1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/sched/mm.h> 39 #include <linux/seq_file.h> 40 #include <linux/slab.h> 41 #include <linux/swap.h> 42 #include <linux/swiotlb.h> 43 #include <linux/dma-buf.h> 44 #include <linux/sizes.h> 45 46 #include <drm/ttm/ttm_bo_api.h> 47 #include <drm/ttm/ttm_bo_driver.h> 48 #include <drm/ttm/ttm_placement.h> 49 #include <drm/ttm/ttm_module.h> 50 #include <drm/ttm/ttm_page_alloc.h> 51 52 #include <drm/drm_debugfs.h> 53 #include <drm/amdgpu_drm.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "bif/bif_4_1_d.h" 63 64 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 65 66 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 67 unsigned int type, 68 uint64_t size_in_page) 69 { 70 return ttm_range_man_init(&adev->mman.bdev, type, 71 TTM_PL_FLAG_UNCACHED, TTM_PL_FLAG_UNCACHED, 72 false, size_in_page); 73 } 74 75 /** 76 * amdgpu_evict_flags - Compute placement flags 77 * 78 * @bo: The buffer object to evict 79 * @placement: Possible destination(s) for evicted BO 80 * 81 * Fill in placement data when ttm_bo_evict() is called 82 */ 83 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 84 struct ttm_placement *placement) 85 { 86 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 87 struct amdgpu_bo *abo; 88 static const struct ttm_place placements = { 89 .fpfn = 0, 90 .lpfn = 0, 91 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 92 }; 93 94 /* Don't handle scatter gather BOs */ 95 if (bo->type == ttm_bo_type_sg) { 96 placement->num_placement = 0; 97 placement->num_busy_placement = 0; 98 return; 99 } 100 101 /* Object isn't an AMDGPU object so ignore */ 102 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 103 placement->placement = &placements; 104 placement->busy_placement = &placements; 105 placement->num_placement = 1; 106 placement->num_busy_placement = 1; 107 return; 108 } 109 110 abo = ttm_to_amdgpu_bo(bo); 111 switch (bo->mem.mem_type) { 112 case AMDGPU_PL_GDS: 113 case AMDGPU_PL_GWS: 114 case AMDGPU_PL_OA: 115 placement->num_placement = 0; 116 placement->num_busy_placement = 0; 117 return; 118 119 case TTM_PL_VRAM: 120 if (!adev->mman.buffer_funcs_enabled) { 121 /* Move to system memory */ 122 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 123 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 124 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 125 amdgpu_bo_in_cpu_visible_vram(abo)) { 126 127 /* Try evicting to the CPU inaccessible part of VRAM 128 * first, but only set GTT as busy placement, so this 129 * BO will be evicted to GTT rather than causing other 130 * BOs to be evicted from VRAM 131 */ 132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 133 AMDGPU_GEM_DOMAIN_GTT); 134 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 135 abo->placements[0].lpfn = 0; 136 abo->placement.busy_placement = &abo->placements[1]; 137 abo->placement.num_busy_placement = 1; 138 } else { 139 /* Move to GTT memory */ 140 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 141 } 142 break; 143 case TTM_PL_TT: 144 default: 145 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 146 break; 147 } 148 *placement = abo->placement; 149 } 150 151 /** 152 * amdgpu_verify_access - Verify access for a mmap call 153 * 154 * @bo: The buffer object to map 155 * @filp: The file pointer from the process performing the mmap 156 * 157 * This is called by ttm_bo_mmap() to verify whether a process 158 * has the right to mmap a BO to their process space. 159 */ 160 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 161 { 162 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 163 164 /* 165 * Don't verify access for KFD BOs. They don't have a GEM 166 * object associated with them. 167 */ 168 if (abo->kfd_bo) 169 return 0; 170 171 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 172 return -EPERM; 173 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 174 filp->private_data); 175 } 176 177 /** 178 * amdgpu_move_null - Register memory for a buffer object 179 * 180 * @bo: The bo to assign the memory to 181 * @new_mem: The memory to be assigned. 182 * 183 * Assign the memory from new_mem to the memory of the buffer object bo. 184 */ 185 static void amdgpu_move_null(struct ttm_buffer_object *bo, 186 struct ttm_resource *new_mem) 187 { 188 struct ttm_resource *old_mem = &bo->mem; 189 190 BUG_ON(old_mem->mm_node != NULL); 191 *old_mem = *new_mem; 192 new_mem->mm_node = NULL; 193 } 194 195 /** 196 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 197 * 198 * @bo: The bo to assign the memory to. 199 * @mm_node: Memory manager node for drm allocator. 200 * @mem: The region where the bo resides. 201 * 202 */ 203 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 204 struct drm_mm_node *mm_node, 205 struct ttm_resource *mem) 206 { 207 uint64_t addr = 0; 208 209 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 210 addr = mm_node->start << PAGE_SHIFT; 211 addr += amdgpu_ttm_domain_start(amdgpu_ttm_adev(bo->bdev), 212 mem->mem_type); 213 } 214 return addr; 215 } 216 217 /** 218 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 219 * @offset. It also modifies the offset to be within the drm_mm_node returned 220 * 221 * @mem: The region where the bo resides. 222 * @offset: The offset that drm_mm_node is used for finding. 223 * 224 */ 225 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_resource *mem, 226 uint64_t *offset) 227 { 228 struct drm_mm_node *mm_node = mem->mm_node; 229 230 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 231 *offset -= (mm_node->size << PAGE_SHIFT); 232 ++mm_node; 233 } 234 return mm_node; 235 } 236 237 /** 238 * amdgpu_ttm_map_buffer - Map memory into the GART windows 239 * @bo: buffer object to map 240 * @mem: memory object to map 241 * @mm_node: drm_mm node object to map 242 * @num_pages: number of pages to map 243 * @offset: offset into @mm_node where to start 244 * @window: which GART window to use 245 * @ring: DMA ring to use for the copy 246 * @tmz: if we should setup a TMZ enabled mapping 247 * @addr: resulting address inside the MC address space 248 * 249 * Setup one of the GART windows to access a specific piece of memory or return 250 * the physical address for local memory. 251 */ 252 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 253 struct ttm_resource *mem, 254 struct drm_mm_node *mm_node, 255 unsigned num_pages, uint64_t offset, 256 unsigned window, struct amdgpu_ring *ring, 257 bool tmz, uint64_t *addr) 258 { 259 struct amdgpu_device *adev = ring->adev; 260 struct amdgpu_job *job; 261 unsigned num_dw, num_bytes; 262 struct dma_fence *fence; 263 uint64_t src_addr, dst_addr; 264 void *cpu_addr; 265 uint64_t flags; 266 unsigned int i; 267 int r; 268 269 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 270 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 271 272 /* Map only what can't be accessed directly */ 273 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 274 *addr = amdgpu_mm_node_addr(bo, mm_node, mem) + offset; 275 return 0; 276 } 277 278 *addr = adev->gmc.gart_start; 279 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 280 AMDGPU_GPU_PAGE_SIZE; 281 *addr += offset & ~PAGE_MASK; 282 283 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 284 num_bytes = num_pages * 8; 285 286 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 287 AMDGPU_IB_POOL_DELAYED, &job); 288 if (r) 289 return r; 290 291 src_addr = num_dw * 4; 292 src_addr += job->ibs[0].gpu_addr; 293 294 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 295 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 296 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 297 dst_addr, num_bytes, false); 298 299 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 300 WARN_ON(job->ibs[0].length_dw > num_dw); 301 302 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 303 if (tmz) 304 flags |= AMDGPU_PTE_TMZ; 305 306 cpu_addr = &job->ibs[0].ptr[num_dw]; 307 308 if (mem->mem_type == TTM_PL_TT) { 309 struct ttm_dma_tt *dma; 310 dma_addr_t *dma_address; 311 312 dma = container_of(bo->ttm, struct ttm_dma_tt, ttm); 313 dma_address = &dma->dma_address[offset >> PAGE_SHIFT]; 314 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 315 cpu_addr); 316 if (r) 317 goto error_free; 318 } else { 319 dma_addr_t dma_address; 320 321 dma_address = (mm_node->start << PAGE_SHIFT) + offset; 322 dma_address += adev->vm_manager.vram_base_offset; 323 324 for (i = 0; i < num_pages; ++i) { 325 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 326 &dma_address, flags, cpu_addr); 327 if (r) 328 goto error_free; 329 330 dma_address += PAGE_SIZE; 331 } 332 } 333 334 r = amdgpu_job_submit(job, &adev->mman.entity, 335 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 336 if (r) 337 goto error_free; 338 339 dma_fence_put(fence); 340 341 return r; 342 343 error_free: 344 amdgpu_job_free(job); 345 return r; 346 } 347 348 /** 349 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 350 * @adev: amdgpu device 351 * @src: buffer/address where to read from 352 * @dst: buffer/address where to write to 353 * @size: number of bytes to copy 354 * @tmz: if a secure copy should be used 355 * @resv: resv object to sync to 356 * @f: Returns the last fence if multiple jobs are submitted. 357 * 358 * The function copies @size bytes from {src->mem + src->offset} to 359 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 360 * move and different for a BO to BO copy. 361 * 362 */ 363 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 364 const struct amdgpu_copy_mem *src, 365 const struct amdgpu_copy_mem *dst, 366 uint64_t size, bool tmz, 367 struct dma_resv *resv, 368 struct dma_fence **f) 369 { 370 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 371 AMDGPU_GPU_PAGE_SIZE); 372 373 uint64_t src_node_size, dst_node_size, src_offset, dst_offset; 374 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 375 struct drm_mm_node *src_mm, *dst_mm; 376 struct dma_fence *fence = NULL; 377 int r = 0; 378 379 if (!adev->mman.buffer_funcs_enabled) { 380 DRM_ERROR("Trying to move memory with ring turned off.\n"); 381 return -EINVAL; 382 } 383 384 src_offset = src->offset; 385 if (src->mem->mm_node) { 386 src_mm = amdgpu_find_mm_node(src->mem, &src_offset); 387 src_node_size = (src_mm->size << PAGE_SHIFT) - src_offset; 388 } else { 389 src_mm = NULL; 390 src_node_size = ULLONG_MAX; 391 } 392 393 dst_offset = dst->offset; 394 if (dst->mem->mm_node) { 395 dst_mm = amdgpu_find_mm_node(dst->mem, &dst_offset); 396 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst_offset; 397 } else { 398 dst_mm = NULL; 399 dst_node_size = ULLONG_MAX; 400 } 401 402 mutex_lock(&adev->mman.gtt_window_lock); 403 404 while (size) { 405 uint32_t src_page_offset = src_offset & ~PAGE_MASK; 406 uint32_t dst_page_offset = dst_offset & ~PAGE_MASK; 407 struct dma_fence *next; 408 uint32_t cur_size; 409 uint64_t from, to; 410 411 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 412 * begins at an offset, then adjust the size accordingly 413 */ 414 cur_size = max(src_page_offset, dst_page_offset); 415 cur_size = min(min3(src_node_size, dst_node_size, size), 416 (uint64_t)(GTT_MAX_BYTES - cur_size)); 417 418 /* Map src to window 0 and dst to window 1. */ 419 r = amdgpu_ttm_map_buffer(src->bo, src->mem, src_mm, 420 PFN_UP(cur_size + src_page_offset), 421 src_offset, 0, ring, tmz, &from); 422 if (r) 423 goto error; 424 425 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, dst_mm, 426 PFN_UP(cur_size + dst_page_offset), 427 dst_offset, 1, ring, tmz, &to); 428 if (r) 429 goto error; 430 431 r = amdgpu_copy_buffer(ring, from, to, cur_size, 432 resv, &next, false, true, tmz); 433 if (r) 434 goto error; 435 436 dma_fence_put(fence); 437 fence = next; 438 439 size -= cur_size; 440 if (!size) 441 break; 442 443 src_node_size -= cur_size; 444 if (!src_node_size) { 445 ++src_mm; 446 src_node_size = src_mm->size << PAGE_SHIFT; 447 src_offset = 0; 448 } else { 449 src_offset += cur_size; 450 } 451 452 dst_node_size -= cur_size; 453 if (!dst_node_size) { 454 ++dst_mm; 455 dst_node_size = dst_mm->size << PAGE_SHIFT; 456 dst_offset = 0; 457 } else { 458 dst_offset += cur_size; 459 } 460 } 461 error: 462 mutex_unlock(&adev->mman.gtt_window_lock); 463 if (f) 464 *f = dma_fence_get(fence); 465 dma_fence_put(fence); 466 return r; 467 } 468 469 /** 470 * amdgpu_move_blit - Copy an entire buffer to another buffer 471 * 472 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 473 * help move buffers to and from VRAM. 474 */ 475 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 476 bool evict, 477 struct ttm_resource *new_mem, 478 struct ttm_resource *old_mem) 479 { 480 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 481 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 482 struct amdgpu_copy_mem src, dst; 483 struct dma_fence *fence = NULL; 484 int r; 485 486 src.bo = bo; 487 dst.bo = bo; 488 src.mem = old_mem; 489 dst.mem = new_mem; 490 src.offset = 0; 491 dst.offset = 0; 492 493 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 494 new_mem->num_pages << PAGE_SHIFT, 495 amdgpu_bo_encrypted(abo), 496 bo->base.resv, &fence); 497 if (r) 498 goto error; 499 500 /* clear the space being freed */ 501 if (old_mem->mem_type == TTM_PL_VRAM && 502 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 503 struct dma_fence *wipe_fence = NULL; 504 505 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 506 NULL, &wipe_fence); 507 if (r) { 508 goto error; 509 } else if (wipe_fence) { 510 dma_fence_put(fence); 511 fence = wipe_fence; 512 } 513 } 514 515 /* Always block for VM page tables before committing the new location */ 516 if (bo->type == ttm_bo_type_kernel) 517 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 518 else 519 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 520 dma_fence_put(fence); 521 return r; 522 523 error: 524 if (fence) 525 dma_fence_wait(fence, false); 526 dma_fence_put(fence); 527 return r; 528 } 529 530 /** 531 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 532 * 533 * Called by amdgpu_bo_move(). 534 */ 535 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 536 struct ttm_operation_ctx *ctx, 537 struct ttm_resource *new_mem) 538 { 539 struct ttm_resource *old_mem = &bo->mem; 540 struct ttm_resource tmp_mem; 541 struct ttm_place placements; 542 struct ttm_placement placement; 543 int r; 544 545 /* create space/pages for new_mem in GTT space */ 546 tmp_mem = *new_mem; 547 tmp_mem.mm_node = NULL; 548 placement.num_placement = 1; 549 placement.placement = &placements; 550 placement.num_busy_placement = 1; 551 placement.busy_placement = &placements; 552 placements.fpfn = 0; 553 placements.lpfn = 0; 554 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 555 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 556 if (unlikely(r)) { 557 pr_err("Failed to find GTT space for blit from VRAM\n"); 558 return r; 559 } 560 561 /* set caching flags */ 562 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 563 if (unlikely(r)) { 564 goto out_cleanup; 565 } 566 567 /* Bind the memory to the GTT space */ 568 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 569 if (unlikely(r)) { 570 goto out_cleanup; 571 } 572 573 /* blit VRAM to GTT */ 574 r = amdgpu_move_blit(bo, evict, &tmp_mem, old_mem); 575 if (unlikely(r)) { 576 goto out_cleanup; 577 } 578 579 /* move BO (in tmp_mem) to new_mem */ 580 r = ttm_bo_move_ttm(bo, ctx, new_mem); 581 out_cleanup: 582 ttm_resource_free(bo, &tmp_mem); 583 return r; 584 } 585 586 /** 587 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 588 * 589 * Called by amdgpu_bo_move(). 590 */ 591 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 592 struct ttm_operation_ctx *ctx, 593 struct ttm_resource *new_mem) 594 { 595 struct ttm_resource *old_mem = &bo->mem; 596 struct ttm_resource tmp_mem; 597 struct ttm_placement placement; 598 struct ttm_place placements; 599 int r; 600 601 /* make space in GTT for old_mem buffer */ 602 tmp_mem = *new_mem; 603 tmp_mem.mm_node = NULL; 604 placement.num_placement = 1; 605 placement.placement = &placements; 606 placement.num_busy_placement = 1; 607 placement.busy_placement = &placements; 608 placements.fpfn = 0; 609 placements.lpfn = 0; 610 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 611 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 612 if (unlikely(r)) { 613 pr_err("Failed to find GTT space for blit to VRAM\n"); 614 return r; 615 } 616 617 /* move/bind old memory to GTT space */ 618 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 619 if (unlikely(r)) { 620 goto out_cleanup; 621 } 622 623 /* copy to VRAM */ 624 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 625 if (unlikely(r)) { 626 goto out_cleanup; 627 } 628 out_cleanup: 629 ttm_resource_free(bo, &tmp_mem); 630 return r; 631 } 632 633 /** 634 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 635 * 636 * Called by amdgpu_bo_move() 637 */ 638 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 639 struct ttm_resource *mem) 640 { 641 struct drm_mm_node *nodes = mem->mm_node; 642 643 if (mem->mem_type == TTM_PL_SYSTEM || 644 mem->mem_type == TTM_PL_TT) 645 return true; 646 if (mem->mem_type != TTM_PL_VRAM) 647 return false; 648 649 /* ttm_resource_ioremap only supports contiguous memory */ 650 if (nodes->size != mem->num_pages) 651 return false; 652 653 return ((nodes->start + nodes->size) << PAGE_SHIFT) 654 <= adev->gmc.visible_vram_size; 655 } 656 657 /** 658 * amdgpu_bo_move - Move a buffer object to a new memory location 659 * 660 * Called by ttm_bo_handle_move_mem() 661 */ 662 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 663 struct ttm_operation_ctx *ctx, 664 struct ttm_resource *new_mem) 665 { 666 struct amdgpu_device *adev; 667 struct amdgpu_bo *abo; 668 struct ttm_resource *old_mem = &bo->mem; 669 int r; 670 671 /* Can't move a pinned BO */ 672 abo = ttm_to_amdgpu_bo(bo); 673 if (WARN_ON_ONCE(abo->pin_count > 0)) 674 return -EINVAL; 675 676 adev = amdgpu_ttm_adev(bo->bdev); 677 678 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 679 amdgpu_move_null(bo, new_mem); 680 return 0; 681 } 682 if ((old_mem->mem_type == TTM_PL_TT && 683 new_mem->mem_type == TTM_PL_SYSTEM) || 684 (old_mem->mem_type == TTM_PL_SYSTEM && 685 new_mem->mem_type == TTM_PL_TT)) { 686 /* bind is enough */ 687 amdgpu_move_null(bo, new_mem); 688 return 0; 689 } 690 if (old_mem->mem_type == AMDGPU_PL_GDS || 691 old_mem->mem_type == AMDGPU_PL_GWS || 692 old_mem->mem_type == AMDGPU_PL_OA || 693 new_mem->mem_type == AMDGPU_PL_GDS || 694 new_mem->mem_type == AMDGPU_PL_GWS || 695 new_mem->mem_type == AMDGPU_PL_OA) { 696 /* Nothing to save here */ 697 amdgpu_move_null(bo, new_mem); 698 return 0; 699 } 700 701 if (!adev->mman.buffer_funcs_enabled) { 702 r = -ENODEV; 703 goto memcpy; 704 } 705 706 if (old_mem->mem_type == TTM_PL_VRAM && 707 new_mem->mem_type == TTM_PL_SYSTEM) { 708 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 709 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 710 new_mem->mem_type == TTM_PL_VRAM) { 711 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 712 } else { 713 r = amdgpu_move_blit(bo, evict, 714 new_mem, old_mem); 715 } 716 717 if (r) { 718 memcpy: 719 /* Check that all memory is CPU accessible */ 720 if (!amdgpu_mem_visible(adev, old_mem) || 721 !amdgpu_mem_visible(adev, new_mem)) { 722 pr_err("Move buffer fallback to memcpy unavailable\n"); 723 return r; 724 } 725 726 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 727 if (r) 728 return r; 729 } 730 731 if (bo->type == ttm_bo_type_device && 732 new_mem->mem_type == TTM_PL_VRAM && 733 old_mem->mem_type != TTM_PL_VRAM) { 734 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 735 * accesses the BO after it's moved. 736 */ 737 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 738 } 739 740 /* update statistics */ 741 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 742 return 0; 743 } 744 745 /** 746 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 747 * 748 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 749 */ 750 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *mem) 751 { 752 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 753 struct drm_mm_node *mm_node = mem->mm_node; 754 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 755 756 switch (mem->mem_type) { 757 case TTM_PL_SYSTEM: 758 /* system memory */ 759 return 0; 760 case TTM_PL_TT: 761 break; 762 case TTM_PL_VRAM: 763 mem->bus.offset = mem->start << PAGE_SHIFT; 764 /* check if it's visible */ 765 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 766 return -EINVAL; 767 /* Only physically contiguous buffers apply. In a contiguous 768 * buffer, size of the first mm_node would match the number of 769 * pages in ttm_resource. 770 */ 771 if (adev->mman.aper_base_kaddr && 772 (mm_node->size == mem->num_pages)) 773 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 774 mem->bus.offset; 775 776 mem->bus.base = adev->gmc.aper_base; 777 mem->bus.is_iomem = true; 778 break; 779 default: 780 return -EINVAL; 781 } 782 return 0; 783 } 784 785 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 786 unsigned long page_offset) 787 { 788 uint64_t offset = (page_offset << PAGE_SHIFT); 789 struct drm_mm_node *mm; 790 791 mm = amdgpu_find_mm_node(&bo->mem, &offset); 792 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 793 (offset >> PAGE_SHIFT); 794 } 795 796 /** 797 * amdgpu_ttm_domain_start - Returns GPU start address 798 * @adev: amdgpu device object 799 * @type: type of the memory 800 * 801 * Returns: 802 * GPU start address of a memory domain 803 */ 804 805 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 806 { 807 switch (type) { 808 case TTM_PL_TT: 809 return adev->gmc.gart_start; 810 case TTM_PL_VRAM: 811 return adev->gmc.vram_start; 812 } 813 814 return 0; 815 } 816 817 /* 818 * TTM backend functions. 819 */ 820 struct amdgpu_ttm_tt { 821 struct ttm_dma_tt ttm; 822 struct drm_gem_object *gobj; 823 u64 offset; 824 uint64_t userptr; 825 struct task_struct *usertask; 826 uint32_t userflags; 827 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 828 struct hmm_range *range; 829 #endif 830 }; 831 832 #ifdef CONFIG_DRM_AMDGPU_USERPTR 833 /** 834 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 835 * memory and start HMM tracking CPU page table update 836 * 837 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 838 * once afterwards to stop HMM tracking 839 */ 840 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 841 { 842 struct ttm_tt *ttm = bo->tbo.ttm; 843 struct amdgpu_ttm_tt *gtt = (void *)ttm; 844 unsigned long start = gtt->userptr; 845 struct vm_area_struct *vma; 846 struct hmm_range *range; 847 unsigned long timeout; 848 struct mm_struct *mm; 849 unsigned long i; 850 int r = 0; 851 852 mm = bo->notifier.mm; 853 if (unlikely(!mm)) { 854 DRM_DEBUG_DRIVER("BO is not registered?\n"); 855 return -EFAULT; 856 } 857 858 /* Another get_user_pages is running at the same time?? */ 859 if (WARN_ON(gtt->range)) 860 return -EFAULT; 861 862 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 863 return -ESRCH; 864 865 range = kzalloc(sizeof(*range), GFP_KERNEL); 866 if (unlikely(!range)) { 867 r = -ENOMEM; 868 goto out; 869 } 870 range->notifier = &bo->notifier; 871 range->start = bo->notifier.interval_tree.start; 872 range->end = bo->notifier.interval_tree.last + 1; 873 range->default_flags = HMM_PFN_REQ_FAULT; 874 if (!amdgpu_ttm_tt_is_readonly(ttm)) 875 range->default_flags |= HMM_PFN_REQ_WRITE; 876 877 range->hmm_pfns = kvmalloc_array(ttm->num_pages, 878 sizeof(*range->hmm_pfns), GFP_KERNEL); 879 if (unlikely(!range->hmm_pfns)) { 880 r = -ENOMEM; 881 goto out_free_ranges; 882 } 883 884 mmap_read_lock(mm); 885 vma = find_vma(mm, start); 886 if (unlikely(!vma || start < vma->vm_start)) { 887 r = -EFAULT; 888 goto out_unlock; 889 } 890 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 891 vma->vm_file)) { 892 r = -EPERM; 893 goto out_unlock; 894 } 895 mmap_read_unlock(mm); 896 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); 897 898 retry: 899 range->notifier_seq = mmu_interval_read_begin(&bo->notifier); 900 901 mmap_read_lock(mm); 902 r = hmm_range_fault(range); 903 mmap_read_unlock(mm); 904 if (unlikely(r)) { 905 /* 906 * FIXME: This timeout should encompass the retry from 907 * mmu_interval_read_retry() as well. 908 */ 909 if (r == -EBUSY && !time_after(jiffies, timeout)) 910 goto retry; 911 goto out_free_pfns; 912 } 913 914 /* 915 * Due to default_flags, all pages are HMM_PFN_VALID or 916 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside 917 * the notifier_lock, and mmu_interval_read_retry() must be done first. 918 */ 919 for (i = 0; i < ttm->num_pages; i++) 920 pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]); 921 922 gtt->range = range; 923 mmput(mm); 924 925 return 0; 926 927 out_unlock: 928 mmap_read_unlock(mm); 929 out_free_pfns: 930 kvfree(range->hmm_pfns); 931 out_free_ranges: 932 kfree(range); 933 out: 934 mmput(mm); 935 return r; 936 } 937 938 /** 939 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 940 * Check if the pages backing this ttm range have been invalidated 941 * 942 * Returns: true if pages are still valid 943 */ 944 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 945 { 946 struct amdgpu_ttm_tt *gtt = (void *)ttm; 947 bool r = false; 948 949 if (!gtt || !gtt->userptr) 950 return false; 951 952 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 953 gtt->userptr, ttm->num_pages); 954 955 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 956 "No user pages to check\n"); 957 958 if (gtt->range) { 959 /* 960 * FIXME: Must always hold notifier_lock for this, and must 961 * not ignore the return code. 962 */ 963 r = mmu_interval_read_retry(gtt->range->notifier, 964 gtt->range->notifier_seq); 965 kvfree(gtt->range->hmm_pfns); 966 kfree(gtt->range); 967 gtt->range = NULL; 968 } 969 970 return !r; 971 } 972 #endif 973 974 /** 975 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 976 * 977 * Called by amdgpu_cs_list_validate(). This creates the page list 978 * that backs user memory and will ultimately be mapped into the device 979 * address space. 980 */ 981 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 982 { 983 unsigned long i; 984 985 for (i = 0; i < ttm->num_pages; ++i) 986 ttm->pages[i] = pages ? pages[i] : NULL; 987 } 988 989 /** 990 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 991 * 992 * Called by amdgpu_ttm_backend_bind() 993 **/ 994 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 995 { 996 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 997 struct amdgpu_ttm_tt *gtt = (void *)ttm; 998 int r; 999 1000 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1001 enum dma_data_direction direction = write ? 1002 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1003 1004 /* Allocate an SG array and squash pages into it */ 1005 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 1006 ttm->num_pages << PAGE_SHIFT, 1007 GFP_KERNEL); 1008 if (r) 1009 goto release_sg; 1010 1011 /* Map SG to device */ 1012 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 1013 if (r) 1014 goto release_sg; 1015 1016 /* convert SG to linear array of pages and dma addresses */ 1017 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1018 gtt->ttm.dma_address, ttm->num_pages); 1019 1020 return 0; 1021 1022 release_sg: 1023 kfree(ttm->sg); 1024 ttm->sg = NULL; 1025 return r; 1026 } 1027 1028 /** 1029 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 1030 */ 1031 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 1032 { 1033 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1034 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1035 1036 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1037 enum dma_data_direction direction = write ? 1038 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 1039 1040 /* double check that we don't free the table twice */ 1041 if (!ttm->sg->sgl) 1042 return; 1043 1044 /* unmap the pages mapped to the device */ 1045 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 1046 sg_free_table(ttm->sg); 1047 1048 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1049 if (gtt->range) { 1050 unsigned long i; 1051 1052 for (i = 0; i < ttm->num_pages; i++) { 1053 if (ttm->pages[i] != 1054 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 1055 break; 1056 } 1057 1058 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 1059 } 1060 #endif 1061 } 1062 1063 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1064 struct ttm_buffer_object *tbo, 1065 uint64_t flags) 1066 { 1067 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1068 struct ttm_tt *ttm = tbo->ttm; 1069 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1070 int r; 1071 1072 if (amdgpu_bo_encrypted(abo)) 1073 flags |= AMDGPU_PTE_TMZ; 1074 1075 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 1076 uint64_t page_idx = 1; 1077 1078 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1079 ttm->pages, gtt->ttm.dma_address, flags); 1080 if (r) 1081 goto gart_bind_fail; 1082 1083 /* The memory type of the first page defaults to UC. Now 1084 * modify the memory type to NC from the second page of 1085 * the BO onward. 1086 */ 1087 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1088 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1089 1090 r = amdgpu_gart_bind(adev, 1091 gtt->offset + (page_idx << PAGE_SHIFT), 1092 ttm->num_pages - page_idx, 1093 &ttm->pages[page_idx], 1094 &(gtt->ttm.dma_address[page_idx]), flags); 1095 } else { 1096 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1097 ttm->pages, gtt->ttm.dma_address, flags); 1098 } 1099 1100 gart_bind_fail: 1101 if (r) 1102 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1103 ttm->num_pages, gtt->offset); 1104 1105 return r; 1106 } 1107 1108 /** 1109 * amdgpu_ttm_backend_bind - Bind GTT memory 1110 * 1111 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1112 * This handles binding GTT memory to the device address space. 1113 */ 1114 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1115 struct ttm_resource *bo_mem) 1116 { 1117 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1118 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1119 uint64_t flags; 1120 int r = 0; 1121 1122 if (gtt->userptr) { 1123 r = amdgpu_ttm_tt_pin_userptr(ttm); 1124 if (r) { 1125 DRM_ERROR("failed to pin userptr\n"); 1126 return r; 1127 } 1128 } 1129 if (!ttm->num_pages) { 1130 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1131 ttm->num_pages, bo_mem, ttm); 1132 } 1133 1134 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1135 bo_mem->mem_type == AMDGPU_PL_GWS || 1136 bo_mem->mem_type == AMDGPU_PL_OA) 1137 return -EINVAL; 1138 1139 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1140 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1141 return 0; 1142 } 1143 1144 /* compute PTE flags relevant to this BO memory */ 1145 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1146 1147 /* bind pages into GART page tables */ 1148 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1149 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1150 ttm->pages, gtt->ttm.dma_address, flags); 1151 1152 if (r) 1153 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1154 ttm->num_pages, gtt->offset); 1155 return r; 1156 } 1157 1158 /** 1159 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 1160 * through AGP or GART aperture. 1161 * 1162 * If bo is accessible through AGP aperture, then use AGP aperture 1163 * to access bo; otherwise allocate logical space in GART aperture 1164 * and map bo to GART aperture. 1165 */ 1166 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1167 { 1168 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1169 struct ttm_operation_ctx ctx = { false, false }; 1170 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1171 struct ttm_resource tmp; 1172 struct ttm_placement placement; 1173 struct ttm_place placements; 1174 uint64_t addr, flags; 1175 int r; 1176 1177 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1178 return 0; 1179 1180 addr = amdgpu_gmc_agp_addr(bo); 1181 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1182 bo->mem.start = addr >> PAGE_SHIFT; 1183 } else { 1184 1185 /* allocate GART space */ 1186 tmp = bo->mem; 1187 tmp.mm_node = NULL; 1188 placement.num_placement = 1; 1189 placement.placement = &placements; 1190 placement.num_busy_placement = 1; 1191 placement.busy_placement = &placements; 1192 placements.fpfn = 0; 1193 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1194 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1195 TTM_PL_FLAG_TT; 1196 1197 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1198 if (unlikely(r)) 1199 return r; 1200 1201 /* compute PTE flags for this buffer object */ 1202 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1203 1204 /* Bind pages */ 1205 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1206 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1207 if (unlikely(r)) { 1208 ttm_resource_free(bo, &tmp); 1209 return r; 1210 } 1211 1212 ttm_resource_free(bo, &bo->mem); 1213 bo->mem = tmp; 1214 } 1215 1216 return 0; 1217 } 1218 1219 /** 1220 * amdgpu_ttm_recover_gart - Rebind GTT pages 1221 * 1222 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1223 * rebind GTT pages during a GPU reset. 1224 */ 1225 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1226 { 1227 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1228 uint64_t flags; 1229 int r; 1230 1231 if (!tbo->ttm) 1232 return 0; 1233 1234 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1235 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1236 1237 return r; 1238 } 1239 1240 /** 1241 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1242 * 1243 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1244 * ttm_tt_destroy(). 1245 */ 1246 static void amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1247 { 1248 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1249 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1250 int r; 1251 1252 /* if the pages have userptr pinning then clear that first */ 1253 if (gtt->userptr) 1254 amdgpu_ttm_tt_unpin_userptr(ttm); 1255 1256 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1257 return; 1258 1259 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1260 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1261 if (r) 1262 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1263 gtt->ttm.ttm.num_pages, gtt->offset); 1264 } 1265 1266 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1267 { 1268 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1269 1270 if (gtt->usertask) 1271 put_task_struct(gtt->usertask); 1272 1273 ttm_dma_tt_fini(>t->ttm); 1274 kfree(gtt); 1275 } 1276 1277 static struct ttm_backend_func amdgpu_backend_func = { 1278 .bind = &amdgpu_ttm_backend_bind, 1279 .unbind = &amdgpu_ttm_backend_unbind, 1280 .destroy = &amdgpu_ttm_backend_destroy, 1281 }; 1282 1283 /** 1284 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1285 * 1286 * @bo: The buffer object to create a GTT ttm_tt object around 1287 * 1288 * Called by ttm_tt_create(). 1289 */ 1290 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1291 uint32_t page_flags) 1292 { 1293 struct amdgpu_ttm_tt *gtt; 1294 1295 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1296 if (gtt == NULL) { 1297 return NULL; 1298 } 1299 gtt->ttm.ttm.func = &amdgpu_backend_func; 1300 gtt->gobj = &bo->base; 1301 1302 /* allocate space for the uninitialized page entries */ 1303 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1304 kfree(gtt); 1305 return NULL; 1306 } 1307 return >t->ttm.ttm; 1308 } 1309 1310 /** 1311 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1312 * 1313 * Map the pages of a ttm_tt object to an address space visible 1314 * to the underlying device. 1315 */ 1316 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1317 struct ttm_operation_ctx *ctx) 1318 { 1319 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1320 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1321 1322 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1323 if (gtt && gtt->userptr) { 1324 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1325 if (!ttm->sg) 1326 return -ENOMEM; 1327 1328 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1329 ttm->state = tt_unbound; 1330 return 0; 1331 } 1332 1333 if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 1334 if (!ttm->sg) { 1335 struct dma_buf_attachment *attach; 1336 struct sg_table *sgt; 1337 1338 attach = gtt->gobj->import_attach; 1339 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 1340 if (IS_ERR(sgt)) 1341 return PTR_ERR(sgt); 1342 1343 ttm->sg = sgt; 1344 } 1345 1346 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1347 gtt->ttm.dma_address, 1348 ttm->num_pages); 1349 ttm->state = tt_unbound; 1350 return 0; 1351 } 1352 1353 #ifdef CONFIG_SWIOTLB 1354 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1355 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1356 } 1357 #endif 1358 1359 /* fall back to generic helper to populate the page array 1360 * and map them to the device */ 1361 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1362 } 1363 1364 /** 1365 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1366 * 1367 * Unmaps pages of a ttm_tt object from the device address space and 1368 * unpopulates the page array backing it. 1369 */ 1370 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1371 { 1372 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1373 struct amdgpu_device *adev; 1374 1375 if (gtt && gtt->userptr) { 1376 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1377 kfree(ttm->sg); 1378 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1379 return; 1380 } 1381 1382 if (ttm->sg && gtt->gobj->import_attach) { 1383 struct dma_buf_attachment *attach; 1384 1385 attach = gtt->gobj->import_attach; 1386 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1387 ttm->sg = NULL; 1388 return; 1389 } 1390 1391 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1392 return; 1393 1394 adev = amdgpu_ttm_adev(ttm->bdev); 1395 1396 #ifdef CONFIG_SWIOTLB 1397 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1398 ttm_dma_unpopulate(>t->ttm, adev->dev); 1399 return; 1400 } 1401 #endif 1402 1403 /* fall back to generic helper to unmap and unpopulate array */ 1404 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1405 } 1406 1407 /** 1408 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1409 * task 1410 * 1411 * @bo: The ttm_buffer_object to bind this userptr to 1412 * @addr: The address in the current tasks VM space to use 1413 * @flags: Requirements of userptr object. 1414 * 1415 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1416 * to current task 1417 */ 1418 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1419 uint64_t addr, uint32_t flags) 1420 { 1421 struct amdgpu_ttm_tt *gtt; 1422 1423 if (!bo->ttm) { 1424 /* TODO: We want a separate TTM object type for userptrs */ 1425 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1426 if (bo->ttm == NULL) 1427 return -ENOMEM; 1428 } 1429 1430 gtt = (void*)bo->ttm; 1431 gtt->userptr = addr; 1432 gtt->userflags = flags; 1433 1434 if (gtt->usertask) 1435 put_task_struct(gtt->usertask); 1436 gtt->usertask = current->group_leader; 1437 get_task_struct(gtt->usertask); 1438 1439 return 0; 1440 } 1441 1442 /** 1443 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1444 */ 1445 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1446 { 1447 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1448 1449 if (gtt == NULL) 1450 return NULL; 1451 1452 if (gtt->usertask == NULL) 1453 return NULL; 1454 1455 return gtt->usertask->mm; 1456 } 1457 1458 /** 1459 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1460 * address range for the current task. 1461 * 1462 */ 1463 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1464 unsigned long end) 1465 { 1466 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1467 unsigned long size; 1468 1469 if (gtt == NULL || !gtt->userptr) 1470 return false; 1471 1472 /* Return false if no part of the ttm_tt object lies within 1473 * the range 1474 */ 1475 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1476 if (gtt->userptr > end || gtt->userptr + size <= start) 1477 return false; 1478 1479 return true; 1480 } 1481 1482 /** 1483 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1484 */ 1485 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1486 { 1487 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1488 1489 if (gtt == NULL || !gtt->userptr) 1490 return false; 1491 1492 return true; 1493 } 1494 1495 /** 1496 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1497 */ 1498 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1499 { 1500 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1501 1502 if (gtt == NULL) 1503 return false; 1504 1505 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1506 } 1507 1508 /** 1509 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1510 * 1511 * @ttm: The ttm_tt object to compute the flags for 1512 * @mem: The memory registry backing this ttm_tt object 1513 * 1514 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1515 */ 1516 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1517 { 1518 uint64_t flags = 0; 1519 1520 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1521 flags |= AMDGPU_PTE_VALID; 1522 1523 if (mem && mem->mem_type == TTM_PL_TT) { 1524 flags |= AMDGPU_PTE_SYSTEM; 1525 1526 if (ttm->caching_state == tt_cached) 1527 flags |= AMDGPU_PTE_SNOOPED; 1528 } 1529 1530 return flags; 1531 } 1532 1533 /** 1534 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1535 * 1536 * @ttm: The ttm_tt object to compute the flags for 1537 * @mem: The memory registry backing this ttm_tt object 1538 1539 * Figure out the flags to use for a VM PTE (Page Table Entry). 1540 */ 1541 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1542 struct ttm_resource *mem) 1543 { 1544 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1545 1546 flags |= adev->gart.gart_pte_flags; 1547 flags |= AMDGPU_PTE_READABLE; 1548 1549 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1550 flags |= AMDGPU_PTE_WRITEABLE; 1551 1552 return flags; 1553 } 1554 1555 /** 1556 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1557 * object. 1558 * 1559 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1560 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1561 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1562 * used to clean out a memory space. 1563 */ 1564 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1565 const struct ttm_place *place) 1566 { 1567 unsigned long num_pages = bo->mem.num_pages; 1568 struct drm_mm_node *node = bo->mem.mm_node; 1569 struct dma_resv_list *flist; 1570 struct dma_fence *f; 1571 int i; 1572 1573 if (bo->type == ttm_bo_type_kernel && 1574 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1575 return false; 1576 1577 /* If bo is a KFD BO, check if the bo belongs to the current process. 1578 * If true, then return false as any KFD process needs all its BOs to 1579 * be resident to run successfully 1580 */ 1581 flist = dma_resv_get_list(bo->base.resv); 1582 if (flist) { 1583 for (i = 0; i < flist->shared_count; ++i) { 1584 f = rcu_dereference_protected(flist->shared[i], 1585 dma_resv_held(bo->base.resv)); 1586 if (amdkfd_fence_check_mm(f, current->mm)) 1587 return false; 1588 } 1589 } 1590 1591 switch (bo->mem.mem_type) { 1592 case TTM_PL_TT: 1593 if (amdgpu_bo_is_amdgpu_bo(bo) && 1594 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1595 return false; 1596 return true; 1597 1598 case TTM_PL_VRAM: 1599 /* Check each drm MM node individually */ 1600 while (num_pages) { 1601 if (place->fpfn < (node->start + node->size) && 1602 !(place->lpfn && place->lpfn <= node->start)) 1603 return true; 1604 1605 num_pages -= node->size; 1606 ++node; 1607 } 1608 return false; 1609 1610 default: 1611 break; 1612 } 1613 1614 return ttm_bo_eviction_valuable(bo, place); 1615 } 1616 1617 /** 1618 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1619 * 1620 * @bo: The buffer object to read/write 1621 * @offset: Offset into buffer object 1622 * @buf: Secondary buffer to write/read from 1623 * @len: Length in bytes of access 1624 * @write: true if writing 1625 * 1626 * This is used to access VRAM that backs a buffer object via MMIO 1627 * access for debugging purposes. 1628 */ 1629 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1630 unsigned long offset, 1631 void *buf, int len, int write) 1632 { 1633 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1634 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1635 struct drm_mm_node *nodes; 1636 uint32_t value = 0; 1637 int ret = 0; 1638 uint64_t pos; 1639 unsigned long flags; 1640 1641 if (bo->mem.mem_type != TTM_PL_VRAM) 1642 return -EIO; 1643 1644 pos = offset; 1645 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &pos); 1646 pos += (nodes->start << PAGE_SHIFT); 1647 1648 while (len && pos < adev->gmc.mc_vram_size) { 1649 uint64_t aligned_pos = pos & ~(uint64_t)3; 1650 uint64_t bytes = 4 - (pos & 3); 1651 uint32_t shift = (pos & 3) * 8; 1652 uint32_t mask = 0xffffffff << shift; 1653 1654 if (len < bytes) { 1655 mask &= 0xffffffff >> (bytes - len) * 8; 1656 bytes = len; 1657 } 1658 1659 if (mask != 0xffffffff) { 1660 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1661 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1662 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1663 if (!write || mask != 0xffffffff) 1664 value = RREG32_NO_KIQ(mmMM_DATA); 1665 if (write) { 1666 value &= ~mask; 1667 value |= (*(uint32_t *)buf << shift) & mask; 1668 WREG32_NO_KIQ(mmMM_DATA, value); 1669 } 1670 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1671 if (!write) { 1672 value = (value & mask) >> shift; 1673 memcpy(buf, &value, bytes); 1674 } 1675 } else { 1676 bytes = (nodes->start + nodes->size) << PAGE_SHIFT; 1677 bytes = min(bytes - pos, (uint64_t)len & ~0x3ull); 1678 1679 amdgpu_device_vram_access(adev, pos, (uint32_t *)buf, 1680 bytes, write); 1681 } 1682 1683 ret += bytes; 1684 buf = (uint8_t *)buf + bytes; 1685 pos += bytes; 1686 len -= bytes; 1687 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1688 ++nodes; 1689 pos = (nodes->start << PAGE_SHIFT); 1690 } 1691 } 1692 1693 return ret; 1694 } 1695 1696 static struct ttm_bo_driver amdgpu_bo_driver = { 1697 .ttm_tt_create = &amdgpu_ttm_tt_create, 1698 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1699 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1700 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1701 .evict_flags = &amdgpu_evict_flags, 1702 .move = &amdgpu_bo_move, 1703 .verify_access = &amdgpu_verify_access, 1704 .move_notify = &amdgpu_bo_move_notify, 1705 .release_notify = &amdgpu_bo_release_notify, 1706 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1707 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1708 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1709 .access_memory = &amdgpu_ttm_access_memory, 1710 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1711 }; 1712 1713 /* 1714 * Firmware Reservation functions 1715 */ 1716 /** 1717 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1718 * 1719 * @adev: amdgpu_device pointer 1720 * 1721 * free fw reserved vram if it has been reserved. 1722 */ 1723 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1724 { 1725 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1726 NULL, &adev->mman.fw_vram_usage_va); 1727 } 1728 1729 /** 1730 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1731 * 1732 * @adev: amdgpu_device pointer 1733 * 1734 * create bo vram reservation from fw. 1735 */ 1736 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1737 { 1738 uint64_t vram_size = adev->gmc.visible_vram_size; 1739 1740 adev->mman.fw_vram_usage_va = NULL; 1741 adev->mman.fw_vram_usage_reserved_bo = NULL; 1742 1743 if (adev->mman.fw_vram_usage_size == 0 || 1744 adev->mman.fw_vram_usage_size > vram_size) 1745 return 0; 1746 1747 return amdgpu_bo_create_kernel_at(adev, 1748 adev->mman.fw_vram_usage_start_offset, 1749 adev->mman.fw_vram_usage_size, 1750 AMDGPU_GEM_DOMAIN_VRAM, 1751 &adev->mman.fw_vram_usage_reserved_bo, 1752 &adev->mman.fw_vram_usage_va); 1753 } 1754 1755 /* 1756 * Memoy training reservation functions 1757 */ 1758 1759 /** 1760 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1761 * 1762 * @adev: amdgpu_device pointer 1763 * 1764 * free memory training reserved vram if it has been reserved. 1765 */ 1766 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1767 { 1768 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1769 1770 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1771 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1772 ctx->c2p_bo = NULL; 1773 1774 return 0; 1775 } 1776 1777 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1778 { 1779 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1780 1781 memset(ctx, 0, sizeof(*ctx)); 1782 1783 ctx->c2p_train_data_offset = 1784 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1785 ctx->p2c_train_data_offset = 1786 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1787 ctx->train_data_size = 1788 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1789 1790 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1791 ctx->train_data_size, 1792 ctx->p2c_train_data_offset, 1793 ctx->c2p_train_data_offset); 1794 } 1795 1796 /* 1797 * reserve TMR memory at the top of VRAM which holds 1798 * IP Discovery data and is protected by PSP. 1799 */ 1800 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1801 { 1802 int ret; 1803 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1804 bool mem_train_support = false; 1805 1806 if (!amdgpu_sriov_vf(adev)) { 1807 ret = amdgpu_mem_train_support(adev); 1808 if (ret == 1) 1809 mem_train_support = true; 1810 else if (ret == -1) 1811 return -EINVAL; 1812 else 1813 DRM_DEBUG("memory training does not support!\n"); 1814 } 1815 1816 /* 1817 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1818 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1819 * 1820 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1821 * discovery data and G6 memory training data respectively 1822 */ 1823 adev->mman.discovery_tmr_size = 1824 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1825 if (!adev->mman.discovery_tmr_size) 1826 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1827 1828 if (mem_train_support) { 1829 /* reserve vram for mem train according to TMR location */ 1830 amdgpu_ttm_training_data_block_init(adev); 1831 ret = amdgpu_bo_create_kernel_at(adev, 1832 ctx->c2p_train_data_offset, 1833 ctx->train_data_size, 1834 AMDGPU_GEM_DOMAIN_VRAM, 1835 &ctx->c2p_bo, 1836 NULL); 1837 if (ret) { 1838 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1839 amdgpu_ttm_training_reserve_vram_fini(adev); 1840 return ret; 1841 } 1842 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1843 } 1844 1845 ret = amdgpu_bo_create_kernel_at(adev, 1846 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1847 adev->mman.discovery_tmr_size, 1848 AMDGPU_GEM_DOMAIN_VRAM, 1849 &adev->mman.discovery_memory, 1850 NULL); 1851 if (ret) { 1852 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1853 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1854 return ret; 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1862 * gtt/vram related fields. 1863 * 1864 * This initializes all of the memory space pools that the TTM layer 1865 * will need such as the GTT space (system memory mapped to the device), 1866 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1867 * can be mapped per VMID. 1868 */ 1869 int amdgpu_ttm_init(struct amdgpu_device *adev) 1870 { 1871 uint64_t gtt_size; 1872 int r; 1873 u64 vis_vram_limit; 1874 1875 mutex_init(&adev->mman.gtt_window_lock); 1876 1877 /* No others user of address space so set it to 0 */ 1878 r = ttm_bo_device_init(&adev->mman.bdev, 1879 &amdgpu_bo_driver, 1880 adev_to_drm(adev)->anon_inode->i_mapping, 1881 adev_to_drm(adev)->vma_offset_manager, 1882 dma_addressing_limited(adev->dev)); 1883 if (r) { 1884 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1885 return r; 1886 } 1887 adev->mman.initialized = true; 1888 1889 /* We opt to avoid OOM on system pages allocations */ 1890 adev->mman.bdev.no_retry = true; 1891 1892 /* Initialize VRAM pool with all of VRAM divided into pages */ 1893 r = amdgpu_vram_mgr_init(adev); 1894 if (r) { 1895 DRM_ERROR("Failed initializing VRAM heap.\n"); 1896 return r; 1897 } 1898 1899 /* Reduce size of CPU-visible VRAM if requested */ 1900 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1901 if (amdgpu_vis_vram_limit > 0 && 1902 vis_vram_limit <= adev->gmc.visible_vram_size) 1903 adev->gmc.visible_vram_size = vis_vram_limit; 1904 1905 /* Change the size here instead of the init above so only lpfn is affected */ 1906 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1907 #ifdef CONFIG_64BIT 1908 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1909 adev->gmc.visible_vram_size); 1910 #endif 1911 1912 /* 1913 *The reserved vram for firmware must be pinned to the specified 1914 *place on the VRAM, so reserve it early. 1915 */ 1916 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1917 if (r) { 1918 return r; 1919 } 1920 1921 /* 1922 * only NAVI10 and onwards ASIC support for IP discovery. 1923 * If IP discovery enabled, a block of memory should be 1924 * reserved for IP discovey. 1925 */ 1926 if (adev->mman.discovery_bin) { 1927 r = amdgpu_ttm_reserve_tmr(adev); 1928 if (r) 1929 return r; 1930 } 1931 1932 /* allocate memory as required for VGA 1933 * This is used for VGA emulation and pre-OS scanout buffers to 1934 * avoid display artifacts while transitioning between pre-OS 1935 * and driver. */ 1936 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1937 AMDGPU_GEM_DOMAIN_VRAM, 1938 &adev->mman.stolen_vga_memory, 1939 NULL); 1940 if (r) 1941 return r; 1942 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1943 adev->mman.stolen_extended_size, 1944 AMDGPU_GEM_DOMAIN_VRAM, 1945 &adev->mman.stolen_extended_memory, 1946 NULL); 1947 if (r) 1948 return r; 1949 1950 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1951 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1952 1953 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1954 * or whatever the user passed on module init */ 1955 if (amdgpu_gtt_size == -1) { 1956 struct sysinfo si; 1957 1958 si_meminfo(&si); 1959 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1960 adev->gmc.mc_vram_size), 1961 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1962 } 1963 else 1964 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1965 1966 /* Initialize GTT memory pool */ 1967 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1968 if (r) { 1969 DRM_ERROR("Failed initializing GTT heap.\n"); 1970 return r; 1971 } 1972 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1973 (unsigned)(gtt_size / (1024 * 1024))); 1974 1975 /* Initialize various on-chip memory pools */ 1976 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1977 if (r) { 1978 DRM_ERROR("Failed initializing GDS heap.\n"); 1979 return r; 1980 } 1981 1982 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1983 if (r) { 1984 DRM_ERROR("Failed initializing gws heap.\n"); 1985 return r; 1986 } 1987 1988 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1989 if (r) { 1990 DRM_ERROR("Failed initializing oa heap.\n"); 1991 return r; 1992 } 1993 1994 return 0; 1995 } 1996 1997 /** 1998 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1999 */ 2000 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 2001 { 2002 /* return the VGA stolen memory (if any) back to VRAM */ 2003 if (!adev->mman.keep_stolen_vga_memory) 2004 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2005 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2006 } 2007 2008 /** 2009 * amdgpu_ttm_fini - De-initialize the TTM memory pools 2010 */ 2011 void amdgpu_ttm_fini(struct amdgpu_device *adev) 2012 { 2013 if (!adev->mman.initialized) 2014 return; 2015 2016 amdgpu_ttm_training_reserve_vram_fini(adev); 2017 /* return the stolen vga memory back to VRAM */ 2018 if (adev->mman.keep_stolen_vga_memory) 2019 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2020 /* return the IP Discovery TMR memory back to VRAM */ 2021 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 2022 amdgpu_ttm_fw_reserve_vram_fini(adev); 2023 2024 if (adev->mman.aper_base_kaddr) 2025 iounmap(adev->mman.aper_base_kaddr); 2026 adev->mman.aper_base_kaddr = NULL; 2027 2028 amdgpu_vram_mgr_fini(adev); 2029 amdgpu_gtt_mgr_fini(adev); 2030 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2031 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2032 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2033 ttm_bo_device_release(&adev->mman.bdev); 2034 adev->mman.initialized = false; 2035 DRM_INFO("amdgpu: ttm finalized\n"); 2036 } 2037 2038 /** 2039 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2040 * 2041 * @adev: amdgpu_device pointer 2042 * @enable: true when we can use buffer functions. 2043 * 2044 * Enable/disable use of buffer functions during suspend/resume. This should 2045 * only be called at bootup or when userspace isn't running. 2046 */ 2047 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2048 { 2049 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2050 uint64_t size; 2051 int r; 2052 2053 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2054 adev->mman.buffer_funcs_enabled == enable) 2055 return; 2056 2057 if (enable) { 2058 struct amdgpu_ring *ring; 2059 struct drm_gpu_scheduler *sched; 2060 2061 ring = adev->mman.buffer_funcs_ring; 2062 sched = &ring->sched; 2063 r = drm_sched_entity_init(&adev->mman.entity, 2064 DRM_SCHED_PRIORITY_KERNEL, &sched, 2065 1, NULL); 2066 if (r) { 2067 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2068 r); 2069 return; 2070 } 2071 } else { 2072 drm_sched_entity_destroy(&adev->mman.entity); 2073 dma_fence_put(man->move); 2074 man->move = NULL; 2075 } 2076 2077 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2078 if (enable) 2079 size = adev->gmc.real_vram_size; 2080 else 2081 size = adev->gmc.visible_vram_size; 2082 man->size = size >> PAGE_SHIFT; 2083 adev->mman.buffer_funcs_enabled = enable; 2084 } 2085 2086 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 2087 { 2088 struct drm_file *file_priv = filp->private_data; 2089 struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev); 2090 2091 if (adev == NULL) 2092 return -EINVAL; 2093 2094 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 2095 } 2096 2097 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2098 uint64_t dst_offset, uint32_t byte_count, 2099 struct dma_resv *resv, 2100 struct dma_fence **fence, bool direct_submit, 2101 bool vm_needs_flush, bool tmz) 2102 { 2103 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 2104 AMDGPU_IB_POOL_DELAYED; 2105 struct amdgpu_device *adev = ring->adev; 2106 struct amdgpu_job *job; 2107 2108 uint32_t max_bytes; 2109 unsigned num_loops, num_dw; 2110 unsigned i; 2111 int r; 2112 2113 if (direct_submit && !ring->sched.ready) { 2114 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2115 return -EINVAL; 2116 } 2117 2118 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2119 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2120 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2121 2122 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 2123 if (r) 2124 return r; 2125 2126 if (vm_needs_flush) { 2127 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2128 job->vm_needs_flush = true; 2129 } 2130 if (resv) { 2131 r = amdgpu_sync_resv(adev, &job->sync, resv, 2132 AMDGPU_SYNC_ALWAYS, 2133 AMDGPU_FENCE_OWNER_UNDEFINED); 2134 if (r) { 2135 DRM_ERROR("sync failed (%d).\n", r); 2136 goto error_free; 2137 } 2138 } 2139 2140 for (i = 0; i < num_loops; i++) { 2141 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2142 2143 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2144 dst_offset, cur_size_in_bytes, tmz); 2145 2146 src_offset += cur_size_in_bytes; 2147 dst_offset += cur_size_in_bytes; 2148 byte_count -= cur_size_in_bytes; 2149 } 2150 2151 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2152 WARN_ON(job->ibs[0].length_dw > num_dw); 2153 if (direct_submit) 2154 r = amdgpu_job_submit_direct(job, ring, fence); 2155 else 2156 r = amdgpu_job_submit(job, &adev->mman.entity, 2157 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2158 if (r) 2159 goto error_free; 2160 2161 return r; 2162 2163 error_free: 2164 amdgpu_job_free(job); 2165 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2166 return r; 2167 } 2168 2169 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2170 uint32_t src_data, 2171 struct dma_resv *resv, 2172 struct dma_fence **fence) 2173 { 2174 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2175 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2176 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2177 2178 struct drm_mm_node *mm_node; 2179 unsigned long num_pages; 2180 unsigned int num_loops, num_dw; 2181 2182 struct amdgpu_job *job; 2183 int r; 2184 2185 if (!adev->mman.buffer_funcs_enabled) { 2186 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2187 return -EINVAL; 2188 } 2189 2190 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2191 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2192 if (r) 2193 return r; 2194 } 2195 2196 num_pages = bo->tbo.num_pages; 2197 mm_node = bo->tbo.mem.mm_node; 2198 num_loops = 0; 2199 while (num_pages) { 2200 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2201 2202 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2203 num_pages -= mm_node->size; 2204 ++mm_node; 2205 } 2206 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2207 2208 /* for IB padding */ 2209 num_dw += 64; 2210 2211 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 2212 &job); 2213 if (r) 2214 return r; 2215 2216 if (resv) { 2217 r = amdgpu_sync_resv(adev, &job->sync, resv, 2218 AMDGPU_SYNC_ALWAYS, 2219 AMDGPU_FENCE_OWNER_UNDEFINED); 2220 if (r) { 2221 DRM_ERROR("sync failed (%d).\n", r); 2222 goto error_free; 2223 } 2224 } 2225 2226 num_pages = bo->tbo.num_pages; 2227 mm_node = bo->tbo.mem.mm_node; 2228 2229 while (num_pages) { 2230 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2231 uint64_t dst_addr; 2232 2233 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2234 while (byte_count) { 2235 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2236 max_bytes); 2237 2238 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2239 dst_addr, cur_size_in_bytes); 2240 2241 dst_addr += cur_size_in_bytes; 2242 byte_count -= cur_size_in_bytes; 2243 } 2244 2245 num_pages -= mm_node->size; 2246 ++mm_node; 2247 } 2248 2249 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2250 WARN_ON(job->ibs[0].length_dw > num_dw); 2251 r = amdgpu_job_submit(job, &adev->mman.entity, 2252 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2253 if (r) 2254 goto error_free; 2255 2256 return 0; 2257 2258 error_free: 2259 amdgpu_job_free(job); 2260 return r; 2261 } 2262 2263 #if defined(CONFIG_DEBUG_FS) 2264 2265 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2266 { 2267 struct drm_info_node *node = (struct drm_info_node *)m->private; 2268 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2269 struct drm_device *dev = node->minor->dev; 2270 struct amdgpu_device *adev = drm_to_adev(dev); 2271 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, ttm_pl); 2272 struct drm_printer p = drm_seq_file_printer(m); 2273 2274 man->func->debug(man, &p); 2275 return 0; 2276 } 2277 2278 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2279 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2280 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2281 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2282 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2283 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2284 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2285 #ifdef CONFIG_SWIOTLB 2286 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2287 #endif 2288 }; 2289 2290 /** 2291 * amdgpu_ttm_vram_read - Linear read access to VRAM 2292 * 2293 * Accesses VRAM via MMIO for debugging purposes. 2294 */ 2295 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2296 size_t size, loff_t *pos) 2297 { 2298 struct amdgpu_device *adev = file_inode(f)->i_private; 2299 ssize_t result = 0; 2300 2301 if (size & 0x3 || *pos & 0x3) 2302 return -EINVAL; 2303 2304 if (*pos >= adev->gmc.mc_vram_size) 2305 return -ENXIO; 2306 2307 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2308 while (size) { 2309 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2310 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2311 2312 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2313 if (copy_to_user(buf, value, bytes)) 2314 return -EFAULT; 2315 2316 result += bytes; 2317 buf += bytes; 2318 *pos += bytes; 2319 size -= bytes; 2320 } 2321 2322 return result; 2323 } 2324 2325 /** 2326 * amdgpu_ttm_vram_write - Linear write access to VRAM 2327 * 2328 * Accesses VRAM via MMIO for debugging purposes. 2329 */ 2330 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2331 size_t size, loff_t *pos) 2332 { 2333 struct amdgpu_device *adev = file_inode(f)->i_private; 2334 ssize_t result = 0; 2335 int r; 2336 2337 if (size & 0x3 || *pos & 0x3) 2338 return -EINVAL; 2339 2340 if (*pos >= adev->gmc.mc_vram_size) 2341 return -ENXIO; 2342 2343 while (size) { 2344 unsigned long flags; 2345 uint32_t value; 2346 2347 if (*pos >= adev->gmc.mc_vram_size) 2348 return result; 2349 2350 r = get_user(value, (uint32_t *)buf); 2351 if (r) 2352 return r; 2353 2354 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2355 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2356 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2357 WREG32_NO_KIQ(mmMM_DATA, value); 2358 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2359 2360 result += 4; 2361 buf += 4; 2362 *pos += 4; 2363 size -= 4; 2364 } 2365 2366 return result; 2367 } 2368 2369 static const struct file_operations amdgpu_ttm_vram_fops = { 2370 .owner = THIS_MODULE, 2371 .read = amdgpu_ttm_vram_read, 2372 .write = amdgpu_ttm_vram_write, 2373 .llseek = default_llseek, 2374 }; 2375 2376 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2377 2378 /** 2379 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2380 */ 2381 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2382 size_t size, loff_t *pos) 2383 { 2384 struct amdgpu_device *adev = file_inode(f)->i_private; 2385 ssize_t result = 0; 2386 int r; 2387 2388 while (size) { 2389 loff_t p = *pos / PAGE_SIZE; 2390 unsigned off = *pos & ~PAGE_MASK; 2391 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2392 struct page *page; 2393 void *ptr; 2394 2395 if (p >= adev->gart.num_cpu_pages) 2396 return result; 2397 2398 page = adev->gart.pages[p]; 2399 if (page) { 2400 ptr = kmap(page); 2401 ptr += off; 2402 2403 r = copy_to_user(buf, ptr, cur_size); 2404 kunmap(adev->gart.pages[p]); 2405 } else 2406 r = clear_user(buf, cur_size); 2407 2408 if (r) 2409 return -EFAULT; 2410 2411 result += cur_size; 2412 buf += cur_size; 2413 *pos += cur_size; 2414 size -= cur_size; 2415 } 2416 2417 return result; 2418 } 2419 2420 static const struct file_operations amdgpu_ttm_gtt_fops = { 2421 .owner = THIS_MODULE, 2422 .read = amdgpu_ttm_gtt_read, 2423 .llseek = default_llseek 2424 }; 2425 2426 #endif 2427 2428 /** 2429 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2430 * 2431 * This function is used to read memory that has been mapped to the 2432 * GPU and the known addresses are not physical addresses but instead 2433 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2434 */ 2435 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2436 size_t size, loff_t *pos) 2437 { 2438 struct amdgpu_device *adev = file_inode(f)->i_private; 2439 struct iommu_domain *dom; 2440 ssize_t result = 0; 2441 int r; 2442 2443 /* retrieve the IOMMU domain if any for this device */ 2444 dom = iommu_get_domain_for_dev(adev->dev); 2445 2446 while (size) { 2447 phys_addr_t addr = *pos & PAGE_MASK; 2448 loff_t off = *pos & ~PAGE_MASK; 2449 size_t bytes = PAGE_SIZE - off; 2450 unsigned long pfn; 2451 struct page *p; 2452 void *ptr; 2453 2454 bytes = bytes < size ? bytes : size; 2455 2456 /* Translate the bus address to a physical address. If 2457 * the domain is NULL it means there is no IOMMU active 2458 * and the address translation is the identity 2459 */ 2460 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2461 2462 pfn = addr >> PAGE_SHIFT; 2463 if (!pfn_valid(pfn)) 2464 return -EPERM; 2465 2466 p = pfn_to_page(pfn); 2467 if (p->mapping != adev->mman.bdev.dev_mapping) 2468 return -EPERM; 2469 2470 ptr = kmap(p); 2471 r = copy_to_user(buf, ptr + off, bytes); 2472 kunmap(p); 2473 if (r) 2474 return -EFAULT; 2475 2476 size -= bytes; 2477 *pos += bytes; 2478 result += bytes; 2479 } 2480 2481 return result; 2482 } 2483 2484 /** 2485 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2486 * 2487 * This function is used to write memory that has been mapped to the 2488 * GPU and the known addresses are not physical addresses but instead 2489 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2490 */ 2491 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2492 size_t size, loff_t *pos) 2493 { 2494 struct amdgpu_device *adev = file_inode(f)->i_private; 2495 struct iommu_domain *dom; 2496 ssize_t result = 0; 2497 int r; 2498 2499 dom = iommu_get_domain_for_dev(adev->dev); 2500 2501 while (size) { 2502 phys_addr_t addr = *pos & PAGE_MASK; 2503 loff_t off = *pos & ~PAGE_MASK; 2504 size_t bytes = PAGE_SIZE - off; 2505 unsigned long pfn; 2506 struct page *p; 2507 void *ptr; 2508 2509 bytes = bytes < size ? bytes : size; 2510 2511 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2512 2513 pfn = addr >> PAGE_SHIFT; 2514 if (!pfn_valid(pfn)) 2515 return -EPERM; 2516 2517 p = pfn_to_page(pfn); 2518 if (p->mapping != adev->mman.bdev.dev_mapping) 2519 return -EPERM; 2520 2521 ptr = kmap(p); 2522 r = copy_from_user(ptr + off, buf, bytes); 2523 kunmap(p); 2524 if (r) 2525 return -EFAULT; 2526 2527 size -= bytes; 2528 *pos += bytes; 2529 result += bytes; 2530 } 2531 2532 return result; 2533 } 2534 2535 static const struct file_operations amdgpu_ttm_iomem_fops = { 2536 .owner = THIS_MODULE, 2537 .read = amdgpu_iomem_read, 2538 .write = amdgpu_iomem_write, 2539 .llseek = default_llseek 2540 }; 2541 2542 static const struct { 2543 char *name; 2544 const struct file_operations *fops; 2545 int domain; 2546 } ttm_debugfs_entries[] = { 2547 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2548 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2549 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2550 #endif 2551 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2552 }; 2553 2554 #endif 2555 2556 int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2557 { 2558 #if defined(CONFIG_DEBUG_FS) 2559 unsigned count; 2560 2561 struct drm_minor *minor = adev_to_drm(adev)->primary; 2562 struct dentry *ent, *root = minor->debugfs_root; 2563 2564 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2565 ent = debugfs_create_file( 2566 ttm_debugfs_entries[count].name, 2567 S_IFREG | S_IRUGO, root, 2568 adev, 2569 ttm_debugfs_entries[count].fops); 2570 if (IS_ERR(ent)) 2571 return PTR_ERR(ent); 2572 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2573 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2574 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2575 i_size_write(ent->d_inode, adev->gmc.gart_size); 2576 adev->mman.debugfs_entries[count] = ent; 2577 } 2578 2579 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2580 2581 #ifdef CONFIG_SWIOTLB 2582 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2583 --count; 2584 #endif 2585 2586 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2587 #else 2588 return 0; 2589 #endif 2590 } 2591