1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include <linux/hmm.h>
47 #include "amdgpu.h"
48 #include "amdgpu_object.h"
49 #include "amdgpu_trace.h"
50 #include "amdgpu_amdkfd.h"
51 #include "amdgpu_sdma.h"
52 #include "bif/bif_4_1_d.h"
53 
54 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
55 			     struct ttm_mem_reg *mem, unsigned num_pages,
56 			     uint64_t offset, unsigned window,
57 			     struct amdgpu_ring *ring,
58 			     uint64_t *addr);
59 
60 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
61 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
62 
63 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
64 {
65 	return 0;
66 }
67 
68 /**
69  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
70  * memory request.
71  *
72  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
73  * @type: The type of memory requested
74  * @man: The memory type manager for each domain
75  *
76  * This is called by ttm_bo_init_mm() when a buffer object is being
77  * initialized.
78  */
79 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
80 				struct ttm_mem_type_manager *man)
81 {
82 	struct amdgpu_device *adev;
83 
84 	adev = amdgpu_ttm_adev(bdev);
85 
86 	switch (type) {
87 	case TTM_PL_SYSTEM:
88 		/* System memory */
89 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
90 		man->available_caching = TTM_PL_MASK_CACHING;
91 		man->default_caching = TTM_PL_FLAG_CACHED;
92 		break;
93 	case TTM_PL_TT:
94 		/* GTT memory  */
95 		man->func = &amdgpu_gtt_mgr_func;
96 		man->gpu_offset = adev->gmc.gart_start;
97 		man->available_caching = TTM_PL_MASK_CACHING;
98 		man->default_caching = TTM_PL_FLAG_CACHED;
99 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
100 		break;
101 	case TTM_PL_VRAM:
102 		/* "On-card" video ram */
103 		man->func = &amdgpu_vram_mgr_func;
104 		man->gpu_offset = adev->gmc.vram_start;
105 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
106 			     TTM_MEMTYPE_FLAG_MAPPABLE;
107 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
108 		man->default_caching = TTM_PL_FLAG_WC;
109 		break;
110 	case AMDGPU_PL_GDS:
111 	case AMDGPU_PL_GWS:
112 	case AMDGPU_PL_OA:
113 		/* On-chip GDS memory*/
114 		man->func = &ttm_bo_manager_func;
115 		man->gpu_offset = 0;
116 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
117 		man->available_caching = TTM_PL_FLAG_UNCACHED;
118 		man->default_caching = TTM_PL_FLAG_UNCACHED;
119 		break;
120 	default:
121 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
122 		return -EINVAL;
123 	}
124 	return 0;
125 }
126 
127 /**
128  * amdgpu_evict_flags - Compute placement flags
129  *
130  * @bo: The buffer object to evict
131  * @placement: Possible destination(s) for evicted BO
132  *
133  * Fill in placement data when ttm_bo_evict() is called
134  */
135 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
136 				struct ttm_placement *placement)
137 {
138 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
139 	struct amdgpu_bo *abo;
140 	static const struct ttm_place placements = {
141 		.fpfn = 0,
142 		.lpfn = 0,
143 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
144 	};
145 
146 	/* Don't handle scatter gather BOs */
147 	if (bo->type == ttm_bo_type_sg) {
148 		placement->num_placement = 0;
149 		placement->num_busy_placement = 0;
150 		return;
151 	}
152 
153 	/* Object isn't an AMDGPU object so ignore */
154 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
155 		placement->placement = &placements;
156 		placement->busy_placement = &placements;
157 		placement->num_placement = 1;
158 		placement->num_busy_placement = 1;
159 		return;
160 	}
161 
162 	abo = ttm_to_amdgpu_bo(bo);
163 	switch (bo->mem.mem_type) {
164 	case AMDGPU_PL_GDS:
165 	case AMDGPU_PL_GWS:
166 	case AMDGPU_PL_OA:
167 		placement->num_placement = 0;
168 		placement->num_busy_placement = 0;
169 		return;
170 
171 	case TTM_PL_VRAM:
172 		if (!adev->mman.buffer_funcs_enabled) {
173 			/* Move to system memory */
174 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
175 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
176 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
177 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
178 
179 			/* Try evicting to the CPU inaccessible part of VRAM
180 			 * first, but only set GTT as busy placement, so this
181 			 * BO will be evicted to GTT rather than causing other
182 			 * BOs to be evicted from VRAM
183 			 */
184 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
185 							 AMDGPU_GEM_DOMAIN_GTT);
186 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
187 			abo->placements[0].lpfn = 0;
188 			abo->placement.busy_placement = &abo->placements[1];
189 			abo->placement.num_busy_placement = 1;
190 		} else {
191 			/* Move to GTT memory */
192 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
193 		}
194 		break;
195 	case TTM_PL_TT:
196 	default:
197 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
198 		break;
199 	}
200 	*placement = abo->placement;
201 }
202 
203 /**
204  * amdgpu_verify_access - Verify access for a mmap call
205  *
206  * @bo:	The buffer object to map
207  * @filp: The file pointer from the process performing the mmap
208  *
209  * This is called by ttm_bo_mmap() to verify whether a process
210  * has the right to mmap a BO to their process space.
211  */
212 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
213 {
214 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
215 
216 	/*
217 	 * Don't verify access for KFD BOs. They don't have a GEM
218 	 * object associated with them.
219 	 */
220 	if (abo->kfd_bo)
221 		return 0;
222 
223 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
224 		return -EPERM;
225 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
226 					  filp->private_data);
227 }
228 
229 /**
230  * amdgpu_move_null - Register memory for a buffer object
231  *
232  * @bo: The bo to assign the memory to
233  * @new_mem: The memory to be assigned.
234  *
235  * Assign the memory from new_mem to the memory of the buffer object bo.
236  */
237 static void amdgpu_move_null(struct ttm_buffer_object *bo,
238 			     struct ttm_mem_reg *new_mem)
239 {
240 	struct ttm_mem_reg *old_mem = &bo->mem;
241 
242 	BUG_ON(old_mem->mm_node != NULL);
243 	*old_mem = *new_mem;
244 	new_mem->mm_node = NULL;
245 }
246 
247 /**
248  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
249  *
250  * @bo: The bo to assign the memory to.
251  * @mm_node: Memory manager node for drm allocator.
252  * @mem: The region where the bo resides.
253  *
254  */
255 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
256 				    struct drm_mm_node *mm_node,
257 				    struct ttm_mem_reg *mem)
258 {
259 	uint64_t addr = 0;
260 
261 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
262 		addr = mm_node->start << PAGE_SHIFT;
263 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
264 	}
265 	return addr;
266 }
267 
268 /**
269  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
270  * @offset. It also modifies the offset to be within the drm_mm_node returned
271  *
272  * @mem: The region where the bo resides.
273  * @offset: The offset that drm_mm_node is used for finding.
274  *
275  */
276 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
277 					       unsigned long *offset)
278 {
279 	struct drm_mm_node *mm_node = mem->mm_node;
280 
281 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
282 		*offset -= (mm_node->size << PAGE_SHIFT);
283 		++mm_node;
284 	}
285 	return mm_node;
286 }
287 
288 /**
289  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
290  *
291  * The function copies @size bytes from {src->mem + src->offset} to
292  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293  * move and different for a BO to BO copy.
294  *
295  * @f: Returns the last fence if multiple jobs are submitted.
296  */
297 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
298 			       struct amdgpu_copy_mem *src,
299 			       struct amdgpu_copy_mem *dst,
300 			       uint64_t size,
301 			       struct reservation_object *resv,
302 			       struct dma_fence **f)
303 {
304 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
305 	struct drm_mm_node *src_mm, *dst_mm;
306 	uint64_t src_node_start, dst_node_start, src_node_size,
307 		 dst_node_size, src_page_offset, dst_page_offset;
308 	struct dma_fence *fence = NULL;
309 	int r = 0;
310 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
311 					AMDGPU_GPU_PAGE_SIZE);
312 
313 	if (!adev->mman.buffer_funcs_enabled) {
314 		DRM_ERROR("Trying to move memory with ring turned off.\n");
315 		return -EINVAL;
316 	}
317 
318 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
319 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
320 					     src->offset;
321 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
322 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
323 
324 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
325 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
326 					     dst->offset;
327 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
328 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
329 
330 	mutex_lock(&adev->mman.gtt_window_lock);
331 
332 	while (size) {
333 		unsigned long cur_size;
334 		uint64_t from = src_node_start, to = dst_node_start;
335 		struct dma_fence *next;
336 
337 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
338 		 * begins at an offset, then adjust the size accordingly
339 		 */
340 		cur_size = min3(min(src_node_size, dst_node_size), size,
341 				GTT_MAX_BYTES);
342 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
343 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
344 			cur_size -= max(src_page_offset, dst_page_offset);
345 
346 		/* Map only what needs to be accessed. Map src to window 0 and
347 		 * dst to window 1
348 		 */
349 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
350 			r = amdgpu_map_buffer(src->bo, src->mem,
351 					PFN_UP(cur_size + src_page_offset),
352 					src_node_start, 0, ring,
353 					&from);
354 			if (r)
355 				goto error;
356 			/* Adjust the offset because amdgpu_map_buffer returns
357 			 * start of mapped page
358 			 */
359 			from += src_page_offset;
360 		}
361 
362 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
363 			r = amdgpu_map_buffer(dst->bo, dst->mem,
364 					PFN_UP(cur_size + dst_page_offset),
365 					dst_node_start, 1, ring,
366 					&to);
367 			if (r)
368 				goto error;
369 			to += dst_page_offset;
370 		}
371 
372 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
373 				       resv, &next, false, true);
374 		if (r)
375 			goto error;
376 
377 		dma_fence_put(fence);
378 		fence = next;
379 
380 		size -= cur_size;
381 		if (!size)
382 			break;
383 
384 		src_node_size -= cur_size;
385 		if (!src_node_size) {
386 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
387 							     src->mem);
388 			src_node_size = (src_mm->size << PAGE_SHIFT);
389 		} else {
390 			src_node_start += cur_size;
391 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
392 		}
393 		dst_node_size -= cur_size;
394 		if (!dst_node_size) {
395 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
396 							     dst->mem);
397 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
398 		} else {
399 			dst_node_start += cur_size;
400 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
401 		}
402 	}
403 error:
404 	mutex_unlock(&adev->mman.gtt_window_lock);
405 	if (f)
406 		*f = dma_fence_get(fence);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /**
412  * amdgpu_move_blit - Copy an entire buffer to another buffer
413  *
414  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
415  * help move buffers to and from VRAM.
416  */
417 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
418 			    bool evict, bool no_wait_gpu,
419 			    struct ttm_mem_reg *new_mem,
420 			    struct ttm_mem_reg *old_mem)
421 {
422 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
423 	struct amdgpu_copy_mem src, dst;
424 	struct dma_fence *fence = NULL;
425 	int r;
426 
427 	src.bo = bo;
428 	dst.bo = bo;
429 	src.mem = old_mem;
430 	dst.mem = new_mem;
431 	src.offset = 0;
432 	dst.offset = 0;
433 
434 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
435 				       new_mem->num_pages << PAGE_SHIFT,
436 				       bo->resv, &fence);
437 	if (r)
438 		goto error;
439 
440 	/* Always block for VM page tables before committing the new location */
441 	if (bo->type == ttm_bo_type_kernel)
442 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
443 	else
444 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
445 	dma_fence_put(fence);
446 	return r;
447 
448 error:
449 	if (fence)
450 		dma_fence_wait(fence, false);
451 	dma_fence_put(fence);
452 	return r;
453 }
454 
455 /**
456  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
457  *
458  * Called by amdgpu_bo_move().
459  */
460 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
461 				struct ttm_operation_ctx *ctx,
462 				struct ttm_mem_reg *new_mem)
463 {
464 	struct amdgpu_device *adev;
465 	struct ttm_mem_reg *old_mem = &bo->mem;
466 	struct ttm_mem_reg tmp_mem;
467 	struct ttm_place placements;
468 	struct ttm_placement placement;
469 	int r;
470 
471 	adev = amdgpu_ttm_adev(bo->bdev);
472 
473 	/* create space/pages for new_mem in GTT space */
474 	tmp_mem = *new_mem;
475 	tmp_mem.mm_node = NULL;
476 	placement.num_placement = 1;
477 	placement.placement = &placements;
478 	placement.num_busy_placement = 1;
479 	placement.busy_placement = &placements;
480 	placements.fpfn = 0;
481 	placements.lpfn = 0;
482 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
483 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
484 	if (unlikely(r)) {
485 		return r;
486 	}
487 
488 	/* set caching flags */
489 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
490 	if (unlikely(r)) {
491 		goto out_cleanup;
492 	}
493 
494 	/* Bind the memory to the GTT space */
495 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
496 	if (unlikely(r)) {
497 		goto out_cleanup;
498 	}
499 
500 	/* blit VRAM to GTT */
501 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
502 	if (unlikely(r)) {
503 		goto out_cleanup;
504 	}
505 
506 	/* move BO (in tmp_mem) to new_mem */
507 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
508 out_cleanup:
509 	ttm_bo_mem_put(bo, &tmp_mem);
510 	return r;
511 }
512 
513 /**
514  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
515  *
516  * Called by amdgpu_bo_move().
517  */
518 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
519 				struct ttm_operation_ctx *ctx,
520 				struct ttm_mem_reg *new_mem)
521 {
522 	struct amdgpu_device *adev;
523 	struct ttm_mem_reg *old_mem = &bo->mem;
524 	struct ttm_mem_reg tmp_mem;
525 	struct ttm_placement placement;
526 	struct ttm_place placements;
527 	int r;
528 
529 	adev = amdgpu_ttm_adev(bo->bdev);
530 
531 	/* make space in GTT for old_mem buffer */
532 	tmp_mem = *new_mem;
533 	tmp_mem.mm_node = NULL;
534 	placement.num_placement = 1;
535 	placement.placement = &placements;
536 	placement.num_busy_placement = 1;
537 	placement.busy_placement = &placements;
538 	placements.fpfn = 0;
539 	placements.lpfn = 0;
540 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
541 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
542 	if (unlikely(r)) {
543 		return r;
544 	}
545 
546 	/* move/bind old memory to GTT space */
547 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
548 	if (unlikely(r)) {
549 		goto out_cleanup;
550 	}
551 
552 	/* copy to VRAM */
553 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
554 	if (unlikely(r)) {
555 		goto out_cleanup;
556 	}
557 out_cleanup:
558 	ttm_bo_mem_put(bo, &tmp_mem);
559 	return r;
560 }
561 
562 /**
563  * amdgpu_bo_move - Move a buffer object to a new memory location
564  *
565  * Called by ttm_bo_handle_move_mem()
566  */
567 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
568 			  struct ttm_operation_ctx *ctx,
569 			  struct ttm_mem_reg *new_mem)
570 {
571 	struct amdgpu_device *adev;
572 	struct amdgpu_bo *abo;
573 	struct ttm_mem_reg *old_mem = &bo->mem;
574 	int r;
575 
576 	/* Can't move a pinned BO */
577 	abo = ttm_to_amdgpu_bo(bo);
578 	if (WARN_ON_ONCE(abo->pin_count > 0))
579 		return -EINVAL;
580 
581 	adev = amdgpu_ttm_adev(bo->bdev);
582 
583 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
584 		amdgpu_move_null(bo, new_mem);
585 		return 0;
586 	}
587 	if ((old_mem->mem_type == TTM_PL_TT &&
588 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
589 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
590 	     new_mem->mem_type == TTM_PL_TT)) {
591 		/* bind is enough */
592 		amdgpu_move_null(bo, new_mem);
593 		return 0;
594 	}
595 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
596 	    old_mem->mem_type == AMDGPU_PL_GWS ||
597 	    old_mem->mem_type == AMDGPU_PL_OA ||
598 	    new_mem->mem_type == AMDGPU_PL_GDS ||
599 	    new_mem->mem_type == AMDGPU_PL_GWS ||
600 	    new_mem->mem_type == AMDGPU_PL_OA) {
601 		/* Nothing to save here */
602 		amdgpu_move_null(bo, new_mem);
603 		return 0;
604 	}
605 
606 	if (!adev->mman.buffer_funcs_enabled)
607 		goto memcpy;
608 
609 	if (old_mem->mem_type == TTM_PL_VRAM &&
610 	    new_mem->mem_type == TTM_PL_SYSTEM) {
611 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
612 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
613 		   new_mem->mem_type == TTM_PL_VRAM) {
614 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
615 	} else {
616 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
617 				     new_mem, old_mem);
618 	}
619 
620 	if (r) {
621 memcpy:
622 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
623 		if (r) {
624 			return r;
625 		}
626 	}
627 
628 	if (bo->type == ttm_bo_type_device &&
629 	    new_mem->mem_type == TTM_PL_VRAM &&
630 	    old_mem->mem_type != TTM_PL_VRAM) {
631 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
632 		 * accesses the BO after it's moved.
633 		 */
634 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
635 	}
636 
637 	/* update statistics */
638 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
639 	return 0;
640 }
641 
642 /**
643  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
644  *
645  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
646  */
647 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
648 {
649 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
650 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
651 	struct drm_mm_node *mm_node = mem->mm_node;
652 
653 	mem->bus.addr = NULL;
654 	mem->bus.offset = 0;
655 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
656 	mem->bus.base = 0;
657 	mem->bus.is_iomem = false;
658 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
659 		return -EINVAL;
660 	switch (mem->mem_type) {
661 	case TTM_PL_SYSTEM:
662 		/* system memory */
663 		return 0;
664 	case TTM_PL_TT:
665 		break;
666 	case TTM_PL_VRAM:
667 		mem->bus.offset = mem->start << PAGE_SHIFT;
668 		/* check if it's visible */
669 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
670 			return -EINVAL;
671 		/* Only physically contiguous buffers apply. In a contiguous
672 		 * buffer, size of the first mm_node would match the number of
673 		 * pages in ttm_mem_reg.
674 		 */
675 		if (adev->mman.aper_base_kaddr &&
676 		    (mm_node->size == mem->num_pages))
677 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
678 					mem->bus.offset;
679 
680 		mem->bus.base = adev->gmc.aper_base;
681 		mem->bus.is_iomem = true;
682 		break;
683 	default:
684 		return -EINVAL;
685 	}
686 	return 0;
687 }
688 
689 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
690 {
691 }
692 
693 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
694 					   unsigned long page_offset)
695 {
696 	struct drm_mm_node *mm;
697 	unsigned long offset = (page_offset << PAGE_SHIFT);
698 
699 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
700 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
701 		(offset >> PAGE_SHIFT);
702 }
703 
704 /*
705  * TTM backend functions.
706  */
707 struct amdgpu_ttm_tt {
708 	struct ttm_dma_tt	ttm;
709 	u64			offset;
710 	uint64_t		userptr;
711 	struct task_struct	*usertask;
712 	uint32_t		userflags;
713 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
714 	struct hmm_range	*range;
715 #endif
716 };
717 
718 /**
719  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
720  * memory and start HMM tracking CPU page table update
721  *
722  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
723  * once afterwards to stop HMM tracking
724  */
725 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
726 
727 #define MAX_RETRY_HMM_RANGE_FAULT	16
728 
729 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
730 {
731 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
732 	struct mm_struct *mm = gtt->usertask->mm;
733 	unsigned long start = gtt->userptr;
734 	struct vm_area_struct *vma;
735 	struct hmm_range *range;
736 	unsigned long i;
737 	uint64_t *pfns;
738 	int retry = 0;
739 	int r = 0;
740 
741 	if (!mm) /* Happens during process shutdown */
742 		return -ESRCH;
743 
744 	vma = find_vma(mm, start);
745 	if (unlikely(!vma || start < vma->vm_start)) {
746 		r = -EFAULT;
747 		goto out;
748 	}
749 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
750 		vma->vm_file)) {
751 		r = -EPERM;
752 		goto out;
753 	}
754 
755 	range = kzalloc(sizeof(*range), GFP_KERNEL);
756 	if (unlikely(!range)) {
757 		r = -ENOMEM;
758 		goto out;
759 	}
760 
761 	pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL);
762 	if (unlikely(!pfns)) {
763 		r = -ENOMEM;
764 		goto out_free_ranges;
765 	}
766 
767 	amdgpu_hmm_init_range(range);
768 	range->default_flags = range->flags[HMM_PFN_VALID];
769 	range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ?
770 				0 : range->flags[HMM_PFN_WRITE];
771 	range->pfn_flags_mask = 0;
772 	range->pfns = pfns;
773 	hmm_range_register(range, mm, start,
774 			   start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT);
775 
776 retry:
777 	/*
778 	 * Just wait for range to be valid, safe to ignore return value as we
779 	 * will use the return value of hmm_range_fault() below under the
780 	 * mmap_sem to ascertain the validity of the range.
781 	 */
782 	hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT);
783 
784 	down_read(&mm->mmap_sem);
785 
786 	r = hmm_range_fault(range, true);
787 	if (unlikely(r < 0)) {
788 		if (likely(r == -EAGAIN)) {
789 			/*
790 			 * return -EAGAIN, mmap_sem is dropped
791 			 */
792 			if (retry++ < MAX_RETRY_HMM_RANGE_FAULT)
793 				goto retry;
794 			else
795 				pr_err("Retry hmm fault too many times\n");
796 		}
797 
798 		goto out_up_read;
799 	}
800 
801 	up_read(&mm->mmap_sem);
802 
803 	for (i = 0; i < ttm->num_pages; i++) {
804 		pages[i] = hmm_device_entry_to_page(range, pfns[i]);
805 		if (unlikely(!pages[i])) {
806 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
807 			       i, pfns[i]);
808 			r = -ENOMEM;
809 
810 			goto out_free_pfns;
811 		}
812 	}
813 
814 	gtt->range = range;
815 
816 	return 0;
817 
818 out_up_read:
819 	if (likely(r != -EAGAIN))
820 		up_read(&mm->mmap_sem);
821 out_free_pfns:
822 	hmm_range_unregister(range);
823 	kvfree(pfns);
824 out_free_ranges:
825 	kfree(range);
826 out:
827 	return r;
828 }
829 
830 /**
831  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
832  * Check if the pages backing this ttm range have been invalidated
833  *
834  * Returns: true if pages are still valid
835  */
836 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
837 {
838 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
839 	bool r = false;
840 
841 	if (!gtt || !gtt->userptr)
842 		return false;
843 
844 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
845 		gtt->userptr, ttm->num_pages);
846 
847 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
848 		"No user pages to check\n");
849 
850 	if (gtt->range) {
851 		r = hmm_range_valid(gtt->range);
852 		hmm_range_unregister(gtt->range);
853 
854 		kvfree(gtt->range->pfns);
855 		kfree(gtt->range);
856 		gtt->range = NULL;
857 	}
858 
859 	return r;
860 }
861 #endif
862 
863 /**
864  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
865  *
866  * Called by amdgpu_cs_list_validate(). This creates the page list
867  * that backs user memory and will ultimately be mapped into the device
868  * address space.
869  */
870 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
871 {
872 	unsigned long i;
873 
874 	for (i = 0; i < ttm->num_pages; ++i)
875 		ttm->pages[i] = pages ? pages[i] : NULL;
876 }
877 
878 /**
879  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
880  *
881  * Called by amdgpu_ttm_backend_bind()
882  **/
883 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
884 {
885 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
886 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
887 	unsigned nents;
888 	int r;
889 
890 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
891 	enum dma_data_direction direction = write ?
892 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
893 
894 	/* Allocate an SG array and squash pages into it */
895 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
896 				      ttm->num_pages << PAGE_SHIFT,
897 				      GFP_KERNEL);
898 	if (r)
899 		goto release_sg;
900 
901 	/* Map SG to device */
902 	r = -ENOMEM;
903 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
904 	if (nents != ttm->sg->nents)
905 		goto release_sg;
906 
907 	/* convert SG to linear array of pages and dma addresses */
908 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
909 					 gtt->ttm.dma_address, ttm->num_pages);
910 
911 	return 0;
912 
913 release_sg:
914 	kfree(ttm->sg);
915 	return r;
916 }
917 
918 /**
919  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
920  */
921 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
922 {
923 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
924 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
925 
926 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
927 	enum dma_data_direction direction = write ?
928 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
929 
930 	/* double check that we don't free the table twice */
931 	if (!ttm->sg->sgl)
932 		return;
933 
934 	/* unmap the pages mapped to the device */
935 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
936 
937 	sg_free_table(ttm->sg);
938 
939 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
940 	if (gtt->range &&
941 	    ttm->pages[0] == hmm_device_entry_to_page(gtt->range,
942 						      gtt->range->pfns[0]))
943 		WARN_ONCE(1, "Missing get_user_page_done\n");
944 #endif
945 }
946 
947 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
948 				struct ttm_buffer_object *tbo,
949 				uint64_t flags)
950 {
951 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
952 	struct ttm_tt *ttm = tbo->ttm;
953 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
954 	int r;
955 
956 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
957 		uint64_t page_idx = 1;
958 
959 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
960 				ttm->pages, gtt->ttm.dma_address, flags);
961 		if (r)
962 			goto gart_bind_fail;
963 
964 		/* Patch mtype of the second part BO */
965 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
966 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
967 
968 		r = amdgpu_gart_bind(adev,
969 				gtt->offset + (page_idx << PAGE_SHIFT),
970 				ttm->num_pages - page_idx,
971 				&ttm->pages[page_idx],
972 				&(gtt->ttm.dma_address[page_idx]), flags);
973 	} else {
974 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
975 				     ttm->pages, gtt->ttm.dma_address, flags);
976 	}
977 
978 gart_bind_fail:
979 	if (r)
980 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
981 			  ttm->num_pages, gtt->offset);
982 
983 	return r;
984 }
985 
986 /**
987  * amdgpu_ttm_backend_bind - Bind GTT memory
988  *
989  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
990  * This handles binding GTT memory to the device address space.
991  */
992 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
993 				   struct ttm_mem_reg *bo_mem)
994 {
995 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
996 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
997 	uint64_t flags;
998 	int r = 0;
999 
1000 	if (gtt->userptr) {
1001 		r = amdgpu_ttm_tt_pin_userptr(ttm);
1002 		if (r) {
1003 			DRM_ERROR("failed to pin userptr\n");
1004 			return r;
1005 		}
1006 	}
1007 	if (!ttm->num_pages) {
1008 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1009 		     ttm->num_pages, bo_mem, ttm);
1010 	}
1011 
1012 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1013 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
1014 	    bo_mem->mem_type == AMDGPU_PL_OA)
1015 		return -EINVAL;
1016 
1017 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1018 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1019 		return 0;
1020 	}
1021 
1022 	/* compute PTE flags relevant to this BO memory */
1023 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1024 
1025 	/* bind pages into GART page tables */
1026 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1027 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1028 		ttm->pages, gtt->ttm.dma_address, flags);
1029 
1030 	if (r)
1031 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1032 			  ttm->num_pages, gtt->offset);
1033 	return r;
1034 }
1035 
1036 /**
1037  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1038  */
1039 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1040 {
1041 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1042 	struct ttm_operation_ctx ctx = { false, false };
1043 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1044 	struct ttm_mem_reg tmp;
1045 	struct ttm_placement placement;
1046 	struct ttm_place placements;
1047 	uint64_t addr, flags;
1048 	int r;
1049 
1050 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1051 		return 0;
1052 
1053 	addr = amdgpu_gmc_agp_addr(bo);
1054 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1055 		bo->mem.start = addr >> PAGE_SHIFT;
1056 	} else {
1057 
1058 		/* allocate GART space */
1059 		tmp = bo->mem;
1060 		tmp.mm_node = NULL;
1061 		placement.num_placement = 1;
1062 		placement.placement = &placements;
1063 		placement.num_busy_placement = 1;
1064 		placement.busy_placement = &placements;
1065 		placements.fpfn = 0;
1066 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1067 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1068 			TTM_PL_FLAG_TT;
1069 
1070 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1071 		if (unlikely(r))
1072 			return r;
1073 
1074 		/* compute PTE flags for this buffer object */
1075 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1076 
1077 		/* Bind pages */
1078 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1079 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1080 		if (unlikely(r)) {
1081 			ttm_bo_mem_put(bo, &tmp);
1082 			return r;
1083 		}
1084 
1085 		ttm_bo_mem_put(bo, &bo->mem);
1086 		bo->mem = tmp;
1087 	}
1088 
1089 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1090 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1091 
1092 	return 0;
1093 }
1094 
1095 /**
1096  * amdgpu_ttm_recover_gart - Rebind GTT pages
1097  *
1098  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1099  * rebind GTT pages during a GPU reset.
1100  */
1101 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1102 {
1103 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1104 	uint64_t flags;
1105 	int r;
1106 
1107 	if (!tbo->ttm)
1108 		return 0;
1109 
1110 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1111 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1112 
1113 	return r;
1114 }
1115 
1116 /**
1117  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1118  *
1119  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1120  * ttm_tt_destroy().
1121  */
1122 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1123 {
1124 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1125 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1126 	int r;
1127 
1128 	/* if the pages have userptr pinning then clear that first */
1129 	if (gtt->userptr)
1130 		amdgpu_ttm_tt_unpin_userptr(ttm);
1131 
1132 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1133 		return 0;
1134 
1135 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1136 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1137 	if (r)
1138 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1139 			  gtt->ttm.ttm.num_pages, gtt->offset);
1140 	return r;
1141 }
1142 
1143 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1144 {
1145 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1146 
1147 	if (gtt->usertask)
1148 		put_task_struct(gtt->usertask);
1149 
1150 	ttm_dma_tt_fini(&gtt->ttm);
1151 	kfree(gtt);
1152 }
1153 
1154 static struct ttm_backend_func amdgpu_backend_func = {
1155 	.bind = &amdgpu_ttm_backend_bind,
1156 	.unbind = &amdgpu_ttm_backend_unbind,
1157 	.destroy = &amdgpu_ttm_backend_destroy,
1158 };
1159 
1160 /**
1161  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1162  *
1163  * @bo: The buffer object to create a GTT ttm_tt object around
1164  *
1165  * Called by ttm_tt_create().
1166  */
1167 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1168 					   uint32_t page_flags)
1169 {
1170 	struct amdgpu_device *adev;
1171 	struct amdgpu_ttm_tt *gtt;
1172 
1173 	adev = amdgpu_ttm_adev(bo->bdev);
1174 
1175 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1176 	if (gtt == NULL) {
1177 		return NULL;
1178 	}
1179 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1180 
1181 	/* allocate space for the uninitialized page entries */
1182 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1183 		kfree(gtt);
1184 		return NULL;
1185 	}
1186 	return &gtt->ttm.ttm;
1187 }
1188 
1189 /**
1190  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1191  *
1192  * Map the pages of a ttm_tt object to an address space visible
1193  * to the underlying device.
1194  */
1195 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1196 			struct ttm_operation_ctx *ctx)
1197 {
1198 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1199 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1200 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1201 
1202 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1203 	if (gtt && gtt->userptr) {
1204 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1205 		if (!ttm->sg)
1206 			return -ENOMEM;
1207 
1208 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1209 		ttm->state = tt_unbound;
1210 		return 0;
1211 	}
1212 
1213 	if (slave && ttm->sg) {
1214 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1215 						 gtt->ttm.dma_address,
1216 						 ttm->num_pages);
1217 		ttm->state = tt_unbound;
1218 		return 0;
1219 	}
1220 
1221 #ifdef CONFIG_SWIOTLB
1222 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1223 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1224 	}
1225 #endif
1226 
1227 	/* fall back to generic helper to populate the page array
1228 	 * and map them to the device */
1229 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1230 }
1231 
1232 /**
1233  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1234  *
1235  * Unmaps pages of a ttm_tt object from the device address space and
1236  * unpopulates the page array backing it.
1237  */
1238 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1239 {
1240 	struct amdgpu_device *adev;
1241 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1242 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1243 
1244 	if (gtt && gtt->userptr) {
1245 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1246 		kfree(ttm->sg);
1247 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1248 		return;
1249 	}
1250 
1251 	if (slave)
1252 		return;
1253 
1254 	adev = amdgpu_ttm_adev(ttm->bdev);
1255 
1256 #ifdef CONFIG_SWIOTLB
1257 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1258 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1259 		return;
1260 	}
1261 #endif
1262 
1263 	/* fall back to generic helper to unmap and unpopulate array */
1264 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1265 }
1266 
1267 /**
1268  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1269  * task
1270  *
1271  * @ttm: The ttm_tt object to bind this userptr object to
1272  * @addr:  The address in the current tasks VM space to use
1273  * @flags: Requirements of userptr object.
1274  *
1275  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1276  * to current task
1277  */
1278 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1279 			      uint32_t flags)
1280 {
1281 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1282 
1283 	if (gtt == NULL)
1284 		return -EINVAL;
1285 
1286 	gtt->userptr = addr;
1287 	gtt->userflags = flags;
1288 
1289 	if (gtt->usertask)
1290 		put_task_struct(gtt->usertask);
1291 	gtt->usertask = current->group_leader;
1292 	get_task_struct(gtt->usertask);
1293 
1294 	return 0;
1295 }
1296 
1297 /**
1298  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1299  */
1300 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1301 {
1302 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1303 
1304 	if (gtt == NULL)
1305 		return NULL;
1306 
1307 	if (gtt->usertask == NULL)
1308 		return NULL;
1309 
1310 	return gtt->usertask->mm;
1311 }
1312 
1313 /**
1314  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1315  * address range for the current task.
1316  *
1317  */
1318 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1319 				  unsigned long end)
1320 {
1321 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1322 	unsigned long size;
1323 
1324 	if (gtt == NULL || !gtt->userptr)
1325 		return false;
1326 
1327 	/* Return false if no part of the ttm_tt object lies within
1328 	 * the range
1329 	 */
1330 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1331 	if (gtt->userptr > end || gtt->userptr + size <= start)
1332 		return false;
1333 
1334 	return true;
1335 }
1336 
1337 /**
1338  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1339  */
1340 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1341 {
1342 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1343 
1344 	if (gtt == NULL || !gtt->userptr)
1345 		return false;
1346 
1347 	return true;
1348 }
1349 
1350 /**
1351  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1352  */
1353 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1354 {
1355 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1356 
1357 	if (gtt == NULL)
1358 		return false;
1359 
1360 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1365  *
1366  * @ttm: The ttm_tt object to compute the flags for
1367  * @mem: The memory registry backing this ttm_tt object
1368  *
1369  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1370  */
1371 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1372 {
1373 	uint64_t flags = 0;
1374 
1375 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1376 		flags |= AMDGPU_PTE_VALID;
1377 
1378 	if (mem && mem->mem_type == TTM_PL_TT) {
1379 		flags |= AMDGPU_PTE_SYSTEM;
1380 
1381 		if (ttm->caching_state == tt_cached)
1382 			flags |= AMDGPU_PTE_SNOOPED;
1383 	}
1384 
1385 	return flags;
1386 }
1387 
1388 /**
1389  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1390  *
1391  * @ttm: The ttm_tt object to compute the flags for
1392  * @mem: The memory registry backing this ttm_tt object
1393 
1394  * Figure out the flags to use for a VM PTE (Page Table Entry).
1395  */
1396 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1397 				 struct ttm_mem_reg *mem)
1398 {
1399 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1400 
1401 	flags |= adev->gart.gart_pte_flags;
1402 	flags |= AMDGPU_PTE_READABLE;
1403 
1404 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1405 		flags |= AMDGPU_PTE_WRITEABLE;
1406 
1407 	return flags;
1408 }
1409 
1410 /**
1411  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1412  * object.
1413  *
1414  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1415  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1416  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1417  * used to clean out a memory space.
1418  */
1419 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1420 					    const struct ttm_place *place)
1421 {
1422 	unsigned long num_pages = bo->mem.num_pages;
1423 	struct drm_mm_node *node = bo->mem.mm_node;
1424 	struct reservation_object_list *flist;
1425 	struct dma_fence *f;
1426 	int i;
1427 
1428 	/* Don't evict VM page tables while they are busy, otherwise we can't
1429 	 * cleanly handle page faults.
1430 	 */
1431 	if (bo->type == ttm_bo_type_kernel &&
1432 	    !reservation_object_test_signaled_rcu(bo->resv, true))
1433 		return false;
1434 
1435 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1436 	 * If true, then return false as any KFD process needs all its BOs to
1437 	 * be resident to run successfully
1438 	 */
1439 	flist = reservation_object_get_list(bo->resv);
1440 	if (flist) {
1441 		for (i = 0; i < flist->shared_count; ++i) {
1442 			f = rcu_dereference_protected(flist->shared[i],
1443 				reservation_object_held(bo->resv));
1444 			if (amdkfd_fence_check_mm(f, current->mm))
1445 				return false;
1446 		}
1447 	}
1448 
1449 	switch (bo->mem.mem_type) {
1450 	case TTM_PL_TT:
1451 		return true;
1452 
1453 	case TTM_PL_VRAM:
1454 		/* Check each drm MM node individually */
1455 		while (num_pages) {
1456 			if (place->fpfn < (node->start + node->size) &&
1457 			    !(place->lpfn && place->lpfn <= node->start))
1458 				return true;
1459 
1460 			num_pages -= node->size;
1461 			++node;
1462 		}
1463 		return false;
1464 
1465 	default:
1466 		break;
1467 	}
1468 
1469 	return ttm_bo_eviction_valuable(bo, place);
1470 }
1471 
1472 /**
1473  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1474  *
1475  * @bo:  The buffer object to read/write
1476  * @offset:  Offset into buffer object
1477  * @buf:  Secondary buffer to write/read from
1478  * @len: Length in bytes of access
1479  * @write:  true if writing
1480  *
1481  * This is used to access VRAM that backs a buffer object via MMIO
1482  * access for debugging purposes.
1483  */
1484 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1485 				    unsigned long offset,
1486 				    void *buf, int len, int write)
1487 {
1488 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1489 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1490 	struct drm_mm_node *nodes;
1491 	uint32_t value = 0;
1492 	int ret = 0;
1493 	uint64_t pos;
1494 	unsigned long flags;
1495 
1496 	if (bo->mem.mem_type != TTM_PL_VRAM)
1497 		return -EIO;
1498 
1499 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1500 	pos = (nodes->start << PAGE_SHIFT) + offset;
1501 
1502 	while (len && pos < adev->gmc.mc_vram_size) {
1503 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1504 		uint32_t bytes = 4 - (pos & 3);
1505 		uint32_t shift = (pos & 3) * 8;
1506 		uint32_t mask = 0xffffffff << shift;
1507 
1508 		if (len < bytes) {
1509 			mask &= 0xffffffff >> (bytes - len) * 8;
1510 			bytes = len;
1511 		}
1512 
1513 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1514 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1515 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1516 		if (!write || mask != 0xffffffff)
1517 			value = RREG32_NO_KIQ(mmMM_DATA);
1518 		if (write) {
1519 			value &= ~mask;
1520 			value |= (*(uint32_t *)buf << shift) & mask;
1521 			WREG32_NO_KIQ(mmMM_DATA, value);
1522 		}
1523 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1524 		if (!write) {
1525 			value = (value & mask) >> shift;
1526 			memcpy(buf, &value, bytes);
1527 		}
1528 
1529 		ret += bytes;
1530 		buf = (uint8_t *)buf + bytes;
1531 		pos += bytes;
1532 		len -= bytes;
1533 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1534 			++nodes;
1535 			pos = (nodes->start << PAGE_SHIFT);
1536 		}
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 static struct ttm_bo_driver amdgpu_bo_driver = {
1543 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1544 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1545 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1546 	.invalidate_caches = &amdgpu_invalidate_caches,
1547 	.init_mem_type = &amdgpu_init_mem_type,
1548 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1549 	.evict_flags = &amdgpu_evict_flags,
1550 	.move = &amdgpu_bo_move,
1551 	.verify_access = &amdgpu_verify_access,
1552 	.move_notify = &amdgpu_bo_move_notify,
1553 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1554 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1555 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1556 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1557 	.access_memory = &amdgpu_ttm_access_memory,
1558 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1559 };
1560 
1561 /*
1562  * Firmware Reservation functions
1563  */
1564 /**
1565  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1566  *
1567  * @adev: amdgpu_device pointer
1568  *
1569  * free fw reserved vram if it has been reserved.
1570  */
1571 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1572 {
1573 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1574 		NULL, &adev->fw_vram_usage.va);
1575 }
1576 
1577 /**
1578  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1579  *
1580  * @adev: amdgpu_device pointer
1581  *
1582  * create bo vram reservation from fw.
1583  */
1584 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1585 {
1586 	struct ttm_operation_ctx ctx = { false, false };
1587 	struct amdgpu_bo_param bp;
1588 	int r = 0;
1589 	int i;
1590 	u64 vram_size = adev->gmc.visible_vram_size;
1591 	u64 offset = adev->fw_vram_usage.start_offset;
1592 	u64 size = adev->fw_vram_usage.size;
1593 	struct amdgpu_bo *bo;
1594 
1595 	memset(&bp, 0, sizeof(bp));
1596 	bp.size = adev->fw_vram_usage.size;
1597 	bp.byte_align = PAGE_SIZE;
1598 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1599 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1600 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1601 	bp.type = ttm_bo_type_kernel;
1602 	bp.resv = NULL;
1603 	adev->fw_vram_usage.va = NULL;
1604 	adev->fw_vram_usage.reserved_bo = NULL;
1605 
1606 	if (adev->fw_vram_usage.size > 0 &&
1607 		adev->fw_vram_usage.size <= vram_size) {
1608 
1609 		r = amdgpu_bo_create(adev, &bp,
1610 				     &adev->fw_vram_usage.reserved_bo);
1611 		if (r)
1612 			goto error_create;
1613 
1614 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1615 		if (r)
1616 			goto error_reserve;
1617 
1618 		/* remove the original mem node and create a new one at the
1619 		 * request position
1620 		 */
1621 		bo = adev->fw_vram_usage.reserved_bo;
1622 		offset = ALIGN(offset, PAGE_SIZE);
1623 		for (i = 0; i < bo->placement.num_placement; ++i) {
1624 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1625 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1626 		}
1627 
1628 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1629 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1630 				     &bo->tbo.mem, &ctx);
1631 		if (r)
1632 			goto error_pin;
1633 
1634 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1635 			AMDGPU_GEM_DOMAIN_VRAM,
1636 			adev->fw_vram_usage.start_offset,
1637 			(adev->fw_vram_usage.start_offset +
1638 			adev->fw_vram_usage.size));
1639 		if (r)
1640 			goto error_pin;
1641 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1642 			&adev->fw_vram_usage.va);
1643 		if (r)
1644 			goto error_kmap;
1645 
1646 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1647 	}
1648 	return r;
1649 
1650 error_kmap:
1651 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1652 error_pin:
1653 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1654 error_reserve:
1655 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1656 error_create:
1657 	adev->fw_vram_usage.va = NULL;
1658 	adev->fw_vram_usage.reserved_bo = NULL;
1659 	return r;
1660 }
1661 /**
1662  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1663  * gtt/vram related fields.
1664  *
1665  * This initializes all of the memory space pools that the TTM layer
1666  * will need such as the GTT space (system memory mapped to the device),
1667  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1668  * can be mapped per VMID.
1669  */
1670 int amdgpu_ttm_init(struct amdgpu_device *adev)
1671 {
1672 	uint64_t gtt_size;
1673 	int r;
1674 	u64 vis_vram_limit;
1675 
1676 	mutex_init(&adev->mman.gtt_window_lock);
1677 
1678 	/* No others user of address space so set it to 0 */
1679 	r = ttm_bo_device_init(&adev->mman.bdev,
1680 			       &amdgpu_bo_driver,
1681 			       adev->ddev->anon_inode->i_mapping,
1682 			       adev->need_dma32);
1683 	if (r) {
1684 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1685 		return r;
1686 	}
1687 	adev->mman.initialized = true;
1688 
1689 	/* We opt to avoid OOM on system pages allocations */
1690 	adev->mman.bdev.no_retry = true;
1691 
1692 	/* Initialize VRAM pool with all of VRAM divided into pages */
1693 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1694 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1695 	if (r) {
1696 		DRM_ERROR("Failed initializing VRAM heap.\n");
1697 		return r;
1698 	}
1699 
1700 	/* Reduce size of CPU-visible VRAM if requested */
1701 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1702 	if (amdgpu_vis_vram_limit > 0 &&
1703 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1704 		adev->gmc.visible_vram_size = vis_vram_limit;
1705 
1706 	/* Change the size here instead of the init above so only lpfn is affected */
1707 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1708 #ifdef CONFIG_64BIT
1709 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1710 						adev->gmc.visible_vram_size);
1711 #endif
1712 
1713 	/*
1714 	 *The reserved vram for firmware must be pinned to the specified
1715 	 *place on the VRAM, so reserve it early.
1716 	 */
1717 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1718 	if (r) {
1719 		return r;
1720 	}
1721 
1722 	/* allocate memory as required for VGA
1723 	 * This is used for VGA emulation and pre-OS scanout buffers to
1724 	 * avoid display artifacts while transitioning between pre-OS
1725 	 * and driver.  */
1726 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1727 				    AMDGPU_GEM_DOMAIN_VRAM,
1728 				    &adev->stolen_vga_memory,
1729 				    NULL, NULL);
1730 	if (r)
1731 		return r;
1732 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1733 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1734 
1735 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1736 	 * or whatever the user passed on module init */
1737 	if (amdgpu_gtt_size == -1) {
1738 		struct sysinfo si;
1739 
1740 		si_meminfo(&si);
1741 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1742 			       adev->gmc.mc_vram_size),
1743 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1744 	}
1745 	else
1746 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1747 
1748 	/* Initialize GTT memory pool */
1749 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1750 	if (r) {
1751 		DRM_ERROR("Failed initializing GTT heap.\n");
1752 		return r;
1753 	}
1754 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1755 		 (unsigned)(gtt_size / (1024 * 1024)));
1756 
1757 	/* Initialize various on-chip memory pools */
1758 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1759 			   adev->gds.gds_size);
1760 	if (r) {
1761 		DRM_ERROR("Failed initializing GDS heap.\n");
1762 		return r;
1763 	}
1764 
1765 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1766 			   adev->gds.gws_size);
1767 	if (r) {
1768 		DRM_ERROR("Failed initializing gws heap.\n");
1769 		return r;
1770 	}
1771 
1772 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1773 			   adev->gds.oa_size);
1774 	if (r) {
1775 		DRM_ERROR("Failed initializing oa heap.\n");
1776 		return r;
1777 	}
1778 
1779 	/* Register debugfs entries for amdgpu_ttm */
1780 	r = amdgpu_ttm_debugfs_init(adev);
1781 	if (r) {
1782 		DRM_ERROR("Failed to init debugfs\n");
1783 		return r;
1784 	}
1785 	return 0;
1786 }
1787 
1788 /**
1789  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1790  */
1791 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1792 {
1793 	/* return the VGA stolen memory (if any) back to VRAM */
1794 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1795 }
1796 
1797 /**
1798  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1799  */
1800 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1801 {
1802 	if (!adev->mman.initialized)
1803 		return;
1804 
1805 	amdgpu_ttm_debugfs_fini(adev);
1806 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1807 	if (adev->mman.aper_base_kaddr)
1808 		iounmap(adev->mman.aper_base_kaddr);
1809 	adev->mman.aper_base_kaddr = NULL;
1810 
1811 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1812 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1813 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1814 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1815 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1816 	ttm_bo_device_release(&adev->mman.bdev);
1817 	adev->mman.initialized = false;
1818 	DRM_INFO("amdgpu: ttm finalized\n");
1819 }
1820 
1821 /**
1822  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1823  *
1824  * @adev: amdgpu_device pointer
1825  * @enable: true when we can use buffer functions.
1826  *
1827  * Enable/disable use of buffer functions during suspend/resume. This should
1828  * only be called at bootup or when userspace isn't running.
1829  */
1830 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1831 {
1832 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1833 	uint64_t size;
1834 	int r;
1835 
1836 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1837 	    adev->mman.buffer_funcs_enabled == enable)
1838 		return;
1839 
1840 	if (enable) {
1841 		struct amdgpu_ring *ring;
1842 		struct drm_sched_rq *rq;
1843 
1844 		ring = adev->mman.buffer_funcs_ring;
1845 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1846 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1847 		if (r) {
1848 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1849 				  r);
1850 			return;
1851 		}
1852 	} else {
1853 		drm_sched_entity_destroy(&adev->mman.entity);
1854 		dma_fence_put(man->move);
1855 		man->move = NULL;
1856 	}
1857 
1858 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1859 	if (enable)
1860 		size = adev->gmc.real_vram_size;
1861 	else
1862 		size = adev->gmc.visible_vram_size;
1863 	man->size = size >> PAGE_SHIFT;
1864 	adev->mman.buffer_funcs_enabled = enable;
1865 }
1866 
1867 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1868 {
1869 	struct drm_file *file_priv = filp->private_data;
1870 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1871 
1872 	if (adev == NULL)
1873 		return -EINVAL;
1874 
1875 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1876 }
1877 
1878 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1879 			     struct ttm_mem_reg *mem, unsigned num_pages,
1880 			     uint64_t offset, unsigned window,
1881 			     struct amdgpu_ring *ring,
1882 			     uint64_t *addr)
1883 {
1884 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1885 	struct amdgpu_device *adev = ring->adev;
1886 	struct ttm_tt *ttm = bo->ttm;
1887 	struct amdgpu_job *job;
1888 	unsigned num_dw, num_bytes;
1889 	dma_addr_t *dma_address;
1890 	struct dma_fence *fence;
1891 	uint64_t src_addr, dst_addr;
1892 	uint64_t flags;
1893 	int r;
1894 
1895 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1896 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1897 
1898 	*addr = adev->gmc.gart_start;
1899 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1900 		AMDGPU_GPU_PAGE_SIZE;
1901 
1902 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1903 	while (num_dw & 0x7)
1904 		num_dw++;
1905 
1906 	num_bytes = num_pages * 8;
1907 
1908 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1909 	if (r)
1910 		return r;
1911 
1912 	src_addr = num_dw * 4;
1913 	src_addr += job->ibs[0].gpu_addr;
1914 
1915 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1916 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1917 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1918 				dst_addr, num_bytes);
1919 
1920 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1921 	WARN_ON(job->ibs[0].length_dw > num_dw);
1922 
1923 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1924 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1925 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1926 			    &job->ibs[0].ptr[num_dw]);
1927 	if (r)
1928 		goto error_free;
1929 
1930 	r = amdgpu_job_submit(job, &adev->mman.entity,
1931 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1932 	if (r)
1933 		goto error_free;
1934 
1935 	dma_fence_put(fence);
1936 
1937 	return r;
1938 
1939 error_free:
1940 	amdgpu_job_free(job);
1941 	return r;
1942 }
1943 
1944 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1945 		       uint64_t dst_offset, uint32_t byte_count,
1946 		       struct reservation_object *resv,
1947 		       struct dma_fence **fence, bool direct_submit,
1948 		       bool vm_needs_flush)
1949 {
1950 	struct amdgpu_device *adev = ring->adev;
1951 	struct amdgpu_job *job;
1952 
1953 	uint32_t max_bytes;
1954 	unsigned num_loops, num_dw;
1955 	unsigned i;
1956 	int r;
1957 
1958 	if (direct_submit && !ring->sched.ready) {
1959 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1960 		return -EINVAL;
1961 	}
1962 
1963 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1964 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1965 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1966 
1967 	/* for IB padding */
1968 	while (num_dw & 0x7)
1969 		num_dw++;
1970 
1971 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1972 	if (r)
1973 		return r;
1974 
1975 	if (vm_needs_flush) {
1976 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1977 		job->vm_needs_flush = true;
1978 	}
1979 	if (resv) {
1980 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1981 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1982 				     false);
1983 		if (r) {
1984 			DRM_ERROR("sync failed (%d).\n", r);
1985 			goto error_free;
1986 		}
1987 	}
1988 
1989 	for (i = 0; i < num_loops; i++) {
1990 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1991 
1992 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1993 					dst_offset, cur_size_in_bytes);
1994 
1995 		src_offset += cur_size_in_bytes;
1996 		dst_offset += cur_size_in_bytes;
1997 		byte_count -= cur_size_in_bytes;
1998 	}
1999 
2000 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2001 	WARN_ON(job->ibs[0].length_dw > num_dw);
2002 	if (direct_submit)
2003 		r = amdgpu_job_submit_direct(job, ring, fence);
2004 	else
2005 		r = amdgpu_job_submit(job, &adev->mman.entity,
2006 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2007 	if (r)
2008 		goto error_free;
2009 
2010 	return r;
2011 
2012 error_free:
2013 	amdgpu_job_free(job);
2014 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2015 	return r;
2016 }
2017 
2018 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2019 		       uint32_t src_data,
2020 		       struct reservation_object *resv,
2021 		       struct dma_fence **fence)
2022 {
2023 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2024 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2025 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2026 
2027 	struct drm_mm_node *mm_node;
2028 	unsigned long num_pages;
2029 	unsigned int num_loops, num_dw;
2030 
2031 	struct amdgpu_job *job;
2032 	int r;
2033 
2034 	if (!adev->mman.buffer_funcs_enabled) {
2035 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2036 		return -EINVAL;
2037 	}
2038 
2039 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2040 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2041 		if (r)
2042 			return r;
2043 	}
2044 
2045 	num_pages = bo->tbo.num_pages;
2046 	mm_node = bo->tbo.mem.mm_node;
2047 	num_loops = 0;
2048 	while (num_pages) {
2049 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2050 
2051 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2052 		num_pages -= mm_node->size;
2053 		++mm_node;
2054 	}
2055 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2056 
2057 	/* for IB padding */
2058 	num_dw += 64;
2059 
2060 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2061 	if (r)
2062 		return r;
2063 
2064 	if (resv) {
2065 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2066 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2067 		if (r) {
2068 			DRM_ERROR("sync failed (%d).\n", r);
2069 			goto error_free;
2070 		}
2071 	}
2072 
2073 	num_pages = bo->tbo.num_pages;
2074 	mm_node = bo->tbo.mem.mm_node;
2075 
2076 	while (num_pages) {
2077 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2078 		uint64_t dst_addr;
2079 
2080 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2081 		while (byte_count) {
2082 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2083 
2084 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2085 						dst_addr, cur_size_in_bytes);
2086 
2087 			dst_addr += cur_size_in_bytes;
2088 			byte_count -= cur_size_in_bytes;
2089 		}
2090 
2091 		num_pages -= mm_node->size;
2092 		++mm_node;
2093 	}
2094 
2095 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2096 	WARN_ON(job->ibs[0].length_dw > num_dw);
2097 	r = amdgpu_job_submit(job, &adev->mman.entity,
2098 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2099 	if (r)
2100 		goto error_free;
2101 
2102 	return 0;
2103 
2104 error_free:
2105 	amdgpu_job_free(job);
2106 	return r;
2107 }
2108 
2109 #if defined(CONFIG_DEBUG_FS)
2110 
2111 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2112 {
2113 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2114 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2115 	struct drm_device *dev = node->minor->dev;
2116 	struct amdgpu_device *adev = dev->dev_private;
2117 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2118 	struct drm_printer p = drm_seq_file_printer(m);
2119 
2120 	man->func->debug(man, &p);
2121 	return 0;
2122 }
2123 
2124 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2125 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2126 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2127 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2128 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2129 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2130 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2131 #ifdef CONFIG_SWIOTLB
2132 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2133 #endif
2134 };
2135 
2136 /**
2137  * amdgpu_ttm_vram_read - Linear read access to VRAM
2138  *
2139  * Accesses VRAM via MMIO for debugging purposes.
2140  */
2141 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2142 				    size_t size, loff_t *pos)
2143 {
2144 	struct amdgpu_device *adev = file_inode(f)->i_private;
2145 	ssize_t result = 0;
2146 	int r;
2147 
2148 	if (size & 0x3 || *pos & 0x3)
2149 		return -EINVAL;
2150 
2151 	if (*pos >= adev->gmc.mc_vram_size)
2152 		return -ENXIO;
2153 
2154 	while (size) {
2155 		unsigned long flags;
2156 		uint32_t value;
2157 
2158 		if (*pos >= adev->gmc.mc_vram_size)
2159 			return result;
2160 
2161 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2162 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2163 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2164 		value = RREG32_NO_KIQ(mmMM_DATA);
2165 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2166 
2167 		r = put_user(value, (uint32_t *)buf);
2168 		if (r)
2169 			return r;
2170 
2171 		result += 4;
2172 		buf += 4;
2173 		*pos += 4;
2174 		size -= 4;
2175 	}
2176 
2177 	return result;
2178 }
2179 
2180 /**
2181  * amdgpu_ttm_vram_write - Linear write access to VRAM
2182  *
2183  * Accesses VRAM via MMIO for debugging purposes.
2184  */
2185 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2186 				    size_t size, loff_t *pos)
2187 {
2188 	struct amdgpu_device *adev = file_inode(f)->i_private;
2189 	ssize_t result = 0;
2190 	int r;
2191 
2192 	if (size & 0x3 || *pos & 0x3)
2193 		return -EINVAL;
2194 
2195 	if (*pos >= adev->gmc.mc_vram_size)
2196 		return -ENXIO;
2197 
2198 	while (size) {
2199 		unsigned long flags;
2200 		uint32_t value;
2201 
2202 		if (*pos >= adev->gmc.mc_vram_size)
2203 			return result;
2204 
2205 		r = get_user(value, (uint32_t *)buf);
2206 		if (r)
2207 			return r;
2208 
2209 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2210 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2211 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2212 		WREG32_NO_KIQ(mmMM_DATA, value);
2213 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2214 
2215 		result += 4;
2216 		buf += 4;
2217 		*pos += 4;
2218 		size -= 4;
2219 	}
2220 
2221 	return result;
2222 }
2223 
2224 static const struct file_operations amdgpu_ttm_vram_fops = {
2225 	.owner = THIS_MODULE,
2226 	.read = amdgpu_ttm_vram_read,
2227 	.write = amdgpu_ttm_vram_write,
2228 	.llseek = default_llseek,
2229 };
2230 
2231 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2232 
2233 /**
2234  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2235  */
2236 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2237 				   size_t size, loff_t *pos)
2238 {
2239 	struct amdgpu_device *adev = file_inode(f)->i_private;
2240 	ssize_t result = 0;
2241 	int r;
2242 
2243 	while (size) {
2244 		loff_t p = *pos / PAGE_SIZE;
2245 		unsigned off = *pos & ~PAGE_MASK;
2246 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2247 		struct page *page;
2248 		void *ptr;
2249 
2250 		if (p >= adev->gart.num_cpu_pages)
2251 			return result;
2252 
2253 		page = adev->gart.pages[p];
2254 		if (page) {
2255 			ptr = kmap(page);
2256 			ptr += off;
2257 
2258 			r = copy_to_user(buf, ptr, cur_size);
2259 			kunmap(adev->gart.pages[p]);
2260 		} else
2261 			r = clear_user(buf, cur_size);
2262 
2263 		if (r)
2264 			return -EFAULT;
2265 
2266 		result += cur_size;
2267 		buf += cur_size;
2268 		*pos += cur_size;
2269 		size -= cur_size;
2270 	}
2271 
2272 	return result;
2273 }
2274 
2275 static const struct file_operations amdgpu_ttm_gtt_fops = {
2276 	.owner = THIS_MODULE,
2277 	.read = amdgpu_ttm_gtt_read,
2278 	.llseek = default_llseek
2279 };
2280 
2281 #endif
2282 
2283 /**
2284  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2285  *
2286  * This function is used to read memory that has been mapped to the
2287  * GPU and the known addresses are not physical addresses but instead
2288  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2289  */
2290 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2291 				 size_t size, loff_t *pos)
2292 {
2293 	struct amdgpu_device *adev = file_inode(f)->i_private;
2294 	struct iommu_domain *dom;
2295 	ssize_t result = 0;
2296 	int r;
2297 
2298 	/* retrieve the IOMMU domain if any for this device */
2299 	dom = iommu_get_domain_for_dev(adev->dev);
2300 
2301 	while (size) {
2302 		phys_addr_t addr = *pos & PAGE_MASK;
2303 		loff_t off = *pos & ~PAGE_MASK;
2304 		size_t bytes = PAGE_SIZE - off;
2305 		unsigned long pfn;
2306 		struct page *p;
2307 		void *ptr;
2308 
2309 		bytes = bytes < size ? bytes : size;
2310 
2311 		/* Translate the bus address to a physical address.  If
2312 		 * the domain is NULL it means there is no IOMMU active
2313 		 * and the address translation is the identity
2314 		 */
2315 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2316 
2317 		pfn = addr >> PAGE_SHIFT;
2318 		if (!pfn_valid(pfn))
2319 			return -EPERM;
2320 
2321 		p = pfn_to_page(pfn);
2322 		if (p->mapping != adev->mman.bdev.dev_mapping)
2323 			return -EPERM;
2324 
2325 		ptr = kmap(p);
2326 		r = copy_to_user(buf, ptr + off, bytes);
2327 		kunmap(p);
2328 		if (r)
2329 			return -EFAULT;
2330 
2331 		size -= bytes;
2332 		*pos += bytes;
2333 		result += bytes;
2334 	}
2335 
2336 	return result;
2337 }
2338 
2339 /**
2340  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2341  *
2342  * This function is used to write memory that has been mapped to the
2343  * GPU and the known addresses are not physical addresses but instead
2344  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2345  */
2346 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2347 				 size_t size, loff_t *pos)
2348 {
2349 	struct amdgpu_device *adev = file_inode(f)->i_private;
2350 	struct iommu_domain *dom;
2351 	ssize_t result = 0;
2352 	int r;
2353 
2354 	dom = iommu_get_domain_for_dev(adev->dev);
2355 
2356 	while (size) {
2357 		phys_addr_t addr = *pos & PAGE_MASK;
2358 		loff_t off = *pos & ~PAGE_MASK;
2359 		size_t bytes = PAGE_SIZE - off;
2360 		unsigned long pfn;
2361 		struct page *p;
2362 		void *ptr;
2363 
2364 		bytes = bytes < size ? bytes : size;
2365 
2366 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2367 
2368 		pfn = addr >> PAGE_SHIFT;
2369 		if (!pfn_valid(pfn))
2370 			return -EPERM;
2371 
2372 		p = pfn_to_page(pfn);
2373 		if (p->mapping != adev->mman.bdev.dev_mapping)
2374 			return -EPERM;
2375 
2376 		ptr = kmap(p);
2377 		r = copy_from_user(ptr + off, buf, bytes);
2378 		kunmap(p);
2379 		if (r)
2380 			return -EFAULT;
2381 
2382 		size -= bytes;
2383 		*pos += bytes;
2384 		result += bytes;
2385 	}
2386 
2387 	return result;
2388 }
2389 
2390 static const struct file_operations amdgpu_ttm_iomem_fops = {
2391 	.owner = THIS_MODULE,
2392 	.read = amdgpu_iomem_read,
2393 	.write = amdgpu_iomem_write,
2394 	.llseek = default_llseek
2395 };
2396 
2397 static const struct {
2398 	char *name;
2399 	const struct file_operations *fops;
2400 	int domain;
2401 } ttm_debugfs_entries[] = {
2402 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2403 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2404 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2405 #endif
2406 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2407 };
2408 
2409 #endif
2410 
2411 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2412 {
2413 #if defined(CONFIG_DEBUG_FS)
2414 	unsigned count;
2415 
2416 	struct drm_minor *minor = adev->ddev->primary;
2417 	struct dentry *ent, *root = minor->debugfs_root;
2418 
2419 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2420 		ent = debugfs_create_file(
2421 				ttm_debugfs_entries[count].name,
2422 				S_IFREG | S_IRUGO, root,
2423 				adev,
2424 				ttm_debugfs_entries[count].fops);
2425 		if (IS_ERR(ent))
2426 			return PTR_ERR(ent);
2427 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2428 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2429 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2430 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2431 		adev->mman.debugfs_entries[count] = ent;
2432 	}
2433 
2434 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2435 
2436 #ifdef CONFIG_SWIOTLB
2437 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2438 		--count;
2439 #endif
2440 
2441 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2442 #else
2443 	return 0;
2444 #endif
2445 }
2446 
2447 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2448 {
2449 #if defined(CONFIG_DEBUG_FS)
2450 	unsigned i;
2451 
2452 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2453 		debugfs_remove(adev->mman.debugfs_entries[i]);
2454 #endif
2455 }
2456