xref: /openbmc/linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/hmm.h>
36 #include <linux/pagemap.h>
37 #include <linux/sched/task.h>
38 #include <linux/sched/mm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/swiotlb.h>
43 #include <linux/dma-buf.h>
44 #include <linux/sizes.h>
45 
46 #include <drm/ttm/ttm_bo_api.h>
47 #include <drm/ttm/ttm_bo_driver.h>
48 #include <drm/ttm/ttm_placement.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	switch (bo->mem.mem_type) {
116 	case AMDGPU_PL_GDS:
117 	case AMDGPU_PL_GWS:
118 	case AMDGPU_PL_OA:
119 		placement->num_placement = 0;
120 		placement->num_busy_placement = 0;
121 		return;
122 
123 	case TTM_PL_VRAM:
124 		if (!adev->mman.buffer_funcs_enabled) {
125 			/* Move to system memory */
126 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
127 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
128 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
129 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
130 
131 			/* Try evicting to the CPU inaccessible part of VRAM
132 			 * first, but only set GTT as busy placement, so this
133 			 * BO will be evicted to GTT rather than causing other
134 			 * BOs to be evicted from VRAM
135 			 */
136 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
137 							 AMDGPU_GEM_DOMAIN_GTT);
138 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
139 			abo->placements[0].lpfn = 0;
140 			abo->placement.busy_placement = &abo->placements[1];
141 			abo->placement.num_busy_placement = 1;
142 		} else {
143 			/* Move to GTT memory */
144 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
145 		}
146 		break;
147 	case TTM_PL_TT:
148 	default:
149 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
150 		break;
151 	}
152 	*placement = abo->placement;
153 }
154 
155 /**
156  * amdgpu_verify_access - Verify access for a mmap call
157  *
158  * @bo:	The buffer object to map
159  * @filp: The file pointer from the process performing the mmap
160  *
161  * This is called by ttm_bo_mmap() to verify whether a process
162  * has the right to mmap a BO to their process space.
163  */
164 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
165 {
166 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
167 
168 	/*
169 	 * Don't verify access for KFD BOs. They don't have a GEM
170 	 * object associated with them.
171 	 */
172 	if (abo->kfd_bo)
173 		return 0;
174 
175 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
176 		return -EPERM;
177 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
178 					  filp->private_data);
179 }
180 
181 /**
182  * amdgpu_ttm_map_buffer - Map memory into the GART windows
183  * @bo: buffer object to map
184  * @mem: memory object to map
185  * @mm_cur: range to map
186  * @num_pages: number of pages to map
187  * @window: which GART window to use
188  * @ring: DMA ring to use for the copy
189  * @tmz: if we should setup a TMZ enabled mapping
190  * @addr: resulting address inside the MC address space
191  *
192  * Setup one of the GART windows to access a specific piece of memory or return
193  * the physical address for local memory.
194  */
195 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
196 				 struct ttm_resource *mem,
197 				 struct amdgpu_res_cursor *mm_cur,
198 				 unsigned num_pages, unsigned window,
199 				 struct amdgpu_ring *ring, bool tmz,
200 				 uint64_t *addr)
201 {
202 	struct amdgpu_device *adev = ring->adev;
203 	struct amdgpu_job *job;
204 	unsigned num_dw, num_bytes;
205 	struct dma_fence *fence;
206 	uint64_t src_addr, dst_addr;
207 	void *cpu_addr;
208 	uint64_t flags;
209 	unsigned int i;
210 	int r;
211 
212 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
213 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
214 
215 	/* Map only what can't be accessed directly */
216 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
217 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
218 			mm_cur->start;
219 		return 0;
220 	}
221 
222 	*addr = adev->gmc.gart_start;
223 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
224 		AMDGPU_GPU_PAGE_SIZE;
225 	*addr += mm_cur->start & ~PAGE_MASK;
226 
227 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
228 	num_bytes = num_pages * 8;
229 
230 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
231 				     AMDGPU_IB_POOL_DELAYED, &job);
232 	if (r)
233 		return r;
234 
235 	src_addr = num_dw * 4;
236 	src_addr += job->ibs[0].gpu_addr;
237 
238 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
239 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
240 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
241 				dst_addr, num_bytes, false);
242 
243 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
244 	WARN_ON(job->ibs[0].length_dw > num_dw);
245 
246 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
247 	if (tmz)
248 		flags |= AMDGPU_PTE_TMZ;
249 
250 	cpu_addr = &job->ibs[0].ptr[num_dw];
251 
252 	if (mem->mem_type == TTM_PL_TT) {
253 		dma_addr_t *dma_addr;
254 
255 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
256 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
257 				    cpu_addr);
258 		if (r)
259 			goto error_free;
260 	} else {
261 		dma_addr_t dma_address;
262 
263 		dma_address = mm_cur->start;
264 		dma_address += adev->vm_manager.vram_base_offset;
265 
266 		for (i = 0; i < num_pages; ++i) {
267 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
268 					    &dma_address, flags, cpu_addr);
269 			if (r)
270 				goto error_free;
271 
272 			dma_address += PAGE_SIZE;
273 		}
274 	}
275 
276 	r = amdgpu_job_submit(job, &adev->mman.entity,
277 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
278 	if (r)
279 		goto error_free;
280 
281 	dma_fence_put(fence);
282 
283 	return r;
284 
285 error_free:
286 	amdgpu_job_free(job);
287 	return r;
288 }
289 
290 /**
291  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
292  * @adev: amdgpu device
293  * @src: buffer/address where to read from
294  * @dst: buffer/address where to write to
295  * @size: number of bytes to copy
296  * @tmz: if a secure copy should be used
297  * @resv: resv object to sync to
298  * @f: Returns the last fence if multiple jobs are submitted.
299  *
300  * The function copies @size bytes from {src->mem + src->offset} to
301  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
302  * move and different for a BO to BO copy.
303  *
304  */
305 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
306 			       const struct amdgpu_copy_mem *src,
307 			       const struct amdgpu_copy_mem *dst,
308 			       uint64_t size, bool tmz,
309 			       struct dma_resv *resv,
310 			       struct dma_fence **f)
311 {
312 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
313 					AMDGPU_GPU_PAGE_SIZE);
314 
315 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
316 	struct amdgpu_res_cursor src_mm, dst_mm;
317 	struct dma_fence *fence = NULL;
318 	int r = 0;
319 
320 	if (!adev->mman.buffer_funcs_enabled) {
321 		DRM_ERROR("Trying to move memory with ring turned off.\n");
322 		return -EINVAL;
323 	}
324 
325 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
326 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
327 
328 	mutex_lock(&adev->mman.gtt_window_lock);
329 	while (src_mm.remaining) {
330 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
331 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
332 		struct dma_fence *next;
333 		uint32_t cur_size;
334 		uint64_t from, to;
335 
336 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
337 		 * begins at an offset, then adjust the size accordingly
338 		 */
339 		cur_size = max(src_page_offset, dst_page_offset);
340 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
341 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
342 
343 		/* Map src to window 0 and dst to window 1. */
344 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
345 					  PFN_UP(cur_size + src_page_offset),
346 					  0, ring, tmz, &from);
347 		if (r)
348 			goto error;
349 
350 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
351 					  PFN_UP(cur_size + dst_page_offset),
352 					  1, ring, tmz, &to);
353 		if (r)
354 			goto error;
355 
356 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
357 				       resv, &next, false, true, tmz);
358 		if (r)
359 			goto error;
360 
361 		dma_fence_put(fence);
362 		fence = next;
363 
364 		amdgpu_res_next(&src_mm, cur_size);
365 		amdgpu_res_next(&dst_mm, cur_size);
366 	}
367 error:
368 	mutex_unlock(&adev->mman.gtt_window_lock);
369 	if (f)
370 		*f = dma_fence_get(fence);
371 	dma_fence_put(fence);
372 	return r;
373 }
374 
375 /*
376  * amdgpu_move_blit - Copy an entire buffer to another buffer
377  *
378  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
379  * help move buffers to and from VRAM.
380  */
381 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
382 			    bool evict,
383 			    struct ttm_resource *new_mem,
384 			    struct ttm_resource *old_mem)
385 {
386 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
387 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
388 	struct amdgpu_copy_mem src, dst;
389 	struct dma_fence *fence = NULL;
390 	int r;
391 
392 	src.bo = bo;
393 	dst.bo = bo;
394 	src.mem = old_mem;
395 	dst.mem = new_mem;
396 	src.offset = 0;
397 	dst.offset = 0;
398 
399 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
400 				       new_mem->num_pages << PAGE_SHIFT,
401 				       amdgpu_bo_encrypted(abo),
402 				       bo->base.resv, &fence);
403 	if (r)
404 		goto error;
405 
406 	/* clear the space being freed */
407 	if (old_mem->mem_type == TTM_PL_VRAM &&
408 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
409 		struct dma_fence *wipe_fence = NULL;
410 
411 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
412 				       NULL, &wipe_fence);
413 		if (r) {
414 			goto error;
415 		} else if (wipe_fence) {
416 			dma_fence_put(fence);
417 			fence = wipe_fence;
418 		}
419 	}
420 
421 	/* Always block for VM page tables before committing the new location */
422 	if (bo->type == ttm_bo_type_kernel)
423 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
424 	else
425 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
426 	dma_fence_put(fence);
427 	return r;
428 
429 error:
430 	if (fence)
431 		dma_fence_wait(fence, false);
432 	dma_fence_put(fence);
433 	return r;
434 }
435 
436 /*
437  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
438  *
439  * Called by amdgpu_bo_move()
440  */
441 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
442 			       struct ttm_resource *mem)
443 {
444 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
445 	struct amdgpu_res_cursor cursor;
446 
447 	if (mem->mem_type == TTM_PL_SYSTEM ||
448 	    mem->mem_type == TTM_PL_TT)
449 		return true;
450 	if (mem->mem_type != TTM_PL_VRAM)
451 		return false;
452 
453 	amdgpu_res_first(mem, 0, mem_size, &cursor);
454 
455 	/* ttm_resource_ioremap only supports contiguous memory */
456 	if (cursor.size != mem_size)
457 		return false;
458 
459 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
460 }
461 
462 /*
463  * amdgpu_bo_move - Move a buffer object to a new memory location
464  *
465  * Called by ttm_bo_handle_move_mem()
466  */
467 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
468 			  struct ttm_operation_ctx *ctx,
469 			  struct ttm_resource *new_mem,
470 			  struct ttm_place *hop)
471 {
472 	struct amdgpu_device *adev;
473 	struct amdgpu_bo *abo;
474 	struct ttm_resource *old_mem = &bo->mem;
475 	int r;
476 
477 	if (new_mem->mem_type == TTM_PL_TT) {
478 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
479 		if (r)
480 			return r;
481 	}
482 
483 	/* Can't move a pinned BO */
484 	abo = ttm_to_amdgpu_bo(bo);
485 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
486 		return -EINVAL;
487 
488 	adev = amdgpu_ttm_adev(bo->bdev);
489 
490 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
491 		ttm_bo_move_null(bo, new_mem);
492 		goto out;
493 	}
494 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
495 	    new_mem->mem_type == TTM_PL_TT) {
496 		ttm_bo_move_null(bo, new_mem);
497 		goto out;
498 	}
499 	if (old_mem->mem_type == TTM_PL_TT &&
500 	    new_mem->mem_type == TTM_PL_SYSTEM) {
501 		r = ttm_bo_wait_ctx(bo, ctx);
502 		if (r)
503 			return r;
504 
505 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
506 		ttm_resource_free(bo, &bo->mem);
507 		ttm_bo_assign_mem(bo, new_mem);
508 		goto out;
509 	}
510 
511 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
512 	    old_mem->mem_type == AMDGPU_PL_GWS ||
513 	    old_mem->mem_type == AMDGPU_PL_OA ||
514 	    new_mem->mem_type == AMDGPU_PL_GDS ||
515 	    new_mem->mem_type == AMDGPU_PL_GWS ||
516 	    new_mem->mem_type == AMDGPU_PL_OA) {
517 		/* Nothing to save here */
518 		ttm_bo_move_null(bo, new_mem);
519 		goto out;
520 	}
521 
522 	if (adev->mman.buffer_funcs_enabled) {
523 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
524 		      new_mem->mem_type == TTM_PL_VRAM) ||
525 		     (old_mem->mem_type == TTM_PL_VRAM &&
526 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
527 			hop->fpfn = 0;
528 			hop->lpfn = 0;
529 			hop->mem_type = TTM_PL_TT;
530 			hop->flags = 0;
531 			return -EMULTIHOP;
532 		}
533 
534 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
535 	} else {
536 		r = -ENODEV;
537 	}
538 
539 	if (r) {
540 		/* Check that all memory is CPU accessible */
541 		if (!amdgpu_mem_visible(adev, old_mem) ||
542 		    !amdgpu_mem_visible(adev, new_mem)) {
543 			pr_err("Move buffer fallback to memcpy unavailable\n");
544 			return r;
545 		}
546 
547 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
548 		if (r)
549 			return r;
550 	}
551 
552 	if (bo->type == ttm_bo_type_device &&
553 	    new_mem->mem_type == TTM_PL_VRAM &&
554 	    old_mem->mem_type != TTM_PL_VRAM) {
555 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
556 		 * accesses the BO after it's moved.
557 		 */
558 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
559 	}
560 
561 out:
562 	/* update statistics */
563 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
564 	amdgpu_bo_move_notify(bo, evict, new_mem);
565 	return 0;
566 }
567 
568 /*
569  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
570  *
571  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
572  */
573 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
574 {
575 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
576 	struct drm_mm_node *mm_node = mem->mm_node;
577 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
578 
579 	switch (mem->mem_type) {
580 	case TTM_PL_SYSTEM:
581 		/* system memory */
582 		return 0;
583 	case TTM_PL_TT:
584 		break;
585 	case TTM_PL_VRAM:
586 		mem->bus.offset = mem->start << PAGE_SHIFT;
587 		/* check if it's visible */
588 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
589 			return -EINVAL;
590 		/* Only physically contiguous buffers apply. In a contiguous
591 		 * buffer, size of the first mm_node would match the number of
592 		 * pages in ttm_resource.
593 		 */
594 		if (adev->mman.aper_base_kaddr &&
595 		    (mm_node->size == mem->num_pages))
596 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
597 					mem->bus.offset;
598 
599 		mem->bus.offset += adev->gmc.aper_base;
600 		mem->bus.is_iomem = true;
601 		if (adev->gmc.xgmi.connected_to_cpu)
602 			mem->bus.caching = ttm_cached;
603 		else
604 			mem->bus.caching = ttm_write_combined;
605 		break;
606 	default:
607 		return -EINVAL;
608 	}
609 	return 0;
610 }
611 
612 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
613 					   unsigned long page_offset)
614 {
615 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
616 	struct amdgpu_res_cursor cursor;
617 
618 	amdgpu_res_first(&bo->mem, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
619 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
620 }
621 
622 /**
623  * amdgpu_ttm_domain_start - Returns GPU start address
624  * @adev: amdgpu device object
625  * @type: type of the memory
626  *
627  * Returns:
628  * GPU start address of a memory domain
629  */
630 
631 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
632 {
633 	switch (type) {
634 	case TTM_PL_TT:
635 		return adev->gmc.gart_start;
636 	case TTM_PL_VRAM:
637 		return adev->gmc.vram_start;
638 	}
639 
640 	return 0;
641 }
642 
643 /*
644  * TTM backend functions.
645  */
646 struct amdgpu_ttm_tt {
647 	struct ttm_tt	ttm;
648 	struct drm_gem_object	*gobj;
649 	u64			offset;
650 	uint64_t		userptr;
651 	struct task_struct	*usertask;
652 	uint32_t		userflags;
653 	bool			bound;
654 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
655 	struct hmm_range	*range;
656 #endif
657 };
658 
659 #ifdef CONFIG_DRM_AMDGPU_USERPTR
660 /*
661  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
662  * memory and start HMM tracking CPU page table update
663  *
664  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
665  * once afterwards to stop HMM tracking
666  */
667 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
668 {
669 	struct ttm_tt *ttm = bo->tbo.ttm;
670 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
671 	unsigned long start = gtt->userptr;
672 	struct vm_area_struct *vma;
673 	struct hmm_range *range;
674 	unsigned long timeout;
675 	struct mm_struct *mm;
676 	unsigned long i;
677 	int r = 0;
678 
679 	mm = bo->notifier.mm;
680 	if (unlikely(!mm)) {
681 		DRM_DEBUG_DRIVER("BO is not registered?\n");
682 		return -EFAULT;
683 	}
684 
685 	/* Another get_user_pages is running at the same time?? */
686 	if (WARN_ON(gtt->range))
687 		return -EFAULT;
688 
689 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
690 		return -ESRCH;
691 
692 	range = kzalloc(sizeof(*range), GFP_KERNEL);
693 	if (unlikely(!range)) {
694 		r = -ENOMEM;
695 		goto out;
696 	}
697 	range->notifier = &bo->notifier;
698 	range->start = bo->notifier.interval_tree.start;
699 	range->end = bo->notifier.interval_tree.last + 1;
700 	range->default_flags = HMM_PFN_REQ_FAULT;
701 	if (!amdgpu_ttm_tt_is_readonly(ttm))
702 		range->default_flags |= HMM_PFN_REQ_WRITE;
703 
704 	range->hmm_pfns = kvmalloc_array(ttm->num_pages,
705 					 sizeof(*range->hmm_pfns), GFP_KERNEL);
706 	if (unlikely(!range->hmm_pfns)) {
707 		r = -ENOMEM;
708 		goto out_free_ranges;
709 	}
710 
711 	mmap_read_lock(mm);
712 	vma = find_vma(mm, start);
713 	if (unlikely(!vma || start < vma->vm_start)) {
714 		r = -EFAULT;
715 		goto out_unlock;
716 	}
717 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
718 		vma->vm_file)) {
719 		r = -EPERM;
720 		goto out_unlock;
721 	}
722 	mmap_read_unlock(mm);
723 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
724 
725 retry:
726 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
727 
728 	mmap_read_lock(mm);
729 	r = hmm_range_fault(range);
730 	mmap_read_unlock(mm);
731 	if (unlikely(r)) {
732 		/*
733 		 * FIXME: This timeout should encompass the retry from
734 		 * mmu_interval_read_retry() as well.
735 		 */
736 		if (r == -EBUSY && !time_after(jiffies, timeout))
737 			goto retry;
738 		goto out_free_pfns;
739 	}
740 
741 	/*
742 	 * Due to default_flags, all pages are HMM_PFN_VALID or
743 	 * hmm_range_fault() fails. FIXME: The pages cannot be touched outside
744 	 * the notifier_lock, and mmu_interval_read_retry() must be done first.
745 	 */
746 	for (i = 0; i < ttm->num_pages; i++)
747 		pages[i] = hmm_pfn_to_page(range->hmm_pfns[i]);
748 
749 	gtt->range = range;
750 	mmput(mm);
751 
752 	return 0;
753 
754 out_unlock:
755 	mmap_read_unlock(mm);
756 out_free_pfns:
757 	kvfree(range->hmm_pfns);
758 out_free_ranges:
759 	kfree(range);
760 out:
761 	mmput(mm);
762 	return r;
763 }
764 
765 /*
766  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
767  * Check if the pages backing this ttm range have been invalidated
768  *
769  * Returns: true if pages are still valid
770  */
771 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
772 {
773 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
774 	bool r = false;
775 
776 	if (!gtt || !gtt->userptr)
777 		return false;
778 
779 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
780 		gtt->userptr, ttm->num_pages);
781 
782 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
783 		"No user pages to check\n");
784 
785 	if (gtt->range) {
786 		/*
787 		 * FIXME: Must always hold notifier_lock for this, and must
788 		 * not ignore the return code.
789 		 */
790 		r = mmu_interval_read_retry(gtt->range->notifier,
791 					 gtt->range->notifier_seq);
792 		kvfree(gtt->range->hmm_pfns);
793 		kfree(gtt->range);
794 		gtt->range = NULL;
795 	}
796 
797 	return !r;
798 }
799 #endif
800 
801 /*
802  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
803  *
804  * Called by amdgpu_cs_list_validate(). This creates the page list
805  * that backs user memory and will ultimately be mapped into the device
806  * address space.
807  */
808 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
809 {
810 	unsigned long i;
811 
812 	for (i = 0; i < ttm->num_pages; ++i)
813 		ttm->pages[i] = pages ? pages[i] : NULL;
814 }
815 
816 /*
817  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
818  *
819  * Called by amdgpu_ttm_backend_bind()
820  **/
821 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
822 				     struct ttm_tt *ttm)
823 {
824 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
825 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
826 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
827 	enum dma_data_direction direction = write ?
828 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
829 	int r;
830 
831 	/* Allocate an SG array and squash pages into it */
832 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
833 				      (u64)ttm->num_pages << PAGE_SHIFT,
834 				      GFP_KERNEL);
835 	if (r)
836 		goto release_sg;
837 
838 	/* Map SG to device */
839 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
840 	if (r)
841 		goto release_sg;
842 
843 	/* convert SG to linear array of pages and dma addresses */
844 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
845 				       ttm->num_pages);
846 
847 	return 0;
848 
849 release_sg:
850 	kfree(ttm->sg);
851 	ttm->sg = NULL;
852 	return r;
853 }
854 
855 /*
856  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
857  */
858 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
859 					struct ttm_tt *ttm)
860 {
861 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
862 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
863 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
864 	enum dma_data_direction direction = write ?
865 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
866 
867 	/* double check that we don't free the table twice */
868 	if (!ttm->sg || !ttm->sg->sgl)
869 		return;
870 
871 	/* unmap the pages mapped to the device */
872 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
873 	sg_free_table(ttm->sg);
874 
875 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
876 	if (gtt->range) {
877 		unsigned long i;
878 
879 		for (i = 0; i < ttm->num_pages; i++) {
880 			if (ttm->pages[i] !=
881 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
882 				break;
883 		}
884 
885 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
886 	}
887 #endif
888 }
889 
890 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
891 				struct ttm_buffer_object *tbo,
892 				uint64_t flags)
893 {
894 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
895 	struct ttm_tt *ttm = tbo->ttm;
896 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
897 	int r;
898 
899 	if (amdgpu_bo_encrypted(abo))
900 		flags |= AMDGPU_PTE_TMZ;
901 
902 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
903 		uint64_t page_idx = 1;
904 
905 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
906 				ttm->pages, gtt->ttm.dma_address, flags);
907 		if (r)
908 			goto gart_bind_fail;
909 
910 		/* The memory type of the first page defaults to UC. Now
911 		 * modify the memory type to NC from the second page of
912 		 * the BO onward.
913 		 */
914 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
915 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
916 
917 		r = amdgpu_gart_bind(adev,
918 				gtt->offset + (page_idx << PAGE_SHIFT),
919 				ttm->num_pages - page_idx,
920 				&ttm->pages[page_idx],
921 				&(gtt->ttm.dma_address[page_idx]), flags);
922 	} else {
923 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
924 				     ttm->pages, gtt->ttm.dma_address, flags);
925 	}
926 
927 gart_bind_fail:
928 	if (r)
929 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
930 			  ttm->num_pages, gtt->offset);
931 
932 	return r;
933 }
934 
935 /*
936  * amdgpu_ttm_backend_bind - Bind GTT memory
937  *
938  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
939  * This handles binding GTT memory to the device address space.
940  */
941 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
942 				   struct ttm_tt *ttm,
943 				   struct ttm_resource *bo_mem)
944 {
945 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
946 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
947 	uint64_t flags;
948 	int r = 0;
949 
950 	if (!bo_mem)
951 		return -EINVAL;
952 
953 	if (gtt->bound)
954 		return 0;
955 
956 	if (gtt->userptr) {
957 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
958 		if (r) {
959 			DRM_ERROR("failed to pin userptr\n");
960 			return r;
961 		}
962 	}
963 	if (!ttm->num_pages) {
964 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
965 		     ttm->num_pages, bo_mem, ttm);
966 	}
967 
968 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
969 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
970 	    bo_mem->mem_type == AMDGPU_PL_OA)
971 		return -EINVAL;
972 
973 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
974 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
975 		return 0;
976 	}
977 
978 	/* compute PTE flags relevant to this BO memory */
979 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
980 
981 	/* bind pages into GART page tables */
982 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
983 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
984 		ttm->pages, gtt->ttm.dma_address, flags);
985 
986 	if (r)
987 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
988 			  ttm->num_pages, gtt->offset);
989 	gtt->bound = true;
990 	return r;
991 }
992 
993 /*
994  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
995  * through AGP or GART aperture.
996  *
997  * If bo is accessible through AGP aperture, then use AGP aperture
998  * to access bo; otherwise allocate logical space in GART aperture
999  * and map bo to GART aperture.
1000  */
1001 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1002 {
1003 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1004 	struct ttm_operation_ctx ctx = { false, false };
1005 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1006 	struct ttm_resource tmp;
1007 	struct ttm_placement placement;
1008 	struct ttm_place placements;
1009 	uint64_t addr, flags;
1010 	int r;
1011 
1012 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1013 		return 0;
1014 
1015 	addr = amdgpu_gmc_agp_addr(bo);
1016 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1017 		bo->mem.start = addr >> PAGE_SHIFT;
1018 	} else {
1019 
1020 		/* allocate GART space */
1021 		tmp = bo->mem;
1022 		tmp.mm_node = NULL;
1023 		placement.num_placement = 1;
1024 		placement.placement = &placements;
1025 		placement.num_busy_placement = 1;
1026 		placement.busy_placement = &placements;
1027 		placements.fpfn = 0;
1028 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1029 		placements.mem_type = TTM_PL_TT;
1030 		placements.flags = bo->mem.placement;
1031 
1032 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1033 		if (unlikely(r))
1034 			return r;
1035 
1036 		/* compute PTE flags for this buffer object */
1037 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1038 
1039 		/* Bind pages */
1040 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1041 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1042 		if (unlikely(r)) {
1043 			ttm_resource_free(bo, &tmp);
1044 			return r;
1045 		}
1046 
1047 		ttm_resource_free(bo, &bo->mem);
1048 		bo->mem = tmp;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
1054 /*
1055  * amdgpu_ttm_recover_gart - Rebind GTT pages
1056  *
1057  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1058  * rebind GTT pages during a GPU reset.
1059  */
1060 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1061 {
1062 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1063 	uint64_t flags;
1064 	int r;
1065 
1066 	if (!tbo->ttm)
1067 		return 0;
1068 
1069 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1070 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1071 
1072 	return r;
1073 }
1074 
1075 /*
1076  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1077  *
1078  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1079  * ttm_tt_destroy().
1080  */
1081 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1082 				      struct ttm_tt *ttm)
1083 {
1084 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1085 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1086 	int r;
1087 
1088 	/* if the pages have userptr pinning then clear that first */
1089 	if (gtt->userptr)
1090 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1091 
1092 	if (!gtt->bound)
1093 		return;
1094 
1095 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1096 		return;
1097 
1098 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1099 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1100 	if (r)
1101 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1102 			  gtt->ttm.num_pages, gtt->offset);
1103 	gtt->bound = false;
1104 }
1105 
1106 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1107 				       struct ttm_tt *ttm)
1108 {
1109 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1110 
1111 	amdgpu_ttm_backend_unbind(bdev, ttm);
1112 	ttm_tt_destroy_common(bdev, ttm);
1113 	if (gtt->usertask)
1114 		put_task_struct(gtt->usertask);
1115 
1116 	ttm_tt_fini(&gtt->ttm);
1117 	kfree(gtt);
1118 }
1119 
1120 /**
1121  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1122  *
1123  * @bo: The buffer object to create a GTT ttm_tt object around
1124  * @page_flags: Page flags to be added to the ttm_tt object
1125  *
1126  * Called by ttm_tt_create().
1127  */
1128 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1129 					   uint32_t page_flags)
1130 {
1131 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1132 	struct amdgpu_ttm_tt *gtt;
1133 	enum ttm_caching caching;
1134 
1135 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1136 	if (gtt == NULL) {
1137 		return NULL;
1138 	}
1139 	gtt->gobj = &bo->base;
1140 
1141 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1142 		caching = ttm_write_combined;
1143 	else
1144 		caching = ttm_cached;
1145 
1146 	/* allocate space for the uninitialized page entries */
1147 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1148 		kfree(gtt);
1149 		return NULL;
1150 	}
1151 	return &gtt->ttm;
1152 }
1153 
1154 /*
1155  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1156  *
1157  * Map the pages of a ttm_tt object to an address space visible
1158  * to the underlying device.
1159  */
1160 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1161 				  struct ttm_tt *ttm,
1162 				  struct ttm_operation_ctx *ctx)
1163 {
1164 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1165 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1166 
1167 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1168 	if (gtt && gtt->userptr) {
1169 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1170 		if (!ttm->sg)
1171 			return -ENOMEM;
1172 
1173 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1174 		return 0;
1175 	}
1176 
1177 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1178 		if (!ttm->sg) {
1179 			struct dma_buf_attachment *attach;
1180 			struct sg_table *sgt;
1181 
1182 			attach = gtt->gobj->import_attach;
1183 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1184 			if (IS_ERR(sgt))
1185 				return PTR_ERR(sgt);
1186 
1187 			ttm->sg = sgt;
1188 		}
1189 
1190 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
1191 					       ttm->num_pages);
1192 		return 0;
1193 	}
1194 
1195 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1196 }
1197 
1198 /*
1199  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1200  *
1201  * Unmaps pages of a ttm_tt object from the device address space and
1202  * unpopulates the page array backing it.
1203  */
1204 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1205 				     struct ttm_tt *ttm)
1206 {
1207 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1208 	struct amdgpu_device *adev;
1209 
1210 	if (gtt && gtt->userptr) {
1211 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1212 		kfree(ttm->sg);
1213 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1214 		return;
1215 	}
1216 
1217 	if (ttm->sg && gtt->gobj->import_attach) {
1218 		struct dma_buf_attachment *attach;
1219 
1220 		attach = gtt->gobj->import_attach;
1221 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1222 		ttm->sg = NULL;
1223 		return;
1224 	}
1225 
1226 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1227 		return;
1228 
1229 	adev = amdgpu_ttm_adev(bdev);
1230 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1231 }
1232 
1233 /**
1234  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1235  * task
1236  *
1237  * @bo: The ttm_buffer_object to bind this userptr to
1238  * @addr:  The address in the current tasks VM space to use
1239  * @flags: Requirements of userptr object.
1240  *
1241  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1242  * to current task
1243  */
1244 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1245 			      uint64_t addr, uint32_t flags)
1246 {
1247 	struct amdgpu_ttm_tt *gtt;
1248 
1249 	if (!bo->ttm) {
1250 		/* TODO: We want a separate TTM object type for userptrs */
1251 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1252 		if (bo->ttm == NULL)
1253 			return -ENOMEM;
1254 	}
1255 
1256 	gtt = (void *)bo->ttm;
1257 	gtt->userptr = addr;
1258 	gtt->userflags = flags;
1259 
1260 	if (gtt->usertask)
1261 		put_task_struct(gtt->usertask);
1262 	gtt->usertask = current->group_leader;
1263 	get_task_struct(gtt->usertask);
1264 
1265 	return 0;
1266 }
1267 
1268 /*
1269  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1270  */
1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1272 {
1273 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1274 
1275 	if (gtt == NULL)
1276 		return NULL;
1277 
1278 	if (gtt->usertask == NULL)
1279 		return NULL;
1280 
1281 	return gtt->usertask->mm;
1282 }
1283 
1284 /*
1285  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1286  * address range for the current task.
1287  *
1288  */
1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1290 				  unsigned long end)
1291 {
1292 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1293 	unsigned long size;
1294 
1295 	if (gtt == NULL || !gtt->userptr)
1296 		return false;
1297 
1298 	/* Return false if no part of the ttm_tt object lies within
1299 	 * the range
1300 	 */
1301 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1302 	if (gtt->userptr > end || gtt->userptr + size <= start)
1303 		return false;
1304 
1305 	return true;
1306 }
1307 
1308 /*
1309  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1310  */
1311 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1312 {
1313 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1314 
1315 	if (gtt == NULL || !gtt->userptr)
1316 		return false;
1317 
1318 	return true;
1319 }
1320 
1321 /*
1322  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1323  */
1324 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1325 {
1326 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327 
1328 	if (gtt == NULL)
1329 		return false;
1330 
1331 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1332 }
1333 
1334 /**
1335  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1336  *
1337  * @ttm: The ttm_tt object to compute the flags for
1338  * @mem: The memory registry backing this ttm_tt object
1339  *
1340  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1341  */
1342 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1343 {
1344 	uint64_t flags = 0;
1345 
1346 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1347 		flags |= AMDGPU_PTE_VALID;
1348 
1349 	if (mem && mem->mem_type == TTM_PL_TT) {
1350 		flags |= AMDGPU_PTE_SYSTEM;
1351 
1352 		if (ttm->caching == ttm_cached)
1353 			flags |= AMDGPU_PTE_SNOOPED;
1354 	}
1355 
1356 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1357 			mem->bus.caching == ttm_cached)
1358 		flags |= AMDGPU_PTE_SNOOPED;
1359 
1360 	return flags;
1361 }
1362 
1363 /**
1364  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1365  *
1366  * @adev: amdgpu_device pointer
1367  * @ttm: The ttm_tt object to compute the flags for
1368  * @mem: The memory registry backing this ttm_tt object
1369  *
1370  * Figure out the flags to use for a VM PTE (Page Table Entry).
1371  */
1372 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1373 				 struct ttm_resource *mem)
1374 {
1375 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1376 
1377 	flags |= adev->gart.gart_pte_flags;
1378 	flags |= AMDGPU_PTE_READABLE;
1379 
1380 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1381 		flags |= AMDGPU_PTE_WRITEABLE;
1382 
1383 	return flags;
1384 }
1385 
1386 /*
1387  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1388  * object.
1389  *
1390  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1391  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1392  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1393  * used to clean out a memory space.
1394  */
1395 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1396 					    const struct ttm_place *place)
1397 {
1398 	unsigned long num_pages = bo->mem.num_pages;
1399 	struct amdgpu_res_cursor cursor;
1400 	struct dma_resv_list *flist;
1401 	struct dma_fence *f;
1402 	int i;
1403 
1404 	if (bo->type == ttm_bo_type_kernel &&
1405 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1406 		return false;
1407 
1408 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1409 	 * If true, then return false as any KFD process needs all its BOs to
1410 	 * be resident to run successfully
1411 	 */
1412 	flist = dma_resv_get_list(bo->base.resv);
1413 	if (flist) {
1414 		for (i = 0; i < flist->shared_count; ++i) {
1415 			f = rcu_dereference_protected(flist->shared[i],
1416 				dma_resv_held(bo->base.resv));
1417 			if (amdkfd_fence_check_mm(f, current->mm))
1418 				return false;
1419 		}
1420 	}
1421 
1422 	switch (bo->mem.mem_type) {
1423 	case TTM_PL_TT:
1424 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1425 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1426 			return false;
1427 		return true;
1428 
1429 	case TTM_PL_VRAM:
1430 		/* Check each drm MM node individually */
1431 		amdgpu_res_first(&bo->mem, 0, (u64)num_pages << PAGE_SHIFT,
1432 				 &cursor);
1433 		while (cursor.remaining) {
1434 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1435 			    && !(place->lpfn &&
1436 				 place->lpfn <= PFN_DOWN(cursor.start)))
1437 				return true;
1438 
1439 			amdgpu_res_next(&cursor, cursor.size);
1440 		}
1441 		return false;
1442 
1443 	default:
1444 		break;
1445 	}
1446 
1447 	return ttm_bo_eviction_valuable(bo, place);
1448 }
1449 
1450 /**
1451  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1452  *
1453  * @bo:  The buffer object to read/write
1454  * @offset:  Offset into buffer object
1455  * @buf:  Secondary buffer to write/read from
1456  * @len: Length in bytes of access
1457  * @write:  true if writing
1458  *
1459  * This is used to access VRAM that backs a buffer object via MMIO
1460  * access for debugging purposes.
1461  */
1462 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1463 				    unsigned long offset, void *buf, int len,
1464 				    int write)
1465 {
1466 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1467 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1468 	struct amdgpu_res_cursor cursor;
1469 	unsigned long flags;
1470 	uint32_t value = 0;
1471 	int ret = 0;
1472 
1473 	if (bo->mem.mem_type != TTM_PL_VRAM)
1474 		return -EIO;
1475 
1476 	amdgpu_res_first(&bo->mem, offset, len, &cursor);
1477 	while (cursor.remaining) {
1478 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1479 		uint64_t bytes = 4 - (cursor.start & 3);
1480 		uint32_t shift = (cursor.start & 3) * 8;
1481 		uint32_t mask = 0xffffffff << shift;
1482 
1483 		if (cursor.size < bytes) {
1484 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1485 			bytes = cursor.size;
1486 		}
1487 
1488 		if (mask != 0xffffffff) {
1489 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1490 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1491 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1492 			value = RREG32_NO_KIQ(mmMM_DATA);
1493 			if (write) {
1494 				value &= ~mask;
1495 				value |= (*(uint32_t *)buf << shift) & mask;
1496 				WREG32_NO_KIQ(mmMM_DATA, value);
1497 			}
1498 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1499 			if (!write) {
1500 				value = (value & mask) >> shift;
1501 				memcpy(buf, &value, bytes);
1502 			}
1503 		} else {
1504 			bytes = cursor.size & ~0x3ULL;
1505 			amdgpu_device_vram_access(adev, cursor.start,
1506 						  (uint32_t *)buf, bytes,
1507 						  write);
1508 		}
1509 
1510 		ret += bytes;
1511 		buf = (uint8_t *)buf + bytes;
1512 		amdgpu_res_next(&cursor, bytes);
1513 	}
1514 
1515 	return ret;
1516 }
1517 
1518 static void
1519 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1520 {
1521 	amdgpu_bo_move_notify(bo, false, NULL);
1522 }
1523 
1524 static struct ttm_device_funcs amdgpu_bo_driver = {
1525 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1526 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1527 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1528 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1529 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1530 	.evict_flags = &amdgpu_evict_flags,
1531 	.move = &amdgpu_bo_move,
1532 	.verify_access = &amdgpu_verify_access,
1533 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1534 	.release_notify = &amdgpu_bo_release_notify,
1535 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1536 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1537 	.access_memory = &amdgpu_ttm_access_memory,
1538 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1539 };
1540 
1541 /*
1542  * Firmware Reservation functions
1543  */
1544 /**
1545  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1546  *
1547  * @adev: amdgpu_device pointer
1548  *
1549  * free fw reserved vram if it has been reserved.
1550  */
1551 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1552 {
1553 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1554 		NULL, &adev->mman.fw_vram_usage_va);
1555 }
1556 
1557 /**
1558  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1559  *
1560  * @adev: amdgpu_device pointer
1561  *
1562  * create bo vram reservation from fw.
1563  */
1564 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1565 {
1566 	uint64_t vram_size = adev->gmc.visible_vram_size;
1567 
1568 	adev->mman.fw_vram_usage_va = NULL;
1569 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1570 
1571 	if (adev->mman.fw_vram_usage_size == 0 ||
1572 	    adev->mman.fw_vram_usage_size > vram_size)
1573 		return 0;
1574 
1575 	return amdgpu_bo_create_kernel_at(adev,
1576 					  adev->mman.fw_vram_usage_start_offset,
1577 					  adev->mman.fw_vram_usage_size,
1578 					  AMDGPU_GEM_DOMAIN_VRAM,
1579 					  &adev->mman.fw_vram_usage_reserved_bo,
1580 					  &adev->mman.fw_vram_usage_va);
1581 }
1582 
1583 /*
1584  * Memoy training reservation functions
1585  */
1586 
1587 /**
1588  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1589  *
1590  * @adev: amdgpu_device pointer
1591  *
1592  * free memory training reserved vram if it has been reserved.
1593  */
1594 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1595 {
1596 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1597 
1598 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1599 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1600 	ctx->c2p_bo = NULL;
1601 
1602 	return 0;
1603 }
1604 
1605 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1606 {
1607 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1608 
1609 	memset(ctx, 0, sizeof(*ctx));
1610 
1611 	ctx->c2p_train_data_offset =
1612 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1613 	ctx->p2c_train_data_offset =
1614 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1615 	ctx->train_data_size =
1616 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1617 
1618 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1619 			ctx->train_data_size,
1620 			ctx->p2c_train_data_offset,
1621 			ctx->c2p_train_data_offset);
1622 }
1623 
1624 /*
1625  * reserve TMR memory at the top of VRAM which holds
1626  * IP Discovery data and is protected by PSP.
1627  */
1628 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1629 {
1630 	int ret;
1631 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1632 	bool mem_train_support = false;
1633 
1634 	if (!amdgpu_sriov_vf(adev)) {
1635 		ret = amdgpu_mem_train_support(adev);
1636 		if (ret == 1)
1637 			mem_train_support = true;
1638 		else if (ret == -1)
1639 			return -EINVAL;
1640 		else
1641 			DRM_DEBUG("memory training does not support!\n");
1642 	}
1643 
1644 	/*
1645 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1646 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1647 	 *
1648 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1649 	 * discovery data and G6 memory training data respectively
1650 	 */
1651 	adev->mman.discovery_tmr_size =
1652 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1653 	if (!adev->mman.discovery_tmr_size)
1654 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1655 
1656 	if (mem_train_support) {
1657 		/* reserve vram for mem train according to TMR location */
1658 		amdgpu_ttm_training_data_block_init(adev);
1659 		ret = amdgpu_bo_create_kernel_at(adev,
1660 					 ctx->c2p_train_data_offset,
1661 					 ctx->train_data_size,
1662 					 AMDGPU_GEM_DOMAIN_VRAM,
1663 					 &ctx->c2p_bo,
1664 					 NULL);
1665 		if (ret) {
1666 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1667 			amdgpu_ttm_training_reserve_vram_fini(adev);
1668 			return ret;
1669 		}
1670 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1671 	}
1672 
1673 	ret = amdgpu_bo_create_kernel_at(adev,
1674 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1675 				adev->mman.discovery_tmr_size,
1676 				AMDGPU_GEM_DOMAIN_VRAM,
1677 				&adev->mman.discovery_memory,
1678 				NULL);
1679 	if (ret) {
1680 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1681 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1682 		return ret;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /*
1689  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1690  * gtt/vram related fields.
1691  *
1692  * This initializes all of the memory space pools that the TTM layer
1693  * will need such as the GTT space (system memory mapped to the device),
1694  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1695  * can be mapped per VMID.
1696  */
1697 int amdgpu_ttm_init(struct amdgpu_device *adev)
1698 {
1699 	uint64_t gtt_size;
1700 	int r;
1701 	u64 vis_vram_limit;
1702 
1703 	mutex_init(&adev->mman.gtt_window_lock);
1704 
1705 	/* No others user of address space so set it to 0 */
1706 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1707 			       adev_to_drm(adev)->anon_inode->i_mapping,
1708 			       adev_to_drm(adev)->vma_offset_manager,
1709 			       adev->need_swiotlb,
1710 			       dma_addressing_limited(adev->dev));
1711 	if (r) {
1712 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1713 		return r;
1714 	}
1715 	adev->mman.initialized = true;
1716 
1717 	/* Initialize VRAM pool with all of VRAM divided into pages */
1718 	r = amdgpu_vram_mgr_init(adev);
1719 	if (r) {
1720 		DRM_ERROR("Failed initializing VRAM heap.\n");
1721 		return r;
1722 	}
1723 
1724 	/* Reduce size of CPU-visible VRAM if requested */
1725 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1726 	if (amdgpu_vis_vram_limit > 0 &&
1727 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1728 		adev->gmc.visible_vram_size = vis_vram_limit;
1729 
1730 	/* Change the size here instead of the init above so only lpfn is affected */
1731 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1732 #ifdef CONFIG_64BIT
1733 #ifdef CONFIG_X86
1734 	if (adev->gmc.xgmi.connected_to_cpu)
1735 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1736 				adev->gmc.visible_vram_size);
1737 
1738 	else
1739 #endif
1740 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1741 				adev->gmc.visible_vram_size);
1742 #endif
1743 
1744 	/*
1745 	 *The reserved vram for firmware must be pinned to the specified
1746 	 *place on the VRAM, so reserve it early.
1747 	 */
1748 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1749 	if (r) {
1750 		return r;
1751 	}
1752 
1753 	/*
1754 	 * only NAVI10 and onwards ASIC support for IP discovery.
1755 	 * If IP discovery enabled, a block of memory should be
1756 	 * reserved for IP discovey.
1757 	 */
1758 	if (adev->mman.discovery_bin) {
1759 		r = amdgpu_ttm_reserve_tmr(adev);
1760 		if (r)
1761 			return r;
1762 	}
1763 
1764 	/* allocate memory as required for VGA
1765 	 * This is used for VGA emulation and pre-OS scanout buffers to
1766 	 * avoid display artifacts while transitioning between pre-OS
1767 	 * and driver.  */
1768 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1769 				       AMDGPU_GEM_DOMAIN_VRAM,
1770 				       &adev->mman.stolen_vga_memory,
1771 				       NULL);
1772 	if (r)
1773 		return r;
1774 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1775 				       adev->mman.stolen_extended_size,
1776 				       AMDGPU_GEM_DOMAIN_VRAM,
1777 				       &adev->mman.stolen_extended_memory,
1778 				       NULL);
1779 	if (r)
1780 		return r;
1781 
1782 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1783 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1784 
1785 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1786 	 * or whatever the user passed on module init */
1787 	if (amdgpu_gtt_size == -1) {
1788 		struct sysinfo si;
1789 
1790 		si_meminfo(&si);
1791 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1792 			       adev->gmc.mc_vram_size),
1793 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1794 	}
1795 	else
1796 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1797 
1798 	/* Initialize GTT memory pool */
1799 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1800 	if (r) {
1801 		DRM_ERROR("Failed initializing GTT heap.\n");
1802 		return r;
1803 	}
1804 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1805 		 (unsigned)(gtt_size / (1024 * 1024)));
1806 
1807 	/* Initialize various on-chip memory pools */
1808 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1809 	if (r) {
1810 		DRM_ERROR("Failed initializing GDS heap.\n");
1811 		return r;
1812 	}
1813 
1814 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1815 	if (r) {
1816 		DRM_ERROR("Failed initializing gws heap.\n");
1817 		return r;
1818 	}
1819 
1820 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1821 	if (r) {
1822 		DRM_ERROR("Failed initializing oa heap.\n");
1823 		return r;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 /*
1830  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1831  */
1832 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1833 {
1834 	if (!adev->mman.initialized)
1835 		return;
1836 
1837 	amdgpu_ttm_training_reserve_vram_fini(adev);
1838 	/* return the stolen vga memory back to VRAM */
1839 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1840 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1841 	/* return the IP Discovery TMR memory back to VRAM */
1842 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1843 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1844 
1845 	if (adev->mman.aper_base_kaddr)
1846 		iounmap(adev->mman.aper_base_kaddr);
1847 	adev->mman.aper_base_kaddr = NULL;
1848 
1849 	amdgpu_vram_mgr_fini(adev);
1850 	amdgpu_gtt_mgr_fini(adev);
1851 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1852 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1853 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1854 	ttm_device_fini(&adev->mman.bdev);
1855 	adev->mman.initialized = false;
1856 	DRM_INFO("amdgpu: ttm finalized\n");
1857 }
1858 
1859 /**
1860  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1861  *
1862  * @adev: amdgpu_device pointer
1863  * @enable: true when we can use buffer functions.
1864  *
1865  * Enable/disable use of buffer functions during suspend/resume. This should
1866  * only be called at bootup or when userspace isn't running.
1867  */
1868 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1869 {
1870 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1871 	uint64_t size;
1872 	int r;
1873 
1874 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1875 	    adev->mman.buffer_funcs_enabled == enable)
1876 		return;
1877 
1878 	if (enable) {
1879 		struct amdgpu_ring *ring;
1880 		struct drm_gpu_scheduler *sched;
1881 
1882 		ring = adev->mman.buffer_funcs_ring;
1883 		sched = &ring->sched;
1884 		r = drm_sched_entity_init(&adev->mman.entity,
1885 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1886 					  1, NULL);
1887 		if (r) {
1888 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1889 				  r);
1890 			return;
1891 		}
1892 	} else {
1893 		drm_sched_entity_destroy(&adev->mman.entity);
1894 		dma_fence_put(man->move);
1895 		man->move = NULL;
1896 	}
1897 
1898 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1899 	if (enable)
1900 		size = adev->gmc.real_vram_size;
1901 	else
1902 		size = adev->gmc.visible_vram_size;
1903 	man->size = size >> PAGE_SHIFT;
1904 	adev->mman.buffer_funcs_enabled = enable;
1905 }
1906 
1907 static vm_fault_t amdgpu_ttm_fault(struct vm_fault *vmf)
1908 {
1909 	struct ttm_buffer_object *bo = vmf->vma->vm_private_data;
1910 	vm_fault_t ret;
1911 
1912 	ret = ttm_bo_vm_reserve(bo, vmf);
1913 	if (ret)
1914 		return ret;
1915 
1916 	ret = amdgpu_bo_fault_reserve_notify(bo);
1917 	if (ret)
1918 		goto unlock;
1919 
1920 	ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1921 				       TTM_BO_VM_NUM_PREFAULT, 1);
1922 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1923 		return ret;
1924 
1925 unlock:
1926 	dma_resv_unlock(bo->base.resv);
1927 	return ret;
1928 }
1929 
1930 static const struct vm_operations_struct amdgpu_ttm_vm_ops = {
1931 	.fault = amdgpu_ttm_fault,
1932 	.open = ttm_bo_vm_open,
1933 	.close = ttm_bo_vm_close,
1934 	.access = ttm_bo_vm_access
1935 };
1936 
1937 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1938 {
1939 	struct drm_file *file_priv = filp->private_data;
1940 	struct amdgpu_device *adev = drm_to_adev(file_priv->minor->dev);
1941 	int r;
1942 
1943 	r = ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1944 	if (unlikely(r != 0))
1945 		return r;
1946 
1947 	vma->vm_ops = &amdgpu_ttm_vm_ops;
1948 	return 0;
1949 }
1950 
1951 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1952 		       uint64_t dst_offset, uint32_t byte_count,
1953 		       struct dma_resv *resv,
1954 		       struct dma_fence **fence, bool direct_submit,
1955 		       bool vm_needs_flush, bool tmz)
1956 {
1957 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1958 		AMDGPU_IB_POOL_DELAYED;
1959 	struct amdgpu_device *adev = ring->adev;
1960 	struct amdgpu_job *job;
1961 
1962 	uint32_t max_bytes;
1963 	unsigned num_loops, num_dw;
1964 	unsigned i;
1965 	int r;
1966 
1967 	if (direct_submit && !ring->sched.ready) {
1968 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1969 		return -EINVAL;
1970 	}
1971 
1972 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1973 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1974 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1975 
1976 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1977 	if (r)
1978 		return r;
1979 
1980 	if (vm_needs_flush) {
1981 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1982 					adev->gmc.pdb0_bo : adev->gart.bo);
1983 		job->vm_needs_flush = true;
1984 	}
1985 	if (resv) {
1986 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1987 				     AMDGPU_SYNC_ALWAYS,
1988 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1989 		if (r) {
1990 			DRM_ERROR("sync failed (%d).\n", r);
1991 			goto error_free;
1992 		}
1993 	}
1994 
1995 	for (i = 0; i < num_loops; i++) {
1996 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1997 
1998 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1999 					dst_offset, cur_size_in_bytes, tmz);
2000 
2001 		src_offset += cur_size_in_bytes;
2002 		dst_offset += cur_size_in_bytes;
2003 		byte_count -= cur_size_in_bytes;
2004 	}
2005 
2006 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2007 	WARN_ON(job->ibs[0].length_dw > num_dw);
2008 	if (direct_submit)
2009 		r = amdgpu_job_submit_direct(job, ring, fence);
2010 	else
2011 		r = amdgpu_job_submit(job, &adev->mman.entity,
2012 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2013 	if (r)
2014 		goto error_free;
2015 
2016 	return r;
2017 
2018 error_free:
2019 	amdgpu_job_free(job);
2020 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2021 	return r;
2022 }
2023 
2024 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2025 		       uint32_t src_data,
2026 		       struct dma_resv *resv,
2027 		       struct dma_fence **fence)
2028 {
2029 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2030 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2031 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2032 
2033 	struct amdgpu_res_cursor cursor;
2034 	unsigned int num_loops, num_dw;
2035 	uint64_t num_bytes;
2036 
2037 	struct amdgpu_job *job;
2038 	int r;
2039 
2040 	if (!adev->mman.buffer_funcs_enabled) {
2041 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2042 		return -EINVAL;
2043 	}
2044 
2045 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2046 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2047 		if (r)
2048 			return r;
2049 	}
2050 
2051 	num_bytes = bo->tbo.mem.num_pages << PAGE_SHIFT;
2052 	num_loops = 0;
2053 
2054 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2055 	while (cursor.remaining) {
2056 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
2057 		amdgpu_res_next(&cursor, cursor.size);
2058 	}
2059 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2060 
2061 	/* for IB padding */
2062 	num_dw += 64;
2063 
2064 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
2065 				     &job);
2066 	if (r)
2067 		return r;
2068 
2069 	if (resv) {
2070 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2071 				     AMDGPU_SYNC_ALWAYS,
2072 				     AMDGPU_FENCE_OWNER_UNDEFINED);
2073 		if (r) {
2074 			DRM_ERROR("sync failed (%d).\n", r);
2075 			goto error_free;
2076 		}
2077 	}
2078 
2079 	amdgpu_res_first(&bo->tbo.mem, 0, num_bytes, &cursor);
2080 	while (cursor.remaining) {
2081 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2082 		uint64_t dst_addr = cursor.start;
2083 
2084 		dst_addr += amdgpu_ttm_domain_start(adev, bo->tbo.mem.mem_type);
2085 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2086 					cur_size);
2087 
2088 		amdgpu_res_next(&cursor, cur_size);
2089 	}
2090 
2091 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2092 	WARN_ON(job->ibs[0].length_dw > num_dw);
2093 	r = amdgpu_job_submit(job, &adev->mman.entity,
2094 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2095 	if (r)
2096 		goto error_free;
2097 
2098 	return 0;
2099 
2100 error_free:
2101 	amdgpu_job_free(job);
2102 	return r;
2103 }
2104 
2105 #if defined(CONFIG_DEBUG_FS)
2106 
2107 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2108 {
2109 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2110 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2111 							    TTM_PL_VRAM);
2112 	struct drm_printer p = drm_seq_file_printer(m);
2113 
2114 	man->func->debug(man, &p);
2115 	return 0;
2116 }
2117 
2118 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2119 {
2120 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2121 
2122 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2123 }
2124 
2125 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2126 {
2127 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2128 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2129 							    TTM_PL_TT);
2130 	struct drm_printer p = drm_seq_file_printer(m);
2131 
2132 	man->func->debug(man, &p);
2133 	return 0;
2134 }
2135 
2136 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2137 {
2138 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2139 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2140 							    AMDGPU_PL_GDS);
2141 	struct drm_printer p = drm_seq_file_printer(m);
2142 
2143 	man->func->debug(man, &p);
2144 	return 0;
2145 }
2146 
2147 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2148 {
2149 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2150 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2151 							    AMDGPU_PL_GWS);
2152 	struct drm_printer p = drm_seq_file_printer(m);
2153 
2154 	man->func->debug(man, &p);
2155 	return 0;
2156 }
2157 
2158 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2159 {
2160 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2161 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2162 							    AMDGPU_PL_OA);
2163 	struct drm_printer p = drm_seq_file_printer(m);
2164 
2165 	man->func->debug(man, &p);
2166 	return 0;
2167 }
2168 
2169 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2170 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2171 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2172 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2173 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2174 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2175 
2176 /*
2177  * amdgpu_ttm_vram_read - Linear read access to VRAM
2178  *
2179  * Accesses VRAM via MMIO for debugging purposes.
2180  */
2181 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2182 				    size_t size, loff_t *pos)
2183 {
2184 	struct amdgpu_device *adev = file_inode(f)->i_private;
2185 	ssize_t result = 0;
2186 
2187 	if (size & 0x3 || *pos & 0x3)
2188 		return -EINVAL;
2189 
2190 	if (*pos >= adev->gmc.mc_vram_size)
2191 		return -ENXIO;
2192 
2193 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2194 	while (size) {
2195 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2196 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2197 
2198 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2199 		if (copy_to_user(buf, value, bytes))
2200 			return -EFAULT;
2201 
2202 		result += bytes;
2203 		buf += bytes;
2204 		*pos += bytes;
2205 		size -= bytes;
2206 	}
2207 
2208 	return result;
2209 }
2210 
2211 /*
2212  * amdgpu_ttm_vram_write - Linear write access to VRAM
2213  *
2214  * Accesses VRAM via MMIO for debugging purposes.
2215  */
2216 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2217 				    size_t size, loff_t *pos)
2218 {
2219 	struct amdgpu_device *adev = file_inode(f)->i_private;
2220 	ssize_t result = 0;
2221 	int r;
2222 
2223 	if (size & 0x3 || *pos & 0x3)
2224 		return -EINVAL;
2225 
2226 	if (*pos >= adev->gmc.mc_vram_size)
2227 		return -ENXIO;
2228 
2229 	while (size) {
2230 		unsigned long flags;
2231 		uint32_t value;
2232 
2233 		if (*pos >= adev->gmc.mc_vram_size)
2234 			return result;
2235 
2236 		r = get_user(value, (uint32_t *)buf);
2237 		if (r)
2238 			return r;
2239 
2240 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2241 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2242 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2243 		WREG32_NO_KIQ(mmMM_DATA, value);
2244 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2245 
2246 		result += 4;
2247 		buf += 4;
2248 		*pos += 4;
2249 		size -= 4;
2250 	}
2251 
2252 	return result;
2253 }
2254 
2255 static const struct file_operations amdgpu_ttm_vram_fops = {
2256 	.owner = THIS_MODULE,
2257 	.read = amdgpu_ttm_vram_read,
2258 	.write = amdgpu_ttm_vram_write,
2259 	.llseek = default_llseek,
2260 };
2261 
2262 /*
2263  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2264  *
2265  * This function is used to read memory that has been mapped to the
2266  * GPU and the known addresses are not physical addresses but instead
2267  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2268  */
2269 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2270 				 size_t size, loff_t *pos)
2271 {
2272 	struct amdgpu_device *adev = file_inode(f)->i_private;
2273 	struct iommu_domain *dom;
2274 	ssize_t result = 0;
2275 	int r;
2276 
2277 	/* retrieve the IOMMU domain if any for this device */
2278 	dom = iommu_get_domain_for_dev(adev->dev);
2279 
2280 	while (size) {
2281 		phys_addr_t addr = *pos & PAGE_MASK;
2282 		loff_t off = *pos & ~PAGE_MASK;
2283 		size_t bytes = PAGE_SIZE - off;
2284 		unsigned long pfn;
2285 		struct page *p;
2286 		void *ptr;
2287 
2288 		bytes = bytes < size ? bytes : size;
2289 
2290 		/* Translate the bus address to a physical address.  If
2291 		 * the domain is NULL it means there is no IOMMU active
2292 		 * and the address translation is the identity
2293 		 */
2294 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2295 
2296 		pfn = addr >> PAGE_SHIFT;
2297 		if (!pfn_valid(pfn))
2298 			return -EPERM;
2299 
2300 		p = pfn_to_page(pfn);
2301 		if (p->mapping != adev->mman.bdev.dev_mapping)
2302 			return -EPERM;
2303 
2304 		ptr = kmap(p);
2305 		r = copy_to_user(buf, ptr + off, bytes);
2306 		kunmap(p);
2307 		if (r)
2308 			return -EFAULT;
2309 
2310 		size -= bytes;
2311 		*pos += bytes;
2312 		result += bytes;
2313 	}
2314 
2315 	return result;
2316 }
2317 
2318 /*
2319  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2320  *
2321  * This function is used to write memory that has been mapped to the
2322  * GPU and the known addresses are not physical addresses but instead
2323  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2324  */
2325 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2326 				 size_t size, loff_t *pos)
2327 {
2328 	struct amdgpu_device *adev = file_inode(f)->i_private;
2329 	struct iommu_domain *dom;
2330 	ssize_t result = 0;
2331 	int r;
2332 
2333 	dom = iommu_get_domain_for_dev(adev->dev);
2334 
2335 	while (size) {
2336 		phys_addr_t addr = *pos & PAGE_MASK;
2337 		loff_t off = *pos & ~PAGE_MASK;
2338 		size_t bytes = PAGE_SIZE - off;
2339 		unsigned long pfn;
2340 		struct page *p;
2341 		void *ptr;
2342 
2343 		bytes = bytes < size ? bytes : size;
2344 
2345 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2346 
2347 		pfn = addr >> PAGE_SHIFT;
2348 		if (!pfn_valid(pfn))
2349 			return -EPERM;
2350 
2351 		p = pfn_to_page(pfn);
2352 		if (p->mapping != adev->mman.bdev.dev_mapping)
2353 			return -EPERM;
2354 
2355 		ptr = kmap(p);
2356 		r = copy_from_user(ptr + off, buf, bytes);
2357 		kunmap(p);
2358 		if (r)
2359 			return -EFAULT;
2360 
2361 		size -= bytes;
2362 		*pos += bytes;
2363 		result += bytes;
2364 	}
2365 
2366 	return result;
2367 }
2368 
2369 static const struct file_operations amdgpu_ttm_iomem_fops = {
2370 	.owner = THIS_MODULE,
2371 	.read = amdgpu_iomem_read,
2372 	.write = amdgpu_iomem_write,
2373 	.llseek = default_llseek
2374 };
2375 
2376 #endif
2377 
2378 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2379 {
2380 #if defined(CONFIG_DEBUG_FS)
2381 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2382 	struct dentry *root = minor->debugfs_root;
2383 
2384 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2385 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2386 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2387 			    &amdgpu_ttm_iomem_fops);
2388 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2389 			    &amdgpu_mm_vram_table_fops);
2390 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2391 			    &amdgpu_mm_tt_table_fops);
2392 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2393 			    &amdgpu_mm_gds_table_fops);
2394 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2395 			    &amdgpu_mm_gws_table_fops);
2396 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2397 			    &amdgpu_mm_oa_table_fops);
2398 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2399 			    &amdgpu_ttm_page_pool_fops);
2400 #endif
2401 }
2402