1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "bif/bif_4_1_d.h"
60 
61 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
62 
63 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
64 				   struct ttm_tt *ttm,
65 				   struct ttm_resource *bo_mem);
66 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
67 				      struct ttm_tt *ttm);
68 
69 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
70 				    unsigned int type,
71 				    uint64_t size_in_page)
72 {
73 	return ttm_range_man_init(&adev->mman.bdev, type,
74 				  false, size_in_page);
75 }
76 
77 /**
78  * amdgpu_evict_flags - Compute placement flags
79  *
80  * @bo: The buffer object to evict
81  * @placement: Possible destination(s) for evicted BO
82  *
83  * Fill in placement data when ttm_bo_evict() is called
84  */
85 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
86 				struct ttm_placement *placement)
87 {
88 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
89 	struct amdgpu_bo *abo;
90 	static const struct ttm_place placements = {
91 		.fpfn = 0,
92 		.lpfn = 0,
93 		.mem_type = TTM_PL_SYSTEM,
94 		.flags = 0
95 	};
96 
97 	/* Don't handle scatter gather BOs */
98 	if (bo->type == ttm_bo_type_sg) {
99 		placement->num_placement = 0;
100 		placement->num_busy_placement = 0;
101 		return;
102 	}
103 
104 	/* Object isn't an AMDGPU object so ignore */
105 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
106 		placement->placement = &placements;
107 		placement->busy_placement = &placements;
108 		placement->num_placement = 1;
109 		placement->num_busy_placement = 1;
110 		return;
111 	}
112 
113 	abo = ttm_to_amdgpu_bo(bo);
114 	switch (bo->mem.mem_type) {
115 	case AMDGPU_PL_GDS:
116 	case AMDGPU_PL_GWS:
117 	case AMDGPU_PL_OA:
118 		placement->num_placement = 0;
119 		placement->num_busy_placement = 0;
120 		return;
121 
122 	case TTM_PL_VRAM:
123 		if (!adev->mman.buffer_funcs_enabled) {
124 			/* Move to system memory */
125 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
126 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
127 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
128 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
129 
130 			/* Try evicting to the CPU inaccessible part of VRAM
131 			 * first, but only set GTT as busy placement, so this
132 			 * BO will be evicted to GTT rather than causing other
133 			 * BOs to be evicted from VRAM
134 			 */
135 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
136 							 AMDGPU_GEM_DOMAIN_GTT);
137 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
138 			abo->placements[0].lpfn = 0;
139 			abo->placement.busy_placement = &abo->placements[1];
140 			abo->placement.num_busy_placement = 1;
141 		} else {
142 			/* Move to GTT memory */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
144 		}
145 		break;
146 	case TTM_PL_TT:
147 	default:
148 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
149 		break;
150 	}
151 	*placement = abo->placement;
152 }
153 
154 /**
155  * amdgpu_verify_access - Verify access for a mmap call
156  *
157  * @bo:	The buffer object to map
158  * @filp: The file pointer from the process performing the mmap
159  *
160  * This is called by ttm_bo_mmap() to verify whether a process
161  * has the right to mmap a BO to their process space.
162  */
163 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
164 {
165 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
166 
167 	/*
168 	 * Don't verify access for KFD BOs. They don't have a GEM
169 	 * object associated with them.
170 	 */
171 	if (abo->kfd_bo)
172 		return 0;
173 
174 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
175 		return -EPERM;
176 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
177 					  filp->private_data);
178 }
179 
180 /**
181  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
182  *
183  * @bo: The bo to assign the memory to.
184  * @mm_node: Memory manager node for drm allocator.
185  * @mem: The region where the bo resides.
186  *
187  */
188 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
189 				    struct drm_mm_node *mm_node,
190 				    struct ttm_resource *mem)
191 {
192 	uint64_t addr = 0;
193 
194 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
195 		addr = mm_node->start << PAGE_SHIFT;
196 		addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev),
197 						mem->mem_type);
198 	}
199 	return addr;
200 }
201 
202 /**
203  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
204  * @offset. It also modifies the offset to be within the drm_mm_node returned
205  *
206  * @mem: The region where the bo resides.
207  * @offset: The offset that drm_mm_node is used for finding.
208  *
209  */
210 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem,
211 					       uint64_t *offset)
212 {
213 	struct drm_mm_node *mm_node = mem->mm_node;
214 
215 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
216 		*offset -= (mm_node->size << PAGE_SHIFT);
217 		++mm_node;
218 	}
219 	return mm_node;
220 }
221 
222 /**
223  * amdgpu_ttm_map_buffer - Map memory into the GART windows
224  * @bo: buffer object to map
225  * @mem: memory object to map
226  * @mm_node: drm_mm node object to map
227  * @num_pages: number of pages to map
228  * @offset: offset into @mm_node where to start
229  * @window: which GART window to use
230  * @ring: DMA ring to use for the copy
231  * @tmz: if we should setup a TMZ enabled mapping
232  * @addr: resulting address inside the MC address space
233  *
234  * Setup one of the GART windows to access a specific piece of memory or return
235  * the physical address for local memory.
236  */
237 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
238 				 struct ttm_resource *mem,
239 				 struct drm_mm_node *mm_node,
240 				 unsigned num_pages, uint64_t offset,
241 				 unsigned window, struct amdgpu_ring *ring,
242 				 bool tmz, uint64_t *addr)
243 {
244 	struct amdgpu_device *adev = ring->adev;
245 	struct amdgpu_job *job;
246 	unsigned num_dw, num_bytes;
247 	struct dma_fence *fence;
248 	uint64_t src_addr, dst_addr;
249 	void *cpu_addr;
250 	uint64_t flags;
251 	unsigned int i;
252 	int r;
253 
254 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
255 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
256 
257 	/* Map only what can't be accessed directly */
258 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
259 		*addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset;
260 		return 0;
261 	}
262 
263 	*addr = adev->gmc.gart_start;
264 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
265 		AMDGPU_GPU_PAGE_SIZE;
266 	*addr += offset & ~PAGE_MASK;
267 
268 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
269 	num_bytes = num_pages * 8;
270 
271 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
272 				     AMDGPU_IB_POOL_DELAYED, &job);
273 	if (r)
274 		return r;
275 
276 	src_addr = num_dw * 4;
277 	src_addr += job->ibs[0].gpu_addr;
278 
279 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
280 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
281 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
282 				dst_addr, num_bytes, false);
283 
284 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
285 	WARN_ON(job->ibs[0].length_dw > num_dw);
286 
287 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
288 	if (tmz)
289 		flags |= AMDGPU_PTE_TMZ;
290 
291 	cpu_addr = &job->ibs[0].ptr[num_dw];
292 
293 	if (mem->mem_type == TTM_PL_TT) {
294 		dma_addr_t *dma_address;
295 
296 		dma_address = &bo->ttm->dma_address[offset >> PAGE_SHIFT];
297 		r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
298 				    cpu_addr);
299 		if (r)
300 			goto error_free;
301 	} else {
302 		dma_addr_t dma_address;
303 
304 		dma_address = (mm_node->start << PAGE_SHIFT) + offset;
305 		dma_address += adev->vm_manager.vram_base_offset;
306 
307 		for (i = 0; i < num_pages; ++i) {
308 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
309 					    &dma_address, flags, cpu_addr);
310 			if (r)
311 				goto error_free;
312 
313 			dma_address += PAGE_SIZE;
314 		}
315 	}
316 
317 	r = amdgpu_job_submit(job, &adev->mman.entity,
318 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
319 	if (r)
320 		goto error_free;
321 
322 	dma_fence_put(fence);
323 
324 	return r;
325 
326 error_free:
327 	amdgpu_job_free(job);
328 	return r;
329 }
330 
331 /**
332  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
333  * @adev: amdgpu device
334  * @src: buffer/address where to read from
335  * @dst: buffer/address where to write to
336  * @size: number of bytes to copy
337  * @tmz: if a secure copy should be used
338  * @resv: resv object to sync to
339  * @f: Returns the last fence if multiple jobs are submitted.
340  *
341  * The function copies @size bytes from {src->mem + src->offset} to
342  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
343  * move and different for a BO to BO copy.
344  *
345  */
346 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
347 			       const struct amdgpu_copy_mem *src,
348 			       const struct amdgpu_copy_mem *dst,
349 			       uint64_t size, bool tmz,
350 			       struct dma_resv *resv,
351 			       struct dma_fence **f)
352 {
353 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
354 					AMDGPU_GPU_PAGE_SIZE);
355 
356 	uint64_t src_node_size, dst_node_size, src_offset, dst_offset;
357 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
358 	struct drm_mm_node *src_mm, *dst_mm;
359 	struct dma_fence *fence = NULL;
360 	int r = 0;
361 
362 	if (!adev->mman.buffer_funcs_enabled) {
363 		DRM_ERROR("Trying to move memory with ring turned off.\n");
364 		return -EINVAL;
365 	}
366 
367 	src_offset = src->offset;
368 	if (src->mem->mm_node) {
369 		src_mm = amdgpu_find_mm_node(src->mem, &src_offset);
370 		src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset;
371 	} else {
372 		src_mm = NULL;
373 		src_node_size = ULLONG_MAX;
374 	}
375 
376 	dst_offset = dst->offset;
377 	if (dst->mem->mm_node) {
378 		dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset);
379 		dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset;
380 	} else {
381 		dst_mm = NULL;
382 		dst_node_size = ULLONG_MAX;
383 	}
384 
385 	mutex_lock(&adev->mman.gtt_window_lock);
386 
387 	while (size) {
388 		uint32_t src_page_offset = src_offset & ~PAGE_MASK;
389 		uint32_t dst_page_offset = dst_offset & ~PAGE_MASK;
390 		struct dma_fence *next;
391 		uint32_t cur_size;
392 		uint64_t from, to;
393 
394 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
395 		 * begins at an offset, then adjust the size accordingly
396 		 */
397 		cur_size = max(src_page_offset, dst_page_offset);
398 		cur_size = min(min3(src_node_size, dst_node_size, size),
399 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
400 
401 		/* Map src to window 0 and dst to window 1. */
402 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm,
403 					  PFN_UP(cur_size + src_page_offset),
404 					  src_offset, 0, ring, tmz, &from);
405 		if (r)
406 			goto error;
407 
408 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm,
409 					  PFN_UP(cur_size + dst_page_offset),
410 					  dst_offset, 1, ring, tmz, &to);
411 		if (r)
412 			goto error;
413 
414 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
415 				       resv, &next, false, true, tmz);
416 		if (r)
417 			goto error;
418 
419 		dma_fence_put(fence);
420 		fence = next;
421 
422 		size -= cur_size;
423 		if (!size)
424 			break;
425 
426 		src_node_size -= cur_size;
427 		if (!src_node_size) {
428 			++src_mm;
429 			src_node_size = src_mm->size << PAGE_SHIFT;
430 			src_offset = 0;
431 		} else {
432 			src_offset += cur_size;
433 		}
434 
435 		dst_node_size -= cur_size;
436 		if (!dst_node_size) {
437 			++dst_mm;
438 			dst_node_size = dst_mm->size << PAGE_SHIFT;
439 			dst_offset = 0;
440 		} else {
441 			dst_offset += cur_size;
442 		}
443 	}
444 error:
445 	mutex_unlock(&adev->mman.gtt_window_lock);
446 	if (f)
447 		*f = dma_fence_get(fence);
448 	dma_fence_put(fence);
449 	return r;
450 }
451 
452 /*
453  * amdgpu_move_blit - Copy an entire buffer to another buffer
454  *
455  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
456  * help move buffers to and from VRAM.
457  */
458 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
459 			    bool evict,
460 			    struct ttm_resource *new_mem,
461 			    struct ttm_resource *old_mem)
462 {
463 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
464 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
465 	struct amdgpu_copy_mem src, dst;
466 	struct dma_fence *fence = NULL;
467 	int r;
468 
469 	src.bo = bo;
470 	dst.bo = bo;
471 	src.mem = old_mem;
472 	dst.mem = new_mem;
473 	src.offset = 0;
474 	dst.offset = 0;
475 
476 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
477 				       new_mem->num_pages << PAGE_SHIFT,
478 				       amdgpu_bo_encrypted(abo),
479 				       bo->base.resv, &fence);
480 	if (r)
481 		goto error;
482 
483 	/* clear the space being freed */
484 	if (old_mem->mem_type == TTM_PL_VRAM &&
485 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
486 		struct dma_fence *wipe_fence = NULL;
487 
488 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
489 				       NULL, &wipe_fence);
490 		if (r) {
491 			goto error;
492 		} else if (wipe_fence) {
493 			dma_fence_put(fence);
494 			fence = wipe_fence;
495 		}
496 	}
497 
498 	/* Always block for VM page tables before committing the new location */
499 	if (bo->type == ttm_bo_type_kernel)
500 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
501 	else
502 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
503 	dma_fence_put(fence);
504 	return r;
505 
506 error:
507 	if (fence)
508 		dma_fence_wait(fence, false);
509 	dma_fence_put(fence);
510 	return r;
511 }
512 
513 /*
514  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
515  *
516  * Called by amdgpu_bo_move()
517  */
518 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
519 			       struct ttm_resource *mem)
520 {
521 	struct drm_mm_node *nodes = mem->mm_node;
522 
523 	if (mem->mem_type == TTM_PL_SYSTEM ||
524 	    mem->mem_type == TTM_PL_TT)
525 		return true;
526 	if (mem->mem_type != TTM_PL_VRAM)
527 		return false;
528 
529 	/* ttm_resource_ioremap only supports contiguous memory */
530 	if (nodes->size != mem->num_pages)
531 		return false;
532 
533 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
534 		<= adev->gmc.visible_vram_size;
535 }
536 
537 /*
538  * amdgpu_bo_move - Move a buffer object to a new memory location
539  *
540  * Called by ttm_bo_handle_move_mem()
541  */
542 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
543 			  struct ttm_operation_ctx *ctx,
544 			  struct ttm_resource *new_mem,
545 			  struct ttm_place *hop)
546 {
547 	struct amdgpu_device *adev;
548 	struct amdgpu_bo *abo;
549 	struct ttm_resource *old_mem = &bo->mem;
550 	int r;
551 
552 	if (new_mem->mem_type == TTM_PL_TT) {
553 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
554 		if (r)
555 			return r;
556 	}
557 
558 	/* Can't move a pinned BO */
559 	abo = ttm_to_amdgpu_bo(bo);
560 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
561 		return -EINVAL;
562 
563 	adev = amdgpu_ttm_adev(bo->bdev);
564 
565 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
566 		ttm_bo_move_null(bo, new_mem);
567 		goto out;
568 	}
569 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
570 	    new_mem->mem_type == TTM_PL_TT) {
571 		ttm_bo_move_null(bo, new_mem);
572 		goto out;
573 	}
574 	if (old_mem->mem_type == TTM_PL_TT &&
575 	    new_mem->mem_type == TTM_PL_SYSTEM) {
576 		r = ttm_bo_wait_ctx(bo, ctx);
577 		if (r)
578 			return r;
579 
580 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
581 		ttm_resource_free(bo, &bo->mem);
582 		ttm_bo_assign_mem(bo, new_mem);
583 		goto out;
584 	}
585 
586 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
587 	    old_mem->mem_type == AMDGPU_PL_GWS ||
588 	    old_mem->mem_type == AMDGPU_PL_OA ||
589 	    new_mem->mem_type == AMDGPU_PL_GDS ||
590 	    new_mem->mem_type == AMDGPU_PL_GWS ||
591 	    new_mem->mem_type == AMDGPU_PL_OA) {
592 		/* Nothing to save here */
593 		ttm_bo_move_null(bo, new_mem);
594 		goto out;
595 	}
596 
597 	if (adev->mman.buffer_funcs_enabled) {
598 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
599 		      new_mem->mem_type == TTM_PL_VRAM) ||
600 		     (old_mem->mem_type == TTM_PL_VRAM &&
601 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
602 			hop->fpfn = 0;
603 			hop->lpfn = 0;
604 			hop->mem_type = TTM_PL_TT;
605 			hop->flags = 0;
606 			return -EMULTIHOP;
607 		}
608 
609 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
610 	} else {
611 		r = -ENODEV;
612 	}
613 
614 	if (r) {
615 		/* Check that all memory is CPU accessible */
616 		if (!amdgpu_mem_visible(adev, old_mem) ||
617 		    !amdgpu_mem_visible(adev, new_mem)) {
618 			pr_err("Move buffer fallback to memcpy unavailable\n");
619 			return r;
620 		}
621 
622 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
623 		if (r)
624 			return r;
625 	}
626 
627 	if (bo->type == ttm_bo_type_device &&
628 	    new_mem->mem_type == TTM_PL_VRAM &&
629 	    old_mem->mem_type != TTM_PL_VRAM) {
630 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
631 		 * accesses the BO after it's moved.
632 		 */
633 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
634 	}
635 
636 out:
637 	/* update statistics */
638 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
639 	amdgpu_bo_move_notify(bo, evict, new_mem);
640 	return 0;
641 }
642 
643 /*
644  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
645  *
646  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
647  */
648 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem)
649 {
650 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
651 	struct drm_mm_node *mm_node = mem->mm_node;
652 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
653 
654 	switch (mem->mem_type) {
655 	case TTM_PL_SYSTEM:
656 		/* system memory */
657 		return 0;
658 	case TTM_PL_TT:
659 		break;
660 	case TTM_PL_VRAM:
661 		mem->bus.offset = mem->start << PAGE_SHIFT;
662 		/* check if it's visible */
663 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
664 			return -EINVAL;
665 		/* Only physically contiguous buffers apply. In a contiguous
666 		 * buffer, size of the first mm_node would match the number of
667 		 * pages in ttm_resource.
668 		 */
669 		if (adev->mman.aper_base_kaddr &&
670 		    (mm_node->size == mem->num_pages))
671 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
672 					mem->bus.offset;
673 
674 		mem->bus.offset += adev->gmc.aper_base;
675 		mem->bus.is_iomem = true;
676 		mem->bus.caching = ttm_write_combined;
677 		break;
678 	default:
679 		return -EINVAL;
680 	}
681 	return 0;
682 }
683 
684 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
685 					   unsigned long page_offset)
686 {
687 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
688 	uint64_t offset = (page_offset << PAGE_SHIFT);
689 	struct drm_mm_node *mm;
690 
691 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
692 	offset += adev->gmc.aper_base;
693 	return mm->start + (offset >> PAGE_SHIFT);
694 }
695 
696 /**
697  * amdgpu_ttm_domain_start - Returns GPU start address
698  * @adev: amdgpu device object
699  * @type: type of the memory
700  *
701  * Returns:
702  * GPU start address of a memory domain
703  */
704 
705 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
706 {
707 	switch (type) {
708 	case TTM_PL_TT:
709 		return adev->gmc.gart_start;
710 	case TTM_PL_VRAM:
711 		return adev->gmc.vram_start;
712 	}
713 
714 	return 0;
715 }
716 
717 /*
718  * TTM backend functions.
719  */
720 struct amdgpu_ttm_tt {
721 	struct ttm_tt	ttm;
722 	struct drm_gem_object	*gobj;
723 	u64			offset;
724 	uint64_t		userptr;
725 	struct task_struct	*usertask;
726 	uint32_t		userflags;
727 	bool			bound;
728 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
729 	struct hmm_range	*range;
730 #endif
731 };
732 
733 #ifdef CONFIG_DRM_AMDGPU_USERPTR
734 /*
735  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
736  * memory and start HMM tracking CPU page table update
737  *
738  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
739  * once afterwards to stop HMM tracking
740  */
741 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
742 {
743 	struct ttm_tt *ttm = bo->tbo.ttm;
744 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
745 	unsigned long start = gtt->userptr;
746 	struct vm_area_struct *vma;
747 	struct hmm_range *range;
748 	unsigned long timeout;
749 	struct mm_struct *mm;
750 	unsigned long i;
751 	int r = 0;
752 
753 	mm = bo->notifier.mm;
754 	if (unlikely(!mm)) {
755 		DRM_DEBUG_DRIVER("BO is not registered?\n");
756 		return -EFAULT;
757 	}
758 
759 	/* Another get_user_pages is running at the same time?? */
760 	if (WARN_ON(gtt->range))
761 		return -EFAULT;
762 
763 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
764 		return -ESRCH;
765 
766 	range = kzalloc(sizeof(*range), GFP_KERNEL);
767 	if (unlikely(!range)) {
768 		r = -ENOMEM;
769 		goto out;
770 	}
771 	range->notifier = &bo->notifier;
772 	range->start = bo->notifier.interval_tree.start;
773 	range->end = bo->notifier.interval_tree.last + 1;
774 	range->default_flags = HMM_PFN_REQ_FAULT;
775 	if (!amdgpu_ttm_tt_is_readonly(ttm))
776 		range->default_flags |= HMM_PFN_REQ_WRITE;
777 
778 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
779 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
780 	if (unlikely(!range->hmm_pfns)) {
781 		r = -ENOMEM;
782 		goto out_free_ranges;
783 	}
784 
785 	mmap_read_lock(mm);
786 	vma = find_vma(mm, start);
787 	if (unlikely(!vma || start < vma->vm_start)) {
788 		r = -EFAULT;
789 		goto out_unlock;
790 	}
791 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
792 		vma->vm_file)) {
793 		r = -EPERM;
794 		goto out_unlock;
795 	}
796 	mmap_read_unlock(mm);
797 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
798 
799 retry:
800 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
801 
802 	mmap_read_lock(mm);
803 	r = hmm_range_fault(range);
804 	mmap_read_unlock(mm);
805 	if (unlikely(r)) {
806 		/*
807 		 * FIXME: This timeout should encompass the retry from
808 		 * mmu_interval_read_retry() as well.
809 		 */
810 		if (r == -EBUSY && !time_after(jiffies, timeout))
811 			goto retry;
812 		goto out_free_pfns;
813 	}
814 
815 	/*
816 	 * Due to default_flags, all pages are HMM_PFN_VALID or
817 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
818 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
819 	 */
820 	for (i = 0; i < ttm->num_pages; i++)
821 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
822 
823 	gtt->range = range;
824 	mmput(mm);
825 
826 	return 0;
827 
828 out_unlock:
829 	mmap_read_unlock(mm);
830 out_free_pfns:
831 	kvfree(range->hmm_pfns);
832 out_free_ranges:
833 	kfree(range);
834 out:
835 	mmput(mm);
836 	return r;
837 }
838 
839 /*
840  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
841  * Check if the pages backing this ttm range have been invalidated
842  *
843  * Returns: true if pages are still valid
844  */
845 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
846 {
847 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
848 	bool r = false;
849 
850 	if (!gtt || !gtt->userptr)
851 		return false;
852 
853 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
854 		gtt->userptr, ttm->num_pages);
855 
856 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
857 		"No user pages to check\n");
858 
859 	if (gtt->range) {
860 		/*
861 		 * FIXME: Must always hold notifier_lock for this, and must
862 		 * not ignore the return code.
863 		 */
864 		r = mmu_interval_read_retry(gtt->range->notifier,
865 					 gtt->range->notifier_seq);
866 		kvfree(gtt->range->hmm_pfns);
867 		kfree(gtt->range);
868 		gtt->range = NULL;
869 	}
870 
871 	return !r;
872 }
873 #endif
874 
875 /*
876  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
877  *
878  * Called by amdgpu_cs_list_validate(). This creates the page list
879  * that backs user memory and will ultimately be mapped into the device
880  * address space.
881  */
882 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
883 {
884 	unsigned long i;
885 
886 	for (i = 0; i < ttm->num_pages; ++i)
887 		ttm->pages[i] = pages ? pages[i] : NULL;
888 }
889 
890 /*
891  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
892  *
893  * Called by amdgpu_ttm_backend_bind()
894  **/
895 static int amdgpu_ttm_tt_pin_userptr(struct ttm_bo_device *bdev,
896 				     struct ttm_tt *ttm)
897 {
898 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
899 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
900 	int r;
901 
902 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
903 	enum dma_data_direction direction = write ?
904 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
905 
906 	/* Allocate an SG array and squash pages into it */
907 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
908 				      ttm->num_pages << PAGE_SHIFT,
909 				      GFP_KERNEL);
910 	if (r)
911 		goto release_sg;
912 
913 	/* Map SG to device */
914 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
915 	if (r)
916 		goto release_sg;
917 
918 	/* convert SG to linear array of pages and dma addresses */
919 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
920 				       ttm->num_pages);
921 
922 	return 0;
923 
924 release_sg:
925 	kfree(ttm->sg);
926 	ttm->sg = NULL;
927 	return r;
928 }
929 
930 /*
931  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
932  */
933 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_bo_device *bdev,
934 					struct ttm_tt *ttm)
935 {
936 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
937 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
938 
939 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
940 	enum dma_data_direction direction = write ?
941 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
942 
943 	/* double check that we don't free the table twice */
944 	if (!ttm->sg->sgl)
945 		return;
946 
947 	/* unmap the pages mapped to the device */
948 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
949 	sg_free_table(ttm->sg);
950 
951 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
952 	if (gtt->range) {
953 		unsigned long i;
954 
955 		for (i = 0; i < ttm->num_pages; i++) {
956 			if (ttm->pages[i] !=
957 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
958 				break;
959 		}
960 
961 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
962 	}
963 #endif
964 }
965 
966 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
967 				struct ttm_buffer_object *tbo,
968 				uint64_t flags)
969 {
970 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
971 	struct ttm_tt *ttm = tbo->ttm;
972 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
973 	int r;
974 
975 	if (amdgpu_bo_encrypted(abo))
976 		flags |= AMDGPU_PTE_TMZ;
977 
978 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
979 		uint64_t page_idx = 1;
980 
981 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
982 				ttm->pages, gtt->ttm.dma_address, flags);
983 		if (r)
984 			goto gart_bind_fail;
985 
986 		/* The memory type of the first page defaults to UC. Now
987 		 * modify the memory type to NC from the second page of
988 		 * the BO onward.
989 		 */
990 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
991 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
992 
993 		r = amdgpu_gart_bind(adev,
994 				gtt->offset + (page_idx << PAGE_SHIFT),
995 				ttm->num_pages - page_idx,
996 				&ttm->pages[page_idx],
997 				&(gtt->ttm.dma_address[page_idx]), flags);
998 	} else {
999 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1000 				     ttm->pages, gtt->ttm.dma_address, flags);
1001 	}
1002 
1003 gart_bind_fail:
1004 	if (r)
1005 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1006 			  ttm->num_pages, gtt->offset);
1007 
1008 	return r;
1009 }
1010 
1011 /*
1012  * amdgpu_ttm_backend_bind - Bind GTT memory
1013  *
1014  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1015  * This handles binding GTT memory to the device address space.
1016  */
1017 static int amdgpu_ttm_backend_bind(struct ttm_bo_device *bdev,
1018 				   struct ttm_tt *ttm,
1019 				   struct ttm_resource *bo_mem)
1020 {
1021 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1022 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1023 	uint64_t flags;
1024 	int r = 0;
1025 
1026 	if (!bo_mem)
1027 		return -EINVAL;
1028 
1029 	if (gtt->bound)
1030 		return 0;
1031 
1032 	if (gtt->userptr) {
1033 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
1034 		if (r) {
1035 			DRM_ERROR("failed to pin userptr\n");
1036 			return r;
1037 		}
1038 	}
1039 	if (!ttm->num_pages) {
1040 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
1041 		     ttm->num_pages, bo_mem, ttm);
1042 	}
1043 
1044 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1045 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1046 	    bo_mem->mem_type == AMDGPU_PL_OA)
1047 		return -EINVAL;
1048 
1049 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1050 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1051 		return 0;
1052 	}
1053 
1054 	/* compute PTE flags relevant to this BO memory */
1055 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1056 
1057 	/* bind pages into GART page tables */
1058 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1059 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1060 		ttm->pages, gtt->ttm.dma_address, flags);
1061 
1062 	if (r)
1063 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
1064 			  ttm->num_pages, gtt->offset);
1065 	gtt->bound = true;
1066 	return r;
1067 }
1068 
1069 /*
1070  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
1071  * through AGP or GART aperture.
1072  *
1073  * If bo is accessible through AGP aperture, then use AGP aperture
1074  * to access bo; otherwise allocate logical space in GART aperture
1075  * and map bo to GART aperture.
1076  */
1077 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1078 {
1079 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1080 	struct ttm_operation_ctx ctx = { false, false };
1081 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1082 	struct ttm_resource tmp;
1083 	struct ttm_placement placement;
1084 	struct ttm_place placements;
1085 	uint64_t addr, flags;
1086 	int r;
1087 
1088 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1089 		return 0;
1090 
1091 	addr = amdgpu_gmc_agp_addr(bo);
1092 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1093 		bo->mem.start = addr >> PAGE_SHIFT;
1094 	} else {
1095 
1096 		/* allocate GART space */
1097 		tmp = bo->mem;
1098 		tmp.mm_node = NULL;
1099 		placement.num_placement = 1;
1100 		placement.placement = &placements;
1101 		placement.num_busy_placement = 1;
1102 		placement.busy_placement = &placements;
1103 		placements.fpfn = 0;
1104 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1105 		placements.mem_type = TTM_PL_TT;
1106 		placements.flags = bo->mem.placement;
1107 
1108 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1109 		if (unlikely(r))
1110 			return r;
1111 
1112 		/* compute PTE flags for this buffer object */
1113 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1114 
1115 		/* Bind pages */
1116 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1117 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1118 		if (unlikely(r)) {
1119 			ttm_resource_free(bo, &tmp);
1120 			return r;
1121 		}
1122 
1123 		ttm_resource_free(bo, &bo->mem);
1124 		bo->mem = tmp;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /*
1131  * amdgpu_ttm_recover_gart - Rebind GTT pages
1132  *
1133  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1134  * rebind GTT pages during a GPU reset.
1135  */
1136 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1137 {
1138 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1139 	uint64_t flags;
1140 	int r;
1141 
1142 	if (!tbo->ttm)
1143 		return 0;
1144 
1145 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1146 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1147 
1148 	return r;
1149 }
1150 
1151 /*
1152  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1153  *
1154  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1155  * ttm_tt_destroy().
1156  */
1157 static void amdgpu_ttm_backend_unbind(struct ttm_bo_device *bdev,
1158 				      struct ttm_tt *ttm)
1159 {
1160 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1161 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1162 	int r;
1163 
1164 	if (!gtt->bound)
1165 		return;
1166 
1167 	/* if the pages have userptr pinning then clear that first */
1168 	if (gtt->userptr)
1169 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1170 
1171 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1172 		return;
1173 
1174 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1175 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1176 	if (r)
1177 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1178 			  gtt->ttm.num_pages, gtt->offset);
1179 	gtt->bound = false;
1180 }
1181 
1182 static void amdgpu_ttm_backend_destroy(struct ttm_bo_device *bdev,
1183 				       struct ttm_tt *ttm)
1184 {
1185 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1186 
1187 	amdgpu_ttm_backend_unbind(bdev, ttm);
1188 	ttm_tt_destroy_common(bdev, ttm);
1189 	if (gtt->usertask)
1190 		put_task_struct(gtt->usertask);
1191 
1192 	ttm_tt_fini(&gtt->ttm);
1193 	kfree(gtt);
1194 }
1195 
1196 /**
1197  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1198  *
1199  * @bo: The buffer object to create a GTT ttm_tt object around
1200  * @page_flags: Page flags to be added to the ttm_tt object
1201  *
1202  * Called by ttm_tt_create().
1203  */
1204 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1205 					   uint32_t page_flags)
1206 {
1207 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1208 	struct amdgpu_ttm_tt *gtt;
1209 	enum ttm_caching caching;
1210 
1211 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1212 	if (gtt == NULL) {
1213 		return NULL;
1214 	}
1215 	gtt->gobj = &bo->base;
1216 
1217 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1218 		caching = ttm_write_combined;
1219 	else
1220 		caching = ttm_cached;
1221 
1222 	/* allocate space for the uninitialized page entries */
1223 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1224 		kfree(gtt);
1225 		return NULL;
1226 	}
1227 	return &gtt->ttm;
1228 }
1229 
1230 /*
1231  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1232  *
1233  * Map the pages of a ttm_tt object to an address space visible
1234  * to the underlying device.
1235  */
1236 static int amdgpu_ttm_tt_populate(struct ttm_bo_device *bdev,
1237 				  struct ttm_tt *ttm,
1238 				  struct ttm_operation_ctx *ctx)
1239 {
1240 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1241 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1242 
1243 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1244 	if (gtt && gtt->userptr) {
1245 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1246 		if (!ttm->sg)
1247 			return -ENOMEM;
1248 
1249 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1250 		return 0;
1251 	}
1252 
1253 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1254 		if (!ttm->sg) {
1255 			struct dma_buf_attachment *attach;
1256 			struct sg_table *sgt;
1257 
1258 			attach = gtt->gobj->import_attach;
1259 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1260 			if (IS_ERR(sgt))
1261 				return PTR_ERR(sgt);
1262 
1263 			ttm->sg = sgt;
1264 		}
1265 
1266 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
1267 					       ttm->num_pages);
1268 		return 0;
1269 	}
1270 
1271 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1272 }
1273 
1274 /*
1275  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1276  *
1277  * Unmaps pages of a ttm_tt object from the device address space and
1278  * unpopulates the page array backing it.
1279  */
1280 static void amdgpu_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
1281 				     struct ttm_tt *ttm)
1282 {
1283 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1284 	struct amdgpu_device *adev;
1285 
1286 	if (gtt && gtt->userptr) {
1287 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1288 		kfree(ttm->sg);
1289 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1290 		return;
1291 	}
1292 
1293 	if (ttm->sg && gtt->gobj->import_attach) {
1294 		struct dma_buf_attachment *attach;
1295 
1296 		attach = gtt->gobj->import_attach;
1297 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1298 		ttm->sg = NULL;
1299 		return;
1300 	}
1301 
1302 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1303 		return;
1304 
1305 	adev = amdgpu_ttm_adev(bdev);
1306 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1307 }
1308 
1309 /**
1310  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1311  * task
1312  *
1313  * @bo: The ttm_buffer_object to bind this userptr to
1314  * @addr:  The address in the current tasks VM space to use
1315  * @flags: Requirements of userptr object.
1316  *
1317  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1318  * to current task
1319  */
1320 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1321 			      uint64_t addr, uint32_t flags)
1322 {
1323 	struct amdgpu_ttm_tt *gtt;
1324 
1325 	if (!bo->ttm) {
1326 		/* TODO: We want a separate TTM object type for userptrs */
1327 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1328 		if (bo->ttm == NULL)
1329 			return -ENOMEM;
1330 	}
1331 
1332 	gtt = (void *)bo->ttm;
1333 	gtt->userptr = addr;
1334 	gtt->userflags = flags;
1335 
1336 	if (gtt->usertask)
1337 		put_task_struct(gtt->usertask);
1338 	gtt->usertask = current->group_leader;
1339 	get_task_struct(gtt->usertask);
1340 
1341 	return 0;
1342 }
1343 
1344 /*
1345  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1346  */
1347 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1348 {
1349 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1350 
1351 	if (gtt == NULL)
1352 		return NULL;
1353 
1354 	if (gtt->usertask == NULL)
1355 		return NULL;
1356 
1357 	return gtt->usertask->mm;
1358 }
1359 
1360 /*
1361  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1362  * address range for the current task.
1363  *
1364  */
1365 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1366 				  unsigned long end)
1367 {
1368 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1369 	unsigned long size;
1370 
1371 	if (gtt == NULL || !gtt->userptr)
1372 		return false;
1373 
1374 	/* Return false if no part of the ttm_tt object lies within
1375 	 * the range
1376 	 */
1377 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1378 	if (gtt->userptr > end || gtt->userptr + size <= start)
1379 		return false;
1380 
1381 	return true;
1382 }
1383 
1384 /*
1385  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1386  */
1387 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1388 {
1389 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1390 
1391 	if (gtt == NULL || !gtt->userptr)
1392 		return false;
1393 
1394 	return true;
1395 }
1396 
1397 /*
1398  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1399  */
1400 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1401 {
1402 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1403 
1404 	if (gtt == NULL)
1405 		return false;
1406 
1407 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1408 }
1409 
1410 /**
1411  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1412  *
1413  * @ttm: The ttm_tt object to compute the flags for
1414  * @mem: The memory registry backing this ttm_tt object
1415  *
1416  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1417  */
1418 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1419 {
1420 	uint64_t flags = 0;
1421 
1422 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1423 		flags |= AMDGPU_PTE_VALID;
1424 
1425 	if (mem && mem->mem_type == TTM_PL_TT) {
1426 		flags |= AMDGPU_PTE_SYSTEM;
1427 
1428 		if (ttm->caching == ttm_cached)
1429 			flags |= AMDGPU_PTE_SNOOPED;
1430 	}
1431 
1432 	return flags;
1433 }
1434 
1435 /**
1436  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1437  *
1438  * @adev: amdgpu_device pointer
1439  * @ttm: The ttm_tt object to compute the flags for
1440  * @mem: The memory registry backing this ttm_tt object
1441  *
1442  * Figure out the flags to use for a VM PTE (Page Table Entry).
1443  */
1444 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1445 				 struct ttm_resource *mem)
1446 {
1447 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1448 
1449 	flags |= adev->gart.gart_pte_flags;
1450 	flags |= AMDGPU_PTE_READABLE;
1451 
1452 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1453 		flags |= AMDGPU_PTE_WRITEABLE;
1454 
1455 	return flags;
1456 }
1457 
1458 /*
1459  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1460  * object.
1461  *
1462  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1463  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1464  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1465  * used to clean out a memory space.
1466  */
1467 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1468 					    const struct ttm_place *place)
1469 {
1470 	unsigned long num_pages = bo->mem.num_pages;
1471 	struct drm_mm_node *node = bo->mem.mm_node;
1472 	struct dma_resv_list *flist;
1473 	struct dma_fence *f;
1474 	int i;
1475 
1476 	if (bo->type == ttm_bo_type_kernel &&
1477 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1478 		return false;
1479 
1480 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1481 	 * If true, then return false as any KFD process needs all its BOs to
1482 	 * be resident to run successfully
1483 	 */
1484 	flist = dma_resv_get_list(bo->base.resv);
1485 	if (flist) {
1486 		for (i = 0; i < flist->shared_count; ++i) {
1487 			f = rcu_dereference_protected(flist->shared[i],
1488 				dma_resv_held(bo->base.resv));
1489 			if (amdkfd_fence_check_mm(f, current->mm))
1490 				return false;
1491 		}
1492 	}
1493 
1494 	switch (bo->mem.mem_type) {
1495 	case TTM_PL_TT:
1496 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1497 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1498 			return false;
1499 		return true;
1500 
1501 	case TTM_PL_VRAM:
1502 		/* Check each drm MM node individually */
1503 		while (num_pages) {
1504 			if (place->fpfn < (node->start + node->size) &&
1505 			    !(place->lpfn && place->lpfn <= node->start))
1506 				return true;
1507 
1508 			num_pages -= node->size;
1509 			++node;
1510 		}
1511 		return false;
1512 
1513 	default:
1514 		break;
1515 	}
1516 
1517 	return ttm_bo_eviction_valuable(bo, place);
1518 }
1519 
1520 /**
1521  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1522  *
1523  * @bo:  The buffer object to read/write
1524  * @offset:  Offset into buffer object
1525  * @buf:  Secondary buffer to write/read from
1526  * @len: Length in bytes of access
1527  * @write:  true if writing
1528  *
1529  * This is used to access VRAM that backs a buffer object via MMIO
1530  * access for debugging purposes.
1531  */
1532 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1533 				    unsigned long offset,
1534 				    void *buf, int len, int write)
1535 {
1536 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1537 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1538 	struct drm_mm_node *nodes;
1539 	uint32_t value = 0;
1540 	int ret = 0;
1541 	uint64_t pos;
1542 	unsigned long flags;
1543 
1544 	if (bo->mem.mem_type != TTM_PL_VRAM)
1545 		return -EIO;
1546 
1547 	pos = offset;
1548 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos);
1549 	pos += (nodes->start << PAGE_SHIFT);
1550 
1551 	while (len && pos < adev->gmc.mc_vram_size) {
1552 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1553 		uint64_t bytes = 4 - (pos & 3);
1554 		uint32_t shift = (pos & 3) * 8;
1555 		uint32_t mask = 0xffffffff << shift;
1556 
1557 		if (len < bytes) {
1558 			mask &= 0xffffffff >> (bytes - len) * 8;
1559 			bytes = len;
1560 		}
1561 
1562 		if (mask != 0xffffffff) {
1563 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1564 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1565 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1566 			if (!write || mask != 0xffffffff)
1567 				value = RREG32_NO_KIQ(mmMM_DATA);
1568 			if (write) {
1569 				value &= ~mask;
1570 				value |= (*(uint32_t *)buf << shift) & mask;
1571 				WREG32_NO_KIQ(mmMM_DATA, value);
1572 			}
1573 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1574 			if (!write) {
1575 				value = (value & mask) >> shift;
1576 				memcpy(buf, &value, bytes);
1577 			}
1578 		} else {
1579 			bytes = (nodes->start + nodes->size) << PAGE_SHIFT;
1580 			bytes = min(bytes - pos, (uint64_t)len & ~0x3ull);
1581 
1582 			amdgpu_device_vram_access(adev, pos, (uint32_t *)buf,
1583 						  bytes, write);
1584 		}
1585 
1586 		ret += bytes;
1587 		buf = (uint8_t *)buf + bytes;
1588 		pos += bytes;
1589 		len -= bytes;
1590 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1591 			++nodes;
1592 			pos = (nodes->start << PAGE_SHIFT);
1593 		}
1594 	}
1595 
1596 	return ret;
1597 }
1598 
1599 static void
1600 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1601 {
1602 	amdgpu_bo_move_notify(bo, false, NULL);
1603 }
1604 
1605 static struct ttm_bo_driver amdgpu_bo_driver = {
1606 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1607 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1608 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1609 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1610 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1611 	.evict_flags = &amdgpu_evict_flags,
1612 	.move = &amdgpu_bo_move,
1613 	.verify_access = &amdgpu_verify_access,
1614 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1615 	.release_notify = &amdgpu_bo_release_notify,
1616 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1617 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1618 	.access_memory = &amdgpu_ttm_access_memory,
1619 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1620 };
1621 
1622 /*
1623  * Firmware Reservation functions
1624  */
1625 /**
1626  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1627  *
1628  * @adev: amdgpu_device pointer
1629  *
1630  * free fw reserved vram if it has been reserved.
1631  */
1632 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1633 {
1634 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1635 		NULL, &adev->mman.fw_vram_usage_va);
1636 }
1637 
1638 /**
1639  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1640  *
1641  * @adev: amdgpu_device pointer
1642  *
1643  * create bo vram reservation from fw.
1644  */
1645 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1646 {
1647 	uint64_t vram_size = adev->gmc.visible_vram_size;
1648 
1649 	adev->mman.fw_vram_usage_va = NULL;
1650 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1651 
1652 	if (adev->mman.fw_vram_usage_size == 0 ||
1653 	    adev->mman.fw_vram_usage_size > vram_size)
1654 		return 0;
1655 
1656 	return amdgpu_bo_create_kernel_at(adev,
1657 					  adev->mman.fw_vram_usage_start_offset,
1658 					  adev->mman.fw_vram_usage_size,
1659 					  AMDGPU_GEM_DOMAIN_VRAM,
1660 					  &adev->mman.fw_vram_usage_reserved_bo,
1661 					  &adev->mman.fw_vram_usage_va);
1662 }
1663 
1664 /*
1665  * Memoy training reservation functions
1666  */
1667 
1668 /**
1669  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1670  *
1671  * @adev: amdgpu_device pointer
1672  *
1673  * free memory training reserved vram if it has been reserved.
1674  */
1675 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1676 {
1677 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1678 
1679 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1680 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1681 	ctx->c2p_bo = NULL;
1682 
1683 	return 0;
1684 }
1685 
1686 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1687 {
1688 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1689 
1690 	memset(ctx, 0, sizeof(*ctx));
1691 
1692 	ctx->c2p_train_data_offset =
1693 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1694 	ctx->p2c_train_data_offset =
1695 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1696 	ctx->train_data_size =
1697 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1698 
1699 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1700 			ctx->train_data_size,
1701 			ctx->p2c_train_data_offset,
1702 			ctx->c2p_train_data_offset);
1703 }
1704 
1705 /*
1706  * reserve TMR memory at the top of VRAM which holds
1707  * IP Discovery data and is protected by PSP.
1708  */
1709 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1710 {
1711 	int ret;
1712 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1713 	bool mem_train_support = false;
1714 
1715 	if (!amdgpu_sriov_vf(adev)) {
1716 		ret = amdgpu_mem_train_support(adev);
1717 		if (ret == 1)
1718 			mem_train_support = true;
1719 		else if (ret == -1)
1720 			return -EINVAL;
1721 		else
1722 			DRM_DEBUG("memory training does not support!\n");
1723 	}
1724 
1725 	/*
1726 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1727 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1728 	 *
1729 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1730 	 * discovery data and G6 memory training data respectively
1731 	 */
1732 	adev->mman.discovery_tmr_size =
1733 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1734 	if (!adev->mman.discovery_tmr_size)
1735 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1736 
1737 	if (mem_train_support) {
1738 		/* reserve vram for mem train according to TMR location */
1739 		amdgpu_ttm_training_data_block_init(adev);
1740 		ret = amdgpu_bo_create_kernel_at(adev,
1741 					 ctx->c2p_train_data_offset,
1742 					 ctx->train_data_size,
1743 					 AMDGPU_GEM_DOMAIN_VRAM,
1744 					 &ctx->c2p_bo,
1745 					 NULL);
1746 		if (ret) {
1747 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1748 			amdgpu_ttm_training_reserve_vram_fini(adev);
1749 			return ret;
1750 		}
1751 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1752 	}
1753 
1754 	ret = amdgpu_bo_create_kernel_at(adev,
1755 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1756 				adev->mman.discovery_tmr_size,
1757 				AMDGPU_GEM_DOMAIN_VRAM,
1758 				&adev->mman.discovery_memory,
1759 				NULL);
1760 	if (ret) {
1761 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1762 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1763 		return ret;
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 /*
1770  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1771  * gtt/vram related fields.
1772  *
1773  * This initializes all of the memory space pools that the TTM layer
1774  * will need such as the GTT space (system memory mapped to the device),
1775  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1776  * can be mapped per VMID.
1777  */
1778 int amdgpu_ttm_init(struct amdgpu_device *adev)
1779 {
1780 	uint64_t gtt_size;
1781 	int r;
1782 	u64 vis_vram_limit;
1783 
1784 	mutex_init(&adev->mman.gtt_window_lock);
1785 
1786 	/* No others user of address space so set it to 0 */
1787 	r = ttm_bo_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1788 			       adev_to_drm(adev)->anon_inode->i_mapping,
1789 			       adev_to_drm(adev)->vma_offset_manager,
1790 			       adev->need_swiotlb,
1791 			       dma_addressing_limited(adev->dev));
1792 	if (r) {
1793 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1794 		return r;
1795 	}
1796 	adev->mman.initialized = true;
1797 
1798 	/* Initialize VRAM pool with all of VRAM divided into pages */
1799 	r = amdgpu_vram_mgr_init(adev);
1800 	if (r) {
1801 		DRM_ERROR("Failed initializing VRAM heap.\n");
1802 		return r;
1803 	}
1804 
1805 	/* Reduce size of CPU-visible VRAM if requested */
1806 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1807 	if (amdgpu_vis_vram_limit > 0 &&
1808 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1809 		adev->gmc.visible_vram_size = vis_vram_limit;
1810 
1811 	/* Change the size here instead of the init above so only lpfn is affected */
1812 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1813 #ifdef CONFIG_64BIT
1814 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1815 						adev->gmc.visible_vram_size);
1816 #endif
1817 
1818 	/*
1819 	 *The reserved vram for firmware must be pinned to the specified
1820 	 *place on the VRAM, so reserve it early.
1821 	 */
1822 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1823 	if (r) {
1824 		return r;
1825 	}
1826 
1827 	/*
1828 	 * only NAVI10 and onwards ASIC support for IP discovery.
1829 	 * If IP discovery enabled, a block of memory should be
1830 	 * reserved for IP discovey.
1831 	 */
1832 	if (adev->mman.discovery_bin) {
1833 		r = amdgpu_ttm_reserve_tmr(adev);
1834 		if (r)
1835 			return r;
1836 	}
1837 
1838 	/* allocate memory as required for VGA
1839 	 * This is used for VGA emulation and pre-OS scanout buffers to
1840 	 * avoid display artifacts while transitioning between pre-OS
1841 	 * and driver.  */
1842 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1843 				       AMDGPU_GEM_DOMAIN_VRAM,
1844 				       &adev->mman.stolen_vga_memory,
1845 				       NULL);
1846 	if (r)
1847 		return r;
1848 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1849 				       adev->mman.stolen_extended_size,
1850 				       AMDGPU_GEM_DOMAIN_VRAM,
1851 				       &adev->mman.stolen_extended_memory,
1852 				       NULL);
1853 	if (r)
1854 		return r;
1855 
1856 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1857 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1858 
1859 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1860 	 * or whatever the user passed on module init */
1861 	if (amdgpu_gtt_size == -1) {
1862 		struct sysinfo si;
1863 
1864 		si_meminfo(&si);
1865 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1866 			       adev->gmc.mc_vram_size),
1867 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1868 	}
1869 	else
1870 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1871 
1872 	/* Initialize GTT memory pool */
1873 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1874 	if (r) {
1875 		DRM_ERROR("Failed initializing GTT heap.\n");
1876 		return r;
1877 	}
1878 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1879 		 (unsigned)(gtt_size / (1024 * 1024)));
1880 
1881 	/* Initialize various on-chip memory pools */
1882 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1883 	if (r) {
1884 		DRM_ERROR("Failed initializing GDS heap.\n");
1885 		return r;
1886 	}
1887 
1888 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1889 	if (r) {
1890 		DRM_ERROR("Failed initializing gws heap.\n");
1891 		return r;
1892 	}
1893 
1894 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1895 	if (r) {
1896 		DRM_ERROR("Failed initializing oa heap.\n");
1897 		return r;
1898 	}
1899 
1900 	return 0;
1901 }
1902 
1903 /*
1904  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1905  */
1906 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1907 {
1908 	if (!adev->mman.initialized)
1909 		return;
1910 
1911 	amdgpu_ttm_training_reserve_vram_fini(adev);
1912 	/* return the stolen vga memory back to VRAM */
1913 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1914 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1915 	/* return the IP Discovery TMR memory back to VRAM */
1916 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1917 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1918 
1919 	if (adev->mman.aper_base_kaddr)
1920 		iounmap(adev->mman.aper_base_kaddr);
1921 	adev->mman.aper_base_kaddr = NULL;
1922 
1923 	amdgpu_vram_mgr_fini(adev);
1924 	amdgpu_gtt_mgr_fini(adev);
1925 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1926 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1927 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1928 	ttm_bo_device_release(&adev->mman.bdev);
1929 	adev->mman.initialized = false;
1930 	DRM_INFO("amdgpu: ttm finalized\n");
1931 }
1932 
1933 /**
1934  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1935  *
1936  * @adev: amdgpu_device pointer
1937  * @enable: true when we can use buffer functions.
1938  *
1939  * Enable/disable use of buffer functions during suspend/resume. This should
1940  * only be called at bootup or when userspace isn't running.
1941  */
1942 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1943 {
1944 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1945 	uint64_t size;
1946 	int r;
1947 
1948 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1949 	    adev->mman.buffer_funcs_enabled == enable)
1950 		return;
1951 
1952 	if (enable) {
1953 		struct amdgpu_ring *ring;
1954 		struct drm_gpu_scheduler *sched;
1955 
1956 		ring = adev->mman.buffer_funcs_ring;
1957 		sched = &ring->sched;
1958 		r = drm_sched_entity_init(&adev->mman.entity,
1959 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1960 					  1, NULL);
1961 		if (r) {
1962 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1963 				  r);
1964 			return;
1965 		}
1966 	} else {
1967 		drm_sched_entity_destroy(&adev->mman.entity);
1968 		dma_fence_put(man->move);
1969 		man->move = NULL;
1970 	}
1971 
1972 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1973 	if (enable)
1974 		size = adev->gmc.real_vram_size;
1975 	else
1976 		size = adev->gmc.visible_vram_size;
1977 	man->size = size >> PAGE_SHIFT;
1978 	adev->mman.buffer_funcs_enabled = enable;
1979 }
1980 
1981 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
1982 {
1983 	struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
1984 	vm_fault_t ret;
1985 
1986 	ret = ttm_bo_vm_reserve(bo, vmf);
1987 	if (ret)
1988 		return ret;
1989 
1990 	ret = amdgpu_bo_fault_reserve_notify(bo);
1991 	if (ret)
1992 		goto unlock;
1993 
1994 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1995 				       TTM_BO_VM_NUM_PREFAULT, 1);
1996 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1997 		return ret;
1998 
1999 unlock:
2000 	dma_resv_unlock(bo->base.resv);
2001 	return ret;
2002 }
2003 
2004 static struct vm_operations_struct amdgpu_ttm_vm_ops = {
2005 	.fault = amdgpu_ttm_fault,
2006 	.open = ttm_bo_vm_open,
2007 	.close = ttm_bo_vm_close,
2008 	.access = ttm_bo_vm_access
2009 };
2010 
2011 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2012 {
2013 	struct drm_file *file_priv = filp->private_data;
2014 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
2015 	int r;
2016 
2017 	r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2018 	if (unlikely(r != 0))
2019 		return r;
2020 
2021 	vma->vm_ops = &amdgpu_ttm_vm_ops;
2022 	return 0;
2023 }
2024 
2025 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2026 		       uint64_t dst_offset, uint32_t byte_count,
2027 		       struct dma_resv *resv,
2028 		       struct dma_fence **fence, bool direct_submit,
2029 		       bool vm_needs_flush, bool tmz)
2030 {
2031 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
2032 		AMDGPU_IB_POOL_DELAYED;
2033 	struct amdgpu_device *adev = ring->adev;
2034 	struct amdgpu_job *job;
2035 
2036 	uint32_t max_bytes;
2037 	unsigned num_loops, num_dw;
2038 	unsigned i;
2039 	int r;
2040 
2041 	if (direct_submit && !ring->sched.ready) {
2042 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2043 		return -EINVAL;
2044 	}
2045 
2046 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2047 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2048 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2049 
2050 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
2051 	if (r)
2052 		return r;
2053 
2054 	if (vm_needs_flush) {
2055 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2056 		job->vm_needs_flush = true;
2057 	}
2058 	if (resv) {
2059 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2060 				     AMDGPU_SYNC_ALWAYS,
2061 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2062 		if (r) {
2063 			DRM_ERROR("sync failed (%d).\n", r);
2064 			goto error_free;
2065 		}
2066 	}
2067 
2068 	for (i = 0; i < num_loops; i++) {
2069 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2070 
2071 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2072 					dst_offset, cur_size_in_bytes, tmz);
2073 
2074 		src_offset += cur_size_in_bytes;
2075 		dst_offset += cur_size_in_bytes;
2076 		byte_count -= cur_size_in_bytes;
2077 	}
2078 
2079 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2080 	WARN_ON(job->ibs[0].length_dw > num_dw);
2081 	if (direct_submit)
2082 		r = amdgpu_job_submit_direct(job, ring, fence);
2083 	else
2084 		r = amdgpu_job_submit(job, &adev->mman.entity,
2085 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2086 	if (r)
2087 		goto error_free;
2088 
2089 	return r;
2090 
2091 error_free:
2092 	amdgpu_job_free(job);
2093 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2094 	return r;
2095 }
2096 
2097 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2098 		       uint32_t src_data,
2099 		       struct dma_resv *resv,
2100 		       struct dma_fence **fence)
2101 {
2102 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2103 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2104 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2105 
2106 	struct drm_mm_node *mm_node;
2107 	unsigned long num_pages;
2108 	unsigned int num_loops, num_dw;
2109 
2110 	struct amdgpu_job *job;
2111 	int r;
2112 
2113 	if (!adev->mman.buffer_funcs_enabled) {
2114 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2115 		return -EINVAL;
2116 	}
2117 
2118 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2119 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2120 		if (r)
2121 			return r;
2122 	}
2123 
2124 	num_pages = bo->tbo.mem.num_pages;
2125 	mm_node = bo->tbo.mem.mm_node;
2126 	num_loops = 0;
2127 	while (num_pages) {
2128 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2129 
2130 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2131 		num_pages -= mm_node->size;
2132 		++mm_node;
2133 	}
2134 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2135 
2136 	/* for IB padding */
2137 	num_dw += 64;
2138 
2139 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2140 				     &job);
2141 	if (r)
2142 		return r;
2143 
2144 	if (resv) {
2145 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2146 				     AMDGPU_SYNC_ALWAYS,
2147 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2148 		if (r) {
2149 			DRM_ERROR("sync failed (%d).\n", r);
2150 			goto error_free;
2151 		}
2152 	}
2153 
2154 	num_pages = bo->tbo.mem.num_pages;
2155 	mm_node = bo->tbo.mem.mm_node;
2156 
2157 	while (num_pages) {
2158 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2159 		uint64_t dst_addr;
2160 
2161 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2162 		while (byte_count) {
2163 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2164 							   max_bytes);
2165 
2166 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2167 						dst_addr, cur_size_in_bytes);
2168 
2169 			dst_addr += cur_size_in_bytes;
2170 			byte_count -= cur_size_in_bytes;
2171 		}
2172 
2173 		num_pages -= mm_node->size;
2174 		++mm_node;
2175 	}
2176 
2177 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2178 	WARN_ON(job->ibs[0].length_dw > num_dw);
2179 	r = amdgpu_job_submit(job, &adev->mman.entity,
2180 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2181 	if (r)
2182 		goto error_free;
2183 
2184 	return 0;
2185 
2186 error_free:
2187 	amdgpu_job_free(job);
2188 	return r;
2189 }
2190 
2191 #if defined(CONFIG_DEBUG_FS)
2192 
2193 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2194 {
2195 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2196 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2197 							    TTM_PL_VRAM);
2198 	struct drm_printer p = drm_seq_file_printer(m);
2199 
2200 	man->func->debug(man, &p);
2201 	return 0;
2202 }
2203 
2204 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2205 {
2206 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2207 
2208 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2209 }
2210 
2211 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2212 {
2213 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2214 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2215 							    TTM_PL_TT);
2216 	struct drm_printer p = drm_seq_file_printer(m);
2217 
2218 	man->func->debug(man, &p);
2219 	return 0;
2220 }
2221 
2222 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2223 {
2224 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2225 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2226 							    AMDGPU_PL_GDS);
2227 	struct drm_printer p = drm_seq_file_printer(m);
2228 
2229 	man->func->debug(man, &p);
2230 	return 0;
2231 }
2232 
2233 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2234 {
2235 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2236 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2237 							    AMDGPU_PL_GWS);
2238 	struct drm_printer p = drm_seq_file_printer(m);
2239 
2240 	man->func->debug(man, &p);
2241 	return 0;
2242 }
2243 
2244 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2245 {
2246 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2247 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2248 							    AMDGPU_PL_OA);
2249 	struct drm_printer p = drm_seq_file_printer(m);
2250 
2251 	man->func->debug(man, &p);
2252 	return 0;
2253 }
2254 
2255 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2256 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2257 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2258 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2259 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2260 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2261 
2262 /*
2263  * amdgpu_ttm_vram_read - Linear read access to VRAM
2264  *
2265  * Accesses VRAM via MMIO for debugging purposes.
2266  */
2267 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2268 				    size_t size, loff_t *pos)
2269 {
2270 	struct amdgpu_device *adev = file_inode(f)->i_private;
2271 	ssize_t result = 0;
2272 
2273 	if (size & 0x3 || *pos & 0x3)
2274 		return -EINVAL;
2275 
2276 	if (*pos >= adev->gmc.mc_vram_size)
2277 		return -ENXIO;
2278 
2279 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2280 	while (size) {
2281 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2282 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2283 
2284 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2285 		if (copy_to_user(buf, value, bytes))
2286 			return -EFAULT;
2287 
2288 		result += bytes;
2289 		buf += bytes;
2290 		*pos += bytes;
2291 		size -= bytes;
2292 	}
2293 
2294 	return result;
2295 }
2296 
2297 /*
2298  * amdgpu_ttm_vram_write - Linear write access to VRAM
2299  *
2300  * Accesses VRAM via MMIO for debugging purposes.
2301  */
2302 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2303 				    size_t size, loff_t *pos)
2304 {
2305 	struct amdgpu_device *adev = file_inode(f)->i_private;
2306 	ssize_t result = 0;
2307 	int r;
2308 
2309 	if (size & 0x3 || *pos & 0x3)
2310 		return -EINVAL;
2311 
2312 	if (*pos >= adev->gmc.mc_vram_size)
2313 		return -ENXIO;
2314 
2315 	while (size) {
2316 		unsigned long flags;
2317 		uint32_t value;
2318 
2319 		if (*pos >= adev->gmc.mc_vram_size)
2320 			return result;
2321 
2322 		r = get_user(value, (uint32_t *)buf);
2323 		if (r)
2324 			return r;
2325 
2326 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2327 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2328 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2329 		WREG32_NO_KIQ(mmMM_DATA, value);
2330 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2331 
2332 		result += 4;
2333 		buf += 4;
2334 		*pos += 4;
2335 		size -= 4;
2336 	}
2337 
2338 	return result;
2339 }
2340 
2341 static const struct file_operations amdgpu_ttm_vram_fops = {
2342 	.owner = THIS_MODULE,
2343 	.read = amdgpu_ttm_vram_read,
2344 	.write = amdgpu_ttm_vram_write,
2345 	.llseek = default_llseek,
2346 };
2347 
2348 /*
2349  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2350  *
2351  * This function is used to read memory that has been mapped to the
2352  * GPU and the known addresses are not physical addresses but instead
2353  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2354  */
2355 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2356 				 size_t size, loff_t *pos)
2357 {
2358 	struct amdgpu_device *adev = file_inode(f)->i_private;
2359 	struct iommu_domain *dom;
2360 	ssize_t result = 0;
2361 	int r;
2362 
2363 	/* retrieve the IOMMU domain if any for this device */
2364 	dom = iommu_get_domain_for_dev(adev->dev);
2365 
2366 	while (size) {
2367 		phys_addr_t addr = *pos & PAGE_MASK;
2368 		loff_t off = *pos & ~PAGE_MASK;
2369 		size_t bytes = PAGE_SIZE - off;
2370 		unsigned long pfn;
2371 		struct page *p;
2372 		void *ptr;
2373 
2374 		bytes = bytes < size ? bytes : size;
2375 
2376 		/* Translate the bus address to a physical address.  If
2377 		 * the domain is NULL it means there is no IOMMU active
2378 		 * and the address translation is the identity
2379 		 */
2380 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2381 
2382 		pfn = addr >> PAGE_SHIFT;
2383 		if (!pfn_valid(pfn))
2384 			return -EPERM;
2385 
2386 		p = pfn_to_page(pfn);
2387 		if (p->mapping != adev->mman.bdev.dev_mapping)
2388 			return -EPERM;
2389 
2390 		ptr = kmap(p);
2391 		r = copy_to_user(buf, ptr + off, bytes);
2392 		kunmap(p);
2393 		if (r)
2394 			return -EFAULT;
2395 
2396 		size -= bytes;
2397 		*pos += bytes;
2398 		result += bytes;
2399 	}
2400 
2401 	return result;
2402 }
2403 
2404 /*
2405  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2406  *
2407  * This function is used to write memory that has been mapped to the
2408  * GPU and the known addresses are not physical addresses but instead
2409  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2410  */
2411 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2412 				 size_t size, loff_t *pos)
2413 {
2414 	struct amdgpu_device *adev = file_inode(f)->i_private;
2415 	struct iommu_domain *dom;
2416 	ssize_t result = 0;
2417 	int r;
2418 
2419 	dom = iommu_get_domain_for_dev(adev->dev);
2420 
2421 	while (size) {
2422 		phys_addr_t addr = *pos & PAGE_MASK;
2423 		loff_t off = *pos & ~PAGE_MASK;
2424 		size_t bytes = PAGE_SIZE - off;
2425 		unsigned long pfn;
2426 		struct page *p;
2427 		void *ptr;
2428 
2429 		bytes = bytes < size ? bytes : size;
2430 
2431 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2432 
2433 		pfn = addr >> PAGE_SHIFT;
2434 		if (!pfn_valid(pfn))
2435 			return -EPERM;
2436 
2437 		p = pfn_to_page(pfn);
2438 		if (p->mapping != adev->mman.bdev.dev_mapping)
2439 			return -EPERM;
2440 
2441 		ptr = kmap(p);
2442 		r = copy_from_user(ptr + off, buf, bytes);
2443 		kunmap(p);
2444 		if (r)
2445 			return -EFAULT;
2446 
2447 		size -= bytes;
2448 		*pos += bytes;
2449 		result += bytes;
2450 	}
2451 
2452 	return result;
2453 }
2454 
2455 static const struct file_operations amdgpu_ttm_iomem_fops = {
2456 	.owner = THIS_MODULE,
2457 	.read = amdgpu_iomem_read,
2458 	.write = amdgpu_iomem_write,
2459 	.llseek = default_llseek
2460 };
2461 
2462 #endif
2463 
2464 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2465 {
2466 #if defined(CONFIG_DEBUG_FS)
2467 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2468 	struct dentry *root = minor->debugfs_root;
2469 
2470 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2471 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2472 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2473 			    &amdgpu_ttm_iomem_fops);
2474 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2475 			    &amdgpu_mm_vram_table_fops);
2476 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2477 			    &amdgpu_mm_tt_table_fops);
2478 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2479 			    &amdgpu_mm_gds_table_fops);
2480 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2481 			    &amdgpu_mm_gws_table_fops);
2482 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2483 			    &amdgpu_mm_oa_table_fops);
2484 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2485 			    &amdgpu_ttm_page_pool_fops);
2486 #endif
2487 }
2488