = amdgpu_preempt_mgr_init(adev); 1795 if (r) { 1796 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1797 return r; 1798 } 1799 1800 /* Initialize various on-chip memory pools */ 1801 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1802 if (r) { 1803 DRM_ERROR("Failed initializing GDS heap.\n"); 1804 return r; 1805 } 1806 1807 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1808 if (r) { 1809 DRM_ERROR("Failed initializing gws heap.\n"); 1810 return r; 1811 } 1812 1813 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1814 if (r) { 1815 DRM_ERROR("Failed initializing oa heap.\n"); 1816 return r; 1817 } 1818 1819 return 0; 1820 } 1821 1822 /* 1823 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1824 */ 1825 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1826 { 1827 if (!adev->mman.initialized) 1828 return; 1829 1830 amdgpu_ttm_training_reserve_vram_fini(adev); 1831 /* return the stolen vga memory back to VRAM */ 1832 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1833 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1834 /* return the IP Discovery TMR memory back to VRAM */ 1835 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1836 if (adev->mman.stolen_reserved_size) 1837 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1838 NULL, NULL); 1839 amdgpu_ttm_fw_reserve_vram_fini(adev); 1840 1841 amdgpu_vram_mgr_fini(adev); 1842 amdgpu_gtt_mgr_fini(adev); 1843 amdgpu_preempt_mgr_fini(adev); 1844 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1845 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1846 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1847 ttm_device_fini(&adev->mman.bdev); 1848 adev->mman.initialized = false; 1849 DRM_INFO("amdgpu: ttm finalized\n"); 1850 } 1851 1852 /** 1853 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1854 * 1855 * @adev: amdgpu_device pointer 1856 * @enable: true when we can use buffer functions. 1857 * 1858 * Enable/disable use of buffer functions during suspend/resume. This should 1859 * only be called at bootup or when userspace isn't running. 1860 */ 1861 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1862 { 1863 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1864 uint64_t size; 1865 int r; 1866 1867 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1868 adev->mman.buffer_funcs_enabled == enable) 1869 return; 1870 1871 if (enable) { 1872 struct amdgpu_ring *ring; 1873 struct drm_gpu_scheduler *sched; 1874 1875 ring = adev->mman.buffer_funcs_ring; 1876 sched = &ring->sched; 1877 r = drm_sched_entity_init(&adev->mman.entity, 1878 DRM_SCHED_PRIORITY_KERNEL, &sched, 1879 1, NULL); 1880 if (r) { 1881 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1882 r); 1883 return; 1884 } 1885 } else { 1886 drm_sched_entity_destroy(&adev->mman.entity); 1887 dma_fence_put(man->move); 1888 man->move = NULL; 1889 } 1890 1891 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1892 if (enable) 1893 size = adev->gmc.real_vram_size; 1894 else 1895 size = adev->gmc.visible_vram_size; 1896 man->size = size >> PAGE_SHIFT; 1897 adev->mman.buffer_funcs_enabled = enable; 1898 } 1899 1900 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1901 uint64_t dst_offset, uint32_t byte_count, 1902 struct dma_resv *resv, 1903 struct dma_fence **fence, bool direct_submit, 1904 bool vm_needs_flush, bool tmz) 1905 { 1906 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 1907 AMDGPU_IB_POOL_DELAYED; 1908 struct amdgpu_device *adev = ring->adev; 1909 struct amdgpu_job *job; 1910 1911 uint32_t max_bytes; 1912 unsigned num_loops, num_dw; 1913 unsigned i; 1914 int r; 1915 1916 if (direct_submit && !ring->sched.ready) { 1917 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1918 return -EINVAL; 1919 } 1920 1921 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1922 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1923 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 1924 1925 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 1926 if (r) 1927 return r; 1928 1929 if (vm_needs_flush) { 1930 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1931 adev->gmc.pdb0_bo : adev->gart.bo); 1932 job->vm_needs_flush = true; 1933 } 1934 if (resv) { 1935 r = amdgpu_sync_resv(adev, &job->sync, resv, 1936 AMDGPU_SYNC_ALWAYS, 1937 AMDGPU_FENCE_OWNER_UNDEFINED); 1938 if (r) { 1939 DRM_ERROR("sync failed (%d).\n", r); 1940 goto error_free; 1941 } 1942 } 1943 1944 for (i = 0; i < num_loops; i++) { 1945 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1946 1947 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 1948 dst_offset, cur_size_in_bytes, tmz); 1949 1950 src_offset += cur_size_in_bytes; 1951 dst_offset += cur_size_in_bytes; 1952 byte_count -= cur_size_in_bytes; 1953 } 1954 1955 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1956 WARN_ON(job->ibs[0].length_dw > num_dw); 1957 if (direct_submit) 1958 r = amdgpu_job_submit_direct(job, ring, fence); 1959 else 1960 r = amdgpu_job_submit(job, &adev->mman.entity, 1961 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 1962 if (r) 1963 goto error_free; 1964 1965 return r; 1966 1967 error_free: 1968 amdgpu_job_free(job); 1969 DRM_ERROR("Error scheduling IBs (%d)\n", r); 1970 return r; 1971 } 1972 1973 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 1974 uint32_t src_data, 1975 struct dma_resv *resv, 1976 struct dma_fence **fence) 1977 { 1978 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 1979 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 1980 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 1981 1982 struct amdgpu_res_cursor cursor; 1983 unsigned int num_loops, num_dw; 1984 uint64_t num_bytes; 1985 1986 struct amdgpu_job *job; 1987 int r; 1988 1989 if (!adev->mman.buffer_funcs_enabled) { 1990 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 1991 return -EINVAL; 1992 } 1993 1994 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) { 1995 DRM_ERROR("Trying to clear preemptible memory.\n"); 1996 return -EINVAL; 1997 } 1998 1999 if (bo->tbo.resource->mem_type == TTM_PL_TT) { 2000 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2001 if (r) 2002 return r; 2003 } 2004 2005 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT; 2006 num_loops = 0; 2007 2008 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 2009 while (cursor.remaining) { 2010 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes); 2011 amdgpu_res_next(&cursor, cursor.size); 2012 } 2013 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2014 2015 /* for IB padding */ 2016 num_dw += 64; 2017 2018 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2019 &job); 2020 if (r) 2021 return r; 2022 2023 if (resv) { 2024 r = amdgpu_sync_resv(adev, &job->sync, resv, 2025 AMDGPU_SYNC_ALWAYS, 2026 AMDGPU_FENCE_OWNER_UNDEFINED); 2027 if (r) { 2028 DRM_ERROR("sync failed (%d).\n", r); 2029 goto error_free; 2030 } 2031 } 2032 2033 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 2034 while (cursor.remaining) { 2035 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes); 2036 uint64_t dst_addr = cursor.start; 2037 2038 dst_addr += amdgpu_ttm_domain_start(adev, 2039 bo->tbo.resource->mem_type); 2040 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2041 cur_size); 2042 2043 amdgpu_res_next(&cursor, cur_size); 2044 } 2045 2046 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2047 WARN_ON(job->ibs[0].length_dw > num_dw); 2048 r = amdgpu_job_submit(job, &adev->mman.entity, 2049 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2050 if (r) 2051 goto error_free; 2052 2053 return 0; 2054 2055 error_free: 2056 amdgpu_job_free(job); 2057 return r; 2058 } 2059 2060 /** 2061 * amdgpu_ttm_evict_resources - evict memory buffers 2062 * @adev: amdgpu device object 2063 * @mem_type: evicted BO's memory type 2064 * 2065 * Evicts all @mem_type buffers on the lru list of the memory type. 2066 * 2067 * Returns: 2068 * 0 for success or a negative error code on failure. 2069 */ 2070 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2071 { 2072 struct ttm_resource_manager *man; 2073 2074 switch (mem_type) { 2075 case TTM_PL_VRAM: 2076 case TTM_PL_TT: 2077 case AMDGPU_PL_GWS: 2078 case AMDGPU_PL_GDS: 2079 case AMDGPU_PL_OA: 2080 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2081 break; 2082 default: 2083 DRM_ERROR("Trying to evict invalid memory type\n"); 2084 return -EINVAL; 2085 } 2086 2087 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2088 } 2089 2090 #if defined(CONFIG_DEBUG_FS) 2091 2092 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused) 2093 { 2094 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2095 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2096 TTM_PL_VRAM); 2097 struct drm_printer p = drm_seq_file_printer(m); 2098 2099 man->func->debug(man, &p); 2100 return 0; 2101 } 2102 2103 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2104 { 2105 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2106 2107 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2108 } 2109 2110 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused) 2111 { 2112 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2113 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2114 TTM_PL_TT); 2115 struct drm_printer p = drm_seq_file_printer(m); 2116 2117 man->func->debug(man, &p); 2118 return 0; 2119 } 2120 2121 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused) 2122 { 2123 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2124 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2125 AMDGPU_PL_GDS); 2126 struct drm_printer p = drm_seq_file_printer(m); 2127 2128 man->func->debug(man, &p); 2129 return 0; 2130 } 2131 2132 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused) 2133 { 2134 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2135 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2136 AMDGPU_PL_GWS); 2137 struct drm_printer p = drm_seq_file_printer(m); 2138 2139 man->func->debug(man, &p); 2140 return 0; 2141 } 2142 2143 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused) 2144 { 2145 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2146 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2147 AMDGPU_PL_OA); 2148 struct drm_printer p = drm_seq_file_printer(m); 2149 2150 man->func->debug(man, &p); 2151 return 0; 2152 } 2153 2154 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table); 2155 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table); 2156 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table); 2157 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table); 2158 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table); 2159 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2160 2161 /* 2162 * amdgpu_ttm_vram_read - Linear read access to VRAM 2163 * 2164 * Accesses VRAM via MMIO for debugging purposes. 2165 */ 2166 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2167 size_t size, loff_t *pos) 2168 { 2169 struct amdgpu_device *adev = file_inode(f)->i_private; 2170 ssize_t result = 0; 2171 2172 if (size & 0x3 || *pos & 0x3) 2173 return -EINVAL; 2174 2175 if (*pos >= adev->gmc.mc_vram_size) 2176 return -ENXIO; 2177 2178 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2179 while (size) { 2180 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2181 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2182 2183 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2184 if (copy_to_user(buf, value, bytes)) 2185 return -EFAULT; 2186 2187 result += bytes; 2188 buf += bytes; 2189 *pos += bytes; 2190 size -= bytes; 2191 } 2192 2193 return result; 2194 } 2195 2196 /* 2197 * amdgpu_ttm_vram_write - Linear write access to VRAM 2198 * 2199 * Accesses VRAM via MMIO for debugging purposes. 2200 */ 2201 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2202 size_t size, loff_t *pos) 2203 { 2204 struct amdgpu_device *adev = file_inode(f)->i_private; 2205 ssize_t result = 0; 2206 int r; 2207 2208 if (size & 0x3 || *pos & 0x3) 2209 return -EINVAL; 2210 2211 if (*pos >= adev->gmc.mc_vram_size) 2212 return -ENXIO; 2213 2214 while (size) { 2215 uint32_t value; 2216 2217 if (*pos >= adev->gmc.mc_vram_size) 2218 return result; 2219 2220 r = get_user(value, (uint32_t *)buf); 2221 if (r) 2222 return r; 2223 2224 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2225 2226 result += 4; 2227 buf += 4; 2228 *pos += 4; 2229 size -= 4; 2230 } 2231 2232 return result; 2233 } 2234 2235 static const struct file_operations amdgpu_ttm_vram_fops = { 2236 .owner = THIS_MODULE, 2237 .read = amdgpu_ttm_vram_read, 2238 .write = amdgpu_ttm_vram_write, 2239 .llseek = default_llseek, 2240 }; 2241 2242 /* 2243 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2244 * 2245 * This function is used to read memory that has been mapped to the 2246 * GPU and the known addresses are not physical addresses but instead 2247 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2248 */ 2249 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2250 size_t size, loff_t *pos) 2251 { 2252 struct amdgpu_device *adev = file_inode(f)->i_private; 2253 struct iommu_domain *dom; 2254 ssize_t result = 0; 2255 int r; 2256 2257 /* retrieve the IOMMU domain if any for this device */ 2258 dom = iommu_get_domain_for_dev(adev->dev); 2259 2260 while (size) { 2261 phys_addr_t addr = *pos & PAGE_MASK; 2262 loff_t off = *pos & ~PAGE_MASK; 2263 size_t bytes = PAGE_SIZE - off; 2264 unsigned long pfn; 2265 struct page *p; 2266 void *ptr; 2267 2268 bytes = bytes < size ? bytes : size; 2269 2270 /* Translate the bus address to a physical address. If 2271 * the domain is NULL it means there is no IOMMU active 2272 * and the address translation is the identity 2273 */ 2274 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2275 2276 pfn = addr >> PAGE_SHIFT; 2277 if (!pfn_valid(pfn)) 2278 return -EPERM; 2279 2280 p = pfn_to_page(pfn); 2281 if (p->mapping != adev->mman.bdev.dev_mapping) 2282 return -EPERM; 2283 2284 ptr = kmap(p); 2285 r = copy_to_user(buf, ptr + off, bytes); 2286 kunmap(p); 2287 if (r) 2288 return -EFAULT; 2289 2290 size -= bytes; 2291 *pos += bytes; 2292 result += bytes; 2293 } 2294 2295 return result; 2296 } 2297 2298 /* 2299 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2300 * 2301 * This function is used to write memory that has been mapped to the 2302 * GPU and the known addresses are not physical addresses but instead 2303 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2304 */ 2305 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2306 size_t size, loff_t *pos) 2307 { 2308 struct amdgpu_device *adev = file_inode(f)->i_private; 2309 struct iommu_domain *dom; 2310 ssize_t result = 0; 2311 int r; 2312 2313 dom = iommu_get_domain_for_dev(adev->dev); 2314 2315 while (size) { 2316 phys_addr_t addr = *pos & PAGE_MASK; 2317 loff_t off = *pos & ~PAGE_MASK; 2318 size_t bytes = PAGE_SIZE - off; 2319 unsigned long pfn; 2320 struct page *p; 2321 void *ptr; 2322 2323 bytes = bytes < size ? bytes : size; 2324 2325 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2326 2327 pfn = addr >> PAGE_SHIFT; 2328 if (!pfn_valid(pfn)) 2329 return -EPERM; 2330 2331 p = pfn_to_page(pfn); 2332 if (p->mapping != adev->mman.bdev.dev_mapping) 2333 return -EPERM; 2334 2335 ptr = kmap(p); 2336 r = copy_from_user(ptr + off, buf, bytes); 2337 kunmap(p); 2338 if (r) 2339 return -EFAULT; 2340 2341 size -= bytes; 2342 *pos += bytes; 2343 result += bytes; 2344 } 2345 2346 return result; 2347 } 2348 2349 static const struct file_operations amdgpu_ttm_iomem_fops = { 2350 .owner = THIS_MODULE, 2351 .read = amdgpu_iomem_read, 2352 .write = amdgpu_iomem_write, 2353 .llseek = default_llseek 2354 }; 2355 2356 #endif 2357 2358 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2359 { 2360 #if defined(CONFIG_DEBUG_FS) 2361 struct drm_minor *minor = adev_to_drm(adev)->primary; 2362 struct dentry *root = minor->debugfs_root; 2363 2364 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2365 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2366 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2367 &amdgpu_ttm_iomem_fops); 2368 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev, 2369 &amdgpu_mm_vram_table_fops); 2370 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev, 2371 &amdgpu_mm_tt_table_fops); 2372 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev, 2373 &amdgpu_mm_gds_table_fops); 2374 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev, 2375 &amdgpu_mm_gws_table_fops); 2376 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev, 2377 &amdgpu_mm_oa_table_fops); 2378 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2379 &amdgpu_ttm_page_pool_fops); 2380 #endif 2381 } 2382