1 /* 2 * Copyright 2009 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 19 * USE OR OTHER DEALINGS IN THE SOFTWARE. 20 * 21 * The above copyright notice and this permission notice (including the 22 * next paragraph) shall be included in all copies or substantial portions 23 * of the Software. 24 * 25 */ 26 /* 27 * Authors: 28 * Jerome Glisse <glisse@freedesktop.org> 29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com> 30 * Dave Airlie 31 */ 32 33 #include <linux/dma-mapping.h> 34 #include <linux/iommu.h> 35 #include <linux/pagemap.h> 36 #include <linux/sched/task.h> 37 #include <linux/sched/mm.h> 38 #include <linux/seq_file.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swiotlb.h> 42 #include <linux/dma-buf.h> 43 #include <linux/sizes.h> 44 #include <linux/module.h> 45 46 #include <drm/drm_drv.h> 47 #include <drm/ttm/ttm_bo_api.h> 48 #include <drm/ttm/ttm_bo_driver.h> 49 #include <drm/ttm/ttm_placement.h> 50 #include <drm/ttm/ttm_range_manager.h> 51 52 #include <drm/amdgpu_drm.h> 53 #include <drm/drm_drv.h> 54 55 #include "amdgpu.h" 56 #include "amdgpu_object.h" 57 #include "amdgpu_trace.h" 58 #include "amdgpu_amdkfd.h" 59 #include "amdgpu_sdma.h" 60 #include "amdgpu_ras.h" 61 #include "amdgpu_atomfirmware.h" 62 #include "amdgpu_res_cursor.h" 63 #include "bif/bif_4_1_d.h" 64 65 MODULE_IMPORT_NS(DMA_BUF); 66 67 #define AMDGPU_TTM_VRAM_MAX_DW_READ (size_t)128 68 69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 70 struct ttm_tt *ttm, 71 struct ttm_resource *bo_mem); 72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 73 struct ttm_tt *ttm); 74 75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev, 76 unsigned int type, 77 uint64_t size_in_page) 78 { 79 return ttm_range_man_init(&adev->mman.bdev, type, 80 false, size_in_page); 81 } 82 83 /** 84 * amdgpu_evict_flags - Compute placement flags 85 * 86 * @bo: The buffer object to evict 87 * @placement: Possible destination(s) for evicted BO 88 * 89 * Fill in placement data when ttm_bo_evict() is called 90 */ 91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo, 92 struct ttm_placement *placement) 93 { 94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 95 struct amdgpu_bo *abo; 96 static const struct ttm_place placements = { 97 .fpfn = 0, 98 .lpfn = 0, 99 .mem_type = TTM_PL_SYSTEM, 100 .flags = 0 101 }; 102 103 /* Don't handle scatter gather BOs */ 104 if (bo->type == ttm_bo_type_sg) { 105 placement->num_placement = 0; 106 placement->num_busy_placement = 0; 107 return; 108 } 109 110 /* Object isn't an AMDGPU object so ignore */ 111 if (!amdgpu_bo_is_amdgpu_bo(bo)) { 112 placement->placement = &placements; 113 placement->busy_placement = &placements; 114 placement->num_placement = 1; 115 placement->num_busy_placement = 1; 116 return; 117 } 118 119 abo = ttm_to_amdgpu_bo(bo); 120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) { 121 placement->num_placement = 0; 122 placement->num_busy_placement = 0; 123 return; 124 } 125 126 switch (bo->resource->mem_type) { 127 case AMDGPU_PL_GDS: 128 case AMDGPU_PL_GWS: 129 case AMDGPU_PL_OA: 130 placement->num_placement = 0; 131 placement->num_busy_placement = 0; 132 return; 133 134 case TTM_PL_VRAM: 135 if (!adev->mman.buffer_funcs_enabled) { 136 /* Move to system memory */ 137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) && 140 amdgpu_bo_in_cpu_visible_vram(abo)) { 141 142 /* Try evicting to the CPU inaccessible part of VRAM 143 * first, but only set GTT as busy placement, so this 144 * BO will be evicted to GTT rather than causing other 145 * BOs to be evicted from VRAM 146 */ 147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM | 148 AMDGPU_GEM_DOMAIN_GTT | 149 AMDGPU_GEM_DOMAIN_CPU); 150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT; 151 abo->placements[0].lpfn = 0; 152 abo->placement.busy_placement = &abo->placements[1]; 153 abo->placement.num_busy_placement = 1; 154 } else { 155 /* Move to GTT memory */ 156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT | 157 AMDGPU_GEM_DOMAIN_CPU); 158 } 159 break; 160 case TTM_PL_TT: 161 case AMDGPU_PL_PREEMPT: 162 default: 163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU); 164 break; 165 } 166 *placement = abo->placement; 167 } 168 169 /** 170 * amdgpu_ttm_map_buffer - Map memory into the GART windows 171 * @bo: buffer object to map 172 * @mem: memory object to map 173 * @mm_cur: range to map 174 * @window: which GART window to use 175 * @ring: DMA ring to use for the copy 176 * @tmz: if we should setup a TMZ enabled mapping 177 * @size: in number of bytes to map, out number of bytes mapped 178 * @addr: resulting address inside the MC address space 179 * 180 * Setup one of the GART windows to access a specific piece of memory or return 181 * the physical address for local memory. 182 */ 183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo, 184 struct ttm_resource *mem, 185 struct amdgpu_res_cursor *mm_cur, 186 unsigned window, struct amdgpu_ring *ring, 187 bool tmz, uint64_t *size, uint64_t *addr) 188 { 189 struct amdgpu_device *adev = ring->adev; 190 unsigned offset, num_pages, num_dw, num_bytes; 191 uint64_t src_addr, dst_addr; 192 struct dma_fence *fence; 193 struct amdgpu_job *job; 194 void *cpu_addr; 195 uint64_t flags; 196 unsigned int i; 197 int r; 198 199 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes < 200 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8); 201 202 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT)) 203 return -EINVAL; 204 205 /* Map only what can't be accessed directly */ 206 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) { 207 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) + 208 mm_cur->start; 209 return 0; 210 } 211 212 213 /* 214 * If start begins at an offset inside the page, then adjust the size 215 * and addr accordingly 216 */ 217 offset = mm_cur->start & ~PAGE_MASK; 218 219 num_pages = PFN_UP(*size + offset); 220 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE); 221 222 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset); 223 224 *addr = adev->gmc.gart_start; 225 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 226 AMDGPU_GPU_PAGE_SIZE; 227 *addr += offset; 228 229 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 230 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE; 231 232 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 233 AMDGPU_IB_POOL_DELAYED, &job); 234 if (r) 235 return r; 236 237 src_addr = num_dw * 4; 238 src_addr += job->ibs[0].gpu_addr; 239 240 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 241 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8; 242 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 243 dst_addr, num_bytes, false); 244 245 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 246 WARN_ON(job->ibs[0].length_dw > num_dw); 247 248 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem); 249 if (tmz) 250 flags |= AMDGPU_PTE_TMZ; 251 252 cpu_addr = &job->ibs[0].ptr[num_dw]; 253 254 if (mem->mem_type == TTM_PL_TT) { 255 dma_addr_t *dma_addr; 256 257 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT]; 258 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr); 259 } else { 260 dma_addr_t dma_address; 261 262 dma_address = mm_cur->start; 263 dma_address += adev->vm_manager.vram_base_offset; 264 265 for (i = 0; i < num_pages; ++i) { 266 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address, 267 flags, cpu_addr); 268 dma_address += PAGE_SIZE; 269 } 270 } 271 272 r = amdgpu_job_submit(job, &adev->mman.entity, 273 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 274 if (r) 275 goto error_free; 276 277 dma_fence_put(fence); 278 279 return r; 280 281 error_free: 282 amdgpu_job_free(job); 283 return r; 284 } 285 286 /** 287 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy 288 * @adev: amdgpu device 289 * @src: buffer/address where to read from 290 * @dst: buffer/address where to write to 291 * @size: number of bytes to copy 292 * @tmz: if a secure copy should be used 293 * @resv: resv object to sync to 294 * @f: Returns the last fence if multiple jobs are submitted. 295 * 296 * The function copies @size bytes from {src->mem + src->offset} to 297 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a 298 * move and different for a BO to BO copy. 299 * 300 */ 301 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev, 302 const struct amdgpu_copy_mem *src, 303 const struct amdgpu_copy_mem *dst, 304 uint64_t size, bool tmz, 305 struct dma_resv *resv, 306 struct dma_fence **f) 307 { 308 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 309 struct amdgpu_res_cursor src_mm, dst_mm; 310 struct dma_fence *fence = NULL; 311 int r = 0; 312 313 if (!adev->mman.buffer_funcs_enabled) { 314 DRM_ERROR("Trying to move memory with ring turned off.\n"); 315 return -EINVAL; 316 } 317 318 amdgpu_res_first(src->mem, src->offset, size, &src_mm); 319 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm); 320 321 mutex_lock(&adev->mman.gtt_window_lock); 322 while (src_mm.remaining) { 323 uint64_t from, to, cur_size; 324 struct dma_fence *next; 325 326 /* Never copy more than 256MiB at once to avoid a timeout */ 327 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20); 328 329 /* Map src to window 0 and dst to window 1. */ 330 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm, 331 0, ring, tmz, &cur_size, &from); 332 if (r) 333 goto error; 334 335 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm, 336 1, ring, tmz, &cur_size, &to); 337 if (r) 338 goto error; 339 340 r = amdgpu_copy_buffer(ring, from, to, cur_size, 341 resv, &next, false, true, tmz); 342 if (r) 343 goto error; 344 345 dma_fence_put(fence); 346 fence = next; 347 348 amdgpu_res_next(&src_mm, cur_size); 349 amdgpu_res_next(&dst_mm, cur_size); 350 } 351 error: 352 mutex_unlock(&adev->mman.gtt_window_lock); 353 if (f) 354 *f = dma_fence_get(fence); 355 dma_fence_put(fence); 356 return r; 357 } 358 359 /* 360 * amdgpu_move_blit - Copy an entire buffer to another buffer 361 * 362 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to 363 * help move buffers to and from VRAM. 364 */ 365 static int amdgpu_move_blit(struct ttm_buffer_object *bo, 366 bool evict, 367 struct ttm_resource *new_mem, 368 struct ttm_resource *old_mem) 369 { 370 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 371 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 372 struct amdgpu_copy_mem src, dst; 373 struct dma_fence *fence = NULL; 374 int r; 375 376 src.bo = bo; 377 dst.bo = bo; 378 src.mem = old_mem; 379 dst.mem = new_mem; 380 src.offset = 0; 381 dst.offset = 0; 382 383 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst, 384 new_mem->num_pages << PAGE_SHIFT, 385 amdgpu_bo_encrypted(abo), 386 bo->base.resv, &fence); 387 if (r) 388 goto error; 389 390 /* clear the space being freed */ 391 if (old_mem->mem_type == TTM_PL_VRAM && 392 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) { 393 struct dma_fence *wipe_fence = NULL; 394 395 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence); 396 if (r) { 397 goto error; 398 } else if (wipe_fence) { 399 dma_fence_put(fence); 400 fence = wipe_fence; 401 } 402 } 403 404 /* Always block for VM page tables before committing the new location */ 405 if (bo->type == ttm_bo_type_kernel) 406 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem); 407 else 408 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem); 409 dma_fence_put(fence); 410 return r; 411 412 error: 413 if (fence) 414 dma_fence_wait(fence, false); 415 dma_fence_put(fence); 416 return r; 417 } 418 419 /* 420 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy 421 * 422 * Called by amdgpu_bo_move() 423 */ 424 static bool amdgpu_mem_visible(struct amdgpu_device *adev, 425 struct ttm_resource *mem) 426 { 427 u64 mem_size = (u64)mem->num_pages << PAGE_SHIFT; 428 struct amdgpu_res_cursor cursor; 429 u64 end; 430 431 if (mem->mem_type == TTM_PL_SYSTEM || 432 mem->mem_type == TTM_PL_TT) 433 return true; 434 if (mem->mem_type != TTM_PL_VRAM) 435 return false; 436 437 amdgpu_res_first(mem, 0, mem_size, &cursor); 438 end = cursor.start + cursor.size; 439 while (cursor.remaining) { 440 amdgpu_res_next(&cursor, cursor.size); 441 442 if (!cursor.remaining) 443 break; 444 445 /* ttm_resource_ioremap only supports contiguous memory */ 446 if (end != cursor.start) 447 return false; 448 449 end = cursor.start + cursor.size; 450 } 451 452 return end <= adev->gmc.visible_vram_size; 453 } 454 455 /* 456 * amdgpu_bo_move - Move a buffer object to a new memory location 457 * 458 * Called by ttm_bo_handle_move_mem() 459 */ 460 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, 461 struct ttm_operation_ctx *ctx, 462 struct ttm_resource *new_mem, 463 struct ttm_place *hop) 464 { 465 struct amdgpu_device *adev; 466 struct amdgpu_bo *abo; 467 struct ttm_resource *old_mem = bo->resource; 468 int r; 469 470 if (new_mem->mem_type == TTM_PL_TT || 471 new_mem->mem_type == AMDGPU_PL_PREEMPT) { 472 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem); 473 if (r) 474 return r; 475 } 476 477 /* Can't move a pinned BO */ 478 abo = ttm_to_amdgpu_bo(bo); 479 if (WARN_ON_ONCE(abo->tbo.pin_count > 0)) 480 return -EINVAL; 481 482 adev = amdgpu_ttm_adev(bo->bdev); 483 484 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM && 485 bo->ttm == NULL)) { 486 ttm_bo_move_null(bo, new_mem); 487 goto out; 488 } 489 if (old_mem->mem_type == TTM_PL_SYSTEM && 490 (new_mem->mem_type == TTM_PL_TT || 491 new_mem->mem_type == AMDGPU_PL_PREEMPT)) { 492 ttm_bo_move_null(bo, new_mem); 493 goto out; 494 } 495 if ((old_mem->mem_type == TTM_PL_TT || 496 old_mem->mem_type == AMDGPU_PL_PREEMPT) && 497 new_mem->mem_type == TTM_PL_SYSTEM) { 498 r = ttm_bo_wait_ctx(bo, ctx); 499 if (r) 500 return r; 501 502 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm); 503 ttm_resource_free(bo, &bo->resource); 504 ttm_bo_assign_mem(bo, new_mem); 505 goto out; 506 } 507 508 if (old_mem->mem_type == AMDGPU_PL_GDS || 509 old_mem->mem_type == AMDGPU_PL_GWS || 510 old_mem->mem_type == AMDGPU_PL_OA || 511 new_mem->mem_type == AMDGPU_PL_GDS || 512 new_mem->mem_type == AMDGPU_PL_GWS || 513 new_mem->mem_type == AMDGPU_PL_OA) { 514 /* Nothing to save here */ 515 ttm_bo_move_null(bo, new_mem); 516 goto out; 517 } 518 519 if (bo->type == ttm_bo_type_device && 520 new_mem->mem_type == TTM_PL_VRAM && 521 old_mem->mem_type != TTM_PL_VRAM) { 522 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU 523 * accesses the BO after it's moved. 524 */ 525 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; 526 } 527 528 if (adev->mman.buffer_funcs_enabled) { 529 if (((old_mem->mem_type == TTM_PL_SYSTEM && 530 new_mem->mem_type == TTM_PL_VRAM) || 531 (old_mem->mem_type == TTM_PL_VRAM && 532 new_mem->mem_type == TTM_PL_SYSTEM))) { 533 hop->fpfn = 0; 534 hop->lpfn = 0; 535 hop->mem_type = TTM_PL_TT; 536 hop->flags = TTM_PL_FLAG_TEMPORARY; 537 return -EMULTIHOP; 538 } 539 540 r = amdgpu_move_blit(bo, evict, new_mem, old_mem); 541 } else { 542 r = -ENODEV; 543 } 544 545 if (r) { 546 /* Check that all memory is CPU accessible */ 547 if (!amdgpu_mem_visible(adev, old_mem) || 548 !amdgpu_mem_visible(adev, new_mem)) { 549 pr_err("Move buffer fallback to memcpy unavailable\n"); 550 return r; 551 } 552 553 r = ttm_bo_move_memcpy(bo, ctx, new_mem); 554 if (r) 555 return r; 556 } 557 558 out: 559 /* update statistics */ 560 atomic64_add(bo->base.size, &adev->num_bytes_moved); 561 amdgpu_bo_move_notify(bo, evict, new_mem); 562 return 0; 563 } 564 565 /* 566 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault 567 * 568 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault() 569 */ 570 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev, 571 struct ttm_resource *mem) 572 { 573 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 574 size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT; 575 576 switch (mem->mem_type) { 577 case TTM_PL_SYSTEM: 578 /* system memory */ 579 return 0; 580 case TTM_PL_TT: 581 case AMDGPU_PL_PREEMPT: 582 break; 583 case TTM_PL_VRAM: 584 mem->bus.offset = mem->start << PAGE_SHIFT; 585 /* check if it's visible */ 586 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size) 587 return -EINVAL; 588 589 if (adev->mman.aper_base_kaddr && 590 mem->placement & TTM_PL_FLAG_CONTIGUOUS) 591 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr + 592 mem->bus.offset; 593 594 mem->bus.offset += adev->gmc.aper_base; 595 mem->bus.is_iomem = true; 596 break; 597 default: 598 return -EINVAL; 599 } 600 return 0; 601 } 602 603 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 604 unsigned long page_offset) 605 { 606 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 607 struct amdgpu_res_cursor cursor; 608 609 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0, 610 &cursor); 611 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT; 612 } 613 614 /** 615 * amdgpu_ttm_domain_start - Returns GPU start address 616 * @adev: amdgpu device object 617 * @type: type of the memory 618 * 619 * Returns: 620 * GPU start address of a memory domain 621 */ 622 623 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type) 624 { 625 switch (type) { 626 case TTM_PL_TT: 627 return adev->gmc.gart_start; 628 case TTM_PL_VRAM: 629 return adev->gmc.vram_start; 630 } 631 632 return 0; 633 } 634 635 /* 636 * TTM backend functions. 637 */ 638 struct amdgpu_ttm_tt { 639 struct ttm_tt ttm; 640 struct drm_gem_object *gobj; 641 u64 offset; 642 uint64_t userptr; 643 struct task_struct *usertask; 644 uint32_t userflags; 645 bool bound; 646 }; 647 648 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm) 649 650 #ifdef CONFIG_DRM_AMDGPU_USERPTR 651 /* 652 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user 653 * memory and start HMM tracking CPU page table update 654 * 655 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only 656 * once afterwards to stop HMM tracking 657 */ 658 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages, 659 struct hmm_range **range) 660 { 661 struct ttm_tt *ttm = bo->tbo.ttm; 662 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 663 unsigned long start = gtt->userptr; 664 struct vm_area_struct *vma; 665 struct mm_struct *mm; 666 bool readonly; 667 int r = 0; 668 669 /* Make sure get_user_pages_done() can cleanup gracefully */ 670 *range = NULL; 671 672 mm = bo->notifier.mm; 673 if (unlikely(!mm)) { 674 DRM_DEBUG_DRIVER("BO is not registered?\n"); 675 return -EFAULT; 676 } 677 678 if (!mmget_not_zero(mm)) /* Happens during process shutdown */ 679 return -ESRCH; 680 681 mmap_read_lock(mm); 682 vma = vma_lookup(mm, start); 683 if (unlikely(!vma)) { 684 r = -EFAULT; 685 goto out_unlock; 686 } 687 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) && 688 vma->vm_file)) { 689 r = -EPERM; 690 goto out_unlock; 691 } 692 693 readonly = amdgpu_ttm_tt_is_readonly(ttm); 694 r = amdgpu_hmm_range_get_pages(&bo->notifier, mm, pages, start, 695 ttm->num_pages, range, readonly, 696 true, NULL); 697 out_unlock: 698 mmap_read_unlock(mm); 699 if (r) 700 pr_debug("failed %d to get user pages 0x%lx\n", r, start); 701 702 mmput(mm); 703 704 return r; 705 } 706 707 /* 708 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change 709 * Check if the pages backing this ttm range have been invalidated 710 * 711 * Returns: true if pages are still valid 712 */ 713 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm, 714 struct hmm_range *range) 715 { 716 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 717 718 if (!gtt || !gtt->userptr || !range) 719 return false; 720 721 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n", 722 gtt->userptr, ttm->num_pages); 723 724 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n"); 725 726 /* 727 * FIXME: Must always hold notifier_lock for this, and must 728 * not ignore the return code. 729 */ 730 return !amdgpu_hmm_range_get_pages_done(range); 731 } 732 #endif 733 734 /* 735 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary. 736 * 737 * Called by amdgpu_cs_list_validate(). This creates the page list 738 * that backs user memory and will ultimately be mapped into the device 739 * address space. 740 */ 741 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages) 742 { 743 unsigned long i; 744 745 for (i = 0; i < ttm->num_pages; ++i) 746 ttm->pages[i] = pages ? pages[i] : NULL; 747 } 748 749 /* 750 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages 751 * 752 * Called by amdgpu_ttm_backend_bind() 753 **/ 754 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev, 755 struct ttm_tt *ttm) 756 { 757 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 758 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 759 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 760 enum dma_data_direction direction = write ? 761 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 762 int r; 763 764 /* Allocate an SG array and squash pages into it */ 765 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, 766 (u64)ttm->num_pages << PAGE_SHIFT, 767 GFP_KERNEL); 768 if (r) 769 goto release_sg; 770 771 /* Map SG to device */ 772 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); 773 if (r) 774 goto release_sg; 775 776 /* convert SG to linear array of pages and dma addresses */ 777 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 778 ttm->num_pages); 779 780 return 0; 781 782 release_sg: 783 kfree(ttm->sg); 784 ttm->sg = NULL; 785 return r; 786 } 787 788 /* 789 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages 790 */ 791 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev, 792 struct ttm_tt *ttm) 793 { 794 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 795 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 796 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 797 enum dma_data_direction direction = write ? 798 DMA_BIDIRECTIONAL : DMA_TO_DEVICE; 799 800 /* double check that we don't free the table twice */ 801 if (!ttm->sg || !ttm->sg->sgl) 802 return; 803 804 /* unmap the pages mapped to the device */ 805 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); 806 sg_free_table(ttm->sg); 807 } 808 809 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev, 810 struct ttm_buffer_object *tbo, 811 uint64_t flags) 812 { 813 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo); 814 struct ttm_tt *ttm = tbo->ttm; 815 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 816 817 if (amdgpu_bo_encrypted(abo)) 818 flags |= AMDGPU_PTE_TMZ; 819 820 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) { 821 uint64_t page_idx = 1; 822 823 amdgpu_gart_bind(adev, gtt->offset, page_idx, 824 gtt->ttm.dma_address, flags); 825 826 /* The memory type of the first page defaults to UC. Now 827 * modify the memory type to NC from the second page of 828 * the BO onward. 829 */ 830 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK; 831 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC); 832 833 amdgpu_gart_bind(adev, gtt->offset + (page_idx << PAGE_SHIFT), 834 ttm->num_pages - page_idx, 835 &(gtt->ttm.dma_address[page_idx]), flags); 836 } else { 837 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 838 gtt->ttm.dma_address, flags); 839 } 840 } 841 842 /* 843 * amdgpu_ttm_backend_bind - Bind GTT memory 844 * 845 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem(). 846 * This handles binding GTT memory to the device address space. 847 */ 848 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev, 849 struct ttm_tt *ttm, 850 struct ttm_resource *bo_mem) 851 { 852 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 853 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 854 uint64_t flags; 855 int r; 856 857 if (!bo_mem) 858 return -EINVAL; 859 860 if (gtt->bound) 861 return 0; 862 863 if (gtt->userptr) { 864 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm); 865 if (r) { 866 DRM_ERROR("failed to pin userptr\n"); 867 return r; 868 } 869 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) { 870 if (!ttm->sg) { 871 struct dma_buf_attachment *attach; 872 struct sg_table *sgt; 873 874 attach = gtt->gobj->import_attach; 875 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL); 876 if (IS_ERR(sgt)) 877 return PTR_ERR(sgt); 878 879 ttm->sg = sgt; 880 } 881 882 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address, 883 ttm->num_pages); 884 } 885 886 if (!ttm->num_pages) { 887 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n", 888 ttm->num_pages, bo_mem, ttm); 889 } 890 891 if (bo_mem->mem_type != TTM_PL_TT || 892 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) { 893 gtt->offset = AMDGPU_BO_INVALID_OFFSET; 894 return 0; 895 } 896 897 /* compute PTE flags relevant to this BO memory */ 898 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem); 899 900 /* bind pages into GART page tables */ 901 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT; 902 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages, 903 gtt->ttm.dma_address, flags); 904 gtt->bound = true; 905 return 0; 906 } 907 908 /* 909 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either 910 * through AGP or GART aperture. 911 * 912 * If bo is accessible through AGP aperture, then use AGP aperture 913 * to access bo; otherwise allocate logical space in GART aperture 914 * and map bo to GART aperture. 915 */ 916 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo) 917 { 918 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); 919 struct ttm_operation_ctx ctx = { false, false }; 920 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 921 struct ttm_placement placement; 922 struct ttm_place placements; 923 struct ttm_resource *tmp; 924 uint64_t addr, flags; 925 int r; 926 927 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET) 928 return 0; 929 930 addr = amdgpu_gmc_agp_addr(bo); 931 if (addr != AMDGPU_BO_INVALID_OFFSET) { 932 bo->resource->start = addr >> PAGE_SHIFT; 933 return 0; 934 } 935 936 /* allocate GART space */ 937 placement.num_placement = 1; 938 placement.placement = &placements; 939 placement.num_busy_placement = 1; 940 placement.busy_placement = &placements; 941 placements.fpfn = 0; 942 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT; 943 placements.mem_type = TTM_PL_TT; 944 placements.flags = bo->resource->placement; 945 946 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx); 947 if (unlikely(r)) 948 return r; 949 950 /* compute PTE flags for this buffer object */ 951 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp); 952 953 /* Bind pages */ 954 gtt->offset = (u64)tmp->start << PAGE_SHIFT; 955 amdgpu_ttm_gart_bind(adev, bo, flags); 956 amdgpu_gart_invalidate_tlb(adev); 957 ttm_resource_free(bo, &bo->resource); 958 ttm_bo_assign_mem(bo, tmp); 959 960 return 0; 961 } 962 963 /* 964 * amdgpu_ttm_recover_gart - Rebind GTT pages 965 * 966 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to 967 * rebind GTT pages during a GPU reset. 968 */ 969 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo) 970 { 971 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev); 972 uint64_t flags; 973 974 if (!tbo->ttm) 975 return; 976 977 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource); 978 amdgpu_ttm_gart_bind(adev, tbo, flags); 979 } 980 981 /* 982 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages 983 * 984 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and 985 * ttm_tt_destroy(). 986 */ 987 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev, 988 struct ttm_tt *ttm) 989 { 990 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 991 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 992 993 /* if the pages have userptr pinning then clear that first */ 994 if (gtt->userptr) { 995 amdgpu_ttm_tt_unpin_userptr(bdev, ttm); 996 } else if (ttm->sg && gtt->gobj->import_attach) { 997 struct dma_buf_attachment *attach; 998 999 attach = gtt->gobj->import_attach; 1000 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL); 1001 ttm->sg = NULL; 1002 } 1003 1004 if (!gtt->bound) 1005 return; 1006 1007 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET) 1008 return; 1009 1010 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ 1011 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages); 1012 gtt->bound = false; 1013 } 1014 1015 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev, 1016 struct ttm_tt *ttm) 1017 { 1018 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1019 1020 if (gtt->usertask) 1021 put_task_struct(gtt->usertask); 1022 1023 ttm_tt_fini(>t->ttm); 1024 kfree(gtt); 1025 } 1026 1027 /** 1028 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO 1029 * 1030 * @bo: The buffer object to create a GTT ttm_tt object around 1031 * @page_flags: Page flags to be added to the ttm_tt object 1032 * 1033 * Called by ttm_tt_create(). 1034 */ 1035 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo, 1036 uint32_t page_flags) 1037 { 1038 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1039 struct amdgpu_ttm_tt *gtt; 1040 enum ttm_caching caching; 1041 1042 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); 1043 if (gtt == NULL) { 1044 return NULL; 1045 } 1046 gtt->gobj = &bo->base; 1047 1048 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC) 1049 caching = ttm_write_combined; 1050 else 1051 caching = ttm_cached; 1052 1053 /* allocate space for the uninitialized page entries */ 1054 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) { 1055 kfree(gtt); 1056 return NULL; 1057 } 1058 return >t->ttm; 1059 } 1060 1061 /* 1062 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device 1063 * 1064 * Map the pages of a ttm_tt object to an address space visible 1065 * to the underlying device. 1066 */ 1067 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev, 1068 struct ttm_tt *ttm, 1069 struct ttm_operation_ctx *ctx) 1070 { 1071 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev); 1072 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1073 pgoff_t i; 1074 int ret; 1075 1076 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */ 1077 if (gtt->userptr) { 1078 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); 1079 if (!ttm->sg) 1080 return -ENOMEM; 1081 return 0; 1082 } 1083 1084 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1085 return 0; 1086 1087 ret = ttm_pool_alloc(&adev->mman.bdev.pool, ttm, ctx); 1088 if (ret) 1089 return ret; 1090 1091 for (i = 0; i < ttm->num_pages; ++i) 1092 ttm->pages[i]->mapping = bdev->dev_mapping; 1093 1094 return 0; 1095 } 1096 1097 /* 1098 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays 1099 * 1100 * Unmaps pages of a ttm_tt object from the device address space and 1101 * unpopulates the page array backing it. 1102 */ 1103 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev, 1104 struct ttm_tt *ttm) 1105 { 1106 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1107 struct amdgpu_device *adev; 1108 pgoff_t i; 1109 1110 amdgpu_ttm_backend_unbind(bdev, ttm); 1111 1112 if (gtt->userptr) { 1113 amdgpu_ttm_tt_set_user_pages(ttm, NULL); 1114 kfree(ttm->sg); 1115 ttm->sg = NULL; 1116 return; 1117 } 1118 1119 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 1120 return; 1121 1122 for (i = 0; i < ttm->num_pages; ++i) 1123 ttm->pages[i]->mapping = NULL; 1124 1125 adev = amdgpu_ttm_adev(bdev); 1126 return ttm_pool_free(&adev->mman.bdev.pool, ttm); 1127 } 1128 1129 /** 1130 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current 1131 * task 1132 * 1133 * @tbo: The ttm_buffer_object that contains the userptr 1134 * @user_addr: The returned value 1135 */ 1136 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo, 1137 uint64_t *user_addr) 1138 { 1139 struct amdgpu_ttm_tt *gtt; 1140 1141 if (!tbo->ttm) 1142 return -EINVAL; 1143 1144 gtt = (void *)tbo->ttm; 1145 *user_addr = gtt->userptr; 1146 return 0; 1147 } 1148 1149 /** 1150 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current 1151 * task 1152 * 1153 * @bo: The ttm_buffer_object to bind this userptr to 1154 * @addr: The address in the current tasks VM space to use 1155 * @flags: Requirements of userptr object. 1156 * 1157 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages 1158 * to current task 1159 */ 1160 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo, 1161 uint64_t addr, uint32_t flags) 1162 { 1163 struct amdgpu_ttm_tt *gtt; 1164 1165 if (!bo->ttm) { 1166 /* TODO: We want a separate TTM object type for userptrs */ 1167 bo->ttm = amdgpu_ttm_tt_create(bo, 0); 1168 if (bo->ttm == NULL) 1169 return -ENOMEM; 1170 } 1171 1172 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */ 1173 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL; 1174 1175 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm); 1176 gtt->userptr = addr; 1177 gtt->userflags = flags; 1178 1179 if (gtt->usertask) 1180 put_task_struct(gtt->usertask); 1181 gtt->usertask = current->group_leader; 1182 get_task_struct(gtt->usertask); 1183 1184 return 0; 1185 } 1186 1187 /* 1188 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object 1189 */ 1190 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) 1191 { 1192 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1193 1194 if (gtt == NULL) 1195 return NULL; 1196 1197 if (gtt->usertask == NULL) 1198 return NULL; 1199 1200 return gtt->usertask->mm; 1201 } 1202 1203 /* 1204 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an 1205 * address range for the current task. 1206 * 1207 */ 1208 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, 1209 unsigned long end, unsigned long *userptr) 1210 { 1211 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1212 unsigned long size; 1213 1214 if (gtt == NULL || !gtt->userptr) 1215 return false; 1216 1217 /* Return false if no part of the ttm_tt object lies within 1218 * the range 1219 */ 1220 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE; 1221 if (gtt->userptr > end || gtt->userptr + size <= start) 1222 return false; 1223 1224 if (userptr) 1225 *userptr = gtt->userptr; 1226 return true; 1227 } 1228 1229 /* 1230 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr? 1231 */ 1232 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm) 1233 { 1234 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1235 1236 if (gtt == NULL || !gtt->userptr) 1237 return false; 1238 1239 return true; 1240 } 1241 1242 /* 1243 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only? 1244 */ 1245 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) 1246 { 1247 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm); 1248 1249 if (gtt == NULL) 1250 return false; 1251 1252 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); 1253 } 1254 1255 /** 1256 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object 1257 * 1258 * @ttm: The ttm_tt object to compute the flags for 1259 * @mem: The memory registry backing this ttm_tt object 1260 * 1261 * Figure out the flags to use for a VM PDE (Page Directory Entry). 1262 */ 1263 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem) 1264 { 1265 uint64_t flags = 0; 1266 1267 if (mem && mem->mem_type != TTM_PL_SYSTEM) 1268 flags |= AMDGPU_PTE_VALID; 1269 1270 if (mem && (mem->mem_type == TTM_PL_TT || 1271 mem->mem_type == AMDGPU_PL_PREEMPT)) { 1272 flags |= AMDGPU_PTE_SYSTEM; 1273 1274 if (ttm->caching == ttm_cached) 1275 flags |= AMDGPU_PTE_SNOOPED; 1276 } 1277 1278 if (mem && mem->mem_type == TTM_PL_VRAM && 1279 mem->bus.caching == ttm_cached) 1280 flags |= AMDGPU_PTE_SNOOPED; 1281 1282 return flags; 1283 } 1284 1285 /** 1286 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object 1287 * 1288 * @adev: amdgpu_device pointer 1289 * @ttm: The ttm_tt object to compute the flags for 1290 * @mem: The memory registry backing this ttm_tt object 1291 * 1292 * Figure out the flags to use for a VM PTE (Page Table Entry). 1293 */ 1294 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, 1295 struct ttm_resource *mem) 1296 { 1297 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem); 1298 1299 flags |= adev->gart.gart_pte_flags; 1300 flags |= AMDGPU_PTE_READABLE; 1301 1302 if (!amdgpu_ttm_tt_is_readonly(ttm)) 1303 flags |= AMDGPU_PTE_WRITEABLE; 1304 1305 return flags; 1306 } 1307 1308 /* 1309 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer 1310 * object. 1311 * 1312 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on 1313 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until 1314 * it can find space for a new object and by ttm_bo_force_list_clean() which is 1315 * used to clean out a memory space. 1316 */ 1317 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, 1318 const struct ttm_place *place) 1319 { 1320 struct dma_resv_iter resv_cursor; 1321 struct dma_fence *f; 1322 1323 if (!amdgpu_bo_is_amdgpu_bo(bo)) 1324 return ttm_bo_eviction_valuable(bo, place); 1325 1326 /* Swapout? */ 1327 if (bo->resource->mem_type == TTM_PL_SYSTEM) 1328 return true; 1329 1330 if (bo->type == ttm_bo_type_kernel && 1331 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo))) 1332 return false; 1333 1334 /* If bo is a KFD BO, check if the bo belongs to the current process. 1335 * If true, then return false as any KFD process needs all its BOs to 1336 * be resident to run successfully 1337 */ 1338 dma_resv_for_each_fence(&resv_cursor, bo->base.resv, 1339 DMA_RESV_USAGE_BOOKKEEP, f) { 1340 if (amdkfd_fence_check_mm(f, current->mm)) 1341 return false; 1342 } 1343 1344 /* Preemptible BOs don't own system resources managed by the 1345 * driver (pages, VRAM, GART space). They point to resources 1346 * owned by someone else (e.g. pageable memory in user mode 1347 * or a DMABuf). They are used in a preemptible context so we 1348 * can guarantee no deadlocks and good QoS in case of MMU 1349 * notifiers or DMABuf move notifiers from the resource owner. 1350 */ 1351 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT) 1352 return false; 1353 1354 if (bo->resource->mem_type == TTM_PL_TT && 1355 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo))) 1356 return false; 1357 1358 return ttm_bo_eviction_valuable(bo, place); 1359 } 1360 1361 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos, 1362 void *buf, size_t size, bool write) 1363 { 1364 while (size) { 1365 uint64_t aligned_pos = ALIGN_DOWN(pos, 4); 1366 uint64_t bytes = 4 - (pos & 0x3); 1367 uint32_t shift = (pos & 0x3) * 8; 1368 uint32_t mask = 0xffffffff << shift; 1369 uint32_t value = 0; 1370 1371 if (size < bytes) { 1372 mask &= 0xffffffff >> (bytes - size) * 8; 1373 bytes = size; 1374 } 1375 1376 if (mask != 0xffffffff) { 1377 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false); 1378 if (write) { 1379 value &= ~mask; 1380 value |= (*(uint32_t *)buf << shift) & mask; 1381 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true); 1382 } else { 1383 value = (value & mask) >> shift; 1384 memcpy(buf, &value, bytes); 1385 } 1386 } else { 1387 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write); 1388 } 1389 1390 pos += bytes; 1391 buf += bytes; 1392 size -= bytes; 1393 } 1394 } 1395 1396 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo, 1397 unsigned long offset, void *buf, int len, int write) 1398 { 1399 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1400 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1401 struct amdgpu_res_cursor src_mm; 1402 struct amdgpu_job *job; 1403 struct dma_fence *fence; 1404 uint64_t src_addr, dst_addr; 1405 unsigned int num_dw; 1406 int r, idx; 1407 1408 if (len != PAGE_SIZE) 1409 return -EINVAL; 1410 1411 if (!adev->mman.sdma_access_ptr) 1412 return -EACCES; 1413 1414 if (!drm_dev_enter(adev_to_drm(adev), &idx)) 1415 return -ENODEV; 1416 1417 if (write) 1418 memcpy(adev->mman.sdma_access_ptr, buf, len); 1419 1420 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 1421 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, AMDGPU_IB_POOL_DELAYED, &job); 1422 if (r) 1423 goto out; 1424 1425 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm); 1426 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) + src_mm.start; 1427 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo); 1428 if (write) 1429 swap(src_addr, dst_addr); 1430 1431 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, PAGE_SIZE, false); 1432 1433 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]); 1434 WARN_ON(job->ibs[0].length_dw > num_dw); 1435 1436 r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 1437 if (r) { 1438 amdgpu_job_free(job); 1439 goto out; 1440 } 1441 1442 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout)) 1443 r = -ETIMEDOUT; 1444 dma_fence_put(fence); 1445 1446 if (!(r || write)) 1447 memcpy(buf, adev->mman.sdma_access_ptr, len); 1448 out: 1449 drm_dev_exit(idx); 1450 return r; 1451 } 1452 1453 /** 1454 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object. 1455 * 1456 * @bo: The buffer object to read/write 1457 * @offset: Offset into buffer object 1458 * @buf: Secondary buffer to write/read from 1459 * @len: Length in bytes of access 1460 * @write: true if writing 1461 * 1462 * This is used to access VRAM that backs a buffer object via MMIO 1463 * access for debugging purposes. 1464 */ 1465 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo, 1466 unsigned long offset, void *buf, int len, 1467 int write) 1468 { 1469 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo); 1470 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev); 1471 struct amdgpu_res_cursor cursor; 1472 int ret = 0; 1473 1474 if (bo->resource->mem_type != TTM_PL_VRAM) 1475 return -EIO; 1476 1477 if (amdgpu_device_has_timeouts_enabled(adev) && 1478 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write)) 1479 return len; 1480 1481 amdgpu_res_first(bo->resource, offset, len, &cursor); 1482 while (cursor.remaining) { 1483 size_t count, size = cursor.size; 1484 loff_t pos = cursor.start; 1485 1486 count = amdgpu_device_aper_access(adev, pos, buf, size, write); 1487 size -= count; 1488 if (size) { 1489 /* using MM to access rest vram and handle un-aligned address */ 1490 pos += count; 1491 buf += count; 1492 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write); 1493 } 1494 1495 ret += cursor.size; 1496 buf += cursor.size; 1497 amdgpu_res_next(&cursor, cursor.size); 1498 } 1499 1500 return ret; 1501 } 1502 1503 static void 1504 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo) 1505 { 1506 amdgpu_bo_move_notify(bo, false, NULL); 1507 } 1508 1509 static struct ttm_device_funcs amdgpu_bo_driver = { 1510 .ttm_tt_create = &amdgpu_ttm_tt_create, 1511 .ttm_tt_populate = &amdgpu_ttm_tt_populate, 1512 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, 1513 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy, 1514 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable, 1515 .evict_flags = &amdgpu_evict_flags, 1516 .move = &amdgpu_bo_move, 1517 .delete_mem_notify = &amdgpu_bo_delete_mem_notify, 1518 .release_notify = &amdgpu_bo_release_notify, 1519 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, 1520 .io_mem_pfn = amdgpu_ttm_io_mem_pfn, 1521 .access_memory = &amdgpu_ttm_access_memory, 1522 }; 1523 1524 /* 1525 * Firmware Reservation functions 1526 */ 1527 /** 1528 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram 1529 * 1530 * @adev: amdgpu_device pointer 1531 * 1532 * free fw reserved vram if it has been reserved. 1533 */ 1534 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev) 1535 { 1536 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo, 1537 NULL, &adev->mman.fw_vram_usage_va); 1538 } 1539 1540 /** 1541 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw 1542 * 1543 * @adev: amdgpu_device pointer 1544 * 1545 * create bo vram reservation from fw. 1546 */ 1547 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev) 1548 { 1549 uint64_t vram_size = adev->gmc.visible_vram_size; 1550 1551 adev->mman.fw_vram_usage_va = NULL; 1552 adev->mman.fw_vram_usage_reserved_bo = NULL; 1553 1554 if (adev->mman.fw_vram_usage_size == 0 || 1555 adev->mman.fw_vram_usage_size > vram_size) 1556 return 0; 1557 1558 return amdgpu_bo_create_kernel_at(adev, 1559 adev->mman.fw_vram_usage_start_offset, 1560 adev->mman.fw_vram_usage_size, 1561 AMDGPU_GEM_DOMAIN_VRAM, 1562 &adev->mman.fw_vram_usage_reserved_bo, 1563 &adev->mman.fw_vram_usage_va); 1564 } 1565 1566 /* 1567 * Memoy training reservation functions 1568 */ 1569 1570 /** 1571 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram 1572 * 1573 * @adev: amdgpu_device pointer 1574 * 1575 * free memory training reserved vram if it has been reserved. 1576 */ 1577 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev) 1578 { 1579 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1580 1581 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT; 1582 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL); 1583 ctx->c2p_bo = NULL; 1584 1585 return 0; 1586 } 1587 1588 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev) 1589 { 1590 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1591 1592 memset(ctx, 0, sizeof(*ctx)); 1593 1594 ctx->c2p_train_data_offset = 1595 ALIGN((adev->gmc.mc_vram_size - adev->mman.discovery_tmr_size - SZ_1M), SZ_1M); 1596 ctx->p2c_train_data_offset = 1597 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET); 1598 ctx->train_data_size = 1599 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES; 1600 1601 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n", 1602 ctx->train_data_size, 1603 ctx->p2c_train_data_offset, 1604 ctx->c2p_train_data_offset); 1605 } 1606 1607 /* 1608 * reserve TMR memory at the top of VRAM which holds 1609 * IP Discovery data and is protected by PSP. 1610 */ 1611 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev) 1612 { 1613 int ret; 1614 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx; 1615 bool mem_train_support = false; 1616 1617 if (!amdgpu_sriov_vf(adev)) { 1618 if (amdgpu_atomfirmware_mem_training_supported(adev)) 1619 mem_train_support = true; 1620 else 1621 DRM_DEBUG("memory training does not support!\n"); 1622 } 1623 1624 /* 1625 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all 1626 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc) 1627 * 1628 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip 1629 * discovery data and G6 memory training data respectively 1630 */ 1631 adev->mman.discovery_tmr_size = 1632 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev); 1633 if (!adev->mman.discovery_tmr_size) 1634 adev->mman.discovery_tmr_size = DISCOVERY_TMR_OFFSET; 1635 1636 if (mem_train_support) { 1637 /* reserve vram for mem train according to TMR location */ 1638 amdgpu_ttm_training_data_block_init(adev); 1639 ret = amdgpu_bo_create_kernel_at(adev, 1640 ctx->c2p_train_data_offset, 1641 ctx->train_data_size, 1642 AMDGPU_GEM_DOMAIN_VRAM, 1643 &ctx->c2p_bo, 1644 NULL); 1645 if (ret) { 1646 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret); 1647 amdgpu_ttm_training_reserve_vram_fini(adev); 1648 return ret; 1649 } 1650 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS; 1651 } 1652 1653 ret = amdgpu_bo_create_kernel_at(adev, 1654 adev->gmc.real_vram_size - adev->mman.discovery_tmr_size, 1655 adev->mman.discovery_tmr_size, 1656 AMDGPU_GEM_DOMAIN_VRAM, 1657 &adev->mman.discovery_memory, 1658 NULL); 1659 if (ret) { 1660 DRM_ERROR("alloc tmr failed(%d)!\n", ret); 1661 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1662 return ret; 1663 } 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * amdgpu_ttm_init - Init the memory management (ttm) as well as various 1670 * gtt/vram related fields. 1671 * 1672 * This initializes all of the memory space pools that the TTM layer 1673 * will need such as the GTT space (system memory mapped to the device), 1674 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which 1675 * can be mapped per VMID. 1676 */ 1677 int amdgpu_ttm_init(struct amdgpu_device *adev) 1678 { 1679 uint64_t gtt_size; 1680 int r; 1681 u64 vis_vram_limit; 1682 1683 mutex_init(&adev->mman.gtt_window_lock); 1684 1685 /* No others user of address space so set it to 0 */ 1686 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev, 1687 adev_to_drm(adev)->anon_inode->i_mapping, 1688 adev_to_drm(adev)->vma_offset_manager, 1689 adev->need_swiotlb, 1690 dma_addressing_limited(adev->dev)); 1691 if (r) { 1692 DRM_ERROR("failed initializing buffer object driver(%d).\n", r); 1693 return r; 1694 } 1695 adev->mman.initialized = true; 1696 1697 /* Initialize VRAM pool with all of VRAM divided into pages */ 1698 r = amdgpu_vram_mgr_init(adev); 1699 if (r) { 1700 DRM_ERROR("Failed initializing VRAM heap.\n"); 1701 return r; 1702 } 1703 1704 /* Reduce size of CPU-visible VRAM if requested */ 1705 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024; 1706 if (amdgpu_vis_vram_limit > 0 && 1707 vis_vram_limit <= adev->gmc.visible_vram_size) 1708 adev->gmc.visible_vram_size = vis_vram_limit; 1709 1710 /* Change the size here instead of the init above so only lpfn is affected */ 1711 amdgpu_ttm_set_buffer_funcs_status(adev, false); 1712 #ifdef CONFIG_64BIT 1713 #ifdef CONFIG_X86 1714 if (adev->gmc.xgmi.connected_to_cpu) 1715 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base, 1716 adev->gmc.visible_vram_size); 1717 1718 else 1719 #endif 1720 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base, 1721 adev->gmc.visible_vram_size); 1722 #endif 1723 1724 /* 1725 *The reserved vram for firmware must be pinned to the specified 1726 *place on the VRAM, so reserve it early. 1727 */ 1728 r = amdgpu_ttm_fw_reserve_vram_init(adev); 1729 if (r) { 1730 return r; 1731 } 1732 1733 /* 1734 * only NAVI10 and onwards ASIC support for IP discovery. 1735 * If IP discovery enabled, a block of memory should be 1736 * reserved for IP discovey. 1737 */ 1738 if (adev->mman.discovery_bin) { 1739 r = amdgpu_ttm_reserve_tmr(adev); 1740 if (r) 1741 return r; 1742 } 1743 1744 /* allocate memory as required for VGA 1745 * This is used for VGA emulation and pre-OS scanout buffers to 1746 * avoid display artifacts while transitioning between pre-OS 1747 * and driver. */ 1748 r = amdgpu_bo_create_kernel_at(adev, 0, adev->mman.stolen_vga_size, 1749 AMDGPU_GEM_DOMAIN_VRAM, 1750 &adev->mman.stolen_vga_memory, 1751 NULL); 1752 if (r) 1753 return r; 1754 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size, 1755 adev->mman.stolen_extended_size, 1756 AMDGPU_GEM_DOMAIN_VRAM, 1757 &adev->mman.stolen_extended_memory, 1758 NULL); 1759 if (r) 1760 return r; 1761 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_reserved_offset, 1762 adev->mman.stolen_reserved_size, 1763 AMDGPU_GEM_DOMAIN_VRAM, 1764 &adev->mman.stolen_reserved_memory, 1765 NULL); 1766 if (r) 1767 return r; 1768 1769 DRM_INFO("amdgpu: %uM of VRAM memory ready\n", 1770 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024))); 1771 1772 /* Compute GTT size, either based on 1/2 the size of RAM size 1773 * or whatever the user passed on module init */ 1774 if (amdgpu_gtt_size == -1) { 1775 struct sysinfo si; 1776 1777 si_meminfo(&si); 1778 /* Certain GL unit tests for large textures can cause problems 1779 * with the OOM killer since there is no way to link this memory 1780 * to a process. This was originally mitigated (but not necessarily 1781 * eliminated) by limiting the GTT size. The problem is this limit 1782 * is often too low for many modern games so just make the limit 1/2 1783 * of system memory which aligns with TTM. The OOM accounting needs 1784 * to be addressed, but we shouldn't prevent common 3D applications 1785 * from being usable just to potentially mitigate that corner case. 1786 */ 1787 gtt_size = max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20), 1788 (u64)si.totalram * si.mem_unit / 2); 1789 } else { 1790 gtt_size = (uint64_t)amdgpu_gtt_size << 20; 1791 } 1792 1793 /* Initialize GTT memory pool */ 1794 r = amdgpu_gtt_mgr_init(adev, gtt_size); 1795 if (r) { 1796 DRM_ERROR("Failed initializing GTT heap.\n"); 1797 return r; 1798 } 1799 DRM_INFO("amdgpu: %uM of GTT memory ready.\n", 1800 (unsigned)(gtt_size / (1024 * 1024))); 1801 1802 /* Initialize preemptible memory pool */ 1803 r = amdgpu_preempt_mgr_init(adev); 1804 if (r) { 1805 DRM_ERROR("Failed initializing PREEMPT heap.\n"); 1806 return r; 1807 } 1808 1809 /* Initialize various on-chip memory pools */ 1810 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size); 1811 if (r) { 1812 DRM_ERROR("Failed initializing GDS heap.\n"); 1813 return r; 1814 } 1815 1816 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size); 1817 if (r) { 1818 DRM_ERROR("Failed initializing gws heap.\n"); 1819 return r; 1820 } 1821 1822 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size); 1823 if (r) { 1824 DRM_ERROR("Failed initializing oa heap.\n"); 1825 return r; 1826 } 1827 1828 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, 1829 AMDGPU_GEM_DOMAIN_GTT, 1830 &adev->mman.sdma_access_bo, NULL, 1831 &adev->mman.sdma_access_ptr)) 1832 DRM_WARN("Debug VRAM access will use slowpath MM access\n"); 1833 1834 return 0; 1835 } 1836 1837 /* 1838 * amdgpu_ttm_fini - De-initialize the TTM memory pools 1839 */ 1840 void amdgpu_ttm_fini(struct amdgpu_device *adev) 1841 { 1842 int idx; 1843 if (!adev->mman.initialized) 1844 return; 1845 1846 amdgpu_ttm_training_reserve_vram_fini(adev); 1847 /* return the stolen vga memory back to VRAM */ 1848 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL); 1849 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL); 1850 /* return the IP Discovery TMR memory back to VRAM */ 1851 amdgpu_bo_free_kernel(&adev->mman.discovery_memory, NULL, NULL); 1852 if (adev->mman.stolen_reserved_size) 1853 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory, 1854 NULL, NULL); 1855 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL, 1856 &adev->mman.sdma_access_ptr); 1857 amdgpu_ttm_fw_reserve_vram_fini(adev); 1858 1859 if (drm_dev_enter(adev_to_drm(adev), &idx)) { 1860 1861 if (adev->mman.aper_base_kaddr) 1862 iounmap(adev->mman.aper_base_kaddr); 1863 adev->mman.aper_base_kaddr = NULL; 1864 1865 drm_dev_exit(idx); 1866 } 1867 1868 amdgpu_vram_mgr_fini(adev); 1869 amdgpu_gtt_mgr_fini(adev); 1870 amdgpu_preempt_mgr_fini(adev); 1871 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS); 1872 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS); 1873 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA); 1874 ttm_device_fini(&adev->mman.bdev); 1875 adev->mman.initialized = false; 1876 DRM_INFO("amdgpu: ttm finalized\n"); 1877 } 1878 1879 /** 1880 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions 1881 * 1882 * @adev: amdgpu_device pointer 1883 * @enable: true when we can use buffer functions. 1884 * 1885 * Enable/disable use of buffer functions during suspend/resume. This should 1886 * only be called at bootup or when userspace isn't running. 1887 */ 1888 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable) 1889 { 1890 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM); 1891 uint64_t size; 1892 int r; 1893 1894 if (!adev->mman.initialized || amdgpu_in_reset(adev) || 1895 adev->mman.buffer_funcs_enabled == enable) 1896 return; 1897 1898 if (enable) { 1899 struct amdgpu_ring *ring; 1900 struct drm_gpu_scheduler *sched; 1901 1902 ring = adev->mman.buffer_funcs_ring; 1903 sched = &ring->sched; 1904 r = drm_sched_entity_init(&adev->mman.entity, 1905 DRM_SCHED_PRIORITY_KERNEL, &sched, 1906 1, NULL); 1907 if (r) { 1908 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n", 1909 r); 1910 return; 1911 } 1912 } else { 1913 drm_sched_entity_destroy(&adev->mman.entity); 1914 dma_fence_put(man->move); 1915 man->move = NULL; 1916 } 1917 1918 /* this just adjusts TTM size idea, which sets lpfn to the correct value */ 1919 if (enable) 1920 size = adev->gmc.real_vram_size; 1921 else 1922 size = adev->gmc.visible_vram_size; 1923 man->size = size; 1924 adev->mman.buffer_funcs_enabled = enable; 1925 } 1926 1927 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev, 1928 bool direct_submit, 1929 unsigned int num_dw, 1930 struct dma_resv *resv, 1931 bool vm_needs_flush, 1932 struct amdgpu_job **job) 1933 { 1934 enum amdgpu_ib_pool_type pool = direct_submit ? 1935 AMDGPU_IB_POOL_DIRECT : 1936 AMDGPU_IB_POOL_DELAYED; 1937 int r; 1938 1939 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, pool, job); 1940 if (r) 1941 return r; 1942 1943 if (vm_needs_flush) { 1944 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ? 1945 adev->gmc.pdb0_bo : 1946 adev->gart.bo); 1947 (*job)->vm_needs_flush = true; 1948 } 1949 if (resv) { 1950 r = amdgpu_sync_resv(adev, &(*job)->sync, resv, 1951 AMDGPU_SYNC_ALWAYS, 1952 AMDGPU_FENCE_OWNER_UNDEFINED); 1953 if (r) { 1954 DRM_ERROR("sync failed (%d).\n", r); 1955 amdgpu_job_free(*job); 1956 return r; 1957 } 1958 } 1959 return 0; 1960 } 1961 1962 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, 1963 uint64_t dst_offset, uint32_t byte_count, 1964 struct dma_resv *resv, 1965 struct dma_fence **fence, bool direct_submit, 1966 bool vm_needs_flush, bool tmz) 1967 { 1968 struct amdgpu_device *adev = ring->adev; 1969 unsigned num_loops, num_dw; 1970 struct amdgpu_job *job; 1971 uint32_t max_bytes; 1972 unsigned i; 1973 int r; 1974 1975 if (!direct_submit && !ring->sched.ready) { 1976 DRM_ERROR("Trying to move memory with ring turned off.\n"); 1977 return -EINVAL; 1978 } 1979 1980 max_bytes = adev->mman.buffer_funcs->copy_max_bytes; 1981 num_loops = DIV_ROUND_UP(byte_count, max_bytes); 1982 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8); 1983 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw, 1984 resv, vm_needs_flush, &job); 1985 if (r) 1986 return r; 1987 1988 for (i = 0; i < num_loops; i++) { 1989 uint32_t cur_size_in_bytes = min(byte_count, max_bytes); 1990 1991 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, 1992 dst_offset, cur_size_in_bytes, tmz); 1993 1994 src_offset += cur_size_in_bytes; 1995 dst_offset += cur_size_in_bytes; 1996 byte_count -= cur_size_in_bytes; 1997 } 1998 1999 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2000 WARN_ON(job->ibs[0].length_dw > num_dw); 2001 if (direct_submit) 2002 r = amdgpu_job_submit_direct(job, ring, fence); 2003 else 2004 r = amdgpu_job_submit(job, &adev->mman.entity, 2005 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2006 if (r) 2007 goto error_free; 2008 2009 return r; 2010 2011 error_free: 2012 amdgpu_job_free(job); 2013 DRM_ERROR("Error scheduling IBs (%d)\n", r); 2014 return r; 2015 } 2016 2017 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data, 2018 uint64_t dst_addr, uint32_t byte_count, 2019 struct dma_resv *resv, 2020 struct dma_fence **fence, 2021 bool vm_needs_flush) 2022 { 2023 struct amdgpu_device *adev = ring->adev; 2024 unsigned int num_loops, num_dw; 2025 struct amdgpu_job *job; 2026 uint32_t max_bytes; 2027 unsigned int i; 2028 int r; 2029 2030 max_bytes = adev->mman.buffer_funcs->fill_max_bytes; 2031 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes); 2032 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8); 2033 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush, 2034 &job); 2035 if (r) 2036 return r; 2037 2038 for (i = 0; i < num_loops; i++) { 2039 uint32_t cur_size = min(byte_count, max_bytes); 2040 2041 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr, 2042 cur_size); 2043 2044 dst_addr += cur_size; 2045 byte_count -= cur_size; 2046 } 2047 2048 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 2049 WARN_ON(job->ibs[0].length_dw > num_dw); 2050 r = amdgpu_job_submit(job, &adev->mman.entity, 2051 AMDGPU_FENCE_OWNER_UNDEFINED, fence); 2052 if (r) 2053 goto error_free; 2054 2055 return 0; 2056 2057 error_free: 2058 amdgpu_job_free(job); 2059 return r; 2060 } 2061 2062 int amdgpu_fill_buffer(struct amdgpu_bo *bo, 2063 uint32_t src_data, 2064 struct dma_resv *resv, 2065 struct dma_fence **f) 2066 { 2067 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 2068 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 2069 struct dma_fence *fence = NULL; 2070 struct amdgpu_res_cursor dst; 2071 int r; 2072 2073 if (!adev->mman.buffer_funcs_enabled) { 2074 DRM_ERROR("Trying to clear memory with ring turned off.\n"); 2075 return -EINVAL; 2076 } 2077 2078 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst); 2079 2080 mutex_lock(&adev->mman.gtt_window_lock); 2081 while (dst.remaining) { 2082 struct dma_fence *next; 2083 uint64_t cur_size, to; 2084 2085 /* Never fill more than 256MiB at once to avoid timeouts */ 2086 cur_size = min(dst.size, 256ULL << 20); 2087 2088 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst, 2089 1, ring, false, &cur_size, &to); 2090 if (r) 2091 goto error; 2092 2093 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv, 2094 &next, true); 2095 if (r) 2096 goto error; 2097 2098 dma_fence_put(fence); 2099 fence = next; 2100 2101 amdgpu_res_next(&dst, cur_size); 2102 } 2103 error: 2104 mutex_unlock(&adev->mman.gtt_window_lock); 2105 if (f) 2106 *f = dma_fence_get(fence); 2107 dma_fence_put(fence); 2108 return r; 2109 } 2110 2111 /** 2112 * amdgpu_ttm_evict_resources - evict memory buffers 2113 * @adev: amdgpu device object 2114 * @mem_type: evicted BO's memory type 2115 * 2116 * Evicts all @mem_type buffers on the lru list of the memory type. 2117 * 2118 * Returns: 2119 * 0 for success or a negative error code on failure. 2120 */ 2121 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type) 2122 { 2123 struct ttm_resource_manager *man; 2124 2125 switch (mem_type) { 2126 case TTM_PL_VRAM: 2127 case TTM_PL_TT: 2128 case AMDGPU_PL_GWS: 2129 case AMDGPU_PL_GDS: 2130 case AMDGPU_PL_OA: 2131 man = ttm_manager_type(&adev->mman.bdev, mem_type); 2132 break; 2133 default: 2134 DRM_ERROR("Trying to evict invalid memory type\n"); 2135 return -EINVAL; 2136 } 2137 2138 return ttm_resource_manager_evict_all(&adev->mman.bdev, man); 2139 } 2140 2141 #if defined(CONFIG_DEBUG_FS) 2142 2143 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused) 2144 { 2145 struct amdgpu_device *adev = (struct amdgpu_device *)m->private; 2146 2147 return ttm_pool_debugfs(&adev->mman.bdev.pool, m); 2148 } 2149 2150 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool); 2151 2152 /* 2153 * amdgpu_ttm_vram_read - Linear read access to VRAM 2154 * 2155 * Accesses VRAM via MMIO for debugging purposes. 2156 */ 2157 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, 2158 size_t size, loff_t *pos) 2159 { 2160 struct amdgpu_device *adev = file_inode(f)->i_private; 2161 ssize_t result = 0; 2162 2163 if (size & 0x3 || *pos & 0x3) 2164 return -EINVAL; 2165 2166 if (*pos >= adev->gmc.mc_vram_size) 2167 return -ENXIO; 2168 2169 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos)); 2170 while (size) { 2171 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4); 2172 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ]; 2173 2174 amdgpu_device_vram_access(adev, *pos, value, bytes, false); 2175 if (copy_to_user(buf, value, bytes)) 2176 return -EFAULT; 2177 2178 result += bytes; 2179 buf += bytes; 2180 *pos += bytes; 2181 size -= bytes; 2182 } 2183 2184 return result; 2185 } 2186 2187 /* 2188 * amdgpu_ttm_vram_write - Linear write access to VRAM 2189 * 2190 * Accesses VRAM via MMIO for debugging purposes. 2191 */ 2192 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf, 2193 size_t size, loff_t *pos) 2194 { 2195 struct amdgpu_device *adev = file_inode(f)->i_private; 2196 ssize_t result = 0; 2197 int r; 2198 2199 if (size & 0x3 || *pos & 0x3) 2200 return -EINVAL; 2201 2202 if (*pos >= adev->gmc.mc_vram_size) 2203 return -ENXIO; 2204 2205 while (size) { 2206 uint32_t value; 2207 2208 if (*pos >= adev->gmc.mc_vram_size) 2209 return result; 2210 2211 r = get_user(value, (uint32_t *)buf); 2212 if (r) 2213 return r; 2214 2215 amdgpu_device_mm_access(adev, *pos, &value, 4, true); 2216 2217 result += 4; 2218 buf += 4; 2219 *pos += 4; 2220 size -= 4; 2221 } 2222 2223 return result; 2224 } 2225 2226 static const struct file_operations amdgpu_ttm_vram_fops = { 2227 .owner = THIS_MODULE, 2228 .read = amdgpu_ttm_vram_read, 2229 .write = amdgpu_ttm_vram_write, 2230 .llseek = default_llseek, 2231 }; 2232 2233 /* 2234 * amdgpu_iomem_read - Virtual read access to GPU mapped memory 2235 * 2236 * This function is used to read memory that has been mapped to the 2237 * GPU and the known addresses are not physical addresses but instead 2238 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2239 */ 2240 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf, 2241 size_t size, loff_t *pos) 2242 { 2243 struct amdgpu_device *adev = file_inode(f)->i_private; 2244 struct iommu_domain *dom; 2245 ssize_t result = 0; 2246 int r; 2247 2248 /* retrieve the IOMMU domain if any for this device */ 2249 dom = iommu_get_domain_for_dev(adev->dev); 2250 2251 while (size) { 2252 phys_addr_t addr = *pos & PAGE_MASK; 2253 loff_t off = *pos & ~PAGE_MASK; 2254 size_t bytes = PAGE_SIZE - off; 2255 unsigned long pfn; 2256 struct page *p; 2257 void *ptr; 2258 2259 bytes = bytes < size ? bytes : size; 2260 2261 /* Translate the bus address to a physical address. If 2262 * the domain is NULL it means there is no IOMMU active 2263 * and the address translation is the identity 2264 */ 2265 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2266 2267 pfn = addr >> PAGE_SHIFT; 2268 if (!pfn_valid(pfn)) 2269 return -EPERM; 2270 2271 p = pfn_to_page(pfn); 2272 if (p->mapping != adev->mman.bdev.dev_mapping) 2273 return -EPERM; 2274 2275 ptr = kmap(p); 2276 r = copy_to_user(buf, ptr + off, bytes); 2277 kunmap(p); 2278 if (r) 2279 return -EFAULT; 2280 2281 size -= bytes; 2282 *pos += bytes; 2283 result += bytes; 2284 } 2285 2286 return result; 2287 } 2288 2289 /* 2290 * amdgpu_iomem_write - Virtual write access to GPU mapped memory 2291 * 2292 * This function is used to write memory that has been mapped to the 2293 * GPU and the known addresses are not physical addresses but instead 2294 * bus addresses (e.g., what you'd put in an IB or ring buffer). 2295 */ 2296 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf, 2297 size_t size, loff_t *pos) 2298 { 2299 struct amdgpu_device *adev = file_inode(f)->i_private; 2300 struct iommu_domain *dom; 2301 ssize_t result = 0; 2302 int r; 2303 2304 dom = iommu_get_domain_for_dev(adev->dev); 2305 2306 while (size) { 2307 phys_addr_t addr = *pos & PAGE_MASK; 2308 loff_t off = *pos & ~PAGE_MASK; 2309 size_t bytes = PAGE_SIZE - off; 2310 unsigned long pfn; 2311 struct page *p; 2312 void *ptr; 2313 2314 bytes = bytes < size ? bytes : size; 2315 2316 addr = dom ? iommu_iova_to_phys(dom, addr) : addr; 2317 2318 pfn = addr >> PAGE_SHIFT; 2319 if (!pfn_valid(pfn)) 2320 return -EPERM; 2321 2322 p = pfn_to_page(pfn); 2323 if (p->mapping != adev->mman.bdev.dev_mapping) 2324 return -EPERM; 2325 2326 ptr = kmap(p); 2327 r = copy_from_user(ptr + off, buf, bytes); 2328 kunmap(p); 2329 if (r) 2330 return -EFAULT; 2331 2332 size -= bytes; 2333 *pos += bytes; 2334 result += bytes; 2335 } 2336 2337 return result; 2338 } 2339 2340 static const struct file_operations amdgpu_ttm_iomem_fops = { 2341 .owner = THIS_MODULE, 2342 .read = amdgpu_iomem_read, 2343 .write = amdgpu_iomem_write, 2344 .llseek = default_llseek 2345 }; 2346 2347 #endif 2348 2349 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) 2350 { 2351 #if defined(CONFIG_DEBUG_FS) 2352 struct drm_minor *minor = adev_to_drm(adev)->primary; 2353 struct dentry *root = minor->debugfs_root; 2354 2355 debugfs_create_file_size("amdgpu_vram", 0444, root, adev, 2356 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size); 2357 debugfs_create_file("amdgpu_iomem", 0444, root, adev, 2358 &amdgpu_ttm_iomem_fops); 2359 debugfs_create_file("ttm_page_pool", 0444, root, adev, 2360 &amdgpu_ttm_page_pool_fops); 2361 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2362 TTM_PL_VRAM), 2363 root, "amdgpu_vram_mm"); 2364 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2365 TTM_PL_TT), 2366 root, "amdgpu_gtt_mm"); 2367 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2368 AMDGPU_PL_GDS), 2369 root, "amdgpu_gds_mm"); 2370 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2371 AMDGPU_PL_GWS), 2372 root, "amdgpu_gws_mm"); 2373 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev, 2374 AMDGPU_PL_OA), 2375 root, "amdgpu_oa_mm"); 2376 2377 #endif 2378 } 2379