1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 
43 #include <drm/ttm/ttm_bo_api.h>
44 #include <drm/ttm/ttm_bo_driver.h>
45 #include <drm/ttm/ttm_placement.h>
46 #include <drm/ttm/ttm_module.h>
47 #include <drm/ttm/ttm_page_alloc.h>
48 
49 #include <drm/drm_debugfs.h>
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "bif/bif_4_1_d.h"
58 
59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
60 			     struct ttm_mem_reg *mem, unsigned num_pages,
61 			     uint64_t offset, unsigned window,
62 			     struct amdgpu_ring *ring,
63 			     uint64_t *addr);
64 
65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
67 
68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
69 {
70 	return 0;
71 }
72 
73 /**
74  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
75  * memory request.
76  *
77  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
78  * @type: The type of memory requested
79  * @man: The memory type manager for each domain
80  *
81  * This is called by ttm_bo_init_mm() when a buffer object is being
82  * initialized.
83  */
84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
85 				struct ttm_mem_type_manager *man)
86 {
87 	struct amdgpu_device *adev;
88 
89 	adev = amdgpu_ttm_adev(bdev);
90 
91 	switch (type) {
92 	case TTM_PL_SYSTEM:
93 		/* System memory */
94 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
95 		man->available_caching = TTM_PL_MASK_CACHING;
96 		man->default_caching = TTM_PL_FLAG_CACHED;
97 		break;
98 	case TTM_PL_TT:
99 		/* GTT memory  */
100 		man->func = &amdgpu_gtt_mgr_func;
101 		man->gpu_offset = adev->gmc.gart_start;
102 		man->available_caching = TTM_PL_MASK_CACHING;
103 		man->default_caching = TTM_PL_FLAG_CACHED;
104 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
105 		break;
106 	case TTM_PL_VRAM:
107 		/* "On-card" video ram */
108 		man->func = &amdgpu_vram_mgr_func;
109 		man->gpu_offset = adev->gmc.vram_start;
110 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
111 			     TTM_MEMTYPE_FLAG_MAPPABLE;
112 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
113 		man->default_caching = TTM_PL_FLAG_WC;
114 		break;
115 	case AMDGPU_PL_GDS:
116 	case AMDGPU_PL_GWS:
117 	case AMDGPU_PL_OA:
118 		/* On-chip GDS memory*/
119 		man->func = &ttm_bo_manager_func;
120 		man->gpu_offset = 0;
121 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
122 		man->available_caching = TTM_PL_FLAG_UNCACHED;
123 		man->default_caching = TTM_PL_FLAG_UNCACHED;
124 		break;
125 	default:
126 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
127 		return -EINVAL;
128 	}
129 	return 0;
130 }
131 
132 /**
133  * amdgpu_evict_flags - Compute placement flags
134  *
135  * @bo: The buffer object to evict
136  * @placement: Possible destination(s) for evicted BO
137  *
138  * Fill in placement data when ttm_bo_evict() is called
139  */
140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
141 				struct ttm_placement *placement)
142 {
143 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
144 	struct amdgpu_bo *abo;
145 	static const struct ttm_place placements = {
146 		.fpfn = 0,
147 		.lpfn = 0,
148 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
149 	};
150 
151 	/* Don't handle scatter gather BOs */
152 	if (bo->type == ttm_bo_type_sg) {
153 		placement->num_placement = 0;
154 		placement->num_busy_placement = 0;
155 		return;
156 	}
157 
158 	/* Object isn't an AMDGPU object so ignore */
159 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
160 		placement->placement = &placements;
161 		placement->busy_placement = &placements;
162 		placement->num_placement = 1;
163 		placement->num_busy_placement = 1;
164 		return;
165 	}
166 
167 	abo = ttm_to_amdgpu_bo(bo);
168 	switch (bo->mem.mem_type) {
169 	case AMDGPU_PL_GDS:
170 	case AMDGPU_PL_GWS:
171 	case AMDGPU_PL_OA:
172 		placement->num_placement = 0;
173 		placement->num_busy_placement = 0;
174 		return;
175 
176 	case TTM_PL_VRAM:
177 		if (!adev->mman.buffer_funcs_enabled) {
178 			/* Move to system memory */
179 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
180 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
181 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
182 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
183 
184 			/* Try evicting to the CPU inaccessible part of VRAM
185 			 * first, but only set GTT as busy placement, so this
186 			 * BO will be evicted to GTT rather than causing other
187 			 * BOs to be evicted from VRAM
188 			 */
189 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
190 							 AMDGPU_GEM_DOMAIN_GTT);
191 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
192 			abo->placements[0].lpfn = 0;
193 			abo->placement.busy_placement = &abo->placements[1];
194 			abo->placement.num_busy_placement = 1;
195 		} else {
196 			/* Move to GTT memory */
197 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
198 		}
199 		break;
200 	case TTM_PL_TT:
201 	default:
202 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
203 		break;
204 	}
205 	*placement = abo->placement;
206 }
207 
208 /**
209  * amdgpu_verify_access - Verify access for a mmap call
210  *
211  * @bo:	The buffer object to map
212  * @filp: The file pointer from the process performing the mmap
213  *
214  * This is called by ttm_bo_mmap() to verify whether a process
215  * has the right to mmap a BO to their process space.
216  */
217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
218 {
219 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
220 
221 	/*
222 	 * Don't verify access for KFD BOs. They don't have a GEM
223 	 * object associated with them.
224 	 */
225 	if (abo->kfd_bo)
226 		return 0;
227 
228 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
229 		return -EPERM;
230 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
231 					  filp->private_data);
232 }
233 
234 /**
235  * amdgpu_move_null - Register memory for a buffer object
236  *
237  * @bo: The bo to assign the memory to
238  * @new_mem: The memory to be assigned.
239  *
240  * Assign the memory from new_mem to the memory of the buffer object bo.
241  */
242 static void amdgpu_move_null(struct ttm_buffer_object *bo,
243 			     struct ttm_mem_reg *new_mem)
244 {
245 	struct ttm_mem_reg *old_mem = &bo->mem;
246 
247 	BUG_ON(old_mem->mm_node != NULL);
248 	*old_mem = *new_mem;
249 	new_mem->mm_node = NULL;
250 }
251 
252 /**
253  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
254  *
255  * @bo: The bo to assign the memory to.
256  * @mm_node: Memory manager node for drm allocator.
257  * @mem: The region where the bo resides.
258  *
259  */
260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
261 				    struct drm_mm_node *mm_node,
262 				    struct ttm_mem_reg *mem)
263 {
264 	uint64_t addr = 0;
265 
266 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
267 		addr = mm_node->start << PAGE_SHIFT;
268 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
269 	}
270 	return addr;
271 }
272 
273 /**
274  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
275  * @offset. It also modifies the offset to be within the drm_mm_node returned
276  *
277  * @mem: The region where the bo resides.
278  * @offset: The offset that drm_mm_node is used for finding.
279  *
280  */
281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
282 					       unsigned long *offset)
283 {
284 	struct drm_mm_node *mm_node = mem->mm_node;
285 
286 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
287 		*offset -= (mm_node->size << PAGE_SHIFT);
288 		++mm_node;
289 	}
290 	return mm_node;
291 }
292 
293 /**
294  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
295  *
296  * The function copies @size bytes from {src->mem + src->offset} to
297  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
298  * move and different for a BO to BO copy.
299  *
300  * @f: Returns the last fence if multiple jobs are submitted.
301  */
302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
303 			       struct amdgpu_copy_mem *src,
304 			       struct amdgpu_copy_mem *dst,
305 			       uint64_t size,
306 			       struct dma_resv *resv,
307 			       struct dma_fence **f)
308 {
309 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
310 	struct drm_mm_node *src_mm, *dst_mm;
311 	uint64_t src_node_start, dst_node_start, src_node_size,
312 		 dst_node_size, src_page_offset, dst_page_offset;
313 	struct dma_fence *fence = NULL;
314 	int r = 0;
315 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
316 					AMDGPU_GPU_PAGE_SIZE);
317 
318 	if (!adev->mman.buffer_funcs_enabled) {
319 		DRM_ERROR("Trying to move memory with ring turned off.\n");
320 		return -EINVAL;
321 	}
322 
323 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
324 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
325 					     src->offset;
326 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
327 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
328 
329 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
330 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
331 					     dst->offset;
332 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
333 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
334 
335 	mutex_lock(&adev->mman.gtt_window_lock);
336 
337 	while (size) {
338 		unsigned long cur_size;
339 		uint64_t from = src_node_start, to = dst_node_start;
340 		struct dma_fence *next;
341 
342 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
343 		 * begins at an offset, then adjust the size accordingly
344 		 */
345 		cur_size = min3(min(src_node_size, dst_node_size), size,
346 				GTT_MAX_BYTES);
347 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
348 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
349 			cur_size -= max(src_page_offset, dst_page_offset);
350 
351 		/* Map only what needs to be accessed. Map src to window 0 and
352 		 * dst to window 1
353 		 */
354 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
355 			r = amdgpu_map_buffer(src->bo, src->mem,
356 					PFN_UP(cur_size + src_page_offset),
357 					src_node_start, 0, ring,
358 					&from);
359 			if (r)
360 				goto error;
361 			/* Adjust the offset because amdgpu_map_buffer returns
362 			 * start of mapped page
363 			 */
364 			from += src_page_offset;
365 		}
366 
367 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
368 			r = amdgpu_map_buffer(dst->bo, dst->mem,
369 					PFN_UP(cur_size + dst_page_offset),
370 					dst_node_start, 1, ring,
371 					&to);
372 			if (r)
373 				goto error;
374 			to += dst_page_offset;
375 		}
376 
377 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
378 				       resv, &next, false, true);
379 		if (r)
380 			goto error;
381 
382 		dma_fence_put(fence);
383 		fence = next;
384 
385 		size -= cur_size;
386 		if (!size)
387 			break;
388 
389 		src_node_size -= cur_size;
390 		if (!src_node_size) {
391 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
392 							     src->mem);
393 			src_node_size = (src_mm->size << PAGE_SHIFT);
394 			src_page_offset = 0;
395 		} else {
396 			src_node_start += cur_size;
397 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
398 		}
399 		dst_node_size -= cur_size;
400 		if (!dst_node_size) {
401 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
402 							     dst->mem);
403 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
404 			dst_page_offset = 0;
405 		} else {
406 			dst_node_start += cur_size;
407 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
408 		}
409 	}
410 error:
411 	mutex_unlock(&adev->mman.gtt_window_lock);
412 	if (f)
413 		*f = dma_fence_get(fence);
414 	dma_fence_put(fence);
415 	return r;
416 }
417 
418 /**
419  * amdgpu_move_blit - Copy an entire buffer to another buffer
420  *
421  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
422  * help move buffers to and from VRAM.
423  */
424 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
425 			    bool evict, bool no_wait_gpu,
426 			    struct ttm_mem_reg *new_mem,
427 			    struct ttm_mem_reg *old_mem)
428 {
429 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
430 	struct amdgpu_copy_mem src, dst;
431 	struct dma_fence *fence = NULL;
432 	int r;
433 
434 	src.bo = bo;
435 	dst.bo = bo;
436 	src.mem = old_mem;
437 	dst.mem = new_mem;
438 	src.offset = 0;
439 	dst.offset = 0;
440 
441 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
442 				       new_mem->num_pages << PAGE_SHIFT,
443 				       bo->base.resv, &fence);
444 	if (r)
445 		goto error;
446 
447 	/* clear the space being freed */
448 	if (old_mem->mem_type == TTM_PL_VRAM &&
449 	    (ttm_to_amdgpu_bo(bo)->flags &
450 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
451 		struct dma_fence *wipe_fence = NULL;
452 
453 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
454 				       NULL, &wipe_fence);
455 		if (r) {
456 			goto error;
457 		} else if (wipe_fence) {
458 			dma_fence_put(fence);
459 			fence = wipe_fence;
460 		}
461 	}
462 
463 	/* Always block for VM page tables before committing the new location */
464 	if (bo->type == ttm_bo_type_kernel)
465 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
466 	else
467 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
468 	dma_fence_put(fence);
469 	return r;
470 
471 error:
472 	if (fence)
473 		dma_fence_wait(fence, false);
474 	dma_fence_put(fence);
475 	return r;
476 }
477 
478 /**
479  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
480  *
481  * Called by amdgpu_bo_move().
482  */
483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
484 				struct ttm_operation_ctx *ctx,
485 				struct ttm_mem_reg *new_mem)
486 {
487 	struct amdgpu_device *adev;
488 	struct ttm_mem_reg *old_mem = &bo->mem;
489 	struct ttm_mem_reg tmp_mem;
490 	struct ttm_place placements;
491 	struct ttm_placement placement;
492 	int r;
493 
494 	adev = amdgpu_ttm_adev(bo->bdev);
495 
496 	/* create space/pages for new_mem in GTT space */
497 	tmp_mem = *new_mem;
498 	tmp_mem.mm_node = NULL;
499 	placement.num_placement = 1;
500 	placement.placement = &placements;
501 	placement.num_busy_placement = 1;
502 	placement.busy_placement = &placements;
503 	placements.fpfn = 0;
504 	placements.lpfn = 0;
505 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
506 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
507 	if (unlikely(r)) {
508 		pr_err("Failed to find GTT space for blit from VRAM\n");
509 		return r;
510 	}
511 
512 	/* set caching flags */
513 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
514 	if (unlikely(r)) {
515 		goto out_cleanup;
516 	}
517 
518 	/* Bind the memory to the GTT space */
519 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
520 	if (unlikely(r)) {
521 		goto out_cleanup;
522 	}
523 
524 	/* blit VRAM to GTT */
525 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
526 	if (unlikely(r)) {
527 		goto out_cleanup;
528 	}
529 
530 	/* move BO (in tmp_mem) to new_mem */
531 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
532 out_cleanup:
533 	ttm_bo_mem_put(bo, &tmp_mem);
534 	return r;
535 }
536 
537 /**
538  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
539  *
540  * Called by amdgpu_bo_move().
541  */
542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
543 				struct ttm_operation_ctx *ctx,
544 				struct ttm_mem_reg *new_mem)
545 {
546 	struct amdgpu_device *adev;
547 	struct ttm_mem_reg *old_mem = &bo->mem;
548 	struct ttm_mem_reg tmp_mem;
549 	struct ttm_placement placement;
550 	struct ttm_place placements;
551 	int r;
552 
553 	adev = amdgpu_ttm_adev(bo->bdev);
554 
555 	/* make space in GTT for old_mem buffer */
556 	tmp_mem = *new_mem;
557 	tmp_mem.mm_node = NULL;
558 	placement.num_placement = 1;
559 	placement.placement = &placements;
560 	placement.num_busy_placement = 1;
561 	placement.busy_placement = &placements;
562 	placements.fpfn = 0;
563 	placements.lpfn = 0;
564 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
565 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
566 	if (unlikely(r)) {
567 		pr_err("Failed to find GTT space for blit to VRAM\n");
568 		return r;
569 	}
570 
571 	/* move/bind old memory to GTT space */
572 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
573 	if (unlikely(r)) {
574 		goto out_cleanup;
575 	}
576 
577 	/* copy to VRAM */
578 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
579 	if (unlikely(r)) {
580 		goto out_cleanup;
581 	}
582 out_cleanup:
583 	ttm_bo_mem_put(bo, &tmp_mem);
584 	return r;
585 }
586 
587 /**
588  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
589  *
590  * Called by amdgpu_bo_move()
591  */
592 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
593 			       struct ttm_mem_reg *mem)
594 {
595 	struct drm_mm_node *nodes = mem->mm_node;
596 
597 	if (mem->mem_type == TTM_PL_SYSTEM ||
598 	    mem->mem_type == TTM_PL_TT)
599 		return true;
600 	if (mem->mem_type != TTM_PL_VRAM)
601 		return false;
602 
603 	/* ttm_mem_reg_ioremap only supports contiguous memory */
604 	if (nodes->size != mem->num_pages)
605 		return false;
606 
607 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
608 		<= adev->gmc.visible_vram_size;
609 }
610 
611 /**
612  * amdgpu_bo_move - Move a buffer object to a new memory location
613  *
614  * Called by ttm_bo_handle_move_mem()
615  */
616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
617 			  struct ttm_operation_ctx *ctx,
618 			  struct ttm_mem_reg *new_mem)
619 {
620 	struct amdgpu_device *adev;
621 	struct amdgpu_bo *abo;
622 	struct ttm_mem_reg *old_mem = &bo->mem;
623 	int r;
624 
625 	/* Can't move a pinned BO */
626 	abo = ttm_to_amdgpu_bo(bo);
627 	if (WARN_ON_ONCE(abo->pin_count > 0))
628 		return -EINVAL;
629 
630 	adev = amdgpu_ttm_adev(bo->bdev);
631 
632 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
633 		amdgpu_move_null(bo, new_mem);
634 		return 0;
635 	}
636 	if ((old_mem->mem_type == TTM_PL_TT &&
637 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
638 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
639 	     new_mem->mem_type == TTM_PL_TT)) {
640 		/* bind is enough */
641 		amdgpu_move_null(bo, new_mem);
642 		return 0;
643 	}
644 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
645 	    old_mem->mem_type == AMDGPU_PL_GWS ||
646 	    old_mem->mem_type == AMDGPU_PL_OA ||
647 	    new_mem->mem_type == AMDGPU_PL_GDS ||
648 	    new_mem->mem_type == AMDGPU_PL_GWS ||
649 	    new_mem->mem_type == AMDGPU_PL_OA) {
650 		/* Nothing to save here */
651 		amdgpu_move_null(bo, new_mem);
652 		return 0;
653 	}
654 
655 	if (!adev->mman.buffer_funcs_enabled) {
656 		r = -ENODEV;
657 		goto memcpy;
658 	}
659 
660 	if (old_mem->mem_type == TTM_PL_VRAM &&
661 	    new_mem->mem_type == TTM_PL_SYSTEM) {
662 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
663 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
664 		   new_mem->mem_type == TTM_PL_VRAM) {
665 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
666 	} else {
667 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
668 				     new_mem, old_mem);
669 	}
670 
671 	if (r) {
672 memcpy:
673 		/* Check that all memory is CPU accessible */
674 		if (!amdgpu_mem_visible(adev, old_mem) ||
675 		    !amdgpu_mem_visible(adev, new_mem)) {
676 			pr_err("Move buffer fallback to memcpy unavailable\n");
677 			return r;
678 		}
679 
680 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
681 		if (r)
682 			return r;
683 	}
684 
685 	if (bo->type == ttm_bo_type_device &&
686 	    new_mem->mem_type == TTM_PL_VRAM &&
687 	    old_mem->mem_type != TTM_PL_VRAM) {
688 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
689 		 * accesses the BO after it's moved.
690 		 */
691 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
692 	}
693 
694 	/* update statistics */
695 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
696 	return 0;
697 }
698 
699 /**
700  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
701  *
702  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
703  */
704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
705 {
706 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
707 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
708 	struct drm_mm_node *mm_node = mem->mm_node;
709 
710 	mem->bus.addr = NULL;
711 	mem->bus.offset = 0;
712 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
713 	mem->bus.base = 0;
714 	mem->bus.is_iomem = false;
715 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
716 		return -EINVAL;
717 	switch (mem->mem_type) {
718 	case TTM_PL_SYSTEM:
719 		/* system memory */
720 		return 0;
721 	case TTM_PL_TT:
722 		break;
723 	case TTM_PL_VRAM:
724 		mem->bus.offset = mem->start << PAGE_SHIFT;
725 		/* check if it's visible */
726 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
727 			return -EINVAL;
728 		/* Only physically contiguous buffers apply. In a contiguous
729 		 * buffer, size of the first mm_node would match the number of
730 		 * pages in ttm_mem_reg.
731 		 */
732 		if (adev->mman.aper_base_kaddr &&
733 		    (mm_node->size == mem->num_pages))
734 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
735 					mem->bus.offset;
736 
737 		mem->bus.base = adev->gmc.aper_base;
738 		mem->bus.is_iomem = true;
739 		break;
740 	default:
741 		return -EINVAL;
742 	}
743 	return 0;
744 }
745 
746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
747 {
748 }
749 
750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
751 					   unsigned long page_offset)
752 {
753 	struct drm_mm_node *mm;
754 	unsigned long offset = (page_offset << PAGE_SHIFT);
755 
756 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
757 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
758 		(offset >> PAGE_SHIFT);
759 }
760 
761 /*
762  * TTM backend functions.
763  */
764 struct amdgpu_ttm_tt {
765 	struct ttm_dma_tt	ttm;
766 	u64			offset;
767 	uint64_t		userptr;
768 	struct task_struct	*usertask;
769 	uint32_t		userflags;
770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
771 	struct hmm_range	*range;
772 #endif
773 };
774 
775 /**
776  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
777  * memory and start HMM tracking CPU page table update
778  *
779  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
780  * once afterwards to stop HMM tracking
781  */
782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
783 
784 #define MAX_RETRY_HMM_RANGE_FAULT	16
785 
786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
787 {
788 	struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL;
789 	struct ttm_tt *ttm = bo->tbo.ttm;
790 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
791 	struct mm_struct *mm = gtt->usertask->mm;
792 	unsigned long start = gtt->userptr;
793 	struct vm_area_struct *vma;
794 	struct hmm_range *range;
795 	unsigned long i;
796 	uint64_t *pfns;
797 	int retry = 0;
798 	int r = 0;
799 
800 	if (!mm) /* Happens during process shutdown */
801 		return -ESRCH;
802 
803 	if (unlikely(!mirror)) {
804 		DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n");
805 		r = -EFAULT;
806 		goto out;
807 	}
808 
809 	vma = find_vma(mm, start);
810 	if (unlikely(!vma || start < vma->vm_start)) {
811 		r = -EFAULT;
812 		goto out;
813 	}
814 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
815 		vma->vm_file)) {
816 		r = -EPERM;
817 		goto out;
818 	}
819 
820 	range = kzalloc(sizeof(*range), GFP_KERNEL);
821 	if (unlikely(!range)) {
822 		r = -ENOMEM;
823 		goto out;
824 	}
825 
826 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
827 	if (unlikely(!pfns)) {
828 		r = -ENOMEM;
829 		goto out_free_ranges;
830 	}
831 
832 	amdgpu_hmm_init_range(range);
833 	range->default_flags = range->flags[HMM_PFN_VALID];
834 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
835 				0 : range->flags[HMM_PFN_WRITE];
836 	range->pfn_flags_mask = 0;
837 	range->pfns = pfns;
838 	hmm_range_register(range, mirror, start,
839 			   start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
840 
841 retry:
842 	/*
843 	 * Just wait for range to be valid, safe to ignore return value as we
844 	 * will use the return value of hmm_range_fault() below under the
845 	 * mmap_sem to ascertain the validity of the range.
846 	 */
847 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
848 
849 	down_read(&mm->mmap_sem);
850 
851 	r = hmm_range_fault(range, true);
852 	if (unlikely(r < 0)) {
853 		if (likely(r == -EAGAIN)) {
854 			/*
855 			 * return -EAGAIN, mmap_sem is dropped
856 			 */
857 			if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
858 				goto retry;
859 			else
860 				pr_err("Retry hmm fault too many times\n");
861 		}
862 
863 		goto out_up_read;
864 	}
865 
866 	up_read(&mm->mmap_sem);
867 
868 	for (i = 0; i < ttm->num_pages; i++) {
869 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
870 		if (unlikely(!pages[i])) {
871 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
872 			       i, pfns[i]);
873 			r = -ENOMEM;
874 
875 			goto out_free_pfns;
876 		}
877 	}
878 
879 	gtt->range = range;
880 
881 	return 0;
882 
883 out_up_read:
884 	if (likely(r != -EAGAIN))
885 		up_read(&mm->mmap_sem);
886 out_free_pfns:
887 	hmm_range_unregister(range);
888 	kvfree(pfns);
889 out_free_ranges:
890 	kfree(range);
891 out:
892 	return r;
893 }
894 
895 /**
896  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
897  * Check if the pages backing this ttm range have been invalidated
898  *
899  * Returns: true if pages are still valid
900  */
901 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
902 {
903 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
904 	bool r = false;
905 
906 	if (!gtt || !gtt->userptr)
907 		return false;
908 
909 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
910 		gtt->userptr, ttm->num_pages);
911 
912 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
913 		"No user pages to check\n");
914 
915 	if (gtt->range) {
916 		r = hmm_range_valid(gtt->range);
917 		hmm_range_unregister(gtt->range);
918 
919 		kvfree(gtt->range->pfns);
920 		kfree(gtt->range);
921 		gtt->range = NULL;
922 	}
923 
924 	return r;
925 }
926 #endif
927 
928 /**
929  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
930  *
931  * Called by amdgpu_cs_list_validate(). This creates the page list
932  * that backs user memory and will ultimately be mapped into the device
933  * address space.
934  */
935 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
936 {
937 	unsigned long i;
938 
939 	for (i = 0; i < ttm->num_pages; ++i)
940 		ttm->pages[i] = pages ? pages[i] : NULL;
941 }
942 
943 /**
944  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
945  *
946  * Called by amdgpu_ttm_backend_bind()
947  **/
948 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
949 {
950 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
951 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
952 	unsigned nents;
953 	int r;
954 
955 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
956 	enum dma_data_direction direction = write ?
957 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
958 
959 	/* Allocate an SG array and squash pages into it */
960 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
961 				      ttm->num_pages << PAGE_SHIFT,
962 				      GFP_KERNEL);
963 	if (r)
964 		goto release_sg;
965 
966 	/* Map SG to device */
967 	r = -ENOMEM;
968 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
969 	if (nents != ttm->sg->nents)
970 		goto release_sg;
971 
972 	/* convert SG to linear array of pages and dma addresses */
973 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
974 					 gtt->ttm.dma_address, ttm->num_pages);
975 
976 	return 0;
977 
978 release_sg:
979 	kfree(ttm->sg);
980 	return r;
981 }
982 
983 /**
984  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
985  */
986 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
987 {
988 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
989 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
990 
991 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
992 	enum dma_data_direction direction = write ?
993 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
994 
995 	/* double check that we don't free the table twice */
996 	if (!ttm->sg->sgl)
997 		return;
998 
999 	/* unmap the pages mapped to the device */
1000 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1001 
1002 	sg_free_table(ttm->sg);
1003 
1004 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1005 	if (gtt->range &&
1006 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
1007 						      gtt->range->pfns[0]))
1008 		WARN_ONCE(1, "Missing get_user_page_done\n");
1009 #endif
1010 }
1011 
1012 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1013 				struct ttm_buffer_object *tbo,
1014 				uint64_t flags)
1015 {
1016 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1017 	struct ttm_tt *ttm = tbo->ttm;
1018 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1019 	int r;
1020 
1021 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1022 		uint64_t page_idx = 1;
1023 
1024 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1025 				ttm->pages, gtt->ttm.dma_address, flags);
1026 		if (r)
1027 			goto gart_bind_fail;
1028 
1029 		/* Patch mtype of the second part BO */
1030 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1031 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1032 
1033 		r = amdgpu_gart_bind(adev,
1034 				gtt->offset + (page_idx << PAGE_SHIFT),
1035 				ttm->num_pages - page_idx,
1036 				&ttm->pages[page_idx],
1037 				&(gtt->ttm.dma_address[page_idx]), flags);
1038 	} else {
1039 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1040 				     ttm->pages, gtt->ttm.dma_address, flags);
1041 	}
1042 
1043 gart_bind_fail:
1044 	if (r)
1045 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1046 			  ttm->num_pages, gtt->offset);
1047 
1048 	return r;
1049 }
1050 
1051 /**
1052  * amdgpu_ttm_backend_bind - Bind GTT memory
1053  *
1054  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1055  * This handles binding GTT memory to the device address space.
1056  */
1057 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1058 				   struct ttm_mem_reg *bo_mem)
1059 {
1060 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1061 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
1062 	uint64_t flags;
1063 	int r = 0;
1064 
1065 	if (gtt->userptr) {
1066 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1067 		if (r) {
1068 			DRM_ERROR("failed to pin userptr\n");
1069 			return r;
1070 		}
1071 	}
1072 	if (!ttm->num_pages) {
1073 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1074 		     ttm->num_pages, bo_mem, ttm);
1075 	}
1076 
1077 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1078 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1079 	    bo_mem->mem_type == AMDGPU_PL_OA)
1080 		return -EINVAL;
1081 
1082 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1083 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1084 		return 0;
1085 	}
1086 
1087 	/* compute PTE flags relevant to this BO memory */
1088 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1089 
1090 	/* bind pages into GART page tables */
1091 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1092 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1093 		ttm->pages, gtt->ttm.dma_address, flags);
1094 
1095 	if (r)
1096 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1097 			  ttm->num_pages, gtt->offset);
1098 	return r;
1099 }
1100 
1101 /**
1102  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1103  */
1104 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1105 {
1106 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 	struct ttm_operation_ctx ctx = { false, false };
1108 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1109 	struct ttm_mem_reg tmp;
1110 	struct ttm_placement placement;
1111 	struct ttm_place placements;
1112 	uint64_t addr, flags;
1113 	int r;
1114 
1115 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1116 		return 0;
1117 
1118 	addr = amdgpu_gmc_agp_addr(bo);
1119 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1120 		bo->mem.start = addr >> PAGE_SHIFT;
1121 	} else {
1122 
1123 		/* allocate GART space */
1124 		tmp = bo->mem;
1125 		tmp.mm_node = NULL;
1126 		placement.num_placement = 1;
1127 		placement.placement = &placements;
1128 		placement.num_busy_placement = 1;
1129 		placement.busy_placement = &placements;
1130 		placements.fpfn = 0;
1131 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1132 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1133 			TTM_PL_FLAG_TT;
1134 
1135 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1136 		if (unlikely(r))
1137 			return r;
1138 
1139 		/* compute PTE flags for this buffer object */
1140 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1141 
1142 		/* Bind pages */
1143 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1144 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1145 		if (unlikely(r)) {
1146 			ttm_bo_mem_put(bo, &tmp);
1147 			return r;
1148 		}
1149 
1150 		ttm_bo_mem_put(bo, &bo->mem);
1151 		bo->mem = tmp;
1152 	}
1153 
1154 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1155 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1156 
1157 	return 0;
1158 }
1159 
1160 /**
1161  * amdgpu_ttm_recover_gart - Rebind GTT pages
1162  *
1163  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1164  * rebind GTT pages during a GPU reset.
1165  */
1166 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1167 {
1168 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1169 	uint64_t flags;
1170 	int r;
1171 
1172 	if (!tbo->ttm)
1173 		return 0;
1174 
1175 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1176 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1177 
1178 	return r;
1179 }
1180 
1181 /**
1182  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1183  *
1184  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1185  * ttm_tt_destroy().
1186  */
1187 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1188 {
1189 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1190 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1191 	int r;
1192 
1193 	/* if the pages have userptr pinning then clear that first */
1194 	if (gtt->userptr)
1195 		amdgpu_ttm_tt_unpin_userptr(ttm);
1196 
1197 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1198 		return 0;
1199 
1200 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1201 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1202 	if (r)
1203 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1204 			  gtt->ttm.ttm.num_pages, gtt->offset);
1205 	return r;
1206 }
1207 
1208 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1209 {
1210 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1211 
1212 	if (gtt->usertask)
1213 		put_task_struct(gtt->usertask);
1214 
1215 	ttm_dma_tt_fini(&gtt->ttm);
1216 	kfree(gtt);
1217 }
1218 
1219 static struct ttm_backend_func amdgpu_backend_func = {
1220 	.bind = &amdgpu_ttm_backend_bind,
1221 	.unbind = &amdgpu_ttm_backend_unbind,
1222 	.destroy = &amdgpu_ttm_backend_destroy,
1223 };
1224 
1225 /**
1226  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1227  *
1228  * @bo: The buffer object to create a GTT ttm_tt object around
1229  *
1230  * Called by ttm_tt_create().
1231  */
1232 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1233 					   uint32_t page_flags)
1234 {
1235 	struct amdgpu_device *adev;
1236 	struct amdgpu_ttm_tt *gtt;
1237 
1238 	adev = amdgpu_ttm_adev(bo->bdev);
1239 
1240 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1241 	if (gtt == NULL) {
1242 		return NULL;
1243 	}
1244 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1245 
1246 	/* allocate space for the uninitialized page entries */
1247 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1248 		kfree(gtt);
1249 		return NULL;
1250 	}
1251 	return &gtt->ttm.ttm;
1252 }
1253 
1254 /**
1255  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1256  *
1257  * Map the pages of a ttm_tt object to an address space visible
1258  * to the underlying device.
1259  */
1260 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1261 			struct ttm_operation_ctx *ctx)
1262 {
1263 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1264 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1265 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1266 
1267 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1268 	if (gtt && gtt->userptr) {
1269 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1270 		if (!ttm->sg)
1271 			return -ENOMEM;
1272 
1273 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1274 		ttm->state = tt_unbound;
1275 		return 0;
1276 	}
1277 
1278 	if (slave && ttm->sg) {
1279 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1280 						 gtt->ttm.dma_address,
1281 						 ttm->num_pages);
1282 		ttm->state = tt_unbound;
1283 		return 0;
1284 	}
1285 
1286 #ifdef CONFIG_SWIOTLB
1287 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1288 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1289 	}
1290 #endif
1291 
1292 	/* fall back to generic helper to populate the page array
1293 	 * and map them to the device */
1294 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1295 }
1296 
1297 /**
1298  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1299  *
1300  * Unmaps pages of a ttm_tt object from the device address space and
1301  * unpopulates the page array backing it.
1302  */
1303 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1304 {
1305 	struct amdgpu_device *adev;
1306 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1307 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1308 
1309 	if (gtt && gtt->userptr) {
1310 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1311 		kfree(ttm->sg);
1312 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1313 		return;
1314 	}
1315 
1316 	if (slave)
1317 		return;
1318 
1319 	adev = amdgpu_ttm_adev(ttm->bdev);
1320 
1321 #ifdef CONFIG_SWIOTLB
1322 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1323 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1324 		return;
1325 	}
1326 #endif
1327 
1328 	/* fall back to generic helper to unmap and unpopulate array */
1329 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1330 }
1331 
1332 /**
1333  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1334  * task
1335  *
1336  * @ttm: The ttm_tt object to bind this userptr object to
1337  * @addr:  The address in the current tasks VM space to use
1338  * @flags: Requirements of userptr object.
1339  *
1340  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1341  * to current task
1342  */
1343 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1344 			      uint32_t flags)
1345 {
1346 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1347 
1348 	if (gtt == NULL)
1349 		return -EINVAL;
1350 
1351 	gtt->userptr = addr;
1352 	gtt->userflags = flags;
1353 
1354 	if (gtt->usertask)
1355 		put_task_struct(gtt->usertask);
1356 	gtt->usertask = current->group_leader;
1357 	get_task_struct(gtt->usertask);
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1364  */
1365 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1366 {
1367 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1368 
1369 	if (gtt == NULL)
1370 		return NULL;
1371 
1372 	if (gtt->usertask == NULL)
1373 		return NULL;
1374 
1375 	return gtt->usertask->mm;
1376 }
1377 
1378 /**
1379  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1380  * address range for the current task.
1381  *
1382  */
1383 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1384 				  unsigned long end)
1385 {
1386 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1387 	unsigned long size;
1388 
1389 	if (gtt == NULL || !gtt->userptr)
1390 		return false;
1391 
1392 	/* Return false if no part of the ttm_tt object lies within
1393 	 * the range
1394 	 */
1395 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1396 	if (gtt->userptr > end || gtt->userptr + size <= start)
1397 		return false;
1398 
1399 	return true;
1400 }
1401 
1402 /**
1403  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1404  */
1405 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1406 {
1407 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1408 
1409 	if (gtt == NULL || !gtt->userptr)
1410 		return false;
1411 
1412 	return true;
1413 }
1414 
1415 /**
1416  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1417  */
1418 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1419 {
1420 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1421 
1422 	if (gtt == NULL)
1423 		return false;
1424 
1425 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1426 }
1427 
1428 /**
1429  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1430  *
1431  * @ttm: The ttm_tt object to compute the flags for
1432  * @mem: The memory registry backing this ttm_tt object
1433  *
1434  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1435  */
1436 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1437 {
1438 	uint64_t flags = 0;
1439 
1440 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1441 		flags |= AMDGPU_PTE_VALID;
1442 
1443 	if (mem && mem->mem_type == TTM_PL_TT) {
1444 		flags |= AMDGPU_PTE_SYSTEM;
1445 
1446 		if (ttm->caching_state == tt_cached)
1447 			flags |= AMDGPU_PTE_SNOOPED;
1448 	}
1449 
1450 	return flags;
1451 }
1452 
1453 /**
1454  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1455  *
1456  * @ttm: The ttm_tt object to compute the flags for
1457  * @mem: The memory registry backing this ttm_tt object
1458 
1459  * Figure out the flags to use for a VM PTE (Page Table Entry).
1460  */
1461 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1462 				 struct ttm_mem_reg *mem)
1463 {
1464 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1465 
1466 	flags |= adev->gart.gart_pte_flags;
1467 	flags |= AMDGPU_PTE_READABLE;
1468 
1469 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1470 		flags |= AMDGPU_PTE_WRITEABLE;
1471 
1472 	return flags;
1473 }
1474 
1475 /**
1476  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1477  * object.
1478  *
1479  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1480  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1481  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1482  * used to clean out a memory space.
1483  */
1484 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1485 					    const struct ttm_place *place)
1486 {
1487 	unsigned long num_pages = bo->mem.num_pages;
1488 	struct drm_mm_node *node = bo->mem.mm_node;
1489 	struct dma_resv_list *flist;
1490 	struct dma_fence *f;
1491 	int i;
1492 
1493 	/* Don't evict VM page tables while they are busy, otherwise we can't
1494 	 * cleanly handle page faults.
1495 	 */
1496 	if (bo->type == ttm_bo_type_kernel &&
1497 	    !dma_resv_test_signaled_rcu(bo->base.resv, true))
1498 		return false;
1499 
1500 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1501 	 * If true, then return false as any KFD process needs all its BOs to
1502 	 * be resident to run successfully
1503 	 */
1504 	flist = dma_resv_get_list(bo->base.resv);
1505 	if (flist) {
1506 		for (i = 0; i < flist->shared_count; ++i) {
1507 			f = rcu_dereference_protected(flist->shared[i],
1508 				dma_resv_held(bo->base.resv));
1509 			if (amdkfd_fence_check_mm(f, current->mm))
1510 				return false;
1511 		}
1512 	}
1513 
1514 	switch (bo->mem.mem_type) {
1515 	case TTM_PL_TT:
1516 		return true;
1517 
1518 	case TTM_PL_VRAM:
1519 		/* Check each drm MM node individually */
1520 		while (num_pages) {
1521 			if (place->fpfn < (node->start + node->size) &&
1522 			    !(place->lpfn && place->lpfn <= node->start))
1523 				return true;
1524 
1525 			num_pages -= node->size;
1526 			++node;
1527 		}
1528 		return false;
1529 
1530 	default:
1531 		break;
1532 	}
1533 
1534 	return ttm_bo_eviction_valuable(bo, place);
1535 }
1536 
1537 /**
1538  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1539  *
1540  * @bo:  The buffer object to read/write
1541  * @offset:  Offset into buffer object
1542  * @buf:  Secondary buffer to write/read from
1543  * @len: Length in bytes of access
1544  * @write:  true if writing
1545  *
1546  * This is used to access VRAM that backs a buffer object via MMIO
1547  * access for debugging purposes.
1548  */
1549 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1550 				    unsigned long offset,
1551 				    void *buf, int len, int write)
1552 {
1553 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1554 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1555 	struct drm_mm_node *nodes;
1556 	uint32_t value = 0;
1557 	int ret = 0;
1558 	uint64_t pos;
1559 	unsigned long flags;
1560 
1561 	if (bo->mem.mem_type != TTM_PL_VRAM)
1562 		return -EIO;
1563 
1564 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1565 	pos = (nodes->start << PAGE_SHIFT) + offset;
1566 
1567 	while (len && pos < adev->gmc.mc_vram_size) {
1568 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1569 		uint32_t bytes = 4 - (pos & 3);
1570 		uint32_t shift = (pos & 3) * 8;
1571 		uint32_t mask = 0xffffffff << shift;
1572 
1573 		if (len < bytes) {
1574 			mask &= 0xffffffff >> (bytes - len) * 8;
1575 			bytes = len;
1576 		}
1577 
1578 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1579 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1580 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1581 		if (!write || mask != 0xffffffff)
1582 			value = RREG32_NO_KIQ(mmMM_DATA);
1583 		if (write) {
1584 			value &= ~mask;
1585 			value |= (*(uint32_t *)buf << shift) & mask;
1586 			WREG32_NO_KIQ(mmMM_DATA, value);
1587 		}
1588 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1589 		if (!write) {
1590 			value = (value & mask) >> shift;
1591 			memcpy(buf, &value, bytes);
1592 		}
1593 
1594 		ret += bytes;
1595 		buf = (uint8_t *)buf + bytes;
1596 		pos += bytes;
1597 		len -= bytes;
1598 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1599 			++nodes;
1600 			pos = (nodes->start << PAGE_SHIFT);
1601 		}
1602 	}
1603 
1604 	return ret;
1605 }
1606 
1607 static struct ttm_bo_driver amdgpu_bo_driver = {
1608 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1609 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1610 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1611 	.invalidate_caches = &amdgpu_invalidate_caches,
1612 	.init_mem_type = &amdgpu_init_mem_type,
1613 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1614 	.evict_flags = &amdgpu_evict_flags,
1615 	.move = &amdgpu_bo_move,
1616 	.verify_access = &amdgpu_verify_access,
1617 	.move_notify = &amdgpu_bo_move_notify,
1618 	.release_notify = &amdgpu_bo_release_notify,
1619 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1620 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1621 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1622 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1623 	.access_memory = &amdgpu_ttm_access_memory,
1624 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1625 };
1626 
1627 /*
1628  * Firmware Reservation functions
1629  */
1630 /**
1631  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1632  *
1633  * @adev: amdgpu_device pointer
1634  *
1635  * free fw reserved vram if it has been reserved.
1636  */
1637 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1638 {
1639 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1640 		NULL, &adev->fw_vram_usage.va);
1641 }
1642 
1643 /**
1644  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1645  *
1646  * @adev: amdgpu_device pointer
1647  *
1648  * create bo vram reservation from fw.
1649  */
1650 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1651 {
1652 	struct ttm_operation_ctx ctx = { false, false };
1653 	struct amdgpu_bo_param bp;
1654 	int r = 0;
1655 	int i;
1656 	u64 vram_size = adev->gmc.visible_vram_size;
1657 	u64 offset = adev->fw_vram_usage.start_offset;
1658 	u64 size = adev->fw_vram_usage.size;
1659 	struct amdgpu_bo *bo;
1660 
1661 	memset(&bp, 0, sizeof(bp));
1662 	bp.size = adev->fw_vram_usage.size;
1663 	bp.byte_align = PAGE_SIZE;
1664 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1665 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1666 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1667 	bp.type = ttm_bo_type_kernel;
1668 	bp.resv = NULL;
1669 	adev->fw_vram_usage.va = NULL;
1670 	adev->fw_vram_usage.reserved_bo = NULL;
1671 
1672 	if (adev->fw_vram_usage.size > 0 &&
1673 		adev->fw_vram_usage.size <= vram_size) {
1674 
1675 		r = amdgpu_bo_create(adev, &bp,
1676 				     &adev->fw_vram_usage.reserved_bo);
1677 		if (r)
1678 			goto error_create;
1679 
1680 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1681 		if (r)
1682 			goto error_reserve;
1683 
1684 		/* remove the original mem node and create a new one at the
1685 		 * request position
1686 		 */
1687 		bo = adev->fw_vram_usage.reserved_bo;
1688 		offset = ALIGN(offset, PAGE_SIZE);
1689 		for (i = 0; i < bo->placement.num_placement; ++i) {
1690 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1691 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1692 		}
1693 
1694 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1695 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1696 				     &bo->tbo.mem, &ctx);
1697 		if (r)
1698 			goto error_pin;
1699 
1700 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1701 			AMDGPU_GEM_DOMAIN_VRAM,
1702 			adev->fw_vram_usage.start_offset,
1703 			(adev->fw_vram_usage.start_offset +
1704 			adev->fw_vram_usage.size));
1705 		if (r)
1706 			goto error_pin;
1707 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1708 			&adev->fw_vram_usage.va);
1709 		if (r)
1710 			goto error_kmap;
1711 
1712 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1713 	}
1714 	return r;
1715 
1716 error_kmap:
1717 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1718 error_pin:
1719 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1720 error_reserve:
1721 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1722 error_create:
1723 	adev->fw_vram_usage.va = NULL;
1724 	adev->fw_vram_usage.reserved_bo = NULL;
1725 	return r;
1726 }
1727 /**
1728  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1729  * gtt/vram related fields.
1730  *
1731  * This initializes all of the memory space pools that the TTM layer
1732  * will need such as the GTT space (system memory mapped to the device),
1733  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1734  * can be mapped per VMID.
1735  */
1736 int amdgpu_ttm_init(struct amdgpu_device *adev)
1737 {
1738 	uint64_t gtt_size;
1739 	int r;
1740 	u64 vis_vram_limit;
1741 	void *stolen_vga_buf;
1742 
1743 	mutex_init(&adev->mman.gtt_window_lock);
1744 
1745 	/* No others user of address space so set it to 0 */
1746 	r = ttm_bo_device_init(&adev->mman.bdev,
1747 			       &amdgpu_bo_driver,
1748 			       adev->ddev->anon_inode->i_mapping,
1749 			       dma_addressing_limited(adev->dev));
1750 	if (r) {
1751 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1752 		return r;
1753 	}
1754 	adev->mman.initialized = true;
1755 
1756 	/* We opt to avoid OOM on system pages allocations */
1757 	adev->mman.bdev.no_retry = true;
1758 
1759 	/* Initialize VRAM pool with all of VRAM divided into pages */
1760 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1761 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1762 	if (r) {
1763 		DRM_ERROR("Failed initializing VRAM heap.\n");
1764 		return r;
1765 	}
1766 
1767 	/* Reduce size of CPU-visible VRAM if requested */
1768 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1769 	if (amdgpu_vis_vram_limit > 0 &&
1770 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1771 		adev->gmc.visible_vram_size = vis_vram_limit;
1772 
1773 	/* Change the size here instead of the init above so only lpfn is affected */
1774 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1775 #ifdef CONFIG_64BIT
1776 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1777 						adev->gmc.visible_vram_size);
1778 #endif
1779 
1780 	/*
1781 	 *The reserved vram for firmware must be pinned to the specified
1782 	 *place on the VRAM, so reserve it early.
1783 	 */
1784 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1785 	if (r) {
1786 		return r;
1787 	}
1788 
1789 	/* allocate memory as required for VGA
1790 	 * This is used for VGA emulation and pre-OS scanout buffers to
1791 	 * avoid display artifacts while transitioning between pre-OS
1792 	 * and driver.  */
1793 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1794 				    AMDGPU_GEM_DOMAIN_VRAM,
1795 				    &adev->stolen_vga_memory,
1796 				    NULL, &stolen_vga_buf);
1797 	if (r)
1798 		return r;
1799 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1800 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1801 
1802 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1803 	 * or whatever the user passed on module init */
1804 	if (amdgpu_gtt_size == -1) {
1805 		struct sysinfo si;
1806 
1807 		si_meminfo(&si);
1808 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1809 			       adev->gmc.mc_vram_size),
1810 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1811 	}
1812 	else
1813 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1814 
1815 	/* Initialize GTT memory pool */
1816 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1817 	if (r) {
1818 		DRM_ERROR("Failed initializing GTT heap.\n");
1819 		return r;
1820 	}
1821 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1822 		 (unsigned)(gtt_size / (1024 * 1024)));
1823 
1824 	/* Initialize various on-chip memory pools */
1825 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1826 			   adev->gds.gds_size);
1827 	if (r) {
1828 		DRM_ERROR("Failed initializing GDS heap.\n");
1829 		return r;
1830 	}
1831 
1832 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1833 			   adev->gds.gws_size);
1834 	if (r) {
1835 		DRM_ERROR("Failed initializing gws heap.\n");
1836 		return r;
1837 	}
1838 
1839 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1840 			   adev->gds.oa_size);
1841 	if (r) {
1842 		DRM_ERROR("Failed initializing oa heap.\n");
1843 		return r;
1844 	}
1845 
1846 	/* Register debugfs entries for amdgpu_ttm */
1847 	r = amdgpu_ttm_debugfs_init(adev);
1848 	if (r) {
1849 		DRM_ERROR("Failed to init debugfs\n");
1850 		return r;
1851 	}
1852 	return 0;
1853 }
1854 
1855 /**
1856  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1857  */
1858 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1859 {
1860 	void *stolen_vga_buf;
1861 	/* return the VGA stolen memory (if any) back to VRAM */
1862 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1863 }
1864 
1865 /**
1866  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1867  */
1868 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1869 {
1870 	if (!adev->mman.initialized)
1871 		return;
1872 
1873 	amdgpu_ttm_debugfs_fini(adev);
1874 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1875 	if (adev->mman.aper_base_kaddr)
1876 		iounmap(adev->mman.aper_base_kaddr);
1877 	adev->mman.aper_base_kaddr = NULL;
1878 
1879 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1880 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1881 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1882 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1883 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1884 	ttm_bo_device_release(&adev->mman.bdev);
1885 	adev->mman.initialized = false;
1886 	DRM_INFO("amdgpu: ttm finalized\n");
1887 }
1888 
1889 /**
1890  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1891  *
1892  * @adev: amdgpu_device pointer
1893  * @enable: true when we can use buffer functions.
1894  *
1895  * Enable/disable use of buffer functions during suspend/resume. This should
1896  * only be called at bootup or when userspace isn't running.
1897  */
1898 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1899 {
1900 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1901 	uint64_t size;
1902 	int r;
1903 
1904 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1905 	    adev->mman.buffer_funcs_enabled == enable)
1906 		return;
1907 
1908 	if (enable) {
1909 		struct amdgpu_ring *ring;
1910 		struct drm_sched_rq *rq;
1911 
1912 		ring = adev->mman.buffer_funcs_ring;
1913 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1914 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1915 		if (r) {
1916 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1917 				  r);
1918 			return;
1919 		}
1920 	} else {
1921 		drm_sched_entity_destroy(&adev->mman.entity);
1922 		dma_fence_put(man->move);
1923 		man->move = NULL;
1924 	}
1925 
1926 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1927 	if (enable)
1928 		size = adev->gmc.real_vram_size;
1929 	else
1930 		size = adev->gmc.visible_vram_size;
1931 	man->size = size >> PAGE_SHIFT;
1932 	adev->mman.buffer_funcs_enabled = enable;
1933 }
1934 
1935 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1936 {
1937 	struct drm_file *file_priv = filp->private_data;
1938 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1939 
1940 	if (adev == NULL)
1941 		return -EINVAL;
1942 
1943 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1944 }
1945 
1946 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1947 			     struct ttm_mem_reg *mem, unsigned num_pages,
1948 			     uint64_t offset, unsigned window,
1949 			     struct amdgpu_ring *ring,
1950 			     uint64_t *addr)
1951 {
1952 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1953 	struct amdgpu_device *adev = ring->adev;
1954 	struct ttm_tt *ttm = bo->ttm;
1955 	struct amdgpu_job *job;
1956 	unsigned num_dw, num_bytes;
1957 	dma_addr_t *dma_address;
1958 	struct dma_fence *fence;
1959 	uint64_t src_addr, dst_addr;
1960 	uint64_t flags;
1961 	int r;
1962 
1963 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1964 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1965 
1966 	*addr = adev->gmc.gart_start;
1967 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1968 		AMDGPU_GPU_PAGE_SIZE;
1969 
1970 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1971 	while (num_dw & 0x7)
1972 		num_dw++;
1973 
1974 	num_bytes = num_pages * 8;
1975 
1976 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1977 	if (r)
1978 		return r;
1979 
1980 	src_addr = num_dw * 4;
1981 	src_addr += job->ibs[0].gpu_addr;
1982 
1983 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1984 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1985 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1986 				dst_addr, num_bytes);
1987 
1988 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1989 	WARN_ON(job->ibs[0].length_dw > num_dw);
1990 
1991 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1992 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1993 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1994 			    &job->ibs[0].ptr[num_dw]);
1995 	if (r)
1996 		goto error_free;
1997 
1998 	r = amdgpu_job_submit(job, &adev->mman.entity,
1999 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2000 	if (r)
2001 		goto error_free;
2002 
2003 	dma_fence_put(fence);
2004 
2005 	return r;
2006 
2007 error_free:
2008 	amdgpu_job_free(job);
2009 	return r;
2010 }
2011 
2012 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2013 		       uint64_t dst_offset, uint32_t byte_count,
2014 		       struct dma_resv *resv,
2015 		       struct dma_fence **fence, bool direct_submit,
2016 		       bool vm_needs_flush)
2017 {
2018 	struct amdgpu_device *adev = ring->adev;
2019 	struct amdgpu_job *job;
2020 
2021 	uint32_t max_bytes;
2022 	unsigned num_loops, num_dw;
2023 	unsigned i;
2024 	int r;
2025 
2026 	if (direct_submit && !ring->sched.ready) {
2027 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2028 		return -EINVAL;
2029 	}
2030 
2031 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2032 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2033 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
2034 
2035 	/* for IB padding */
2036 	while (num_dw & 0x7)
2037 		num_dw++;
2038 
2039 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2040 	if (r)
2041 		return r;
2042 
2043 	if (vm_needs_flush) {
2044 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2045 		job->vm_needs_flush = true;
2046 	}
2047 	if (resv) {
2048 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2049 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2050 				     false);
2051 		if (r) {
2052 			DRM_ERROR("sync failed (%d).\n", r);
2053 			goto error_free;
2054 		}
2055 	}
2056 
2057 	for (i = 0; i < num_loops; i++) {
2058 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2059 
2060 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2061 					dst_offset, cur_size_in_bytes);
2062 
2063 		src_offset += cur_size_in_bytes;
2064 		dst_offset += cur_size_in_bytes;
2065 		byte_count -= cur_size_in_bytes;
2066 	}
2067 
2068 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2069 	WARN_ON(job->ibs[0].length_dw > num_dw);
2070 	if (direct_submit)
2071 		r = amdgpu_job_submit_direct(job, ring, fence);
2072 	else
2073 		r = amdgpu_job_submit(job, &adev->mman.entity,
2074 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2075 	if (r)
2076 		goto error_free;
2077 
2078 	return r;
2079 
2080 error_free:
2081 	amdgpu_job_free(job);
2082 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2083 	return r;
2084 }
2085 
2086 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2087 		       uint32_t src_data,
2088 		       struct dma_resv *resv,
2089 		       struct dma_fence **fence)
2090 {
2091 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2092 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2093 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2094 
2095 	struct drm_mm_node *mm_node;
2096 	unsigned long num_pages;
2097 	unsigned int num_loops, num_dw;
2098 
2099 	struct amdgpu_job *job;
2100 	int r;
2101 
2102 	if (!adev->mman.buffer_funcs_enabled) {
2103 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2104 		return -EINVAL;
2105 	}
2106 
2107 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2108 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2109 		if (r)
2110 			return r;
2111 	}
2112 
2113 	num_pages = bo->tbo.num_pages;
2114 	mm_node = bo->tbo.mem.mm_node;
2115 	num_loops = 0;
2116 	while (num_pages) {
2117 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2118 
2119 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2120 		num_pages -= mm_node->size;
2121 		++mm_node;
2122 	}
2123 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2124 
2125 	/* for IB padding */
2126 	num_dw += 64;
2127 
2128 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2129 	if (r)
2130 		return r;
2131 
2132 	if (resv) {
2133 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2134 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2135 		if (r) {
2136 			DRM_ERROR("sync failed (%d).\n", r);
2137 			goto error_free;
2138 		}
2139 	}
2140 
2141 	num_pages = bo->tbo.num_pages;
2142 	mm_node = bo->tbo.mem.mm_node;
2143 
2144 	while (num_pages) {
2145 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2146 		uint64_t dst_addr;
2147 
2148 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2149 		while (byte_count) {
2150 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2151 							   max_bytes);
2152 
2153 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2154 						dst_addr, cur_size_in_bytes);
2155 
2156 			dst_addr += cur_size_in_bytes;
2157 			byte_count -= cur_size_in_bytes;
2158 		}
2159 
2160 		num_pages -= mm_node->size;
2161 		++mm_node;
2162 	}
2163 
2164 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2165 	WARN_ON(job->ibs[0].length_dw > num_dw);
2166 	r = amdgpu_job_submit(job, &adev->mman.entity,
2167 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2168 	if (r)
2169 		goto error_free;
2170 
2171 	return 0;
2172 
2173 error_free:
2174 	amdgpu_job_free(job);
2175 	return r;
2176 }
2177 
2178 #if defined(CONFIG_DEBUG_FS)
2179 
2180 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2181 {
2182 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2183 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2184 	struct drm_device *dev = node->minor->dev;
2185 	struct amdgpu_device *adev = dev->dev_private;
2186 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2187 	struct drm_printer p = drm_seq_file_printer(m);
2188 
2189 	man->func->debug(man, &p);
2190 	return 0;
2191 }
2192 
2193 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2194 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2195 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2196 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2197 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2198 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2199 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2200 #ifdef CONFIG_SWIOTLB
2201 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2202 #endif
2203 };
2204 
2205 /**
2206  * amdgpu_ttm_vram_read - Linear read access to VRAM
2207  *
2208  * Accesses VRAM via MMIO for debugging purposes.
2209  */
2210 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2211 				    size_t size, loff_t *pos)
2212 {
2213 	struct amdgpu_device *adev = file_inode(f)->i_private;
2214 	ssize_t result = 0;
2215 	int r;
2216 
2217 	if (size & 0x3 || *pos & 0x3)
2218 		return -EINVAL;
2219 
2220 	if (*pos >= adev->gmc.mc_vram_size)
2221 		return -ENXIO;
2222 
2223 	while (size) {
2224 		unsigned long flags;
2225 		uint32_t value;
2226 
2227 		if (*pos >= adev->gmc.mc_vram_size)
2228 			return result;
2229 
2230 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2231 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2232 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2233 		value = RREG32_NO_KIQ(mmMM_DATA);
2234 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2235 
2236 		r = put_user(value, (uint32_t *)buf);
2237 		if (r)
2238 			return r;
2239 
2240 		result += 4;
2241 		buf += 4;
2242 		*pos += 4;
2243 		size -= 4;
2244 	}
2245 
2246 	return result;
2247 }
2248 
2249 /**
2250  * amdgpu_ttm_vram_write - Linear write access to VRAM
2251  *
2252  * Accesses VRAM via MMIO for debugging purposes.
2253  */
2254 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2255 				    size_t size, loff_t *pos)
2256 {
2257 	struct amdgpu_device *adev = file_inode(f)->i_private;
2258 	ssize_t result = 0;
2259 	int r;
2260 
2261 	if (size & 0x3 || *pos & 0x3)
2262 		return -EINVAL;
2263 
2264 	if (*pos >= adev->gmc.mc_vram_size)
2265 		return -ENXIO;
2266 
2267 	while (size) {
2268 		unsigned long flags;
2269 		uint32_t value;
2270 
2271 		if (*pos >= adev->gmc.mc_vram_size)
2272 			return result;
2273 
2274 		r = get_user(value, (uint32_t *)buf);
2275 		if (r)
2276 			return r;
2277 
2278 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2279 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2280 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2281 		WREG32_NO_KIQ(mmMM_DATA, value);
2282 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2283 
2284 		result += 4;
2285 		buf += 4;
2286 		*pos += 4;
2287 		size -= 4;
2288 	}
2289 
2290 	return result;
2291 }
2292 
2293 static const struct file_operations amdgpu_ttm_vram_fops = {
2294 	.owner = THIS_MODULE,
2295 	.read = amdgpu_ttm_vram_read,
2296 	.write = amdgpu_ttm_vram_write,
2297 	.llseek = default_llseek,
2298 };
2299 
2300 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2301 
2302 /**
2303  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2304  */
2305 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2306 				   size_t size, loff_t *pos)
2307 {
2308 	struct amdgpu_device *adev = file_inode(f)->i_private;
2309 	ssize_t result = 0;
2310 	int r;
2311 
2312 	while (size) {
2313 		loff_t p = *pos / PAGE_SIZE;
2314 		unsigned off = *pos & ~PAGE_MASK;
2315 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2316 		struct page *page;
2317 		void *ptr;
2318 
2319 		if (p >= adev->gart.num_cpu_pages)
2320 			return result;
2321 
2322 		page = adev->gart.pages[p];
2323 		if (page) {
2324 			ptr = kmap(page);
2325 			ptr += off;
2326 
2327 			r = copy_to_user(buf, ptr, cur_size);
2328 			kunmap(adev->gart.pages[p]);
2329 		} else
2330 			r = clear_user(buf, cur_size);
2331 
2332 		if (r)
2333 			return -EFAULT;
2334 
2335 		result += cur_size;
2336 		buf += cur_size;
2337 		*pos += cur_size;
2338 		size -= cur_size;
2339 	}
2340 
2341 	return result;
2342 }
2343 
2344 static const struct file_operations amdgpu_ttm_gtt_fops = {
2345 	.owner = THIS_MODULE,
2346 	.read = amdgpu_ttm_gtt_read,
2347 	.llseek = default_llseek
2348 };
2349 
2350 #endif
2351 
2352 /**
2353  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2354  *
2355  * This function is used to read memory that has been mapped to the
2356  * GPU and the known addresses are not physical addresses but instead
2357  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2358  */
2359 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2360 				 size_t size, loff_t *pos)
2361 {
2362 	struct amdgpu_device *adev = file_inode(f)->i_private;
2363 	struct iommu_domain *dom;
2364 	ssize_t result = 0;
2365 	int r;
2366 
2367 	/* retrieve the IOMMU domain if any for this device */
2368 	dom = iommu_get_domain_for_dev(adev->dev);
2369 
2370 	while (size) {
2371 		phys_addr_t addr = *pos & PAGE_MASK;
2372 		loff_t off = *pos & ~PAGE_MASK;
2373 		size_t bytes = PAGE_SIZE - off;
2374 		unsigned long pfn;
2375 		struct page *p;
2376 		void *ptr;
2377 
2378 		bytes = bytes < size ? bytes : size;
2379 
2380 		/* Translate the bus address to a physical address.  If
2381 		 * the domain is NULL it means there is no IOMMU active
2382 		 * and the address translation is the identity
2383 		 */
2384 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2385 
2386 		pfn = addr >> PAGE_SHIFT;
2387 		if (!pfn_valid(pfn))
2388 			return -EPERM;
2389 
2390 		p = pfn_to_page(pfn);
2391 		if (p->mapping != adev->mman.bdev.dev_mapping)
2392 			return -EPERM;
2393 
2394 		ptr = kmap(p);
2395 		r = copy_to_user(buf, ptr + off, bytes);
2396 		kunmap(p);
2397 		if (r)
2398 			return -EFAULT;
2399 
2400 		size -= bytes;
2401 		*pos += bytes;
2402 		result += bytes;
2403 	}
2404 
2405 	return result;
2406 }
2407 
2408 /**
2409  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2410  *
2411  * This function is used to write memory that has been mapped to the
2412  * GPU and the known addresses are not physical addresses but instead
2413  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2414  */
2415 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2416 				 size_t size, loff_t *pos)
2417 {
2418 	struct amdgpu_device *adev = file_inode(f)->i_private;
2419 	struct iommu_domain *dom;
2420 	ssize_t result = 0;
2421 	int r;
2422 
2423 	dom = iommu_get_domain_for_dev(adev->dev);
2424 
2425 	while (size) {
2426 		phys_addr_t addr = *pos & PAGE_MASK;
2427 		loff_t off = *pos & ~PAGE_MASK;
2428 		size_t bytes = PAGE_SIZE - off;
2429 		unsigned long pfn;
2430 		struct page *p;
2431 		void *ptr;
2432 
2433 		bytes = bytes < size ? bytes : size;
2434 
2435 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2436 
2437 		pfn = addr >> PAGE_SHIFT;
2438 		if (!pfn_valid(pfn))
2439 			return -EPERM;
2440 
2441 		p = pfn_to_page(pfn);
2442 		if (p->mapping != adev->mman.bdev.dev_mapping)
2443 			return -EPERM;
2444 
2445 		ptr = kmap(p);
2446 		r = copy_from_user(ptr + off, buf, bytes);
2447 		kunmap(p);
2448 		if (r)
2449 			return -EFAULT;
2450 
2451 		size -= bytes;
2452 		*pos += bytes;
2453 		result += bytes;
2454 	}
2455 
2456 	return result;
2457 }
2458 
2459 static const struct file_operations amdgpu_ttm_iomem_fops = {
2460 	.owner = THIS_MODULE,
2461 	.read = amdgpu_iomem_read,
2462 	.write = amdgpu_iomem_write,
2463 	.llseek = default_llseek
2464 };
2465 
2466 static const struct {
2467 	char *name;
2468 	const struct file_operations *fops;
2469 	int domain;
2470 } ttm_debugfs_entries[] = {
2471 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2472 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2473 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2474 #endif
2475 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2476 };
2477 
2478 #endif
2479 
2480 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2481 {
2482 #if defined(CONFIG_DEBUG_FS)
2483 	unsigned count;
2484 
2485 	struct drm_minor *minor = adev->ddev->primary;
2486 	struct dentry *ent, *root = minor->debugfs_root;
2487 
2488 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2489 		ent = debugfs_create_file(
2490 				ttm_debugfs_entries[count].name,
2491 				S_IFREG | S_IRUGO, root,
2492 				adev,
2493 				ttm_debugfs_entries[count].fops);
2494 		if (IS_ERR(ent))
2495 			return PTR_ERR(ent);
2496 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2497 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2498 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2499 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2500 		adev->mman.debugfs_entries[count] = ent;
2501 	}
2502 
2503 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2504 
2505 #ifdef CONFIG_SWIOTLB
2506 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2507 		--count;
2508 #endif
2509 
2510 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2511 #else
2512 	return 0;
2513 #endif
2514 }
2515 
2516 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2517 {
2518 #if defined(CONFIG_DEBUG_FS)
2519 	unsigned i;
2520 
2521 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2522 		debugfs_remove(adev->mman.debugfs_entries[i]);
2523 #endif
2524 }
2525