1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/dma-buf.h> 42 #include <linux/sizes.h> 43 #include <linux/module.h> 44 45 #include <drm/drm_drv.h> 46 #include <drm/ttm/ttm_bo.h> 47 #include <drm/ttm/ttm_placement.h> 48 #include <drm/ttm/ttm_range_manager.h> 49 #include <drm/ttm/ttm_tt.h> 50 51 #include <drm/amdgpu_drm.h> 52 53 #include "amdgpu.h" 54 #include "amdgpu_object.h" 55 #include "amdgpu_trace.h" 56 #include "amdgpu_amdkfd.h" 57 #include "amdgpu_sdma.h" 58 #include "amdgpu_ras.h" 59 #include "amdgpu_hmm.h" 60 #include "amdgpu_atomfirmware.h" 61 #include "amdgpu_res_cursor.h" 62 #include "bif/bif_4_1_d.h" 63 64 MODULE_IMPORT_NS(DMA_BUF); 65 66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128) 67 68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 69 struct ttm_tt *ttm, 70 struct ttm_resource *bo_mem); 71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 72 struct ttm_tt *ttm); 73 74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 75 unsigned int type, 76 uint64_t size_in_page) 77 { 78 return ttm_range_man_init(&adev->mman.bdev, type, 79 false, size_in_page); 80 } 81 82 /** 83 * amdgpu_evict_flags - Compute placement flags 84 * 85 * @bo: The buffer object to evict 86 * @placement: Possible destination(s) for evicted BO 87 * 88 * Fill in placement data when ttm_bo_evict() is called 89 */ 90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 91 struct ttm_placement *placement) 92 { 93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 94 struct amdgpu_bo *abo; 95 static const struct ttm_place placements = { 96 .fpfn = 0, 97 .lpfn = 0, 98 .mem_type = TTM_PL_SYSTEM, 99 .flags = 0 100 }; 101 102 /* Don't handle scatter gather BOs */ 103 if (bo->type == ttm_bo_type_sg) { 104 placement->num_placement = 0; 105 placement->num_busy_placement = 0; 106 return; 107 } 108 109 /* Object isn't an AMDGPU object so ignore */ 110 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 111 placement->placement = &placements; 112 placement->busy_placement = &placements; 113 placement->num_placement = 1; 114 placement->num_busy_placement = 1; 115 return; 116 } 117 118 abo = ttm_to_amdgpu_bo(bo); 119 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 120 placement->num_placement = 0; 121 placement->num_busy_placement = 0; 122 return; 123 } 124 125 switch (bo->resource->mem_type) { 126 case AMDGPU_PL_GDS: 127 case AMDGPU_PL_GWS: 128 case AMDGPU_PL_OA: 129 case AMDGPU_PL_DOORBELL: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned int window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned int offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct amdgpu_job *job; 193 void *cpu_addr; 194 uint64_t flags; 195 unsigned int i; 196 int r; 197 198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 200 201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 202 return -EINVAL; 203 204 /* Map only what can't be accessed directly */ 205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 207 mm_cur->start; 208 return 0; 209 } 210 211 212 /* 213 * If start begins at an offset inside the page, then adjust the size 214 * and addr accordingly 215 */ 216 offset = mm_cur->start & ~PAGE_MASK; 217 218 num_pages = PFN_UP(*size + offset); 219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 220 221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 222 223 *addr = adev->gmc.gart_start; 224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 225 AMDGPU_GPU_PAGE_SIZE; 226 *addr += offset; 227 228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 230 231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 232 AMDGPU_FENCE_OWNER_UNDEFINED, 233 num_dw * 4 + num_bytes, 234 AMDGPU_IB_POOL_DELAYED, &job); 235 if (r) 236 return r; 237 238 src_addr = num_dw * 4; 239 src_addr += job->ibs[0].gpu_addr; 240 241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 244 dst_addr, num_bytes, false); 245 246 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 247 WARN_ON(job->ibs[0].length_dw > num_dw); 248 249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 250 if (tmz) 251 flags |= AMDGPU_PTE_TMZ; 252 253 cpu_addr = &job->ibs[0].ptr[num_dw]; 254 255 if (mem->mem_type == TTM_PL_TT) { 256 dma_addr_t *dma_addr; 257 258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 260 } else { 261 dma_addr_t dma_address; 262 263 dma_address = mm_cur->start; 264 dma_address += adev->vm_manager.vram_base_offset; 265 266 for (i = 0; i < num_pages; ++i) { 267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 268 flags, cpu_addr); 269 dma_address += PAGE_SIZE; 270 } 271 } 272 273 dma_fence_put(amdgpu_job_submit(job)); 274 return 0; 275 } 276 277 /** 278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 279 * @adev: amdgpu device 280 * @src: buffer/address where to read from 281 * @dst: buffer/address where to write to 282 * @size: number of bytes to copy 283 * @tmz: if a secure copy should be used 284 * @resv: resv object to sync to 285 * @f: Returns the last fence if multiple jobs are submitted. 286 * 287 * The function copies @size bytes from {src->mem + src->offset} to 288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 289 * move and different for a BO to BO copy. 290 * 291 */ 292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 293 const struct amdgpu_copy_mem *src, 294 const struct amdgpu_copy_mem *dst, 295 uint64_t size, bool tmz, 296 struct dma_resv *resv, 297 struct dma_fence **f) 298 { 299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 300 struct amdgpu_res_cursor src_mm, dst_mm; 301 struct dma_fence *fence = NULL; 302 int r = 0; 303 304 if (!adev->mman.buffer_funcs_enabled) { 305 DRM_ERROR("Trying to move memory with ring turned off.\n"); 306 return -EINVAL; 307 } 308 309 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 311 312 mutex_lock(&adev->mman.gtt_window_lock); 313 while (src_mm.remaining) { 314 uint64_t from, to, cur_size; 315 struct dma_fence *next; 316 317 /* Never copy more than 256MiB at once to avoid a timeout */ 318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 319 320 /* Map src to window 0 and dst to window 1. */ 321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 322 0, ring, tmz, &cur_size, &from); 323 if (r) 324 goto error; 325 326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 327 1, ring, tmz, &cur_size, &to); 328 if (r) 329 goto error; 330 331 r = amdgpu_copy_buffer(ring, from, to, cur_size, 332 resv, &next, false, true, tmz); 333 if (r) 334 goto error; 335 336 dma_fence_put(fence); 337 fence = next; 338 339 amdgpu_res_next(&src_mm, cur_size); 340 amdgpu_res_next(&dst_mm, cur_size); 341 } 342 error: 343 mutex_unlock(&adev->mman.gtt_window_lock); 344 if (f) 345 *f = dma_fence_get(fence); 346 dma_fence_put(fence); 347 return r; 348 } 349 350 /* 351 * amdgpu_move_blit - Copy an entire buffer to another buffer 352 * 353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 354 * help move buffers to and from VRAM. 355 */ 356 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 357 bool evict, 358 struct ttm_resource *new_mem, 359 struct ttm_resource *old_mem) 360 { 361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 363 struct amdgpu_copy_mem src, dst; 364 struct dma_fence *fence = NULL; 365 int r; 366 367 src.bo = bo; 368 dst.bo = bo; 369 src.mem = old_mem; 370 dst.mem = new_mem; 371 src.offset = 0; 372 dst.offset = 0; 373 374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 375 new_mem->size, 376 amdgpu_bo_encrypted(abo), 377 bo->base.resv, &fence); 378 if (r) 379 goto error; 380 381 /* clear the space being freed */ 382 if (old_mem->mem_type == TTM_PL_VRAM && 383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 384 struct dma_fence *wipe_fence = NULL; 385 386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence, 387 false); 388 if (r) { 389 goto error; 390 } else if (wipe_fence) { 391 dma_fence_put(fence); 392 fence = wipe_fence; 393 } 394 } 395 396 /* Always block for VM page tables before committing the new location */ 397 if (bo->type == ttm_bo_type_kernel) 398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 399 else 400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 401 dma_fence_put(fence); 402 return r; 403 404 error: 405 if (fence) 406 dma_fence_wait(fence, false); 407 dma_fence_put(fence); 408 return r; 409 } 410 411 /* 412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 413 * 414 * Called by amdgpu_bo_move() 415 */ 416 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 417 struct ttm_resource *mem) 418 { 419 u64 mem_size = (u64)mem->size; 420 struct amdgpu_res_cursor cursor; 421 u64 end; 422 423 if (mem->mem_type == TTM_PL_SYSTEM || 424 mem->mem_type == TTM_PL_TT) 425 return true; 426 if (mem->mem_type != TTM_PL_VRAM) 427 return false; 428 429 amdgpu_res_first(mem, 0, mem_size, &cursor); 430 end = cursor.start + cursor.size; 431 while (cursor.remaining) { 432 amdgpu_res_next(&cursor, cursor.size); 433 434 if (!cursor.remaining) 435 break; 436 437 /* ttm_resource_ioremap only supports contiguous memory */ 438 if (end != cursor.start) 439 return false; 440 441 end = cursor.start + cursor.size; 442 } 443 444 return end <= adev->gmc.visible_vram_size; 445 } 446 447 /* 448 * amdgpu_bo_move - Move a buffer object to a new memory location 449 * 450 * Called by ttm_bo_handle_move_mem() 451 */ 452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 453 struct ttm_operation_ctx *ctx, 454 struct ttm_resource *new_mem, 455 struct ttm_place *hop) 456 { 457 struct amdgpu_device *adev; 458 struct amdgpu_bo *abo; 459 struct ttm_resource *old_mem = bo->resource; 460 int r; 461 462 if (new_mem->mem_type == TTM_PL_TT || 463 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 465 if (r) 466 return r; 467 } 468 469 abo = ttm_to_amdgpu_bo(bo); 470 adev = amdgpu_ttm_adev(bo->bdev); 471 472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 473 bo->ttm == NULL)) { 474 ttm_bo_move_null(bo, new_mem); 475 goto out; 476 } 477 if (old_mem->mem_type == TTM_PL_SYSTEM && 478 (new_mem->mem_type == TTM_PL_TT || 479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 480 ttm_bo_move_null(bo, new_mem); 481 goto out; 482 } 483 if ((old_mem->mem_type == TTM_PL_TT || 484 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 485 new_mem->mem_type == TTM_PL_SYSTEM) { 486 r = ttm_bo_wait_ctx(bo, ctx); 487 if (r) 488 return r; 489 490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 491 ttm_resource_free(bo, &bo->resource); 492 ttm_bo_assign_mem(bo, new_mem); 493 goto out; 494 } 495 496 if (old_mem->mem_type == AMDGPU_PL_GDS || 497 old_mem->mem_type == AMDGPU_PL_GWS || 498 old_mem->mem_type == AMDGPU_PL_OA || 499 old_mem->mem_type == AMDGPU_PL_DOORBELL || 500 new_mem->mem_type == AMDGPU_PL_GDS || 501 new_mem->mem_type == AMDGPU_PL_GWS || 502 new_mem->mem_type == AMDGPU_PL_OA || 503 new_mem->mem_type == AMDGPU_PL_DOORBELL) { 504 /* Nothing to save here */ 505 ttm_bo_move_null(bo, new_mem); 506 goto out; 507 } 508 509 if (bo->type == ttm_bo_type_device && 510 new_mem->mem_type == TTM_PL_VRAM && 511 old_mem->mem_type != TTM_PL_VRAM) { 512 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 513 * accesses the BO after it's moved. 514 */ 515 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 516 } 517 518 if (adev->mman.buffer_funcs_enabled) { 519 if (((old_mem->mem_type == TTM_PL_SYSTEM && 520 new_mem->mem_type == TTM_PL_VRAM) || 521 (old_mem->mem_type == TTM_PL_VRAM && 522 new_mem->mem_type == TTM_PL_SYSTEM))) { 523 hop->fpfn = 0; 524 hop->lpfn = 0; 525 hop->mem_type = TTM_PL_TT; 526 hop->flags = TTM_PL_FLAG_TEMPORARY; 527 return -EMULTIHOP; 528 } 529 530 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 531 } else { 532 r = -ENODEV; 533 } 534 535 if (r) { 536 /* Check that all memory is CPU accessible */ 537 if (!amdgpu_mem_visible(adev, old_mem) || 538 !amdgpu_mem_visible(adev, new_mem)) { 539 pr_err("Move buffer fallback to memcpy unavailable\n"); 540 return r; 541 } 542 543 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 544 if (r) 545 return r; 546 } 547 548 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type); 549 out: 550 /* update statistics */ 551 atomic64_add(bo->base.size, &adev->num_bytes_moved); 552 amdgpu_bo_move_notify(bo, evict); 553 return 0; 554 } 555 556 /* 557 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 558 * 559 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 560 */ 561 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 562 struct ttm_resource *mem) 563 { 564 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 565 566 switch (mem->mem_type) { 567 case TTM_PL_SYSTEM: 568 /* system memory */ 569 return 0; 570 case TTM_PL_TT: 571 case AMDGPU_PL_PREEMPT: 572 break; 573 case TTM_PL_VRAM: 574 mem->bus.offset = mem->start << PAGE_SHIFT; 575 576 if (adev->mman.aper_base_kaddr && 577 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 578 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 579 mem->bus.offset; 580 581 mem->bus.offset += adev->gmc.aper_base; 582 mem->bus.is_iomem = true; 583 break; 584 case AMDGPU_PL_DOORBELL: 585 mem->bus.offset = mem->start << PAGE_SHIFT; 586 mem->bus.offset += adev->doorbell.base; 587 mem->bus.is_iomem = true; 588 mem->bus.caching = ttm_uncached; 589 break; 590 default: 591 return -EINVAL; 592 } 593 return 0; 594 } 595 596 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 597 unsigned long page_offset) 598 { 599 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 600 struct amdgpu_res_cursor cursor; 601 602 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 603 &cursor); 604 605 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL) 606 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT; 607 608 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 609 } 610 611 /** 612 * amdgpu_ttm_domain_start - Returns GPU start address 613 * @adev: amdgpu device object 614 * @type: type of the memory 615 * 616 * Returns: 617 * GPU start address of a memory domain 618 */ 619 620 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 621 { 622 switch (type) { 623 case TTM_PL_TT: 624 return adev->gmc.gart_start; 625 case TTM_PL_VRAM: 626 return adev->gmc.vram_start; 627 } 628 629 return 0; 630 } 631 632 /* 633 * TTM backend functions. 634 */ 635 struct amdgpu_ttm_tt { 636 struct ttm_tt ttm; 637 struct drm_gem_object *gobj; 638 u64 offset; 639 uint64_t userptr; 640 struct task_struct *usertask; 641 uint32_t userflags; 642 bool bound; 643 int32_t pool_id; 644 }; 645 646 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 647 648 #ifdef CONFIG_DRM_AMDGPU_USERPTR 649 /* 650 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 651 * memory and start HMM tracking CPU page table update 652 * 653 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 654 * once afterwards to stop HMM tracking 655 */ 656 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 657 struct hmm_range **range) 658 { 659 struct ttm_tt *ttm = bo->tbo.ttm; 660 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 661 unsigned long start = gtt->userptr; 662 struct vm_area_struct *vma; 663 struct mm_struct *mm; 664 bool readonly; 665 int r = 0; 666 667 /* Make sure get_user_pages_done() can cleanup gracefully */ 668 *range = NULL; 669 670 mm = bo->notifier.mm; 671 if (unlikely(!mm)) { 672 DRM_DEBUG_DRIVER("BO is not registered?\n"); 673 return -EFAULT; 674 } 675 676 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 677 return -ESRCH; 678 679 mmap_read_lock(mm); 680 vma = vma_lookup(mm, start); 681 if (unlikely(!vma)) { 682 r = -EFAULT; 683 goto out_unlock; 684 } 685 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 686 vma->vm_file)) { 687 r = -EPERM; 688 goto out_unlock; 689 } 690 691 readonly = amdgpu_ttm_tt_is_readonly(ttm); 692 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages, 693 readonly, NULL, pages, range); 694 out_unlock: 695 mmap_read_unlock(mm); 696 if (r) 697 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 698 699 mmput(mm); 700 701 return r; 702 } 703 704 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations 705 */ 706 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm, 707 struct hmm_range *range) 708 { 709 struct amdgpu_ttm_tt *gtt = (void *)ttm; 710 711 if (gtt && gtt->userptr && range) 712 amdgpu_hmm_range_get_pages_done(range); 713 } 714 715 /* 716 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change 717 * Check if the pages backing this ttm range have been invalidated 718 * 719 * Returns: true if pages are still valid 720 */ 721 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 722 struct hmm_range *range) 723 { 724 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 725 726 if (!gtt || !gtt->userptr || !range) 727 return false; 728 729 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 730 gtt->userptr, ttm->num_pages); 731 732 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 733 734 return !amdgpu_hmm_range_get_pages_done(range); 735 } 736 #endif 737 738 /* 739 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 740 * 741 * Called by amdgpu_cs_list_validate(). This creates the page list 742 * that backs user memory and will ultimately be mapped into the device 743 * address space. 744 */ 745 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 746 { 747 unsigned long i; 748 749 for (i = 0; i < ttm->num_pages; ++i) 750 ttm->pages[i] = pages ? pages[i] : NULL; 751 } 752 753 /* 754 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 755 * 756 * Called by amdgpu_ttm_backend_bind() 757 **/ 758 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 759 struct ttm_tt *ttm) 760 { 761 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 762 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 763 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 764 enum dma_data_direction direction = write ? 765 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 766 int r; 767 768 /* Allocate an SG array and squash pages into it */ 769 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 770 (u64)ttm->num_pages << PAGE_SHIFT, 771 GFP_KERNEL); 772 if (r) 773 goto release_sg; 774 775 /* Map SG to device */ 776 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 777 if (r) 778 goto release_sg; 779 780 /* convert SG to linear array of pages and dma addresses */ 781 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 782 ttm->num_pages); 783 784 return 0; 785 786 release_sg: 787 kfree(ttm->sg); 788 ttm->sg = NULL; 789 return r; 790 } 791 792 /* 793 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 794 */ 795 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 796 struct ttm_tt *ttm) 797 { 798 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 799 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 800 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 801 enum dma_data_direction direction = write ? 802 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 803 804 /* double check that we don't free the table twice */ 805 if (!ttm->sg || !ttm->sg->sgl) 806 return; 807 808 /* unmap the pages mapped to the device */ 809 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 810 sg_free_table(ttm->sg); 811 } 812 813 /* 814 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ... 815 * MQDn+CtrlStackn where n is the number of XCCs per partition. 816 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD 817 * and uses memory type default, UC. The rest of pages_per_xcc are 818 * Ctrl stack and modify their memory type to NC. 819 */ 820 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev, 821 struct ttm_tt *ttm, uint64_t flags) 822 { 823 struct amdgpu_ttm_tt *gtt = (void *)ttm; 824 uint64_t total_pages = ttm->num_pages; 825 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp); 826 uint64_t page_idx, pages_per_xcc; 827 int i; 828 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) | 829 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 830 831 pages_per_xcc = total_pages; 832 do_div(pages_per_xcc, num_xcc); 833 834 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) { 835 /* MQD page: use default flags */ 836 amdgpu_gart_bind(adev, 837 gtt->offset + (page_idx << PAGE_SHIFT), 838 1, >t->ttm.dma_address[page_idx], flags); 839 /* 840 * Ctrl pages - modify the memory type to NC (ctrl_flags) from 841 * the second page of the BO onward. 842 */ 843 amdgpu_gart_bind(adev, 844 gtt->offset + ((page_idx + 1) << PAGE_SHIFT), 845 pages_per_xcc - 1, 846 >t->ttm.dma_address[page_idx + 1], 847 ctrl_flags); 848 } 849 } 850 851 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 852 struct ttm_buffer_object *tbo, 853 uint64_t flags) 854 { 855 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 856 struct ttm_tt *ttm = tbo->ttm; 857 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 858 859 if (amdgpu_bo_encrypted(abo)) 860 flags |= AMDGPU_PTE_TMZ; 861 862 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 863 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags); 864 } else { 865 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 866 gtt->ttm.dma_address, flags); 867 } 868 gtt->bound = true; 869 } 870 871 /* 872 * amdgpu_ttm_backend_bind - Bind GTT memory 873 * 874 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 875 * This handles binding GTT memory to the device address space. 876 */ 877 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 878 struct ttm_tt *ttm, 879 struct ttm_resource *bo_mem) 880 { 881 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 882 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 883 uint64_t flags; 884 int r; 885 886 if (!bo_mem) 887 return -EINVAL; 888 889 if (gtt->bound) 890 return 0; 891 892 if (gtt->userptr) { 893 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 894 if (r) { 895 DRM_ERROR("failed to pin userptr\n"); 896 return r; 897 } 898 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 899 if (!ttm->sg) { 900 struct dma_buf_attachment *attach; 901 struct sg_table *sgt; 902 903 attach = gtt->gobj->import_attach; 904 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 905 if (IS_ERR(sgt)) 906 return PTR_ERR(sgt); 907 908 ttm->sg = sgt; 909 } 910 911 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 912 ttm->num_pages); 913 } 914 915 if (!ttm->num_pages) { 916 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 917 ttm->num_pages, bo_mem, ttm); 918 } 919 920 if (bo_mem->mem_type != TTM_PL_TT || 921 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 922 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 923 return 0; 924 } 925 926 /* compute PTE flags relevant to this BO memory */ 927 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 928 929 /* bind pages into GART page tables */ 930 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 931 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 932 gtt->ttm.dma_address, flags); 933 gtt->bound = true; 934 return 0; 935 } 936 937 /* 938 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 939 * through AGP or GART aperture. 940 * 941 * If bo is accessible through AGP aperture, then use AGP aperture 942 * to access bo; otherwise allocate logical space in GART aperture 943 * and map bo to GART aperture. 944 */ 945 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 946 { 947 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 948 struct ttm_operation_ctx ctx = { false, false }; 949 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 950 struct ttm_placement placement; 951 struct ttm_place placements; 952 struct ttm_resource *tmp; 953 uint64_t addr, flags; 954 int r; 955 956 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 957 return 0; 958 959 addr = amdgpu_gmc_agp_addr(bo); 960 if (addr != AMDGPU_BO_INVALID_OFFSET) { 961 bo->resource->start = addr >> PAGE_SHIFT; 962 return 0; 963 } 964 965 /* allocate GART space */ 966 placement.num_placement = 1; 967 placement.placement = &placements; 968 placement.num_busy_placement = 1; 969 placement.busy_placement = &placements; 970 placements.fpfn = 0; 971 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 972 placements.mem_type = TTM_PL_TT; 973 placements.flags = bo->resource->placement; 974 975 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 976 if (unlikely(r)) 977 return r; 978 979 /* compute PTE flags for this buffer object */ 980 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 981 982 /* Bind pages */ 983 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 984 amdgpu_ttm_gart_bind(adev, bo, flags); 985 amdgpu_gart_invalidate_tlb(adev); 986 ttm_resource_free(bo, &bo->resource); 987 ttm_bo_assign_mem(bo, tmp); 988 989 return 0; 990 } 991 992 /* 993 * amdgpu_ttm_recover_gart - Rebind GTT pages 994 * 995 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 996 * rebind GTT pages during a GPU reset. 997 */ 998 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 999 { 1000 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 1001 uint64_t flags; 1002 1003 if (!tbo->ttm) 1004 return; 1005 1006 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 1007 amdgpu_ttm_gart_bind(adev, tbo, flags); 1008 } 1009 1010 /* 1011 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 1012 * 1013 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 1014 * ttm_tt_destroy(). 1015 */ 1016 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 1017 struct ttm_tt *ttm) 1018 { 1019 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1020 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1021 1022 /* if the pages have userptr pinning then clear that first */ 1023 if (gtt->userptr) { 1024 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 1025 } else if (ttm->sg && gtt->gobj->import_attach) { 1026 struct dma_buf_attachment *attach; 1027 1028 attach = gtt->gobj->import_attach; 1029 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1030 ttm->sg = NULL; 1031 } 1032 1033 if (!gtt->bound) 1034 return; 1035 1036 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1037 return; 1038 1039 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1040 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1041 gtt->bound = false; 1042 } 1043 1044 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1045 struct ttm_tt *ttm) 1046 { 1047 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1048 1049 if (gtt->usertask) 1050 put_task_struct(gtt->usertask); 1051 1052 ttm_tt_fini(>t->ttm); 1053 kfree(gtt); 1054 } 1055 1056 /** 1057 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1058 * 1059 * @bo: The buffer object to create a GTT ttm_tt object around 1060 * @page_flags: Page flags to be added to the ttm_tt object 1061 * 1062 * Called by ttm_tt_create(). 1063 */ 1064 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1065 uint32_t page_flags) 1066 { 1067 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 1068 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1069 struct amdgpu_ttm_tt *gtt; 1070 enum ttm_caching caching; 1071 1072 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1073 if (!gtt) 1074 return NULL; 1075 1076 gtt->gobj = &bo->base; 1077 if (adev->gmc.mem_partitions && abo->xcp_id >= 0) 1078 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id); 1079 else 1080 gtt->pool_id = abo->xcp_id; 1081 1082 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1083 caching = ttm_write_combined; 1084 else 1085 caching = ttm_cached; 1086 1087 /* allocate space for the uninitialized page entries */ 1088 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1089 kfree(gtt); 1090 return NULL; 1091 } 1092 return >t->ttm; 1093 } 1094 1095 /* 1096 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1097 * 1098 * Map the pages of a ttm_tt object to an address space visible 1099 * to the underlying device. 1100 */ 1101 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1102 struct ttm_tt *ttm, 1103 struct ttm_operation_ctx *ctx) 1104 { 1105 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1106 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1107 struct ttm_pool *pool; 1108 pgoff_t i; 1109 int ret; 1110 1111 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1112 if (gtt->userptr) { 1113 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1114 if (!ttm->sg) 1115 return -ENOMEM; 1116 return 0; 1117 } 1118 1119 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1120 return 0; 1121 1122 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1123 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1124 else 1125 pool = &adev->mman.bdev.pool; 1126 ret = ttm_pool_alloc(pool, ttm, ctx); 1127 if (ret) 1128 return ret; 1129 1130 for (i = 0; i < ttm->num_pages; ++i) 1131 ttm->pages[i]->mapping = bdev->dev_mapping; 1132 1133 return 0; 1134 } 1135 1136 /* 1137 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1138 * 1139 * Unmaps pages of a ttm_tt object from the device address space and 1140 * unpopulates the page array backing it. 1141 */ 1142 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1143 struct ttm_tt *ttm) 1144 { 1145 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1146 struct amdgpu_device *adev; 1147 struct ttm_pool *pool; 1148 pgoff_t i; 1149 1150 amdgpu_ttm_backend_unbind(bdev, ttm); 1151 1152 if (gtt->userptr) { 1153 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1154 kfree(ttm->sg); 1155 ttm->sg = NULL; 1156 return; 1157 } 1158 1159 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1160 return; 1161 1162 for (i = 0; i < ttm->num_pages; ++i) 1163 ttm->pages[i]->mapping = NULL; 1164 1165 adev = amdgpu_ttm_adev(bdev); 1166 1167 if (adev->mman.ttm_pools && gtt->pool_id >= 0) 1168 pool = &adev->mman.ttm_pools[gtt->pool_id]; 1169 else 1170 pool = &adev->mman.bdev.pool; 1171 1172 return ttm_pool_free(pool, ttm); 1173 } 1174 1175 /** 1176 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1177 * task 1178 * 1179 * @tbo: The ttm_buffer_object that contains the userptr 1180 * @user_addr: The returned value 1181 */ 1182 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1183 uint64_t *user_addr) 1184 { 1185 struct amdgpu_ttm_tt *gtt; 1186 1187 if (!tbo->ttm) 1188 return -EINVAL; 1189 1190 gtt = (void *)tbo->ttm; 1191 *user_addr = gtt->userptr; 1192 return 0; 1193 } 1194 1195 /** 1196 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1197 * task 1198 * 1199 * @bo: The ttm_buffer_object to bind this userptr to 1200 * @addr: The address in the current tasks VM space to use 1201 * @flags: Requirements of userptr object. 1202 * 1203 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to 1204 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to 1205 * initialize GPU VM for a KFD process. 1206 */ 1207 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1208 uint64_t addr, uint32_t flags) 1209 { 1210 struct amdgpu_ttm_tt *gtt; 1211 1212 if (!bo->ttm) { 1213 /* TODO: We want a separate TTM object type for userptrs */ 1214 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1215 if (bo->ttm == NULL) 1216 return -ENOMEM; 1217 } 1218 1219 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1220 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1221 1222 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1223 gtt->userptr = addr; 1224 gtt->userflags = flags; 1225 1226 if (gtt->usertask) 1227 put_task_struct(gtt->usertask); 1228 gtt->usertask = current->group_leader; 1229 get_task_struct(gtt->usertask); 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1236 */ 1237 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1238 { 1239 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1240 1241 if (gtt == NULL) 1242 return NULL; 1243 1244 if (gtt->usertask == NULL) 1245 return NULL; 1246 1247 return gtt->usertask->mm; 1248 } 1249 1250 /* 1251 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1252 * address range for the current task. 1253 * 1254 */ 1255 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1256 unsigned long end, unsigned long *userptr) 1257 { 1258 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1259 unsigned long size; 1260 1261 if (gtt == NULL || !gtt->userptr) 1262 return false; 1263 1264 /* Return false if no part of the ttm_tt object lies within 1265 * the range 1266 */ 1267 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1268 if (gtt->userptr > end || gtt->userptr + size <= start) 1269 return false; 1270 1271 if (userptr) 1272 *userptr = gtt->userptr; 1273 return true; 1274 } 1275 1276 /* 1277 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1278 */ 1279 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1280 { 1281 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1282 1283 if (gtt == NULL || !gtt->userptr) 1284 return false; 1285 1286 return true; 1287 } 1288 1289 /* 1290 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1291 */ 1292 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1293 { 1294 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1295 1296 if (gtt == NULL) 1297 return false; 1298 1299 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1300 } 1301 1302 /** 1303 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1304 * 1305 * @ttm: The ttm_tt object to compute the flags for 1306 * @mem: The memory registry backing this ttm_tt object 1307 * 1308 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1309 */ 1310 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1311 { 1312 uint64_t flags = 0; 1313 1314 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1315 flags |= AMDGPU_PTE_VALID; 1316 1317 if (mem && (mem->mem_type == TTM_PL_TT || 1318 mem->mem_type == AMDGPU_PL_DOORBELL || 1319 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1320 flags |= AMDGPU_PTE_SYSTEM; 1321 1322 if (ttm->caching == ttm_cached) 1323 flags |= AMDGPU_PTE_SNOOPED; 1324 } 1325 1326 if (mem && mem->mem_type == TTM_PL_VRAM && 1327 mem->bus.caching == ttm_cached) 1328 flags |= AMDGPU_PTE_SNOOPED; 1329 1330 return flags; 1331 } 1332 1333 /** 1334 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1335 * 1336 * @adev: amdgpu_device pointer 1337 * @ttm: The ttm_tt object to compute the flags for 1338 * @mem: The memory registry backing this ttm_tt object 1339 * 1340 * Figure out the flags to use for a VM PTE (Page Table Entry). 1341 */ 1342 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1343 struct ttm_resource *mem) 1344 { 1345 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1346 1347 flags |= adev->gart.gart_pte_flags; 1348 flags |= AMDGPU_PTE_READABLE; 1349 1350 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1351 flags |= AMDGPU_PTE_WRITEABLE; 1352 1353 return flags; 1354 } 1355 1356 /* 1357 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1358 * object. 1359 * 1360 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1361 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1362 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1363 * used to clean out a memory space. 1364 */ 1365 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1366 const struct ttm_place *place) 1367 { 1368 struct dma_resv_iter resv_cursor; 1369 struct dma_fence *f; 1370 1371 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1372 return ttm_bo_eviction_valuable(bo, place); 1373 1374 /* Swapout? */ 1375 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1376 return true; 1377 1378 if (bo->type == ttm_bo_type_kernel && 1379 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1380 return false; 1381 1382 /* If bo is a KFD BO, check if the bo belongs to the current process. 1383 * If true, then return false as any KFD process needs all its BOs to 1384 * be resident to run successfully 1385 */ 1386 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1387 DMA_RESV_USAGE_BOOKKEEP, f) { 1388 if (amdkfd_fence_check_mm(f, current->mm)) 1389 return false; 1390 } 1391 1392 /* Preemptible BOs don't own system resources managed by the 1393 * driver (pages, VRAM, GART space). They point to resources 1394 * owned by someone else (e.g. pageable memory in user mode 1395 * or a DMABuf). They are used in a preemptible context so we 1396 * can guarantee no deadlocks and good QoS in case of MMU 1397 * notifiers or DMABuf move notifiers from the resource owner. 1398 */ 1399 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1400 return false; 1401 1402 if (bo->resource->mem_type == TTM_PL_TT && 1403 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1404 return false; 1405 1406 return ttm_bo_eviction_valuable(bo, place); 1407 } 1408 1409 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1410 void *buf, size_t size, bool write) 1411 { 1412 while (size) { 1413 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1414 uint64_t bytes = 4 - (pos & 0x3); 1415 uint32_t shift = (pos & 0x3) * 8; 1416 uint32_t mask = 0xffffffff << shift; 1417 uint32_t value = 0; 1418 1419 if (size < bytes) { 1420 mask &= 0xffffffff >> (bytes - size) * 8; 1421 bytes = size; 1422 } 1423 1424 if (mask != 0xffffffff) { 1425 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1426 if (write) { 1427 value &= ~mask; 1428 value |= (*(uint32_t *)buf << shift) & mask; 1429 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1430 } else { 1431 value = (value & mask) >> shift; 1432 memcpy(buf, &value, bytes); 1433 } 1434 } else { 1435 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1436 } 1437 1438 pos += bytes; 1439 buf += bytes; 1440 size -= bytes; 1441 } 1442 } 1443 1444 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1445 unsigned long offset, void *buf, 1446 int len, int write) 1447 { 1448 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1449 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1450 struct amdgpu_res_cursor src_mm; 1451 struct amdgpu_job *job; 1452 struct dma_fence *fence; 1453 uint64_t src_addr, dst_addr; 1454 unsigned int num_dw; 1455 int r, idx; 1456 1457 if (len != PAGE_SIZE) 1458 return -EINVAL; 1459 1460 if (!adev->mman.sdma_access_ptr) 1461 return -EACCES; 1462 1463 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1464 return -ENODEV; 1465 1466 if (write) 1467 memcpy(adev->mman.sdma_access_ptr, buf, len); 1468 1469 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1470 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 1471 AMDGPU_FENCE_OWNER_UNDEFINED, 1472 num_dw * 4, AMDGPU_IB_POOL_DELAYED, 1473 &job); 1474 if (r) 1475 goto out; 1476 1477 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1478 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + 1479 src_mm.start; 1480 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1481 if (write) 1482 swap(src_addr, dst_addr); 1483 1484 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, 1485 PAGE_SIZE, false); 1486 1487 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1488 WARN_ON(job->ibs[0].length_dw > num_dw); 1489 1490 fence = amdgpu_job_submit(job); 1491 1492 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1493 r = -ETIMEDOUT; 1494 dma_fence_put(fence); 1495 1496 if (!(r || write)) 1497 memcpy(buf, adev->mman.sdma_access_ptr, len); 1498 out: 1499 drm_dev_exit(idx); 1500 return r; 1501 } 1502 1503 /** 1504 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1505 * 1506 * @bo: The buffer object to read/write 1507 * @offset: Offset into buffer object 1508 * @buf: Secondary buffer to write/read from 1509 * @len: Length in bytes of access 1510 * @write: true if writing 1511 * 1512 * This is used to access VRAM that backs a buffer object via MMIO 1513 * access for debugging purposes. 1514 */ 1515 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1516 unsigned long offset, void *buf, int len, 1517 int write) 1518 { 1519 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1520 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1521 struct amdgpu_res_cursor cursor; 1522 int ret = 0; 1523 1524 if (bo->resource->mem_type != TTM_PL_VRAM) 1525 return -EIO; 1526 1527 if (amdgpu_device_has_timeouts_enabled(adev) && 1528 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1529 return len; 1530 1531 amdgpu_res_first(bo->resource, offset, len, &cursor); 1532 while (cursor.remaining) { 1533 size_t count, size = cursor.size; 1534 loff_t pos = cursor.start; 1535 1536 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1537 size -= count; 1538 if (size) { 1539 /* using MM to access rest vram and handle un-aligned address */ 1540 pos += count; 1541 buf += count; 1542 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1543 } 1544 1545 ret += cursor.size; 1546 buf += cursor.size; 1547 amdgpu_res_next(&cursor, cursor.size); 1548 } 1549 1550 return ret; 1551 } 1552 1553 static void 1554 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1555 { 1556 amdgpu_bo_move_notify(bo, false); 1557 } 1558 1559 static struct ttm_device_funcs amdgpu_bo_driver = { 1560 .ttm_tt_create = &amdgpu_ttm_tt_create, 1561 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1562 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1563 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1564 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1565 .evict_flags = &amdgpu_evict_flags, 1566 .move = &amdgpu_bo_move, 1567 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1568 .release_notify = &amdgpu_bo_release_notify, 1569 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1570 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1571 .access_memory = &amdgpu_ttm_access_memory, 1572 }; 1573 1574 /* 1575 * Firmware Reservation functions 1576 */ 1577 /** 1578 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1579 * 1580 * @adev: amdgpu_device pointer 1581 * 1582 * free fw reserved vram if it has been reserved. 1583 */ 1584 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1585 { 1586 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1587 NULL, &adev->mman.fw_vram_usage_va); 1588 } 1589 1590 /* 1591 * Driver Reservation functions 1592 */ 1593 /** 1594 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram 1595 * 1596 * @adev: amdgpu_device pointer 1597 * 1598 * free drv reserved vram if it has been reserved. 1599 */ 1600 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev) 1601 { 1602 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo, 1603 NULL, 1604 &adev->mman.drv_vram_usage_va); 1605 } 1606 1607 /** 1608 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1609 * 1610 * @adev: amdgpu_device pointer 1611 * 1612 * create bo vram reservation from fw. 1613 */ 1614 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1615 { 1616 uint64_t vram_size = adev->gmc.visible_vram_size; 1617 1618 adev->mman.fw_vram_usage_va = NULL; 1619 adev->mman.fw_vram_usage_reserved_bo = NULL; 1620 1621 if (adev->mman.fw_vram_usage_size == 0 || 1622 adev->mman.fw_vram_usage_size > vram_size) 1623 return 0; 1624 1625 return amdgpu_bo_create_kernel_at(adev, 1626 adev->mman.fw_vram_usage_start_offset, 1627 adev->mman.fw_vram_usage_size, 1628 &adev->mman.fw_vram_usage_reserved_bo, 1629 &adev->mman.fw_vram_usage_va); 1630 } 1631 1632 /** 1633 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver 1634 * 1635 * @adev: amdgpu_device pointer 1636 * 1637 * create bo vram reservation from drv. 1638 */ 1639 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev) 1640 { 1641 u64 vram_size = adev->gmc.visible_vram_size; 1642 1643 adev->mman.drv_vram_usage_va = NULL; 1644 adev->mman.drv_vram_usage_reserved_bo = NULL; 1645 1646 if (adev->mman.drv_vram_usage_size == 0 || 1647 adev->mman.drv_vram_usage_size > vram_size) 1648 return 0; 1649 1650 return amdgpu_bo_create_kernel_at(adev, 1651 adev->mman.drv_vram_usage_start_offset, 1652 adev->mman.drv_vram_usage_size, 1653 &adev->mman.drv_vram_usage_reserved_bo, 1654 &adev->mman.drv_vram_usage_va); 1655 } 1656 1657 /* 1658 * Memoy training reservation functions 1659 */ 1660 1661 /** 1662 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1663 * 1664 * @adev: amdgpu_device pointer 1665 * 1666 * free memory training reserved vram if it has been reserved. 1667 */ 1668 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1669 { 1670 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1671 1672 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1673 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1674 ctx->c2p_bo = NULL; 1675 1676 return 0; 1677 } 1678 1679 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev, 1680 uint32_t reserve_size) 1681 { 1682 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1683 1684 memset(ctx, 0, sizeof(*ctx)); 1685 1686 ctx->c2p_train_data_offset = 1687 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M); 1688 ctx->p2c_train_data_offset = 1689 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1690 ctx->train_data_size = 1691 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1692 1693 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1694 ctx->train_data_size, 1695 ctx->p2c_train_data_offset, 1696 ctx->c2p_train_data_offset); 1697 } 1698 1699 /* 1700 * reserve TMR memory at the top of VRAM which holds 1701 * IP Discovery data and is protected by PSP. 1702 */ 1703 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1704 { 1705 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1706 bool mem_train_support = false; 1707 uint32_t reserve_size = 0; 1708 int ret; 1709 1710 if (adev->bios && !amdgpu_sriov_vf(adev)) { 1711 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1712 mem_train_support = true; 1713 else 1714 DRM_DEBUG("memory training does not support!\n"); 1715 } 1716 1717 /* 1718 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1719 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1720 * 1721 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1722 * discovery data and G6 memory training data respectively 1723 */ 1724 if (adev->bios) 1725 reserve_size = 1726 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1727 1728 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3)) 1729 reserve_size = max(reserve_size, (uint32_t)280 << 20); 1730 else if (!reserve_size) 1731 reserve_size = DISCOVERY_TMR_OFFSET; 1732 1733 if (mem_train_support) { 1734 /* reserve vram for mem train according to TMR location */ 1735 amdgpu_ttm_training_data_block_init(adev, reserve_size); 1736 ret = amdgpu_bo_create_kernel_at(adev, 1737 ctx->c2p_train_data_offset, 1738 ctx->train_data_size, 1739 &ctx->c2p_bo, 1740 NULL); 1741 if (ret) { 1742 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1743 amdgpu_ttm_training_reserve_vram_fini(adev); 1744 return ret; 1745 } 1746 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1747 } 1748 1749 if (!adev->gmc.is_app_apu) { 1750 ret = amdgpu_bo_create_kernel_at( 1751 adev, adev->gmc.real_vram_size - reserve_size, 1752 reserve_size, &adev->mman.fw_reserved_memory, NULL); 1753 if (ret) { 1754 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1755 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, 1756 NULL, NULL); 1757 return ret; 1758 } 1759 } else { 1760 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n"); 1761 } 1762 1763 return 0; 1764 } 1765 1766 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev) 1767 { 1768 int i; 1769 1770 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions) 1771 return 0; 1772 1773 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions, 1774 sizeof(*adev->mman.ttm_pools), 1775 GFP_KERNEL); 1776 if (!adev->mman.ttm_pools) 1777 return -ENOMEM; 1778 1779 for (i = 0; i < adev->gmc.num_mem_partitions; i++) { 1780 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev, 1781 adev->gmc.mem_partitions[i].numa.node, 1782 false, false); 1783 } 1784 return 0; 1785 } 1786 1787 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev) 1788 { 1789 int i; 1790 1791 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools) 1792 return; 1793 1794 for (i = 0; i < adev->gmc.num_mem_partitions; i++) 1795 ttm_pool_fini(&adev->mman.ttm_pools[i]); 1796 1797 kfree(adev->mman.ttm_pools); 1798 adev->mman.ttm_pools = NULL; 1799 } 1800 1801 /* 1802 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1803 * gtt/vram related fields. 1804 * 1805 * This initializes all of the memory space pools that the TTM layer 1806 * will need such as the GTT space (system memory mapped to the device), 1807 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1808 * can be mapped per VMID. 1809 */ 1810 int amdgpu_ttm_init(struct amdgpu_device *adev) 1811 { 1812 uint64_t gtt_size; 1813 int r; 1814 1815 mutex_init(&adev->mman.gtt_window_lock); 1816 1817 /* No others user of address space so set it to 0 */ 1818 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1819 adev_to_drm(adev)->anon_inode->i_mapping, 1820 adev_to_drm(adev)->vma_offset_manager, 1821 adev->need_swiotlb, 1822 dma_addressing_limited(adev->dev)); 1823 if (r) { 1824 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1825 return r; 1826 } 1827 1828 r = amdgpu_ttm_pools_init(adev); 1829 if (r) { 1830 DRM_ERROR("failed to init ttm pools(%d).\n", r); 1831 return r; 1832 } 1833 adev->mman.initialized = true; 1834 1835 /* Initialize VRAM pool with all of VRAM divided into pages */ 1836 r = amdgpu_vram_mgr_init(adev); 1837 if (r) { 1838 DRM_ERROR("Failed initializing VRAM heap.\n"); 1839 return r; 1840 } 1841 1842 /* Change the size here instead of the init above so only lpfn is affected */ 1843 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1844 #ifdef CONFIG_64BIT 1845 #ifdef CONFIG_X86 1846 if (adev->gmc.xgmi.connected_to_cpu) 1847 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1848 adev->gmc.visible_vram_size); 1849 1850 else if (adev->gmc.is_app_apu) 1851 DRM_DEBUG_DRIVER( 1852 "No need to ioremap when real vram size is 0\n"); 1853 else 1854 #endif 1855 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1856 adev->gmc.visible_vram_size); 1857 #endif 1858 1859 /* 1860 *The reserved vram for firmware must be pinned to the specified 1861 *place on the VRAM, so reserve it early. 1862 */ 1863 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1864 if (r) 1865 return r; 1866 1867 /* 1868 *The reserved vram for driver must be pinned to the specified 1869 *place on the VRAM, so reserve it early. 1870 */ 1871 r = amdgpu_ttm_drv_reserve_vram_init(adev); 1872 if (r) 1873 return r; 1874 1875 /* 1876 * only NAVI10 and onwards ASIC support for IP discovery. 1877 * If IP discovery enabled, a block of memory should be 1878 * reserved for IP discovey. 1879 */ 1880 if (adev->mman.discovery_bin) { 1881 r = amdgpu_ttm_reserve_tmr(adev); 1882 if (r) 1883 return r; 1884 } 1885 1886 /* allocate memory as required for VGA 1887 * This is used for VGA emulation and pre-OS scanout buffers to 1888 * avoid display artifacts while transitioning between pre-OS 1889 * and driver. 1890 */ 1891 if (!adev->gmc.is_app_apu) { 1892 r = amdgpu_bo_create_kernel_at(adev, 0, 1893 adev->mman.stolen_vga_size, 1894 &adev->mman.stolen_vga_memory, 1895 NULL); 1896 if (r) 1897 return r; 1898 1899 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1900 adev->mman.stolen_extended_size, 1901 &adev->mman.stolen_extended_memory, 1902 NULL); 1903 1904 if (r) 1905 return r; 1906 1907 r = amdgpu_bo_create_kernel_at(adev, 1908 adev->mman.stolen_reserved_offset, 1909 adev->mman.stolen_reserved_size, 1910 &adev->mman.stolen_reserved_memory, 1911 NULL); 1912 if (r) 1913 return r; 1914 } else { 1915 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n"); 1916 } 1917 1918 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1919 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024))); 1920 1921 /* Compute GTT size, either based on TTM limit 1922 * or whatever the user passed on module init. 1923 */ 1924 if (amdgpu_gtt_size == -1) 1925 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT; 1926 else 1927 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1928 1929 /* Initialize GTT memory pool */ 1930 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1931 if (r) { 1932 DRM_ERROR("Failed initializing GTT heap.\n"); 1933 return r; 1934 } 1935 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1936 (unsigned int)(gtt_size / (1024 * 1024))); 1937 1938 /* Initiailize doorbell pool on PCI BAR */ 1939 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE); 1940 if (r) { 1941 DRM_ERROR("Failed initializing doorbell heap.\n"); 1942 return r; 1943 } 1944 1945 /* Create a boorbell page for kernel usages */ 1946 r = amdgpu_doorbell_create_kernel_doorbells(adev); 1947 if (r) { 1948 DRM_ERROR("Failed to initialize kernel doorbells.\n"); 1949 return r; 1950 } 1951 1952 /* Initialize preemptible memory pool */ 1953 r = amdgpu_preempt_mgr_init(adev); 1954 if (r) { 1955 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1956 return r; 1957 } 1958 1959 /* Initialize various on-chip memory pools */ 1960 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1961 if (r) { 1962 DRM_ERROR("Failed initializing GDS heap.\n"); 1963 return r; 1964 } 1965 1966 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1967 if (r) { 1968 DRM_ERROR("Failed initializing gws heap.\n"); 1969 return r; 1970 } 1971 1972 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1973 if (r) { 1974 DRM_ERROR("Failed initializing oa heap.\n"); 1975 return r; 1976 } 1977 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1978 AMDGPU_GEM_DOMAIN_GTT, 1979 &adev->mman.sdma_access_bo, NULL, 1980 &adev->mman.sdma_access_ptr)) 1981 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1982 1983 return 0; 1984 } 1985 1986 /* 1987 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1988 */ 1989 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1990 { 1991 int idx; 1992 1993 if (!adev->mman.initialized) 1994 return; 1995 1996 amdgpu_ttm_pools_fini(adev); 1997 1998 amdgpu_ttm_training_reserve_vram_fini(adev); 1999 /* return the stolen vga memory back to VRAM */ 2000 if (!adev->gmc.is_app_apu) { 2001 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 2002 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 2003 /* return the FW reserved memory back to VRAM */ 2004 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL, 2005 NULL); 2006 if (adev->mman.stolen_reserved_size) 2007 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 2008 NULL, NULL); 2009 } 2010 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 2011 &adev->mman.sdma_access_ptr); 2012 amdgpu_ttm_fw_reserve_vram_fini(adev); 2013 amdgpu_ttm_drv_reserve_vram_fini(adev); 2014 2015 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 2016 2017 if (adev->mman.aper_base_kaddr) 2018 iounmap(adev->mman.aper_base_kaddr); 2019 adev->mman.aper_base_kaddr = NULL; 2020 2021 drm_dev_exit(idx); 2022 } 2023 2024 amdgpu_vram_mgr_fini(adev); 2025 amdgpu_gtt_mgr_fini(adev); 2026 amdgpu_preempt_mgr_fini(adev); 2027 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 2028 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 2029 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 2030 ttm_device_fini(&adev->mman.bdev); 2031 adev->mman.initialized = false; 2032 DRM_INFO("amdgpu: ttm finalized\n"); 2033 } 2034 2035 /** 2036 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 2037 * 2038 * @adev: amdgpu_device pointer 2039 * @enable: true when we can use buffer functions. 2040 * 2041 * Enable/disable use of buffer functions during suspend/resume. This should 2042 * only be called at bootup or when userspace isn't running. 2043 */ 2044 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 2045 { 2046 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 2047 uint64_t size; 2048 int r; 2049 2050 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 2051 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu) 2052 return; 2053 2054 if (enable) { 2055 struct amdgpu_ring *ring; 2056 struct drm_gpu_scheduler *sched; 2057 2058 ring = adev->mman.buffer_funcs_ring; 2059 sched = &ring->sched; 2060 r = drm_sched_entity_init(&adev->mman.high_pr, 2061 DRM_SCHED_PRIORITY_KERNEL, &sched, 2062 1, NULL); 2063 if (r) { 2064 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2065 r); 2066 return; 2067 } 2068 2069 r = drm_sched_entity_init(&adev->mman.low_pr, 2070 DRM_SCHED_PRIORITY_NORMAL, &sched, 2071 1, NULL); 2072 if (r) { 2073 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 2074 r); 2075 goto error_free_entity; 2076 } 2077 } else { 2078 drm_sched_entity_destroy(&adev->mman.high_pr); 2079 drm_sched_entity_destroy(&adev->mman.low_pr); 2080 dma_fence_put(man->move); 2081 man->move = NULL; 2082 } 2083 2084 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 2085 if (enable) 2086 size = adev->gmc.real_vram_size; 2087 else 2088 size = adev->gmc.visible_vram_size; 2089 man->size = size; 2090 adev->mman.buffer_funcs_enabled = enable; 2091 2092 return; 2093 2094 error_free_entity: 2095 drm_sched_entity_destroy(&adev->mman.high_pr); 2096 } 2097 2098 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 2099 bool direct_submit, 2100 unsigned int num_dw, 2101 struct dma_resv *resv, 2102 bool vm_needs_flush, 2103 struct amdgpu_job **job, 2104 bool delayed) 2105 { 2106 enum amdgpu_ib_pool_type pool = direct_submit ? 2107 AMDGPU_IB_POOL_DIRECT : 2108 AMDGPU_IB_POOL_DELAYED; 2109 int r; 2110 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr : 2111 &adev->mman.high_pr; 2112 r = amdgpu_job_alloc_with_ib(adev, entity, 2113 AMDGPU_FENCE_OWNER_UNDEFINED, 2114 num_dw * 4, pool, job); 2115 if (r) 2116 return r; 2117 2118 if (vm_needs_flush) { 2119 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 2120 adev->gmc.pdb0_bo : 2121 adev->gart.bo); 2122 (*job)->vm_needs_flush = true; 2123 } 2124 if (!resv) 2125 return 0; 2126 2127 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv, 2128 DMA_RESV_USAGE_BOOKKEEP); 2129 } 2130 2131 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 2132 uint64_t dst_offset, uint32_t byte_count, 2133 struct dma_resv *resv, 2134 struct dma_fence **fence, bool direct_submit, 2135 bool vm_needs_flush, bool tmz) 2136 { 2137 struct amdgpu_device *adev = ring->adev; 2138 unsigned int num_loops, num_dw; 2139 struct amdgpu_job *job; 2140 uint32_t max_bytes; 2141 unsigned int i; 2142 int r; 2143 2144 if (!direct_submit && !ring->sched.ready) { 2145 DRM_ERROR("Trying to move memory with ring turned off.\n"); 2146 return -EINVAL; 2147 } 2148 2149 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 2150 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 2151 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 2152 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 2153 resv, vm_needs_flush, &job, false); 2154 if (r) 2155 return r; 2156 2157 for (i = 0; i < num_loops; i++) { 2158 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 2159 2160 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 2161 dst_offset, cur_size_in_bytes, tmz); 2162 2163 src_offset += cur_size_in_bytes; 2164 dst_offset += cur_size_in_bytes; 2165 byte_count -= cur_size_in_bytes; 2166 } 2167 2168 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2169 WARN_ON(job->ibs[0].length_dw > num_dw); 2170 if (direct_submit) 2171 r = amdgpu_job_submit_direct(job, ring, fence); 2172 else 2173 *fence = amdgpu_job_submit(job); 2174 if (r) 2175 goto error_free; 2176 2177 return r; 2178 2179 error_free: 2180 amdgpu_job_free(job); 2181 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2182 return r; 2183 } 2184 2185 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2186 uint64_t dst_addr, uint32_t byte_count, 2187 struct dma_resv *resv, 2188 struct dma_fence **fence, 2189 bool vm_needs_flush, bool delayed) 2190 { 2191 struct amdgpu_device *adev = ring->adev; 2192 unsigned int num_loops, num_dw; 2193 struct amdgpu_job *job; 2194 uint32_t max_bytes; 2195 unsigned int i; 2196 int r; 2197 2198 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2199 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2200 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2201 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2202 &job, delayed); 2203 if (r) 2204 return r; 2205 2206 for (i = 0; i < num_loops; i++) { 2207 uint32_t cur_size = min(byte_count, max_bytes); 2208 2209 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2210 cur_size); 2211 2212 dst_addr += cur_size; 2213 byte_count -= cur_size; 2214 } 2215 2216 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2217 WARN_ON(job->ibs[0].length_dw > num_dw); 2218 *fence = amdgpu_job_submit(job); 2219 return 0; 2220 } 2221 2222 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2223 uint32_t src_data, 2224 struct dma_resv *resv, 2225 struct dma_fence **f, 2226 bool delayed) 2227 { 2228 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2229 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2230 struct dma_fence *fence = NULL; 2231 struct amdgpu_res_cursor dst; 2232 int r; 2233 2234 if (!adev->mman.buffer_funcs_enabled) { 2235 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2236 return -EINVAL; 2237 } 2238 2239 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2240 2241 mutex_lock(&adev->mman.gtt_window_lock); 2242 while (dst.remaining) { 2243 struct dma_fence *next; 2244 uint64_t cur_size, to; 2245 2246 /* Never fill more than 256MiB at once to avoid timeouts */ 2247 cur_size = min(dst.size, 256ULL << 20); 2248 2249 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2250 1, ring, false, &cur_size, &to); 2251 if (r) 2252 goto error; 2253 2254 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2255 &next, true, delayed); 2256 if (r) 2257 goto error; 2258 2259 dma_fence_put(fence); 2260 fence = next; 2261 2262 amdgpu_res_next(&dst, cur_size); 2263 } 2264 error: 2265 mutex_unlock(&adev->mman.gtt_window_lock); 2266 if (f) 2267 *f = dma_fence_get(fence); 2268 dma_fence_put(fence); 2269 return r; 2270 } 2271 2272 /** 2273 * amdgpu_ttm_evict_resources - evict memory buffers 2274 * @adev: amdgpu device object 2275 * @mem_type: evicted BO's memory type 2276 * 2277 * Evicts all @mem_type buffers on the lru list of the memory type. 2278 * 2279 * Returns: 2280 * 0 for success or a negative error code on failure. 2281 */ 2282 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2283 { 2284 struct ttm_resource_manager *man; 2285 2286 switch (mem_type) { 2287 case TTM_PL_VRAM: 2288 case TTM_PL_TT: 2289 case AMDGPU_PL_GWS: 2290 case AMDGPU_PL_GDS: 2291 case AMDGPU_PL_OA: 2292 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2293 break; 2294 default: 2295 DRM_ERROR("Trying to evict invalid memory type\n"); 2296 return -EINVAL; 2297 } 2298 2299 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2300 } 2301 2302 #if defined(CONFIG_DEBUG_FS) 2303 2304 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2305 { 2306 struct amdgpu_device *adev = m->private; 2307 2308 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2309 } 2310 2311 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2312 2313 /* 2314 * amdgpu_ttm_vram_read - Linear read access to VRAM 2315 * 2316 * Accesses VRAM via MMIO for debugging purposes. 2317 */ 2318 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2319 size_t size, loff_t *pos) 2320 { 2321 struct amdgpu_device *adev = file_inode(f)->i_private; 2322 ssize_t result = 0; 2323 2324 if (size & 0x3 || *pos & 0x3) 2325 return -EINVAL; 2326 2327 if (*pos >= adev->gmc.mc_vram_size) 2328 return -ENXIO; 2329 2330 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2331 while (size) { 2332 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2333 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2334 2335 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2336 if (copy_to_user(buf, value, bytes)) 2337 return -EFAULT; 2338 2339 result += bytes; 2340 buf += bytes; 2341 *pos += bytes; 2342 size -= bytes; 2343 } 2344 2345 return result; 2346 } 2347 2348 /* 2349 * amdgpu_ttm_vram_write - Linear write access to VRAM 2350 * 2351 * Accesses VRAM via MMIO for debugging purposes. 2352 */ 2353 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2354 size_t size, loff_t *pos) 2355 { 2356 struct amdgpu_device *adev = file_inode(f)->i_private; 2357 ssize_t result = 0; 2358 int r; 2359 2360 if (size & 0x3 || *pos & 0x3) 2361 return -EINVAL; 2362 2363 if (*pos >= adev->gmc.mc_vram_size) 2364 return -ENXIO; 2365 2366 while (size) { 2367 uint32_t value; 2368 2369 if (*pos >= adev->gmc.mc_vram_size) 2370 return result; 2371 2372 r = get_user(value, (uint32_t *)buf); 2373 if (r) 2374 return r; 2375 2376 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2377 2378 result += 4; 2379 buf += 4; 2380 *pos += 4; 2381 size -= 4; 2382 } 2383 2384 return result; 2385 } 2386 2387 static const struct file_operations amdgpu_ttm_vram_fops = { 2388 .owner = THIS_MODULE, 2389 .read = amdgpu_ttm_vram_read, 2390 .write = amdgpu_ttm_vram_write, 2391 .llseek = default_llseek, 2392 }; 2393 2394 /* 2395 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2396 * 2397 * This function is used to read memory that has been mapped to the 2398 * GPU and the known addresses are not physical addresses but instead 2399 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2400 */ 2401 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2402 size_t size, loff_t *pos) 2403 { 2404 struct amdgpu_device *adev = file_inode(f)->i_private; 2405 struct iommu_domain *dom; 2406 ssize_t result = 0; 2407 int r; 2408 2409 /* retrieve the IOMMU domain if any for this device */ 2410 dom = iommu_get_domain_for_dev(adev->dev); 2411 2412 while (size) { 2413 phys_addr_t addr = *pos & PAGE_MASK; 2414 loff_t off = *pos & ~PAGE_MASK; 2415 size_t bytes = PAGE_SIZE - off; 2416 unsigned long pfn; 2417 struct page *p; 2418 void *ptr; 2419 2420 bytes = min(bytes, size); 2421 2422 /* Translate the bus address to a physical address. If 2423 * the domain is NULL it means there is no IOMMU active 2424 * and the address translation is the identity 2425 */ 2426 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2427 2428 pfn = addr >> PAGE_SHIFT; 2429 if (!pfn_valid(pfn)) 2430 return -EPERM; 2431 2432 p = pfn_to_page(pfn); 2433 if (p->mapping != adev->mman.bdev.dev_mapping) 2434 return -EPERM; 2435 2436 ptr = kmap_local_page(p); 2437 r = copy_to_user(buf, ptr + off, bytes); 2438 kunmap_local(ptr); 2439 if (r) 2440 return -EFAULT; 2441 2442 size -= bytes; 2443 *pos += bytes; 2444 result += bytes; 2445 } 2446 2447 return result; 2448 } 2449 2450 /* 2451 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2452 * 2453 * This function is used to write memory that has been mapped to the 2454 * GPU and the known addresses are not physical addresses but instead 2455 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2456 */ 2457 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2458 size_t size, loff_t *pos) 2459 { 2460 struct amdgpu_device *adev = file_inode(f)->i_private; 2461 struct iommu_domain *dom; 2462 ssize_t result = 0; 2463 int r; 2464 2465 dom = iommu_get_domain_for_dev(adev->dev); 2466 2467 while (size) { 2468 phys_addr_t addr = *pos & PAGE_MASK; 2469 loff_t off = *pos & ~PAGE_MASK; 2470 size_t bytes = PAGE_SIZE - off; 2471 unsigned long pfn; 2472 struct page *p; 2473 void *ptr; 2474 2475 bytes = min(bytes, size); 2476 2477 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2478 2479 pfn = addr >> PAGE_SHIFT; 2480 if (!pfn_valid(pfn)) 2481 return -EPERM; 2482 2483 p = pfn_to_page(pfn); 2484 if (p->mapping != adev->mman.bdev.dev_mapping) 2485 return -EPERM; 2486 2487 ptr = kmap_local_page(p); 2488 r = copy_from_user(ptr + off, buf, bytes); 2489 kunmap_local(ptr); 2490 if (r) 2491 return -EFAULT; 2492 2493 size -= bytes; 2494 *pos += bytes; 2495 result += bytes; 2496 } 2497 2498 return result; 2499 } 2500 2501 static const struct file_operations amdgpu_ttm_iomem_fops = { 2502 .owner = THIS_MODULE, 2503 .read = amdgpu_iomem_read, 2504 .write = amdgpu_iomem_write, 2505 .llseek = default_llseek 2506 }; 2507 2508 #endif 2509 2510 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2511 { 2512 #if defined(CONFIG_DEBUG_FS) 2513 struct drm_minor *minor = adev_to_drm(adev)->primary; 2514 struct dentry *root = minor->debugfs_root; 2515 2516 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2517 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2518 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2519 &amdgpu_ttm_iomem_fops); 2520 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2521 &amdgpu_ttm_page_pool_fops); 2522 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2523 TTM_PL_VRAM), 2524 root, "amdgpu_vram_mm"); 2525 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2526 TTM_PL_TT), 2527 root, "amdgpu_gtt_mm"); 2528 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2529 AMDGPU_PL_GDS), 2530 root, "amdgpu_gds_mm"); 2531 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2532 AMDGPU_PL_GWS), 2533 root, "amdgpu_gws_mm"); 2534 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2535 AMDGPU_PL_OA), 2536 root, "amdgpu_oa_mm"); 2537 2538 #endif 2539 } 2540