1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/hmm.h> 36 #include <linux/pagemap.h> 37 #include <linux/sched/task.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 43 #include <drm/ttm/ttm_bo_api.h> 44 #include <drm/ttm/ttm_bo_driver.h> 45 #include <drm/ttm/ttm_placement.h> 46 #include <drm/ttm/ttm_module.h> 47 #include <drm/ttm/ttm_page_alloc.h> 48 49 #include <drm/drm_debugfs.h> 50 #include <drm/amdgpu_drm.h> 51 52 #include "amdgpu.h" 53 #include "amdgpu_object.h" 54 #include "amdgpu_trace.h" 55 #include "amdgpu_amdkfd.h" 56 #include "amdgpu_sdma.h" 57 #include "bif/bif_4_1_d.h" 58 59 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 60 struct ttm_mem_reg *mem, unsigned num_pages, 61 uint64_t offset, unsigned window, 62 struct amdgpu_ring *ring, 63 uint64_t *addr); 64 65 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); 66 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); 67 68 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) 69 { 70 return 0; 71 } 72 73 /** 74 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of 75 * memory request. 76 * 77 * @bdev: The TTM BO device object (contains a reference to amdgpu_device) 78 * @type: The type of memory requested 79 * @man: The memory type manager for each domain 80 * 81 * This is called by ttm_bo_init_mm() when a buffer object is being 82 * initialized. 83 */ 84 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, 85 struct ttm_mem_type_manager *man) 86 { 87 struct amdgpu_device *adev; 88 89 adev = amdgpu_ttm_adev(bdev); 90 91 switch (type) { 92 case TTM_PL_SYSTEM: 93 /* System memory */ 94 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; 95 man->available_caching = TTM_PL_MASK_CACHING; 96 man->default_caching = TTM_PL_FLAG_CACHED; 97 break; 98 case TTM_PL_TT: 99 /* GTT memory */ 100 man->func = &amdgpu_gtt_mgr_func; 101 man->gpu_offset = adev->gmc.gart_start; 102 man->available_caching = TTM_PL_MASK_CACHING; 103 man->default_caching = TTM_PL_FLAG_CACHED; 104 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; 105 break; 106 case TTM_PL_VRAM: 107 /* "On-card" video ram */ 108 man->func = &amdgpu_vram_mgr_func; 109 man->gpu_offset = adev->gmc.vram_start; 110 man->flags = TTM_MEMTYPE_FLAG_FIXED | 111 TTM_MEMTYPE_FLAG_MAPPABLE; 112 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; 113 man->default_caching = TTM_PL_FLAG_WC; 114 break; 115 case AMDGPU_PL_GDS: 116 case AMDGPU_PL_GWS: 117 case AMDGPU_PL_OA: 118 /* On-chip GDS memory*/ 119 man->func = &ttm_bo_manager_func; 120 man->gpu_offset = 0; 121 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; 122 man->available_caching = TTM_PL_FLAG_UNCACHED; 123 man->default_caching = TTM_PL_FLAG_UNCACHED; 124 break; 125 default: 126 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); 127 return -EINVAL; 128 } 129 return 0; 130 } 131 132 /** 133 * amdgpu_evict_flags - Compute placement flags 134 * 135 * @bo: The buffer object to evict 136 * @placement: Possible destination(s) for evicted BO 137 * 138 * Fill in placement data when ttm_bo_evict() is called 139 */ 140 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 141 struct ttm_placement *placement) 142 { 143 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 144 struct amdgpu_bo *abo; 145 static const struct ttm_place placements = { 146 .fpfn = 0, 147 .lpfn = 0, 148 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM 149 }; 150 151 /* Don't handle scatter gather BOs */ 152 if (bo->type == ttm_bo_type_sg) { 153 placement->num_placement = 0; 154 placement->num_busy_placement = 0; 155 return; 156 } 157 158 /* Object isn't an AMDGPU object so ignore */ 159 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 160 placement->placement = &placements; 161 placement->busy_placement = &placements; 162 placement->num_placement = 1; 163 placement->num_busy_placement = 1; 164 return; 165 } 166 167 abo = ttm_to_amdgpu_bo(bo); 168 switch (bo->mem.mem_type) { 169 case AMDGPU_PL_GDS: 170 case AMDGPU_PL_GWS: 171 case AMDGPU_PL_OA: 172 placement->num_placement = 0; 173 placement->num_busy_placement = 0; 174 return; 175 176 case TTM_PL_VRAM: 177 if (!adev->mman.buffer_funcs_enabled) { 178 /* Move to system memory */ 179 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 180 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 181 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 182 amdgpu_bo_in_cpu_visible_vram(abo)) { 183 184 /* Try evicting to the CPU inaccessible part of VRAM 185 * first, but only set GTT as busy placement, so this 186 * BO will be evicted to GTT rather than causing other 187 * BOs to be evicted from VRAM 188 */ 189 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 190 AMDGPU_GEM_DOMAIN_GTT); 191 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 192 abo->placements[0].lpfn = 0; 193 abo->placement.busy_placement = &abo->placements[1]; 194 abo->placement.num_busy_placement = 1; 195 } else { 196 /* Move to GTT memory */ 197 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT); 198 } 199 break; 200 case TTM_PL_TT: 201 default: 202 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 203 break; 204 } 205 *placement = abo->placement; 206 } 207 208 /** 209 * amdgpu_verify_access - Verify access for a mmap call 210 * 211 * @bo: The buffer object to map 212 * @filp: The file pointer from the process performing the mmap 213 * 214 * This is called by ttm_bo_mmap() to verify whether a process 215 * has the right to mmap a BO to their process space. 216 */ 217 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) 218 { 219 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 220 221 /* 222 * Don't verify access for KFD BOs. They don't have a GEM 223 * object associated with them. 224 */ 225 if (abo->kfd_bo) 226 return 0; 227 228 if (amdgpu_ttm_tt_get_usermm(bo->ttm)) 229 return -EPERM; 230 return drm_vma_node_verify_access(&abo->tbo.base.vma_node, 231 filp->private_data); 232 } 233 234 /** 235 * amdgpu_move_null - Register memory for a buffer object 236 * 237 * @bo: The bo to assign the memory to 238 * @new_mem: The memory to be assigned. 239 * 240 * Assign the memory from new_mem to the memory of the buffer object bo. 241 */ 242 static void amdgpu_move_null(struct ttm_buffer_object *bo, 243 struct ttm_mem_reg *new_mem) 244 { 245 struct ttm_mem_reg *old_mem = &bo->mem; 246 247 BUG_ON(old_mem->mm_node != NULL); 248 *old_mem = *new_mem; 249 new_mem->mm_node = NULL; 250 } 251 252 /** 253 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer. 254 * 255 * @bo: The bo to assign the memory to. 256 * @mm_node: Memory manager node for drm allocator. 257 * @mem: The region where the bo resides. 258 * 259 */ 260 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo, 261 struct drm_mm_node *mm_node, 262 struct ttm_mem_reg *mem) 263 { 264 uint64_t addr = 0; 265 266 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) { 267 addr = mm_node->start << PAGE_SHIFT; 268 addr += bo->bdev->man[mem->mem_type].gpu_offset; 269 } 270 return addr; 271 } 272 273 /** 274 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to 275 * @offset. It also modifies the offset to be within the drm_mm_node returned 276 * 277 * @mem: The region where the bo resides. 278 * @offset: The offset that drm_mm_node is used for finding. 279 * 280 */ 281 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem, 282 unsigned long *offset) 283 { 284 struct drm_mm_node *mm_node = mem->mm_node; 285 286 while (*offset >= (mm_node->size << PAGE_SHIFT)) { 287 *offset -= (mm_node->size << PAGE_SHIFT); 288 ++mm_node; 289 } 290 return mm_node; 291 } 292 293 /** 294 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 * @f: Returns the last fence if multiple jobs are submitted. 301 */ 302 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 303 struct amdgpu_copy_mem *src, 304 struct amdgpu_copy_mem *dst, 305 uint64_t size, 306 struct reservation_object *resv, 307 struct dma_fence **f) 308 { 309 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 310 struct drm_mm_node *src_mm, *dst_mm; 311 uint64_t src_node_start, dst_node_start, src_node_size, 312 dst_node_size, src_page_offset, dst_page_offset; 313 struct dma_fence *fence = NULL; 314 int r = 0; 315 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE * 316 AMDGPU_GPU_PAGE_SIZE); 317 318 if (!adev->mman.buffer_funcs_enabled) { 319 DRM_ERROR("Trying to move memory with ring turned off.\n"); 320 return -EINVAL; 321 } 322 323 src_mm = amdgpu_find_mm_node(src->mem, &src->offset); 324 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) + 325 src->offset; 326 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset; 327 src_page_offset = src_node_start & (PAGE_SIZE - 1); 328 329 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset); 330 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) + 331 dst->offset; 332 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset; 333 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 334 335 mutex_lock(&adev->mman.gtt_window_lock); 336 337 while (size) { 338 unsigned long cur_size; 339 uint64_t from = src_node_start, to = dst_node_start; 340 struct dma_fence *next; 341 342 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst 343 * begins at an offset, then adjust the size accordingly 344 */ 345 cur_size = min3(min(src_node_size, dst_node_size), size, 346 GTT_MAX_BYTES); 347 if (cur_size + src_page_offset > GTT_MAX_BYTES || 348 cur_size + dst_page_offset > GTT_MAX_BYTES) 349 cur_size -= max(src_page_offset, dst_page_offset); 350 351 /* Map only what needs to be accessed. Map src to window 0 and 352 * dst to window 1 353 */ 354 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) { 355 r = amdgpu_map_buffer(src->bo, src->mem, 356 PFN_UP(cur_size + src_page_offset), 357 src_node_start, 0, ring, 358 &from); 359 if (r) 360 goto error; 361 /* Adjust the offset because amdgpu_map_buffer returns 362 * start of mapped page 363 */ 364 from += src_page_offset; 365 } 366 367 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) { 368 r = amdgpu_map_buffer(dst->bo, dst->mem, 369 PFN_UP(cur_size + dst_page_offset), 370 dst_node_start, 1, ring, 371 &to); 372 if (r) 373 goto error; 374 to += dst_page_offset; 375 } 376 377 r = amdgpu_copy_buffer(ring, from, to, cur_size, 378 resv, &next, false, true); 379 if (r) 380 goto error; 381 382 dma_fence_put(fence); 383 fence = next; 384 385 size -= cur_size; 386 if (!size) 387 break; 388 389 src_node_size -= cur_size; 390 if (!src_node_size) { 391 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm, 392 src->mem); 393 src_node_size = (src_mm->size << PAGE_SHIFT); 394 src_page_offset = 0; 395 } else { 396 src_node_start += cur_size; 397 src_page_offset = src_node_start & (PAGE_SIZE - 1); 398 } 399 dst_node_size -= cur_size; 400 if (!dst_node_size) { 401 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm, 402 dst->mem); 403 dst_node_size = (dst_mm->size << PAGE_SHIFT); 404 dst_page_offset = 0; 405 } else { 406 dst_node_start += cur_size; 407 dst_page_offset = dst_node_start & (PAGE_SIZE - 1); 408 } 409 } 410 error: 411 mutex_unlock(&adev->mman.gtt_window_lock); 412 if (f) 413 *f = dma_fence_get(fence); 414 dma_fence_put(fence); 415 return r; 416 } 417 418 /** 419 * amdgpu_move_blit - Copy an entire buffer to another buffer 420 * 421 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 422 * help move buffers to and from VRAM. 423 */ 424 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 425 bool evict, bool no_wait_gpu, 426 struct ttm_mem_reg *new_mem, 427 struct ttm_mem_reg *old_mem) 428 { 429 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 430 struct amdgpu_copy_mem src, dst; 431 struct dma_fence *fence = NULL; 432 int r; 433 434 src.bo = bo; 435 dst.bo = bo; 436 src.mem = old_mem; 437 dst.mem = new_mem; 438 src.offset = 0; 439 dst.offset = 0; 440 441 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 442 new_mem->num_pages << PAGE_SHIFT, 443 bo->base.resv, &fence); 444 if (r) 445 goto error; 446 447 /* clear the space being freed */ 448 if (old_mem->mem_type == TTM_PL_VRAM && 449 (ttm_to_amdgpu_bo(bo)->flags & 450 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 451 struct dma_fence *wipe_fence = NULL; 452 453 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON, 454 NULL, &wipe_fence); 455 if (r) { 456 goto error; 457 } else if (wipe_fence) { 458 dma_fence_put(fence); 459 fence = wipe_fence; 460 } 461 } 462 463 /* Always block for VM page tables before committing the new location */ 464 if (bo->type == ttm_bo_type_kernel) 465 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem); 466 else 467 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem); 468 dma_fence_put(fence); 469 return r; 470 471 error: 472 if (fence) 473 dma_fence_wait(fence, false); 474 dma_fence_put(fence); 475 return r; 476 } 477 478 /** 479 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer 480 * 481 * Called by amdgpu_bo_move(). 482 */ 483 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, 484 struct ttm_operation_ctx *ctx, 485 struct ttm_mem_reg *new_mem) 486 { 487 struct amdgpu_device *adev; 488 struct ttm_mem_reg *old_mem = &bo->mem; 489 struct ttm_mem_reg tmp_mem; 490 struct ttm_place placements; 491 struct ttm_placement placement; 492 int r; 493 494 adev = amdgpu_ttm_adev(bo->bdev); 495 496 /* create space/pages for new_mem in GTT space */ 497 tmp_mem = *new_mem; 498 tmp_mem.mm_node = NULL; 499 placement.num_placement = 1; 500 placement.placement = &placements; 501 placement.num_busy_placement = 1; 502 placement.busy_placement = &placements; 503 placements.fpfn = 0; 504 placements.lpfn = 0; 505 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 506 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 507 if (unlikely(r)) { 508 pr_err("Failed to find GTT space for blit from VRAM\n"); 509 return r; 510 } 511 512 /* set caching flags */ 513 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); 514 if (unlikely(r)) { 515 goto out_cleanup; 516 } 517 518 /* Bind the memory to the GTT space */ 519 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx); 520 if (unlikely(r)) { 521 goto out_cleanup; 522 } 523 524 /* blit VRAM to GTT */ 525 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem); 526 if (unlikely(r)) { 527 goto out_cleanup; 528 } 529 530 /* move BO (in tmp_mem) to new_mem */ 531 r = ttm_bo_move_ttm(bo, ctx, new_mem); 532 out_cleanup: 533 ttm_bo_mem_put(bo, &tmp_mem); 534 return r; 535 } 536 537 /** 538 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM 539 * 540 * Called by amdgpu_bo_move(). 541 */ 542 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, 543 struct ttm_operation_ctx *ctx, 544 struct ttm_mem_reg *new_mem) 545 { 546 struct amdgpu_device *adev; 547 struct ttm_mem_reg *old_mem = &bo->mem; 548 struct ttm_mem_reg tmp_mem; 549 struct ttm_placement placement; 550 struct ttm_place placements; 551 int r; 552 553 adev = amdgpu_ttm_adev(bo->bdev); 554 555 /* make space in GTT for old_mem buffer */ 556 tmp_mem = *new_mem; 557 tmp_mem.mm_node = NULL; 558 placement.num_placement = 1; 559 placement.placement = &placements; 560 placement.num_busy_placement = 1; 561 placement.busy_placement = &placements; 562 placements.fpfn = 0; 563 placements.lpfn = 0; 564 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; 565 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx); 566 if (unlikely(r)) { 567 pr_err("Failed to find GTT space for blit to VRAM\n"); 568 return r; 569 } 570 571 /* move/bind old memory to GTT space */ 572 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem); 573 if (unlikely(r)) { 574 goto out_cleanup; 575 } 576 577 /* copy to VRAM */ 578 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem); 579 if (unlikely(r)) { 580 goto out_cleanup; 581 } 582 out_cleanup: 583 ttm_bo_mem_put(bo, &tmp_mem); 584 return r; 585 } 586 587 /** 588 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 589 * 590 * Called by amdgpu_bo_move() 591 */ 592 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 593 struct ttm_mem_reg *mem) 594 { 595 struct drm_mm_node *nodes = mem->mm_node; 596 597 if (mem->mem_type == TTM_PL_SYSTEM || 598 mem->mem_type == TTM_PL_TT) 599 return true; 600 if (mem->mem_type != TTM_PL_VRAM) 601 return false; 602 603 /* ttm_mem_reg_ioremap only supports contiguous memory */ 604 if (nodes->size != mem->num_pages) 605 return false; 606 607 return ((nodes->start + nodes->size) << PAGE_SHIFT) 608 <= adev->gmc.visible_vram_size; 609 } 610 611 /** 612 * amdgpu_bo_move - Move a buffer object to a new memory location 613 * 614 * Called by ttm_bo_handle_move_mem() 615 */ 616 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 617 struct ttm_operation_ctx *ctx, 618 struct ttm_mem_reg *new_mem) 619 { 620 struct amdgpu_device *adev; 621 struct amdgpu_bo *abo; 622 struct ttm_mem_reg *old_mem = &bo->mem; 623 int r; 624 625 /* Can't move a pinned BO */ 626 abo = ttm_to_amdgpu_bo(bo); 627 if (WARN_ON_ONCE(abo->pin_count > 0)) 628 return -EINVAL; 629 630 adev = amdgpu_ttm_adev(bo->bdev); 631 632 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { 633 amdgpu_move_null(bo, new_mem); 634 return 0; 635 } 636 if ((old_mem->mem_type == TTM_PL_TT && 637 new_mem->mem_type == TTM_PL_SYSTEM) || 638 (old_mem->mem_type == TTM_PL_SYSTEM && 639 new_mem->mem_type == TTM_PL_TT)) { 640 /* bind is enough */ 641 amdgpu_move_null(bo, new_mem); 642 return 0; 643 } 644 if (old_mem->mem_type == AMDGPU_PL_GDS || 645 old_mem->mem_type == AMDGPU_PL_GWS || 646 old_mem->mem_type == AMDGPU_PL_OA || 647 new_mem->mem_type == AMDGPU_PL_GDS || 648 new_mem->mem_type == AMDGPU_PL_GWS || 649 new_mem->mem_type == AMDGPU_PL_OA) { 650 /* Nothing to save here */ 651 amdgpu_move_null(bo, new_mem); 652 return 0; 653 } 654 655 if (!adev->mman.buffer_funcs_enabled) { 656 r = -ENODEV; 657 goto memcpy; 658 } 659 660 if (old_mem->mem_type == TTM_PL_VRAM && 661 new_mem->mem_type == TTM_PL_SYSTEM) { 662 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem); 663 } else if (old_mem->mem_type == TTM_PL_SYSTEM && 664 new_mem->mem_type == TTM_PL_VRAM) { 665 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem); 666 } else { 667 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, 668 new_mem, old_mem); 669 } 670 671 if (r) { 672 memcpy: 673 /* Check that all memory is CPU accessible */ 674 if (!amdgpu_mem_visible(adev, old_mem) || 675 !amdgpu_mem_visible(adev, new_mem)) { 676 pr_err("Move buffer fallback to memcpy unavailable\n"); 677 return r; 678 } 679 680 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 681 if (r) 682 return r; 683 } 684 685 if (bo->type == ttm_bo_type_device && 686 new_mem->mem_type == TTM_PL_VRAM && 687 old_mem->mem_type != TTM_PL_VRAM) { 688 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 689 * accesses the BO after it's moved. 690 */ 691 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 692 } 693 694 /* update statistics */ 695 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); 696 return 0; 697 } 698 699 /** 700 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 701 * 702 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 703 */ 704 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 705 { 706 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; 707 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 708 struct drm_mm_node *mm_node = mem->mm_node; 709 710 mem->bus.addr = NULL; 711 mem->bus.offset = 0; 712 mem->bus.size = mem->num_pages << PAGE_SHIFT; 713 mem->bus.base = 0; 714 mem->bus.is_iomem = false; 715 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) 716 return -EINVAL; 717 switch (mem->mem_type) { 718 case TTM_PL_SYSTEM: 719 /* system memory */ 720 return 0; 721 case TTM_PL_TT: 722 break; 723 case TTM_PL_VRAM: 724 mem->bus.offset = mem->start << PAGE_SHIFT; 725 /* check if it's visible */ 726 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size) 727 return -EINVAL; 728 /* Only physically contiguous buffers apply. In a contiguous 729 * buffer, size of the first mm_node would match the number of 730 * pages in ttm_mem_reg. 731 */ 732 if (adev->mman.aper_base_kaddr && 733 (mm_node->size == mem->num_pages)) 734 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 735 mem->bus.offset; 736 737 mem->bus.base = adev->gmc.aper_base; 738 mem->bus.is_iomem = true; 739 break; 740 default: 741 return -EINVAL; 742 } 743 return 0; 744 } 745 746 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) 747 { 748 } 749 750 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 751 unsigned long page_offset) 752 { 753 struct drm_mm_node *mm; 754 unsigned long offset = (page_offset << PAGE_SHIFT); 755 756 mm = amdgpu_find_mm_node(&bo->mem, &offset); 757 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start + 758 (offset >> PAGE_SHIFT); 759 } 760 761 /* 762 * TTM backend functions. 763 */ 764 struct amdgpu_ttm_tt { 765 struct ttm_dma_tt ttm; 766 u64 offset; 767 uint64_t userptr; 768 struct task_struct *usertask; 769 uint32_t userflags; 770 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 771 struct hmm_range *range; 772 #endif 773 }; 774 775 /** 776 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 777 * memory and start HMM tracking CPU page table update 778 * 779 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 780 * once afterwards to stop HMM tracking 781 */ 782 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 783 784 #define MAX_RETRY_HMM_RANGE_FAULT 16 785 786 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages) 787 { 788 struct hmm_mirror *mirror = bo->mn ? &bo->mn->mirror : NULL; 789 struct ttm_tt *ttm = bo->tbo.ttm; 790 struct amdgpu_ttm_tt *gtt = (void *)ttm; 791 struct mm_struct *mm = gtt->usertask->mm; 792 unsigned long start = gtt->userptr; 793 struct vm_area_struct *vma; 794 struct hmm_range *range; 795 unsigned long i; 796 uint64_t *pfns; 797 int retry = 0; 798 int r = 0; 799 800 if (!mm) /* Happens during process shutdown */ 801 return -ESRCH; 802 803 if (unlikely(!mirror)) { 804 DRM_DEBUG_DRIVER("Failed to get hmm_mirror\n"); 805 r = -EFAULT; 806 goto out; 807 } 808 809 vma = find_vma(mm, start); 810 if (unlikely(!vma || start < vma->vm_start)) { 811 r = -EFAULT; 812 goto out; 813 } 814 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 815 vma->vm_file)) { 816 r = -EPERM; 817 goto out; 818 } 819 820 range = kzalloc(sizeof(*range), GFP_KERNEL); 821 if (unlikely(!range)) { 822 r = -ENOMEM; 823 goto out; 824 } 825 826 pfns = kvmalloc_array(ttm->num_pages, sizeof(*pfns), GFP_KERNEL); 827 if (unlikely(!pfns)) { 828 r = -ENOMEM; 829 goto out_free_ranges; 830 } 831 832 amdgpu_hmm_init_range(range); 833 range->default_flags = range->flags[HMM_PFN_VALID]; 834 range->default_flags |= amdgpu_ttm_tt_is_readonly(ttm) ? 835 0 : range->flags[HMM_PFN_WRITE]; 836 range->pfn_flags_mask = 0; 837 range->pfns = pfns; 838 hmm_range_register(range, mirror, start, 839 start + ttm->num_pages * PAGE_SIZE, PAGE_SHIFT); 840 841 retry: 842 /* 843 * Just wait for range to be valid, safe to ignore return value as we 844 * will use the return value of hmm_range_fault() below under the 845 * mmap_sem to ascertain the validity of the range. 846 */ 847 hmm_range_wait_until_valid(range, HMM_RANGE_DEFAULT_TIMEOUT); 848 849 down_read(&mm->mmap_sem); 850 851 r = hmm_range_fault(range, true); 852 if (unlikely(r < 0)) { 853 if (likely(r == -EAGAIN)) { 854 /* 855 * return -EAGAIN, mmap_sem is dropped 856 */ 857 if (retry++ < MAX_RETRY_HMM_RANGE_FAULT) 858 goto retry; 859 else 860 pr_err("Retry hmm fault too many times\n"); 861 } 862 863 goto out_up_read; 864 } 865 866 up_read(&mm->mmap_sem); 867 868 for (i = 0; i < ttm->num_pages; i++) { 869 pages[i] = hmm_device_entry_to_page(range, pfns[i]); 870 if (unlikely(!pages[i])) { 871 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n", 872 i, pfns[i]); 873 r = -ENOMEM; 874 875 goto out_free_pfns; 876 } 877 } 878 879 gtt->range = range; 880 881 return 0; 882 883 out_up_read: 884 if (likely(r != -EAGAIN)) 885 up_read(&mm->mmap_sem); 886 out_free_pfns: 887 hmm_range_unregister(range); 888 kvfree(pfns); 889 out_free_ranges: 890 kfree(range); 891 out: 892 return r; 893 } 894 895 /** 896 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 897 * Check if the pages backing this ttm range have been invalidated 898 * 899 * Returns: true if pages are still valid 900 */ 901 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm) 902 { 903 struct amdgpu_ttm_tt *gtt = (void *)ttm; 904 bool r = false; 905 906 if (!gtt || !gtt->userptr) 907 return false; 908 909 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n", 910 gtt->userptr, ttm->num_pages); 911 912 WARN_ONCE(!gtt->range || !gtt->range->pfns, 913 "No user pages to check\n"); 914 915 if (gtt->range) { 916 r = hmm_range_valid(gtt->range); 917 hmm_range_unregister(gtt->range); 918 919 kvfree(gtt->range->pfns); 920 kfree(gtt->range); 921 gtt->range = NULL; 922 } 923 924 return r; 925 } 926 #endif 927 928 /** 929 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 930 * 931 * Called by amdgpu_cs_list_validate(). This creates the page list 932 * that backs user memory and will ultimately be mapped into the device 933 * address space. 934 */ 935 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 936 { 937 unsigned long i; 938 939 for (i = 0; i < ttm->num_pages; ++i) 940 ttm->pages[i] = pages ? pages[i] : NULL; 941 } 942 943 /** 944 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 945 * 946 * Called by amdgpu_ttm_backend_bind() 947 **/ 948 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) 949 { 950 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 951 struct amdgpu_ttm_tt *gtt = (void *)ttm; 952 unsigned nents; 953 int r; 954 955 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 956 enum dma_data_direction direction = write ? 957 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 958 959 /* Allocate an SG array and squash pages into it */ 960 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 961 ttm->num_pages << PAGE_SHIFT, 962 GFP_KERNEL); 963 if (r) 964 goto release_sg; 965 966 /* Map SG to device */ 967 r = -ENOMEM; 968 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 969 if (nents != ttm->sg->nents) 970 goto release_sg; 971 972 /* convert SG to linear array of pages and dma addresses */ 973 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 974 gtt->ttm.dma_address, ttm->num_pages); 975 976 return 0; 977 978 release_sg: 979 kfree(ttm->sg); 980 return r; 981 } 982 983 /** 984 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 985 */ 986 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) 987 { 988 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 989 struct amdgpu_ttm_tt *gtt = (void *)ttm; 990 991 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 992 enum dma_data_direction direction = write ? 993 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 994 995 /* double check that we don't free the table twice */ 996 if (!ttm->sg->sgl) 997 return; 998 999 /* unmap the pages mapped to the device */ 1000 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); 1001 1002 sg_free_table(ttm->sg); 1003 1004 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR) 1005 if (gtt->range && 1006 ttm->pages[0] == hmm_device_entry_to_page(gtt->range, 1007 gtt->range->pfns[0])) 1008 WARN_ONCE(1, "Missing get_user_page_done\n"); 1009 #endif 1010 } 1011 1012 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 1013 struct ttm_buffer_object *tbo, 1014 uint64_t flags) 1015 { 1016 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 1017 struct ttm_tt *ttm = tbo->ttm; 1018 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1019 int r; 1020 1021 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) { 1022 uint64_t page_idx = 1; 1023 1024 r = amdgpu_gart_bind(adev, gtt->offset, page_idx, 1025 ttm->pages, gtt->ttm.dma_address, flags); 1026 if (r) 1027 goto gart_bind_fail; 1028 1029 /* Patch mtype of the second part BO */ 1030 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 1031 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 1032 1033 r = amdgpu_gart_bind(adev, 1034 gtt->offset + (page_idx << PAGE_SHIFT), 1035 ttm->num_pages - page_idx, 1036 &ttm->pages[page_idx], 1037 &(gtt->ttm.dma_address[page_idx]), flags); 1038 } else { 1039 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1040 ttm->pages, gtt->ttm.dma_address, flags); 1041 } 1042 1043 gart_bind_fail: 1044 if (r) 1045 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1046 ttm->num_pages, gtt->offset); 1047 1048 return r; 1049 } 1050 1051 /** 1052 * amdgpu_ttm_backend_bind - Bind GTT memory 1053 * 1054 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 1055 * This handles binding GTT memory to the device address space. 1056 */ 1057 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, 1058 struct ttm_mem_reg *bo_mem) 1059 { 1060 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1061 struct amdgpu_ttm_tt *gtt = (void*)ttm; 1062 uint64_t flags; 1063 int r = 0; 1064 1065 if (gtt->userptr) { 1066 r = amdgpu_ttm_tt_pin_userptr(ttm); 1067 if (r) { 1068 DRM_ERROR("failed to pin userptr\n"); 1069 return r; 1070 } 1071 } 1072 if (!ttm->num_pages) { 1073 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", 1074 ttm->num_pages, bo_mem, ttm); 1075 } 1076 1077 if (bo_mem->mem_type == AMDGPU_PL_GDS || 1078 bo_mem->mem_type == AMDGPU_PL_GWS || 1079 bo_mem->mem_type == AMDGPU_PL_OA) 1080 return -EINVAL; 1081 1082 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 1083 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 1084 return 0; 1085 } 1086 1087 /* compute PTE flags relevant to this BO memory */ 1088 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 1089 1090 /* bind pages into GART page tables */ 1091 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 1092 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 1093 ttm->pages, gtt->ttm.dma_address, flags); 1094 1095 if (r) 1096 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n", 1097 ttm->num_pages, gtt->offset); 1098 return r; 1099 } 1100 1101 /** 1102 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object 1103 */ 1104 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 1105 { 1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1107 struct ttm_operation_ctx ctx = { false, false }; 1108 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm; 1109 struct ttm_mem_reg tmp; 1110 struct ttm_placement placement; 1111 struct ttm_place placements; 1112 uint64_t addr, flags; 1113 int r; 1114 1115 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET) 1116 return 0; 1117 1118 addr = amdgpu_gmc_agp_addr(bo); 1119 if (addr != AMDGPU_BO_INVALID_OFFSET) { 1120 bo->mem.start = addr >> PAGE_SHIFT; 1121 } else { 1122 1123 /* allocate GART space */ 1124 tmp = bo->mem; 1125 tmp.mm_node = NULL; 1126 placement.num_placement = 1; 1127 placement.placement = &placements; 1128 placement.num_busy_placement = 1; 1129 placement.busy_placement = &placements; 1130 placements.fpfn = 0; 1131 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 1132 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) | 1133 TTM_PL_FLAG_TT; 1134 1135 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 1136 if (unlikely(r)) 1137 return r; 1138 1139 /* compute PTE flags for this buffer object */ 1140 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp); 1141 1142 /* Bind pages */ 1143 gtt->offset = (u64)tmp.start << PAGE_SHIFT; 1144 r = amdgpu_ttm_gart_bind(adev, bo, flags); 1145 if (unlikely(r)) { 1146 ttm_bo_mem_put(bo, &tmp); 1147 return r; 1148 } 1149 1150 ttm_bo_mem_put(bo, &bo->mem); 1151 bo->mem = tmp; 1152 } 1153 1154 bo->offset = (bo->mem.start << PAGE_SHIFT) + 1155 bo->bdev->man[bo->mem.mem_type].gpu_offset; 1156 1157 return 0; 1158 } 1159 1160 /** 1161 * amdgpu_ttm_recover_gart - Rebind GTT pages 1162 * 1163 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 1164 * rebind GTT pages during a GPU reset. 1165 */ 1166 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 1167 { 1168 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1169 uint64_t flags; 1170 int r; 1171 1172 if (!tbo->ttm) 1173 return 0; 1174 1175 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem); 1176 r = amdgpu_ttm_gart_bind(adev, tbo, flags); 1177 1178 return r; 1179 } 1180 1181 /** 1182 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1183 * 1184 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1185 * ttm_tt_destroy(). 1186 */ 1187 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) 1188 { 1189 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1190 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1191 int r; 1192 1193 /* if the pages have userptr pinning then clear that first */ 1194 if (gtt->userptr) 1195 amdgpu_ttm_tt_unpin_userptr(ttm); 1196 1197 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1198 return 0; 1199 1200 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1201 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1202 if (r) 1203 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n", 1204 gtt->ttm.ttm.num_pages, gtt->offset); 1205 return r; 1206 } 1207 1208 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) 1209 { 1210 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1211 1212 if (gtt->usertask) 1213 put_task_struct(gtt->usertask); 1214 1215 ttm_dma_tt_fini(>t->ttm); 1216 kfree(gtt); 1217 } 1218 1219 static struct ttm_backend_func amdgpu_backend_func = { 1220 .bind = &amdgpu_ttm_backend_bind, 1221 .unbind = &amdgpu_ttm_backend_unbind, 1222 .destroy = &amdgpu_ttm_backend_destroy, 1223 }; 1224 1225 /** 1226 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1227 * 1228 * @bo: The buffer object to create a GTT ttm_tt object around 1229 * 1230 * Called by ttm_tt_create(). 1231 */ 1232 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1233 uint32_t page_flags) 1234 { 1235 struct amdgpu_device *adev; 1236 struct amdgpu_ttm_tt *gtt; 1237 1238 adev = amdgpu_ttm_adev(bo->bdev); 1239 1240 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1241 if (gtt == NULL) { 1242 return NULL; 1243 } 1244 gtt->ttm.ttm.func = &amdgpu_backend_func; 1245 1246 /* allocate space for the uninitialized page entries */ 1247 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) { 1248 kfree(gtt); 1249 return NULL; 1250 } 1251 return >t->ttm.ttm; 1252 } 1253 1254 /** 1255 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1256 * 1257 * Map the pages of a ttm_tt object to an address space visible 1258 * to the underlying device. 1259 */ 1260 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm, 1261 struct ttm_operation_ctx *ctx) 1262 { 1263 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev); 1264 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1265 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1266 1267 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1268 if (gtt && gtt->userptr) { 1269 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1270 if (!ttm->sg) 1271 return -ENOMEM; 1272 1273 ttm->page_flags |= TTM_PAGE_FLAG_SG; 1274 ttm->state = tt_unbound; 1275 return 0; 1276 } 1277 1278 if (slave && ttm->sg) { 1279 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, 1280 gtt->ttm.dma_address, 1281 ttm->num_pages); 1282 ttm->state = tt_unbound; 1283 return 0; 1284 } 1285 1286 #ifdef CONFIG_SWIOTLB 1287 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1288 return ttm_dma_populate(>t->ttm, adev->dev, ctx); 1289 } 1290 #endif 1291 1292 /* fall back to generic helper to populate the page array 1293 * and map them to the device */ 1294 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx); 1295 } 1296 1297 /** 1298 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1299 * 1300 * Unmaps pages of a ttm_tt object from the device address space and 1301 * unpopulates the page array backing it. 1302 */ 1303 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) 1304 { 1305 struct amdgpu_device *adev; 1306 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1307 bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); 1308 1309 if (gtt && gtt->userptr) { 1310 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1311 kfree(ttm->sg); 1312 ttm->page_flags &= ~TTM_PAGE_FLAG_SG; 1313 return; 1314 } 1315 1316 if (slave) 1317 return; 1318 1319 adev = amdgpu_ttm_adev(ttm->bdev); 1320 1321 #ifdef CONFIG_SWIOTLB 1322 if (adev->need_swiotlb && swiotlb_nr_tbl()) { 1323 ttm_dma_unpopulate(>t->ttm, adev->dev); 1324 return; 1325 } 1326 #endif 1327 1328 /* fall back to generic helper to unmap and unpopulate array */ 1329 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm); 1330 } 1331 1332 /** 1333 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1334 * task 1335 * 1336 * @ttm: The ttm_tt object to bind this userptr object to 1337 * @addr: The address in the current tasks VM space to use 1338 * @flags: Requirements of userptr object. 1339 * 1340 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1341 * to current task 1342 */ 1343 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, 1344 uint32_t flags) 1345 { 1346 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1347 1348 if (gtt == NULL) 1349 return -EINVAL; 1350 1351 gtt->userptr = addr; 1352 gtt->userflags = flags; 1353 1354 if (gtt->usertask) 1355 put_task_struct(gtt->usertask); 1356 gtt->usertask = current->group_leader; 1357 get_task_struct(gtt->usertask); 1358 1359 return 0; 1360 } 1361 1362 /** 1363 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1364 */ 1365 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1366 { 1367 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1368 1369 if (gtt == NULL) 1370 return NULL; 1371 1372 if (gtt->usertask == NULL) 1373 return NULL; 1374 1375 return gtt->usertask->mm; 1376 } 1377 1378 /** 1379 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1380 * address range for the current task. 1381 * 1382 */ 1383 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1384 unsigned long end) 1385 { 1386 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1387 unsigned long size; 1388 1389 if (gtt == NULL || !gtt->userptr) 1390 return false; 1391 1392 /* Return false if no part of the ttm_tt object lies within 1393 * the range 1394 */ 1395 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; 1396 if (gtt->userptr > end || gtt->userptr + size <= start) 1397 return false; 1398 1399 return true; 1400 } 1401 1402 /** 1403 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1404 */ 1405 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1406 { 1407 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1408 1409 if (gtt == NULL || !gtt->userptr) 1410 return false; 1411 1412 return true; 1413 } 1414 1415 /** 1416 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1417 */ 1418 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1419 { 1420 struct amdgpu_ttm_tt *gtt = (void *)ttm; 1421 1422 if (gtt == NULL) 1423 return false; 1424 1425 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1426 } 1427 1428 /** 1429 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1430 * 1431 * @ttm: The ttm_tt object to compute the flags for 1432 * @mem: The memory registry backing this ttm_tt object 1433 * 1434 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1435 */ 1436 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem) 1437 { 1438 uint64_t flags = 0; 1439 1440 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1441 flags |= AMDGPU_PTE_VALID; 1442 1443 if (mem && mem->mem_type == TTM_PL_TT) { 1444 flags |= AMDGPU_PTE_SYSTEM; 1445 1446 if (ttm->caching_state == tt_cached) 1447 flags |= AMDGPU_PTE_SNOOPED; 1448 } 1449 1450 return flags; 1451 } 1452 1453 /** 1454 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1455 * 1456 * @ttm: The ttm_tt object to compute the flags for 1457 * @mem: The memory registry backing this ttm_tt object 1458 1459 * Figure out the flags to use for a VM PTE (Page Table Entry). 1460 */ 1461 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1462 struct ttm_mem_reg *mem) 1463 { 1464 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1465 1466 flags |= adev->gart.gart_pte_flags; 1467 flags |= AMDGPU_PTE_READABLE; 1468 1469 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1470 flags |= AMDGPU_PTE_WRITEABLE; 1471 1472 return flags; 1473 } 1474 1475 /** 1476 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1477 * object. 1478 * 1479 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1480 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1481 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1482 * used to clean out a memory space. 1483 */ 1484 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1485 const struct ttm_place *place) 1486 { 1487 unsigned long num_pages = bo->mem.num_pages; 1488 struct drm_mm_node *node = bo->mem.mm_node; 1489 struct reservation_object_list *flist; 1490 struct dma_fence *f; 1491 int i; 1492 1493 /* Don't evict VM page tables while they are busy, otherwise we can't 1494 * cleanly handle page faults. 1495 */ 1496 if (bo->type == ttm_bo_type_kernel && 1497 !reservation_object_test_signaled_rcu(bo->base.resv, true)) 1498 return false; 1499 1500 /* If bo is a KFD BO, check if the bo belongs to the current process. 1501 * If true, then return false as any KFD process needs all its BOs to 1502 * be resident to run successfully 1503 */ 1504 flist = reservation_object_get_list(bo->base.resv); 1505 if (flist) { 1506 for (i = 0; i < flist->shared_count; ++i) { 1507 f = rcu_dereference_protected(flist->shared[i], 1508 reservation_object_held(bo->base.resv)); 1509 if (amdkfd_fence_check_mm(f, current->mm)) 1510 return false; 1511 } 1512 } 1513 1514 switch (bo->mem.mem_type) { 1515 case TTM_PL_TT: 1516 return true; 1517 1518 case TTM_PL_VRAM: 1519 /* Check each drm MM node individually */ 1520 while (num_pages) { 1521 if (place->fpfn < (node->start + node->size) && 1522 !(place->lpfn && place->lpfn <= node->start)) 1523 return true; 1524 1525 num_pages -= node->size; 1526 ++node; 1527 } 1528 return false; 1529 1530 default: 1531 break; 1532 } 1533 1534 return ttm_bo_eviction_valuable(bo, place); 1535 } 1536 1537 /** 1538 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1539 * 1540 * @bo: The buffer object to read/write 1541 * @offset: Offset into buffer object 1542 * @buf: Secondary buffer to write/read from 1543 * @len: Length in bytes of access 1544 * @write: true if writing 1545 * 1546 * This is used to access VRAM that backs a buffer object via MMIO 1547 * access for debugging purposes. 1548 */ 1549 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1550 unsigned long offset, 1551 void *buf, int len, int write) 1552 { 1553 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1554 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1555 struct drm_mm_node *nodes; 1556 uint32_t value = 0; 1557 int ret = 0; 1558 uint64_t pos; 1559 unsigned long flags; 1560 1561 if (bo->mem.mem_type != TTM_PL_VRAM) 1562 return -EIO; 1563 1564 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset); 1565 pos = (nodes->start << PAGE_SHIFT) + offset; 1566 1567 while (len && pos < adev->gmc.mc_vram_size) { 1568 uint64_t aligned_pos = pos & ~(uint64_t)3; 1569 uint32_t bytes = 4 - (pos & 3); 1570 uint32_t shift = (pos & 3) * 8; 1571 uint32_t mask = 0xffffffff << shift; 1572 1573 if (len < bytes) { 1574 mask &= 0xffffffff >> (bytes - len) * 8; 1575 bytes = len; 1576 } 1577 1578 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 1579 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000); 1580 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31); 1581 if (!write || mask != 0xffffffff) 1582 value = RREG32_NO_KIQ(mmMM_DATA); 1583 if (write) { 1584 value &= ~mask; 1585 value |= (*(uint32_t *)buf << shift) & mask; 1586 WREG32_NO_KIQ(mmMM_DATA, value); 1587 } 1588 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 1589 if (!write) { 1590 value = (value & mask) >> shift; 1591 memcpy(buf, &value, bytes); 1592 } 1593 1594 ret += bytes; 1595 buf = (uint8_t *)buf + bytes; 1596 pos += bytes; 1597 len -= bytes; 1598 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) { 1599 ++nodes; 1600 pos = (nodes->start << PAGE_SHIFT); 1601 } 1602 } 1603 1604 return ret; 1605 } 1606 1607 static struct ttm_bo_driver amdgpu_bo_driver = { 1608 .ttm_tt_create = &amdgpu_ttm_tt_create, 1609 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1610 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1611 .invalidate_caches = &amdgpu_invalidate_caches, 1612 .init_mem_type = &amdgpu_init_mem_type, 1613 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1614 .evict_flags = &amdgpu_evict_flags, 1615 .move = &amdgpu_bo_move, 1616 .verify_access = &amdgpu_verify_access, 1617 .move_notify = &amdgpu_bo_move_notify, 1618 .release_notify = &amdgpu_bo_release_notify, 1619 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, 1620 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1621 .io_mem_free = &amdgpu_ttm_io_mem_free, 1622 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1623 .access_memory = &amdgpu_ttm_access_memory, 1624 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify 1625 }; 1626 1627 /* 1628 * Firmware Reservation functions 1629 */ 1630 /** 1631 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1632 * 1633 * @adev: amdgpu_device pointer 1634 * 1635 * free fw reserved vram if it has been reserved. 1636 */ 1637 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1638 { 1639 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo, 1640 NULL, &adev->fw_vram_usage.va); 1641 } 1642 1643 /** 1644 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1645 * 1646 * @adev: amdgpu_device pointer 1647 * 1648 * create bo vram reservation from fw. 1649 */ 1650 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1651 { 1652 struct ttm_operation_ctx ctx = { false, false }; 1653 struct amdgpu_bo_param bp; 1654 int r = 0; 1655 int i; 1656 u64 vram_size = adev->gmc.visible_vram_size; 1657 u64 offset = adev->fw_vram_usage.start_offset; 1658 u64 size = adev->fw_vram_usage.size; 1659 struct amdgpu_bo *bo; 1660 1661 memset(&bp, 0, sizeof(bp)); 1662 bp.size = adev->fw_vram_usage.size; 1663 bp.byte_align = PAGE_SIZE; 1664 bp.domain = AMDGPU_GEM_DOMAIN_VRAM; 1665 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | 1666 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1667 bp.type = ttm_bo_type_kernel; 1668 bp.resv = NULL; 1669 adev->fw_vram_usage.va = NULL; 1670 adev->fw_vram_usage.reserved_bo = NULL; 1671 1672 if (adev->fw_vram_usage.size > 0 && 1673 adev->fw_vram_usage.size <= vram_size) { 1674 1675 r = amdgpu_bo_create(adev, &bp, 1676 &adev->fw_vram_usage.reserved_bo); 1677 if (r) 1678 goto error_create; 1679 1680 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false); 1681 if (r) 1682 goto error_reserve; 1683 1684 /* remove the original mem node and create a new one at the 1685 * request position 1686 */ 1687 bo = adev->fw_vram_usage.reserved_bo; 1688 offset = ALIGN(offset, PAGE_SIZE); 1689 for (i = 0; i < bo->placement.num_placement; ++i) { 1690 bo->placements[i].fpfn = offset >> PAGE_SHIFT; 1691 bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT; 1692 } 1693 1694 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem); 1695 r = ttm_bo_mem_space(&bo->tbo, &bo->placement, 1696 &bo->tbo.mem, &ctx); 1697 if (r) 1698 goto error_pin; 1699 1700 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo, 1701 AMDGPU_GEM_DOMAIN_VRAM, 1702 adev->fw_vram_usage.start_offset, 1703 (adev->fw_vram_usage.start_offset + 1704 adev->fw_vram_usage.size)); 1705 if (r) 1706 goto error_pin; 1707 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo, 1708 &adev->fw_vram_usage.va); 1709 if (r) 1710 goto error_kmap; 1711 1712 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1713 } 1714 return r; 1715 1716 error_kmap: 1717 amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo); 1718 error_pin: 1719 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo); 1720 error_reserve: 1721 amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo); 1722 error_create: 1723 adev->fw_vram_usage.va = NULL; 1724 adev->fw_vram_usage.reserved_bo = NULL; 1725 return r; 1726 } 1727 /** 1728 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1729 * gtt/vram related fields. 1730 * 1731 * This initializes all of the memory space pools that the TTM layer 1732 * will need such as the GTT space (system memory mapped to the device), 1733 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1734 * can be mapped per VMID. 1735 */ 1736 int amdgpu_ttm_init(struct amdgpu_device *adev) 1737 { 1738 uint64_t gtt_size; 1739 int r; 1740 u64 vis_vram_limit; 1741 1742 mutex_init(&adev->mman.gtt_window_lock); 1743 1744 /* No others user of address space so set it to 0 */ 1745 r = ttm_bo_device_init(&adev->mman.bdev, 1746 &amdgpu_bo_driver, 1747 adev->ddev->anon_inode->i_mapping, 1748 dma_addressing_limited(adev->dev)); 1749 if (r) { 1750 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1751 return r; 1752 } 1753 adev->mman.initialized = true; 1754 1755 /* We opt to avoid OOM on system pages allocations */ 1756 adev->mman.bdev.no_retry = true; 1757 1758 /* Initialize VRAM pool with all of VRAM divided into pages */ 1759 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, 1760 adev->gmc.real_vram_size >> PAGE_SHIFT); 1761 if (r) { 1762 DRM_ERROR("Failed initializing VRAM heap.\n"); 1763 return r; 1764 } 1765 1766 /* Reduce size of CPU-visible VRAM if requested */ 1767 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1768 if (amdgpu_vis_vram_limit > 0 && 1769 vis_vram_limit <= adev->gmc.visible_vram_size) 1770 adev->gmc.visible_vram_size = vis_vram_limit; 1771 1772 /* Change the size here instead of the init above so only lpfn is affected */ 1773 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1774 #ifdef CONFIG_64BIT 1775 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1776 adev->gmc.visible_vram_size); 1777 #endif 1778 1779 /* 1780 *The reserved vram for firmware must be pinned to the specified 1781 *place on the VRAM, so reserve it early. 1782 */ 1783 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1784 if (r) { 1785 return r; 1786 } 1787 1788 /* allocate memory as required for VGA 1789 * This is used for VGA emulation and pre-OS scanout buffers to 1790 * avoid display artifacts while transitioning between pre-OS 1791 * and driver. */ 1792 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE, 1793 AMDGPU_GEM_DOMAIN_VRAM, 1794 &adev->stolen_vga_memory, 1795 NULL, NULL); 1796 if (r) 1797 return r; 1798 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1799 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1800 1801 /* Compute GTT size, either bsaed on 3/4th the size of RAM size 1802 * or whatever the user passed on module init */ 1803 if (amdgpu_gtt_size == -1) { 1804 struct sysinfo si; 1805 1806 si_meminfo(&si); 1807 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1808 adev->gmc.mc_vram_size), 1809 ((uint64_t)si.totalram * si.mem_unit * 3/4)); 1810 } 1811 else 1812 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1813 1814 /* Initialize GTT memory pool */ 1815 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT); 1816 if (r) { 1817 DRM_ERROR("Failed initializing GTT heap.\n"); 1818 return r; 1819 } 1820 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1821 (unsigned)(gtt_size / (1024 * 1024))); 1822 1823 /* Initialize various on-chip memory pools */ 1824 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, 1825 adev->gds.gds_size); 1826 if (r) { 1827 DRM_ERROR("Failed initializing GDS heap.\n"); 1828 return r; 1829 } 1830 1831 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, 1832 adev->gds.gws_size); 1833 if (r) { 1834 DRM_ERROR("Failed initializing gws heap.\n"); 1835 return r; 1836 } 1837 1838 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, 1839 adev->gds.oa_size); 1840 if (r) { 1841 DRM_ERROR("Failed initializing oa heap.\n"); 1842 return r; 1843 } 1844 1845 /* Register debugfs entries for amdgpu_ttm */ 1846 r = amdgpu_ttm_debugfs_init(adev); 1847 if (r) { 1848 DRM_ERROR("Failed to init debugfs\n"); 1849 return r; 1850 } 1851 return 0; 1852 } 1853 1854 /** 1855 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm 1856 */ 1857 void amdgpu_ttm_late_init(struct amdgpu_device *adev) 1858 { 1859 /* return the VGA stolen memory (if any) back to VRAM */ 1860 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL); 1861 } 1862 1863 /** 1864 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1865 */ 1866 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1867 { 1868 if (!adev->mman.initialized) 1869 return; 1870 1871 amdgpu_ttm_debugfs_fini(adev); 1872 amdgpu_ttm_fw_reserve_vram_fini(adev); 1873 if (adev->mman.aper_base_kaddr) 1874 iounmap(adev->mman.aper_base_kaddr); 1875 adev->mman.aper_base_kaddr = NULL; 1876 1877 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); 1878 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); 1879 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); 1880 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); 1881 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); 1882 ttm_bo_device_release(&adev->mman.bdev); 1883 adev->mman.initialized = false; 1884 DRM_INFO("amdgpu: ttm finalized\n"); 1885 } 1886 1887 /** 1888 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1889 * 1890 * @adev: amdgpu_device pointer 1891 * @enable: true when we can use buffer functions. 1892 * 1893 * Enable/disable use of buffer functions during suspend/resume. This should 1894 * only be called at bootup or when userspace isn't running. 1895 */ 1896 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1897 { 1898 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM]; 1899 uint64_t size; 1900 int r; 1901 1902 if (!adev->mman.initialized || adev->in_gpu_reset || 1903 adev->mman.buffer_funcs_enabled == enable) 1904 return; 1905 1906 if (enable) { 1907 struct amdgpu_ring *ring; 1908 struct drm_sched_rq *rq; 1909 1910 ring = adev->mman.buffer_funcs_ring; 1911 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL]; 1912 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL); 1913 if (r) { 1914 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1915 r); 1916 return; 1917 } 1918 } else { 1919 drm_sched_entity_destroy(&adev->mman.entity); 1920 dma_fence_put(man->move); 1921 man->move = NULL; 1922 } 1923 1924 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1925 if (enable) 1926 size = adev->gmc.real_vram_size; 1927 else 1928 size = adev->gmc.visible_vram_size; 1929 man->size = size >> PAGE_SHIFT; 1930 adev->mman.buffer_funcs_enabled = enable; 1931 } 1932 1933 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) 1934 { 1935 struct drm_file *file_priv = filp->private_data; 1936 struct amdgpu_device *adev = file_priv->minor->dev->dev_private; 1937 1938 if (adev == NULL) 1939 return -EINVAL; 1940 1941 return ttm_bo_mmap(filp, vma, &adev->mman.bdev); 1942 } 1943 1944 static int amdgpu_map_buffer(struct ttm_buffer_object *bo, 1945 struct ttm_mem_reg *mem, unsigned num_pages, 1946 uint64_t offset, unsigned window, 1947 struct amdgpu_ring *ring, 1948 uint64_t *addr) 1949 { 1950 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm; 1951 struct amdgpu_device *adev = ring->adev; 1952 struct ttm_tt *ttm = bo->ttm; 1953 struct amdgpu_job *job; 1954 unsigned num_dw, num_bytes; 1955 dma_addr_t *dma_address; 1956 struct dma_fence *fence; 1957 uint64_t src_addr, dst_addr; 1958 uint64_t flags; 1959 int r; 1960 1961 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 1962 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 1963 1964 *addr = adev->gmc.gart_start; 1965 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 1966 AMDGPU_GPU_PAGE_SIZE; 1967 1968 num_dw = adev->mman.buffer_funcs->copy_num_dw; 1969 while (num_dw & 0x7) 1970 num_dw++; 1971 1972 num_bytes = num_pages * 8; 1973 1974 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job); 1975 if (r) 1976 return r; 1977 1978 src_addr = num_dw * 4; 1979 src_addr += job->ibs[0].gpu_addr; 1980 1981 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 1982 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 1983 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 1984 dst_addr, num_bytes); 1985 1986 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 1987 WARN_ON(job->ibs[0].length_dw > num_dw); 1988 1989 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT]; 1990 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem); 1991 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags, 1992 &job->ibs[0].ptr[num_dw]); 1993 if (r) 1994 goto error_free; 1995 1996 r = amdgpu_job_submit(job, &adev->mman.entity, 1997 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1998 if (r) 1999 goto error_free; 2000 2001 dma_fence_put(fence); 2002 2003 return r; 2004 2005 error_free: 2006 amdgpu_job_free(job); 2007 return r; 2008 } 2009 2010 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2011 uint64_t dst_offset, uint32_t byte_count, 2012 struct reservation_object *resv, 2013 struct dma_fence **fence, bool direct_submit, 2014 bool vm_needs_flush) 2015 { 2016 struct amdgpu_device *adev = ring->adev; 2017 struct amdgpu_job *job; 2018 2019 uint32_t max_bytes; 2020 unsigned num_loops, num_dw; 2021 unsigned i; 2022 int r; 2023 2024 if (direct_submit && !ring->sched.ready) { 2025 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2026 return -EINVAL; 2027 } 2028 2029 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2030 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2031 num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; 2032 2033 /* for IB padding */ 2034 while (num_dw & 0x7) 2035 num_dw++; 2036 2037 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2038 if (r) 2039 return r; 2040 2041 if (vm_needs_flush) { 2042 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); 2043 job->vm_needs_flush = true; 2044 } 2045 if (resv) { 2046 r = amdgpu_sync_resv(adev, &job->sync, resv, 2047 AMDGPU_FENCE_OWNER_UNDEFINED, 2048 false); 2049 if (r) { 2050 DRM_ERROR("sync failed (%d).\n", r); 2051 goto error_free; 2052 } 2053 } 2054 2055 for (i = 0; i < num_loops; i++) { 2056 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2057 2058 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2059 dst_offset, cur_size_in_bytes); 2060 2061 src_offset += cur_size_in_bytes; 2062 dst_offset += cur_size_in_bytes; 2063 byte_count -= cur_size_in_bytes; 2064 } 2065 2066 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2067 WARN_ON(job->ibs[0].length_dw > num_dw); 2068 if (direct_submit) 2069 r = amdgpu_job_submit_direct(job, ring, fence); 2070 else 2071 r = amdgpu_job_submit(job, &adev->mman.entity, 2072 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2073 if (r) 2074 goto error_free; 2075 2076 return r; 2077 2078 error_free: 2079 amdgpu_job_free(job); 2080 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2081 return r; 2082 } 2083 2084 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2085 uint32_t src_data, 2086 struct reservation_object *resv, 2087 struct dma_fence **fence) 2088 { 2089 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2090 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2091 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2092 2093 struct drm_mm_node *mm_node; 2094 unsigned long num_pages; 2095 unsigned int num_loops, num_dw; 2096 2097 struct amdgpu_job *job; 2098 int r; 2099 2100 if (!adev->mman.buffer_funcs_enabled) { 2101 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2102 return -EINVAL; 2103 } 2104 2105 if (bo->tbo.mem.mem_type == TTM_PL_TT) { 2106 r = amdgpu_ttm_alloc_gart(&bo->tbo); 2107 if (r) 2108 return r; 2109 } 2110 2111 num_pages = bo->tbo.num_pages; 2112 mm_node = bo->tbo.mem.mm_node; 2113 num_loops = 0; 2114 while (num_pages) { 2115 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2116 2117 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes); 2118 num_pages -= mm_node->size; 2119 ++mm_node; 2120 } 2121 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw; 2122 2123 /* for IB padding */ 2124 num_dw += 64; 2125 2126 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); 2127 if (r) 2128 return r; 2129 2130 if (resv) { 2131 r = amdgpu_sync_resv(adev, &job->sync, resv, 2132 AMDGPU_FENCE_OWNER_UNDEFINED, false); 2133 if (r) { 2134 DRM_ERROR("sync failed (%d).\n", r); 2135 goto error_free; 2136 } 2137 } 2138 2139 num_pages = bo->tbo.num_pages; 2140 mm_node = bo->tbo.mem.mm_node; 2141 2142 while (num_pages) { 2143 uint64_t byte_count = mm_node->size << PAGE_SHIFT; 2144 uint64_t dst_addr; 2145 2146 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem); 2147 while (byte_count) { 2148 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count, 2149 max_bytes); 2150 2151 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, 2152 dst_addr, cur_size_in_bytes); 2153 2154 dst_addr += cur_size_in_bytes; 2155 byte_count -= cur_size_in_bytes; 2156 } 2157 2158 num_pages -= mm_node->size; 2159 ++mm_node; 2160 } 2161 2162 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2163 WARN_ON(job->ibs[0].length_dw > num_dw); 2164 r = amdgpu_job_submit(job, &adev->mman.entity, 2165 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2166 if (r) 2167 goto error_free; 2168 2169 return 0; 2170 2171 error_free: 2172 amdgpu_job_free(job); 2173 return r; 2174 } 2175 2176 #if defined(CONFIG_DEBUG_FS) 2177 2178 static int amdgpu_mm_dump_table(struct seq_file *m, void *data) 2179 { 2180 struct drm_info_node *node = (struct drm_info_node *)m->private; 2181 unsigned ttm_pl = (uintptr_t)node->info_ent->data; 2182 struct drm_device *dev = node->minor->dev; 2183 struct amdgpu_device *adev = dev->dev_private; 2184 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl]; 2185 struct drm_printer p = drm_seq_file_printer(m); 2186 2187 man->func->debug(man, &p); 2188 return 0; 2189 } 2190 2191 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = { 2192 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM}, 2193 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT}, 2194 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS}, 2195 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS}, 2196 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA}, 2197 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, 2198 #ifdef CONFIG_SWIOTLB 2199 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} 2200 #endif 2201 }; 2202 2203 /** 2204 * amdgpu_ttm_vram_read - Linear read access to VRAM 2205 * 2206 * Accesses VRAM via MMIO for debugging purposes. 2207 */ 2208 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2209 size_t size, loff_t *pos) 2210 { 2211 struct amdgpu_device *adev = file_inode(f)->i_private; 2212 ssize_t result = 0; 2213 int r; 2214 2215 if (size & 0x3 || *pos & 0x3) 2216 return -EINVAL; 2217 2218 if (*pos >= adev->gmc.mc_vram_size) 2219 return -ENXIO; 2220 2221 while (size) { 2222 unsigned long flags; 2223 uint32_t value; 2224 2225 if (*pos >= adev->gmc.mc_vram_size) 2226 return result; 2227 2228 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2229 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2230 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2231 value = RREG32_NO_KIQ(mmMM_DATA); 2232 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2233 2234 r = put_user(value, (uint32_t *)buf); 2235 if (r) 2236 return r; 2237 2238 result += 4; 2239 buf += 4; 2240 *pos += 4; 2241 size -= 4; 2242 } 2243 2244 return result; 2245 } 2246 2247 /** 2248 * amdgpu_ttm_vram_write - Linear write access to VRAM 2249 * 2250 * Accesses VRAM via MMIO for debugging purposes. 2251 */ 2252 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2253 size_t size, loff_t *pos) 2254 { 2255 struct amdgpu_device *adev = file_inode(f)->i_private; 2256 ssize_t result = 0; 2257 int r; 2258 2259 if (size & 0x3 || *pos & 0x3) 2260 return -EINVAL; 2261 2262 if (*pos >= adev->gmc.mc_vram_size) 2263 return -ENXIO; 2264 2265 while (size) { 2266 unsigned long flags; 2267 uint32_t value; 2268 2269 if (*pos >= adev->gmc.mc_vram_size) 2270 return result; 2271 2272 r = get_user(value, (uint32_t *)buf); 2273 if (r) 2274 return r; 2275 2276 spin_lock_irqsave(&adev->mmio_idx_lock, flags); 2277 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); 2278 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31); 2279 WREG32_NO_KIQ(mmMM_DATA, value); 2280 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); 2281 2282 result += 4; 2283 buf += 4; 2284 *pos += 4; 2285 size -= 4; 2286 } 2287 2288 return result; 2289 } 2290 2291 static const struct file_operations amdgpu_ttm_vram_fops = { 2292 .owner = THIS_MODULE, 2293 .read = amdgpu_ttm_vram_read, 2294 .write = amdgpu_ttm_vram_write, 2295 .llseek = default_llseek, 2296 }; 2297 2298 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2299 2300 /** 2301 * amdgpu_ttm_gtt_read - Linear read access to GTT memory 2302 */ 2303 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, 2304 size_t size, loff_t *pos) 2305 { 2306 struct amdgpu_device *adev = file_inode(f)->i_private; 2307 ssize_t result = 0; 2308 int r; 2309 2310 while (size) { 2311 loff_t p = *pos / PAGE_SIZE; 2312 unsigned off = *pos & ~PAGE_MASK; 2313 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); 2314 struct page *page; 2315 void *ptr; 2316 2317 if (p >= adev->gart.num_cpu_pages) 2318 return result; 2319 2320 page = adev->gart.pages[p]; 2321 if (page) { 2322 ptr = kmap(page); 2323 ptr += off; 2324 2325 r = copy_to_user(buf, ptr, cur_size); 2326 kunmap(adev->gart.pages[p]); 2327 } else 2328 r = clear_user(buf, cur_size); 2329 2330 if (r) 2331 return -EFAULT; 2332 2333 result += cur_size; 2334 buf += cur_size; 2335 *pos += cur_size; 2336 size -= cur_size; 2337 } 2338 2339 return result; 2340 } 2341 2342 static const struct file_operations amdgpu_ttm_gtt_fops = { 2343 .owner = THIS_MODULE, 2344 .read = amdgpu_ttm_gtt_read, 2345 .llseek = default_llseek 2346 }; 2347 2348 #endif 2349 2350 /** 2351 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2352 * 2353 * This function is used to read memory that has been mapped to the 2354 * GPU and the known addresses are not physical addresses but instead 2355 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2356 */ 2357 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2358 size_t size, loff_t *pos) 2359 { 2360 struct amdgpu_device *adev = file_inode(f)->i_private; 2361 struct iommu_domain *dom; 2362 ssize_t result = 0; 2363 int r; 2364 2365 /* retrieve the IOMMU domain if any for this device */ 2366 dom = iommu_get_domain_for_dev(adev->dev); 2367 2368 while (size) { 2369 phys_addr_t addr = *pos & PAGE_MASK; 2370 loff_t off = *pos & ~PAGE_MASK; 2371 size_t bytes = PAGE_SIZE - off; 2372 unsigned long pfn; 2373 struct page *p; 2374 void *ptr; 2375 2376 bytes = bytes < size ? bytes : size; 2377 2378 /* Translate the bus address to a physical address. If 2379 * the domain is NULL it means there is no IOMMU active 2380 * and the address translation is the identity 2381 */ 2382 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2383 2384 pfn = addr >> PAGE_SHIFT; 2385 if (!pfn_valid(pfn)) 2386 return -EPERM; 2387 2388 p = pfn_to_page(pfn); 2389 if (p->mapping != adev->mman.bdev.dev_mapping) 2390 return -EPERM; 2391 2392 ptr = kmap(p); 2393 r = copy_to_user(buf, ptr + off, bytes); 2394 kunmap(p); 2395 if (r) 2396 return -EFAULT; 2397 2398 size -= bytes; 2399 *pos += bytes; 2400 result += bytes; 2401 } 2402 2403 return result; 2404 } 2405 2406 /** 2407 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2408 * 2409 * This function is used to write memory that has been mapped to the 2410 * GPU and the known addresses are not physical addresses but instead 2411 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2412 */ 2413 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2414 size_t size, loff_t *pos) 2415 { 2416 struct amdgpu_device *adev = file_inode(f)->i_private; 2417 struct iommu_domain *dom; 2418 ssize_t result = 0; 2419 int r; 2420 2421 dom = iommu_get_domain_for_dev(adev->dev); 2422 2423 while (size) { 2424 phys_addr_t addr = *pos & PAGE_MASK; 2425 loff_t off = *pos & ~PAGE_MASK; 2426 size_t bytes = PAGE_SIZE - off; 2427 unsigned long pfn; 2428 struct page *p; 2429 void *ptr; 2430 2431 bytes = bytes < size ? bytes : size; 2432 2433 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2434 2435 pfn = addr >> PAGE_SHIFT; 2436 if (!pfn_valid(pfn)) 2437 return -EPERM; 2438 2439 p = pfn_to_page(pfn); 2440 if (p->mapping != adev->mman.bdev.dev_mapping) 2441 return -EPERM; 2442 2443 ptr = kmap(p); 2444 r = copy_from_user(ptr + off, buf, bytes); 2445 kunmap(p); 2446 if (r) 2447 return -EFAULT; 2448 2449 size -= bytes; 2450 *pos += bytes; 2451 result += bytes; 2452 } 2453 2454 return result; 2455 } 2456 2457 static const struct file_operations amdgpu_ttm_iomem_fops = { 2458 .owner = THIS_MODULE, 2459 .read = amdgpu_iomem_read, 2460 .write = amdgpu_iomem_write, 2461 .llseek = default_llseek 2462 }; 2463 2464 static const struct { 2465 char *name; 2466 const struct file_operations *fops; 2467 int domain; 2468 } ttm_debugfs_entries[] = { 2469 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM }, 2470 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS 2471 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT }, 2472 #endif 2473 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM }, 2474 }; 2475 2476 #endif 2477 2478 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2479 { 2480 #if defined(CONFIG_DEBUG_FS) 2481 unsigned count; 2482 2483 struct drm_minor *minor = adev->ddev->primary; 2484 struct dentry *ent, *root = minor->debugfs_root; 2485 2486 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) { 2487 ent = debugfs_create_file( 2488 ttm_debugfs_entries[count].name, 2489 S_IFREG | S_IRUGO, root, 2490 adev, 2491 ttm_debugfs_entries[count].fops); 2492 if (IS_ERR(ent)) 2493 return PTR_ERR(ent); 2494 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM) 2495 i_size_write(ent->d_inode, adev->gmc.mc_vram_size); 2496 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT) 2497 i_size_write(ent->d_inode, adev->gmc.gart_size); 2498 adev->mman.debugfs_entries[count] = ent; 2499 } 2500 2501 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); 2502 2503 #ifdef CONFIG_SWIOTLB 2504 if (!(adev->need_swiotlb && swiotlb_nr_tbl())) 2505 --count; 2506 #endif 2507 2508 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); 2509 #else 2510 return 0; 2511 #endif 2512 } 2513 2514 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) 2515 { 2516 #if defined(CONFIG_DEBUG_FS) 2517 unsigned i; 2518 2519 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++) 2520 debugfs_remove(adev->mman.debugfs_entries[i]); 2521 #endif 2522 } 2523