1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 
45 #include <drm/ttm/ttm_bo_api.h>
46 #include <drm/ttm/ttm_bo_driver.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 
50 #include <drm/amdgpu_drm.h>
51 
52 #include "amdgpu.h"
53 #include "amdgpu_object.h"
54 #include "amdgpu_trace.h"
55 #include "amdgpu_amdkfd.h"
56 #include "amdgpu_sdma.h"
57 #include "amdgpu_ras.h"
58 #include "amdgpu_atomfirmware.h"
59 #include "amdgpu_res_cursor.h"
60 #include "bif/bif_4_1_d.h"
61 
62 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
63 
64 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
65 				   struct ttm_tt *ttm,
66 				   struct ttm_resource *bo_mem);
67 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
68 				      struct ttm_tt *ttm);
69 
70 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
71 				    unsigned int type,
72 				    uint64_t size_in_page)
73 {
74 	return ttm_range_man_init(&adev->mman.bdev, type,
75 				  false, size_in_page);
76 }
77 
78 /**
79  * amdgpu_evict_flags - Compute placement flags
80  *
81  * @bo: The buffer object to evict
82  * @placement: Possible destination(s) for evicted BO
83  *
84  * Fill in placement data when ttm_bo_evict() is called
85  */
86 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
87 				struct ttm_placement *placement)
88 {
89 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
90 	struct amdgpu_bo *abo;
91 	static const struct ttm_place placements = {
92 		.fpfn = 0,
93 		.lpfn = 0,
94 		.mem_type = TTM_PL_SYSTEM,
95 		.flags = 0
96 	};
97 
98 	/* Don't handle scatter gather BOs */
99 	if (bo->type == ttm_bo_type_sg) {
100 		placement->num_placement = 0;
101 		placement->num_busy_placement = 0;
102 		return;
103 	}
104 
105 	/* Object isn't an AMDGPU object so ignore */
106 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
107 		placement->placement = &placements;
108 		placement->busy_placement = &placements;
109 		placement->num_placement = 1;
110 		placement->num_busy_placement = 1;
111 		return;
112 	}
113 
114 	abo = ttm_to_amdgpu_bo(bo);
115 	if (abo->flags & AMDGPU_AMDKFD_CREATE_SVM_BO) {
116 		struct dma_fence *fence;
117 		struct dma_resv *resv = &bo->base._resv;
118 
119 		rcu_read_lock();
120 		fence = rcu_dereference(resv->fence_excl);
121 		if (fence && !fence->ops->signaled)
122 			dma_fence_enable_sw_signaling(fence);
123 
124 		placement->num_placement = 0;
125 		placement->num_busy_placement = 0;
126 		rcu_read_unlock();
127 		return;
128 	}
129 
130 	switch (bo->resource->mem_type) {
131 	case AMDGPU_PL_GDS:
132 	case AMDGPU_PL_GWS:
133 	case AMDGPU_PL_OA:
134 		placement->num_placement = 0;
135 		placement->num_busy_placement = 0;
136 		return;
137 
138 	case TTM_PL_VRAM:
139 		if (!adev->mman.buffer_funcs_enabled) {
140 			/* Move to system memory */
141 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
142 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
143 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
144 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
145 
146 			/* Try evicting to the CPU inaccessible part of VRAM
147 			 * first, but only set GTT as busy placement, so this
148 			 * BO will be evicted to GTT rather than causing other
149 			 * BOs to be evicted from VRAM
150 			 */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
152 							 AMDGPU_GEM_DOMAIN_GTT);
153 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
154 			abo->placements[0].lpfn = 0;
155 			abo->placement.busy_placement = &abo->placements[1];
156 			abo->placement.num_busy_placement = 1;
157 		} else {
158 			/* Move to GTT memory */
159 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
160 		}
161 		break;
162 	case TTM_PL_TT:
163 	case AMDGPU_PL_PREEMPT:
164 	default:
165 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
166 		break;
167 	}
168 	*placement = abo->placement;
169 }
170 
171 /**
172  * amdgpu_ttm_map_buffer - Map memory into the GART windows
173  * @bo: buffer object to map
174  * @mem: memory object to map
175  * @mm_cur: range to map
176  * @num_pages: number of pages to map
177  * @window: which GART window to use
178  * @ring: DMA ring to use for the copy
179  * @tmz: if we should setup a TMZ enabled mapping
180  * @addr: resulting address inside the MC address space
181  *
182  * Setup one of the GART windows to access a specific piece of memory or return
183  * the physical address for local memory.
184  */
185 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
186 				 struct ttm_resource *mem,
187 				 struct amdgpu_res_cursor *mm_cur,
188 				 unsigned num_pages, unsigned window,
189 				 struct amdgpu_ring *ring, bool tmz,
190 				 uint64_t *addr)
191 {
192 	struct amdgpu_device *adev = ring->adev;
193 	struct amdgpu_job *job;
194 	unsigned num_dw, num_bytes;
195 	struct dma_fence *fence;
196 	uint64_t src_addr, dst_addr;
197 	void *cpu_addr;
198 	uint64_t flags;
199 	unsigned int i;
200 	int r;
201 
202 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
203 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
204 	BUG_ON(mem->mem_type == AMDGPU_PL_PREEMPT);
205 
206 	/* Map only what can't be accessed directly */
207 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
208 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
209 			mm_cur->start;
210 		return 0;
211 	}
212 
213 	*addr = adev->gmc.gart_start;
214 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
215 		AMDGPU_GPU_PAGE_SIZE;
216 	*addr += mm_cur->start & ~PAGE_MASK;
217 
218 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
219 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
220 
221 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes,
222 				     AMDGPU_IB_POOL_DELAYED, &job);
223 	if (r)
224 		return r;
225 
226 	src_addr = num_dw * 4;
227 	src_addr += job->ibs[0].gpu_addr;
228 
229 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
230 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
231 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
232 				dst_addr, num_bytes, false);
233 
234 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
235 	WARN_ON(job->ibs[0].length_dw > num_dw);
236 
237 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
238 	if (tmz)
239 		flags |= AMDGPU_PTE_TMZ;
240 
241 	cpu_addr = &job->ibs[0].ptr[num_dw];
242 
243 	if (mem->mem_type == TTM_PL_TT) {
244 		dma_addr_t *dma_addr;
245 
246 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
247 		r = amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags,
248 				    cpu_addr);
249 		if (r)
250 			goto error_free;
251 	} else {
252 		dma_addr_t dma_address;
253 
254 		dma_address = mm_cur->start;
255 		dma_address += adev->vm_manager.vram_base_offset;
256 
257 		for (i = 0; i < num_pages; ++i) {
258 			r = amdgpu_gart_map(adev, i << PAGE_SHIFT, 1,
259 					    &dma_address, flags, cpu_addr);
260 			if (r)
261 				goto error_free;
262 
263 			dma_address += PAGE_SIZE;
264 		}
265 	}
266 
267 	r = amdgpu_job_submit(job, &adev->mman.entity,
268 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
269 	if (r)
270 		goto error_free;
271 
272 	dma_fence_put(fence);
273 
274 	return r;
275 
276 error_free:
277 	amdgpu_job_free(job);
278 	return r;
279 }
280 
281 /**
282  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
283  * @adev: amdgpu device
284  * @src: buffer/address where to read from
285  * @dst: buffer/address where to write to
286  * @size: number of bytes to copy
287  * @tmz: if a secure copy should be used
288  * @resv: resv object to sync to
289  * @f: Returns the last fence if multiple jobs are submitted.
290  *
291  * The function copies @size bytes from {src->mem + src->offset} to
292  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
293  * move and different for a BO to BO copy.
294  *
295  */
296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
297 			       const struct amdgpu_copy_mem *src,
298 			       const struct amdgpu_copy_mem *dst,
299 			       uint64_t size, bool tmz,
300 			       struct dma_resv *resv,
301 			       struct dma_fence **f)
302 {
303 	const uint32_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
304 					AMDGPU_GPU_PAGE_SIZE);
305 
306 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
307 	struct amdgpu_res_cursor src_mm, dst_mm;
308 	struct dma_fence *fence = NULL;
309 	int r = 0;
310 
311 	if (!adev->mman.buffer_funcs_enabled) {
312 		DRM_ERROR("Trying to move memory with ring turned off.\n");
313 		return -EINVAL;
314 	}
315 
316 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
317 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
318 
319 	mutex_lock(&adev->mman.gtt_window_lock);
320 	while (src_mm.remaining) {
321 		uint32_t src_page_offset = src_mm.start & ~PAGE_MASK;
322 		uint32_t dst_page_offset = dst_mm.start & ~PAGE_MASK;
323 		struct dma_fence *next;
324 		uint32_t cur_size;
325 		uint64_t from, to;
326 
327 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
328 		 * begins at an offset, then adjust the size accordingly
329 		 */
330 		cur_size = max(src_page_offset, dst_page_offset);
331 		cur_size = min(min3(src_mm.size, dst_mm.size, size),
332 			       (uint64_t)(GTT_MAX_BYTES - cur_size));
333 
334 		/* Map src to window 0 and dst to window 1. */
335 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
336 					  PFN_UP(cur_size + src_page_offset),
337 					  0, ring, tmz, &from);
338 		if (r)
339 			goto error;
340 
341 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
342 					  PFN_UP(cur_size + dst_page_offset),
343 					  1, ring, tmz, &to);
344 		if (r)
345 			goto error;
346 
347 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
348 				       resv, &next, false, true, tmz);
349 		if (r)
350 			goto error;
351 
352 		dma_fence_put(fence);
353 		fence = next;
354 
355 		amdgpu_res_next(&src_mm, cur_size);
356 		amdgpu_res_next(&dst_mm, cur_size);
357 	}
358 error:
359 	mutex_unlock(&adev->mman.gtt_window_lock);
360 	if (f)
361 		*f = dma_fence_get(fence);
362 	dma_fence_put(fence);
363 	return r;
364 }
365 
366 /*
367  * amdgpu_move_blit - Copy an entire buffer to another buffer
368  *
369  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
370  * help move buffers to and from VRAM.
371  */
372 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
373 			    bool evict,
374 			    struct ttm_resource *new_mem,
375 			    struct ttm_resource *old_mem)
376 {
377 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
378 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
379 	struct amdgpu_copy_mem src, dst;
380 	struct dma_fence *fence = NULL;
381 	int r;
382 
383 	src.bo = bo;
384 	dst.bo = bo;
385 	src.mem = old_mem;
386 	dst.mem = new_mem;
387 	src.offset = 0;
388 	dst.offset = 0;
389 
390 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
391 				       new_mem->num_pages << PAGE_SHIFT,
392 				       amdgpu_bo_encrypted(abo),
393 				       bo->base.resv, &fence);
394 	if (r)
395 		goto error;
396 
397 	/* clear the space being freed */
398 	if (old_mem->mem_type == TTM_PL_VRAM &&
399 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
400 		struct dma_fence *wipe_fence = NULL;
401 
402 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
403 				       NULL, &wipe_fence);
404 		if (r) {
405 			goto error;
406 		} else if (wipe_fence) {
407 			dma_fence_put(fence);
408 			fence = wipe_fence;
409 		}
410 	}
411 
412 	/* Always block for VM page tables before committing the new location */
413 	if (bo->type == ttm_bo_type_kernel)
414 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
415 	else
416 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
417 	dma_fence_put(fence);
418 	return r;
419 
420 error:
421 	if (fence)
422 		dma_fence_wait(fence, false);
423 	dma_fence_put(fence);
424 	return r;
425 }
426 
427 /*
428  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
429  *
430  * Called by amdgpu_bo_move()
431  */
432 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
433 			       struct ttm_resource *mem)
434 {
435 	uint64_t mem_size = (u64)mem->num_pages << PAGE_SHIFT;
436 	struct amdgpu_res_cursor cursor;
437 
438 	if (mem->mem_type == TTM_PL_SYSTEM ||
439 	    mem->mem_type == TTM_PL_TT)
440 		return true;
441 	if (mem->mem_type != TTM_PL_VRAM)
442 		return false;
443 
444 	amdgpu_res_first(mem, 0, mem_size, &cursor);
445 
446 	/* ttm_resource_ioremap only supports contiguous memory */
447 	if (cursor.size != mem_size)
448 		return false;
449 
450 	return cursor.start + cursor.size <= adev->gmc.visible_vram_size;
451 }
452 
453 /*
454  * amdgpu_bo_move - Move a buffer object to a new memory location
455  *
456  * Called by ttm_bo_handle_move_mem()
457  */
458 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
459 			  struct ttm_operation_ctx *ctx,
460 			  struct ttm_resource *new_mem,
461 			  struct ttm_place *hop)
462 {
463 	struct amdgpu_device *adev;
464 	struct amdgpu_bo *abo;
465 	struct ttm_resource *old_mem = bo->resource;
466 	int r;
467 
468 	if (new_mem->mem_type == TTM_PL_TT ||
469 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
470 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
471 		if (r)
472 			return r;
473 	}
474 
475 	/* Can't move a pinned BO */
476 	abo = ttm_to_amdgpu_bo(bo);
477 	if (WARN_ON_ONCE(abo->tbo.pin_count > 0))
478 		return -EINVAL;
479 
480 	adev = amdgpu_ttm_adev(bo->bdev);
481 
482 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
483 		ttm_bo_move_null(bo, new_mem);
484 		goto out;
485 	}
486 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
487 	    (new_mem->mem_type == TTM_PL_TT ||
488 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
489 		ttm_bo_move_null(bo, new_mem);
490 		goto out;
491 	}
492 	if ((old_mem->mem_type == TTM_PL_TT ||
493 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
494 	    new_mem->mem_type == TTM_PL_SYSTEM) {
495 		r = ttm_bo_wait_ctx(bo, ctx);
496 		if (r)
497 			return r;
498 
499 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
500 		ttm_resource_free(bo, &bo->resource);
501 		ttm_bo_assign_mem(bo, new_mem);
502 		goto out;
503 	}
504 
505 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
506 	    old_mem->mem_type == AMDGPU_PL_GWS ||
507 	    old_mem->mem_type == AMDGPU_PL_OA ||
508 	    new_mem->mem_type == AMDGPU_PL_GDS ||
509 	    new_mem->mem_type == AMDGPU_PL_GWS ||
510 	    new_mem->mem_type == AMDGPU_PL_OA) {
511 		/* Nothing to save here */
512 		ttm_bo_move_null(bo, new_mem);
513 		goto out;
514 	}
515 
516 	if (adev->mman.buffer_funcs_enabled) {
517 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 		      new_mem->mem_type == TTM_PL_VRAM) ||
519 		     (old_mem->mem_type == TTM_PL_VRAM &&
520 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
521 			hop->fpfn = 0;
522 			hop->lpfn = 0;
523 			hop->mem_type = TTM_PL_TT;
524 			hop->flags = 0;
525 			return -EMULTIHOP;
526 		}
527 
528 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
529 	} else {
530 		r = -ENODEV;
531 	}
532 
533 	if (r) {
534 		/* Check that all memory is CPU accessible */
535 		if (!amdgpu_mem_visible(adev, old_mem) ||
536 		    !amdgpu_mem_visible(adev, new_mem)) {
537 			pr_err("Move buffer fallback to memcpy unavailable\n");
538 			return r;
539 		}
540 
541 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
542 		if (r)
543 			return r;
544 	}
545 
546 	if (bo->type == ttm_bo_type_device &&
547 	    new_mem->mem_type == TTM_PL_VRAM &&
548 	    old_mem->mem_type != TTM_PL_VRAM) {
549 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 		 * accesses the BO after it's moved.
551 		 */
552 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 	}
554 
555 out:
556 	/* update statistics */
557 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
558 	amdgpu_bo_move_notify(bo, evict, new_mem);
559 	return 0;
560 }
561 
562 /*
563  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
564  *
565  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
566  */
567 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
568 				     struct ttm_resource *mem)
569 {
570 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
571 	size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
572 
573 	switch (mem->mem_type) {
574 	case TTM_PL_SYSTEM:
575 		/* system memory */
576 		return 0;
577 	case TTM_PL_TT:
578 	case AMDGPU_PL_PREEMPT:
579 		break;
580 	case TTM_PL_VRAM:
581 		mem->bus.offset = mem->start << PAGE_SHIFT;
582 		/* check if it's visible */
583 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
584 			return -EINVAL;
585 
586 		if (adev->mman.aper_base_kaddr &&
587 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
588 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
589 					mem->bus.offset;
590 
591 		mem->bus.offset += adev->gmc.aper_base;
592 		mem->bus.is_iomem = true;
593 		if (adev->gmc.xgmi.connected_to_cpu)
594 			mem->bus.caching = ttm_cached;
595 		else
596 			mem->bus.caching = ttm_write_combined;
597 		break;
598 	default:
599 		return -EINVAL;
600 	}
601 	return 0;
602 }
603 
604 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
605 					   unsigned long page_offset)
606 {
607 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
608 	struct amdgpu_res_cursor cursor;
609 
610 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
611 			 &cursor);
612 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
613 }
614 
615 /**
616  * amdgpu_ttm_domain_start - Returns GPU start address
617  * @adev: amdgpu device object
618  * @type: type of the memory
619  *
620  * Returns:
621  * GPU start address of a memory domain
622  */
623 
624 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
625 {
626 	switch (type) {
627 	case TTM_PL_TT:
628 		return adev->gmc.gart_start;
629 	case TTM_PL_VRAM:
630 		return adev->gmc.vram_start;
631 	}
632 
633 	return 0;
634 }
635 
636 /*
637  * TTM backend functions.
638  */
639 struct amdgpu_ttm_tt {
640 	struct ttm_tt	ttm;
641 	struct drm_gem_object	*gobj;
642 	u64			offset;
643 	uint64_t		userptr;
644 	struct task_struct	*usertask;
645 	uint32_t		userflags;
646 	bool			bound;
647 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
648 	struct hmm_range	*range;
649 #endif
650 };
651 
652 #ifdef CONFIG_DRM_AMDGPU_USERPTR
653 /*
654  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
655  * memory and start HMM tracking CPU page table update
656  *
657  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
658  * once afterwards to stop HMM tracking
659  */
660 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
661 {
662 	struct ttm_tt *ttm = bo->tbo.ttm;
663 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
664 	unsigned long start = gtt->userptr;
665 	struct vm_area_struct *vma;
666 	struct mm_struct *mm;
667 	bool readonly;
668 	int r = 0;
669 
670 	mm = bo->notifier.mm;
671 	if (unlikely(!mm)) {
672 		DRM_DEBUG_DRIVER("BO is not registered?\n");
673 		return -EFAULT;
674 	}
675 
676 	/* Another get_user_pages is running at the same time?? */
677 	if (WARN_ON(gtt->range))
678 		return -EFAULT;
679 
680 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
681 		return -ESRCH;
682 
683 	mmap_read_lock(mm);
684 	vma = vma_lookup(mm, start);
685 	if (unlikely(!vma)) {
686 		r = -EFAULT;
687 		goto out_unlock;
688 	}
689 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
690 		vma->vm_file)) {
691 		r = -EPERM;
692 		goto out_unlock;
693 	}
694 
695 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
696 	r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start,
697 				       ttm->num_pages, &gtt->range, readonly,
698 				       true);
699 out_unlock:
700 	mmap_read_unlock(mm);
701 	mmput(mm);
702 
703 	return r;
704 }
705 
706 /*
707  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
708  * Check if the pages backing this ttm range have been invalidated
709  *
710  * Returns: true if pages are still valid
711  */
712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
713 {
714 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
715 	bool r = false;
716 
717 	if (!gtt || !gtt->userptr)
718 		return false;
719 
720 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
721 		gtt->userptr, ttm->num_pages);
722 
723 	WARN_ONCE(!gtt->range || !gtt->range->hmm_pfns,
724 		"No user pages to check\n");
725 
726 	if (gtt->range) {
727 		/*
728 		 * FIXME: Must always hold notifier_lock for this, and must
729 		 * not ignore the return code.
730 		 */
731 		r = amdgpu_hmm_range_get_pages_done(gtt->range);
732 		gtt->range = NULL;
733 	}
734 
735 	return !r;
736 }
737 #endif
738 
739 /*
740  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
741  *
742  * Called by amdgpu_cs_list_validate(). This creates the page list
743  * that backs user memory and will ultimately be mapped into the device
744  * address space.
745  */
746 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
747 {
748 	unsigned long i;
749 
750 	for (i = 0; i < ttm->num_pages; ++i)
751 		ttm->pages[i] = pages ? pages[i] : NULL;
752 }
753 
754 /*
755  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
756  *
757  * Called by amdgpu_ttm_backend_bind()
758  **/
759 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
760 				     struct ttm_tt *ttm)
761 {
762 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
763 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
764 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
765 	enum dma_data_direction direction = write ?
766 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
767 	int r;
768 
769 	/* Allocate an SG array and squash pages into it */
770 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
771 				      (u64)ttm->num_pages << PAGE_SHIFT,
772 				      GFP_KERNEL);
773 	if (r)
774 		goto release_sg;
775 
776 	/* Map SG to device */
777 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
778 	if (r)
779 		goto release_sg;
780 
781 	/* convert SG to linear array of pages and dma addresses */
782 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
783 				       ttm->num_pages);
784 
785 	return 0;
786 
787 release_sg:
788 	kfree(ttm->sg);
789 	ttm->sg = NULL;
790 	return r;
791 }
792 
793 /*
794  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
795  */
796 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
797 					struct ttm_tt *ttm)
798 {
799 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
800 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
801 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
802 	enum dma_data_direction direction = write ?
803 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
804 
805 	/* double check that we don't free the table twice */
806 	if (!ttm->sg || !ttm->sg->sgl)
807 		return;
808 
809 	/* unmap the pages mapped to the device */
810 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
811 	sg_free_table(ttm->sg);
812 
813 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
814 	if (gtt->range) {
815 		unsigned long i;
816 
817 		for (i = 0; i < ttm->num_pages; i++) {
818 			if (ttm->pages[i] !=
819 			    hmm_pfn_to_page(gtt->range->hmm_pfns[i]))
820 				break;
821 		}
822 
823 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
824 	}
825 #endif
826 }
827 
828 static int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
829 				struct ttm_buffer_object *tbo,
830 				uint64_t flags)
831 {
832 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
833 	struct ttm_tt *ttm = tbo->ttm;
834 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
835 	int r;
836 
837 	if (amdgpu_bo_encrypted(abo))
838 		flags |= AMDGPU_PTE_TMZ;
839 
840 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
841 		uint64_t page_idx = 1;
842 
843 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
844 				gtt->ttm.dma_address, flags);
845 		if (r)
846 			goto gart_bind_fail;
847 
848 		/* The memory type of the first page defaults to UC. Now
849 		 * modify the memory type to NC from the second page of
850 		 * the BO onward.
851 		 */
852 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
853 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
854 
855 		r = amdgpu_gart_bind(adev,
856 				gtt->offset + (page_idx << PAGE_SHIFT),
857 				ttm->num_pages - page_idx,
858 				&(gtt->ttm.dma_address[page_idx]), flags);
859 	} else {
860 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
861 				     gtt->ttm.dma_address, flags);
862 	}
863 
864 gart_bind_fail:
865 	if (r)
866 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
867 			  ttm->num_pages, gtt->offset);
868 
869 	return r;
870 }
871 
872 /*
873  * amdgpu_ttm_backend_bind - Bind GTT memory
874  *
875  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
876  * This handles binding GTT memory to the device address space.
877  */
878 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
879 				   struct ttm_tt *ttm,
880 				   struct ttm_resource *bo_mem)
881 {
882 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
883 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
884 	uint64_t flags;
885 	int r = 0;
886 
887 	if (!bo_mem)
888 		return -EINVAL;
889 
890 	if (gtt->bound)
891 		return 0;
892 
893 	if (gtt->userptr) {
894 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
895 		if (r) {
896 			DRM_ERROR("failed to pin userptr\n");
897 			return r;
898 		}
899 	} else if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
900 		if (!ttm->sg) {
901 			struct dma_buf_attachment *attach;
902 			struct sg_table *sgt;
903 
904 			attach = gtt->gobj->import_attach;
905 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
906 			if (IS_ERR(sgt))
907 				return PTR_ERR(sgt);
908 
909 			ttm->sg = sgt;
910 		}
911 
912 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
913 					       ttm->num_pages);
914 	}
915 
916 	if (!ttm->num_pages) {
917 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
918 		     ttm->num_pages, bo_mem, ttm);
919 	}
920 
921 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
922 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
923 	    bo_mem->mem_type == AMDGPU_PL_OA)
924 		return -EINVAL;
925 
926 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
927 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
928 		return 0;
929 	}
930 
931 	/* compute PTE flags relevant to this BO memory */
932 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
933 
934 	/* bind pages into GART page tables */
935 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
936 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
937 		gtt->ttm.dma_address, flags);
938 
939 	if (r)
940 		DRM_ERROR("failed to bind %u pages at 0x%08llX\n",
941 			  ttm->num_pages, gtt->offset);
942 	gtt->bound = true;
943 	return r;
944 }
945 
946 /*
947  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
948  * through AGP or GART aperture.
949  *
950  * If bo is accessible through AGP aperture, then use AGP aperture
951  * to access bo; otherwise allocate logical space in GART aperture
952  * and map bo to GART aperture.
953  */
954 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
955 {
956 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
957 	struct ttm_operation_ctx ctx = { false, false };
958 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
959 	struct ttm_placement placement;
960 	struct ttm_place placements;
961 	struct ttm_resource *tmp;
962 	uint64_t addr, flags;
963 	int r;
964 
965 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
966 		return 0;
967 
968 	addr = amdgpu_gmc_agp_addr(bo);
969 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
970 		bo->resource->start = addr >> PAGE_SHIFT;
971 		return 0;
972 	}
973 
974 	/* allocate GART space */
975 	placement.num_placement = 1;
976 	placement.placement = &placements;
977 	placement.num_busy_placement = 1;
978 	placement.busy_placement = &placements;
979 	placements.fpfn = 0;
980 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
981 	placements.mem_type = TTM_PL_TT;
982 	placements.flags = bo->resource->placement;
983 
984 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
985 	if (unlikely(r))
986 		return r;
987 
988 	/* compute PTE flags for this buffer object */
989 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
990 
991 	/* Bind pages */
992 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
993 	r = amdgpu_ttm_gart_bind(adev, bo, flags);
994 	if (unlikely(r)) {
995 		ttm_resource_free(bo, &tmp);
996 		return r;
997 	}
998 
999 	amdgpu_gart_invalidate_tlb(adev);
1000 	ttm_resource_free(bo, &bo->resource);
1001 	ttm_bo_assign_mem(bo, tmp);
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * amdgpu_ttm_recover_gart - Rebind GTT pages
1008  *
1009  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1010  * rebind GTT pages during a GPU reset.
1011  */
1012 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1013 {
1014 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1015 	uint64_t flags;
1016 	int r;
1017 
1018 	if (!tbo->ttm)
1019 		return 0;
1020 
1021 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1022 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1023 
1024 	return r;
1025 }
1026 
1027 /*
1028  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1029  *
1030  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1031  * ttm_tt_destroy().
1032  */
1033 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1034 				      struct ttm_tt *ttm)
1035 {
1036 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1037 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1038 	int r;
1039 
1040 	/* if the pages have userptr pinning then clear that first */
1041 	if (gtt->userptr) {
1042 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1043 	} else if (ttm->sg && gtt->gobj->import_attach) {
1044 		struct dma_buf_attachment *attach;
1045 
1046 		attach = gtt->gobj->import_attach;
1047 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1048 		ttm->sg = NULL;
1049 	}
1050 
1051 	if (!gtt->bound)
1052 		return;
1053 
1054 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1055 		return;
1056 
1057 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1058 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1059 	if (r)
1060 		DRM_ERROR("failed to unbind %u pages at 0x%08llX\n",
1061 			  gtt->ttm.num_pages, gtt->offset);
1062 	gtt->bound = false;
1063 }
1064 
1065 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1066 				       struct ttm_tt *ttm)
1067 {
1068 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1069 
1070 	amdgpu_ttm_backend_unbind(bdev, ttm);
1071 	ttm_tt_destroy_common(bdev, ttm);
1072 	if (gtt->usertask)
1073 		put_task_struct(gtt->usertask);
1074 
1075 	ttm_tt_fini(&gtt->ttm);
1076 	kfree(gtt);
1077 }
1078 
1079 /**
1080  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1081  *
1082  * @bo: The buffer object to create a GTT ttm_tt object around
1083  * @page_flags: Page flags to be added to the ttm_tt object
1084  *
1085  * Called by ttm_tt_create().
1086  */
1087 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1088 					   uint32_t page_flags)
1089 {
1090 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1091 	struct amdgpu_ttm_tt *gtt;
1092 	enum ttm_caching caching;
1093 
1094 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1095 	if (gtt == NULL) {
1096 		return NULL;
1097 	}
1098 	gtt->gobj = &bo->base;
1099 
1100 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1101 		caching = ttm_write_combined;
1102 	else
1103 		caching = ttm_cached;
1104 
1105 	/* allocate space for the uninitialized page entries */
1106 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1107 		kfree(gtt);
1108 		return NULL;
1109 	}
1110 	return &gtt->ttm;
1111 }
1112 
1113 /*
1114  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1115  *
1116  * Map the pages of a ttm_tt object to an address space visible
1117  * to the underlying device.
1118  */
1119 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1120 				  struct ttm_tt *ttm,
1121 				  struct ttm_operation_ctx *ctx)
1122 {
1123 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1124 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1125 
1126 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1127 	if (gtt && gtt->userptr) {
1128 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1129 		if (!ttm->sg)
1130 			return -ENOMEM;
1131 		return 0;
1132 	}
1133 
1134 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1135 		return 0;
1136 
1137 	return ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1138 }
1139 
1140 /*
1141  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1142  *
1143  * Unmaps pages of a ttm_tt object from the device address space and
1144  * unpopulates the page array backing it.
1145  */
1146 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1147 				     struct ttm_tt *ttm)
1148 {
1149 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1150 	struct amdgpu_device *adev;
1151 
1152 	if (gtt && gtt->userptr) {
1153 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1154 		kfree(ttm->sg);
1155 		ttm->sg = NULL;
1156 		return;
1157 	}
1158 
1159 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1160 		return;
1161 
1162 	adev = amdgpu_ttm_adev(bdev);
1163 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1164 }
1165 
1166 /**
1167  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1168  * task
1169  *
1170  * @bo: The ttm_buffer_object to bind this userptr to
1171  * @addr:  The address in the current tasks VM space to use
1172  * @flags: Requirements of userptr object.
1173  *
1174  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1175  * to current task
1176  */
1177 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1178 			      uint64_t addr, uint32_t flags)
1179 {
1180 	struct amdgpu_ttm_tt *gtt;
1181 
1182 	if (!bo->ttm) {
1183 		/* TODO: We want a separate TTM object type for userptrs */
1184 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1185 		if (bo->ttm == NULL)
1186 			return -ENOMEM;
1187 	}
1188 
1189 	/* Set TTM_PAGE_FLAG_SG before populate but after create. */
1190 	bo->ttm->page_flags |= TTM_PAGE_FLAG_SG;
1191 
1192 	gtt = (void *)bo->ttm;
1193 	gtt->userptr = addr;
1194 	gtt->userflags = flags;
1195 
1196 	if (gtt->usertask)
1197 		put_task_struct(gtt->usertask);
1198 	gtt->usertask = current->group_leader;
1199 	get_task_struct(gtt->usertask);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1206  */
1207 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1208 {
1209 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1210 
1211 	if (gtt == NULL)
1212 		return NULL;
1213 
1214 	if (gtt->usertask == NULL)
1215 		return NULL;
1216 
1217 	return gtt->usertask->mm;
1218 }
1219 
1220 /*
1221  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1222  * address range for the current task.
1223  *
1224  */
1225 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1226 				  unsigned long end)
1227 {
1228 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1229 	unsigned long size;
1230 
1231 	if (gtt == NULL || !gtt->userptr)
1232 		return false;
1233 
1234 	/* Return false if no part of the ttm_tt object lies within
1235 	 * the range
1236 	 */
1237 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1238 	if (gtt->userptr > end || gtt->userptr + size <= start)
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
1244 /*
1245  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1246  */
1247 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1248 {
1249 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1250 
1251 	if (gtt == NULL || !gtt->userptr)
1252 		return false;
1253 
1254 	return true;
1255 }
1256 
1257 /*
1258  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1259  */
1260 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1261 {
1262 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1263 
1264 	if (gtt == NULL)
1265 		return false;
1266 
1267 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1268 }
1269 
1270 /**
1271  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1272  *
1273  * @ttm: The ttm_tt object to compute the flags for
1274  * @mem: The memory registry backing this ttm_tt object
1275  *
1276  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1277  */
1278 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1279 {
1280 	uint64_t flags = 0;
1281 
1282 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1283 		flags |= AMDGPU_PTE_VALID;
1284 
1285 	if (mem && (mem->mem_type == TTM_PL_TT ||
1286 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1287 		flags |= AMDGPU_PTE_SYSTEM;
1288 
1289 		if (ttm->caching == ttm_cached)
1290 			flags |= AMDGPU_PTE_SNOOPED;
1291 	}
1292 
1293 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1294 			mem->bus.caching == ttm_cached)
1295 		flags |= AMDGPU_PTE_SNOOPED;
1296 
1297 	return flags;
1298 }
1299 
1300 /**
1301  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1302  *
1303  * @adev: amdgpu_device pointer
1304  * @ttm: The ttm_tt object to compute the flags for
1305  * @mem: The memory registry backing this ttm_tt object
1306  *
1307  * Figure out the flags to use for a VM PTE (Page Table Entry).
1308  */
1309 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1310 				 struct ttm_resource *mem)
1311 {
1312 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1313 
1314 	flags |= adev->gart.gart_pte_flags;
1315 	flags |= AMDGPU_PTE_READABLE;
1316 
1317 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1318 		flags |= AMDGPU_PTE_WRITEABLE;
1319 
1320 	return flags;
1321 }
1322 
1323 /*
1324  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1325  * object.
1326  *
1327  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1328  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1329  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1330  * used to clean out a memory space.
1331  */
1332 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1333 					    const struct ttm_place *place)
1334 {
1335 	unsigned long num_pages = bo->resource->num_pages;
1336 	struct amdgpu_res_cursor cursor;
1337 	struct dma_resv_list *flist;
1338 	struct dma_fence *f;
1339 	int i;
1340 
1341 	/* Swapout? */
1342 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1343 		return true;
1344 
1345 	if (bo->type == ttm_bo_type_kernel &&
1346 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1347 		return false;
1348 
1349 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1350 	 * If true, then return false as any KFD process needs all its BOs to
1351 	 * be resident to run successfully
1352 	 */
1353 	flist = dma_resv_shared_list(bo->base.resv);
1354 	if (flist) {
1355 		for (i = 0; i < flist->shared_count; ++i) {
1356 			f = rcu_dereference_protected(flist->shared[i],
1357 				dma_resv_held(bo->base.resv));
1358 			if (amdkfd_fence_check_mm(f, current->mm))
1359 				return false;
1360 		}
1361 	}
1362 
1363 	switch (bo->resource->mem_type) {
1364 	case AMDGPU_PL_PREEMPT:
1365 		/* Preemptible BOs don't own system resources managed by the
1366 		 * driver (pages, VRAM, GART space). They point to resources
1367 		 * owned by someone else (e.g. pageable memory in user mode
1368 		 * or a DMABuf). They are used in a preemptible context so we
1369 		 * can guarantee no deadlocks and good QoS in case of MMU
1370 		 * notifiers or DMABuf move notifiers from the resource owner.
1371 		 */
1372 		return false;
1373 	case TTM_PL_TT:
1374 		if (amdgpu_bo_is_amdgpu_bo(bo) &&
1375 		    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1376 			return false;
1377 		return true;
1378 
1379 	case TTM_PL_VRAM:
1380 		/* Check each drm MM node individually */
1381 		amdgpu_res_first(bo->resource, 0, (u64)num_pages << PAGE_SHIFT,
1382 				 &cursor);
1383 		while (cursor.remaining) {
1384 			if (place->fpfn < PFN_DOWN(cursor.start + cursor.size)
1385 			    && !(place->lpfn &&
1386 				 place->lpfn <= PFN_DOWN(cursor.start)))
1387 				return true;
1388 
1389 			amdgpu_res_next(&cursor, cursor.size);
1390 		}
1391 		return false;
1392 
1393 	default:
1394 		break;
1395 	}
1396 
1397 	return ttm_bo_eviction_valuable(bo, place);
1398 }
1399 
1400 /**
1401  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1402  *
1403  * @bo:  The buffer object to read/write
1404  * @offset:  Offset into buffer object
1405  * @buf:  Secondary buffer to write/read from
1406  * @len: Length in bytes of access
1407  * @write:  true if writing
1408  *
1409  * This is used to access VRAM that backs a buffer object via MMIO
1410  * access for debugging purposes.
1411  */
1412 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1413 				    unsigned long offset, void *buf, int len,
1414 				    int write)
1415 {
1416 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1417 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1418 	struct amdgpu_res_cursor cursor;
1419 	unsigned long flags;
1420 	uint32_t value = 0;
1421 	int ret = 0;
1422 
1423 	if (bo->resource->mem_type != TTM_PL_VRAM)
1424 		return -EIO;
1425 
1426 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1427 	while (cursor.remaining) {
1428 		uint64_t aligned_pos = cursor.start & ~(uint64_t)3;
1429 		uint64_t bytes = 4 - (cursor.start & 3);
1430 		uint32_t shift = (cursor.start & 3) * 8;
1431 		uint32_t mask = 0xffffffff << shift;
1432 
1433 		if (cursor.size < bytes) {
1434 			mask &= 0xffffffff >> (bytes - cursor.size) * 8;
1435 			bytes = cursor.size;
1436 		}
1437 
1438 		if (mask != 0xffffffff) {
1439 			spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1440 			WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1441 			WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1442 			value = RREG32_NO_KIQ(mmMM_DATA);
1443 			if (write) {
1444 				value &= ~mask;
1445 				value |= (*(uint32_t *)buf << shift) & mask;
1446 				WREG32_NO_KIQ(mmMM_DATA, value);
1447 			}
1448 			spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1449 			if (!write) {
1450 				value = (value & mask) >> shift;
1451 				memcpy(buf, &value, bytes);
1452 			}
1453 		} else {
1454 			bytes = cursor.size & ~0x3ULL;
1455 			amdgpu_device_vram_access(adev, cursor.start,
1456 						  (uint32_t *)buf, bytes,
1457 						  write);
1458 		}
1459 
1460 		ret += bytes;
1461 		buf = (uint8_t *)buf + bytes;
1462 		amdgpu_res_next(&cursor, bytes);
1463 	}
1464 
1465 	return ret;
1466 }
1467 
1468 static void
1469 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1470 {
1471 	amdgpu_bo_move_notify(bo, false, NULL);
1472 }
1473 
1474 static struct ttm_device_funcs amdgpu_bo_driver = {
1475 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1476 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1477 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1478 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1479 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1480 	.evict_flags = &amdgpu_evict_flags,
1481 	.move = &amdgpu_bo_move,
1482 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1483 	.release_notify = &amdgpu_bo_release_notify,
1484 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1485 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1486 	.access_memory = &amdgpu_ttm_access_memory,
1487 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1488 };
1489 
1490 /*
1491  * Firmware Reservation functions
1492  */
1493 /**
1494  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1495  *
1496  * @adev: amdgpu_device pointer
1497  *
1498  * free fw reserved vram if it has been reserved.
1499  */
1500 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1501 {
1502 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1503 		NULL, &adev->mman.fw_vram_usage_va);
1504 }
1505 
1506 /**
1507  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1508  *
1509  * @adev: amdgpu_device pointer
1510  *
1511  * create bo vram reservation from fw.
1512  */
1513 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1514 {
1515 	uint64_t vram_size = adev->gmc.visible_vram_size;
1516 
1517 	adev->mman.fw_vram_usage_va = NULL;
1518 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1519 
1520 	if (adev->mman.fw_vram_usage_size == 0 ||
1521 	    adev->mman.fw_vram_usage_size > vram_size)
1522 		return 0;
1523 
1524 	return amdgpu_bo_create_kernel_at(adev,
1525 					  adev->mman.fw_vram_usage_start_offset,
1526 					  adev->mman.fw_vram_usage_size,
1527 					  AMDGPU_GEM_DOMAIN_VRAM,
1528 					  &adev->mman.fw_vram_usage_reserved_bo,
1529 					  &adev->mman.fw_vram_usage_va);
1530 }
1531 
1532 /*
1533  * Memoy training reservation functions
1534  */
1535 
1536 /**
1537  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1538  *
1539  * @adev: amdgpu_device pointer
1540  *
1541  * free memory training reserved vram if it has been reserved.
1542  */
1543 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1544 {
1545 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1546 
1547 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1548 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1549 	ctx->c2p_bo = NULL;
1550 
1551 	return 0;
1552 }
1553 
1554 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1555 {
1556 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1557 
1558 	memset(ctx, 0, sizeof(*ctx));
1559 
1560 	ctx->c2p_train_data_offset =
1561 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1562 	ctx->p2c_train_data_offset =
1563 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1564 	ctx->train_data_size =
1565 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1566 
1567 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1568 			ctx->train_data_size,
1569 			ctx->p2c_train_data_offset,
1570 			ctx->c2p_train_data_offset);
1571 }
1572 
1573 /*
1574  * reserve TMR memory at the top of VRAM which holds
1575  * IP Discovery data and is protected by PSP.
1576  */
1577 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1578 {
1579 	int ret;
1580 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1581 	bool mem_train_support = false;
1582 
1583 	if (!amdgpu_sriov_vf(adev)) {
1584 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1585 			mem_train_support = true;
1586 		else
1587 			DRM_DEBUG("memory training does not support!\n");
1588 	}
1589 
1590 	/*
1591 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1592 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1593 	 *
1594 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1595 	 * discovery data and G6 memory training data respectively
1596 	 */
1597 	adev->mman.discovery_tmr_size =
1598 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1599 	if (!adev->mman.discovery_tmr_size)
1600 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1601 
1602 	if (mem_train_support) {
1603 		/* reserve vram for mem train according to TMR location */
1604 		amdgpu_ttm_training_data_block_init(adev);
1605 		ret = amdgpu_bo_create_kernel_at(adev,
1606 					 ctx->c2p_train_data_offset,
1607 					 ctx->train_data_size,
1608 					 AMDGPU_GEM_DOMAIN_VRAM,
1609 					 &ctx->c2p_bo,
1610 					 NULL);
1611 		if (ret) {
1612 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1613 			amdgpu_ttm_training_reserve_vram_fini(adev);
1614 			return ret;
1615 		}
1616 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1617 	}
1618 
1619 	ret = amdgpu_bo_create_kernel_at(adev,
1620 				adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1621 				adev->mman.discovery_tmr_size,
1622 				AMDGPU_GEM_DOMAIN_VRAM,
1623 				&adev->mman.discovery_memory,
1624 				NULL);
1625 	if (ret) {
1626 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1627 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1628 		return ret;
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 /*
1635  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1636  * gtt/vram related fields.
1637  *
1638  * This initializes all of the memory space pools that the TTM layer
1639  * will need such as the GTT space (system memory mapped to the device),
1640  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1641  * can be mapped per VMID.
1642  */
1643 int amdgpu_ttm_init(struct amdgpu_device *adev)
1644 {
1645 	uint64_t gtt_size;
1646 	int r;
1647 	u64 vis_vram_limit;
1648 
1649 	mutex_init(&adev->mman.gtt_window_lock);
1650 
1651 	/* No others user of address space so set it to 0 */
1652 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1653 			       adev_to_drm(adev)->anon_inode->i_mapping,
1654 			       adev_to_drm(adev)->vma_offset_manager,
1655 			       adev->need_swiotlb,
1656 			       dma_addressing_limited(adev->dev));
1657 	if (r) {
1658 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1659 		return r;
1660 	}
1661 	adev->mman.initialized = true;
1662 
1663 	/* Initialize VRAM pool with all of VRAM divided into pages */
1664 	r = amdgpu_vram_mgr_init(adev);
1665 	if (r) {
1666 		DRM_ERROR("Failed initializing VRAM heap.\n");
1667 		return r;
1668 	}
1669 
1670 	/* Reduce size of CPU-visible VRAM if requested */
1671 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1672 	if (amdgpu_vis_vram_limit > 0 &&
1673 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1674 		adev->gmc.visible_vram_size = vis_vram_limit;
1675 
1676 	/* Change the size here instead of the init above so only lpfn is affected */
1677 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1678 #ifdef CONFIG_64BIT
1679 #ifdef CONFIG_X86
1680 	if (adev->gmc.xgmi.connected_to_cpu)
1681 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1682 				adev->gmc.visible_vram_size);
1683 
1684 	else
1685 #endif
1686 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1687 				adev->gmc.visible_vram_size);
1688 #endif
1689 
1690 	/*
1691 	 *The reserved vram for firmware must be pinned to the specified
1692 	 *place on the VRAM, so reserve it early.
1693 	 */
1694 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1695 	if (r) {
1696 		return r;
1697 	}
1698 
1699 	/*
1700 	 * only NAVI10 and onwards ASIC support for IP discovery.
1701 	 * If IP discovery enabled, a block of memory should be
1702 	 * reserved for IP discovey.
1703 	 */
1704 	if (adev->mman.discovery_bin) {
1705 		r = amdgpu_ttm_reserve_tmr(adev);
1706 		if (r)
1707 			return r;
1708 	}
1709 
1710 	/* allocate memory as required for VGA
1711 	 * This is used for VGA emulation and pre-OS scanout buffers to
1712 	 * avoid display artifacts while transitioning between pre-OS
1713 	 * and driver.  */
1714 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1715 				       AMDGPU_GEM_DOMAIN_VRAM,
1716 				       &adev->mman.stolen_vga_memory,
1717 				       NULL);
1718 	if (r)
1719 		return r;
1720 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1721 				       adev->mman.stolen_extended_size,
1722 				       AMDGPU_GEM_DOMAIN_VRAM,
1723 				       &adev->mman.stolen_extended_memory,
1724 				       NULL);
1725 	if (r)
1726 		return r;
1727 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1728 				       adev->mman.stolen_reserved_size,
1729 				       AMDGPU_GEM_DOMAIN_VRAM,
1730 				       &adev->mman.stolen_reserved_memory,
1731 				       NULL);
1732 	if (r)
1733 		return r;
1734 
1735 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1736 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1737 
1738 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1739 	 * or whatever the user passed on module init */
1740 	if (amdgpu_gtt_size == -1) {
1741 		struct sysinfo si;
1742 
1743 		si_meminfo(&si);
1744 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1745 			       adev->gmc.mc_vram_size),
1746 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1747 	}
1748 	else
1749 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1750 
1751 	/* Initialize GTT memory pool */
1752 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1753 	if (r) {
1754 		DRM_ERROR("Failed initializing GTT heap.\n");
1755 		return r;
1756 	}
1757 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1758 		 (unsigned)(gtt_size / (1024 * 1024)));
1759 
1760 	/* Initialize preemptible memory pool */
1761 	r = amdgpu_preempt_mgr_init(adev);
1762 	if (r) {
1763 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1764 		return r;
1765 	}
1766 
1767 	/* Initialize various on-chip memory pools */
1768 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1769 	if (r) {
1770 		DRM_ERROR("Failed initializing GDS heap.\n");
1771 		return r;
1772 	}
1773 
1774 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1775 	if (r) {
1776 		DRM_ERROR("Failed initializing gws heap.\n");
1777 		return r;
1778 	}
1779 
1780 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1781 	if (r) {
1782 		DRM_ERROR("Failed initializing oa heap.\n");
1783 		return r;
1784 	}
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1791  */
1792 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1793 {
1794 	if (!adev->mman.initialized)
1795 		return;
1796 
1797 	amdgpu_ttm_training_reserve_vram_fini(adev);
1798 	/* return the stolen vga memory back to VRAM */
1799 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1800 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1801 	/* return the IP Discovery TMR memory back to VRAM */
1802 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1803 	if (adev->mman.stolen_reserved_size)
1804 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1805 				      NULL, NULL);
1806 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1807 
1808 	amdgpu_vram_mgr_fini(adev);
1809 	amdgpu_gtt_mgr_fini(adev);
1810 	amdgpu_preempt_mgr_fini(adev);
1811 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1812 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1813 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1814 	ttm_device_fini(&adev->mman.bdev);
1815 	adev->mman.initialized = false;
1816 	DRM_INFO("amdgpu: ttm finalized\n");
1817 }
1818 
1819 /**
1820  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1821  *
1822  * @adev: amdgpu_device pointer
1823  * @enable: true when we can use buffer functions.
1824  *
1825  * Enable/disable use of buffer functions during suspend/resume. This should
1826  * only be called at bootup or when userspace isn't running.
1827  */
1828 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1829 {
1830 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1831 	uint64_t size;
1832 	int r;
1833 
1834 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1835 	    adev->mman.buffer_funcs_enabled == enable)
1836 		return;
1837 
1838 	if (enable) {
1839 		struct amdgpu_ring *ring;
1840 		struct drm_gpu_scheduler *sched;
1841 
1842 		ring = adev->mman.buffer_funcs_ring;
1843 		sched = &ring->sched;
1844 		r = drm_sched_entity_init(&adev->mman.entity,
1845 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1846 					  1, NULL);
1847 		if (r) {
1848 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1849 				  r);
1850 			return;
1851 		}
1852 	} else {
1853 		drm_sched_entity_destroy(&adev->mman.entity);
1854 		dma_fence_put(man->move);
1855 		man->move = NULL;
1856 	}
1857 
1858 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1859 	if (enable)
1860 		size = adev->gmc.real_vram_size;
1861 	else
1862 		size = adev->gmc.visible_vram_size;
1863 	man->size = size >> PAGE_SHIFT;
1864 	adev->mman.buffer_funcs_enabled = enable;
1865 }
1866 
1867 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1868 		       uint64_t dst_offset, uint32_t byte_count,
1869 		       struct dma_resv *resv,
1870 		       struct dma_fence **fence, bool direct_submit,
1871 		       bool vm_needs_flush, bool tmz)
1872 {
1873 	enum amdgpu_ib_pool_type pool = direct_submit ? AMDGPU_IB_POOL_DIRECT :
1874 		AMDGPU_IB_POOL_DELAYED;
1875 	struct amdgpu_device *adev = ring->adev;
1876 	struct amdgpu_job *job;
1877 
1878 	uint32_t max_bytes;
1879 	unsigned num_loops, num_dw;
1880 	unsigned i;
1881 	int r;
1882 
1883 	if (direct_submit && !ring->sched.ready) {
1884 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1885 		return -EINVAL;
1886 	}
1887 
1888 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1889 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1890 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
1891 
1892 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, &job);
1893 	if (r)
1894 		return r;
1895 
1896 	if (vm_needs_flush) {
1897 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1898 					adev->gmc.pdb0_bo : adev->gart.bo);
1899 		job->vm_needs_flush = true;
1900 	}
1901 	if (resv) {
1902 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1903 				     AMDGPU_SYNC_ALWAYS,
1904 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1905 		if (r) {
1906 			DRM_ERROR("sync failed (%d).\n", r);
1907 			goto error_free;
1908 		}
1909 	}
1910 
1911 	for (i = 0; i < num_loops; i++) {
1912 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
1913 
1914 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
1915 					dst_offset, cur_size_in_bytes, tmz);
1916 
1917 		src_offset += cur_size_in_bytes;
1918 		dst_offset += cur_size_in_bytes;
1919 		byte_count -= cur_size_in_bytes;
1920 	}
1921 
1922 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1923 	WARN_ON(job->ibs[0].length_dw > num_dw);
1924 	if (direct_submit)
1925 		r = amdgpu_job_submit_direct(job, ring, fence);
1926 	else
1927 		r = amdgpu_job_submit(job, &adev->mman.entity,
1928 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
1929 	if (r)
1930 		goto error_free;
1931 
1932 	return r;
1933 
1934 error_free:
1935 	amdgpu_job_free(job);
1936 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
1937 	return r;
1938 }
1939 
1940 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
1941 		       uint32_t src_data,
1942 		       struct dma_resv *resv,
1943 		       struct dma_fence **fence)
1944 {
1945 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
1946 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
1947 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
1948 
1949 	struct amdgpu_res_cursor cursor;
1950 	unsigned int num_loops, num_dw;
1951 	uint64_t num_bytes;
1952 
1953 	struct amdgpu_job *job;
1954 	int r;
1955 
1956 	if (!adev->mman.buffer_funcs_enabled) {
1957 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
1958 		return -EINVAL;
1959 	}
1960 
1961 	if (bo->tbo.resource->mem_type == AMDGPU_PL_PREEMPT) {
1962 		DRM_ERROR("Trying to clear preemptible memory.\n");
1963 		return -EINVAL;
1964 	}
1965 
1966 	if (bo->tbo.resource->mem_type == TTM_PL_TT) {
1967 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
1968 		if (r)
1969 			return r;
1970 	}
1971 
1972 	num_bytes = bo->tbo.resource->num_pages << PAGE_SHIFT;
1973 	num_loops = 0;
1974 
1975 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
1976 	while (cursor.remaining) {
1977 		num_loops += DIV_ROUND_UP_ULL(cursor.size, max_bytes);
1978 		amdgpu_res_next(&cursor, cursor.size);
1979 	}
1980 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
1981 
1982 	/* for IB padding */
1983 	num_dw += 64;
1984 
1985 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1986 				     &job);
1987 	if (r)
1988 		return r;
1989 
1990 	if (resv) {
1991 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1992 				     AMDGPU_SYNC_ALWAYS,
1993 				     AMDGPU_FENCE_OWNER_UNDEFINED);
1994 		if (r) {
1995 			DRM_ERROR("sync failed (%d).\n", r);
1996 			goto error_free;
1997 		}
1998 	}
1999 
2000 	amdgpu_res_first(bo->tbo.resource, 0, num_bytes, &cursor);
2001 	while (cursor.remaining) {
2002 		uint32_t cur_size = min_t(uint64_t, cursor.size, max_bytes);
2003 		uint64_t dst_addr = cursor.start;
2004 
2005 		dst_addr += amdgpu_ttm_domain_start(adev,
2006 						    bo->tbo.resource->mem_type);
2007 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2008 					cur_size);
2009 
2010 		amdgpu_res_next(&cursor, cur_size);
2011 	}
2012 
2013 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2014 	WARN_ON(job->ibs[0].length_dw > num_dw);
2015 	r = amdgpu_job_submit(job, &adev->mman.entity,
2016 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2017 	if (r)
2018 		goto error_free;
2019 
2020 	return 0;
2021 
2022 error_free:
2023 	amdgpu_job_free(job);
2024 	return r;
2025 }
2026 
2027 #if defined(CONFIG_DEBUG_FS)
2028 
2029 static int amdgpu_mm_vram_table_show(struct seq_file *m, void *unused)
2030 {
2031 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2032 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2033 							    TTM_PL_VRAM);
2034 	struct drm_printer p = drm_seq_file_printer(m);
2035 
2036 	man->func->debug(man, &p);
2037 	return 0;
2038 }
2039 
2040 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2041 {
2042 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2043 
2044 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2045 }
2046 
2047 static int amdgpu_mm_tt_table_show(struct seq_file *m, void *unused)
2048 {
2049 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2050 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2051 							    TTM_PL_TT);
2052 	struct drm_printer p = drm_seq_file_printer(m);
2053 
2054 	man->func->debug(man, &p);
2055 	return 0;
2056 }
2057 
2058 static int amdgpu_mm_gds_table_show(struct seq_file *m, void *unused)
2059 {
2060 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2061 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2062 							    AMDGPU_PL_GDS);
2063 	struct drm_printer p = drm_seq_file_printer(m);
2064 
2065 	man->func->debug(man, &p);
2066 	return 0;
2067 }
2068 
2069 static int amdgpu_mm_gws_table_show(struct seq_file *m, void *unused)
2070 {
2071 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2072 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2073 							    AMDGPU_PL_GWS);
2074 	struct drm_printer p = drm_seq_file_printer(m);
2075 
2076 	man->func->debug(man, &p);
2077 	return 0;
2078 }
2079 
2080 static int amdgpu_mm_oa_table_show(struct seq_file *m, void *unused)
2081 {
2082 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2083 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev,
2084 							    AMDGPU_PL_OA);
2085 	struct drm_printer p = drm_seq_file_printer(m);
2086 
2087 	man->func->debug(man, &p);
2088 	return 0;
2089 }
2090 
2091 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_vram_table);
2092 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_tt_table);
2093 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gds_table);
2094 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_gws_table);
2095 DEFINE_SHOW_ATTRIBUTE(amdgpu_mm_oa_table);
2096 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2097 
2098 /*
2099  * amdgpu_ttm_vram_read - Linear read access to VRAM
2100  *
2101  * Accesses VRAM via MMIO for debugging purposes.
2102  */
2103 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2104 				    size_t size, loff_t *pos)
2105 {
2106 	struct amdgpu_device *adev = file_inode(f)->i_private;
2107 	ssize_t result = 0;
2108 
2109 	if (size & 0x3 || *pos & 0x3)
2110 		return -EINVAL;
2111 
2112 	if (*pos >= adev->gmc.mc_vram_size)
2113 		return -ENXIO;
2114 
2115 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2116 	while (size) {
2117 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2118 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2119 
2120 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2121 		if (copy_to_user(buf, value, bytes))
2122 			return -EFAULT;
2123 
2124 		result += bytes;
2125 		buf += bytes;
2126 		*pos += bytes;
2127 		size -= bytes;
2128 	}
2129 
2130 	return result;
2131 }
2132 
2133 /*
2134  * amdgpu_ttm_vram_write - Linear write access to VRAM
2135  *
2136  * Accesses VRAM via MMIO for debugging purposes.
2137  */
2138 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2139 				    size_t size, loff_t *pos)
2140 {
2141 	struct amdgpu_device *adev = file_inode(f)->i_private;
2142 	ssize_t result = 0;
2143 	int r;
2144 
2145 	if (size & 0x3 || *pos & 0x3)
2146 		return -EINVAL;
2147 
2148 	if (*pos >= adev->gmc.mc_vram_size)
2149 		return -ENXIO;
2150 
2151 	while (size) {
2152 		unsigned long flags;
2153 		uint32_t value;
2154 
2155 		if (*pos >= adev->gmc.mc_vram_size)
2156 			return result;
2157 
2158 		r = get_user(value, (uint32_t *)buf);
2159 		if (r)
2160 			return r;
2161 
2162 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2163 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2164 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2165 		WREG32_NO_KIQ(mmMM_DATA, value);
2166 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2167 
2168 		result += 4;
2169 		buf += 4;
2170 		*pos += 4;
2171 		size -= 4;
2172 	}
2173 
2174 	return result;
2175 }
2176 
2177 static const struct file_operations amdgpu_ttm_vram_fops = {
2178 	.owner = THIS_MODULE,
2179 	.read = amdgpu_ttm_vram_read,
2180 	.write = amdgpu_ttm_vram_write,
2181 	.llseek = default_llseek,
2182 };
2183 
2184 /*
2185  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2186  *
2187  * This function is used to read memory that has been mapped to the
2188  * GPU and the known addresses are not physical addresses but instead
2189  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2190  */
2191 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2192 				 size_t size, loff_t *pos)
2193 {
2194 	struct amdgpu_device *adev = file_inode(f)->i_private;
2195 	struct iommu_domain *dom;
2196 	ssize_t result = 0;
2197 	int r;
2198 
2199 	/* retrieve the IOMMU domain if any for this device */
2200 	dom = iommu_get_domain_for_dev(adev->dev);
2201 
2202 	while (size) {
2203 		phys_addr_t addr = *pos & PAGE_MASK;
2204 		loff_t off = *pos & ~PAGE_MASK;
2205 		size_t bytes = PAGE_SIZE - off;
2206 		unsigned long pfn;
2207 		struct page *p;
2208 		void *ptr;
2209 
2210 		bytes = bytes < size ? bytes : size;
2211 
2212 		/* Translate the bus address to a physical address.  If
2213 		 * the domain is NULL it means there is no IOMMU active
2214 		 * and the address translation is the identity
2215 		 */
2216 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2217 
2218 		pfn = addr >> PAGE_SHIFT;
2219 		if (!pfn_valid(pfn))
2220 			return -EPERM;
2221 
2222 		p = pfn_to_page(pfn);
2223 		if (p->mapping != adev->mman.bdev.dev_mapping)
2224 			return -EPERM;
2225 
2226 		ptr = kmap(p);
2227 		r = copy_to_user(buf, ptr + off, bytes);
2228 		kunmap(p);
2229 		if (r)
2230 			return -EFAULT;
2231 
2232 		size -= bytes;
2233 		*pos += bytes;
2234 		result += bytes;
2235 	}
2236 
2237 	return result;
2238 }
2239 
2240 /*
2241  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2242  *
2243  * This function is used to write memory that has been mapped to the
2244  * GPU and the known addresses are not physical addresses but instead
2245  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2246  */
2247 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2248 				 size_t size, loff_t *pos)
2249 {
2250 	struct amdgpu_device *adev = file_inode(f)->i_private;
2251 	struct iommu_domain *dom;
2252 	ssize_t result = 0;
2253 	int r;
2254 
2255 	dom = iommu_get_domain_for_dev(adev->dev);
2256 
2257 	while (size) {
2258 		phys_addr_t addr = *pos & PAGE_MASK;
2259 		loff_t off = *pos & ~PAGE_MASK;
2260 		size_t bytes = PAGE_SIZE - off;
2261 		unsigned long pfn;
2262 		struct page *p;
2263 		void *ptr;
2264 
2265 		bytes = bytes < size ? bytes : size;
2266 
2267 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2268 
2269 		pfn = addr >> PAGE_SHIFT;
2270 		if (!pfn_valid(pfn))
2271 			return -EPERM;
2272 
2273 		p = pfn_to_page(pfn);
2274 		if (p->mapping != adev->mman.bdev.dev_mapping)
2275 			return -EPERM;
2276 
2277 		ptr = kmap(p);
2278 		r = copy_from_user(ptr + off, buf, bytes);
2279 		kunmap(p);
2280 		if (r)
2281 			return -EFAULT;
2282 
2283 		size -= bytes;
2284 		*pos += bytes;
2285 		result += bytes;
2286 	}
2287 
2288 	return result;
2289 }
2290 
2291 static const struct file_operations amdgpu_ttm_iomem_fops = {
2292 	.owner = THIS_MODULE,
2293 	.read = amdgpu_iomem_read,
2294 	.write = amdgpu_iomem_write,
2295 	.llseek = default_llseek
2296 };
2297 
2298 #endif
2299 
2300 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2301 {
2302 #if defined(CONFIG_DEBUG_FS)
2303 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2304 	struct dentry *root = minor->debugfs_root;
2305 
2306 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2307 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2308 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2309 			    &amdgpu_ttm_iomem_fops);
2310 	debugfs_create_file("amdgpu_vram_mm", 0444, root, adev,
2311 			    &amdgpu_mm_vram_table_fops);
2312 	debugfs_create_file("amdgpu_gtt_mm", 0444, root, adev,
2313 			    &amdgpu_mm_tt_table_fops);
2314 	debugfs_create_file("amdgpu_gds_mm", 0444, root, adev,
2315 			    &amdgpu_mm_gds_table_fops);
2316 	debugfs_create_file("amdgpu_gws_mm", 0444, root, adev,
2317 			    &amdgpu_mm_gws_table_fops);
2318 	debugfs_create_file("amdgpu_oa_mm", 0444, root, adev,
2319 			    &amdgpu_mm_oa_table_fops);
2320 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2321 			    &amdgpu_ttm_page_pool_fops);
2322 #endif
2323 }
2324