1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swiotlb.h>
42 #include <linux/dma-buf.h>
43 #include <linux/sizes.h>
44 #include <linux/module.h>
45 
46 #include <drm/drm_drv.h>
47 #include <drm/ttm/ttm_bo.h>
48 #include <drm/ttm/ttm_placement.h>
49 #include <drm/ttm/ttm_range_manager.h>
50 #include <drm/ttm/ttm_tt.h>
51 
52 #include <drm/amdgpu_drm.h>
53 #include <drm/drm_drv.h>
54 
55 #include "amdgpu.h"
56 #include "amdgpu_object.h"
57 #include "amdgpu_trace.h"
58 #include "amdgpu_amdkfd.h"
59 #include "amdgpu_sdma.h"
60 #include "amdgpu_ras.h"
61 #include "amdgpu_hmm.h"
62 #include "amdgpu_atomfirmware.h"
63 #include "amdgpu_res_cursor.h"
64 #include "bif/bif_4_1_d.h"
65 
66 MODULE_IMPORT_NS(DMA_BUF);
67 
68 #define AMDGPU_TTM_VRAM_MAX_DW_READ	(size_t)128
69 
70 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
71 				   struct ttm_tt *ttm,
72 				   struct ttm_resource *bo_mem);
73 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
74 				      struct ttm_tt *ttm);
75 
76 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
77 				    unsigned int type,
78 				    uint64_t size_in_page)
79 {
80 	return ttm_range_man_init(&adev->mman.bdev, type,
81 				  false, size_in_page);
82 }
83 
84 /**
85  * amdgpu_evict_flags - Compute placement flags
86  *
87  * @bo: The buffer object to evict
88  * @placement: Possible destination(s) for evicted BO
89  *
90  * Fill in placement data when ttm_bo_evict() is called
91  */
92 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
93 				struct ttm_placement *placement)
94 {
95 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
96 	struct amdgpu_bo *abo;
97 	static const struct ttm_place placements = {
98 		.fpfn = 0,
99 		.lpfn = 0,
100 		.mem_type = TTM_PL_SYSTEM,
101 		.flags = 0
102 	};
103 
104 	/* Don't handle scatter gather BOs */
105 	if (bo->type == ttm_bo_type_sg) {
106 		placement->num_placement = 0;
107 		placement->num_busy_placement = 0;
108 		return;
109 	}
110 
111 	/* Object isn't an AMDGPU object so ignore */
112 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
113 		placement->placement = &placements;
114 		placement->busy_placement = &placements;
115 		placement->num_placement = 1;
116 		placement->num_busy_placement = 1;
117 		return;
118 	}
119 
120 	abo = ttm_to_amdgpu_bo(bo);
121 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
122 		placement->num_placement = 0;
123 		placement->num_busy_placement = 0;
124 		return;
125 	}
126 
127 	switch (bo->resource->mem_type) {
128 	case AMDGPU_PL_GDS:
129 	case AMDGPU_PL_GWS:
130 	case AMDGPU_PL_OA:
131 		placement->num_placement = 0;
132 		placement->num_busy_placement = 0;
133 		return;
134 
135 	case TTM_PL_VRAM:
136 		if (!adev->mman.buffer_funcs_enabled) {
137 			/* Move to system memory */
138 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
139 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
140 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
141 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
142 
143 			/* Try evicting to the CPU inaccessible part of VRAM
144 			 * first, but only set GTT as busy placement, so this
145 			 * BO will be evicted to GTT rather than causing other
146 			 * BOs to be evicted from VRAM
147 			 */
148 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
149 							AMDGPU_GEM_DOMAIN_GTT |
150 							AMDGPU_GEM_DOMAIN_CPU);
151 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
152 			abo->placements[0].lpfn = 0;
153 			abo->placement.busy_placement = &abo->placements[1];
154 			abo->placement.num_busy_placement = 1;
155 		} else {
156 			/* Move to GTT memory */
157 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
158 							AMDGPU_GEM_DOMAIN_CPU);
159 		}
160 		break;
161 	case TTM_PL_TT:
162 	case AMDGPU_PL_PREEMPT:
163 	default:
164 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
165 		break;
166 	}
167 	*placement = abo->placement;
168 }
169 
170 /**
171  * amdgpu_ttm_map_buffer - Map memory into the GART windows
172  * @bo: buffer object to map
173  * @mem: memory object to map
174  * @mm_cur: range to map
175  * @window: which GART window to use
176  * @ring: DMA ring to use for the copy
177  * @tmz: if we should setup a TMZ enabled mapping
178  * @size: in number of bytes to map, out number of bytes mapped
179  * @addr: resulting address inside the MC address space
180  *
181  * Setup one of the GART windows to access a specific piece of memory or return
182  * the physical address for local memory.
183  */
184 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
185 				 struct ttm_resource *mem,
186 				 struct amdgpu_res_cursor *mm_cur,
187 				 unsigned window, struct amdgpu_ring *ring,
188 				 bool tmz, uint64_t *size, uint64_t *addr)
189 {
190 	struct amdgpu_device *adev = ring->adev;
191 	unsigned offset, num_pages, num_dw, num_bytes;
192 	uint64_t src_addr, dst_addr;
193 	struct amdgpu_job *job;
194 	void *cpu_addr;
195 	uint64_t flags;
196 	unsigned int i;
197 	int r;
198 
199 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
200 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 
202 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
203 		return -EINVAL;
204 
205 	/* Map only what can't be accessed directly */
206 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
207 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
208 			mm_cur->start;
209 		return 0;
210 	}
211 
212 
213 	/*
214 	 * If start begins at an offset inside the page, then adjust the size
215 	 * and addr accordingly
216 	 */
217 	offset = mm_cur->start & ~PAGE_MASK;
218 
219 	num_pages = PFN_UP(*size + offset);
220 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 
222 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 
224 	*addr = adev->gmc.gart_start;
225 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
226 		AMDGPU_GPU_PAGE_SIZE;
227 	*addr += offset;
228 
229 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
230 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 
232 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
233 				     AMDGPU_FENCE_OWNER_UNDEFINED,
234 				     num_dw * 4 + num_bytes,
235 				     AMDGPU_IB_POOL_DELAYED, &job);
236 	if (r)
237 		return r;
238 
239 	src_addr = num_dw * 4;
240 	src_addr += job->ibs[0].gpu_addr;
241 
242 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
243 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
244 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
245 				dst_addr, num_bytes, false);
246 
247 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
248 	WARN_ON(job->ibs[0].length_dw > num_dw);
249 
250 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251 	if (tmz)
252 		flags |= AMDGPU_PTE_TMZ;
253 
254 	cpu_addr = &job->ibs[0].ptr[num_dw];
255 
256 	if (mem->mem_type == TTM_PL_TT) {
257 		dma_addr_t *dma_addr;
258 
259 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
260 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261 	} else {
262 		dma_addr_t dma_address;
263 
264 		dma_address = mm_cur->start;
265 		dma_address += adev->vm_manager.vram_base_offset;
266 
267 		for (i = 0; i < num_pages; ++i) {
268 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269 					flags, cpu_addr);
270 			dma_address += PAGE_SIZE;
271 		}
272 	}
273 
274 	dma_fence_put(amdgpu_job_submit(job));
275 	return 0;
276 }
277 
278 /**
279  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
280  * @adev: amdgpu device
281  * @src: buffer/address where to read from
282  * @dst: buffer/address where to write to
283  * @size: number of bytes to copy
284  * @tmz: if a secure copy should be used
285  * @resv: resv object to sync to
286  * @f: Returns the last fence if multiple jobs are submitted.
287  *
288  * The function copies @size bytes from {src->mem + src->offset} to
289  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
290  * move and different for a BO to BO copy.
291  *
292  */
293 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
294 			       const struct amdgpu_copy_mem *src,
295 			       const struct amdgpu_copy_mem *dst,
296 			       uint64_t size, bool tmz,
297 			       struct dma_resv *resv,
298 			       struct dma_fence **f)
299 {
300 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
301 	struct amdgpu_res_cursor src_mm, dst_mm;
302 	struct dma_fence *fence = NULL;
303 	int r = 0;
304 
305 	if (!adev->mman.buffer_funcs_enabled) {
306 		DRM_ERROR("Trying to move memory with ring turned off.\n");
307 		return -EINVAL;
308 	}
309 
310 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
311 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312 
313 	mutex_lock(&adev->mman.gtt_window_lock);
314 	while (src_mm.remaining) {
315 		uint64_t from, to, cur_size;
316 		struct dma_fence *next;
317 
318 		/* Never copy more than 256MiB at once to avoid a timeout */
319 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320 
321 		/* Map src to window 0 and dst to window 1. */
322 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323 					  0, ring, tmz, &cur_size, &from);
324 		if (r)
325 			goto error;
326 
327 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328 					  1, ring, tmz, &cur_size, &to);
329 		if (r)
330 			goto error;
331 
332 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
333 				       resv, &next, false, true, tmz);
334 		if (r)
335 			goto error;
336 
337 		dma_fence_put(fence);
338 		fence = next;
339 
340 		amdgpu_res_next(&src_mm, cur_size);
341 		amdgpu_res_next(&dst_mm, cur_size);
342 	}
343 error:
344 	mutex_unlock(&adev->mman.gtt_window_lock);
345 	if (f)
346 		*f = dma_fence_get(fence);
347 	dma_fence_put(fence);
348 	return r;
349 }
350 
351 /*
352  * amdgpu_move_blit - Copy an entire buffer to another buffer
353  *
354  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
355  * help move buffers to and from VRAM.
356  */
357 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358 			    bool evict,
359 			    struct ttm_resource *new_mem,
360 			    struct ttm_resource *old_mem)
361 {
362 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
363 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
364 	struct amdgpu_copy_mem src, dst;
365 	struct dma_fence *fence = NULL;
366 	int r;
367 
368 	src.bo = bo;
369 	dst.bo = bo;
370 	src.mem = old_mem;
371 	dst.mem = new_mem;
372 	src.offset = 0;
373 	dst.offset = 0;
374 
375 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376 				       new_mem->size,
377 				       amdgpu_bo_encrypted(abo),
378 				       bo->base.resv, &fence);
379 	if (r)
380 		goto error;
381 
382 	/* clear the space being freed */
383 	if (old_mem->mem_type == TTM_PL_VRAM &&
384 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
385 		struct dma_fence *wipe_fence = NULL;
386 
387 		r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence);
388 		if (r) {
389 			goto error;
390 		} else if (wipe_fence) {
391 			dma_fence_put(fence);
392 			fence = wipe_fence;
393 		}
394 	}
395 
396 	/* Always block for VM page tables before committing the new location */
397 	if (bo->type == ttm_bo_type_kernel)
398 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399 	else
400 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 	dma_fence_put(fence);
402 	return r;
403 
404 error:
405 	if (fence)
406 		dma_fence_wait(fence, false);
407 	dma_fence_put(fence);
408 	return r;
409 }
410 
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 			       struct ttm_resource *mem)
418 {
419 	u64 mem_size = (u64)mem->size;
420 	struct amdgpu_res_cursor cursor;
421 	u64 end;
422 
423 	if (mem->mem_type == TTM_PL_SYSTEM ||
424 	    mem->mem_type == TTM_PL_TT)
425 		return true;
426 	if (mem->mem_type != TTM_PL_VRAM)
427 		return false;
428 
429 	amdgpu_res_first(mem, 0, mem_size, &cursor);
430 	end = cursor.start + cursor.size;
431 	while (cursor.remaining) {
432 		amdgpu_res_next(&cursor, cursor.size);
433 
434 		if (!cursor.remaining)
435 			break;
436 
437 		/* ttm_resource_ioremap only supports contiguous memory */
438 		if (end != cursor.start)
439 			return false;
440 
441 		end = cursor.start + cursor.size;
442 	}
443 
444 	return end <= adev->gmc.visible_vram_size;
445 }
446 
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 			  struct ttm_operation_ctx *ctx,
454 			  struct ttm_resource *new_mem,
455 			  struct ttm_place *hop)
456 {
457 	struct amdgpu_device *adev;
458 	struct amdgpu_bo *abo;
459 	struct ttm_resource *old_mem = bo->resource;
460 	int r;
461 
462 	if (new_mem->mem_type == TTM_PL_TT ||
463 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465 		if (r)
466 			return r;
467 	}
468 
469 	abo = ttm_to_amdgpu_bo(bo);
470 	adev = amdgpu_ttm_adev(bo->bdev);
471 
472 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473 			 bo->ttm == NULL)) {
474 		ttm_bo_move_null(bo, new_mem);
475 		goto out;
476 	}
477 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 	    (new_mem->mem_type == TTM_PL_TT ||
479 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 		ttm_bo_move_null(bo, new_mem);
481 		goto out;
482 	}
483 	if ((old_mem->mem_type == TTM_PL_TT ||
484 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 	    new_mem->mem_type == TTM_PL_SYSTEM) {
486 		r = ttm_bo_wait_ctx(bo, ctx);
487 		if (r)
488 			return r;
489 
490 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 		ttm_resource_free(bo, &bo->resource);
492 		ttm_bo_assign_mem(bo, new_mem);
493 		goto out;
494 	}
495 
496 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 	    old_mem->mem_type == AMDGPU_PL_GWS ||
498 	    old_mem->mem_type == AMDGPU_PL_OA ||
499 	    new_mem->mem_type == AMDGPU_PL_GDS ||
500 	    new_mem->mem_type == AMDGPU_PL_GWS ||
501 	    new_mem->mem_type == AMDGPU_PL_OA) {
502 		/* Nothing to save here */
503 		ttm_bo_move_null(bo, new_mem);
504 		goto out;
505 	}
506 
507 	if (bo->type == ttm_bo_type_device &&
508 	    new_mem->mem_type == TTM_PL_VRAM &&
509 	    old_mem->mem_type != TTM_PL_VRAM) {
510 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
511 		 * accesses the BO after it's moved.
512 		 */
513 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
514 	}
515 
516 	if (adev->mman.buffer_funcs_enabled) {
517 		if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 		      new_mem->mem_type == TTM_PL_VRAM) ||
519 		     (old_mem->mem_type == TTM_PL_VRAM &&
520 		      new_mem->mem_type == TTM_PL_SYSTEM))) {
521 			hop->fpfn = 0;
522 			hop->lpfn = 0;
523 			hop->mem_type = TTM_PL_TT;
524 			hop->flags = TTM_PL_FLAG_TEMPORARY;
525 			return -EMULTIHOP;
526 		}
527 
528 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
529 	} else {
530 		r = -ENODEV;
531 	}
532 
533 	if (r) {
534 		/* Check that all memory is CPU accessible */
535 		if (!amdgpu_mem_visible(adev, old_mem) ||
536 		    !amdgpu_mem_visible(adev, new_mem)) {
537 			pr_err("Move buffer fallback to memcpy unavailable\n");
538 			return r;
539 		}
540 
541 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
542 		if (r)
543 			return r;
544 	}
545 
546 out:
547 	/* update statistics */
548 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
549 	amdgpu_bo_move_notify(bo, evict, new_mem);
550 	return 0;
551 }
552 
553 /*
554  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
555  *
556  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
557  */
558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
559 				     struct ttm_resource *mem)
560 {
561 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
562 	size_t bus_size = (size_t)mem->size;
563 
564 	switch (mem->mem_type) {
565 	case TTM_PL_SYSTEM:
566 		/* system memory */
567 		return 0;
568 	case TTM_PL_TT:
569 	case AMDGPU_PL_PREEMPT:
570 		break;
571 	case TTM_PL_VRAM:
572 		mem->bus.offset = mem->start << PAGE_SHIFT;
573 		/* check if it's visible */
574 		if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
575 			return -EINVAL;
576 
577 		if (adev->mman.aper_base_kaddr &&
578 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
579 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
580 					mem->bus.offset;
581 
582 		mem->bus.offset += adev->gmc.aper_base;
583 		mem->bus.is_iomem = true;
584 		break;
585 	default:
586 		return -EINVAL;
587 	}
588 	return 0;
589 }
590 
591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
592 					   unsigned long page_offset)
593 {
594 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
595 	struct amdgpu_res_cursor cursor;
596 
597 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
598 			 &cursor);
599 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
600 }
601 
602 /**
603  * amdgpu_ttm_domain_start - Returns GPU start address
604  * @adev: amdgpu device object
605  * @type: type of the memory
606  *
607  * Returns:
608  * GPU start address of a memory domain
609  */
610 
611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
612 {
613 	switch (type) {
614 	case TTM_PL_TT:
615 		return adev->gmc.gart_start;
616 	case TTM_PL_VRAM:
617 		return adev->gmc.vram_start;
618 	}
619 
620 	return 0;
621 }
622 
623 /*
624  * TTM backend functions.
625  */
626 struct amdgpu_ttm_tt {
627 	struct ttm_tt	ttm;
628 	struct drm_gem_object	*gobj;
629 	u64			offset;
630 	uint64_t		userptr;
631 	struct task_struct	*usertask;
632 	uint32_t		userflags;
633 	bool			bound;
634 };
635 
636 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
637 
638 #ifdef CONFIG_DRM_AMDGPU_USERPTR
639 /*
640  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
641  * memory and start HMM tracking CPU page table update
642  *
643  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
644  * once afterwards to stop HMM tracking
645  */
646 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
647 				 struct hmm_range **range)
648 {
649 	struct ttm_tt *ttm = bo->tbo.ttm;
650 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
651 	unsigned long start = gtt->userptr;
652 	struct vm_area_struct *vma;
653 	struct mm_struct *mm;
654 	bool readonly;
655 	int r = 0;
656 
657 	/* Make sure get_user_pages_done() can cleanup gracefully */
658 	*range = NULL;
659 
660 	mm = bo->notifier.mm;
661 	if (unlikely(!mm)) {
662 		DRM_DEBUG_DRIVER("BO is not registered?\n");
663 		return -EFAULT;
664 	}
665 
666 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
667 		return -ESRCH;
668 
669 	mmap_read_lock(mm);
670 	vma = vma_lookup(mm, start);
671 	if (unlikely(!vma)) {
672 		r = -EFAULT;
673 		goto out_unlock;
674 	}
675 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
676 		vma->vm_file)) {
677 		r = -EPERM;
678 		goto out_unlock;
679 	}
680 
681 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
682 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
683 				       readonly, NULL, pages, range);
684 out_unlock:
685 	mmap_read_unlock(mm);
686 	if (r)
687 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
688 
689 	mmput(mm);
690 
691 	return r;
692 }
693 
694 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
695  */
696 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
697 				      struct hmm_range *range)
698 {
699 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
700 
701 	if (gtt && gtt->userptr && range)
702 		amdgpu_hmm_range_get_pages_done(range);
703 }
704 
705 /*
706  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
707  * Check if the pages backing this ttm range have been invalidated
708  *
709  * Returns: true if pages are still valid
710  */
711 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
712 				       struct hmm_range *range)
713 {
714 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
715 
716 	if (!gtt || !gtt->userptr || !range)
717 		return false;
718 
719 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
720 		gtt->userptr, ttm->num_pages);
721 
722 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
723 
724 	return !amdgpu_hmm_range_get_pages_done(range);
725 }
726 #endif
727 
728 /*
729  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
730  *
731  * Called by amdgpu_cs_list_validate(). This creates the page list
732  * that backs user memory and will ultimately be mapped into the device
733  * address space.
734  */
735 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
736 {
737 	unsigned long i;
738 
739 	for (i = 0; i < ttm->num_pages; ++i)
740 		ttm->pages[i] = pages ? pages[i] : NULL;
741 }
742 
743 /*
744  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
745  *
746  * Called by amdgpu_ttm_backend_bind()
747  **/
748 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
749 				     struct ttm_tt *ttm)
750 {
751 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
752 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
753 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
754 	enum dma_data_direction direction = write ?
755 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
756 	int r;
757 
758 	/* Allocate an SG array and squash pages into it */
759 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
760 				      (u64)ttm->num_pages << PAGE_SHIFT,
761 				      GFP_KERNEL);
762 	if (r)
763 		goto release_sg;
764 
765 	/* Map SG to device */
766 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
767 	if (r)
768 		goto release_sg;
769 
770 	/* convert SG to linear array of pages and dma addresses */
771 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
772 				       ttm->num_pages);
773 
774 	return 0;
775 
776 release_sg:
777 	kfree(ttm->sg);
778 	ttm->sg = NULL;
779 	return r;
780 }
781 
782 /*
783  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
784  */
785 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
786 					struct ttm_tt *ttm)
787 {
788 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
789 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
790 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
791 	enum dma_data_direction direction = write ?
792 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
793 
794 	/* double check that we don't free the table twice */
795 	if (!ttm->sg || !ttm->sg->sgl)
796 		return;
797 
798 	/* unmap the pages mapped to the device */
799 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
800 	sg_free_table(ttm->sg);
801 }
802 
803 /*
804  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
805  * MQDn+CtrlStackn where n is the number of XCCs per partition.
806  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
807  * and uses memory type default, UC. The rest of pages_per_xcc are
808  * Ctrl stack and modify their memory type to NC.
809  */
810 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
811 				struct ttm_tt *ttm, uint64_t flags)
812 {
813 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
814 	uint64_t total_pages = ttm->num_pages;
815 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
816 	uint64_t page_idx, pages_per_xcc = total_pages / num_xcc;
817 	int i;
818 	uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
819 			AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
820 
821 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
822 		/* MQD page: use default flags */
823 		amdgpu_gart_bind(adev,
824 				gtt->offset + (page_idx << PAGE_SHIFT),
825 				1, &gtt->ttm.dma_address[page_idx], flags);
826 		/*
827 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
828 		 * the second page of the BO onward.
829 		 */
830 		amdgpu_gart_bind(adev,
831 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
832 				pages_per_xcc - 1,
833 				&gtt->ttm.dma_address[page_idx + 1],
834 				ctrl_flags);
835 	}
836 }
837 
838 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
839 				 struct ttm_buffer_object *tbo,
840 				 uint64_t flags)
841 {
842 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
843 	struct ttm_tt *ttm = tbo->ttm;
844 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
845 
846 	if (amdgpu_bo_encrypted(abo))
847 		flags |= AMDGPU_PTE_TMZ;
848 
849 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
850 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
851 	} else {
852 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
853 				 gtt->ttm.dma_address, flags);
854 	}
855 }
856 
857 /*
858  * amdgpu_ttm_backend_bind - Bind GTT memory
859  *
860  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
861  * This handles binding GTT memory to the device address space.
862  */
863 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
864 				   struct ttm_tt *ttm,
865 				   struct ttm_resource *bo_mem)
866 {
867 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
868 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
869 	uint64_t flags;
870 	int r;
871 
872 	if (!bo_mem)
873 		return -EINVAL;
874 
875 	if (gtt->bound)
876 		return 0;
877 
878 	if (gtt->userptr) {
879 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
880 		if (r) {
881 			DRM_ERROR("failed to pin userptr\n");
882 			return r;
883 		}
884 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
885 		if (!ttm->sg) {
886 			struct dma_buf_attachment *attach;
887 			struct sg_table *sgt;
888 
889 			attach = gtt->gobj->import_attach;
890 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
891 			if (IS_ERR(sgt))
892 				return PTR_ERR(sgt);
893 
894 			ttm->sg = sgt;
895 		}
896 
897 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
898 					       ttm->num_pages);
899 	}
900 
901 	if (!ttm->num_pages) {
902 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
903 		     ttm->num_pages, bo_mem, ttm);
904 	}
905 
906 	if (bo_mem->mem_type != TTM_PL_TT ||
907 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
908 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
909 		return 0;
910 	}
911 
912 	/* compute PTE flags relevant to this BO memory */
913 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
914 
915 	/* bind pages into GART page tables */
916 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
917 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
918 			 gtt->ttm.dma_address, flags);
919 	gtt->bound = true;
920 	return 0;
921 }
922 
923 /*
924  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
925  * through AGP or GART aperture.
926  *
927  * If bo is accessible through AGP aperture, then use AGP aperture
928  * to access bo; otherwise allocate logical space in GART aperture
929  * and map bo to GART aperture.
930  */
931 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
932 {
933 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
934 	struct ttm_operation_ctx ctx = { false, false };
935 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
936 	struct ttm_placement placement;
937 	struct ttm_place placements;
938 	struct ttm_resource *tmp;
939 	uint64_t addr, flags;
940 	int r;
941 
942 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
943 		return 0;
944 
945 	addr = amdgpu_gmc_agp_addr(bo);
946 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
947 		bo->resource->start = addr >> PAGE_SHIFT;
948 		return 0;
949 	}
950 
951 	/* allocate GART space */
952 	placement.num_placement = 1;
953 	placement.placement = &placements;
954 	placement.num_busy_placement = 1;
955 	placement.busy_placement = &placements;
956 	placements.fpfn = 0;
957 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
958 	placements.mem_type = TTM_PL_TT;
959 	placements.flags = bo->resource->placement;
960 
961 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
962 	if (unlikely(r))
963 		return r;
964 
965 	/* compute PTE flags for this buffer object */
966 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
967 
968 	/* Bind pages */
969 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
970 	amdgpu_ttm_gart_bind(adev, bo, flags);
971 	amdgpu_gart_invalidate_tlb(adev);
972 	ttm_resource_free(bo, &bo->resource);
973 	ttm_bo_assign_mem(bo, tmp);
974 
975 	return 0;
976 }
977 
978 /*
979  * amdgpu_ttm_recover_gart - Rebind GTT pages
980  *
981  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
982  * rebind GTT pages during a GPU reset.
983  */
984 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
985 {
986 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
987 	uint64_t flags;
988 
989 	if (!tbo->ttm)
990 		return;
991 
992 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
993 	amdgpu_ttm_gart_bind(adev, tbo, flags);
994 }
995 
996 /*
997  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
998  *
999  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1000  * ttm_tt_destroy().
1001  */
1002 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1003 				      struct ttm_tt *ttm)
1004 {
1005 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1006 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1007 
1008 	/* if the pages have userptr pinning then clear that first */
1009 	if (gtt->userptr) {
1010 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1011 	} else if (ttm->sg && gtt->gobj->import_attach) {
1012 		struct dma_buf_attachment *attach;
1013 
1014 		attach = gtt->gobj->import_attach;
1015 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1016 		ttm->sg = NULL;
1017 	}
1018 
1019 	if (!gtt->bound)
1020 		return;
1021 
1022 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1023 		return;
1024 
1025 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1026 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1027 	gtt->bound = false;
1028 }
1029 
1030 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1031 				       struct ttm_tt *ttm)
1032 {
1033 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1034 
1035 	if (gtt->usertask)
1036 		put_task_struct(gtt->usertask);
1037 
1038 	ttm_tt_fini(&gtt->ttm);
1039 	kfree(gtt);
1040 }
1041 
1042 /**
1043  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1044  *
1045  * @bo: The buffer object to create a GTT ttm_tt object around
1046  * @page_flags: Page flags to be added to the ttm_tt object
1047  *
1048  * Called by ttm_tt_create().
1049  */
1050 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1051 					   uint32_t page_flags)
1052 {
1053 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1054 	struct amdgpu_ttm_tt *gtt;
1055 	enum ttm_caching caching;
1056 
1057 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1058 	if (gtt == NULL) {
1059 		return NULL;
1060 	}
1061 	gtt->gobj = &bo->base;
1062 
1063 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1064 		caching = ttm_write_combined;
1065 	else
1066 		caching = ttm_cached;
1067 
1068 	/* allocate space for the uninitialized page entries */
1069 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1070 		kfree(gtt);
1071 		return NULL;
1072 	}
1073 	return &gtt->ttm;
1074 }
1075 
1076 /*
1077  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1078  *
1079  * Map the pages of a ttm_tt object to an address space visible
1080  * to the underlying device.
1081  */
1082 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1083 				  struct ttm_tt *ttm,
1084 				  struct ttm_operation_ctx *ctx)
1085 {
1086 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1087 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1088 	pgoff_t i;
1089 	int ret;
1090 
1091 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1092 	if (gtt->userptr) {
1093 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1094 		if (!ttm->sg)
1095 			return -ENOMEM;
1096 		return 0;
1097 	}
1098 
1099 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1100 		return 0;
1101 
1102 	ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx);
1103 	if (ret)
1104 		return ret;
1105 
1106 	for (i = 0; i < ttm->num_pages; ++i)
1107 		ttm->pages[i]->mapping = bdev->dev_mapping;
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1114  *
1115  * Unmaps pages of a ttm_tt object from the device address space and
1116  * unpopulates the page array backing it.
1117  */
1118 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1119 				     struct ttm_tt *ttm)
1120 {
1121 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1122 	struct amdgpu_device *adev;
1123 	pgoff_t i;
1124 
1125 	amdgpu_ttm_backend_unbind(bdev, ttm);
1126 
1127 	if (gtt->userptr) {
1128 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1129 		kfree(ttm->sg);
1130 		ttm->sg = NULL;
1131 		return;
1132 	}
1133 
1134 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1135 		return;
1136 
1137 	for (i = 0; i < ttm->num_pages; ++i)
1138 		ttm->pages[i]->mapping = NULL;
1139 
1140 	adev = amdgpu_ttm_adev(bdev);
1141 	return ttm_pool_free(&adev->mman.bdev.pool, ttm);
1142 }
1143 
1144 /**
1145  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1146  * task
1147  *
1148  * @tbo: The ttm_buffer_object that contains the userptr
1149  * @user_addr:  The returned value
1150  */
1151 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1152 			      uint64_t *user_addr)
1153 {
1154 	struct amdgpu_ttm_tt *gtt;
1155 
1156 	if (!tbo->ttm)
1157 		return -EINVAL;
1158 
1159 	gtt = (void *)tbo->ttm;
1160 	*user_addr = gtt->userptr;
1161 	return 0;
1162 }
1163 
1164 /**
1165  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1166  * task
1167  *
1168  * @bo: The ttm_buffer_object to bind this userptr to
1169  * @addr:  The address in the current tasks VM space to use
1170  * @flags: Requirements of userptr object.
1171  *
1172  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1173  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1174  * initialize GPU VM for a KFD process.
1175  */
1176 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1177 			      uint64_t addr, uint32_t flags)
1178 {
1179 	struct amdgpu_ttm_tt *gtt;
1180 
1181 	if (!bo->ttm) {
1182 		/* TODO: We want a separate TTM object type for userptrs */
1183 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1184 		if (bo->ttm == NULL)
1185 			return -ENOMEM;
1186 	}
1187 
1188 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1189 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1190 
1191 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1192 	gtt->userptr = addr;
1193 	gtt->userflags = flags;
1194 
1195 	if (gtt->usertask)
1196 		put_task_struct(gtt->usertask);
1197 	gtt->usertask = current->group_leader;
1198 	get_task_struct(gtt->usertask);
1199 
1200 	return 0;
1201 }
1202 
1203 /*
1204  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1205  */
1206 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1207 {
1208 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1209 
1210 	if (gtt == NULL)
1211 		return NULL;
1212 
1213 	if (gtt->usertask == NULL)
1214 		return NULL;
1215 
1216 	return gtt->usertask->mm;
1217 }
1218 
1219 /*
1220  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1221  * address range for the current task.
1222  *
1223  */
1224 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1225 				  unsigned long end, unsigned long *userptr)
1226 {
1227 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1228 	unsigned long size;
1229 
1230 	if (gtt == NULL || !gtt->userptr)
1231 		return false;
1232 
1233 	/* Return false if no part of the ttm_tt object lies within
1234 	 * the range
1235 	 */
1236 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1237 	if (gtt->userptr > end || gtt->userptr + size <= start)
1238 		return false;
1239 
1240 	if (userptr)
1241 		*userptr = gtt->userptr;
1242 	return true;
1243 }
1244 
1245 /*
1246  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1247  */
1248 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1249 {
1250 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1251 
1252 	if (gtt == NULL || !gtt->userptr)
1253 		return false;
1254 
1255 	return true;
1256 }
1257 
1258 /*
1259  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1260  */
1261 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1262 {
1263 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1264 
1265 	if (gtt == NULL)
1266 		return false;
1267 
1268 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1269 }
1270 
1271 /**
1272  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1273  *
1274  * @ttm: The ttm_tt object to compute the flags for
1275  * @mem: The memory registry backing this ttm_tt object
1276  *
1277  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1278  */
1279 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1280 {
1281 	uint64_t flags = 0;
1282 
1283 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1284 		flags |= AMDGPU_PTE_VALID;
1285 
1286 	if (mem && (mem->mem_type == TTM_PL_TT ||
1287 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1288 		flags |= AMDGPU_PTE_SYSTEM;
1289 
1290 		if (ttm->caching == ttm_cached)
1291 			flags |= AMDGPU_PTE_SNOOPED;
1292 	}
1293 
1294 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1295 			mem->bus.caching == ttm_cached)
1296 		flags |= AMDGPU_PTE_SNOOPED;
1297 
1298 	return flags;
1299 }
1300 
1301 /**
1302  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1303  *
1304  * @adev: amdgpu_device pointer
1305  * @ttm: The ttm_tt object to compute the flags for
1306  * @mem: The memory registry backing this ttm_tt object
1307  *
1308  * Figure out the flags to use for a VM PTE (Page Table Entry).
1309  */
1310 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1311 				 struct ttm_resource *mem)
1312 {
1313 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1314 
1315 	flags |= adev->gart.gart_pte_flags;
1316 	flags |= AMDGPU_PTE_READABLE;
1317 
1318 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1319 		flags |= AMDGPU_PTE_WRITEABLE;
1320 
1321 	return flags;
1322 }
1323 
1324 /*
1325  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1326  * object.
1327  *
1328  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1329  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1330  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1331  * used to clean out a memory space.
1332  */
1333 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1334 					    const struct ttm_place *place)
1335 {
1336 	struct dma_resv_iter resv_cursor;
1337 	struct dma_fence *f;
1338 
1339 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1340 		return ttm_bo_eviction_valuable(bo, place);
1341 
1342 	/* Swapout? */
1343 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1344 		return true;
1345 
1346 	if (bo->type == ttm_bo_type_kernel &&
1347 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1348 		return false;
1349 
1350 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1351 	 * If true, then return false as any KFD process needs all its BOs to
1352 	 * be resident to run successfully
1353 	 */
1354 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1355 				DMA_RESV_USAGE_BOOKKEEP, f) {
1356 		if (amdkfd_fence_check_mm(f, current->mm))
1357 			return false;
1358 	}
1359 
1360 	/* Preemptible BOs don't own system resources managed by the
1361 	 * driver (pages, VRAM, GART space). They point to resources
1362 	 * owned by someone else (e.g. pageable memory in user mode
1363 	 * or a DMABuf). They are used in a preemptible context so we
1364 	 * can guarantee no deadlocks and good QoS in case of MMU
1365 	 * notifiers or DMABuf move notifiers from the resource owner.
1366 	 */
1367 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1368 		return false;
1369 
1370 	if (bo->resource->mem_type == TTM_PL_TT &&
1371 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1372 		return false;
1373 
1374 	return ttm_bo_eviction_valuable(bo, place);
1375 }
1376 
1377 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1378 				      void *buf, size_t size, bool write)
1379 {
1380 	while (size) {
1381 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1382 		uint64_t bytes = 4 - (pos & 0x3);
1383 		uint32_t shift = (pos & 0x3) * 8;
1384 		uint32_t mask = 0xffffffff << shift;
1385 		uint32_t value = 0;
1386 
1387 		if (size < bytes) {
1388 			mask &= 0xffffffff >> (bytes - size) * 8;
1389 			bytes = size;
1390 		}
1391 
1392 		if (mask != 0xffffffff) {
1393 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1394 			if (write) {
1395 				value &= ~mask;
1396 				value |= (*(uint32_t *)buf << shift) & mask;
1397 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1398 			} else {
1399 				value = (value & mask) >> shift;
1400 				memcpy(buf, &value, bytes);
1401 			}
1402 		} else {
1403 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1404 		}
1405 
1406 		pos += bytes;
1407 		buf += bytes;
1408 		size -= bytes;
1409 	}
1410 }
1411 
1412 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1413 					unsigned long offset, void *buf,
1414 					int len, int write)
1415 {
1416 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1417 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1418 	struct amdgpu_res_cursor src_mm;
1419 	struct amdgpu_job *job;
1420 	struct dma_fence *fence;
1421 	uint64_t src_addr, dst_addr;
1422 	unsigned int num_dw;
1423 	int r, idx;
1424 
1425 	if (len != PAGE_SIZE)
1426 		return -EINVAL;
1427 
1428 	if (!adev->mman.sdma_access_ptr)
1429 		return -EACCES;
1430 
1431 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1432 		return -ENODEV;
1433 
1434 	if (write)
1435 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1436 
1437 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1438 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1439 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1440 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1441 				     &job);
1442 	if (r)
1443 		goto out;
1444 
1445 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1446 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1447 		src_mm.start;
1448 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1449 	if (write)
1450 		swap(src_addr, dst_addr);
1451 
1452 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1453 				PAGE_SIZE, false);
1454 
1455 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1456 	WARN_ON(job->ibs[0].length_dw > num_dw);
1457 
1458 	fence = amdgpu_job_submit(job);
1459 
1460 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1461 		r = -ETIMEDOUT;
1462 	dma_fence_put(fence);
1463 
1464 	if (!(r || write))
1465 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1466 out:
1467 	drm_dev_exit(idx);
1468 	return r;
1469 }
1470 
1471 /**
1472  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1473  *
1474  * @bo:  The buffer object to read/write
1475  * @offset:  Offset into buffer object
1476  * @buf:  Secondary buffer to write/read from
1477  * @len: Length in bytes of access
1478  * @write:  true if writing
1479  *
1480  * This is used to access VRAM that backs a buffer object via MMIO
1481  * access for debugging purposes.
1482  */
1483 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1484 				    unsigned long offset, void *buf, int len,
1485 				    int write)
1486 {
1487 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1488 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1489 	struct amdgpu_res_cursor cursor;
1490 	int ret = 0;
1491 
1492 	if (bo->resource->mem_type != TTM_PL_VRAM)
1493 		return -EIO;
1494 
1495 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1496 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1497 		return len;
1498 
1499 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1500 	while (cursor.remaining) {
1501 		size_t count, size = cursor.size;
1502 		loff_t pos = cursor.start;
1503 
1504 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1505 		size -= count;
1506 		if (size) {
1507 			/* using MM to access rest vram and handle un-aligned address */
1508 			pos += count;
1509 			buf += count;
1510 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1511 		}
1512 
1513 		ret += cursor.size;
1514 		buf += cursor.size;
1515 		amdgpu_res_next(&cursor, cursor.size);
1516 	}
1517 
1518 	return ret;
1519 }
1520 
1521 static void
1522 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1523 {
1524 	amdgpu_bo_move_notify(bo, false, NULL);
1525 }
1526 
1527 static struct ttm_device_funcs amdgpu_bo_driver = {
1528 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1529 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1530 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1531 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1532 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1533 	.evict_flags = &amdgpu_evict_flags,
1534 	.move = &amdgpu_bo_move,
1535 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1536 	.release_notify = &amdgpu_bo_release_notify,
1537 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1538 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1539 	.access_memory = &amdgpu_ttm_access_memory,
1540 };
1541 
1542 /*
1543  * Firmware Reservation functions
1544  */
1545 /**
1546  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1547  *
1548  * @adev: amdgpu_device pointer
1549  *
1550  * free fw reserved vram if it has been reserved.
1551  */
1552 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1553 {
1554 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1555 		NULL, &adev->mman.fw_vram_usage_va);
1556 }
1557 
1558 /*
1559  * Driver Reservation functions
1560  */
1561 /**
1562  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1563  *
1564  * @adev: amdgpu_device pointer
1565  *
1566  * free drv reserved vram if it has been reserved.
1567  */
1568 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1569 {
1570 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1571 						  NULL,
1572 						  &adev->mman.drv_vram_usage_va);
1573 }
1574 
1575 /**
1576  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1577  *
1578  * @adev: amdgpu_device pointer
1579  *
1580  * create bo vram reservation from fw.
1581  */
1582 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1583 {
1584 	uint64_t vram_size = adev->gmc.visible_vram_size;
1585 
1586 	adev->mman.fw_vram_usage_va = NULL;
1587 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1588 
1589 	if (adev->mman.fw_vram_usage_size == 0 ||
1590 	    adev->mman.fw_vram_usage_size > vram_size)
1591 		return 0;
1592 
1593 	return amdgpu_bo_create_kernel_at(adev,
1594 					  adev->mman.fw_vram_usage_start_offset,
1595 					  adev->mman.fw_vram_usage_size,
1596 					  &adev->mman.fw_vram_usage_reserved_bo,
1597 					  &adev->mman.fw_vram_usage_va);
1598 }
1599 
1600 /**
1601  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1602  *
1603  * @adev: amdgpu_device pointer
1604  *
1605  * create bo vram reservation from drv.
1606  */
1607 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1608 {
1609 	u64 vram_size = adev->gmc.visible_vram_size;
1610 
1611 	adev->mman.drv_vram_usage_va = NULL;
1612 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1613 
1614 	if (adev->mman.drv_vram_usage_size == 0 ||
1615 	    adev->mman.drv_vram_usage_size > vram_size)
1616 		return 0;
1617 
1618 	return amdgpu_bo_create_kernel_at(adev,
1619 					  adev->mman.drv_vram_usage_start_offset,
1620 					  adev->mman.drv_vram_usage_size,
1621 					  &adev->mman.drv_vram_usage_reserved_bo,
1622 					  &adev->mman.drv_vram_usage_va);
1623 }
1624 
1625 /*
1626  * Memoy training reservation functions
1627  */
1628 
1629 /**
1630  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1631  *
1632  * @adev: amdgpu_device pointer
1633  *
1634  * free memory training reserved vram if it has been reserved.
1635  */
1636 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1637 {
1638 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1639 
1640 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1641 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1642 	ctx->c2p_bo = NULL;
1643 
1644 	return 0;
1645 }
1646 
1647 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev)
1648 {
1649 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1650 
1651 	memset(ctx, 0, sizeof(*ctx));
1652 
1653 	ctx->c2p_train_data_offset =
1654 		ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M);
1655 	ctx->p2c_train_data_offset =
1656 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1657 	ctx->train_data_size =
1658 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1659 
1660 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1661 			ctx->train_data_size,
1662 			ctx->p2c_train_data_offset,
1663 			ctx->c2p_train_data_offset);
1664 }
1665 
1666 /*
1667  * reserve TMR memory at the top of VRAM which holds
1668  * IP Discovery data and is protected by PSP.
1669  */
1670 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1671 {
1672 	int ret;
1673 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1674 	bool mem_train_support = false;
1675 
1676 	if (!amdgpu_sriov_vf(adev)) {
1677 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1678 			mem_train_support = true;
1679 		else
1680 			DRM_DEBUG("memory training does not support!\n");
1681 	}
1682 
1683 	/*
1684 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1685 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1686 	 *
1687 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1688 	 * discovery data and G6 memory training data respectively
1689 	 */
1690 	adev->mman.discovery_tmr_size =
1691 		amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1692 	if (!adev->mman.discovery_tmr_size)
1693 		adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET;
1694 
1695 	if (mem_train_support) {
1696 		/* reserve vram for mem train according to TMR location */
1697 		amdgpu_ttm_training_data_block_init(adev);
1698 		ret = amdgpu_bo_create_kernel_at(adev,
1699 						 ctx->c2p_train_data_offset,
1700 						 ctx->train_data_size,
1701 						 &ctx->c2p_bo,
1702 						 NULL);
1703 		if (ret) {
1704 			DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1705 			amdgpu_ttm_training_reserve_vram_fini(adev);
1706 			return ret;
1707 		}
1708 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1709 	}
1710 
1711 	ret = amdgpu_bo_create_kernel_at(adev,
1712 					 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size,
1713 					 adev->mman.discovery_tmr_size,
1714 					 &adev->mman.discovery_memory,
1715 					 NULL);
1716 	if (ret) {
1717 		DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1718 		amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1719 		return ret;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1727  * gtt/vram related fields.
1728  *
1729  * This initializes all of the memory space pools that the TTM layer
1730  * will need such as the GTT space (system memory mapped to the device),
1731  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1732  * can be mapped per VMID.
1733  */
1734 int amdgpu_ttm_init(struct amdgpu_device *adev)
1735 {
1736 	uint64_t gtt_size;
1737 	int r;
1738 
1739 	mutex_init(&adev->mman.gtt_window_lock);
1740 
1741 	/* No others user of address space so set it to 0 */
1742 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1743 			       adev_to_drm(adev)->anon_inode->i_mapping,
1744 			       adev_to_drm(adev)->vma_offset_manager,
1745 			       adev->need_swiotlb,
1746 			       dma_addressing_limited(adev->dev));
1747 	if (r) {
1748 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1749 		return r;
1750 	}
1751 	adev->mman.initialized = true;
1752 
1753 	/* Initialize VRAM pool with all of VRAM divided into pages */
1754 	r = amdgpu_vram_mgr_init(adev);
1755 	if (r) {
1756 		DRM_ERROR("Failed initializing VRAM heap.\n");
1757 		return r;
1758 	}
1759 
1760 	/* Change the size here instead of the init above so only lpfn is affected */
1761 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1762 #ifdef CONFIG_64BIT
1763 #ifdef CONFIG_X86
1764 	if (adev->gmc.xgmi.connected_to_cpu)
1765 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1766 				adev->gmc.visible_vram_size);
1767 
1768 	else
1769 #endif
1770 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1771 				adev->gmc.visible_vram_size);
1772 #endif
1773 
1774 	/*
1775 	 *The reserved vram for firmware must be pinned to the specified
1776 	 *place on the VRAM, so reserve it early.
1777 	 */
1778 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1779 	if (r) {
1780 		return r;
1781 	}
1782 
1783 	/*
1784 	 *The reserved vram for driver must be pinned to the specified
1785 	 *place on the VRAM, so reserve it early.
1786 	 */
1787 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1788 	if (r)
1789 		return r;
1790 
1791 	/*
1792 	 * only NAVI10 and onwards ASIC support for IP discovery.
1793 	 * If IP discovery enabled, a block of memory should be
1794 	 * reserved for IP discovey.
1795 	 */
1796 	if (adev->mman.discovery_bin) {
1797 		r = amdgpu_ttm_reserve_tmr(adev);
1798 		if (r)
1799 			return r;
1800 	}
1801 
1802 	/* allocate memory as required for VGA
1803 	 * This is used for VGA emulation and pre-OS scanout buffers to
1804 	 * avoid display artifacts while transitioning between pre-OS
1805 	 * and driver.  */
1806 	r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size,
1807 				       &adev->mman.stolen_vga_memory,
1808 				       NULL);
1809 	if (r)
1810 		return r;
1811 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1812 				       adev->mman.stolen_extended_size,
1813 				       &adev->mman.stolen_extended_memory,
1814 				       NULL);
1815 	if (r)
1816 		return r;
1817 	r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset,
1818 				       adev->mman.stolen_reserved_size,
1819 				       &adev->mman.stolen_reserved_memory,
1820 				       NULL);
1821 	if (r)
1822 		return r;
1823 
1824 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1825 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1826 
1827 	/* Compute GTT size, either based on TTM limit
1828 	 * or whatever the user passed on module init.
1829 	 */
1830 	if (amdgpu_gtt_size == -1)
1831 		gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1832 	else
1833 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1834 
1835 	/* Initialize GTT memory pool */
1836 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1837 	if (r) {
1838 		DRM_ERROR("Failed initializing GTT heap.\n");
1839 		return r;
1840 	}
1841 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1842 		 (unsigned)(gtt_size / (1024 * 1024)));
1843 
1844 	/* Initialize preemptible memory pool */
1845 	r = amdgpu_preempt_mgr_init(adev);
1846 	if (r) {
1847 		DRM_ERROR("Failed initializing PREEMPT heap.\n");
1848 		return r;
1849 	}
1850 
1851 	/* Initialize various on-chip memory pools */
1852 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1853 	if (r) {
1854 		DRM_ERROR("Failed initializing GDS heap.\n");
1855 		return r;
1856 	}
1857 
1858 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1859 	if (r) {
1860 		DRM_ERROR("Failed initializing gws heap.\n");
1861 		return r;
1862 	}
1863 
1864 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1865 	if (r) {
1866 		DRM_ERROR("Failed initializing oa heap.\n");
1867 		return r;
1868 	}
1869 
1870 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1871 				AMDGPU_GEM_DOMAIN_GTT,
1872 				&adev->mman.sdma_access_bo, NULL,
1873 				&adev->mman.sdma_access_ptr))
1874 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1875 
1876 	return 0;
1877 }
1878 
1879 /*
1880  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1881  */
1882 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1883 {
1884 	int idx;
1885 	if (!adev->mman.initialized)
1886 		return;
1887 
1888 	amdgpu_ttm_training_reserve_vram_fini(adev);
1889 	/* return the stolen vga memory back to VRAM */
1890 	amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1891 	amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1892 	/* return the IP Discovery TMR memory back to VRAM */
1893 	amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL);
1894 	if (adev->mman.stolen_reserved_size)
1895 		amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1896 				      NULL, NULL);
1897 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1898 					&adev->mman.sdma_access_ptr);
1899 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1900 	amdgpu_ttm_drv_reserve_vram_fini(adev);
1901 
1902 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1903 
1904 		if (adev->mman.aper_base_kaddr)
1905 			iounmap(adev->mman.aper_base_kaddr);
1906 		adev->mman.aper_base_kaddr = NULL;
1907 
1908 		drm_dev_exit(idx);
1909 	}
1910 
1911 	amdgpu_vram_mgr_fini(adev);
1912 	amdgpu_gtt_mgr_fini(adev);
1913 	amdgpu_preempt_mgr_fini(adev);
1914 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
1915 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
1916 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
1917 	ttm_device_fini(&adev->mman.bdev);
1918 	adev->mman.initialized = false;
1919 	DRM_INFO("amdgpu: ttm finalized\n");
1920 }
1921 
1922 /**
1923  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1924  *
1925  * @adev: amdgpu_device pointer
1926  * @enable: true when we can use buffer functions.
1927  *
1928  * Enable/disable use of buffer functions during suspend/resume. This should
1929  * only be called at bootup or when userspace isn't running.
1930  */
1931 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1932 {
1933 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
1934 	uint64_t size;
1935 	int r;
1936 
1937 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
1938 	    adev->mman.buffer_funcs_enabled == enable)
1939 		return;
1940 
1941 	if (enable) {
1942 		struct amdgpu_ring *ring;
1943 		struct drm_gpu_scheduler *sched;
1944 
1945 		ring = adev->mman.buffer_funcs_ring;
1946 		sched = &ring->sched;
1947 		r = drm_sched_entity_init(&adev->mman.entity,
1948 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
1949 					  1, NULL);
1950 		if (r) {
1951 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1952 				  r);
1953 			return;
1954 		}
1955 	} else {
1956 		drm_sched_entity_destroy(&adev->mman.entity);
1957 		dma_fence_put(man->move);
1958 		man->move = NULL;
1959 	}
1960 
1961 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1962 	if (enable)
1963 		size = adev->gmc.real_vram_size;
1964 	else
1965 		size = adev->gmc.visible_vram_size;
1966 	man->size = size;
1967 	adev->mman.buffer_funcs_enabled = enable;
1968 }
1969 
1970 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
1971 				  bool direct_submit,
1972 				  unsigned int num_dw,
1973 				  struct dma_resv *resv,
1974 				  bool vm_needs_flush,
1975 				  struct amdgpu_job **job)
1976 {
1977 	enum amdgpu_ib_pool_type pool = direct_submit ?
1978 		AMDGPU_IB_POOL_DIRECT :
1979 		AMDGPU_IB_POOL_DELAYED;
1980 	int r;
1981 
1982 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1983 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1984 				     num_dw * 4, pool, job);
1985 	if (r)
1986 		return r;
1987 
1988 	if (vm_needs_flush) {
1989 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
1990 							adev->gmc.pdb0_bo :
1991 							adev->gart.bo);
1992 		(*job)->vm_needs_flush = true;
1993 	}
1994 	if (!resv)
1995 		return 0;
1996 
1997 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
1998 						   DMA_RESV_USAGE_BOOKKEEP);
1999 }
2000 
2001 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2002 		       uint64_t dst_offset, uint32_t byte_count,
2003 		       struct dma_resv *resv,
2004 		       struct dma_fence **fence, bool direct_submit,
2005 		       bool vm_needs_flush, bool tmz)
2006 {
2007 	struct amdgpu_device *adev = ring->adev;
2008 	unsigned num_loops, num_dw;
2009 	struct amdgpu_job *job;
2010 	uint32_t max_bytes;
2011 	unsigned i;
2012 	int r;
2013 
2014 	if (!direct_submit && !ring->sched.ready) {
2015 		DRM_ERROR("Trying to move memory with ring turned off.\n");
2016 		return -EINVAL;
2017 	}
2018 
2019 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2020 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2021 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2022 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2023 				   resv, vm_needs_flush, &job);
2024 	if (r)
2025 		return r;
2026 
2027 	for (i = 0; i < num_loops; i++) {
2028 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2029 
2030 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2031 					dst_offset, cur_size_in_bytes, tmz);
2032 
2033 		src_offset += cur_size_in_bytes;
2034 		dst_offset += cur_size_in_bytes;
2035 		byte_count -= cur_size_in_bytes;
2036 	}
2037 
2038 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2039 	WARN_ON(job->ibs[0].length_dw > num_dw);
2040 	if (direct_submit)
2041 		r = amdgpu_job_submit_direct(job, ring, fence);
2042 	else
2043 		*fence = amdgpu_job_submit(job);
2044 	if (r)
2045 		goto error_free;
2046 
2047 	return r;
2048 
2049 error_free:
2050 	amdgpu_job_free(job);
2051 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2052 	return r;
2053 }
2054 
2055 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2056 			       uint64_t dst_addr, uint32_t byte_count,
2057 			       struct dma_resv *resv,
2058 			       struct dma_fence **fence,
2059 			       bool vm_needs_flush)
2060 {
2061 	struct amdgpu_device *adev = ring->adev;
2062 	unsigned int num_loops, num_dw;
2063 	struct amdgpu_job *job;
2064 	uint32_t max_bytes;
2065 	unsigned int i;
2066 	int r;
2067 
2068 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2069 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2070 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2071 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2072 				   &job);
2073 	if (r)
2074 		return r;
2075 
2076 	for (i = 0; i < num_loops; i++) {
2077 		uint32_t cur_size = min(byte_count, max_bytes);
2078 
2079 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2080 					cur_size);
2081 
2082 		dst_addr += cur_size;
2083 		byte_count -= cur_size;
2084 	}
2085 
2086 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2087 	WARN_ON(job->ibs[0].length_dw > num_dw);
2088 	*fence = amdgpu_job_submit(job);
2089 	return 0;
2090 }
2091 
2092 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2093 			uint32_t src_data,
2094 			struct dma_resv *resv,
2095 			struct dma_fence **f)
2096 {
2097 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2098 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2099 	struct dma_fence *fence = NULL;
2100 	struct amdgpu_res_cursor dst;
2101 	int r;
2102 
2103 	if (!adev->mman.buffer_funcs_enabled) {
2104 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2105 		return -EINVAL;
2106 	}
2107 
2108 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2109 
2110 	mutex_lock(&adev->mman.gtt_window_lock);
2111 	while (dst.remaining) {
2112 		struct dma_fence *next;
2113 		uint64_t cur_size, to;
2114 
2115 		/* Never fill more than 256MiB at once to avoid timeouts */
2116 		cur_size = min(dst.size, 256ULL << 20);
2117 
2118 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2119 					  1, ring, false, &cur_size, &to);
2120 		if (r)
2121 			goto error;
2122 
2123 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2124 					&next, true);
2125 		if (r)
2126 			goto error;
2127 
2128 		dma_fence_put(fence);
2129 		fence = next;
2130 
2131 		amdgpu_res_next(&dst, cur_size);
2132 	}
2133 error:
2134 	mutex_unlock(&adev->mman.gtt_window_lock);
2135 	if (f)
2136 		*f = dma_fence_get(fence);
2137 	dma_fence_put(fence);
2138 	return r;
2139 }
2140 
2141 /**
2142  * amdgpu_ttm_evict_resources - evict memory buffers
2143  * @adev: amdgpu device object
2144  * @mem_type: evicted BO's memory type
2145  *
2146  * Evicts all @mem_type buffers on the lru list of the memory type.
2147  *
2148  * Returns:
2149  * 0 for success or a negative error code on failure.
2150  */
2151 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2152 {
2153 	struct ttm_resource_manager *man;
2154 
2155 	switch (mem_type) {
2156 	case TTM_PL_VRAM:
2157 	case TTM_PL_TT:
2158 	case AMDGPU_PL_GWS:
2159 	case AMDGPU_PL_GDS:
2160 	case AMDGPU_PL_OA:
2161 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2162 		break;
2163 	default:
2164 		DRM_ERROR("Trying to evict invalid memory type\n");
2165 		return -EINVAL;
2166 	}
2167 
2168 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2169 }
2170 
2171 #if defined(CONFIG_DEBUG_FS)
2172 
2173 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2174 {
2175 	struct amdgpu_device *adev = (struct amdgpu_device *)m->private;
2176 
2177 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2178 }
2179 
2180 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2181 
2182 /*
2183  * amdgpu_ttm_vram_read - Linear read access to VRAM
2184  *
2185  * Accesses VRAM via MMIO for debugging purposes.
2186  */
2187 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2188 				    size_t size, loff_t *pos)
2189 {
2190 	struct amdgpu_device *adev = file_inode(f)->i_private;
2191 	ssize_t result = 0;
2192 
2193 	if (size & 0x3 || *pos & 0x3)
2194 		return -EINVAL;
2195 
2196 	if (*pos >= adev->gmc.mc_vram_size)
2197 		return -ENXIO;
2198 
2199 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2200 	while (size) {
2201 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2202 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2203 
2204 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2205 		if (copy_to_user(buf, value, bytes))
2206 			return -EFAULT;
2207 
2208 		result += bytes;
2209 		buf += bytes;
2210 		*pos += bytes;
2211 		size -= bytes;
2212 	}
2213 
2214 	return result;
2215 }
2216 
2217 /*
2218  * amdgpu_ttm_vram_write - Linear write access to VRAM
2219  *
2220  * Accesses VRAM via MMIO for debugging purposes.
2221  */
2222 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2223 				    size_t size, loff_t *pos)
2224 {
2225 	struct amdgpu_device *adev = file_inode(f)->i_private;
2226 	ssize_t result = 0;
2227 	int r;
2228 
2229 	if (size & 0x3 || *pos & 0x3)
2230 		return -EINVAL;
2231 
2232 	if (*pos >= adev->gmc.mc_vram_size)
2233 		return -ENXIO;
2234 
2235 	while (size) {
2236 		uint32_t value;
2237 
2238 		if (*pos >= adev->gmc.mc_vram_size)
2239 			return result;
2240 
2241 		r = get_user(value, (uint32_t *)buf);
2242 		if (r)
2243 			return r;
2244 
2245 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2246 
2247 		result += 4;
2248 		buf += 4;
2249 		*pos += 4;
2250 		size -= 4;
2251 	}
2252 
2253 	return result;
2254 }
2255 
2256 static const struct file_operations amdgpu_ttm_vram_fops = {
2257 	.owner = THIS_MODULE,
2258 	.read = amdgpu_ttm_vram_read,
2259 	.write = amdgpu_ttm_vram_write,
2260 	.llseek = default_llseek,
2261 };
2262 
2263 /*
2264  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2265  *
2266  * This function is used to read memory that has been mapped to the
2267  * GPU and the known addresses are not physical addresses but instead
2268  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2269  */
2270 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2271 				 size_t size, loff_t *pos)
2272 {
2273 	struct amdgpu_device *adev = file_inode(f)->i_private;
2274 	struct iommu_domain *dom;
2275 	ssize_t result = 0;
2276 	int r;
2277 
2278 	/* retrieve the IOMMU domain if any for this device */
2279 	dom = iommu_get_domain_for_dev(adev->dev);
2280 
2281 	while (size) {
2282 		phys_addr_t addr = *pos & PAGE_MASK;
2283 		loff_t off = *pos & ~PAGE_MASK;
2284 		size_t bytes = PAGE_SIZE - off;
2285 		unsigned long pfn;
2286 		struct page *p;
2287 		void *ptr;
2288 
2289 		bytes = bytes < size ? bytes : size;
2290 
2291 		/* Translate the bus address to a physical address.  If
2292 		 * the domain is NULL it means there is no IOMMU active
2293 		 * and the address translation is the identity
2294 		 */
2295 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2296 
2297 		pfn = addr >> PAGE_SHIFT;
2298 		if (!pfn_valid(pfn))
2299 			return -EPERM;
2300 
2301 		p = pfn_to_page(pfn);
2302 		if (p->mapping != adev->mman.bdev.dev_mapping)
2303 			return -EPERM;
2304 
2305 		ptr = kmap_local_page(p);
2306 		r = copy_to_user(buf, ptr + off, bytes);
2307 		kunmap_local(ptr);
2308 		if (r)
2309 			return -EFAULT;
2310 
2311 		size -= bytes;
2312 		*pos += bytes;
2313 		result += bytes;
2314 	}
2315 
2316 	return result;
2317 }
2318 
2319 /*
2320  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2321  *
2322  * This function is used to write memory that has been mapped to the
2323  * GPU and the known addresses are not physical addresses but instead
2324  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2325  */
2326 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2327 				 size_t size, loff_t *pos)
2328 {
2329 	struct amdgpu_device *adev = file_inode(f)->i_private;
2330 	struct iommu_domain *dom;
2331 	ssize_t result = 0;
2332 	int r;
2333 
2334 	dom = iommu_get_domain_for_dev(adev->dev);
2335 
2336 	while (size) {
2337 		phys_addr_t addr = *pos & PAGE_MASK;
2338 		loff_t off = *pos & ~PAGE_MASK;
2339 		size_t bytes = PAGE_SIZE - off;
2340 		unsigned long pfn;
2341 		struct page *p;
2342 		void *ptr;
2343 
2344 		bytes = bytes < size ? bytes : size;
2345 
2346 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2347 
2348 		pfn = addr >> PAGE_SHIFT;
2349 		if (!pfn_valid(pfn))
2350 			return -EPERM;
2351 
2352 		p = pfn_to_page(pfn);
2353 		if (p->mapping != adev->mman.bdev.dev_mapping)
2354 			return -EPERM;
2355 
2356 		ptr = kmap_local_page(p);
2357 		r = copy_from_user(ptr + off, buf, bytes);
2358 		kunmap_local(ptr);
2359 		if (r)
2360 			return -EFAULT;
2361 
2362 		size -= bytes;
2363 		*pos += bytes;
2364 		result += bytes;
2365 	}
2366 
2367 	return result;
2368 }
2369 
2370 static const struct file_operations amdgpu_ttm_iomem_fops = {
2371 	.owner = THIS_MODULE,
2372 	.read = amdgpu_iomem_read,
2373 	.write = amdgpu_iomem_write,
2374 	.llseek = default_llseek
2375 };
2376 
2377 #endif
2378 
2379 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2380 {
2381 #if defined(CONFIG_DEBUG_FS)
2382 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2383 	struct dentry *root = minor->debugfs_root;
2384 
2385 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2386 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2387 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2388 			    &amdgpu_ttm_iomem_fops);
2389 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2390 			    &amdgpu_ttm_page_pool_fops);
2391 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2392 							     TTM_PL_VRAM),
2393 					    root, "amdgpu_vram_mm");
2394 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2395 							     TTM_PL_TT),
2396 					    root, "amdgpu_gtt_mm");
2397 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2398 							     AMDGPU_PL_GDS),
2399 					    root, "amdgpu_gds_mm");
2400 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2401 							     AMDGPU_PL_GWS),
2402 					    root, "amdgpu_gws_mm");
2403 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2404 							     AMDGPU_PL_OA),
2405 					    root, "amdgpu_oa_mm");
2406 
2407 #endif
2408 }
2409