1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 
49 #include <drm/amdgpu_drm.h>
50 
51 #include "amdgpu.h"
52 #include "amdgpu_object.h"
53 #include "amdgpu_trace.h"
54 #include "amdgpu_amdkfd.h"
55 #include "amdgpu_sdma.h"
56 #include "amdgpu_ras.h"
57 #include "amdgpu_atomfirmware.h"
58 #include "amdgpu_res_cursor.h"
59 #include "bif/bif_4_1_d.h"
60 
61 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
62 
63 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
64 				   struct ttm_tt *ttm,
65 				   struct ttm_resource *bo_mem);
66 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
67 				      struct ttm_tt *ttm);
68 
69 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
70 				    unsigned int type,
71 				    uint64_t size_in_page)
72 {
73 	return ttm_range_man_init(&adev->mman.bdev, type,
74 				  false, size_in_page);
75 }
76 
77 /**
78  * amdgpu_evict_flags - Compute placement flags
79  *
80  * @bo: The buffer object to evict
81  * @placement: Possible destination(s) for evicted BO
82  *
83  * Fill in placement data when ttm_bo_evict() is called
84  */
85 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
86 				struct ttm_placement *placement)
87 {
88 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
89 	struct amdgpu_bo *abo;
90 	static const struct ttm_place placements = {
91 		.fpfn = 0,
92 		.lpfn = 0,
93 		.mem_type = TTM_PL_SYSTEM,
94 		.flags = 0
95 	};
96 
97 	/* Don't handle scatter gather BOs */
98 	if (bo->type == ttm_bo_type_sg) {
99 		placement->num_placement = 0;
100 		placement->num_busy_placement = 0;
101 		return;
102 	}
103 
104 	/* Object isn't an AMDGPU object so ignore */
105 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
106 		placement->placement = &placements;
107 		placement->busy_placement = &placements;
108 		placement->num_placement = 1;
109 		placement->num_busy_placement = 1;
110 		return;
111 	}
112 
113 	abo = ttm_to_amdgpu_bo(bo);
114 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
115 		struct dma_fence *fence;
116 		struct dma_resv *resv = &bo->base._resv;
117 
118 		rcu_read_lock();
119 		fence = rcu_dereference(resv->fence_excl);
120 		if (fence && !fence->ops->signaled)
121 			dma_fence_enable_sw_signaling(fence);
122 
123 		placement->num_placement = 0;
124 		placement->num_busy_placement = 0;
125 		rcu_read_unlock();
126 		return;
127 	}
128 	switch (bo->mem.mem_type) {
129 	case AMDGPU_PL_GDS:
130 	case AMDGPU_PL_GWS:
131 	case AMDGPU_PL_OA:
132 		placement->num_placement = 0;
133 		placement->num_busy_placement = 0;
134 		return;
135 
136 	case TTM_PL_VRAM:
137 		if (!adev->mman.buffer_funcs_enabled) {
138 			/* Move to system memory */
139 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
140 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
141 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
142 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
143 
144 			/* Try evicting to the CPU inaccessible part of VRAM
145 			 * first, but only set GTT as busy placement, so this
146 			 * BO will be evicted to GTT rather than causing other
147 			 * BOs to be evicted from VRAM
148 			 */
149 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
150 							 AMDGPU_GEM_DOMAIN_GTT);
151 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 			abo->placements[0].lpfn = 0;
153 			abo->placement.busy_placement = &abo->placements[1];
154 			abo->placement.num_busy_placement = 1;
155 		} else {
156 			/* Move to GTT memory */
157 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
158 		}
159 		break;
160 	case TTM_PL_TT:
161 	case AMDGPU_PL_PREEMPT:
162 	default:
163 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164 		break;
165 	}
166 	*placement = abo->placement;
167 }
168 
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @num_pages: number of pages to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 				 struct ttm_resource *mem,
185 				 struct amdgpu_res_cursor *mm_cur,
186 				 unsigned num_pages, unsigned window,
187 				 struct amdgpu_ring *ring, bool tmz,
188 				 uint64_t *addr)
189 {
190 	struct amdgpu_device *adev = ring->adev;
191 	struct amdgpu_job *job;
192 	unsigned num_dw, num_bytes;
193 	struct dma_fence *fence;
194 	uint64_t src_addr, dst_addr;
195 	void *cpu_addr;
196 	uint64_t flags;
197 	unsigned int i;
198 	int r;
199 
200 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
201 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
202 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
203 
204 	/* Map only what can't be accessed directly */
205 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207 			mm_cur->start;
208 		return 0;
209 	}
210 
211 	*addr = adev->gmc.gart_start;
212 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
213 		AMDGPU_GPU_PAGE_SIZE;
214 	*addr += mm_cur->start & ~PAGE_MASK;
215 
216 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
217 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
218 
219 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
220 				     AMDGPU_IB_POOL_DELAYED, &job);
221 	if (r)
222 		return r;
223 
224 	src_addr = num_dw * 4;
225 	src_addr += job->ibs[0].gpu_addr;
226 
227 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
228 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
229 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
230 				dst_addr, num_bytes, false);
231 
232 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
233 	WARN_ON(job->ibs[0].length_dw > num_dw);
234 
235 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
236 	if (tmz)
237 		flags |= AMDGPU_PTE_TMZ;
238 
239 	cpu_addr = &job->ibs[0].ptr[num_dw];
240 
241 	if (mem->mem_type == TTM_PL_TT) {
242 		dma_addr_t *dma_addr;
243 
244 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
245 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
246 				    cpu_addr);
247 		if (r)
248 			goto error_free;
249 	} else {
250 		dma_addr_t dma_address;
251 
252 		dma_address = mm_cur->start;
253 		dma_address += adev->vm_manager.vram_base_offset;
254 
255 		for (i = 0; i < num_pages; ++i) {
256 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
257 					    &dma_address, flags, cpu_addr);
258 			if (r)
259 				goto error_free;
260 
261 			dma_address += PAGE_SIZE;
262 		}
263 	}
264 
265 	r = amdgpu_job_submit(job, &adev->mman.entity,
266 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
267 	if (r)
268 		goto error_free;
269 
270 	dma_fence_put(fence);
271 
272 	return r;
273 
274 error_free:
275 	amdgpu_job_free(job);
276 	return r;
277 }
278 
279 /**
280  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
281  * @adev: amdgpu device
282  * @src: buffer/address where to read from
283  * @dst: buffer/address where to write to
284  * @size: number of bytes to copy
285  * @tmz: if a secure copy should be used
286  * @resv: resv object to sync to
287  * @f: Returns the last fence if multiple jobs are submitted.
288  *
289  * The function copies @size bytes from {src->mem + src->offset} to
290  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
291  * move and different for a BO to BO copy.
292  *
293  */
294 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
295 			       const struct amdgpu_copy_mem *src,
296 			       const struct amdgpu_copy_mem *dst,
297 			       uint64_t size, bool tmz,
298 			       struct dma_resv *resv,
299 			       struct dma_fence **f)
300 {
301 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
302 					AMDGPU_GPU_PAGE_SIZE);
303 
304 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
305 	struct amdgpu_res_cursor src_mm, dst_mm;
306 	struct dma_fence *fence = NULL;
307 	int r = 0;
308 
309 	if (!adev->mman.buffer_funcs_enabled) {
310 		DRM_ERROR("Trying to move memory with ring turned off.\n");
311 		return -EINVAL;
312 	}
313 
314 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
315 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
316 
317 	mutex_lock(&adev->mman.gtt_window_lock);
318 	while (src_mm.remaining) {
319 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
320 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
321 		struct dma_fence *next;
322 		uint32_t cur_size;
323 		uint64_t from, to;
324 
325 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
326 		 * begins at an offset, then adjust the size accordingly
327 		 */
328 		cur_size = max(src_page_offset, dst_page_offset);
329 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
330 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
331 
332 		/* Map src to window 0 and dst to window 1. */
333 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
334 					  PFN_UP(cur_size + src_page_offset),
335 					  0, ring, tmz, &from);
336 		if (r)
337 			goto error;
338 
339 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
340 					  PFN_UP(cur_size + dst_page_offset),
341 					  1, ring, tmz, &to);
342 		if (r)
343 			goto error;
344 
345 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
346 				       resv, &next, false, true, tmz);
347 		if (r)
348 			goto error;
349 
350 		dma_fence_put(fence);
351 		fence = next;
352 
353 		amdgpu_res_next(&src_mm, cur_size);
354 		amdgpu_res_next(&dst_mm, cur_size);
355 	}
356 error:
357 	mutex_unlock(&adev->mman.gtt_window_lock);
358 	if (f)
359 		*f = dma_fence_get(fence);
360 	dma_fence_put(fence);
361 	return r;
362 }
363 
364 /*
365  * amdgpu_move_blit - Copy an entire buffer to another buffer
366  *
367  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
368  * help move buffers to and from VRAM.
369  */
370 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
371 			    bool evict,
372 			    struct ttm_resource *new_mem,
373 			    struct ttm_resource *old_mem)
374 {
375 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
376 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
377 	struct amdgpu_copy_mem src, dst;
378 	struct dma_fence *fence = NULL;
379 	int r;
380 
381 	src.bo = bo;
382 	dst.bo = bo;
383 	src.mem = old_mem;
384 	dst.mem = new_mem;
385 	src.offset = 0;
386 	dst.offset = 0;
387 
388 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
389 				       new_mem->num_pages << PAGE_SHIFT,
390 				       amdgpu_bo_encrypted(abo),
391 				       bo->base.resv, &fence);
392 	if (r)
393 		goto error;
394 
395 	/* clear the space being freed */
396 	if (old_mem->mem_type == TTM_PL_VRAM &&
397 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
398 		struct dma_fence *wipe_fence = NULL;
399 
400 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
401 				       NULL, &wipe_fence);
402 		if (r) {
403 			goto error;
404 		} else if (wipe_fence) {
405 			dma_fence_put(fence);
406 			fence = wipe_fence;
407 		}
408 	}
409 
410 	/* Always block for VM page tables before committing the new location */
411 	if (bo->type == ttm_bo_type_kernel)
412 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
413 	else
414 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
415 	dma_fence_put(fence);
416 	return r;
417 
418 error:
419 	if (fence)
420 		dma_fence_wait(fence, false);
421 	dma_fence_put(fence);
422 	return r;
423 }
424 
425 /*
426  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
427  *
428  * Called by amdgpu_bo_move()
429  */
430 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
431 			       struct ttm_resource *mem)
432 {
433 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
434 	struct amdgpu_res_cursor cursor;
435 
436 	if (mem->mem_type == TTM_PL_SYSTEM ||
437 	    mem->mem_type == TTM_PL_TT)
438 		return true;
439 	if (mem->mem_type != TTM_PL_VRAM)
440 		return false;
441 
442 	amdgpu_res_first(mem, 0, mem_size, &cursor);
443 
444 	/* ttm_resource_ioremap only supports contiguous memory */
445 	if (cursor.size != mem_size)
446 		return false;
447 
448 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
449 }
450 
451 /*
452  * amdgpu_bo_move - Move a buffer object to a new memory location
453  *
454  * Called by ttm_bo_handle_move_mem()
455  */
456 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
457 			  struct ttm_operation_ctx *ctx,
458 			  struct ttm_resource *new_mem,
459 			  struct ttm_place *hop)
460 {
461 	struct amdgpu_device *adev;
462 	struct amdgpu_bo *abo;
463 	struct ttm_resource *old_mem = &bo->mem;
464 	int r;
465 
466 	if (new_mem->mem_type == TTM_PL_TT ||
467 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
468 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
469 		if (r)
470 			return r;
471 	}
472 
473 	/* Can't move a pinned BO */
474 	abo = ttm_to_amdgpu_bo(bo);
475 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
476 		return -EINVAL;
477 
478 	adev = amdgpu_ttm_adev(bo->bdev);
479 
480 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
481 		ttm_bo_move_null(bo, new_mem);
482 		goto out;
483 	}
484 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
485 	    (new_mem->mem_type == TTM_PL_TT ||
486 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
487 		ttm_bo_move_null(bo, new_mem);
488 		goto out;
489 	}
490 	if ((old_mem->mem_type == TTM_PL_TT ||
491 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
492 	    new_mem->mem_type == TTM_PL_SYSTEM) {
493 		r = ttm_bo_wait_ctx(bo, ctx);
494 		if (r)
495 			return r;
496 
497 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
498 		ttm_resource_free(bo, &bo->mem);
499 		ttm_bo_assign_mem(bo, new_mem);
500 		goto out;
501 	}
502 
503 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
504 	    old_mem->mem_type == AMDGPU_PL_GWS ||
505 	    old_mem->mem_type == AMDGPU_PL_OA ||
506 	    new_mem->mem_type == AMDGPU_PL_GDS ||
507 	    new_mem->mem_type == AMDGPU_PL_GWS ||
508 	    new_mem->mem_type == AMDGPU_PL_OA) {
509 		/* Nothing to save here */
510 		ttm_bo_move_null(bo, new_mem);
511 		goto out;
512 	}
513 
514 	if (adev->mman.buffer_funcs_enabled) {
515 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
516 		      new_mem->mem_type == TTM_PL_VRAM) ||
517 		     (old_mem->mem_type == TTM_PL_VRAM &&
518 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
519 			hop->fpfn = 0;
520 			hop->lpfn = 0;
521 			hop->mem_type = TTM_PL_TT;
522 			hop->flags = 0;
523 			return -EMULTIHOP;
524 		}
525 
526 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
527 	} else {
528 		r = -ENODEV;
529 	}
530 
531 	if (r) {
532 		/* Check that all memory is CPU accessible */
533 		if (!amdgpu_mem_visible(adev, old_mem) ||
534 		    !amdgpu_mem_visible(adev, new_mem)) {
535 			pr_err("Move buffer fallback to memcpy unavailable\n");
536 			return r;
537 		}
538 
539 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
540 		if (r)
541 			return r;
542 	}
543 
544 	if (bo->type == ttm_bo_type_device &&
545 	    new_mem->mem_type == TTM_PL_VRAM &&
546 	    old_mem->mem_type != TTM_PL_VRAM) {
547 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
548 		 * accesses the BO after it's moved.
549 		 */
550 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
551 	}
552 
553 out:
554 	/* update statistics */
555 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
556 	amdgpu_bo_move_notify(bo, evict, new_mem);
557 	return 0;
558 }
559 
560 /*
561  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
562  *
563  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
564  */
565 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
566 				     struct ttm_resource *mem)
567 {
568 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
569 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
570 
571 	switch (mem->mem_type) {
572 	case TTM_PL_SYSTEM:
573 		/* system memory */
574 		return 0;
575 	case TTM_PL_TT:
576 	case AMDGPU_PL_PREEMPT:
577 		break;
578 	case TTM_PL_VRAM:
579 		mem->bus.offset = mem->start << PAGE_SHIFT;
580 		/* check if it's visible */
581 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
582 			return -EINVAL;
583 
584 		if (adev->mman.aper_base_kaddr &&
585 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
586 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
587 					mem->bus.offset;
588 
589 		mem->bus.offset += adev->gmc.aper_base;
590 		mem->bus.is_iomem = true;
591 		if (adev->gmc.xgmi.connected_to_cpu)
592 			mem->bus.caching = ttm_cached;
593 		else
594 			mem->bus.caching = ttm_write_combined;
595 		break;
596 	default:
597 		return -EINVAL;
598 	}
599 	return 0;
600 }
601 
602 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
603 					   unsigned long page_offset)
604 {
605 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
606 	struct amdgpu_res_cursor cursor;
607 
608 	amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
609 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
610 }
611 
612 /**
613  * amdgpu_ttm_domain_start - Returns GPU start address
614  * @adev: amdgpu device object
615  * @type: type of the memory
616  *
617  * Returns:
618  * GPU start address of a memory domain
619  */
620 
621 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
622 {
623 	switch (type) {
624 	case TTM_PL_TT:
625 		return adev->gmc.gart_start;
626 	case TTM_PL_VRAM:
627 		return adev->gmc.vram_start;
628 	}
629 
630 	return 0;
631 }
632 
633 /*
634  * TTM backend functions.
635  */
636 struct amdgpu_ttm_tt {
637 	struct ttm_tt	ttm;
638 	struct drm_gem_object	*gobj;
639 	u64			offset;
640 	uint64_t		userptr;
641 	struct task_struct	*usertask;
642 	uint32_t		userflags;
643 	bool			bound;
644 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
645 	struct hmm_range	*range;
646 #endif
647 };
648 
649 #ifdef CONFIG_DRM_AMDGPU_USERPTR
650 /*
651  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
652  * memory and start HMM tracking CPU page table update
653  *
654  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
655  * once afterwards to stop HMM tracking
656  */
657 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
658 {
659 	struct ttm_tt *ttm = bo->tbo.ttm;
660 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
661 	unsigned long start = gtt->userptr;
662 	struct vm_area_struct *vma;
663 	struct mm_struct *mm;
664 	bool readonly;
665 	int r = 0;
666 
667 	mm = bo->notifier.mm;
668 	if (unlikely(!mm)) {
669 		DRM_DEBUG_DRIVER("BO is not registered?\n");
670 		return -EFAULT;
671 	}
672 
673 	/* Another get_user_pages is running at the same time?? */
674 	if (WARN_ON(gtt->range))
675 		return -EFAULT;
676 
677 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
678 		return -ESRCH;
679 
680 	mmap_read_lock(mm);
681 	vma = find_vma(mm, start);
682 	mmap_read_unlock(mm);
683 	if (unlikely(!vma || start < vma->vm_start)) {
684 		r = -EFAULT;
685 		goto out_putmm;
686 	}
687 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
688 		vma->vm_file)) {
689 		r = -EPERM;
690 		goto out_putmm;
691 	}
692 
693 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
694 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
695 				       ttm->num_pages, &gtt->range, readonly,
696 				       false);
697 out_putmm:
698 	mmput(mm);
699 
700 	return r;
701 }
702 
703 /*
704  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
705  * Check if the pages backing this ttm range have been invalidated
706  *
707  * Returns: true if pages are still valid
708  */
709 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
710 {
711 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
712 	bool r = false;
713 
714 	if (!gtt || !gtt->userptr)
715 		return false;
716 
717 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
718 		gtt->userptr, ttm->num_pages);
719 
720 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
721 		"No user pages to check\n");
722 
723 	if (gtt->range) {
724 		/*
725 		 * FIXME: Must always hold notifier_lock for this, and must
726 		 * not ignore the return code.
727 		 */
728 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
729 		gtt->range = NULL;
730 	}
731 
732 	return !r;
733 }
734 #endif
735 
736 /*
737  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
738  *
739  * Called by amdgpu_cs_list_validate(). This creates the page list
740  * that backs user memory and will ultimately be mapped into the device
741  * address space.
742  */
743 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
744 {
745 	unsigned long i;
746 
747 	for (i = 0; i < ttm->num_pages; ++i)
748 		ttm->pages[i] = pages ? pages[i] : NULL;
749 }
750 
751 /*
752  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
753  *
754  * Called by amdgpu_ttm_backend_bind()
755  **/
756 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
757 				     struct ttm_tt *ttm)
758 {
759 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
760 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
761 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
762 	enum dma_data_direction direction = write ?
763 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
764 	int r;
765 
766 	/* Allocate an SG array and squash pages into it */
767 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
768 				      (u64)ttm->num_pages << PAGE_SHIFT,
769 				      GFP_KERNEL);
770 	if (r)
771 		goto release_sg;
772 
773 	/* Map SG to device */
774 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
775 	if (r)
776 		goto release_sg;
777 
778 	/* convert SG to linear array of pages and dma addresses */
779 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
780 				       ttm->num_pages);
781 
782 	return 0;
783 
784 release_sg:
785 	kfree(ttm->sg);
786 	ttm->sg = NULL;
787 	return r;
788 }
789 
790 /*
791  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
792  */
793 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
794 					struct ttm_tt *ttm)
795 {
796 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
797 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
798 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
799 	enum dma_data_direction direction = write ?
800 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
801 
802 	/* double check that we don't free the table twice */
803 	if (!ttm->sg || !ttm->sg->sgl)
804 		return;
805 
806 	/* unmap the pages mapped to the device */
807 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
808 	sg_free_table(ttm->sg);
809 
810 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
811 	if (gtt->range) {
812 		unsigned long i;
813 
814 		for (i = 0; i < ttm->num_pages; i++) {
815 			if (ttm->pages[i] !=
816 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
817 				break;
818 		}
819 
820 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
821 	}
822 #endif
823 }
824 
825 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
826 				struct ttm_buffer_object *tbo,
827 				uint64_t flags)
828 {
829 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
830 	struct ttm_tt *ttm = tbo->ttm;
831 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
832 	int r;
833 
834 	if (amdgpu_bo_encrypted(abo))
835 		flags |= AMDGPU_PTE_TMZ;
836 
837 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
838 		uint64_t page_idx = 1;
839 
840 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
841 				ttm->pages, gtt->ttm.dma_address, flags);
842 		if (r)
843 			goto gart_bind_fail;
844 
845 		/* The memory type of the first page defaults to UC. Now
846 		 * modify the memory type to NC from the second page of
847 		 * the BO onward.
848 		 */
849 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
850 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
851 
852 		r = amdgpu_gart_bind(adev,
853 				gtt->offset + (page_idx << PAGE_SHIFT),
854 				ttm->num_pages - page_idx,
855 				&ttm->pages[page_idx],
856 				&(gtt->ttm.dma_address[page_idx]), flags);
857 	} else {
858 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
859 				     ttm->pages, gtt->ttm.dma_address, flags);
860 	}
861 
862 gart_bind_fail:
863 	if (r)
864 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
865 			  ttm->num_pages, gtt->offset);
866 
867 	return r;
868 }
869 
870 /*
871  * amdgpu_ttm_backend_bind - Bind GTT memory
872  *
873  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
874  * This handles binding GTT memory to the device address space.
875  */
876 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
877 				   struct ttm_tt *ttm,
878 				   struct ttm_resource *bo_mem)
879 {
880 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
881 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
882 	uint64_t flags;
883 	int r = 0;
884 
885 	if (!bo_mem)
886 		return -EINVAL;
887 
888 	if (gtt->bound)
889 		return 0;
890 
891 	if (gtt->userptr) {
892 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
893 		if (r) {
894 			DRM_ERROR("failed to pin userptr\n");
895 			return r;
896 		}
897 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
898 		if (!ttm->sg) {
899 			struct dma_buf_attachment *attach;
900 			struct sg_table *sgt;
901 
902 			attach = gtt->gobj->import_attach;
903 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
904 			if (IS_ERR(sgt))
905 				return PTR_ERR(sgt);
906 
907 			ttm->sg = sgt;
908 		}
909 
910 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
911 					       ttm->num_pages);
912 	}
913 
914 	if (!ttm->num_pages) {
915 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
916 		     ttm->num_pages, bo_mem, ttm);
917 	}
918 
919 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
920 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
921 	    bo_mem->mem_type == AMDGPU_PL_OA)
922 		return -EINVAL;
923 
924 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
925 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
926 		return 0;
927 	}
928 
929 	/* compute PTE flags relevant to this BO memory */
930 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
931 
932 	/* bind pages into GART page tables */
933 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
934 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
935 		ttm->pages, gtt->ttm.dma_address, flags);
936 
937 	if (r)
938 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
939 			  ttm->num_pages, gtt->offset);
940 	gtt->bound = true;
941 	return r;
942 }
943 
944 /*
945  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
946  * through AGP or GART aperture.
947  *
948  * If bo is accessible through AGP aperture, then use AGP aperture
949  * to access bo; otherwise allocate logical space in GART aperture
950  * and map bo to GART aperture.
951  */
952 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
953 {
954 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
955 	struct ttm_operation_ctx ctx = { false, false };
956 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
957 	struct ttm_resource tmp;
958 	struct ttm_placement placement;
959 	struct ttm_place placements;
960 	uint64_t addr, flags;
961 	int r;
962 
963 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
964 		return 0;
965 
966 	addr = amdgpu_gmc_agp_addr(bo);
967 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
968 		bo->mem.start = addr >> PAGE_SHIFT;
969 	} else {
970 
971 		/* allocate GART space */
972 		placement.num_placement = 1;
973 		placement.placement = &placements;
974 		placement.num_busy_placement = 1;
975 		placement.busy_placement = &placements;
976 		placements.fpfn = 0;
977 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
978 		placements.mem_type = TTM_PL_TT;
979 		placements.flags = bo->mem.placement;
980 
981 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
982 		if (unlikely(r))
983 			return r;
984 
985 		/* compute PTE flags for this buffer object */
986 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
987 
988 		/* Bind pages */
989 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
990 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
991 		if (unlikely(r)) {
992 			ttm_resource_free(bo, &tmp);
993 			return r;
994 		}
995 
996 		amdgpu_gart_invalidate_tlb(adev);
997 		ttm_resource_free(bo, &bo->mem);
998 		bo->mem = tmp;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * amdgpu_ttm_recover_gart - Rebind GTT pages
1006  *
1007  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1008  * rebind GTT pages during a GPU reset.
1009  */
1010 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1011 {
1012 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1013 	uint64_t flags;
1014 	int r;
1015 
1016 	if (!tbo->ttm)
1017 		return 0;
1018 
1019 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1020 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1021 
1022 	return r;
1023 }
1024 
1025 /*
1026  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1027  *
1028  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1029  * ttm_tt_destroy().
1030  */
1031 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1032 				      struct ttm_tt *ttm)
1033 {
1034 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1035 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1036 	int r;
1037 
1038 	/* if the pages have userptr pinning then clear that first */
1039 	if (gtt->userptr) {
1040 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1041 	} else if (ttm->sg && gtt->gobj->import_attach) {
1042 		struct dma_buf_attachment *attach;
1043 
1044 		attach = gtt->gobj->import_attach;
1045 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1046 		ttm->sg = NULL;
1047 	}
1048 
1049 	if (!gtt->bound)
1050 		return;
1051 
1052 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1053 		return;
1054 
1055 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1056 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1057 	if (r)
1058 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1059 			  gtt->ttm.num_pages, gtt->offset);
1060 	gtt->bound = false;
1061 }
1062 
1063 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1064 				       struct ttm_tt *ttm)
1065 {
1066 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1067 
1068 	amdgpu_ttm_backend_unbind(bdev, ttm);
1069 	ttm_tt_destroy_common(bdev, ttm);
1070 	if (gtt->usertask)
1071 		put_task_struct(gtt->usertask);
1072 
1073 	ttm_tt_fini(&gtt->ttm);
1074 	kfree(gtt);
1075 }
1076 
1077 /**
1078  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1079  *
1080  * @bo: The buffer object to create a GTT ttm_tt object around
1081  * @page_flags: Page flags to be added to the ttm_tt object
1082  *
1083  * Called by ttm_tt_create().
1084  */
1085 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1086 					   uint32_t page_flags)
1087 {
1088 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1089 	struct amdgpu_ttm_tt *gtt;
1090 	enum ttm_caching caching;
1091 
1092 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1093 	if (gtt == NULL) {
1094 		return NULL;
1095 	}
1096 	gtt->gobj = &bo->base;
1097 
1098 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1099 		caching = ttm_write_combined;
1100 	else
1101 		caching = ttm_cached;
1102 
1103 	/* allocate space for the uninitialized page entries */
1104 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1105 		kfree(gtt);
1106 		return NULL;
1107 	}
1108 	return &gtt->ttm;
1109 }
1110 
1111 /*
1112  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1113  *
1114  * Map the pages of a ttm_tt object to an address space visible
1115  * to the underlying device.
1116  */
1117 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1118 				  struct ttm_tt *ttm,
1119 				  struct ttm_operation_ctx *ctx)
1120 {
1121 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1122 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1123 
1124 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1125 	if (gtt && gtt->userptr) {
1126 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1127 		if (!ttm->sg)
1128 			return -ENOMEM;
1129 
1130 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1131 		return 0;
1132 	}
1133 
1134 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1135 		return 0;
1136 
1137 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1138 }
1139 
1140 /*
1141  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1142  *
1143  * Unmaps pages of a ttm_tt object from the device address space and
1144  * unpopulates the page array backing it.
1145  */
1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1147 				     struct ttm_tt *ttm)
1148 {
1149 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1150 	struct amdgpu_device *adev;
1151 
1152 	if (gtt && gtt->userptr) {
1153 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1154 		kfree(ttm->sg);
1155 		ttm->sg = NULL;
1156 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1157 		return;
1158 	}
1159 
1160 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1161 		return;
1162 
1163 	adev = amdgpu_ttm_adev(bdev);
1164 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1165 }
1166 
1167 /**
1168  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1169  * task
1170  *
1171  * @bo: The ttm_buffer_object to bind this userptr to
1172  * @addr:  The address in the current tasks VM space to use
1173  * @flags: Requirements of userptr object.
1174  *
1175  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1176  * to current task
1177  */
1178 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1179 			      uint64_t addr, uint32_t flags)
1180 {
1181 	struct amdgpu_ttm_tt *gtt;
1182 
1183 	if (!bo->ttm) {
1184 		/* TODO: We want a separate TTM object type for userptrs */
1185 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1186 		if (bo->ttm == NULL)
1187 			return -ENOMEM;
1188 	}
1189 
1190 	gtt = (void *)bo->ttm;
1191 	gtt->userptr = addr;
1192 	gtt->userflags = flags;
1193 
1194 	if (gtt->usertask)
1195 		put_task_struct(gtt->usertask);
1196 	gtt->usertask = current->group_leader;
1197 	get_task_struct(gtt->usertask);
1198 
1199 	return 0;
1200 }
1201 
1202 /*
1203  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1204  */
1205 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1206 {
1207 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1208 
1209 	if (gtt == NULL)
1210 		return NULL;
1211 
1212 	if (gtt->usertask == NULL)
1213 		return NULL;
1214 
1215 	return gtt->usertask->mm;
1216 }
1217 
1218 /*
1219  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1220  * address range for the current task.
1221  *
1222  */
1223 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1224 				  unsigned long end)
1225 {
1226 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1227 	unsigned long size;
1228 
1229 	if (gtt == NULL || !gtt->userptr)
1230 		return false;
1231 
1232 	/* Return false if no part of the ttm_tt object lies within
1233 	 * the range
1234 	 */
1235 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1236 	if (gtt->userptr > end || gtt->userptr + size <= start)
1237 		return false;
1238 
1239 	return true;
1240 }
1241 
1242 /*
1243  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1244  */
1245 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1246 {
1247 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1248 
1249 	if (gtt == NULL || !gtt->userptr)
1250 		return false;
1251 
1252 	return true;
1253 }
1254 
1255 /*
1256  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1257  */
1258 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1259 {
1260 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1261 
1262 	if (gtt == NULL)
1263 		return false;
1264 
1265 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1266 }
1267 
1268 /**
1269  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1270  *
1271  * @ttm: The ttm_tt object to compute the flags for
1272  * @mem: The memory registry backing this ttm_tt object
1273  *
1274  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1275  */
1276 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1277 {
1278 	uint64_t flags = 0;
1279 
1280 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1281 		flags |= AMDGPU_PTE_VALID;
1282 
1283 	if (mem && (mem->mem_type == TTM_PL_TT ||
1284 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1285 		flags |= AMDGPU_PTE_SYSTEM;
1286 
1287 		if (ttm->caching == ttm_cached)
1288 			flags |= AMDGPU_PTE_SNOOPED;
1289 	}
1290 
1291 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1292 			mem->bus.caching == ttm_cached)
1293 		flags |= AMDGPU_PTE_SNOOPED;
1294 
1295 	return flags;
1296 }
1297 
1298 /**
1299  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1300  *
1301  * @adev: amdgpu_device pointer
1302  * @ttm: The ttm_tt object to compute the flags for
1303  * @mem: The memory registry backing this ttm_tt object
1304  *
1305  * Figure out the flags to use for a VM PTE (Page Table Entry).
1306  */
1307 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1308 				 struct ttm_resource *mem)
1309 {
1310 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1311 
1312 	flags |= adev->gart.gart_pte_flags;
1313 	flags |= AMDGPU_PTE_READABLE;
1314 
1315 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1316 		flags |= AMDGPU_PTE_WRITEABLE;
1317 
1318 	return flags;
1319 }
1320 
1321 /*
1322  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1323  * object.
1324  *
1325  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1326  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1327  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1328  * used to clean out a memory space.
1329  */
1330 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1331 					    const struct ttm_place *place)
1332 {
1333 	unsigned long num_pages = bo->mem.num_pages;
1334 	struct amdgpu_res_cursor cursor;
1335 	struct dma_resv_list *flist;
1336 	struct dma_fence *f;
1337 	int i;
1338 
1339 	if (bo->type == ttm_bo_type_kernel &&
1340 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1341 		return false;
1342 
1343 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1344 	 * If true, then return false as any KFD process needs all its BOs to
1345 	 * be resident to run successfully
1346 	 */
1347 	flist = dma_resv_get_list(bo->base.resv);
1348 	if (flist) {
1349 		for (i = 0; i < flist->shared_count; ++i) {
1350 			f = rcu_dereference_protected(flist->shared[i],
1351 				dma_resv_held(bo->base.resv));
1352 			if (amdkfd_fence_check_mm(f, current->mm))
1353 				return false;
1354 		}
1355 	}
1356 
1357 	switch (bo->mem.mem_type) {
1358 	case AMDGPU_PL_PREEMPT:
1359 		/* Preemptible BOs don't own system resources managed by the
1360 		 * driver (pages, VRAM, GART space). They point to resources
1361 		 * owned by someone else (e.g. pageable memory in user mode
1362 		 * or a DMABuf). They are used in a preemptible context so we
1363 		 * can guarantee no deadlocks and good QoS in case of MMU
1364 		 * notifiers or DMABuf move notifiers from the resource owner.
1365 		 */
1366 		return false;
1367 	case TTM_PL_TT:
1368 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1369 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1370 			return false;
1371 		return true;
1372 
1373 	case TTM_PL_VRAM:
1374 		/* Check each drm MM node individually */
1375 		amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT,
1376 				 &cursor);
1377 		while (cursor.remaining) {
1378 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1379 			    && !(place->lpfn &&
1380 				 place->lpfn <= PFN_DOWN(cursor.start)))
1381 				return true;
1382 
1383 			amdgpu_res_next(&cursor, cursor.size);
1384 		}
1385 		return false;
1386 
1387 	default:
1388 		break;
1389 	}
1390 
1391 	return ttm_bo_eviction_valuable(bo, place);
1392 }
1393 
1394 /**
1395  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1396  *
1397  * @bo:  The buffer object to read/write
1398  * @offset:  Offset into buffer object
1399  * @buf:  Secondary buffer to write/read from
1400  * @len: Length in bytes of access
1401  * @write:  true if writing
1402  *
1403  * This is used to access VRAM that backs a buffer object via MMIO
1404  * access for debugging purposes.
1405  */
1406 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1407 				    unsigned long offset, void *buf, int len,
1408 				    int write)
1409 {
1410 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1411 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1412 	struct amdgpu_res_cursor cursor;
1413 	unsigned long flags;
1414 	uint32_t value = 0;
1415 	int ret = 0;
1416 
1417 	if (bo->mem.mem_type != TTM_PL_VRAM)
1418 		return -EIO;
1419 
1420 	amdgpu_res_first(&bo->mem, offset, len, &cursor);
1421 	while (cursor.remaining) {
1422 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1423 		uint64_t bytes = 4 - (cursor.start & 3);
1424 		uint32_t shift = (cursor.start & 3) * 8;
1425 		uint32_t mask = 0xffffffff << shift;
1426 
1427 		if (cursor.size < bytes) {
1428 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1429 			bytes = cursor.size;
1430 		}
1431 
1432 		if (mask != 0xffffffff) {
1433 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1434 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1435 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1436 			value = RREG32_NO_KIQ(mmMM_DATA);
1437 			if (write) {
1438 				value &= ~mask;
1439 				value |= (*(uint32_t *)buf << shift) & mask;
1440 				WREG32_NO_KIQ(mmMM_DATA, value);
1441 			}
1442 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1443 			if (!write) {
1444 				value = (value & mask) >> shift;
1445 				memcpy(buf, &value, bytes);
1446 			}
1447 		} else {
1448 			bytes = cursor.size & ~0x3ULL;
1449 			amdgpu_device_vram_access(adev, cursor.start,
1450 						  (uint32_t *)buf, bytes,
1451 						  write);
1452 		}
1453 
1454 		ret += bytes;
1455 		buf = (uint8_t *)buf + bytes;
1456 		amdgpu_res_next(&cursor, bytes);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 static void
1463 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1464 {
1465 	amdgpu_bo_move_notify(bo, false, NULL);
1466 }
1467 
1468 static struct ttm_device_funcs amdgpu_bo_driver = {
1469 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1470 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1471 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1472 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1473 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1474 	.evict_flags = &amdgpu_evict_flags,
1475 	.move = &amdgpu_bo_move,
1476 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1477 	.release_notify = &amdgpu_bo_release_notify,
1478 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1479 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1480 	.access_memory = &amdgpu_ttm_access_memory,
1481 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1482 };
1483 
1484 /*
1485  * Firmware Reservation functions
1486  */
1487 /**
1488  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1489  *
1490  * @adev: amdgpu_device pointer
1491  *
1492  * free fw reserved vram if it has been reserved.
1493  */
1494 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1495 {
1496 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1497 		NULL, &adev->mman.fw_vram_usage_va);
1498 }
1499 
1500 /**
1501  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1502  *
1503  * @adev: amdgpu_device pointer
1504  *
1505  * create bo vram reservation from fw.
1506  */
1507 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1508 {
1509 	uint64_t vram_size = adev->gmc.visible_vram_size;
1510 
1511 	adev->mman.fw_vram_usage_va = NULL;
1512 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1513 
1514 	if (adev->mman.fw_vram_usage_size == 0 ||
1515 	    adev->mman.fw_vram_usage_size > vram_size)
1516 		return 0;
1517 
1518 	return amdgpu_bo_create_kernel_at(adev,
1519 					  adev->mman.fw_vram_usage_start_offset,
1520 					  adev->mman.fw_vram_usage_size,
1521 					  AMDGPU_GEM_DOMAIN_VRAM,
1522 					  &adev->mman.fw_vram_usage_reserved_bo,
1523 					  &adev->mman.fw_vram_usage_va);
1524 }
1525 
1526 /*
1527  * Memoy training reservation functions
1528  */
1529 
1530 /**
1531  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1532  *
1533  * @adev: amdgpu_device pointer
1534  *
1535  * free memory training reserved vram if it has been reserved.
1536  */
1537 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1538 {
1539 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1540 
1541 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1542 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1543 	ctx->c2p_bo = NULL;
1544 
1545 	return 0;
1546 }
1547 
1548 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1549 {
1550 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1551 
1552 	memset(ctx, 0, sizeof(*ctx));
1553 
1554 	ctx->c2p_train_data_offset =
1555 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1556 	ctx->p2c_train_data_offset =
1557 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1558 	ctx->train_data_size =
1559 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1560 
1561 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1562 			ctx->train_data_size,
1563 			ctx->p2c_train_data_offset,
1564 			ctx->c2p_train_data_offset);
1565 }
1566 
1567 /*
1568  * reserve TMR memory at the top of VRAM which holds
1569  * IP Discovery data and is protected by PSP.
1570  */
1571 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1572 {
1573 	int ret;
1574 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1575 	bool mem_train_support = false;
1576 
1577 	if (!amdgpu_sriov_vf(adev)) {
1578 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1579 			mem_train_support = true;
1580 		else
1581 			DRM_DEBUG("memory training does not support!\n");
1582 	}
1583 
1584 	/*
1585 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1586 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1587 	 *
1588 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1589 	 * discovery data and G6 memory training data respectively
1590 	 */
1591 	adev->mman.discovery_tmr_size =
1592 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1593 	if (!adev->mman.discovery_tmr_size)
1594 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1595 
1596 	if (mem_train_support) {
1597 		/* reserve vram for mem train according to TMR location */
1598 		amdgpu_ttm_training_data_block_init(adev);
1599 		ret = amdgpu_bo_create_kernel_at(adev,
1600 					 ctx->c2p_train_data_offset,
1601 					 ctx->train_data_size,
1602 					 AMDGPU_GEM_DOMAIN_VRAM,
1603 					 &ctx->c2p_bo,
1604 					 NULL);
1605 		if (ret) {
1606 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1607 			amdgpu_ttm_training_reserve_vram_fini(adev);
1608 			return ret;
1609 		}
1610 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1611 	}
1612 
1613 	ret = amdgpu_bo_create_kernel_at(adev,
1614 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1615 				adev->mman.discovery_tmr_size,
1616 				AMDGPU_GEM_DOMAIN_VRAM,
1617 				&adev->mman.discovery_memory,
1618 				NULL);
1619 	if (ret) {
1620 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1621 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1622 		return ret;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1630  * gtt/vram related fields.
1631  *
1632  * This initializes all of the memory space pools that the TTM layer
1633  * will need such as the GTT space (system memory mapped to the device),
1634  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1635  * can be mapped per VMID.
1636  */
1637 int amdgpu_ttm_init(struct amdgpu_device *adev)
1638 {
1639 	uint64_t gtt_size;
1640 	int r;
1641 	u64 vis_vram_limit;
1642 
1643 	mutex_init(&adev->mman.gtt_window_lock);
1644 
1645 	/* No others user of address space so set it to 0 */
1646 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1647 			       adev_to_drm(adev)->anon_inode->i_mapping,
1648 			       adev_to_drm(adev)->vma_offset_manager,
1649 			       adev->need_swiotlb,
1650 			       dma_addressing_limited(adev->dev));
1651 	if (r) {
1652 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1653 		return r;
1654 	}
1655 	adev->mman.initialized = true;
1656 
1657 	/* Initialize VRAM pool with all of VRAM divided into pages */
1658 	r = amdgpu_vram_mgr_init(adev);
1659 	if (r) {
1660 		DRM_ERROR("Failed initializing VRAM heap.\n");
1661 		return r;
1662 	}
1663 
1664 	/* Reduce size of CPU-visible VRAM if requested */
1665 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1666 	if (amdgpu_vis_vram_limit > 0 &&
1667 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1668 		adev->gmc.visible_vram_size = vis_vram_limit;
1669 
1670 	/* Change the size here instead of the init above so only lpfn is affected */
1671 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1672 #ifdef CONFIG_64BIT
1673 #ifdef CONFIG_X86
1674 	if (adev->gmc.xgmi.connected_to_cpu)
1675 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1676 				adev->gmc.visible_vram_size);
1677 
1678 	else
1679 #endif
1680 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1681 				adev->gmc.visible_vram_size);
1682 #endif
1683 
1684 	/*
1685 	 *The reserved vram for firmware must be pinned to the specified
1686 	 *place on the VRAM, so reserve it early.
1687 	 */
1688 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1689 	if (r) {
1690 		return r;
1691 	}
1692 
1693 	/*
1694 	 * only NAVI10 and onwards ASIC support for IP discovery.
1695 	 * If IP discovery enabled, a block of memory should be
1696 	 * reserved for IP discovey.
1697 	 */
1698 	if (adev->mman.discovery_bin) {
1699 		r = amdgpu_ttm_reserve_tmr(adev);
1700 		if (r)
1701 			return r;
1702 	}
1703 
1704 	/* allocate memory as required for VGA
1705 	 * This is used for VGA emulation and pre-OS scanout buffers to
1706 	 * avoid display artifacts while transitioning between pre-OS
1707 	 * and driver.  */
1708 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1709 				       AMDGPU_GEM_DOMAIN_VRAM,
1710 				       &adev->mman.stolen_vga_memory,
1711 				       NULL);
1712 	if (r)
1713 		return r;
1714 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1715 				       adev->mman.stolen_extended_size,
1716 				       AMDGPU_GEM_DOMAIN_VRAM,
1717 				       &adev->mman.stolen_extended_memory,
1718 				       NULL);
1719 	if (r)
1720 		return r;
1721 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1722 				       adev->mman.stolen_reserved_size,
1723 				       AMDGPU_GEM_DOMAIN_VRAM,
1724 				       &adev->mman.stolen_reserved_memory,
1725 				       NULL);
1726 	if (r)
1727 		return r;
1728 
1729 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1730 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1731 
1732 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1733 	 * or whatever the user passed on module init */
1734 	if (amdgpu_gtt_size == -1) {
1735 		struct sysinfo si;
1736 
1737 		si_meminfo(&si);
1738 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1739 			       adev->gmc.mc_vram_size),
1740 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1741 	}
1742 	else
1743 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1744 
1745 	/* Initialize GTT memory pool */
1746 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1747 	if (r) {
1748 		DRM_ERROR("Failed initializing GTT heap.\n");
1749 		return r;
1750 	}
1751 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1752 		 (unsigned)(gtt_size / (1024 * 1024)));
1753 
1754 	/* Initialize preemptible memory pool */
1755 	r = amdgpu_preempt_mgr_init(adev);
1756 	if (r) {
1757 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1758 		return r;
1759 	}
1760 
1761 	/* Initialize various on-chip memory pools */
1762 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1763 	if (r) {
1764 		DRM_ERROR("Failed initializing GDS heap.\n");
1765 		return r;
1766 	}
1767 
1768 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1769 	if (r) {
1770 		DRM_ERROR("Failed initializing gws heap.\n");
1771 		return r;
1772 	}
1773 
1774 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1775 	if (r) {
1776 		DRM_ERROR("Failed initializing oa heap.\n");
1777 		return r;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 /*
1784  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1785  */
1786 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1787 {
1788 	if (!adev->mman.initialized)
1789 		return;
1790 
1791 	amdgpu_ttm_training_reserve_vram_fini(adev);
1792 	/* return the stolen vga memory back to VRAM */
1793 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1794 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1795 	/* return the IP Discovery TMR memory back to VRAM */
1796 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1797 	if (adev->mman.stolen_reserved_size)
1798 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1799 				      NULL, NULL);
1800 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1801 
1802 	amdgpu_vram_mgr_fini(adev);
1803 	amdgpu_gtt_mgr_fini(adev);
1804 	amdgpu_preempt_mgr_fini(adev);
1805 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1806 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1807 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1808 	ttm_device_fini(&adev->mman.bdev);
1809 	adev->mman.initialized = false;
1810 	DRM_INFO("amdgpu: ttm finalized\n");
1811 }
1812 
1813 /**
1814  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1815  *
1816  * @adev: amdgpu_device pointer
1817  * @enable: true when we can use buffer functions.
1818  *
1819  * Enable/disable use of buffer functions during suspend/resume. This should
1820  * only be called at bootup or when userspace isn't running.
1821  */
1822 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1823 {
1824 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1825 	uint64_t size;
1826 	int r;
1827 
1828 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1829 	    adev->mman.buffer_funcs_enabled == enable)
1830 		return;
1831 
1832 	if (enable) {
1833 		struct amdgpu_ring *ring;
1834 		struct drm_gpu_scheduler *sched;
1835 
1836 		ring = adev->mman.buffer_funcs_ring;
1837 		sched = &ring->sched;
1838 		r = drm_sched_entity_init(&adev->mman.entity,
1839 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1840 					  1, NULL);
1841 		if (r) {
1842 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1843 				  r);
1844 			return;
1845 		}
1846 	} else {
1847 		drm_sched_entity_destroy(&adev->mman.entity);
1848 		dma_fence_put(man->move);
1849 		man->move = NULL;
1850 	}
1851 
1852 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1853 	if (enable)
1854 		size = adev->gmc.real_vram_size;
1855 	else
1856 		size = adev->gmc.visible_vram_size;
1857 	man->size = size >> PAGE_SHIFT;
1858 	adev->mman.buffer_funcs_enabled = enable;
1859 }
1860 
1861 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1862 		       uint64_t dst_offset, uint32_t byte_count,
1863 		       struct dma_resv *resv,
1864 		       struct dma_fence **fence, bool direct_submit,
1865 		       bool vm_needs_flush, bool tmz)
1866 {
1867 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1868 		AMDGPU_IB_POOL_DELAYED;
1869 	struct amdgpu_device *adev = ring->adev;
1870 	struct amdgpu_job *job;
1871 
1872 	uint32_t max_bytes;
1873 	unsigned num_loops, num_dw;
1874 	unsigned i;
1875 	int r;
1876 
1877 	if (direct_submit && !ring->sched.ready) {
1878 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1879 		return -EINVAL;
1880 	}
1881 
1882 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1883 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1884 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1885 
1886 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1887 	if (r)
1888 		return r;
1889 
1890 	if (vm_needs_flush) {
1891 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1892 					adev->gmc.pdb0_bo : adev->gart.bo);
1893 		job->vm_needs_flush = true;
1894 	}
1895 	if (resv) {
1896 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1897 				     AMDGPU_SYNC_ALWAYS,
1898 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1899 		if (r) {
1900 			DRM_ERROR("sync failed (%d).\n", r);
1901 			goto error_free;
1902 		}
1903 	}
1904 
1905 	for (i = 0; i < num_loops; i++) {
1906 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1907 
1908 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1909 					dst_offset, cur_size_in_bytes, tmz);
1910 
1911 		src_offset += cur_size_in_bytes;
1912 		dst_offset += cur_size_in_bytes;
1913 		byte_count -= cur_size_in_bytes;
1914 	}
1915 
1916 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1917 	WARN_ON(job->ibs[0].length_dw > num_dw);
1918 	if (direct_submit)
1919 		r = amdgpu_job_submit_direct(job, ring, fence);
1920 	else
1921 		r = amdgpu_job_submit(job, &adev->mman.entity,
1922 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1923 	if (r)
1924 		goto error_free;
1925 
1926 	return r;
1927 
1928 error_free:
1929 	amdgpu_job_free(job);
1930 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1931 	return r;
1932 }
1933 
1934 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1935 		       uint32_t src_data,
1936 		       struct dma_resv *resv,
1937 		       struct dma_fence **fence)
1938 {
1939 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1940 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1941 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1942 
1943 	struct amdgpu_res_cursor cursor;
1944 	unsigned int num_loops, num_dw;
1945 	uint64_t num_bytes;
1946 
1947 	struct amdgpu_job *job;
1948 	int r;
1949 
1950 	if (!adev->mman.buffer_funcs_enabled) {
1951 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1952 		return -EINVAL;
1953 	}
1954 
1955 	if (bo->tbo.mem.mem_type == AMDGPU_PL_PREEMPT) {
1956 		DRM_ERROR("Trying to clear preemptible memory.\n");
1957 		return -EINVAL;
1958 	}
1959 
1960 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
1961 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1962 		if (r)
1963 			return r;
1964 	}
1965 
1966 	num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT;
1967 	num_loops = 0;
1968 
1969 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
1970 	while (cursor.remaining) {
1971 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1972 		amdgpu_res_next(&cursor, cursor.size);
1973 	}
1974 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1975 
1976 	/* for IB padding */
1977 	num_dw += 64;
1978 
1979 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1980 				     &job);
1981 	if (r)
1982 		return r;
1983 
1984 	if (resv) {
1985 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1986 				     AMDGPU_SYNC_ALWAYS,
1987 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1988 		if (r) {
1989 			DRM_ERROR("sync failed (%d).\n", r);
1990 			goto error_free;
1991 		}
1992 	}
1993 
1994 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
1995 	while (cursor.remaining) {
1996 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
1997 		uint64_t dst_addr = cursor.start;
1998 
1999 		dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type);
2000 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2001 					cur_size);
2002 
2003 		amdgpu_res_next(&cursor, cur_size);
2004 	}
2005 
2006 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2007 	WARN_ON(job->ibs[0].length_dw > num_dw);
2008 	r = amdgpu_job_submit(job, &adev->mman.entity,
2009 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2010 	if (r)
2011 		goto error_free;
2012 
2013 	return 0;
2014 
2015 error_free:
2016 	amdgpu_job_free(job);
2017 	return r;
2018 }
2019 
2020 #if defined(CONFIG_DEBUG_FS)
2021 
2022 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2023 {
2024 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2025 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2026 							    TTM_PL_VRAM);
2027 	struct drm_printer p = drm_seq_file_printer(m);
2028 
2029 	man->func->debug(man, &p);
2030 	return 0;
2031 }
2032 
2033 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2034 {
2035 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2036 
2037 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2038 }
2039 
2040 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2041 {
2042 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2043 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2044 							    TTM_PL_TT);
2045 	struct drm_printer p = drm_seq_file_printer(m);
2046 
2047 	man->func->debug(man, &p);
2048 	return 0;
2049 }
2050 
2051 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2052 {
2053 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2054 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2055 							    AMDGPU_PL_GDS);
2056 	struct drm_printer p = drm_seq_file_printer(m);
2057 
2058 	man->func->debug(man, &p);
2059 	return 0;
2060 }
2061 
2062 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2063 {
2064 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2065 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2066 							    AMDGPU_PL_GWS);
2067 	struct drm_printer p = drm_seq_file_printer(m);
2068 
2069 	man->func->debug(man, &p);
2070 	return 0;
2071 }
2072 
2073 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2074 {
2075 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2076 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2077 							    AMDGPU_PL_OA);
2078 	struct drm_printer p = drm_seq_file_printer(m);
2079 
2080 	man->func->debug(man, &p);
2081 	return 0;
2082 }
2083 
2084 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2085 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2086 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2087 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2088 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2089 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2090 
2091 /*
2092  * amdgpu_ttm_vram_read - Linear read access to VRAM
2093  *
2094  * Accesses VRAM via MMIO for debugging purposes.
2095  */
2096 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2097 				    size_t size, loff_t *pos)
2098 {
2099 	struct amdgpu_device *adev = file_inode(f)->i_private;
2100 	ssize_t result = 0;
2101 
2102 	if (size & 0x3 || *pos & 0x3)
2103 		return -EINVAL;
2104 
2105 	if (*pos >= adev->gmc.mc_vram_size)
2106 		return -ENXIO;
2107 
2108 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2109 	while (size) {
2110 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2111 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2112 
2113 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2114 		if (copy_to_user(buf, value, bytes))
2115 			return -EFAULT;
2116 
2117 		result += bytes;
2118 		buf += bytes;
2119 		*pos += bytes;
2120 		size -= bytes;
2121 	}
2122 
2123 	return result;
2124 }
2125 
2126 /*
2127  * amdgpu_ttm_vram_write - Linear write access to VRAM
2128  *
2129  * Accesses VRAM via MMIO for debugging purposes.
2130  */
2131 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2132 				    size_t size, loff_t *pos)
2133 {
2134 	struct amdgpu_device *adev = file_inode(f)->i_private;
2135 	ssize_t result = 0;
2136 	int r;
2137 
2138 	if (size & 0x3 || *pos & 0x3)
2139 		return -EINVAL;
2140 
2141 	if (*pos >= adev->gmc.mc_vram_size)
2142 		return -ENXIO;
2143 
2144 	while (size) {
2145 		unsigned long flags;
2146 		uint32_t value;
2147 
2148 		if (*pos >= adev->gmc.mc_vram_size)
2149 			return result;
2150 
2151 		r = get_user(value, (uint32_t *)buf);
2152 		if (r)
2153 			return r;
2154 
2155 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2156 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2157 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2158 		WREG32_NO_KIQ(mmMM_DATA, value);
2159 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2160 
2161 		result += 4;
2162 		buf += 4;
2163 		*pos += 4;
2164 		size -= 4;
2165 	}
2166 
2167 	return result;
2168 }
2169 
2170 static const struct file_operations amdgpu_ttm_vram_fops = {
2171 	.owner = THIS_MODULE,
2172 	.read = amdgpu_ttm_vram_read,
2173 	.write = amdgpu_ttm_vram_write,
2174 	.llseek = default_llseek,
2175 };
2176 
2177 /*
2178  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2179  *
2180  * This function is used to read memory that has been mapped to the
2181  * GPU and the known addresses are not physical addresses but instead
2182  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2183  */
2184 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2185 				 size_t size, loff_t *pos)
2186 {
2187 	struct amdgpu_device *adev = file_inode(f)->i_private;
2188 	struct iommu_domain *dom;
2189 	ssize_t result = 0;
2190 	int r;
2191 
2192 	/* retrieve the IOMMU domain if any for this device */
2193 	dom = iommu_get_domain_for_dev(adev->dev);
2194 
2195 	while (size) {
2196 		phys_addr_t addr = *pos & PAGE_MASK;
2197 		loff_t off = *pos & ~PAGE_MASK;
2198 		size_t bytes = PAGE_SIZE - off;
2199 		unsigned long pfn;
2200 		struct page *p;
2201 		void *ptr;
2202 
2203 		bytes = bytes < size ? bytes : size;
2204 
2205 		/* Translate the bus address to a physical address.  If
2206 		 * the domain is NULL it means there is no IOMMU active
2207 		 * and the address translation is the identity
2208 		 */
2209 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2210 
2211 		pfn = addr >> PAGE_SHIFT;
2212 		if (!pfn_valid(pfn))
2213 			return -EPERM;
2214 
2215 		p = pfn_to_page(pfn);
2216 		if (p->mapping != adev->mman.bdev.dev_mapping)
2217 			return -EPERM;
2218 
2219 		ptr = kmap(p);
2220 		r = copy_to_user(buf, ptr + off, bytes);
2221 		kunmap(p);
2222 		if (r)
2223 			return -EFAULT;
2224 
2225 		size -= bytes;
2226 		*pos += bytes;
2227 		result += bytes;
2228 	}
2229 
2230 	return result;
2231 }
2232 
2233 /*
2234  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2235  *
2236  * This function is used to write memory that has been mapped to the
2237  * GPU and the known addresses are not physical addresses but instead
2238  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2239  */
2240 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2241 				 size_t size, loff_t *pos)
2242 {
2243 	struct amdgpu_device *adev = file_inode(f)->i_private;
2244 	struct iommu_domain *dom;
2245 	ssize_t result = 0;
2246 	int r;
2247 
2248 	dom = iommu_get_domain_for_dev(adev->dev);
2249 
2250 	while (size) {
2251 		phys_addr_t addr = *pos & PAGE_MASK;
2252 		loff_t off = *pos & ~PAGE_MASK;
2253 		size_t bytes = PAGE_SIZE - off;
2254 		unsigned long pfn;
2255 		struct page *p;
2256 		void *ptr;
2257 
2258 		bytes = bytes < size ? bytes : size;
2259 
2260 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2261 
2262 		pfn = addr >> PAGE_SHIFT;
2263 		if (!pfn_valid(pfn))
2264 			return -EPERM;
2265 
2266 		p = pfn_to_page(pfn);
2267 		if (p->mapping != adev->mman.bdev.dev_mapping)
2268 			return -EPERM;
2269 
2270 		ptr = kmap(p);
2271 		r = copy_from_user(ptr + off, buf, bytes);
2272 		kunmap(p);
2273 		if (r)
2274 			return -EFAULT;
2275 
2276 		size -= bytes;
2277 		*pos += bytes;
2278 		result += bytes;
2279 	}
2280 
2281 	return result;
2282 }
2283 
2284 static const struct file_operations amdgpu_ttm_iomem_fops = {
2285 	.owner = THIS_MODULE,
2286 	.read = amdgpu_iomem_read,
2287 	.write = amdgpu_iomem_write,
2288 	.llseek = default_llseek
2289 };
2290 
2291 #endif
2292 
2293 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2294 {
2295 #if defined(CONFIG_DEBUG_FS)
2296 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2297 	struct dentry *root = minor->debugfs_root;
2298 
2299 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2300 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2301 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2302 			    &amdgpu_ttm_iomem_fops);
2303 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2304 			    &amdgpu_mm_vram_table_fops);
2305 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2306 			    &amdgpu_mm_tt_table_fops);
2307 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2308 			    &amdgpu_mm_gds_table_fops);
2309 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2310 			    &amdgpu_mm_gws_table_fops);
2311 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2312 			    &amdgpu_mm_oa_table_fops);
2313 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2314 			    &amdgpu_ttm_page_pool_fops);
2315 #endif
2316 }
2317