1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "amdgpu_sdma.h"
51 #include "bif/bif_4_1_d.h"
52 
53 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
54 			     struct ttm_mem_reg *mem, unsigned num_pages,
55 			     uint64_t offset, unsigned window,
56 			     struct amdgpu_ring *ring,
57 			     uint64_t *addr);
58 
59 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
60 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
61 
62 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
63 {
64 	return 0;
65 }
66 
67 /**
68  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
69  * memory request.
70  *
71  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
72  * @type: The type of memory requested
73  * @man: The memory type manager for each domain
74  *
75  * This is called by ttm_bo_init_mm() when a buffer object is being
76  * initialized.
77  */
78 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
79 				struct ttm_mem_type_manager *man)
80 {
81 	struct amdgpu_device *adev;
82 
83 	adev = amdgpu_ttm_adev(bdev);
84 
85 	switch (type) {
86 	case TTM_PL_SYSTEM:
87 		/* System memory */
88 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
89 		man->available_caching = TTM_PL_MASK_CACHING;
90 		man->default_caching = TTM_PL_FLAG_CACHED;
91 		break;
92 	case TTM_PL_TT:
93 		/* GTT memory  */
94 		man->func = &amdgpu_gtt_mgr_func;
95 		man->gpu_offset = adev->gmc.gart_start;
96 		man->available_caching = TTM_PL_MASK_CACHING;
97 		man->default_caching = TTM_PL_FLAG_CACHED;
98 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
99 		break;
100 	case TTM_PL_VRAM:
101 		/* "On-card" video ram */
102 		man->func = &amdgpu_vram_mgr_func;
103 		man->gpu_offset = adev->gmc.vram_start;
104 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
105 			     TTM_MEMTYPE_FLAG_MAPPABLE;
106 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
107 		man->default_caching = TTM_PL_FLAG_WC;
108 		break;
109 	case AMDGPU_PL_GDS:
110 	case AMDGPU_PL_GWS:
111 	case AMDGPU_PL_OA:
112 		/* On-chip GDS memory*/
113 		man->func = &ttm_bo_manager_func;
114 		man->gpu_offset = 0;
115 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
116 		man->available_caching = TTM_PL_FLAG_UNCACHED;
117 		man->default_caching = TTM_PL_FLAG_UNCACHED;
118 		break;
119 	default:
120 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
121 		return -EINVAL;
122 	}
123 	return 0;
124 }
125 
126 /**
127  * amdgpu_evict_flags - Compute placement flags
128  *
129  * @bo: The buffer object to evict
130  * @placement: Possible destination(s) for evicted BO
131  *
132  * Fill in placement data when ttm_bo_evict() is called
133  */
134 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
135 				struct ttm_placement *placement)
136 {
137 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
138 	struct amdgpu_bo *abo;
139 	static const struct ttm_place placements = {
140 		.fpfn = 0,
141 		.lpfn = 0,
142 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
143 	};
144 
145 	/* Don't handle scatter gather BOs */
146 	if (bo->type == ttm_bo_type_sg) {
147 		placement->num_placement = 0;
148 		placement->num_busy_placement = 0;
149 		return;
150 	}
151 
152 	/* Object isn't an AMDGPU object so ignore */
153 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
154 		placement->placement = &placements;
155 		placement->busy_placement = &placements;
156 		placement->num_placement = 1;
157 		placement->num_busy_placement = 1;
158 		return;
159 	}
160 
161 	abo = ttm_to_amdgpu_bo(bo);
162 	switch (bo->mem.mem_type) {
163 	case AMDGPU_PL_GDS:
164 	case AMDGPU_PL_GWS:
165 	case AMDGPU_PL_OA:
166 		placement->num_placement = 0;
167 		placement->num_busy_placement = 0;
168 		return;
169 
170 	case TTM_PL_VRAM:
171 		if (!adev->mman.buffer_funcs_enabled) {
172 			/* Move to system memory */
173 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
174 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
175 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
176 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
177 
178 			/* Try evicting to the CPU inaccessible part of VRAM
179 			 * first, but only set GTT as busy placement, so this
180 			 * BO will be evicted to GTT rather than causing other
181 			 * BOs to be evicted from VRAM
182 			 */
183 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
184 							 AMDGPU_GEM_DOMAIN_GTT);
185 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
186 			abo->placements[0].lpfn = 0;
187 			abo->placement.busy_placement = &abo->placements[1];
188 			abo->placement.num_busy_placement = 1;
189 		} else {
190 			/* Move to GTT memory */
191 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
192 		}
193 		break;
194 	case TTM_PL_TT:
195 	default:
196 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
197 		break;
198 	}
199 	*placement = abo->placement;
200 }
201 
202 /**
203  * amdgpu_verify_access - Verify access for a mmap call
204  *
205  * @bo:	The buffer object to map
206  * @filp: The file pointer from the process performing the mmap
207  *
208  * This is called by ttm_bo_mmap() to verify whether a process
209  * has the right to mmap a BO to their process space.
210  */
211 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
212 {
213 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
214 
215 	/*
216 	 * Don't verify access for KFD BOs. They don't have a GEM
217 	 * object associated with them.
218 	 */
219 	if (abo->kfd_bo)
220 		return 0;
221 
222 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
223 		return -EPERM;
224 	return drm_vma_node_verify_access(&abo->gem_base.vma_node,
225 					  filp->private_data);
226 }
227 
228 /**
229  * amdgpu_move_null - Register memory for a buffer object
230  *
231  * @bo: The bo to assign the memory to
232  * @new_mem: The memory to be assigned.
233  *
234  * Assign the memory from new_mem to the memory of the buffer object bo.
235  */
236 static void amdgpu_move_null(struct ttm_buffer_object *bo,
237 			     struct ttm_mem_reg *new_mem)
238 {
239 	struct ttm_mem_reg *old_mem = &bo->mem;
240 
241 	BUG_ON(old_mem->mm_node != NULL);
242 	*old_mem = *new_mem;
243 	new_mem->mm_node = NULL;
244 }
245 
246 /**
247  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
248  *
249  * @bo: The bo to assign the memory to.
250  * @mm_node: Memory manager node for drm allocator.
251  * @mem: The region where the bo resides.
252  *
253  */
254 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
255 				    struct drm_mm_node *mm_node,
256 				    struct ttm_mem_reg *mem)
257 {
258 	uint64_t addr = 0;
259 
260 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
261 		addr = mm_node->start << PAGE_SHIFT;
262 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
263 	}
264 	return addr;
265 }
266 
267 /**
268  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
269  * @offset. It also modifies the offset to be within the drm_mm_node returned
270  *
271  * @mem: The region where the bo resides.
272  * @offset: The offset that drm_mm_node is used for finding.
273  *
274  */
275 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
276 					       unsigned long *offset)
277 {
278 	struct drm_mm_node *mm_node = mem->mm_node;
279 
280 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
281 		*offset -= (mm_node->size << PAGE_SHIFT);
282 		++mm_node;
283 	}
284 	return mm_node;
285 }
286 
287 /**
288  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
289  *
290  * The function copies @size bytes from {src->mem + src->offset} to
291  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
292  * move and different for a BO to BO copy.
293  *
294  * @f: Returns the last fence if multiple jobs are submitted.
295  */
296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
297 			       struct amdgpu_copy_mem *src,
298 			       struct amdgpu_copy_mem *dst,
299 			       uint64_t size,
300 			       struct reservation_object *resv,
301 			       struct dma_fence **f)
302 {
303 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
304 	struct drm_mm_node *src_mm, *dst_mm;
305 	uint64_t src_node_start, dst_node_start, src_node_size,
306 		 dst_node_size, src_page_offset, dst_page_offset;
307 	struct dma_fence *fence = NULL;
308 	int r = 0;
309 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
310 					AMDGPU_GPU_PAGE_SIZE);
311 
312 	if (!adev->mman.buffer_funcs_enabled) {
313 		DRM_ERROR("Trying to move memory with ring turned off.\n");
314 		return -EINVAL;
315 	}
316 
317 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
318 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
319 					     src->offset;
320 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
321 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
322 
323 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
324 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
325 					     dst->offset;
326 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
327 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
328 
329 	mutex_lock(&adev->mman.gtt_window_lock);
330 
331 	while (size) {
332 		unsigned long cur_size;
333 		uint64_t from = src_node_start, to = dst_node_start;
334 		struct dma_fence *next;
335 
336 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
337 		 * begins at an offset, then adjust the size accordingly
338 		 */
339 		cur_size = min3(min(src_node_size, dst_node_size), size,
340 				GTT_MAX_BYTES);
341 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
342 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
343 			cur_size -= max(src_page_offset, dst_page_offset);
344 
345 		/* Map only what needs to be accessed. Map src to window 0 and
346 		 * dst to window 1
347 		 */
348 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
349 			r = amdgpu_map_buffer(src->bo, src->mem,
350 					PFN_UP(cur_size + src_page_offset),
351 					src_node_start, 0, ring,
352 					&from);
353 			if (r)
354 				goto error;
355 			/* Adjust the offset because amdgpu_map_buffer returns
356 			 * start of mapped page
357 			 */
358 			from += src_page_offset;
359 		}
360 
361 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
362 			r = amdgpu_map_buffer(dst->bo, dst->mem,
363 					PFN_UP(cur_size + dst_page_offset),
364 					dst_node_start, 1, ring,
365 					&to);
366 			if (r)
367 				goto error;
368 			to += dst_page_offset;
369 		}
370 
371 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
372 				       resv, &next, false, true);
373 		if (r)
374 			goto error;
375 
376 		dma_fence_put(fence);
377 		fence = next;
378 
379 		size -= cur_size;
380 		if (!size)
381 			break;
382 
383 		src_node_size -= cur_size;
384 		if (!src_node_size) {
385 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
386 							     src->mem);
387 			src_node_size = (src_mm->size << PAGE_SHIFT);
388 		} else {
389 			src_node_start += cur_size;
390 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
391 		}
392 		dst_node_size -= cur_size;
393 		if (!dst_node_size) {
394 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
395 							     dst->mem);
396 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
397 		} else {
398 			dst_node_start += cur_size;
399 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
400 		}
401 	}
402 error:
403 	mutex_unlock(&adev->mman.gtt_window_lock);
404 	if (f)
405 		*f = dma_fence_get(fence);
406 	dma_fence_put(fence);
407 	return r;
408 }
409 
410 /**
411  * amdgpu_move_blit - Copy an entire buffer to another buffer
412  *
413  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
414  * help move buffers to and from VRAM.
415  */
416 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
417 			    bool evict, bool no_wait_gpu,
418 			    struct ttm_mem_reg *new_mem,
419 			    struct ttm_mem_reg *old_mem)
420 {
421 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
422 	struct amdgpu_copy_mem src, dst;
423 	struct dma_fence *fence = NULL;
424 	int r;
425 
426 	src.bo = bo;
427 	dst.bo = bo;
428 	src.mem = old_mem;
429 	dst.mem = new_mem;
430 	src.offset = 0;
431 	dst.offset = 0;
432 
433 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
434 				       new_mem->num_pages << PAGE_SHIFT,
435 				       bo->resv, &fence);
436 	if (r)
437 		goto error;
438 
439 	/* Always block for VM page tables before committing the new location */
440 	if (bo->type == ttm_bo_type_kernel)
441 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
442 	else
443 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
444 	dma_fence_put(fence);
445 	return r;
446 
447 error:
448 	if (fence)
449 		dma_fence_wait(fence, false);
450 	dma_fence_put(fence);
451 	return r;
452 }
453 
454 /**
455  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
456  *
457  * Called by amdgpu_bo_move().
458  */
459 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
460 				struct ttm_operation_ctx *ctx,
461 				struct ttm_mem_reg *new_mem)
462 {
463 	struct amdgpu_device *adev;
464 	struct ttm_mem_reg *old_mem = &bo->mem;
465 	struct ttm_mem_reg tmp_mem;
466 	struct ttm_place placements;
467 	struct ttm_placement placement;
468 	int r;
469 
470 	adev = amdgpu_ttm_adev(bo->bdev);
471 
472 	/* create space/pages for new_mem in GTT space */
473 	tmp_mem = *new_mem;
474 	tmp_mem.mm_node = NULL;
475 	placement.num_placement = 1;
476 	placement.placement = &placements;
477 	placement.num_busy_placement = 1;
478 	placement.busy_placement = &placements;
479 	placements.fpfn = 0;
480 	placements.lpfn = 0;
481 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
482 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
483 	if (unlikely(r)) {
484 		return r;
485 	}
486 
487 	/* set caching flags */
488 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
489 	if (unlikely(r)) {
490 		goto out_cleanup;
491 	}
492 
493 	/* Bind the memory to the GTT space */
494 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
495 	if (unlikely(r)) {
496 		goto out_cleanup;
497 	}
498 
499 	/* blit VRAM to GTT */
500 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
501 	if (unlikely(r)) {
502 		goto out_cleanup;
503 	}
504 
505 	/* move BO (in tmp_mem) to new_mem */
506 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
507 out_cleanup:
508 	ttm_bo_mem_put(bo, &tmp_mem);
509 	return r;
510 }
511 
512 /**
513  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
514  *
515  * Called by amdgpu_bo_move().
516  */
517 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
518 				struct ttm_operation_ctx *ctx,
519 				struct ttm_mem_reg *new_mem)
520 {
521 	struct amdgpu_device *adev;
522 	struct ttm_mem_reg *old_mem = &bo->mem;
523 	struct ttm_mem_reg tmp_mem;
524 	struct ttm_placement placement;
525 	struct ttm_place placements;
526 	int r;
527 
528 	adev = amdgpu_ttm_adev(bo->bdev);
529 
530 	/* make space in GTT for old_mem buffer */
531 	tmp_mem = *new_mem;
532 	tmp_mem.mm_node = NULL;
533 	placement.num_placement = 1;
534 	placement.placement = &placements;
535 	placement.num_busy_placement = 1;
536 	placement.busy_placement = &placements;
537 	placements.fpfn = 0;
538 	placements.lpfn = 0;
539 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
540 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
541 	if (unlikely(r)) {
542 		return r;
543 	}
544 
545 	/* move/bind old memory to GTT space */
546 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
547 	if (unlikely(r)) {
548 		goto out_cleanup;
549 	}
550 
551 	/* copy to VRAM */
552 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
553 	if (unlikely(r)) {
554 		goto out_cleanup;
555 	}
556 out_cleanup:
557 	ttm_bo_mem_put(bo, &tmp_mem);
558 	return r;
559 }
560 
561 /**
562  * amdgpu_bo_move - Move a buffer object to a new memory location
563  *
564  * Called by ttm_bo_handle_move_mem()
565  */
566 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
567 			  struct ttm_operation_ctx *ctx,
568 			  struct ttm_mem_reg *new_mem)
569 {
570 	struct amdgpu_device *adev;
571 	struct amdgpu_bo *abo;
572 	struct ttm_mem_reg *old_mem = &bo->mem;
573 	int r;
574 
575 	/* Can't move a pinned BO */
576 	abo = ttm_to_amdgpu_bo(bo);
577 	if (WARN_ON_ONCE(abo->pin_count > 0))
578 		return -EINVAL;
579 
580 	adev = amdgpu_ttm_adev(bo->bdev);
581 
582 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
583 		amdgpu_move_null(bo, new_mem);
584 		return 0;
585 	}
586 	if ((old_mem->mem_type == TTM_PL_TT &&
587 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
588 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
589 	     new_mem->mem_type == TTM_PL_TT)) {
590 		/* bind is enough */
591 		amdgpu_move_null(bo, new_mem);
592 		return 0;
593 	}
594 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
595 	    old_mem->mem_type == AMDGPU_PL_GWS ||
596 	    old_mem->mem_type == AMDGPU_PL_OA ||
597 	    new_mem->mem_type == AMDGPU_PL_GDS ||
598 	    new_mem->mem_type == AMDGPU_PL_GWS ||
599 	    new_mem->mem_type == AMDGPU_PL_OA) {
600 		/* Nothing to save here */
601 		amdgpu_move_null(bo, new_mem);
602 		return 0;
603 	}
604 
605 	if (!adev->mman.buffer_funcs_enabled)
606 		goto memcpy;
607 
608 	if (old_mem->mem_type == TTM_PL_VRAM &&
609 	    new_mem->mem_type == TTM_PL_SYSTEM) {
610 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
611 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
612 		   new_mem->mem_type == TTM_PL_VRAM) {
613 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
614 	} else {
615 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
616 				     new_mem, old_mem);
617 	}
618 
619 	if (r) {
620 memcpy:
621 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
622 		if (r) {
623 			return r;
624 		}
625 	}
626 
627 	if (bo->type == ttm_bo_type_device &&
628 	    new_mem->mem_type == TTM_PL_VRAM &&
629 	    old_mem->mem_type != TTM_PL_VRAM) {
630 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
631 		 * accesses the BO after it's moved.
632 		 */
633 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
634 	}
635 
636 	/* update statistics */
637 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
638 	return 0;
639 }
640 
641 /**
642  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
643  *
644  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
645  */
646 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
647 {
648 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
649 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
650 	struct drm_mm_node *mm_node = mem->mm_node;
651 
652 	mem->bus.addr = NULL;
653 	mem->bus.offset = 0;
654 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
655 	mem->bus.base = 0;
656 	mem->bus.is_iomem = false;
657 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
658 		return -EINVAL;
659 	switch (mem->mem_type) {
660 	case TTM_PL_SYSTEM:
661 		/* system memory */
662 		return 0;
663 	case TTM_PL_TT:
664 		break;
665 	case TTM_PL_VRAM:
666 		mem->bus.offset = mem->start << PAGE_SHIFT;
667 		/* check if it's visible */
668 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
669 			return -EINVAL;
670 		/* Only physically contiguous buffers apply. In a contiguous
671 		 * buffer, size of the first mm_node would match the number of
672 		 * pages in ttm_mem_reg.
673 		 */
674 		if (adev->mman.aper_base_kaddr &&
675 		    (mm_node->size == mem->num_pages))
676 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
677 					mem->bus.offset;
678 
679 		mem->bus.base = adev->gmc.aper_base;
680 		mem->bus.is_iomem = true;
681 		break;
682 	default:
683 		return -EINVAL;
684 	}
685 	return 0;
686 }
687 
688 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
689 {
690 }
691 
692 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
693 					   unsigned long page_offset)
694 {
695 	struct drm_mm_node *mm;
696 	unsigned long offset = (page_offset << PAGE_SHIFT);
697 
698 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
699 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
700 		(offset >> PAGE_SHIFT);
701 }
702 
703 /*
704  * TTM backend functions.
705  */
706 struct amdgpu_ttm_gup_task_list {
707 	struct list_head	list;
708 	struct task_struct	*task;
709 };
710 
711 struct amdgpu_ttm_tt {
712 	struct ttm_dma_tt	ttm;
713 	u64			offset;
714 	uint64_t		userptr;
715 	struct task_struct	*usertask;
716 	uint32_t		userflags;
717 	spinlock_t              guptasklock;
718 	struct list_head        guptasks;
719 	atomic_t		mmu_invalidations;
720 	uint32_t		last_set_pages;
721 };
722 
723 /**
724  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
725  * pointer to memory
726  *
727  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
728  * This provides a wrapper around the get_user_pages() call to provide
729  * device accessible pages that back user memory.
730  */
731 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
732 {
733 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
734 	struct mm_struct *mm = gtt->usertask->mm;
735 	unsigned int flags = 0;
736 	unsigned pinned = 0;
737 	int r;
738 
739 	if (!mm) /* Happens during process shutdown */
740 		return -ESRCH;
741 
742 	if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
743 		flags |= FOLL_WRITE;
744 
745 	down_read(&mm->mmap_sem);
746 
747 	if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
748 		/*
749 		 * check that we only use anonymous memory to prevent problems
750 		 * with writeback
751 		 */
752 		unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
753 		struct vm_area_struct *vma;
754 
755 		vma = find_vma(mm, gtt->userptr);
756 		if (!vma || vma->vm_file || vma->vm_end < end) {
757 			up_read(&mm->mmap_sem);
758 			return -EPERM;
759 		}
760 	}
761 
762 	/* loop enough times using contiguous pages of memory */
763 	do {
764 		unsigned num_pages = ttm->num_pages - pinned;
765 		uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
766 		struct page **p = pages + pinned;
767 		struct amdgpu_ttm_gup_task_list guptask;
768 
769 		guptask.task = current;
770 		spin_lock(&gtt->guptasklock);
771 		list_add(&guptask.list, &gtt->guptasks);
772 		spin_unlock(&gtt->guptasklock);
773 
774 		if (mm == current->mm)
775 			r = get_user_pages(userptr, num_pages, flags, p, NULL);
776 		else
777 			r = get_user_pages_remote(gtt->usertask,
778 					mm, userptr, num_pages,
779 					flags, p, NULL, NULL);
780 
781 		spin_lock(&gtt->guptasklock);
782 		list_del(&guptask.list);
783 		spin_unlock(&gtt->guptasklock);
784 
785 		if (r < 0)
786 			goto release_pages;
787 
788 		pinned += r;
789 
790 	} while (pinned < ttm->num_pages);
791 
792 	up_read(&mm->mmap_sem);
793 	return 0;
794 
795 release_pages:
796 	release_pages(pages, pinned);
797 	up_read(&mm->mmap_sem);
798 	return r;
799 }
800 
801 /**
802  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
803  *
804  * Called by amdgpu_cs_list_validate(). This creates the page list
805  * that backs user memory and will ultimately be mapped into the device
806  * address space.
807  */
808 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
809 {
810 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
811 	unsigned i;
812 
813 	gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
814 	for (i = 0; i < ttm->num_pages; ++i) {
815 		if (ttm->pages[i])
816 			put_page(ttm->pages[i]);
817 
818 		ttm->pages[i] = pages ? pages[i] : NULL;
819 	}
820 }
821 
822 /**
823  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
824  *
825  * Called while unpinning userptr pages
826  */
827 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
828 {
829 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
830 	unsigned i;
831 
832 	for (i = 0; i < ttm->num_pages; ++i) {
833 		struct page *page = ttm->pages[i];
834 
835 		if (!page)
836 			continue;
837 
838 		if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
839 			set_page_dirty(page);
840 
841 		mark_page_accessed(page);
842 	}
843 }
844 
845 /**
846  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
847  *
848  * Called by amdgpu_ttm_backend_bind()
849  **/
850 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
851 {
852 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
853 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
854 	unsigned nents;
855 	int r;
856 
857 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
858 	enum dma_data_direction direction = write ?
859 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
860 
861 	/* Allocate an SG array and squash pages into it */
862 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
863 				      ttm->num_pages << PAGE_SHIFT,
864 				      GFP_KERNEL);
865 	if (r)
866 		goto release_sg;
867 
868 	/* Map SG to device */
869 	r = -ENOMEM;
870 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
871 	if (nents != ttm->sg->nents)
872 		goto release_sg;
873 
874 	/* convert SG to linear array of pages and dma addresses */
875 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
876 					 gtt->ttm.dma_address, ttm->num_pages);
877 
878 	return 0;
879 
880 release_sg:
881 	kfree(ttm->sg);
882 	return r;
883 }
884 
885 /**
886  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
887  */
888 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
889 {
890 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
891 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
892 
893 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
894 	enum dma_data_direction direction = write ?
895 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
896 
897 	/* double check that we don't free the table twice */
898 	if (!ttm->sg->sgl)
899 		return;
900 
901 	/* unmap the pages mapped to the device */
902 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
903 
904 	/* mark the pages as dirty */
905 	amdgpu_ttm_tt_mark_user_pages(ttm);
906 
907 	sg_free_table(ttm->sg);
908 }
909 
910 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
911 				struct ttm_buffer_object *tbo,
912 				uint64_t flags)
913 {
914 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
915 	struct ttm_tt *ttm = tbo->ttm;
916 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
917 	int r;
918 
919 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
920 		uint64_t page_idx = 1;
921 
922 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
923 				ttm->pages, gtt->ttm.dma_address, flags);
924 		if (r)
925 			goto gart_bind_fail;
926 
927 		/* Patch mtype of the second part BO */
928 		flags &=  ~AMDGPU_PTE_MTYPE_MASK;
929 		flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
930 
931 		r = amdgpu_gart_bind(adev,
932 				gtt->offset + (page_idx << PAGE_SHIFT),
933 				ttm->num_pages - page_idx,
934 				&ttm->pages[page_idx],
935 				&(gtt->ttm.dma_address[page_idx]), flags);
936 	} else {
937 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
938 				     ttm->pages, gtt->ttm.dma_address, flags);
939 	}
940 
941 gart_bind_fail:
942 	if (r)
943 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
944 			  ttm->num_pages, gtt->offset);
945 
946 	return r;
947 }
948 
949 /**
950  * amdgpu_ttm_backend_bind - Bind GTT memory
951  *
952  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
953  * This handles binding GTT memory to the device address space.
954  */
955 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
956 				   struct ttm_mem_reg *bo_mem)
957 {
958 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
959 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
960 	uint64_t flags;
961 	int r = 0;
962 
963 	if (gtt->userptr) {
964 		r = amdgpu_ttm_tt_pin_userptr(ttm);
965 		if (r) {
966 			DRM_ERROR("failed to pin userptr\n");
967 			return r;
968 		}
969 	}
970 	if (!ttm->num_pages) {
971 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
972 		     ttm->num_pages, bo_mem, ttm);
973 	}
974 
975 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
976 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
977 	    bo_mem->mem_type == AMDGPU_PL_OA)
978 		return -EINVAL;
979 
980 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
981 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
982 		return 0;
983 	}
984 
985 	/* compute PTE flags relevant to this BO memory */
986 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
987 
988 	/* bind pages into GART page tables */
989 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
990 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
991 		ttm->pages, gtt->ttm.dma_address, flags);
992 
993 	if (r)
994 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
995 			  ttm->num_pages, gtt->offset);
996 	return r;
997 }
998 
999 /**
1000  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1001  */
1002 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1003 {
1004 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1005 	struct ttm_operation_ctx ctx = { false, false };
1006 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1007 	struct ttm_mem_reg tmp;
1008 	struct ttm_placement placement;
1009 	struct ttm_place placements;
1010 	uint64_t addr, flags;
1011 	int r;
1012 
1013 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1014 		return 0;
1015 
1016 	addr = amdgpu_gmc_agp_addr(bo);
1017 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
1018 		bo->mem.start = addr >> PAGE_SHIFT;
1019 	} else {
1020 
1021 		/* allocate GART space */
1022 		tmp = bo->mem;
1023 		tmp.mm_node = NULL;
1024 		placement.num_placement = 1;
1025 		placement.placement = &placements;
1026 		placement.num_busy_placement = 1;
1027 		placement.busy_placement = &placements;
1028 		placements.fpfn = 0;
1029 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1030 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1031 			TTM_PL_FLAG_TT;
1032 
1033 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1034 		if (unlikely(r))
1035 			return r;
1036 
1037 		/* compute PTE flags for this buffer object */
1038 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1039 
1040 		/* Bind pages */
1041 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1042 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
1043 		if (unlikely(r)) {
1044 			ttm_bo_mem_put(bo, &tmp);
1045 			return r;
1046 		}
1047 
1048 		ttm_bo_mem_put(bo, &bo->mem);
1049 		bo->mem = tmp;
1050 	}
1051 
1052 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
1053 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
1054 
1055 	return 0;
1056 }
1057 
1058 /**
1059  * amdgpu_ttm_recover_gart - Rebind GTT pages
1060  *
1061  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1062  * rebind GTT pages during a GPU reset.
1063  */
1064 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1065 {
1066 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1067 	uint64_t flags;
1068 	int r;
1069 
1070 	if (!tbo->ttm)
1071 		return 0;
1072 
1073 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1074 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1075 
1076 	return r;
1077 }
1078 
1079 /**
1080  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1081  *
1082  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1083  * ttm_tt_destroy().
1084  */
1085 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1086 {
1087 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1088 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1089 	int r;
1090 
1091 	/* if the pages have userptr pinning then clear that first */
1092 	if (gtt->userptr)
1093 		amdgpu_ttm_tt_unpin_userptr(ttm);
1094 
1095 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1096 		return 0;
1097 
1098 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1099 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1100 	if (r)
1101 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1102 			  gtt->ttm.ttm.num_pages, gtt->offset);
1103 	return r;
1104 }
1105 
1106 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1107 {
1108 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1109 
1110 	if (gtt->usertask)
1111 		put_task_struct(gtt->usertask);
1112 
1113 	ttm_dma_tt_fini(&gtt->ttm);
1114 	kfree(gtt);
1115 }
1116 
1117 static struct ttm_backend_func amdgpu_backend_func = {
1118 	.bind = &amdgpu_ttm_backend_bind,
1119 	.unbind = &amdgpu_ttm_backend_unbind,
1120 	.destroy = &amdgpu_ttm_backend_destroy,
1121 };
1122 
1123 /**
1124  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1125  *
1126  * @bo: The buffer object to create a GTT ttm_tt object around
1127  *
1128  * Called by ttm_tt_create().
1129  */
1130 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1131 					   uint32_t page_flags)
1132 {
1133 	struct amdgpu_device *adev;
1134 	struct amdgpu_ttm_tt *gtt;
1135 
1136 	adev = amdgpu_ttm_adev(bo->bdev);
1137 
1138 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1139 	if (gtt == NULL) {
1140 		return NULL;
1141 	}
1142 	gtt->ttm.ttm.func = &amdgpu_backend_func;
1143 
1144 	/* allocate space for the uninitialized page entries */
1145 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1146 		kfree(gtt);
1147 		return NULL;
1148 	}
1149 	return &gtt->ttm.ttm;
1150 }
1151 
1152 /**
1153  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1154  *
1155  * Map the pages of a ttm_tt object to an address space visible
1156  * to the underlying device.
1157  */
1158 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1159 			struct ttm_operation_ctx *ctx)
1160 {
1161 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1162 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1163 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1164 
1165 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1166 	if (gtt && gtt->userptr) {
1167 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1168 		if (!ttm->sg)
1169 			return -ENOMEM;
1170 
1171 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
1172 		ttm->state = tt_unbound;
1173 		return 0;
1174 	}
1175 
1176 	if (slave && ttm->sg) {
1177 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1178 						 gtt->ttm.dma_address,
1179 						 ttm->num_pages);
1180 		ttm->state = tt_unbound;
1181 		return 0;
1182 	}
1183 
1184 #ifdef CONFIG_SWIOTLB
1185 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1186 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1187 	}
1188 #endif
1189 
1190 	/* fall back to generic helper to populate the page array
1191 	 * and map them to the device */
1192 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1193 }
1194 
1195 /**
1196  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1197  *
1198  * Unmaps pages of a ttm_tt object from the device address space and
1199  * unpopulates the page array backing it.
1200  */
1201 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1202 {
1203 	struct amdgpu_device *adev;
1204 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1205 	bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1206 
1207 	if (gtt && gtt->userptr) {
1208 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1209 		kfree(ttm->sg);
1210 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1211 		return;
1212 	}
1213 
1214 	if (slave)
1215 		return;
1216 
1217 	adev = amdgpu_ttm_adev(ttm->bdev);
1218 
1219 #ifdef CONFIG_SWIOTLB
1220 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1221 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1222 		return;
1223 	}
1224 #endif
1225 
1226 	/* fall back to generic helper to unmap and unpopulate array */
1227 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1228 }
1229 
1230 /**
1231  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1232  * task
1233  *
1234  * @ttm: The ttm_tt object to bind this userptr object to
1235  * @addr:  The address in the current tasks VM space to use
1236  * @flags: Requirements of userptr object.
1237  *
1238  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1239  * to current task
1240  */
1241 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1242 			      uint32_t flags)
1243 {
1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245 
1246 	if (gtt == NULL)
1247 		return -EINVAL;
1248 
1249 	gtt->userptr = addr;
1250 	gtt->userflags = flags;
1251 
1252 	if (gtt->usertask)
1253 		put_task_struct(gtt->usertask);
1254 	gtt->usertask = current->group_leader;
1255 	get_task_struct(gtt->usertask);
1256 
1257 	spin_lock_init(&gtt->guptasklock);
1258 	INIT_LIST_HEAD(&gtt->guptasks);
1259 	atomic_set(&gtt->mmu_invalidations, 0);
1260 	gtt->last_set_pages = 0;
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1267  */
1268 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1269 {
1270 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1271 
1272 	if (gtt == NULL)
1273 		return NULL;
1274 
1275 	if (gtt->usertask == NULL)
1276 		return NULL;
1277 
1278 	return gtt->usertask->mm;
1279 }
1280 
1281 /**
1282  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1283  * address range for the current task.
1284  *
1285  */
1286 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1287 				  unsigned long end)
1288 {
1289 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1290 	struct amdgpu_ttm_gup_task_list *entry;
1291 	unsigned long size;
1292 
1293 	if (gtt == NULL || !gtt->userptr)
1294 		return false;
1295 
1296 	/* Return false if no part of the ttm_tt object lies within
1297 	 * the range
1298 	 */
1299 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1300 	if (gtt->userptr > end || gtt->userptr + size <= start)
1301 		return false;
1302 
1303 	/* Search the lists of tasks that hold this mapping and see
1304 	 * if current is one of them.  If it is return false.
1305 	 */
1306 	spin_lock(&gtt->guptasklock);
1307 	list_for_each_entry(entry, &gtt->guptasks, list) {
1308 		if (entry->task == current) {
1309 			spin_unlock(&gtt->guptasklock);
1310 			return false;
1311 		}
1312 	}
1313 	spin_unlock(&gtt->guptasklock);
1314 
1315 	atomic_inc(&gtt->mmu_invalidations);
1316 
1317 	return true;
1318 }
1319 
1320 /**
1321  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1322  */
1323 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1324 				       int *last_invalidated)
1325 {
1326 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327 	int prev_invalidated = *last_invalidated;
1328 
1329 	*last_invalidated = atomic_read(&gtt->mmu_invalidations);
1330 	return prev_invalidated != *last_invalidated;
1331 }
1332 
1333 /**
1334  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1335  * been invalidated since the last time they've been set?
1336  */
1337 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1338 {
1339 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1340 
1341 	if (gtt == NULL || !gtt->userptr)
1342 		return false;
1343 
1344 	return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1345 }
1346 
1347 /**
1348  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1349  */
1350 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1351 {
1352 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353 
1354 	if (gtt == NULL)
1355 		return false;
1356 
1357 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1358 }
1359 
1360 /**
1361  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1362  *
1363  * @ttm: The ttm_tt object to compute the flags for
1364  * @mem: The memory registry backing this ttm_tt object
1365  *
1366  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1367  */
1368 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1369 {
1370 	uint64_t flags = 0;
1371 
1372 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1373 		flags |= AMDGPU_PTE_VALID;
1374 
1375 	if (mem && mem->mem_type == TTM_PL_TT) {
1376 		flags |= AMDGPU_PTE_SYSTEM;
1377 
1378 		if (ttm->caching_state == tt_cached)
1379 			flags |= AMDGPU_PTE_SNOOPED;
1380 	}
1381 
1382 	return flags;
1383 }
1384 
1385 /**
1386  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1387  *
1388  * @ttm: The ttm_tt object to compute the flags for
1389  * @mem: The memory registry backing this ttm_tt object
1390 
1391  * Figure out the flags to use for a VM PTE (Page Table Entry).
1392  */
1393 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1394 				 struct ttm_mem_reg *mem)
1395 {
1396 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1397 
1398 	flags |= adev->gart.gart_pte_flags;
1399 	flags |= AMDGPU_PTE_READABLE;
1400 
1401 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1402 		flags |= AMDGPU_PTE_WRITEABLE;
1403 
1404 	return flags;
1405 }
1406 
1407 /**
1408  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1409  * object.
1410  *
1411  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1412  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1413  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1414  * used to clean out a memory space.
1415  */
1416 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1417 					    const struct ttm_place *place)
1418 {
1419 	unsigned long num_pages = bo->mem.num_pages;
1420 	struct drm_mm_node *node = bo->mem.mm_node;
1421 	struct reservation_object_list *flist;
1422 	struct dma_fence *f;
1423 	int i;
1424 
1425 	/* Don't evict VM page tables while they are busy, otherwise we can't
1426 	 * cleanly handle page faults.
1427 	 */
1428 	if (bo->type == ttm_bo_type_kernel &&
1429 	    !reservation_object_test_signaled_rcu(bo->resv, true))
1430 		return false;
1431 
1432 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1433 	 * If true, then return false as any KFD process needs all its BOs to
1434 	 * be resident to run successfully
1435 	 */
1436 	flist = reservation_object_get_list(bo->resv);
1437 	if (flist) {
1438 		for (i = 0; i < flist->shared_count; ++i) {
1439 			f = rcu_dereference_protected(flist->shared[i],
1440 				reservation_object_held(bo->resv));
1441 			if (amdkfd_fence_check_mm(f, current->mm))
1442 				return false;
1443 		}
1444 	}
1445 
1446 	switch (bo->mem.mem_type) {
1447 	case TTM_PL_TT:
1448 		return true;
1449 
1450 	case TTM_PL_VRAM:
1451 		/* Check each drm MM node individually */
1452 		while (num_pages) {
1453 			if (place->fpfn < (node->start + node->size) &&
1454 			    !(place->lpfn && place->lpfn <= node->start))
1455 				return true;
1456 
1457 			num_pages -= node->size;
1458 			++node;
1459 		}
1460 		return false;
1461 
1462 	default:
1463 		break;
1464 	}
1465 
1466 	return ttm_bo_eviction_valuable(bo, place);
1467 }
1468 
1469 /**
1470  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1471  *
1472  * @bo:  The buffer object to read/write
1473  * @offset:  Offset into buffer object
1474  * @buf:  Secondary buffer to write/read from
1475  * @len: Length in bytes of access
1476  * @write:  true if writing
1477  *
1478  * This is used to access VRAM that backs a buffer object via MMIO
1479  * access for debugging purposes.
1480  */
1481 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1482 				    unsigned long offset,
1483 				    void *buf, int len, int write)
1484 {
1485 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1486 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1487 	struct drm_mm_node *nodes;
1488 	uint32_t value = 0;
1489 	int ret = 0;
1490 	uint64_t pos;
1491 	unsigned long flags;
1492 
1493 	if (bo->mem.mem_type != TTM_PL_VRAM)
1494 		return -EIO;
1495 
1496 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1497 	pos = (nodes->start << PAGE_SHIFT) + offset;
1498 
1499 	while (len && pos < adev->gmc.mc_vram_size) {
1500 		uint64_t aligned_pos = pos & ~(uint64_t)3;
1501 		uint32_t bytes = 4 - (pos & 3);
1502 		uint32_t shift = (pos & 3) * 8;
1503 		uint32_t mask = 0xffffffff << shift;
1504 
1505 		if (len < bytes) {
1506 			mask &= 0xffffffff >> (bytes - len) * 8;
1507 			bytes = len;
1508 		}
1509 
1510 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1511 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1512 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1513 		if (!write || mask != 0xffffffff)
1514 			value = RREG32_NO_KIQ(mmMM_DATA);
1515 		if (write) {
1516 			value &= ~mask;
1517 			value |= (*(uint32_t *)buf << shift) & mask;
1518 			WREG32_NO_KIQ(mmMM_DATA, value);
1519 		}
1520 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1521 		if (!write) {
1522 			value = (value & mask) >> shift;
1523 			memcpy(buf, &value, bytes);
1524 		}
1525 
1526 		ret += bytes;
1527 		buf = (uint8_t *)buf + bytes;
1528 		pos += bytes;
1529 		len -= bytes;
1530 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1531 			++nodes;
1532 			pos = (nodes->start << PAGE_SHIFT);
1533 		}
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 static struct ttm_bo_driver amdgpu_bo_driver = {
1540 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1541 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1542 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1543 	.invalidate_caches = &amdgpu_invalidate_caches,
1544 	.init_mem_type = &amdgpu_init_mem_type,
1545 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1546 	.evict_flags = &amdgpu_evict_flags,
1547 	.move = &amdgpu_bo_move,
1548 	.verify_access = &amdgpu_verify_access,
1549 	.move_notify = &amdgpu_bo_move_notify,
1550 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1551 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1552 	.io_mem_free = &amdgpu_ttm_io_mem_free,
1553 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1554 	.access_memory = &amdgpu_ttm_access_memory,
1555 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1556 };
1557 
1558 /*
1559  * Firmware Reservation functions
1560  */
1561 /**
1562  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1563  *
1564  * @adev: amdgpu_device pointer
1565  *
1566  * free fw reserved vram if it has been reserved.
1567  */
1568 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1569 {
1570 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1571 		NULL, &adev->fw_vram_usage.va);
1572 }
1573 
1574 /**
1575  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1576  *
1577  * @adev: amdgpu_device pointer
1578  *
1579  * create bo vram reservation from fw.
1580  */
1581 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1582 {
1583 	struct ttm_operation_ctx ctx = { false, false };
1584 	struct amdgpu_bo_param bp;
1585 	int r = 0;
1586 	int i;
1587 	u64 vram_size = adev->gmc.visible_vram_size;
1588 	u64 offset = adev->fw_vram_usage.start_offset;
1589 	u64 size = adev->fw_vram_usage.size;
1590 	struct amdgpu_bo *bo;
1591 
1592 	memset(&bp, 0, sizeof(bp));
1593 	bp.size = adev->fw_vram_usage.size;
1594 	bp.byte_align = PAGE_SIZE;
1595 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1596 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1597 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1598 	bp.type = ttm_bo_type_kernel;
1599 	bp.resv = NULL;
1600 	adev->fw_vram_usage.va = NULL;
1601 	adev->fw_vram_usage.reserved_bo = NULL;
1602 
1603 	if (adev->fw_vram_usage.size > 0 &&
1604 		adev->fw_vram_usage.size <= vram_size) {
1605 
1606 		r = amdgpu_bo_create(adev, &bp,
1607 				     &adev->fw_vram_usage.reserved_bo);
1608 		if (r)
1609 			goto error_create;
1610 
1611 		r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1612 		if (r)
1613 			goto error_reserve;
1614 
1615 		/* remove the original mem node and create a new one at the
1616 		 * request position
1617 		 */
1618 		bo = adev->fw_vram_usage.reserved_bo;
1619 		offset = ALIGN(offset, PAGE_SIZE);
1620 		for (i = 0; i < bo->placement.num_placement; ++i) {
1621 			bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1622 			bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1623 		}
1624 
1625 		ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1626 		r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1627 				     &bo->tbo.mem, &ctx);
1628 		if (r)
1629 			goto error_pin;
1630 
1631 		r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1632 			AMDGPU_GEM_DOMAIN_VRAM,
1633 			adev->fw_vram_usage.start_offset,
1634 			(adev->fw_vram_usage.start_offset +
1635 			adev->fw_vram_usage.size));
1636 		if (r)
1637 			goto error_pin;
1638 		r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1639 			&adev->fw_vram_usage.va);
1640 		if (r)
1641 			goto error_kmap;
1642 
1643 		amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1644 	}
1645 	return r;
1646 
1647 error_kmap:
1648 	amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1649 error_pin:
1650 	amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1651 error_reserve:
1652 	amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1653 error_create:
1654 	adev->fw_vram_usage.va = NULL;
1655 	adev->fw_vram_usage.reserved_bo = NULL;
1656 	return r;
1657 }
1658 /**
1659  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1660  * gtt/vram related fields.
1661  *
1662  * This initializes all of the memory space pools that the TTM layer
1663  * will need such as the GTT space (system memory mapped to the device),
1664  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1665  * can be mapped per VMID.
1666  */
1667 int amdgpu_ttm_init(struct amdgpu_device *adev)
1668 {
1669 	uint64_t gtt_size;
1670 	int r;
1671 	u64 vis_vram_limit;
1672 
1673 	mutex_init(&adev->mman.gtt_window_lock);
1674 
1675 	/* No others user of address space so set it to 0 */
1676 	r = ttm_bo_device_init(&adev->mman.bdev,
1677 			       &amdgpu_bo_driver,
1678 			       adev->ddev->anon_inode->i_mapping,
1679 			       adev->need_dma32);
1680 	if (r) {
1681 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1682 		return r;
1683 	}
1684 	adev->mman.initialized = true;
1685 
1686 	/* We opt to avoid OOM on system pages allocations */
1687 	adev->mman.bdev.no_retry = true;
1688 
1689 	/* Initialize VRAM pool with all of VRAM divided into pages */
1690 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1691 				adev->gmc.real_vram_size >> PAGE_SHIFT);
1692 	if (r) {
1693 		DRM_ERROR("Failed initializing VRAM heap.\n");
1694 		return r;
1695 	}
1696 
1697 	/* Reduce size of CPU-visible VRAM if requested */
1698 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1699 	if (amdgpu_vis_vram_limit > 0 &&
1700 	    vis_vram_limit <= adev->gmc.visible_vram_size)
1701 		adev->gmc.visible_vram_size = vis_vram_limit;
1702 
1703 	/* Change the size here instead of the init above so only lpfn is affected */
1704 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1705 #ifdef CONFIG_64BIT
1706 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1707 						adev->gmc.visible_vram_size);
1708 #endif
1709 
1710 	/*
1711 	 *The reserved vram for firmware must be pinned to the specified
1712 	 *place on the VRAM, so reserve it early.
1713 	 */
1714 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1715 	if (r) {
1716 		return r;
1717 	}
1718 
1719 	/* allocate memory as required for VGA
1720 	 * This is used for VGA emulation and pre-OS scanout buffers to
1721 	 * avoid display artifacts while transitioning between pre-OS
1722 	 * and driver.  */
1723 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1724 				    AMDGPU_GEM_DOMAIN_VRAM,
1725 				    &adev->stolen_vga_memory,
1726 				    NULL, NULL);
1727 	if (r)
1728 		return r;
1729 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1730 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1731 
1732 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
1733 	 * or whatever the user passed on module init */
1734 	if (amdgpu_gtt_size == -1) {
1735 		struct sysinfo si;
1736 
1737 		si_meminfo(&si);
1738 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1739 			       adev->gmc.mc_vram_size),
1740 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
1741 	}
1742 	else
1743 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1744 
1745 	/* Initialize GTT memory pool */
1746 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1747 	if (r) {
1748 		DRM_ERROR("Failed initializing GTT heap.\n");
1749 		return r;
1750 	}
1751 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1752 		 (unsigned)(gtt_size / (1024 * 1024)));
1753 
1754 	/* Initialize various on-chip memory pools */
1755 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1756 			   adev->gds.mem.total_size);
1757 	if (r) {
1758 		DRM_ERROR("Failed initializing GDS heap.\n");
1759 		return r;
1760 	}
1761 
1762 	r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1763 				    4, AMDGPU_GEM_DOMAIN_GDS,
1764 				    &adev->gds.gds_gfx_bo, NULL, NULL);
1765 	if (r)
1766 		return r;
1767 
1768 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1769 			   adev->gds.gws.total_size);
1770 	if (r) {
1771 		DRM_ERROR("Failed initializing gws heap.\n");
1772 		return r;
1773 	}
1774 
1775 	r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1776 				    1, AMDGPU_GEM_DOMAIN_GWS,
1777 				    &adev->gds.gws_gfx_bo, NULL, NULL);
1778 	if (r)
1779 		return r;
1780 
1781 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1782 			   adev->gds.oa.total_size);
1783 	if (r) {
1784 		DRM_ERROR("Failed initializing oa heap.\n");
1785 		return r;
1786 	}
1787 
1788 	r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1789 				    1, AMDGPU_GEM_DOMAIN_OA,
1790 				    &adev->gds.oa_gfx_bo, NULL, NULL);
1791 	if (r)
1792 		return r;
1793 
1794 	/* Register debugfs entries for amdgpu_ttm */
1795 	r = amdgpu_ttm_debugfs_init(adev);
1796 	if (r) {
1797 		DRM_ERROR("Failed to init debugfs\n");
1798 		return r;
1799 	}
1800 	return 0;
1801 }
1802 
1803 /**
1804  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1805  */
1806 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1807 {
1808 	/* return the VGA stolen memory (if any) back to VRAM */
1809 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1810 }
1811 
1812 /**
1813  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1814  */
1815 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1816 {
1817 	if (!adev->mman.initialized)
1818 		return;
1819 
1820 	amdgpu_ttm_debugfs_fini(adev);
1821 	amdgpu_ttm_fw_reserve_vram_fini(adev);
1822 	if (adev->mman.aper_base_kaddr)
1823 		iounmap(adev->mman.aper_base_kaddr);
1824 	adev->mman.aper_base_kaddr = NULL;
1825 
1826 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1827 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1828 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1829 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1830 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1831 	ttm_bo_device_release(&adev->mman.bdev);
1832 	adev->mman.initialized = false;
1833 	DRM_INFO("amdgpu: ttm finalized\n");
1834 }
1835 
1836 /**
1837  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1838  *
1839  * @adev: amdgpu_device pointer
1840  * @enable: true when we can use buffer functions.
1841  *
1842  * Enable/disable use of buffer functions during suspend/resume. This should
1843  * only be called at bootup or when userspace isn't running.
1844  */
1845 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1846 {
1847 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1848 	uint64_t size;
1849 	int r;
1850 
1851 	if (!adev->mman.initialized || adev->in_gpu_reset ||
1852 	    adev->mman.buffer_funcs_enabled == enable)
1853 		return;
1854 
1855 	if (enable) {
1856 		struct amdgpu_ring *ring;
1857 		struct drm_sched_rq *rq;
1858 
1859 		ring = adev->mman.buffer_funcs_ring;
1860 		rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1861 		r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1862 		if (r) {
1863 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1864 				  r);
1865 			return;
1866 		}
1867 	} else {
1868 		drm_sched_entity_destroy(&adev->mman.entity);
1869 		dma_fence_put(man->move);
1870 		man->move = NULL;
1871 	}
1872 
1873 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
1874 	if (enable)
1875 		size = adev->gmc.real_vram_size;
1876 	else
1877 		size = adev->gmc.visible_vram_size;
1878 	man->size = size >> PAGE_SHIFT;
1879 	adev->mman.buffer_funcs_enabled = enable;
1880 }
1881 
1882 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1883 {
1884 	struct drm_file *file_priv = filp->private_data;
1885 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1886 
1887 	if (adev == NULL)
1888 		return -EINVAL;
1889 
1890 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1891 }
1892 
1893 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1894 			     struct ttm_mem_reg *mem, unsigned num_pages,
1895 			     uint64_t offset, unsigned window,
1896 			     struct amdgpu_ring *ring,
1897 			     uint64_t *addr)
1898 {
1899 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1900 	struct amdgpu_device *adev = ring->adev;
1901 	struct ttm_tt *ttm = bo->ttm;
1902 	struct amdgpu_job *job;
1903 	unsigned num_dw, num_bytes;
1904 	dma_addr_t *dma_address;
1905 	struct dma_fence *fence;
1906 	uint64_t src_addr, dst_addr;
1907 	uint64_t flags;
1908 	int r;
1909 
1910 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1911 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1912 
1913 	*addr = adev->gmc.gart_start;
1914 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1915 		AMDGPU_GPU_PAGE_SIZE;
1916 
1917 	num_dw = adev->mman.buffer_funcs->copy_num_dw;
1918 	while (num_dw & 0x7)
1919 		num_dw++;
1920 
1921 	num_bytes = num_pages * 8;
1922 
1923 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1924 	if (r)
1925 		return r;
1926 
1927 	src_addr = num_dw * 4;
1928 	src_addr += job->ibs[0].gpu_addr;
1929 
1930 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1931 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1932 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1933 				dst_addr, num_bytes);
1934 
1935 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1936 	WARN_ON(job->ibs[0].length_dw > num_dw);
1937 
1938 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1939 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1940 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1941 			    &job->ibs[0].ptr[num_dw]);
1942 	if (r)
1943 		goto error_free;
1944 
1945 	r = amdgpu_job_submit(job, &adev->mman.entity,
1946 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1947 	if (r)
1948 		goto error_free;
1949 
1950 	dma_fence_put(fence);
1951 
1952 	return r;
1953 
1954 error_free:
1955 	amdgpu_job_free(job);
1956 	return r;
1957 }
1958 
1959 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1960 		       uint64_t dst_offset, uint32_t byte_count,
1961 		       struct reservation_object *resv,
1962 		       struct dma_fence **fence, bool direct_submit,
1963 		       bool vm_needs_flush)
1964 {
1965 	struct amdgpu_device *adev = ring->adev;
1966 	struct amdgpu_job *job;
1967 
1968 	uint32_t max_bytes;
1969 	unsigned num_loops, num_dw;
1970 	unsigned i;
1971 	int r;
1972 
1973 	if (direct_submit && !ring->sched.ready) {
1974 		DRM_ERROR("Trying to move memory with ring turned off.\n");
1975 		return -EINVAL;
1976 	}
1977 
1978 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1979 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1980 	num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1981 
1982 	/* for IB padding */
1983 	while (num_dw & 0x7)
1984 		num_dw++;
1985 
1986 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1987 	if (r)
1988 		return r;
1989 
1990 	if (vm_needs_flush) {
1991 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1992 		job->vm_needs_flush = true;
1993 	}
1994 	if (resv) {
1995 		r = amdgpu_sync_resv(adev, &job->sync, resv,
1996 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1997 				     false);
1998 		if (r) {
1999 			DRM_ERROR("sync failed (%d).\n", r);
2000 			goto error_free;
2001 		}
2002 	}
2003 
2004 	for (i = 0; i < num_loops; i++) {
2005 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2006 
2007 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2008 					dst_offset, cur_size_in_bytes);
2009 
2010 		src_offset += cur_size_in_bytes;
2011 		dst_offset += cur_size_in_bytes;
2012 		byte_count -= cur_size_in_bytes;
2013 	}
2014 
2015 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2016 	WARN_ON(job->ibs[0].length_dw > num_dw);
2017 	if (direct_submit)
2018 		r = amdgpu_job_submit_direct(job, ring, fence);
2019 	else
2020 		r = amdgpu_job_submit(job, &adev->mman.entity,
2021 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2022 	if (r)
2023 		goto error_free;
2024 
2025 	return r;
2026 
2027 error_free:
2028 	amdgpu_job_free(job);
2029 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
2030 	return r;
2031 }
2032 
2033 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2034 		       uint32_t src_data,
2035 		       struct reservation_object *resv,
2036 		       struct dma_fence **fence)
2037 {
2038 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2039 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2040 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2041 
2042 	struct drm_mm_node *mm_node;
2043 	unsigned long num_pages;
2044 	unsigned int num_loops, num_dw;
2045 
2046 	struct amdgpu_job *job;
2047 	int r;
2048 
2049 	if (!adev->mman.buffer_funcs_enabled) {
2050 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2055 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
2056 		if (r)
2057 			return r;
2058 	}
2059 
2060 	num_pages = bo->tbo.num_pages;
2061 	mm_node = bo->tbo.mem.mm_node;
2062 	num_loops = 0;
2063 	while (num_pages) {
2064 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2065 
2066 		num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2067 		num_pages -= mm_node->size;
2068 		++mm_node;
2069 	}
2070 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2071 
2072 	/* for IB padding */
2073 	num_dw += 64;
2074 
2075 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2076 	if (r)
2077 		return r;
2078 
2079 	if (resv) {
2080 		r = amdgpu_sync_resv(adev, &job->sync, resv,
2081 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
2082 		if (r) {
2083 			DRM_ERROR("sync failed (%d).\n", r);
2084 			goto error_free;
2085 		}
2086 	}
2087 
2088 	num_pages = bo->tbo.num_pages;
2089 	mm_node = bo->tbo.mem.mm_node;
2090 
2091 	while (num_pages) {
2092 		uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2093 		uint64_t dst_addr;
2094 
2095 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2096 		while (byte_count) {
2097 			uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2098 
2099 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2100 						dst_addr, cur_size_in_bytes);
2101 
2102 			dst_addr += cur_size_in_bytes;
2103 			byte_count -= cur_size_in_bytes;
2104 		}
2105 
2106 		num_pages -= mm_node->size;
2107 		++mm_node;
2108 	}
2109 
2110 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2111 	WARN_ON(job->ibs[0].length_dw > num_dw);
2112 	r = amdgpu_job_submit(job, &adev->mman.entity,
2113 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2114 	if (r)
2115 		goto error_free;
2116 
2117 	return 0;
2118 
2119 error_free:
2120 	amdgpu_job_free(job);
2121 	return r;
2122 }
2123 
2124 #if defined(CONFIG_DEBUG_FS)
2125 
2126 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2127 {
2128 	struct drm_info_node *node = (struct drm_info_node *)m->private;
2129 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2130 	struct drm_device *dev = node->minor->dev;
2131 	struct amdgpu_device *adev = dev->dev_private;
2132 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2133 	struct drm_printer p = drm_seq_file_printer(m);
2134 
2135 	man->func->debug(man, &p);
2136 	return 0;
2137 }
2138 
2139 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2140 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2141 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2142 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2143 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2144 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2145 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2146 #ifdef CONFIG_SWIOTLB
2147 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2148 #endif
2149 };
2150 
2151 /**
2152  * amdgpu_ttm_vram_read - Linear read access to VRAM
2153  *
2154  * Accesses VRAM via MMIO for debugging purposes.
2155  */
2156 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2157 				    size_t size, loff_t *pos)
2158 {
2159 	struct amdgpu_device *adev = file_inode(f)->i_private;
2160 	ssize_t result = 0;
2161 	int r;
2162 
2163 	if (size & 0x3 || *pos & 0x3)
2164 		return -EINVAL;
2165 
2166 	if (*pos >= adev->gmc.mc_vram_size)
2167 		return -ENXIO;
2168 
2169 	while (size) {
2170 		unsigned long flags;
2171 		uint32_t value;
2172 
2173 		if (*pos >= adev->gmc.mc_vram_size)
2174 			return result;
2175 
2176 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2177 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2178 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2179 		value = RREG32_NO_KIQ(mmMM_DATA);
2180 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2181 
2182 		r = put_user(value, (uint32_t *)buf);
2183 		if (r)
2184 			return r;
2185 
2186 		result += 4;
2187 		buf += 4;
2188 		*pos += 4;
2189 		size -= 4;
2190 	}
2191 
2192 	return result;
2193 }
2194 
2195 /**
2196  * amdgpu_ttm_vram_write - Linear write access to VRAM
2197  *
2198  * Accesses VRAM via MMIO for debugging purposes.
2199  */
2200 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2201 				    size_t size, loff_t *pos)
2202 {
2203 	struct amdgpu_device *adev = file_inode(f)->i_private;
2204 	ssize_t result = 0;
2205 	int r;
2206 
2207 	if (size & 0x3 || *pos & 0x3)
2208 		return -EINVAL;
2209 
2210 	if (*pos >= adev->gmc.mc_vram_size)
2211 		return -ENXIO;
2212 
2213 	while (size) {
2214 		unsigned long flags;
2215 		uint32_t value;
2216 
2217 		if (*pos >= adev->gmc.mc_vram_size)
2218 			return result;
2219 
2220 		r = get_user(value, (uint32_t *)buf);
2221 		if (r)
2222 			return r;
2223 
2224 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2225 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2226 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2227 		WREG32_NO_KIQ(mmMM_DATA, value);
2228 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2229 
2230 		result += 4;
2231 		buf += 4;
2232 		*pos += 4;
2233 		size -= 4;
2234 	}
2235 
2236 	return result;
2237 }
2238 
2239 static const struct file_operations amdgpu_ttm_vram_fops = {
2240 	.owner = THIS_MODULE,
2241 	.read = amdgpu_ttm_vram_read,
2242 	.write = amdgpu_ttm_vram_write,
2243 	.llseek = default_llseek,
2244 };
2245 
2246 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2247 
2248 /**
2249  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2250  */
2251 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2252 				   size_t size, loff_t *pos)
2253 {
2254 	struct amdgpu_device *adev = file_inode(f)->i_private;
2255 	ssize_t result = 0;
2256 	int r;
2257 
2258 	while (size) {
2259 		loff_t p = *pos / PAGE_SIZE;
2260 		unsigned off = *pos & ~PAGE_MASK;
2261 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2262 		struct page *page;
2263 		void *ptr;
2264 
2265 		if (p >= adev->gart.num_cpu_pages)
2266 			return result;
2267 
2268 		page = adev->gart.pages[p];
2269 		if (page) {
2270 			ptr = kmap(page);
2271 			ptr += off;
2272 
2273 			r = copy_to_user(buf, ptr, cur_size);
2274 			kunmap(adev->gart.pages[p]);
2275 		} else
2276 			r = clear_user(buf, cur_size);
2277 
2278 		if (r)
2279 			return -EFAULT;
2280 
2281 		result += cur_size;
2282 		buf += cur_size;
2283 		*pos += cur_size;
2284 		size -= cur_size;
2285 	}
2286 
2287 	return result;
2288 }
2289 
2290 static const struct file_operations amdgpu_ttm_gtt_fops = {
2291 	.owner = THIS_MODULE,
2292 	.read = amdgpu_ttm_gtt_read,
2293 	.llseek = default_llseek
2294 };
2295 
2296 #endif
2297 
2298 /**
2299  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2300  *
2301  * This function is used to read memory that has been mapped to the
2302  * GPU and the known addresses are not physical addresses but instead
2303  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2304  */
2305 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2306 				 size_t size, loff_t *pos)
2307 {
2308 	struct amdgpu_device *adev = file_inode(f)->i_private;
2309 	struct iommu_domain *dom;
2310 	ssize_t result = 0;
2311 	int r;
2312 
2313 	/* retrieve the IOMMU domain if any for this device */
2314 	dom = iommu_get_domain_for_dev(adev->dev);
2315 
2316 	while (size) {
2317 		phys_addr_t addr = *pos & PAGE_MASK;
2318 		loff_t off = *pos & ~PAGE_MASK;
2319 		size_t bytes = PAGE_SIZE - off;
2320 		unsigned long pfn;
2321 		struct page *p;
2322 		void *ptr;
2323 
2324 		bytes = bytes < size ? bytes : size;
2325 
2326 		/* Translate the bus address to a physical address.  If
2327 		 * the domain is NULL it means there is no IOMMU active
2328 		 * and the address translation is the identity
2329 		 */
2330 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2331 
2332 		pfn = addr >> PAGE_SHIFT;
2333 		if (!pfn_valid(pfn))
2334 			return -EPERM;
2335 
2336 		p = pfn_to_page(pfn);
2337 		if (p->mapping != adev->mman.bdev.dev_mapping)
2338 			return -EPERM;
2339 
2340 		ptr = kmap(p);
2341 		r = copy_to_user(buf, ptr + off, bytes);
2342 		kunmap(p);
2343 		if (r)
2344 			return -EFAULT;
2345 
2346 		size -= bytes;
2347 		*pos += bytes;
2348 		result += bytes;
2349 	}
2350 
2351 	return result;
2352 }
2353 
2354 /**
2355  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2356  *
2357  * This function is used to write memory that has been mapped to the
2358  * GPU and the known addresses are not physical addresses but instead
2359  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2360  */
2361 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2362 				 size_t size, loff_t *pos)
2363 {
2364 	struct amdgpu_device *adev = file_inode(f)->i_private;
2365 	struct iommu_domain *dom;
2366 	ssize_t result = 0;
2367 	int r;
2368 
2369 	dom = iommu_get_domain_for_dev(adev->dev);
2370 
2371 	while (size) {
2372 		phys_addr_t addr = *pos & PAGE_MASK;
2373 		loff_t off = *pos & ~PAGE_MASK;
2374 		size_t bytes = PAGE_SIZE - off;
2375 		unsigned long pfn;
2376 		struct page *p;
2377 		void *ptr;
2378 
2379 		bytes = bytes < size ? bytes : size;
2380 
2381 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2382 
2383 		pfn = addr >> PAGE_SHIFT;
2384 		if (!pfn_valid(pfn))
2385 			return -EPERM;
2386 
2387 		p = pfn_to_page(pfn);
2388 		if (p->mapping != adev->mman.bdev.dev_mapping)
2389 			return -EPERM;
2390 
2391 		ptr = kmap(p);
2392 		r = copy_from_user(ptr + off, buf, bytes);
2393 		kunmap(p);
2394 		if (r)
2395 			return -EFAULT;
2396 
2397 		size -= bytes;
2398 		*pos += bytes;
2399 		result += bytes;
2400 	}
2401 
2402 	return result;
2403 }
2404 
2405 static const struct file_operations amdgpu_ttm_iomem_fops = {
2406 	.owner = THIS_MODULE,
2407 	.read = amdgpu_iomem_read,
2408 	.write = amdgpu_iomem_write,
2409 	.llseek = default_llseek
2410 };
2411 
2412 static const struct {
2413 	char *name;
2414 	const struct file_operations *fops;
2415 	int domain;
2416 } ttm_debugfs_entries[] = {
2417 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2418 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2419 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2420 #endif
2421 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2422 };
2423 
2424 #endif
2425 
2426 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2427 {
2428 #if defined(CONFIG_DEBUG_FS)
2429 	unsigned count;
2430 
2431 	struct drm_minor *minor = adev->ddev->primary;
2432 	struct dentry *ent, *root = minor->debugfs_root;
2433 
2434 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2435 		ent = debugfs_create_file(
2436 				ttm_debugfs_entries[count].name,
2437 				S_IFREG | S_IRUGO, root,
2438 				adev,
2439 				ttm_debugfs_entries[count].fops);
2440 		if (IS_ERR(ent))
2441 			return PTR_ERR(ent);
2442 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2443 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2444 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2445 			i_size_write(ent->d_inode, adev->gmc.gart_size);
2446 		adev->mman.debugfs_entries[count] = ent;
2447 	}
2448 
2449 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2450 
2451 #ifdef CONFIG_SWIOTLB
2452 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2453 		--count;
2454 #endif
2455 
2456 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2457 #else
2458 	return 0;
2459 #endif
2460 }
2461 
2462 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2463 {
2464 #if defined(CONFIG_DEBUG_FS)
2465 	unsigned i;
2466 
2467 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2468 		debugfs_remove(adev->mman.debugfs_entries[i]);
2469 #endif
2470 }
2471