1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 45 #include <drm/ttm/ttm_bo_api.h> 46 #include <drm/ttm/ttm_bo_driver.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "amdgpu_ras.h" 58 #include "amdgpu_atomfirmware.h" 59 #include "amdgpu_res_cursor.h" 60 #include "bif/bif_4_1_d.h" 61 62 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 63 64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 65 struct ttm_tt *ttm, 66 struct ttm_resource *bo_mem); 67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 68 struct ttm_tt *ttm); 69 70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 71 unsigned int type, 72 uint64_t size_in_page) 73 { 74 return ttm_range_man_init(&adev->mman.bdev, type, 75 false, size_in_page); 76 } 77 78 /** 79 * amdgpu_evict_flags - Compute placement flags 80 * 81 * @bo: The buffer object to evict 82 * @placement: Possible destination(s) for evicted BO 83 * 84 * Fill in placement data when ttm_bo_evict() is called 85 */ 86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 87 struct ttm_placement *placement) 88 { 89 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 90 struct amdgpu_bo *abo; 91 static const struct ttm_place placements = { 92 .fpfn = 0, 93 .lpfn = 0, 94 .mem_type = TTM_PL_SYSTEM, 95 .flags = 0 96 }; 97 98 /* Don't handle scatter gather BOs */ 99 if (bo->type == ttm_bo_type_sg) { 100 placement->num_placement = 0; 101 placement->num_busy_placement = 0; 102 return; 103 } 104 105 /* Object isn't an AMDGPU object so ignore */ 106 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 107 placement->placement = &placements; 108 placement->busy_placement = &placements; 109 placement->num_placement = 1; 110 placement->num_busy_placement = 1; 111 return; 112 } 113 114 abo = ttm_to_amdgpu_bo(bo); 115 if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) { 116 struct dma_fence *fence; 117 struct dma_resv *resv = &bo->base._resv; 118 119 rcu_read_lock(); 120 fence = rcu_dereference(resv->fence_excl); 121 if (fence && !fence->ops->signaled) 122 dma_fence_enable_sw_signaling(fence); 123 124 placement->num_placement = 0; 125 placement->num_busy_placement = 0; 126 rcu_read_unlock(); 127 return; 128 } 129 130 switch (bo->resource->mem_type) { 131 case AMDGPU_PL_GDS: 132 case AMDGPU_PL_GWS: 133 case AMDGPU_PL_OA: 134 placement->num_placement = 0; 135 placement->num_busy_placement = 0; 136 return; 137 138 case TTM_PL_VRAM: 139 if (!adev->mman.buffer_funcs_enabled) { 140 /* Move to system memory */ 141 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 142 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 143 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 144 amdgpu_bo_in_cpu_visible_vram(abo)) { 145 146 /* Try evicting to the CPU inaccessible part of VRAM 147 * first, but only set GTT as busy placement, so this 148 * BO will be evicted to GTT rather than causing other 149 * BOs to be evicted from VRAM 150 */ 151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 152 AMDGPU_GEM_DOMAIN_GTT); 153 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 154 abo->placements[0].lpfn = 0; 155 abo->placement.busy_placement = &abo->placements[1]; 156 abo->placement.num_busy_placement = 1; 157 } else { 158 /* Move to GTT memory */ 159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 160 } 161 break; 162 case TTM_PL_TT: 163 case AMDGPU_PL_PREEMPT: 164 default: 165 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 166 break; 167 } 168 *placement = abo->placement; 169 } 170 171 /** 172 * amdgpu_ttm_map_buffer - Map memory into the GART windows 173 * @bo: buffer object to map 174 * @mem: memory object to map 175 * @mm_cur: range to map 176 * @num_pages: number of pages to map 177 * @window: which GART window to use 178 * @ring: DMA ring to use for the copy 179 * @tmz: if we should setup a TMZ enabled mapping 180 * @addr: resulting address inside the MC address space 181 * 182 * Setup one of the GART windows to access a specific piece of memory or return 183 * the physical address for local memory. 184 */ 185 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 186 struct ttm_resource *mem, 187 struct amdgpu_res_cursor *mm_cur, 188 unsigned num_pages, unsigned window, 189 struct amdgpu_ring *ring, bool tmz, 190 uint64_t *addr) 191 { 192 struct amdgpu_device *adev = ring->adev; 193 struct amdgpu_job *job; 194 unsigned num_dw, num_bytes; 195 struct dma_fence *fence; 196 uint64_t src_addr, dst_addr; 197 void *cpu_addr; 198 uint64_t flags; 199 unsigned int i; 200 int r; 201 202 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 203 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 204 BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT); 205 206 /* Map only what can't be accessed directly */ 207 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 208 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 209 mm_cur->start; 210 return 0; 211 } 212 213 *addr = adev->gmc.gart_start; 214 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 215 AMDGPU_GPU_PAGE_SIZE; 216 *addr += mm_cur->start & ~PAGE_MASK; 217 218 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 219 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 220 221 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 222 AMDGPU_IB_POOL_DELAYED, &job); 223 if (r) 224 return r; 225 226 src_addr = num_dw * 4; 227 src_addr += job->ibs[0].gpu_addr; 228 229 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 230 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 231 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 232 dst_addr, num_bytes, false); 233 234 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 235 WARN_ON(job->ibs[0].length_dw > num_dw); 236 237 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 238 if (tmz) 239 flags |= AMDGPU_PTE_TMZ; 240 241 cpu_addr = &job->ibs[0].ptr[num_dw]; 242 243 if (mem->mem_type == TTM_PL_TT) { 244 dma_addr_t *dma_addr; 245 246 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 247 r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, 248 cpu_addr); 249 if (r) 250 goto error_free; 251 } else { 252 dma_addr_t dma_address; 253 254 dma_address = mm_cur->start; 255 dma_address += adev->vm_manager.vram_base_offset; 256 257 for (i = 0; i < num_pages; ++i) { 258 r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, 259 &dma_address, flags, cpu_addr); 260 if (r) 261 goto error_free; 262 263 dma_address += PAGE_SIZE; 264 } 265 } 266 267 r = amdgpu_job_submit(job, &adev->mman.entity, 268 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 269 if (r) 270 goto error_free; 271 272 dma_fence_put(fence); 273 274 return r; 275 276 error_free: 277 amdgpu_job_free(job); 278 return r; 279 } 280 281 /** 282 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 283 * @adev: amdgpu device 284 * @src: buffer/address where to read from 285 * @dst: buffer/address where to write to 286 * @size: number of bytes to copy 287 * @tmz: if a secure copy should be used 288 * @resv: resv object to sync to 289 * @f: Returns the last fence if multiple jobs are submitted. 290 * 291 * The function copies @size bytes from {src->mem + src->offset} to 292 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 293 * move and different for a BO to BO copy. 294 * 295 */ 296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 297 const struct amdgpu_copy_mem *src, 298 const struct amdgpu_copy_mem *dst, 299 uint64_t size, bool tmz, 300 struct dma_resv *resv, 301 struct dma_fence **f) 302 { 303 const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 304 AMDGPU_GPU_PAGE_SIZE); 305 306 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 307 struct amdgpu_res_cursor src_mm, dst_mm; 308 struct dma_fence *fence = NULL; 309 int r = 0; 310 311 if (!adev->mman.buffer_funcs_enabled) { 312 DRM_ERROR("Trying to move memory with ring turned off.\n"); 313 return -EINVAL; 314 } 315 316 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 317 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 318 319 mutex_lock(&adev->mman.gtt_window_lock); 320 while (src_mm.remaining) { 321 uint32_t src_page_offset = src_mm.start & ~PAGE_MASK; 322 uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK; 323 struct dma_fence *next; 324 uint32_t cur_size; 325 uint64_t from, to; 326 327 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 328 * begins at an offset, then adjust the size accordingly 329 */ 330 cur_size = max(src_page_offset, dst_page_offset); 331 cur_size = min(min3(src_mm.size, dst_mm.size, size), 332 (uint64_t)(GTT_MAX_BYTES - cur_size)); 333 334 /* Map src to window 0 and dst to window 1. */ 335 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 336 PFN_UP(cur_size + src_page_offset), 337 0, ring, tmz, &from); 338 if (r) 339 goto error; 340 341 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 342 PFN_UP(cur_size + dst_page_offset), 343 1, ring, tmz, &to); 344 if (r) 345 goto error; 346 347 r = amdgpu_copy_buffer(ring, from, to, cur_size, 348 resv, &next, false, true, tmz); 349 if (r) 350 goto error; 351 352 dma_fence_put(fence); 353 fence = next; 354 355 amdgpu_res_next(&src_mm, cur_size); 356 amdgpu_res_next(&dst_mm, cur_size); 357 } 358 error: 359 mutex_unlock(&adev->mman.gtt_window_lock); 360 if (f) 361 *f = dma_fence_get(fence); 362 dma_fence_put(fence); 363 return r; 364 } 365 366 /* 367 * amdgpu_move_blit - Copy an entire buffer to another buffer 368 * 369 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 370 * help move buffers to and from VRAM. 371 */ 372 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 373 bool evict, 374 struct ttm_resource *new_mem, 375 struct ttm_resource *old_mem) 376 { 377 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 378 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 379 struct amdgpu_copy_mem src, dst; 380 struct dma_fence *fence = NULL; 381 int r; 382 383 src.bo = bo; 384 dst.bo = bo; 385 src.mem = old_mem; 386 dst.mem = new_mem; 387 src.offset = 0; 388 dst.offset = 0; 389 390 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 391 new_mem->num_pages << PAGE_SHIFT, 392 amdgpu_bo_encrypted(abo), 393 bo->base.resv, &fence); 394 if (r) 395 goto error; 396 397 /* clear the space being freed */ 398 if (old_mem->mem_type == TTM_PL_VRAM && 399 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 400 struct dma_fence *wipe_fence = NULL; 401 402 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 403 NULL, &wipe_fence); 404 if (r) { 405 goto error; 406 } else if (wipe_fence) { 407 dma_fence_put(fence); 408 fence = wipe_fence; 409 } 410 } 411 412 /* Always block for VM page tables before committing the new location */ 413 if (bo->type == ttm_bo_type_kernel) 414 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 415 else 416 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 417 dma_fence_put(fence); 418 return r; 419 420 error: 421 if (fence) 422 dma_fence_wait(fence, false); 423 dma_fence_put(fence); 424 return r; 425 } 426 427 /* 428 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 429 * 430 * Called by amdgpu_bo_move() 431 */ 432 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 433 struct ttm_resource *mem) 434 { 435 uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT; 436 struct amdgpu_res_cursor cursor; 437 438 if (mem->mem_type == TTM_PL_SYSTEM || 439 mem->mem_type == TTM_PL_TT) 440 return true; 441 if (mem->mem_type != TTM_PL_VRAM) 442 return false; 443 444 amdgpu_res_first(mem, 0, mem_size, &cursor); 445 446 /* ttm_resource_ioremap only supports contiguous memory */ 447 if (cursor.size != mem_size) 448 return false; 449 450 return cursor.start + cursor.size <= adev->gmc.visible_vram_size; 451 } 452 453 /* 454 * amdgpu_bo_move - Move a buffer object to a new memory location 455 * 456 * Called by ttm_bo_handle_move_mem() 457 */ 458 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 459 struct ttm_operation_ctx *ctx, 460 struct ttm_resource *new_mem, 461 struct ttm_place *hop) 462 { 463 struct amdgpu_device *adev; 464 struct amdgpu_bo *abo; 465 struct ttm_resource *old_mem = bo->resource; 466 int r; 467 468 if (new_mem->mem_type == TTM_PL_TT || 469 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 470 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 471 if (r) 472 return r; 473 } 474 475 /* Can't move a pinned BO */ 476 abo = ttm_to_amdgpu_bo(bo); 477 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 478 return -EINVAL; 479 480 adev = amdgpu_ttm_adev(bo->bdev); 481 482 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 483 ttm_bo_move_null(bo, new_mem); 484 goto out; 485 } 486 if (old_mem->mem_type == TTM_PL_SYSTEM && 487 (new_mem->mem_type == TTM_PL_TT || 488 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 489 ttm_bo_move_null(bo, new_mem); 490 goto out; 491 } 492 if ((old_mem->mem_type == TTM_PL_TT || 493 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 494 new_mem->mem_type == TTM_PL_SYSTEM) { 495 r = ttm_bo_wait_ctx(bo, ctx); 496 if (r) 497 return r; 498 499 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 500 ttm_resource_free(bo, &bo->resource); 501 ttm_bo_assign_mem(bo, new_mem); 502 goto out; 503 } 504 505 if (old_mem->mem_type == AMDGPU_PL_GDS || 506 old_mem->mem_type == AMDGPU_PL_GWS || 507 old_mem->mem_type == AMDGPU_PL_OA || 508 new_mem->mem_type == AMDGPU_PL_GDS || 509 new_mem->mem_type == AMDGPU_PL_GWS || 510 new_mem->mem_type == AMDGPU_PL_OA) { 511 /* Nothing to save here */ 512 ttm_bo_move_null(bo, new_mem); 513 goto out; 514 } 515 516 if (adev->mman.buffer_funcs_enabled) { 517 if (((old_mem->mem_type == TTM_PL_SYSTEM && 518 new_mem->mem_type == TTM_PL_VRAM) || 519 (old_mem->mem_type == TTM_PL_VRAM && 520 new_mem->mem_type == TTM_PL_SYSTEM))) { 521 hop->fpfn = 0; 522 hop->lpfn = 0; 523 hop->mem_type = TTM_PL_TT; 524 hop->flags = 0; 525 return -EMULTIHOP; 526 } 527 528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 529 } else { 530 r = -ENODEV; 531 } 532 533 if (r) { 534 /* Check that all memory is CPU accessible */ 535 if (!amdgpu_mem_visible(adev, old_mem) || 536 !amdgpu_mem_visible(adev, new_mem)) { 537 pr_err("Move buffer fallback to memcpy unavailable\n"); 538 return r; 539 } 540 541 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 542 if (r) 543 return r; 544 } 545 546 if (bo->type == ttm_bo_type_device && 547 new_mem->mem_type == TTM_PL_VRAM && 548 old_mem->mem_type != TTM_PL_VRAM) { 549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 550 * accesses the BO after it's moved. 551 */ 552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 553 } 554 555 out: 556 /* update statistics */ 557 atomic64_add(bo->base.size, &adev->num_bytes_moved); 558 amdgpu_bo_move_notify(bo, evict, new_mem); 559 return 0; 560 } 561 562 /* 563 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 564 * 565 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 566 */ 567 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 568 struct ttm_resource *mem) 569 { 570 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 571 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 572 573 switch (mem->mem_type) { 574 case TTM_PL_SYSTEM: 575 /* system memory */ 576 return 0; 577 case TTM_PL_TT: 578 case AMDGPU_PL_PREEMPT: 579 break; 580 case TTM_PL_VRAM: 581 mem->bus.offset = mem->start << PAGE_SHIFT; 582 /* check if it's visible */ 583 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 584 return -EINVAL; 585 586 if (adev->mman.aper_base_kaddr && 587 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 588 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 589 mem->bus.offset; 590 591 mem->bus.offset += adev->gmc.aper_base; 592 mem->bus.is_iomem = true; 593 if (adev->gmc.xgmi.connected_to_cpu) 594 mem->bus.caching = ttm_cached; 595 else 596 mem->bus.caching = ttm_write_combined; 597 break; 598 default: 599 return -EINVAL; 600 } 601 return 0; 602 } 603 604 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 605 unsigned long page_offset) 606 { 607 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 608 struct amdgpu_res_cursor cursor; 609 610 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 611 &cursor); 612 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 613 } 614 615 /** 616 * amdgpu_ttm_domain_start - Returns GPU start address 617 * @adev: amdgpu device object 618 * @type: type of the memory 619 * 620 * Returns: 621 * GPU start address of a memory domain 622 */ 623 624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 625 { 626 switch (type) { 627 case TTM_PL_TT: 628 return adev->gmc.gart_start; 629 case TTM_PL_VRAM: 630 return adev->gmc.vram_start; 631 } 632 633 return 0; 634 } 635 636 /* 637 * TTM backend functions. 638 */ 639 struct amdgpu_ttm_tt { 640 struct ttm_tt ttm; 641 struct drm_gem_object *gobj; 642 u64 offset; 643 uint64_t userptr; 644 struct task_struct *usertask; 645 uint32_t userflags; 646 bool bound; 647 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 648 struct hmm_range *range; 649 #endif 650 }; 651 652 #ifdef CONFIG_DRM_AMDGPU_USERPTR 653 /* 654 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 655 * memory and start HMM tracking CPU page table update 656 * 657 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 658 * once afterwards to stop HMM tracking 659 */ 660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 661 { 662 struct ttm_tt *ttm = bo->tbo.ttm; 663 struct amdgpu_ttm_tt *gtt = (void *)ttm; 664 unsigned long start = gtt->userptr; 665 struct vm_area_struct *vma; 666 struct mm_struct *mm; 667 bool readonly; 668 int r = 0; 669 670 mm = bo->notifier.mm; 671 if (unlikely(!mm)) { 672 DRM_DEBUG_DRIVER("BO is not registered?\n"); 673 return -EFAULT; 674 } 675 676 /* Another get_user_pages is running at the same time?? */ 677 if (WARN_ON(gtt->range)) 678 return -EFAULT; 679 680 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 681 return -ESRCH; 682 683 mmap_read_lock(mm); 684 vma = vma_lookup(mm, start); 685 if (unlikely(!vma)) { 686 r = -EFAULT; 687 goto out_unlock; 688 } 689 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 690 vma->vm_file)) { 691 r = -EPERM; 692 goto out_unlock; 693 } 694 695 readonly = amdgpu_ttm_tt_is_readonly(ttm); 696 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 697 ttm->num_pages, >t->range, readonly, 698 true); 699 out_unlock: 700 mmap_read_unlock(mm); 701 mmput(mm); 702 703 return r; 704 } 705 706 /* 707 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 708 * Check if the pages backing this ttm range have been invalidated 709 * 710 * Returns: true if pages are still valid 711 */ 712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 713 { 714 struct amdgpu_ttm_tt *gtt = (void *)ttm; 715 bool r = false; 716 717 if (!gtt || !gtt->userptr) 718 return false; 719 720 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 721 gtt->userptr, ttm->num_pages); 722 723 WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns, 724 "No user pages to check\n"); 725 726 if (gtt->range) { 727 /* 728 * FIXME: Must always hold notifier_lock for this, and must 729 * not ignore the return code. 730 */ 731 r = amdgpu_hmm_range_get_pages_done(gtt->range); 732 gtt->range = NULL; 733 } 734 735 return !r; 736 } 737 #endif 738 739 /* 740 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 741 * 742 * Called by amdgpu_cs_list_validate(). This creates the page list 743 * that backs user memory and will ultimately be mapped into the device 744 * address space. 745 */ 746 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 747 { 748 unsigned long i; 749 750 for (i = 0; i < ttm->num_pages; ++i) 751 ttm->pages[i] = pages ? pages[i] : NULL; 752 } 753 754 /* 755 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 756 * 757 * Called by amdgpu_ttm_backend_bind() 758 **/ 759 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 760 struct ttm_tt *ttm) 761 { 762 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 763 struct amdgpu_ttm_tt *gtt = (void *)ttm; 764 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 765 enum dma_data_direction direction = write ? 766 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 767 int r; 768 769 /* Allocate an SG array and squash pages into it */ 770 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 771 (u64)ttm->num_pages << PAGE_SHIFT, 772 GFP_KERNEL); 773 if (r) 774 goto release_sg; 775 776 /* Map SG to device */ 777 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 778 if (r) 779 goto release_sg; 780 781 /* convert SG to linear array of pages and dma addresses */ 782 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 783 ttm->num_pages); 784 785 return 0; 786 787 release_sg: 788 kfree(ttm->sg); 789 ttm->sg = NULL; 790 return r; 791 } 792 793 /* 794 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 795 */ 796 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 797 struct ttm_tt *ttm) 798 { 799 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 800 struct amdgpu_ttm_tt *gtt = (void *)ttm; 801 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 802 enum dma_data_direction direction = write ? 803 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 804 805 /* double check that we don't free the table twice */ 806 if (!ttm->sg || !ttm->sg->sgl) 807 return; 808 809 /* unmap the pages mapped to the device */ 810 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 811 sg_free_table(ttm->sg); 812 813 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 814 if (gtt->range) { 815 unsigned long i; 816 817 for (i = 0; i < ttm->num_pages; i++) { 818 if (ttm->pages[i] != 819 hmm_pfn_to_page(gtt->range->hmm_pfns[i])) 820 break; 821 } 822 823 WARN((i == ttm->num_pages), "Missing get_user_page_done\n"); 824 } 825 #endif 826 } 827 828 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 829 struct ttm_buffer_object *tbo, 830 uint64_t flags) 831 { 832 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 833 struct ttm_tt *ttm = tbo->ttm; 834 struct amdgpu_ttm_tt *gtt = (void *)ttm; 835 int r; 836 837 if (amdgpu_bo_encrypted(abo)) 838 flags |= AMDGPU_PTE_TMZ; 839 840 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 841 uint64_t page_idx = 1; 842 843 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 844 gtt->ttm.dma_address, flags); 845 if (r) 846 goto gart_bind_fail; 847 848 /* The memory type of the first page defaults to UC. Now 849 * modify the memory type to NC from the second page of 850 * the BO onward. 851 */ 852 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 853 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 854 855 r = amdgpu_gart_bind(adev, 856 gtt->offset + (page_idx << PAGE_SHIFT), 857 ttm->num_pages - page_idx, 858 &(gtt->ttm.dma_address[page_idx]), flags); 859 } else { 860 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 861 gtt->ttm.dma_address, flags); 862 } 863 864 gart_bind_fail: 865 if (r) 866 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 867 ttm->num_pages, gtt->offset); 868 869 return r; 870 } 871 872 /* 873 * amdgpu_ttm_backend_bind - Bind GTT memory 874 * 875 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 876 * This handles binding GTT memory to the device address space. 877 */ 878 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 879 struct ttm_tt *ttm, 880 struct ttm_resource *bo_mem) 881 { 882 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 883 struct amdgpu_ttm_tt *gtt = (void*)ttm; 884 uint64_t flags; 885 int r = 0; 886 887 if (!bo_mem) 888 return -EINVAL; 889 890 if (gtt->bound) 891 return 0; 892 893 if (gtt->userptr) { 894 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 895 if (r) { 896 DRM_ERROR("failed to pin userptr\n"); 897 return r; 898 } 899 } else if (ttm->page_flags & TTM_PAGE_FLAG_SG) { 900 if (!ttm->sg) { 901 struct dma_buf_attachment *attach; 902 struct sg_table *sgt; 903 904 attach = gtt->gobj->import_attach; 905 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 906 if (IS_ERR(sgt)) 907 return PTR_ERR(sgt); 908 909 ttm->sg = sgt; 910 } 911 912 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 913 ttm->num_pages); 914 } 915 916 if (!ttm->num_pages) { 917 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 918 ttm->num_pages, bo_mem, ttm); 919 } 920 921 if (bo_mem->mem_type == AMDGPU_PL_GDS || 922 bo_mem->mem_type == AMDGPU_PL_GWS || 923 bo_mem->mem_type == AMDGPU_PL_OA) 924 return -EINVAL; 925 926 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 927 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 928 return 0; 929 } 930 931 /* compute PTE flags relevant to this BO memory */ 932 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 933 934 /* bind pages into GART page tables */ 935 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 936 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 937 gtt->ttm.dma_address, flags); 938 939 if (r) 940 DRM_ERROR("failed to bind %u pages at 0x%08llX\n", 941 ttm->num_pages, gtt->offset); 942 gtt->bound = true; 943 return r; 944 } 945 946 /* 947 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 948 * through AGP or GART aperture. 949 * 950 * If bo is accessible through AGP aperture, then use AGP aperture 951 * to access bo; otherwise allocate logical space in GART aperture 952 * and map bo to GART aperture. 953 */ 954 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 955 { 956 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 957 struct ttm_operation_ctx ctx = { false, false }; 958 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 959 struct ttm_placement placement; 960 struct ttm_place placements; 961 struct ttm_resource *tmp; 962 uint64_t addr, flags; 963 int r; 964 965 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 966 return 0; 967 968 addr = amdgpu_gmc_agp_addr(bo); 969 if (addr != AMDGPU_BO_INVALID_OFFSET) { 970 bo->resource->start = addr >> PAGE_SHIFT; 971 return 0; 972 } 973 974 /* allocate GART space */ 975 placement.num_placement = 1; 976 placement.placement = &placements; 977 placement.num_busy_placement = 1; 978 placement.busy_placement = &placements; 979 placements.fpfn = 0; 980 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 981 placements.mem_type = TTM_PL_TT; 982 placements.flags = bo->resource->placement; 983 984 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 985 if (unlikely(r)) 986 return r; 987 988 /* compute PTE flags for this buffer object */ 989 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 990 991 /* Bind pages */ 992 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 993 r = amdgpu_ttm_gart_bind(adev, bo, flags); 994 if (unlikely(r)) { 995 ttm_resource_free(bo, &tmp); 996 return r; 997 } 998 999 amdgpu_gart_invalidate_tlb(adev); 1000 ttm_resource_free(bo, &bo->resource); 1001 ttm_bo_assign_mem(bo, tmp); 1002 1003 return 0; 1004 } 1005 1006 /* 1007 * amdgpu_ttm_recover_gart - Rebind GTT pages 1008 * 1009 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1010 * rebind GTT pages during a GPU reset. 1011 */ 1012 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1013 { 1014 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1015 uint64_t flags; 1016 int r; 1017 1018 if (!tbo->ttm) 1019 return 0; 1020 1021 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1022 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1023 1024 return r; 1025 } 1026 1027 /* 1028 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1029 * 1030 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1031 * ttm_tt_destroy(). 1032 */ 1033 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1034 struct ttm_tt *ttm) 1035 { 1036 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1037 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1038 int r; 1039 1040 /* if the pages have userptr pinning then clear that first */ 1041 if (gtt->userptr) { 1042 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1043 } else if (ttm->sg && gtt->gobj->import_attach) { 1044 struct dma_buf_attachment *attach; 1045 1046 attach = gtt->gobj->import_attach; 1047 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1048 ttm->sg = NULL; 1049 } 1050 1051 if (!gtt->bound) 1052 return; 1053 1054 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1055 return; 1056 1057 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1058 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1059 if (r) 1060 DRM_ERROR("failed to unbind %u pages at 0x%08llX\n", 1061 gtt->ttm.num_pages, gtt->offset); 1062 gtt->bound = false; 1063 } 1064 1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1066 struct ttm_tt *ttm) 1067 { 1068 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1069 1070 amdgpu_ttm_backend_unbind(bdev, ttm); 1071 ttm_tt_destroy_common(bdev, ttm); 1072 if (gtt->usertask) 1073 put_task_struct(gtt->usertask); 1074 1075 ttm_tt_fini(>t->ttm); 1076 kfree(gtt); 1077 } 1078 1079 /** 1080 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1081 * 1082 * @bo: The buffer object to create a GTT ttm_tt object around 1083 * @page_flags: Page flags to be added to the ttm_tt object 1084 * 1085 * Called by ttm_tt_create(). 1086 */ 1087 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1088 uint32_t page_flags) 1089 { 1090 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1091 struct amdgpu_ttm_tt *gtt; 1092 enum ttm_caching caching; 1093 1094 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1095 if (gtt == NULL) { 1096 return NULL; 1097 } 1098 gtt->gobj = &bo->base; 1099 1100 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1101 caching = ttm_write_combined; 1102 else 1103 caching = ttm_cached; 1104 1105 /* allocate space for the uninitialized page entries */ 1106 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1107 kfree(gtt); 1108 return NULL; 1109 } 1110 return >t->ttm; 1111 } 1112 1113 /* 1114 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1115 * 1116 * Map the pages of a ttm_tt object to an address space visible 1117 * to the underlying device. 1118 */ 1119 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1120 struct ttm_tt *ttm, 1121 struct ttm_operation_ctx *ctx) 1122 { 1123 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1124 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1125 1126 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1127 if (gtt && gtt->userptr) { 1128 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1129 if (!ttm->sg) 1130 return -ENOMEM; 1131 return 0; 1132 } 1133 1134 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1135 return 0; 1136 1137 return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1138 } 1139 1140 /* 1141 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1142 * 1143 * Unmaps pages of a ttm_tt object from the device address space and 1144 * unpopulates the page array backing it. 1145 */ 1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1147 struct ttm_tt *ttm) 1148 { 1149 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1150 struct amdgpu_device *adev; 1151 1152 if (gtt && gtt->userptr) { 1153 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1154 kfree(ttm->sg); 1155 ttm->sg = NULL; 1156 return; 1157 } 1158 1159 if (ttm->page_flags & TTM_PAGE_FLAG_SG) 1160 return; 1161 1162 adev = amdgpu_ttm_adev(bdev); 1163 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1164 } 1165 1166 /** 1167 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1168 * task 1169 * 1170 * @bo: The ttm_buffer_object to bind this userptr to 1171 * @addr: The address in the current tasks VM space to use 1172 * @flags: Requirements of userptr object. 1173 * 1174 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1175 * to current task 1176 */ 1177 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1178 uint64_t addr, uint32_t flags) 1179 { 1180 struct amdgpu_ttm_tt *gtt; 1181 1182 if (!bo->ttm) { 1183 /* TODO: We want a separate TTM object type for userptrs */ 1184 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1185 if (bo->ttm == NULL) 1186 return -ENOMEM; 1187 } 1188 1189 /* Set TTM_PAGE_FLAG_SG before populate but after create. */ 1190 bo->ttm->page_flags |= TTM_PAGE_FLAG_SG; 1191 1192 gtt = (void *)bo->ttm; 1193 gtt->userptr = addr; 1194 gtt->userflags = flags; 1195 1196 if (gtt->usertask) 1197 put_task_struct(gtt->usertask); 1198 gtt->usertask = current->group_leader; 1199 get_task_struct(gtt->usertask); 1200 1201 return 0; 1202 } 1203 1204 /* 1205 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1206 */ 1207 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1208 { 1209 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1210 1211 if (gtt == NULL) 1212 return NULL; 1213 1214 if (gtt->usertask == NULL) 1215 return NULL; 1216 1217 return gtt->usertask->mm; 1218 } 1219 1220 /* 1221 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1222 * address range for the current task. 1223 * 1224 */ 1225 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1226 unsigned long end) 1227 { 1228 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1229 unsigned long size; 1230 1231 if (gtt == NULL || !gtt->userptr) 1232 return false; 1233 1234 /* Return false if no part of the ttm_tt object lies within 1235 * the range 1236 */ 1237 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1238 if (gtt->userptr > end || gtt->userptr + size <= start) 1239 return false; 1240 1241 return true; 1242 } 1243 1244 /* 1245 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1246 */ 1247 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1248 { 1249 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1250 1251 if (gtt == NULL || !gtt->userptr) 1252 return false; 1253 1254 return true; 1255 } 1256 1257 /* 1258 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1259 */ 1260 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1261 { 1262 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1263 1264 if (gtt == NULL) 1265 return false; 1266 1267 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1268 } 1269 1270 /** 1271 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1272 * 1273 * @ttm: The ttm_tt object to compute the flags for 1274 * @mem: The memory registry backing this ttm_tt object 1275 * 1276 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1277 */ 1278 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1279 { 1280 uint64_t flags = 0; 1281 1282 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1283 flags |= AMDGPU_PTE_VALID; 1284 1285 if (mem && (mem->mem_type == TTM_PL_TT || 1286 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1287 flags |= AMDGPU_PTE_SYSTEM; 1288 1289 if (ttm->caching == ttm_cached) 1290 flags |= AMDGPU_PTE_SNOOPED; 1291 } 1292 1293 if (mem && mem->mem_type == TTM_PL_VRAM && 1294 mem->bus.caching == ttm_cached) 1295 flags |= AMDGPU_PTE_SNOOPED; 1296 1297 return flags; 1298 } 1299 1300 /** 1301 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1302 * 1303 * @adev: amdgpu_device pointer 1304 * @ttm: The ttm_tt object to compute the flags for 1305 * @mem: The memory registry backing this ttm_tt object 1306 * 1307 * Figure out the flags to use for a VM PTE (Page Table Entry). 1308 */ 1309 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1310 struct ttm_resource *mem) 1311 { 1312 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1313 1314 flags |= adev->gart.gart_pte_flags; 1315 flags |= AMDGPU_PTE_READABLE; 1316 1317 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1318 flags |= AMDGPU_PTE_WRITEABLE; 1319 1320 return flags; 1321 } 1322 1323 /* 1324 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1325 * object. 1326 * 1327 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1328 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1329 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1330 * used to clean out a memory space. 1331 */ 1332 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1333 const struct ttm_place *place) 1334 { 1335 unsigned long num_pages = bo->resource->num_pages; 1336 struct amdgpu_res_cursor cursor; 1337 struct dma_resv_list *flist; 1338 struct dma_fence *f; 1339 int i; 1340 1341 /* Swapout? */ 1342 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1343 return true; 1344 1345 if (bo->type == ttm_bo_type_kernel && 1346 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1347 return false; 1348 1349 /* If bo is a KFD BO, check if the bo belongs to the current process. 1350 * If true, then return false as any KFD process needs all its BOs to 1351 * be resident to run successfully 1352 */ 1353 flist = dma_resv_shared_list(bo->base.resv); 1354 if (flist) { 1355 for (i = 0; i < flist->shared_count; ++i) { 1356 f = rcu_dereference_protected(flist->shared[i], 1357 dma_resv_held(bo->base.resv)); 1358 if (amdkfd_fence_check_mm(f, current->mm)) 1359 return false; 1360 } 1361 } 1362 1363 switch (bo->resource->mem_type) { 1364 case AMDGPU_PL_PREEMPT: 1365 /* Preemptible BOs don't own system resources managed by the 1366 * driver (pages, VRAM, GART space). They point to resources 1367 * owned by someone else (e.g. pageable memory in user mode 1368 * or a DMABuf). They are used in a preemptible context so we 1369 * can guarantee no deadlocks and good QoS in case of MMU 1370 * notifiers or DMABuf move notifiers from the resource owner. 1371 */ 1372 return false; 1373 case TTM_PL_TT: 1374 if (amdgpu_bo_is_amdgpu_bo(bo) && 1375 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1376 return false; 1377 return true; 1378 1379 case TTM_PL_VRAM: 1380 /* Check each drm MM node individually */ 1381 amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT, 1382 &cursor); 1383 while (cursor.remaining) { 1384 if (place->fpfn < PFN_DOWN(cursor.start + cursor.size) 1385 && !(place->lpfn && 1386 place->lpfn <= PFN_DOWN(cursor.start))) 1387 return true; 1388 1389 amdgpu_res_next(&cursor, cursor.size); 1390 } 1391 return false; 1392 1393 default: 1394 break; 1395 } 1396 1397 return ttm_bo_eviction_valuable(bo, place); 1398 } 1399 1400 /** 1401 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1402 * 1403 * @bo: The buffer object to read/write 1404 * @offset: Offset into buffer object 1405 * @buf: Secondary buffer to write/read from 1406 * @len: Length in bytes of access 1407 * @write: true if writing 1408 * 1409 * This is used to access VRAM that backs a buffer object via MMIO 1410 * access for debugging purposes. 1411 */ 1412 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1413 unsigned long offset, void *buf, int len, 1414 int write) 1415 { 1416 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1417 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1418 struct amdgpu_res_cursor cursor; 1419 unsigned long flags; 1420 uint32_t value = 0; 1421 int ret = 0; 1422 1423 if (bo->resource->mem_type != TTM_PL_VRAM) 1424 return -EIO; 1425 1426 amdgpu_res_first(bo->resource, offset, len, &cursor); 1427 while (cursor.remaining) { 1428 uint64_t aligned_pos = cursor.start & ~(uint64_t)3; 1429 uint64_t bytes = 4 - (cursor.start & 3); 1430 uint32_t shift = (cursor.start & 3) * 8; 1431 uint32_t mask = 0xffffffff << shift; 1432 1433 if (cursor.size < bytes) { 1434 mask &= 0xffffffff >> (bytes - cursor.size) * 8; 1435 bytes = cursor.size; 1436 } 1437 1438 if (mask != 0xffffffff) { 1439 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1440 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1441 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1442 value = RREG32_NO_KIQ(mmMM_DATA); 1443 if (write) { 1444 value &= ~mask; 1445 value |= (*(uint32_t *)buf << shift) & mask; 1446 WREG32_NO_KIQ(mmMM_DATA, value); 1447 } 1448 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1449 if (!write) { 1450 value = (value & mask) >> shift; 1451 memcpy(buf, &value, bytes); 1452 } 1453 } else { 1454 bytes = cursor.size & ~0x3ULL; 1455 amdgpu_device_vram_access(adev, cursor.start, 1456 (uint32_t *)buf, bytes, 1457 write); 1458 } 1459 1460 ret += bytes; 1461 buf = (uint8_t *)buf + bytes; 1462 amdgpu_res_next(&cursor, bytes); 1463 } 1464 1465 return ret; 1466 } 1467 1468 static void 1469 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1470 { 1471 amdgpu_bo_move_notify(bo, false, NULL); 1472 } 1473 1474 static struct ttm_device_funcs amdgpu_bo_driver = { 1475 .ttm_tt_create = &amdgpu_ttm_tt_create, 1476 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1477 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1478 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1479 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1480 .evict_flags = &amdgpu_evict_flags, 1481 .move = &amdgpu_bo_move, 1482 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1483 .release_notify = &amdgpu_bo_release_notify, 1484 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1485 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1486 .access_memory = &amdgpu_ttm_access_memory, 1487 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1488 }; 1489 1490 /* 1491 * Firmware Reservation functions 1492 */ 1493 /** 1494 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1495 * 1496 * @adev: amdgpu_device pointer 1497 * 1498 * free fw reserved vram if it has been reserved. 1499 */ 1500 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1501 { 1502 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1503 NULL, &adev->mman.fw_vram_usage_va); 1504 } 1505 1506 /** 1507 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1508 * 1509 * @adev: amdgpu_device pointer 1510 * 1511 * create bo vram reservation from fw. 1512 */ 1513 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1514 { 1515 uint64_t vram_size = adev->gmc.visible_vram_size; 1516 1517 adev->mman.fw_vram_usage_va = NULL; 1518 adev->mman.fw_vram_usage_reserved_bo = NULL; 1519 1520 if (adev->mman.fw_vram_usage_size == 0 || 1521 adev->mman.fw_vram_usage_size > vram_size) 1522 return 0; 1523 1524 return amdgpu_bo_create_kernel_at(adev, 1525 adev->mman.fw_vram_usage_start_offset, 1526 adev->mman.fw_vram_usage_size, 1527 AMDGPU_GEM_DOMAIN_VRAM, 1528 &adev->mman.fw_vram_usage_reserved_bo, 1529 &adev->mman.fw_vram_usage_va); 1530 } 1531 1532 /* 1533 * Memoy training reservation functions 1534 */ 1535 1536 /** 1537 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1538 * 1539 * @adev: amdgpu_device pointer 1540 * 1541 * free memory training reserved vram if it has been reserved. 1542 */ 1543 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1544 { 1545 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1546 1547 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1548 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1549 ctx->c2p_bo = NULL; 1550 1551 return 0; 1552 } 1553 1554 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1555 { 1556 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1557 1558 memset(ctx, 0, sizeof(*ctx)); 1559 1560 ctx->c2p_train_data_offset = 1561 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1562 ctx->p2c_train_data_offset = 1563 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1564 ctx->train_data_size = 1565 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1566 1567 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1568 ctx->train_data_size, 1569 ctx->p2c_train_data_offset, 1570 ctx->c2p_train_data_offset); 1571 } 1572 1573 /* 1574 * reserve TMR memory at the top of VRAM which holds 1575 * IP Discovery data and is protected by PSP. 1576 */ 1577 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1578 { 1579 int ret; 1580 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1581 bool mem_train_support = false; 1582 1583 if (!amdgpu_sriov_vf(adev)) { 1584 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1585 mem_train_support = true; 1586 else 1587 DRM_DEBUG("memory training does not support!\n"); 1588 } 1589 1590 /* 1591 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1592 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1593 * 1594 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1595 * discovery data and G6 memory training data respectively 1596 */ 1597 adev->mman.discovery_tmr_size = 1598 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1599 if (!adev->mman.discovery_tmr_size) 1600 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1601 1602 if (mem_train_support) { 1603 /* reserve vram for mem train according to TMR location */ 1604 amdgpu_ttm_training_data_block_init(adev); 1605 ret = amdgpu_bo_create_kernel_at(adev, 1606 ctx->c2p_train_data_offset, 1607 ctx->train_data_size, 1608 AMDGPU_GEM_DOMAIN_VRAM, 1609 &ctx->c2p_bo, 1610 NULL); 1611 if (ret) { 1612 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1613 amdgpu_ttm_training_reserve_vram_fini(adev); 1614 return ret; 1615 } 1616 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1617 } 1618 1619 ret = amdgpu_bo_create_kernel_at(adev, 1620 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1621 adev->mman.discovery_tmr_size, 1622 AMDGPU_GEM_DOMAIN_VRAM, 1623 &adev->mman.discovery_memory, 1624 NULL); 1625 if (ret) { 1626 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1627 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1628 return ret; 1629 } 1630 1631 return 0; 1632 } 1633 1634 /* 1635 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1636 * gtt/vram related fields. 1637 * 1638 * This initializes all of the memory space pools that the TTM layer 1639 * will need such as the GTT space (system memory mapped to the device), 1640 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1641 * can be mapped per VMID. 1642 */ 1643 int amdgpu_ttm_init(struct amdgpu_device *adev) 1644 { 1645 uint64_t gtt_size; 1646 int r; 1647 u64 vis_vram_limit; 1648 1649 mutex_init(&adev->mman.gtt_window_lock); 1650 1651 /* No others user of address space so set it to 0 */ 1652 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1653 adev_to_drm(adev)->anon_inode->i_mapping, 1654 adev_to_drm(adev)->vma_offset_manager, 1655 adev->need_swiotlb, 1656 dma_addressing_limited(adev->dev)); 1657 if (r) { 1658 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1659 return r; 1660 } 1661 adev->mman.initialized = true; 1662 1663 /* Initialize VRAM pool with all of VRAM divided into pages */ 1664 r = amdgpu_vram_mgr_init(adev); 1665 if (r) { 1666 DRM_ERROR("Failed initializing VRAM heap.\n"); 1667 return r; 1668 } 1669 1670 /* Reduce size of CPU-visible VRAM if requested */ 1671 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1672 if (amdgpu_vis_vram_limit > 0 && 1673 vis_vram_limit <= adev->gmc.visible_vram_size) 1674 adev->gmc.visible_vram_size = vis_vram_limit; 1675 1676 /* Change the size here instead of the init above so only lpfn is affected */ 1677 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1678 #ifdef CONFIG_64BIT 1679 #ifdef CONFIG_X86 1680 if (adev->gmc.xgmi.connected_to_cpu) 1681 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1682 adev->gmc.visible_vram_size); 1683 1684 else 1685 #endif 1686 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1687 adev->gmc.visible_vram_size); 1688 #endif 1689 1690 /* 1691 *The reserved vram for firmware must be pinned to the specified 1692 *place on the VRAM, so reserve it early. 1693 */ 1694 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1695 if (r) { 1696 return r; 1697 } 1698 1699 /* 1700 * only NAVI10 and onwards ASIC support for IP discovery. 1701 * If IP discovery enabled, a block of memory should be 1702 * reserved for IP discovey. 1703 */ 1704 if (adev->mman.discovery_bin) { 1705 r = amdgpu_ttm_reserve_tmr(adev); 1706 if (r) 1707 return r; 1708 } 1709 1710 /* allocate memory as required for VGA 1711 * This is used for VGA emulation and pre-OS scanout buffers to 1712 * avoid display artifacts while transitioning between pre-OS 1713 * and driver. */ 1714 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1715 AMDGPU_GEM_DOMAIN_VRAM, 1716 &adev->mman.stolen_vga_memory, 1717 NULL); 1718 if (r) 1719 return r; 1720 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1721 adev->mman.stolen_extended_size, 1722 AMDGPU_GEM_DOMAIN_VRAM, 1723 &adev->mman.stolen_extended_memory, 1724 NULL); 1725 if (r) 1726 return r; 1727 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1728 adev->mman.stolen_reserved_size, 1729 AMDGPU_GEM_DOMAIN_VRAM, 1730 &adev->mman.stolen_reserved_memory, 1731 NULL); 1732 if (r) 1733 return r; 1734 1735 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1736 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1737 1738 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1739 * or whatever the user passed on module init */ 1740 if (amdgpu_gtt_size == -1) { 1741 struct sysinfo si; 1742 1743 si_meminfo(&si); 1744 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1745 adev->gmc.mc_vram_size), 1746 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1747 } 1748 else 1749 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1750 1751 /* Initialize GTT memory pool */ 1752 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1753 if (r) { 1754 DRM_ERROR("Failed initializing GTT heap.\n"); 1755 return r; 1756 } 1757 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1758 (unsigned)(gtt_size / (1024 * 1024))); 1759 1760 /* Initialize preemptible memory pool */ 1761 r = amdgpu_preempt_mgr_init(adev); 1762 if (r) { 1763 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1764 return r; 1765 } 1766 1767 /* Initialize various on-chip memory pools */ 1768 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1769 if (r) { 1770 DRM_ERROR("Failed initializing GDS heap.\n"); 1771 return r; 1772 } 1773 1774 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1775 if (r) { 1776 DRM_ERROR("Failed initializing gws heap.\n"); 1777 return r; 1778 } 1779 1780 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1781 if (r) { 1782 DRM_ERROR("Failed initializing oa heap.\n"); 1783 return r; 1784 } 1785 1786 return 0; 1787 } 1788 1789 /* 1790 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1791 */ 1792 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1793 { 1794 if (!adev->mman.initialized) 1795 return; 1796 1797 amdgpu_ttm_training_reserve_vram_fini(adev); 1798 /* return the stolen vga memory back to VRAM */ 1799 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1800 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1801 /* return the IP Discovery TMR memory back to VRAM */ 1802 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1803 if (adev->mman.stolen_reserved_size) 1804 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1805 NULL, NULL); 1806 amdgpu_ttm_fw_reserve_vram_fini(adev); 1807 1808 amdgpu_vram_mgr_fini(adev); 1809 amdgpu_gtt_mgr_fini(adev); 1810 amdgpu_preempt_mgr_fini(adev); 1811 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1812 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1813 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1814 ttm_device_fini(&adev->mman.bdev); 1815 adev->mman.initialized = false; 1816 DRM_INFO("amdgpu: ttm finalized\n"); 1817 } 1818 1819 /** 1820 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1821 * 1822 * @adev: amdgpu_device pointer 1823 * @enable: true when we can use buffer functions. 1824 * 1825 * Enable/disable use of buffer functions during suspend/resume. This should 1826 * only be called at bootup or when userspace isn't running. 1827 */ 1828 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1829 { 1830 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1831 uint64_t size; 1832 int r; 1833 1834 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1835 adev->mman.buffer_funcs_enabled == enable) 1836 return; 1837 1838 if (enable) { 1839 struct amdgpu_ring *ring; 1840 struct drm_gpu_scheduler *sched; 1841 1842 ring = adev->mman.buffer_funcs_ring; 1843 sched = &ring->sched; 1844 r = drm_sched_entity_init(&adev->mman.entity, 1845 DRM_SCHED_PRIORITY_KERNEL, &sched, 1846 1, NULL); 1847 if (r) { 1848 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1849 r); 1850 return; 1851 } 1852 } else { 1853 drm_sched_entity_destroy(&adev->mman.entity); 1854 dma_fence_put(man->move); 1855 man->move = NULL; 1856 } 1857 1858 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1859 if (enable) 1860 size = adev->gmc.real_vram_size; 1861 else 1862 size = adev->gmc.visible_vram_size; 1863 man->size = size >> PAGE_SHIFT; 1864 adev->mman.buffer_funcs_enabled = enable; 1865 } 1866 1867 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1868 uint64_t dst_offset, uint32_t byte_count, 1869 struct dma_resv *resv, 1870 struct dma_fence **fence, bool direct_submit, 1871 bool vm_needs_flush, bool tmz) 1872 { 1873 enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT : 1874 AMDGPU_IB_POOL_DELAYED; 1875 struct amdgpu_device *adev = ring->adev; 1876 struct amdgpu_job *job; 1877 1878 uint32_t max_bytes; 1879 unsigned num_loops, num_dw; 1880 unsigned i; 1881 int r; 1882 1883 if (direct_submit && !ring->sched.ready) { 1884 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1885 return -EINVAL; 1886 } 1887 1888 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1889 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1890 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 1891 1892 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job); 1893 if (r) 1894 return r; 1895 1896 if (vm_needs_flush) { 1897 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1898 adev->gmc.pdb0_bo : adev->gart.bo); 1899 job->vm_needs_flush = true; 1900 } 1901 if (resv) { 1902 r = amdgpu_sync_resv(adev, &job->sync, resv, 1903 AMDGPU_SYNC_ALWAYS, 1904 AMDGPU_FENCE_OWNER_UNDEFINED); 1905 if (r) { 1906 DRM_ERROR("sync failed (%d).\n", r); 1907 goto error_free; 1908 } 1909 } 1910 1911 for (i = 0; i < num_loops; i++) { 1912 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1913 1914 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 1915 dst_offset, cur_size_in_bytes, tmz); 1916 1917 src_offset += cur_size_in_bytes; 1918 dst_offset += cur_size_in_bytes; 1919 byte_count -= cur_size_in_bytes; 1920 } 1921 1922 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1923 WARN_ON(job->ibs[0].length_dw > num_dw); 1924 if (direct_submit) 1925 r = amdgpu_job_submit_direct(job, ring, fence); 1926 else 1927 r = amdgpu_job_submit(job, &adev->mman.entity, 1928 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 1929 if (r) 1930 goto error_free; 1931 1932 return r; 1933 1934 error_free: 1935 amdgpu_job_free(job); 1936 DRM_ERROR("Error scheduling IBs (%d)\n", r); 1937 return r; 1938 } 1939 1940 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 1941 uint32_t src_data, 1942 struct dma_resv *resv, 1943 struct dma_fence **fence) 1944 { 1945 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 1946 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 1947 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 1948 1949 struct amdgpu_res_cursor cursor; 1950 unsigned int num_loops, num_dw; 1951 uint64_t num_bytes; 1952 1953 struct amdgpu_job *job; 1954 int r; 1955 1956 if (!adev->mman.buffer_funcs_enabled) { 1957 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 1958 return -EINVAL; 1959 } 1960 1961 if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) { 1962 DRM_ERROR("Trying to clear preemptible memory.\n"); 1963 return -EINVAL; 1964 } 1965 1966 if (bo->tbo.resource->mem_type == TTM_PL_TT) { 1967 r = amdgpu_ttm_alloc_gart(&bo->tbo); 1968 if (r) 1969 return r; 1970 } 1971 1972 num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT; 1973 num_loops = 0; 1974 1975 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 1976 while (cursor.remaining) { 1977 num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes); 1978 amdgpu_res_next(&cursor, cursor.size); 1979 } 1980 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 1981 1982 /* for IB padding */ 1983 num_dw += 64; 1984 1985 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1986 &job); 1987 if (r) 1988 return r; 1989 1990 if (resv) { 1991 r = amdgpu_sync_resv(adev, &job->sync, resv, 1992 AMDGPU_SYNC_ALWAYS, 1993 AMDGPU_FENCE_OWNER_UNDEFINED); 1994 if (r) { 1995 DRM_ERROR("sync failed (%d).\n", r); 1996 goto error_free; 1997 } 1998 } 1999 2000 amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor); 2001 while (cursor.remaining) { 2002 uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes); 2003 uint64_t dst_addr = cursor.start; 2004 2005 dst_addr += amdgpu_ttm_domain_start(adev, 2006 bo->tbo.resource->mem_type); 2007 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2008 cur_size); 2009 2010 amdgpu_res_next(&cursor, cur_size); 2011 } 2012 2013 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2014 WARN_ON(job->ibs[0].length_dw > num_dw); 2015 r = amdgpu_job_submit(job, &adev->mman.entity, 2016 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2017 if (r) 2018 goto error_free; 2019 2020 return 0; 2021 2022 error_free: 2023 amdgpu_job_free(job); 2024 return r; 2025 } 2026 2027 #if defined(CONFIG_DEBUG_FS) 2028 2029 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused) 2030 { 2031 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2032 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2033 TTM_PL_VRAM); 2034 struct drm_printer p = drm_seq_file_printer(m); 2035 2036 man->func->debug(man, &p); 2037 return 0; 2038 } 2039 2040 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2041 { 2042 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2043 2044 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2045 } 2046 2047 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused) 2048 { 2049 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2050 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2051 TTM_PL_TT); 2052 struct drm_printer p = drm_seq_file_printer(m); 2053 2054 man->func->debug(man, &p); 2055 return 0; 2056 } 2057 2058 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused) 2059 { 2060 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2061 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2062 AMDGPU_PL_GDS); 2063 struct drm_printer p = drm_seq_file_printer(m); 2064 2065 man->func->debug(man, &p); 2066 return 0; 2067 } 2068 2069 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused) 2070 { 2071 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2072 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2073 AMDGPU_PL_GWS); 2074 struct drm_printer p = drm_seq_file_printer(m); 2075 2076 man->func->debug(man, &p); 2077 return 0; 2078 } 2079 2080 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused) 2081 { 2082 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2083 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, 2084 AMDGPU_PL_OA); 2085 struct drm_printer p = drm_seq_file_printer(m); 2086 2087 man->func->debug(man, &p); 2088 return 0; 2089 } 2090 2091 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table); 2092 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table); 2093 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table); 2094 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table); 2095 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table); 2096 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2097 2098 /* 2099 * amdgpu_ttm_vram_read - Linear read access to VRAM 2100 * 2101 * Accesses VRAM via MMIO for debugging purposes. 2102 */ 2103 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2104 size_t size, loff_t *pos) 2105 { 2106 struct amdgpu_device *adev = file_inode(f)->i_private; 2107 ssize_t result = 0; 2108 2109 if (size & 0x3 || *pos & 0x3) 2110 return -EINVAL; 2111 2112 if (*pos >= adev->gmc.mc_vram_size) 2113 return -ENXIO; 2114 2115 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2116 while (size) { 2117 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2118 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2119 2120 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2121 if (copy_to_user(buf, value, bytes)) 2122 return -EFAULT; 2123 2124 result += bytes; 2125 buf += bytes; 2126 *pos += bytes; 2127 size -= bytes; 2128 } 2129 2130 return result; 2131 } 2132 2133 /* 2134 * amdgpu_ttm_vram_write - Linear write access to VRAM 2135 * 2136 * Accesses VRAM via MMIO for debugging purposes. 2137 */ 2138 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2139 size_t size, loff_t *pos) 2140 { 2141 struct amdgpu_device *adev = file_inode(f)->i_private; 2142 ssize_t result = 0; 2143 int r; 2144 2145 if (size & 0x3 || *pos & 0x3) 2146 return -EINVAL; 2147 2148 if (*pos >= adev->gmc.mc_vram_size) 2149 return -ENXIO; 2150 2151 while (size) { 2152 unsigned long flags; 2153 uint32_t value; 2154 2155 if (*pos >= adev->gmc.mc_vram_size) 2156 return result; 2157 2158 r = get_user(value, (uint32_t *)buf); 2159 if (r) 2160 return r; 2161 2162 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2163 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2164 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2165 WREG32_NO_KIQ(mmMM_DATA, value); 2166 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2167 2168 result += 4; 2169 buf += 4; 2170 *pos += 4; 2171 size -= 4; 2172 } 2173 2174 return result; 2175 } 2176 2177 static const struct file_operations amdgpu_ttm_vram_fops = { 2178 .owner = THIS_MODULE, 2179 .read = amdgpu_ttm_vram_read, 2180 .write = amdgpu_ttm_vram_write, 2181 .llseek = default_llseek, 2182 }; 2183 2184 /* 2185 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2186 * 2187 * This function is used to read memory that has been mapped to the 2188 * GPU and the known addresses are not physical addresses but instead 2189 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2190 */ 2191 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2192 size_t size, loff_t *pos) 2193 { 2194 struct amdgpu_device *adev = file_inode(f)->i_private; 2195 struct iommu_domain *dom; 2196 ssize_t result = 0; 2197 int r; 2198 2199 /* retrieve the IOMMU domain if any for this device */ 2200 dom = iommu_get_domain_for_dev(adev->dev); 2201 2202 while (size) { 2203 phys_addr_t addr = *pos & PAGE_MASK; 2204 loff_t off = *pos & ~PAGE_MASK; 2205 size_t bytes = PAGE_SIZE - off; 2206 unsigned long pfn; 2207 struct page *p; 2208 void *ptr; 2209 2210 bytes = bytes < size ? bytes : size; 2211 2212 /* Translate the bus address to a physical address. If 2213 * the domain is NULL it means there is no IOMMU active 2214 * and the address translation is the identity 2215 */ 2216 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2217 2218 pfn = addr >> PAGE_SHIFT; 2219 if (!pfn_valid(pfn)) 2220 return -EPERM; 2221 2222 p = pfn_to_page(pfn); 2223 if (p->mapping != adev->mman.bdev.dev_mapping) 2224 return -EPERM; 2225 2226 ptr = kmap(p); 2227 r = copy_to_user(buf, ptr + off, bytes); 2228 kunmap(p); 2229 if (r) 2230 return -EFAULT; 2231 2232 size -= bytes; 2233 *pos += bytes; 2234 result += bytes; 2235 } 2236 2237 return result; 2238 } 2239 2240 /* 2241 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2242 * 2243 * This function is used to write memory that has been mapped to the 2244 * GPU and the known addresses are not physical addresses but instead 2245 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2246 */ 2247 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2248 size_t size, loff_t *pos) 2249 { 2250 struct amdgpu_device *adev = file_inode(f)->i_private; 2251 struct iommu_domain *dom; 2252 ssize_t result = 0; 2253 int r; 2254 2255 dom = iommu_get_domain_for_dev(adev->dev); 2256 2257 while (size) { 2258 phys_addr_t addr = *pos & PAGE_MASK; 2259 loff_t off = *pos & ~PAGE_MASK; 2260 size_t bytes = PAGE_SIZE - off; 2261 unsigned long pfn; 2262 struct page *p; 2263 void *ptr; 2264 2265 bytes = bytes < size ? bytes : size; 2266 2267 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2268 2269 pfn = addr >> PAGE_SHIFT; 2270 if (!pfn_valid(pfn)) 2271 return -EPERM; 2272 2273 p = pfn_to_page(pfn); 2274 if (p->mapping != adev->mman.bdev.dev_mapping) 2275 return -EPERM; 2276 2277 ptr = kmap(p); 2278 r = copy_from_user(ptr + off, buf, bytes); 2279 kunmap(p); 2280 if (r) 2281 return -EFAULT; 2282 2283 size -= bytes; 2284 *pos += bytes; 2285 result += bytes; 2286 } 2287 2288 return result; 2289 } 2290 2291 static const struct file_operations amdgpu_ttm_iomem_fops = { 2292 .owner = THIS_MODULE, 2293 .read = amdgpu_iomem_read, 2294 .write = amdgpu_iomem_write, 2295 .llseek = default_llseek 2296 }; 2297 2298 #endif 2299 2300 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2301 { 2302 #if defined(CONFIG_DEBUG_FS) 2303 struct drm_minor *minor = adev_to_drm(adev)->primary; 2304 struct dentry *root = minor->debugfs_root; 2305 2306 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2307 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2308 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2309 &amdgpu_ttm_iomem_fops); 2310 debugfs_create_file("amdgpu_vram_mm", 0444, root, adev, 2311 &amdgpu_mm_vram_table_fops); 2312 debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev, 2313 &amdgpu_mm_tt_table_fops); 2314 debugfs_create_file("amdgpu_gds_mm", 0444, root, adev, 2315 &amdgpu_mm_gds_table_fops); 2316 debugfs_create_file("amdgpu_gws_mm", 0444, root, adev, 2317 &amdgpu_mm_gws_table_fops); 2318 debugfs_create_file("amdgpu_oa_mm", 0444, root, adev, 2319 &amdgpu_mm_oa_table_fops); 2320 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2321 &amdgpu_ttm_page_pool_fops); 2322 #endif 2323 } 2324